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Abstract

This thesis is about the development and testing of a novel two-dimensional numerical model

(the GIAMT2D model) able to address the hydro-morphodynamic evolution of gravel-bed rivers.

The model solves the two-dimensional hyperbolic system of partial differential equations (PDEs)

arising from the shallow water-Exner model, describing free surface shallow flows over erodible

bed, with suitable closure relations for bedload transport. A coupled formulation of the mathemati-

cal problem, which is needed in order to correctly handle sediment transport in Froude trans-critical

flow conditions, is implemented, resulting in a non-conservative hyperbolic problem, which requires

the adoption of a path-conservative scheme.

A drawback of the fully-coupled shallow water-Exner model is that in general the solution of

the Riemann problem is not easily available, at least if complex empirical sediment transport

formulae are applied, which makes the upwind approach inadequate for designing numerical

approximations to the solutions. Adoption of the more general, Riemann solver-free centred

approach is thus required, the drawback being that centred schemes are significantly less accurate

than upwind schemes in some specific cases, namely for intermediate waves and computations

at low CFL number. In GIAMT2D an original centred upwind-biased scheme (UPRICE2-Cδ) is

applied, recovering accuracy typical of upwind methods, still being able to include any bedload

transport formula. The proposed scheme results from original studies in applied mathematics,

presented in the first part of the thesis, concerning the development of upwind-biased variations of

the centred FORCE scheme for the solution of hyperbolic systems of PDEs, in conservative and

non-conservative form. The performance of these schemes is thoroughly assessed in a suite of tests

for the shallow water equations.

The GIAMT2D model embeds the UPRICE2-Cδ scheme extended to second-order accuracy in the

ADER framework, inserted in a robust second-order preserving splitting technique for the treatment

of frictional source terms, and includes an original wetting-and-drying procedure. The model

performance is checked in well-established classical test cases with fixed and movable bed. These

applications highlight the capability of the model in correctly and accurately solving the equations in

v



Abstract

various cases, e.g. in computations at low local CFL number, in the solution of wet-dry fronts with

fixed and movable bed and in the prediction of sediment transport in Froude trans-critical conditions.

The concept of "morphodynamic benchmark" is introduced for the purpose of assessing the

model performance in reproducing basic river morphodynamic processes for which established

theoretical and experimental knowledge is available. Unit processes with utmost importance for

gravel-bed river morphodynamics, like free and forced bar instability and the stability of channel

bifurcations, are chosen for this aim. In this novel approach for assessing the model capabilities, the

numerical solutions satisfactorily compare with approximate analytical morphodynamic solutions

and laboratory data.

Having proved that the model is able to reproduce the salient features of these classical mor-

phodynamic solutions, an original morphodynamic study is finally carried out, concerning the

non-linear interaction of free and forced bars in straight channels, for which a mature analytical

theory is not available at present. The numerical runs of GIAMT2D are used to validate the research

hypotheses developed on the basis of existing analytical theories and satisfactorily compare with

field observations.
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1 Introduction

Rivers, flowing through alluvial fans and valleys under the action of gravity, represent the

most effective terrestrial transporting agent [105]. Alluvial gravel-bed rivers are typically found

in mountain and piedmont areas, characterized by values of the longitudinal slope that are in-

termediate between those of steep mountain streams and of lowland floodplain reaches, where

typically fine sediment prevails. The action of water on an erodible bed, characterised mainly by

cohesionless sediments, induces sediment transport through the hydrodynamic shear exerted by

flow at the fluid-bottom interface. The combination of slope and bed material commonly found in

alluvial gravel-bed rivers determines two key properties of gravel-bed rivers: the first one is the

possible occurrence of near Froude-critical conditions under bar- and channel-forming events that

reshape the bed and planform morphology; the second is that sediment transport mainly occurs

as bedload (even though a consistent fraction of the total sediment load is carried in suspension,

but apparently with limited relevance for morphological changes). The instability of flow-driven

transport generates a variety of complex patterns in the river bed and in the planform morphology.

Bedforms scaling with the channel width, called bars, represent the fundamental morphological

unit of river bedform and transport dynamics. Bars can be either migrating (associated to the

inherent instability of the system), or steady, i.e. triggered by local or distributed perturbations of

the planform configuration. The dynamic evolution of the riverbed topography is a consequence of

different processes mutually interacting at different scales: the actual bar dynamics of gravel-bed

rivers is likely to be determined by the non-linear interactions of free and forced bars. Natural

rivers assume single-thread (meandering) or multi-thread (braiding) planimetric configurations, or

configurations which are intermediate between the two (wandering, transitional). The evolution of

braided rivers is determined by a variety of morphodynamic phenomena, which can be decomposed

into fundamental unit processes. Among those, channel bifurcations and bar instability are of

utmost relevance. An example of the resulting pattern in the case of a gravel-bed braided river is

given in Fig. 1.1.

The complexity exhibited by river patterns often discloses surprisingly regular bed and planform

morphologies, which has suggested their study through mathematical modelling. The mathematical
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1. Introduction

Figure 1.1: Bar pattern in a gravel-bed braided river (the Tagliamento River, Italy).

modelling of hydro-morphodynamic evolution problems at local and reach scale in gravel-bed

rivers is commonly achieved by coupling a model for free-surface flow with a volumetric sediment

balance for sediments, or Exner equation, including empirical relations for sediment transport, even

though more complicated models, based on finer simulation of turbulence, have been applied [88].

Flow is often modelled by the Reynolds-averaged Navier-Stokes equations or by their further ap-

proximations, such as the shallow water equations, based on the assumption of hydrostatic pressure

distribution. We denote the coupled model based on the latter equations as the shallow water-Exner

model. A distinctive feature of commonly employed flow-transport models is non-linearity, which

can be related to the complexity and interactive character of hydro-morphodynamic processes in

real rivers.

Two approaches are available for the solution of the resulting systems of partial differential equa-

tions (PDEs), namely the numerical approach, providing an approximation to the solutions, and the

analytical approach, providing approximations to the equations. Analytical models often employ

solution techniques based on perturbative methods, in which the unknowns are expanded in Taylor

series up to the desired order and high-order terms are neglected, thus obtaining linear or weakly

non-linear solutions. These models provide deep insight of the fundamental behaviour of the

physical system, being able to identify the controlling parameters and to detect the fundamental

physics. Moreover, they are very useful in the calibration and validation of numerical models.
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However, in order to keep the problem amenable to analytical treatment, they usually focus on

simplified planimetric configurations, often neglecting fully non-linear interactions, which makes

their solutions unfit to reproduce complex processes such as the bar dynamics of braided rivers

[87, 39].

A complementary modelling approach is physical modelling at laboratory scale, providing direct

observations of morphodynamic processes in controlled conditions. Experimental observations give

direct evidence on the morphodynamic processes in river systems, thus being preliminary to mathe-

matical modelling. The outcomes of analytical theories, identifying the controlling parameters in

morphodynamic evolution processes, are fruitfully applied in the interpretation of experimental

results, while experimental data provide fundamental benchmarks to test analytical theories and

numerical experiments.

In the last decades, the adoption of numerical models, able to integrate the system of govern-

ing equations fully preserving their non-linearity, has widely taken place in hydro-morphodynamic

modelling. The general increase in the available computational power and continuous improve-

ment in numerical techniques has allowed the development of more refined numerical models,

characterised by higher accuracy, incorporation of an increasing number of physical processes and

increasing dimensionality [88]. With respect to the analytical approach, numerical techniques allow

much more flexibility in the choice of planimetric configurations and in the incorporation of more

morphodynamic processes, whose interactions are directly taken into account. However, the main

drawback of numerical approaches is their being to some extent "blind", not themselves providing

immediate insight, detection of general behaviours and controlling parameters. Moreover, unwise

application of numerical models may be misleading if the numerical features of the solution scheme

are mistaken for physical features of the considered process [88]. Thus the design of an effective

numerical model for morphodynamic applications implies the adoption of a multi-disciplinary

approach. In detail, it requires knowledge of the mathematical properties of the system of PDEs,

of accurate, stable, efficient and most suitable solution strategies, of the physical processes to be

interpreted and of the outcomes of physical and analytical modelling, whose results shall be used

as benchmarks to test the numerical model.

The general aim of the present Ph.D. research is to develop a novel numerical tool able to address

hydro-morphodynamic problems in gravel-bed rivers. The numerical solution sought shall satisfy

three broad categories of requirements. In detail, the model shall be

• generally applicable for the simulation of hydro-morphodynamic processes in gravel-bed

rivers;
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• able to correctly and accurately solve the system of governing equations;

• able to reproduce the morphodynamic behaviour of gravel-bed rivers.

The first category of requirements concerns the above mentioned peculiarities of flow and transport

conditions in gravel-bed rivers, which must be correctly handled by the model. The numerical

model shall account for two-dimensional free-surface flow in erodible channels characterised by

bedload transport by integrating the two-dimensional shallow-water Exner model. For bedload

transport, plenty of different empirically-derived formulae exist [115], whose application and test

may be required by the engineering practice, while new relations may have to be calibrated in some

cases in order to fit the available data. Thus the solver shall be able to incorporate these formulae in

computations and allow easy switch between them.

The planimetric and topographic complexity of gravel-bed rivers, together with unsteadiness in the

flow regime and occurrence of trans-critical flows, poses some requirements over the domain dis-

cretisation and solution strategies. Polygonal computational domains of irregular shape, reproducing

complex planform configurations, shall be properly discretised, using for instance unstructured

meshes (see the domain discretisation by unstructured triangular meshes in a bifurcation-junction

configuration in Fig. 1.2). High variability in the local flow stage due to topographic complexity

may result in the presence of dry regions in the computational domain, whose extent and location

may change in time due to morphological evolution and unsteadiness in the flow regime (see Fig.

1.3). Algorithms designed for the treatment of standard fully-wet domains may fail in computations

carried out in regions characterised by vanishing depth. Thus the model should incorporate a

wetting-and-drying procedure, able to deal with these features in adaptive and robust manner.

The possible occurrence of trans-critical flows requires particular care in the modelling of sediment

transport. Whereas in general, outside the trans-critical Froude region, the bed interacts only

weakly with the free surface, this is not true in trans-critical conditions, when the characteristic

time scale for the propagation of bed waves is comparable to that of free-surface waves [109, 84].

In this case the mathematical problem is fully coupled and a coupled solution strategy, in which the

hydrodynamic and morphodynamic problem are solved synchronously, shall be implemented.

The second category concerns the properties of the numerical solution of the governing equa-

tions. A basic requirement for numerical schemes is conservativity, which guarantees through

the Lax-Wendroff theorem [78] that the numerical solution will converge to the weak solution

of the problem as the grid is progressively refined. This implies that the scheme will be able to

correctly predict the speed of waves, either smooth or discontinuous, arising in computations. In

the framework of finite volumes, the construction of conservative schemes is achieved in straight-

forward manner by discretising the conservation-law form of systems of PDEs, provided such
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Figure 1.2: Computational domain of complex polygonal shape used for numerical simulations
in a bifurcation-junction configuration on the Armea River (Italy), discretised with an
unstructured triangular mesh. From Tubino et al. [128].

Figure 1.3: Temporal variation in the wet and dry patterns due to unsteady flow regime during a
flood event in the Tagliamento River (Italy).
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formulation is available. Unfortunately, the shallow water-Exner model, which has recently been

proved to belong to the class of hyperbolic systems of PDEs for the range of flow data typically

encountered in rivers [35], does not admit a conservation law-form if a coupled formulation, which

is mandatory when dealing with trans-critical flows, is adopted [110]. In this case, adoption of

the path-conservative framework [42, 95], although still questionable from the point of view of

mathematical proof of convergence [1], allows to recover an acceptable definition of weak solutions

and to develop shock-capturing methods.

Beyond convergence towards weak solutions, natural requirements for the numerical scheme are

accuracy (low numerical dissipation), computational efficiency and generality, i.e. in the present

case the possibility of including any bedload transport formula in computations. The behaviour of

the numerical solver with respect to these three (somehow contradictory) requirements is deeply

influenced by the nature of the solution scheme, which must provide the best trade-off between

them. In the framework of finite volume methods, two approaches are available for designing

numerical schemes for hyperbolic systems of PDEs: the upwind approach, based on the application

of Riemann solvers, and the centred approach, which does not require any information on the

system eigenstructure [112, 113]. Upwind methods are generally more accurate than centred meth-

ods, the drawbacks being higher computational cost, higher complexity resulting in more difficult

implementation and less generality. The use of upwind methods is restricted to the problems for

which the solution of the Riemann problem is viable: since this is not the case for the shallow

water-Exner model, at least if complex sediment transport formulae are used, application of the

centred approach for the solution of the hydro-morphodynamic problem is preferable [22, 21].

The numerical model presented in this thesis is based on an refined upwind-biased centred scheme,

resulting from original research in applied mathematics. The scheme partially uses upwind in-

formation without the application of any Riemann solver, thus being characterised by accuracy

comparable to that of upwind methods, still retaining the generality of centred methods, i.e. the

possibility of applying any bedload transport formula. The development of upwind-biased schemes

is first conducted with reference to the case of homogeneous hyperbolic systems of conservation

laws, with applications to a suite of classical tests for the inviscid shallow water equations with

fixed bed. A path-conservative version is then presented, suitable for applications to the hydro-

morphodynamic problem. Extension of schemes to second-order accuracy provides sharp solution

profiles at a still reasonable computational cost.

The development of a computational tool able to correctly and accurately solve the system of

governing equations is only an intermediate objective: the final goal in this thesis is to build a nu-

merical model able to reproduce the real morphodynamic behaviour of gravel-bed rivers. Therefore

one of the main distinctive features of the present research is the production of novel outcomes both
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in the field of applied mathematics and river morphodynamics.

The capability of the model is carefully assessed in tests aiming at reproducing the morphody-

namics observed in controlled conditions, by checking its performance against morphodynamic

benchmarks given by well-established analytical solutions and laboratory experiments. Since few

examples of numerical applications of this kind are available in the literature, this represents an

innovative approach for testing the model. The morphodynamic benchmarks have been chosen in

relation to the dynamics of free and forced bars and channel bifurcations. As previously mentioned,

a wealth of theories exist which give simplified analytical solutions for these unit morphodynamic

processes. More specifically, in the present work we check the performance of the numerical model

in the development of free bars in straight channels against the linear free bar theory [33] and

we prove that the model is able to correctly address the morphodynamic influence of a localised

variation in planform in agreement with the linear theory of spatial bars [141]. Moreover, we focus

on numerical assessment of channel bifurcation stability, comparing the numerical results with

experimental [11] and analytical [14] results.

These applications aim at reproducing individual processes. However, the morphodynamic evo-

lution of real gravel-bed rivers is also determined by their non-linear interaction. In particular,

focusing on single-thread rivers, experimental and theoretical evidence indicates that the actual bar

dynamics is the result of the non-linear interaction of free and forced bars [68, 127, 97]. However,

a morphodynamic theory able to fully account for these interaction processes in the basic straight-

channel configuration is not available at present [142]. Thus, after assessing the capabilities of

the numerical model, we conduct an original study which aims at addressing such interactions by

integrating the outcomes of existing analytical theories, remotely-sensed field data and numerical

modelling.

The present thesis outlines as follows. In chapter 2 we introduce the shallow water-Exner model,

governing the hydro-morphodynamic evolution of rivers, and review its properties. We show that

the system of governing equations is hyperbolic under some assumptions which are reasonable in

gravel-bed rivers and therefore devote some attention to recalling the mathematical properties of

hyperbolic systems of PDEs.

The first part of the thesis is devoted to original research in applied mathematics. In chapter 3 we

develop novel upwind-biased centred schemes for systems of conservation laws and assess their

performance in well-established test cases for the two-dimensional shallow water equations. Then

in chapter 4 we extend the schemes developed in the previous chapter for the solution of hyperbolic

systems in non-conservative form.

Chapter 5 bridges the mathematical part to the morphodynamic applications which are considered

in the second part of the thesis. Here, based on the scheme developed in the previous chapter,

7



1. Introduction

we build our hydro-morphodynamic model, regarded as GIAMT2D, and assess its performance

employing classical test cases for fixed and movable bed. Chapter 6 is devoted to reviewing

the main achievements in gravel-bed river morphodynamics obtained by analytical and physical

modelling. Here we present the theories of free and forced bars and analytical and laboratory results

concerning the stability of channel bifurcations. Then in chapter 7 we validate the model against

these morphodynamic benchmarks. Finally, in chapter 8 we conduct an original morphodynamic

study concerning the interaction of free and forced bars in straight channels.

8



2 The mathematical model

The mathematical model considered in this thesis, accounting for two-dimensional shallow

flows in open erodible channels characterised by bedload sediment transport, results from the

coupling of the two-dimensional depth-averaged shallow water equations with the Exner equation,

for short referred to as the two-dimensional shallow water-Exner model. It is composed of a system

of four partial differential equations (PDEs), together with algebraic closure relations for friction

and bedload transport.

This chapter is about the presentation of the model and explanation of its mathematical behaviour.

In detail, we aim at proving that the considered system of PDEs, together with the proposed

closure relations, belongs to the class of hyperbolic systems, at least for the range of flow data

which are of interest in practical applications in rivers. This point is of crucial relevance since it

deals with assessing well-posedness of the mathematical problem, i.e. assessing the existence and

uniqueness of the solution for the initial value problem. Before proving hyperbolicity of the shallow

water-Exner model, we define the concept of hyperbolic systems and review their properties. To this

aim, we preliminarily introduce the two-dimensional inviscid shallow water equations, governing

free-surface flow over fixed horizontal bed, which represent an example of a hyperbolic system of

PDEs.

Hyperbolic systems may be either conservative, i.e. admit a conservation-law form, or non-

conservative. The shallow water-Exner model cannot be expressed in conservation-law form if

a coupled formulation of the hydrodynamic and morphodynamic problem is adopted. Therefore

in our review we devote some attention to the definition of weak solutions of non-conservative

systems and to the related debate in the literature concerning convergence of numerical methods to

these solutions. These issues will be of practical relevance in the development of the numerical

model.

The present chapter outlines as follows. In section 2.1 we introduce the two-dimensional shallow

water-Exner model. Then in section 2.2 we present the inviscid shallow water equations, which

are used in 2.3 for defining the class of hyperbolic systems of PDEs and reviewing their basic

9



2. The mathematical model

properties. In section 2.4 we prove that the shallow water-Exner model is hyperbolic within the

range of flow data which is typical of gravel-bed rivers. Finally, in section 2.5 we show that

the coupled shallow water-Exner system does not admit a conservation-law form, thus being a

two-dimensional non-conservative hyperbolic system of PDEs.

2.1 The shallow water-Exner model

In this section we present the mathematical model, describing two-dimensional free-surface

water flow over erodible bed. The riverbed is assumed to be composed of well-graded sediments

characterised by a unique value of particle size Ds. The grain size of sediments transported by

water flow is the same as that of sediments composing the riverbed. Solid transport is characterized

by bedload only, thus ignoring the role of suspension.

The model is composed of a system of four partial differential equations (the governing equations)

and closure relations for friction and bedload transport. In this thesis we consider algebraic closure

relations only, relating friction and bedload transport to the local values of the hydrodynamic

variables.

In section 2.1.1 we present the governing equations, while the closure relations are presented in

section 2.1.2.

2.1.1 Governing equations

The governing equations are obtained imposing mass conservation for the fluid and solid phases

and the momentum principle to a dilute suspension of sediment particles flowing in open channels.

The water mass conservation equation (continuity equation) reads

∂t (H−η)+∂xqx +∂yqy = 0 (2.1)

and the momentum equations in the x and y direction respectively read

∂tqx +∂x

(
q2

x

H−η
+

1
2

gH2−gHη

)
+∂y

(
qxqy

H−η

)
+gH ∂xη+g(H−η)S f x = 0 , (2.2)

∂tqy +∂x

(
qyqx

H−η

)
+∂y

(
q2

y

H−η
+

1
2

gH2−gHη

)
+gH ∂yη+g(H−η)S f y = 0 . (2.3)

Equations (2.1)-(2.3) constitute the two-dimensional shallow water model. Finally, the sediment

mass conservation equation (two-dimensional Exner equation) is

(1−λp) ∂tη+∂xq∗sx +∂yq∗sy = 0 . (2.4)
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2. The mathematical model

In equations (2.1)-(2.4), x and y are the two Cartesian planimetric coordinates of space and t is

time, H (x,y, t) [m] denotes water free-surface elevation, η(x,y, t) [m] is bed elevation, qx (x,y, t)

and qy (x,y, t)
[
m2s−1

]
represent water discharge per unit width in the x and y direction respec-

tively, S f x (x,y, t) and S f y (x,y, t) [−] are the dimensionless friction terms in the x and y direction,

q∗sx (x,y, t) and q∗sy (x,y, t)
[
m2s−1

]
represent sediment discharge per unit width in the x and y di-

rection, g = 9.81 ms−2 is the acceleration due to gravity and λp [−] is bed porosity. Moreover, we

denote with D(x,y, t) = H−η [m] the water depth and with u(x,y, t) = qx
H−η

and v(x,y, t) = qy
H−η[

ms−1
]
the x and y components of velocity. The notation is illustrated in Fig. 2.1.

The final form of the system is obtained after performing slight modifications to equations (2.1) and

(2.4). First in (2.4) we incorporate the porosity term 1
1−λp

inside bedload discharge, thus redefining

the sediment discharge terms as

qsx =
q∗sx

1−λp
, qsy =

q∗sy

1−λp
. (2.5)

Then we replace equation (2.1) with one equation resulting from the linear combination of (2.1) and

(2.4) representing joint conservation of water and sediment mass. Finally, we obtain the shallow

water-Exner model in the form

∂tH +∂x (qx +qsx)+∂y (qy +qsy) = 0

∂tqx +∂x

(
q2

x

H−η
+

1
2

gH2−gHη

)
+∂y

(
qxqy

H−η

)
+gH ∂xη+g(H−η)S f x = 0

∂tqy +∂x

(
qyqx

H−η

)
+∂y

(
q2

y

H−η
+

1
2

gH2−gHη

)
+gH ∂yη+g(H−η)S f y = 0

∂tη+∂xqsx +∂yqsy = 0

. (2.6)

System (2.6) presents eight unknowns (H, qx, qy, η, S f x, S f y, qsx, qsy) and only four equations,

thus being four times undetermined. Next, we shall introduce closure relations for the evaluation of

the friction and sediment discharge terms.

2.1.2 Closure relations

For sake of simplicity, here we introduce a vectorial formulation for discharge ~q, bedload

discharge~qs and dimensionless friction ~S f

~q = (qx,qy) , ~qs = (qsx,qsy) , ~S f = (S f x,S f y) (2.7)
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and define the magnitude of the above vectors as

q =
√

q2
x +q2

y , qs =
√

q2
sx +q2

sy , S f =
√

S2
f x +S2

f y . (2.8)

We remark that velocity as well is a vector parallel to discharge:

~u = (u,v) =
1

H−η
(qx,qy) . (2.9)

Such notation allows two-dimensional projection of classical one-dimensional closure relations, as

we shall see next.

2.1.2.1 Friction models

For the evaluation of the magnitude of friction S f we adopt one-dimensional algebraic relations

such as the Manning law, which reads

S f =
n2q2

(H−η)10/3 , (2.10)

where n
[
m−1/3s

]
is the Manning roughness coefficient. The Strickler formula relates the n

coefficient to median grain size Ds in the form

1
n
= Ks =

21.1

D1/6
s

. (2.11)

Alternatively, we consider the Chézy friction law, reading

S f =
q2

gC2
h (H−η)3 . (2.12)

In (2.12) the Chézy coefficient Ch [−] can be taken as constant in the range Ch ∼ 10÷20. Otherwise,

we can assume logarithmic dependence of Ch on the water depth D = H−η in the form

Ch = 6+2.5ln
(

D
kChDs

)
, (2.13)

where kCh is usually kCh = 2.5.

For the projection of the one-dimensional friction laws (2.10) and (2.12) in the x and y direction,

consistently with the depth-averaged approach in which we neglect the role of three-dimensional

12



2. The mathematical model

circulations, we assume that ~S f is parallel to~q, thus obtaining

S f x =
n2qxq

(H−η)10/3 , S f y =
n2qyq

(H−η)10/3 (2.14)

if the Manning law (2.10) is used and

S f x =
qxq

gC2
h(H−η)3 , S f y =

qyq

gC2
h (H−η)3 (2.15)

if the Chézy law (2.12) is used.

2.1.2.2 Bedload transport formulae

In order to define the magnitude of the sediment discharge vector qs (2.8), we assume that

• sediment discharge is in equilibrium with local hydrodynamic conditions (instantaneous

adaptation);

• sediment discharge is locally equivalent to sediment transport capacity.

The first hypothesis, which is widely accepted when dealing with bedload transport, allows adoption

of algebraic closure relations for sediment transport, avoiding use of differential relations for

adaptation. The second hypothesis allows us to evaluate qs through one of the existing one-

dimensional relations for bedload transport capacity. Plenty of different formulae for sediment

transport capacity are available in the literature. Most of them are given in the form

qs =

√
g∆D3

s

1−λp
Φ (θ) , (2.16)

where Φ(θ) [−] is the Einstein parameter. Relations for Φ(θ) of three bedload transport formulae

are given in Tab. 2.1. In (2.16) ∆ is reduced density, defined as

∆ =
ρs−ρw

ρw
, (2.17)

being ρs and ρw sediment and water density, and θ is the Shields parameter representing dimension-

less shear stress, given by

θ =
τ

(ρs−ρw)gDs
, (2.18)
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Figure 2.1: Sketch of free surface and river bed with notation.

Author Formula Remarks

Parker [96]

Φ = G(ξ)0.00218θ1.5

with ξ = θ/0.0386 and

G = ξ14.2 for ξ < 1

G = exp
(

14.2(ξ−1)−9.28(ξ−1)2
)

for 1≤ ξ≤ 1.59

G = 5474(1−0.853/ξ)4.5 for ξ≥ 1.59

Meyer-Peter and Müller
[85]

Φ = 8max((θ−θcr) , 0)
3
2 θcr = 0.047. Bed slope

≤ 0.02. Bedload transport.

Wong and Parker [135] Φ = 4.93max((θ−θcr) , 0)1.6
θcr = 0.047

Table 2.1: Einstein parameter Φ(θ) of three sediment transport formulae.
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where τ = ρwg(H−η)S f is the dimensional shear stress at the interface between fluid and bed.

Depending on the friction law adopted in the evaluation of τ, (2.18) specialises as

θ =
n2q2

∆Ds (H−η)
7
3

(2.19)

if the Manning law (2.10) is used and as

θ =
q2

g∆DsC2
h (H−η)2 (2.20)

if the Chézy law (2.12) is adopted. In Tab. 2.1 θcr = 0.047 represents the critical value of the

Shields stress. Notice that the formula proposed by Wong and Parker [135] has the same structure

as that of Meyer-Peter and Müller [85], but different coefficients.

Unlike these transport formulae, where qs is given as a function of θ in the form (2.16), relations of

more theoretical use relate bedload transport capacity to local values of depth and of the magnitude

of discharge. Among them, the Grass formula [54] reads

qs = AG

(
q

H−η

)mG

(2.21)

with AG ∈ [0, 1], mG ∈ [1, 4].

Having defined the magnitude of bedload transport qs using one of the above formulae, two-

dimensional projection is achieved setting

~qs = (qsx,qsy) = qs(cosγ,sinγ) , (2.22)

where γ represents the angle between the direction defined by vector ~qs and the positive direction of

the x axis. According to theoretical and experimental studies, e.g. Ikeda et al. [66] and Talmon et

al. [116], γ can be computed as the sum of two contributions

γ = γq + γg . (2.23)

See Fig. 2.2, where these definitions and the notation are shown. γq represents the direction defined

by the shear stress, which is parallel to~q:

cosγq =
qx

q
, sinγq =

qy

q
, (2.24)
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x

y

q

γ
q

γ
g

q
s

n
q

Figure 2.2: Sketch of vectors~q and~qs.

while γg represents a correction to the direction defined by ~q, which accounts for the action of

gravity on sediments due to local lateral bed slope. According to Ikeda [64] the latter contribution

can be computed as

tanγg =−
rik√

θ

∂η

∂~nq
=− rik√

θ

(
∂η

∂x
,
∂η

∂y

)
· ~nq , (2.25)

where ~nq = (−sinγq,cosγq) =
(−qy,qx)

q is the unit vector normal to ~q and rik is a dimensionless

empirical parameter ranging between 0.3 and 0.6 [64, 116].

Two-dimensional projection of the Grass formula (2.21) is typically achieved neglecting the role of

bed lateral slope in (2.22), i.e. assuming ~qs to be parallel to~q (γ = γq):

qsx = AG
qmG−1

(H−η)mG
qx , qsy = AG

qmG−1

(H−η)mG
qy . (2.26)

Finally, the mathematical model is given by system (2.6), together with the algebraic closure

relations for friction and bedload transport presented in this section. The model has four unknowns,

namely H, qx, qy, η.

2.2 The two-dimensional inviscid shallow water equations

In this section we introduce a model describing two-dimensional free-surface shallow flows in

absence of friction and sediment transport over horizontal bed, namely the two-dimensional inviscid
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shallow water equations. This model is unsuitable for addressing the morphodynamic evolution

of river systems since it is unable to predict changes in the riverbed configuration. Moreover,

the assumption of inviscid flow restricts its applications to the study of inertial hydrodynamic

processes, i.e. the processes dominated by advection. However, the study of free-surface flows over

non-movable bed in idealised conditions has strong relevance for the development of the numerical

hydro-morphodynamic solver and for the morphodynamic applications which are the final goal of

this thesis. There are three main reasons for considering the shallow water model.

• The classical numerical solution strategy for hydro-morphodynamic problems consists of

applying a numerical solver for the shallow water equations with fixed bed and subsequently

updating riverbed elevation by solving the Exner equation (uncoupled solution strategy, see

sections 2.5 and 5.1).

• The general mathematical structure of advection problems, describing wave propagation

across the domain, can be much more easily studied with reference to this system than using

the full shallow water-Exner model. The shallow water equations are a remarkable example

of hyperbolic system of PDEs: in section 2.3, we will use this case in order to introduce the

class of hyperbolic systems of PDEs and review their general properties.

• Part of this thesis (chapters 3 and 4) is devoted to the development of numerical schemes for

hyperbolic systems of PDEs, whose performance will be assessed in a suite of tests for the

inviscid shallow water equations on horizontal bed.

The model is derived from the mass conservation equation (2.1) and the momentum equations

(2.2)-(2.3), in which we neglect the frictional source terms (S f x = S f y = 0) and riverbed elevation

gradients (∂xη = ∂yη = 0). It reads

∂tD+∂x (Du)+∂y (Dv) = 0

∂t (Du)+∂x

(
Du2 +

1
2

gD2
)
+∂y (Duv) = 0

∂t (Dv)+∂x (Duv)+∂y

(
Dv2 +

1
2

gD2
)
= 0

. (2.27)

Alternatively, system (2.27) can be equivalently written in terms of the variables H, qx, qy. Notice

that, as a consequence of the assumption of inviscid flow and horizontal bed configuration, the

equations do not include any source term, i.e. the system is homogeneous.
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2.3 Hyperbolicity of the shallow water model

In this section, following Toro [117], we introduce the class of hyperbolic systems of partial

differential equations (PDEs) and present their fundamental properties with reference to the two-

dimensional inviscid shallow water equations (2.27). The motivation for this review is twofold.

First, one of the main objectives of the present thesis is to solve the shallow water-Exner model

(2.6), which, as we will prove in section 2.4, is hyperbolic under some hypotheses. Furthermore,

part of the thesis is devoted to the derivation of numerical schemes for the solution of hyperbolic

systems of PDEs: an introduction to their mathematical properties and features is required. For a

comprehensive presentation of this subject we refer the reader to [118] and references therein.

The section outlines as follows. First in section 2.3.1 we give some preliminary notions and

definitions. The case of conservative hyperbolic systems is treated in section 2.3.2, where we

briefly recall the wave relations, we define rarefaction, shear and shock waves and introduce the

concept of weak solutions of the system. Finally in section 2.3.3 we focus on hyperbolic systems

in non-conservative form and we introduce the concept of weak solution of these systems in the

path-conservative framework.

2.3.1 Preliminaries

We consider two-dimensional homogeneous systems of m first-order partial differential equa-

tions having the form

∂tqk +
m

∑
l=1

a1kl (x,y, t,q1, ...,qm)∂xql +
m

∑
l=1

a2kl (x,y, t,q1, ...,qm)∂yql = 0 , (2.28)

with 1≤ k, l ≤ m, where q1, ...,qm are the conserved variables.

An example is given by the two-dimensional inviscid shallow water equations over horizontal bed

(2.27).

Let us recast system (2.28) in quasi-linear or non-conservative form

∂tQ+A1∂xQ+A2∂yQ = 0 , (2.29)
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where Q is the vector of unknowns, A1 and A2 are the system matrices. For the shallow water

equations (2.27) they read

Q =

 D

uD

vD

 , A1 =

 0 1 0

gD−u2 2u 0

−uv v u

 , A2 =

 0 0 1

−uv v u

gD− v2 0 2v

 . (2.30)

Definition 2.3.1: Eigenvalues. The eigenvalues of a matrix A having size m×m are given by the m

roots of the characteristic polynomial:

pA (λ) = det(A−λI) = 0 , (2.31)

where I is the m×m identity matrix. We denote these eigenvalues, sorted in increasing order, with

λ(1), ...,λ(m). For the shallow water equations the eigenvalues of A1 and A2 (2.30) are respectively

given by:

λ
(1)
x = u−a , λ

(2)
x = u , λ

(3)
x = u+a , (2.32)

λ
(1)
y = v−a , λ

(2)
y = v , λ

(3)
y = v+a , (2.33)

being a =
√

gD.

Consider a non-zero vector~n = (n1,n2). Without loss of generality, let us normalise~n, i.e. consider

a unit vector, whose norm is |~n|=
√

n2
1 +n2

2 = 1. We define a matrix An̂ that is the projection of

matrices A1 and A2 (2.29) in the direction of~n, i.e. the linear combination

An̂ = (A1,A2) ·~n = n1A1 +n2A2 . (2.34)

Projection of the system matrices in (2.34) allows generalisation of the theory from the one-

dimensional to the two-dimensional case.

Definition 2.3.2: Hyperbolic systems of PDEs. A system of PDEs in quasi-linear form (2.29)

having matrices A1 and A2 is said to be hyperbolic if matrix An̂ (2.34) has m real eigenvalues. In

this case we also call matrices A1, A2 and An̂ hyperbolic matrices. Furthermore, the system is

called strictly hyperbolic if in addition the eigenvalues are all distinct.
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For the two-dimensional inviscid shallow water equations matrix An̂ reads

An̂ (Q) =

 0 n1 n2(
gD−u2

)
n1−uvn2 2un1 + vn2 un2

−uvn1 +
(
gD− v2

)
n2 vn1 un1 +2vn2

 , (2.35)

having eigenvalues

λ
(1)
n̂ = un1 + vn2−a , λ

(2)
n̂ = un1 + vn2 , λ

(3)
n̂ = un1 + vn2 +a . (2.36)

Since the eigenvalues (2.36) are all real, the shallow water equations prove to be a hyperbolic

system of PDEs . Moreover, for wet bed, i.e. provided a > 0, the system is strictly hyperbolic.

Definition 2.3.3: Right eigenvectors. The right eigenvector of a matrix A (having size m×m)

associated to one of its eigenvalues λ(l) is the column vector R(l) = [r1, ...,rm]
T such that

AR(l) = λ
(l)R(l) . (2.37)

For the two-dimensional shallow water equations, the eigenvectors of A1 and A2 (2.30) respectively

read

R(1)
x = α

(1)
x

 1

u−a

v

 , R(2)
x = α

(2)
x

0

0

1

 , R(3)
x = α

(3)
x

 1

u+a

v

 (2.38)

and

R(1)
y = α

(1)
y

 1

u

v−a

 , R(2)
y = α

(2)
y

0

1

0

 , R(3)
y = α

(3)
y

 1

u

v+a

 , (2.39)

being α
(1)
x , α

(2)
x , α

(3)
x and α

(1)
y , α

(2)
y , α

(3)
x scaling factors. The eigenvectors of the projected matrix

An̂ (2.35) read:

R(1)
n̂ = α

(1)
n̂

 1

u−an1

v−an2

 , R(2)
n̂ = α

(2)
n̂

 0

n2

−n1

 , R(3)
n̂ = α

(3)
n̂

 1

u+an1

v+an2

 , (2.40)
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with α
(1)
n̂ , α

(2)
n̂ , α

(3)
n̂ scaling factors.

Consider a hyperbolic system (2.29) with real eigenvalues λ
(l)
n̂ (Q) and real eigenvectors R(l)

n̂ (Q)

for 1≤ l ≤m. The characteristic speed λ
(l)
n̂ (Q) defines a characteristic field, the λ

(l)
n̂ field or simply

the l field.

Definition 2.3.4: Linearly degenerate fields. A characteristic field is said to be linearly degenerate if

∇λ
(l)
n̂ (Q) ·R(l)

n̂ (Q) = 0 , ∀Q ∈ Rm , (2.41)

where Rm is the set of real-valued vectors of m components, called the phase space.

Definition 2.3.5: Genuinely non-linear fields. A characteristic field is said to be genuinely non-linear

if

∇λ
(l)
n̂ (Q) ·R(l)

n̂ (Q) 6= 0 , ∀Q ∈ Rm . (2.42)

In equations (2.41) and (2.42) we recall that the gradient of an eigenvalue λ(l) is a column vector

given by

∇λ
(l) (Q) =

[
∂λ(l)

∂Q

]
. (2.43)

For the two-dimensional inviscid shallow water equations we have that the eigenvalues λ
(1)
n̂ and

λ
(3)
n̂ define genuinely non-linear fields, while the eigenvalue λ

(2)
n̂ defines a linearly degenerate field.

The proof follows trivially from the definitions (2.41) and (2.42). Notice that the same definitions

apply to the eigenvalues λ
(l)
x and λ

(1)
y of the x-split and y-split systems respectively. This is readily

obtained setting~n = (1,0) or~n = (0,1) in the projection.

2.3.2 Conservative formulation

Definition 2.3.6: Conservative systems. A two-dimensional system of PDEs (2.28) is said to be

conservative if it can be recast in the form

∂tQ+∂xF(Q)+∂xG(Q) = 0 , (2.44)

where F(Q) and G(Q) are the x and y flux vectors. Alternatively, (2.44) can be called system of

conservation laws or system in conservation-law form.

If a system admits a conservative form, it can still be written in quasi-linear form (2.29), based on
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the relation

A1 (Q) =

[
∂F
∂Q

]
, A2 (Q) =

[
∂G
∂Q

]
. (2.45)

In this case matrices A1 and A2 are called Jacobian matrices of the flux vectors.

The two-dimensional inviscid shallow water equations over horizontal bed (2.27) can be writ-

ten in conservation-law form (2.44), with flux vectors given by

F(Q) =

 Du

Du2 + 1
2 gD2

Duv

 , G(Q) =

 Dv

Duv

Dv2 + 1
2 gD2

 , (2.46)

while the vector of unknowns Q is given in (2.30).

We shall now move to the definition of the Riemann problem and its elementary wave solu-

tions. For sake of simplicity, let us consider the x-split two-dimensional homogeneous shallow

water equations, having the form

∂tQ+∂xF(Q) = 0 (2.47)

with fluxes F given in (2.46) and unknowns Q given in (2.30).

Definition 2.3.7: Riemann problem. The Riemann problem is an initial value problem (IVP)

having the form
PDEs: ∂tQ+∂xF(Q) = 0

IC: Q(x,0) =

{
QL if x < 0

QR if x > 0

 (2.48)

where the initial condition

QL =

 DL

DLuL

DLvL

 , QR =

 DR

DRuR

DRvR

 (2.49)

is discontinuous in x = 0. For the shallow water equations the Riemann problem generalises the

(physical) dam-break problem, in which a dam or gate separating two basins filled with still water

at rest having different free-surface elevation is suddenly removed. In contrast to the dam-break

problem, in the Riemann problem (2.48) initial velocity may assume any value.

At time t = 0+, the problem (2.48) results in the generation of waves propagating from the
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initial discontinuity located at x = 0. In the present case, four different wave patterns may arise

[117]. In general, extrema of these waves pattern are shock waves or rarefaction waves: thus we

may have two shocks or two rarefactions or two combinations of one shock and one rarefaction. In

any of these cases, the middle wave is always a shear wave, across which the tangential velocity

v changes discontinuously. Thus, there are three wave families, which are associated with the

eigenvalues λ
(1)
x , λ

(2)
x , λ

(3)
x respectively. Next, we will consider the much simpler case in which the

initial data states (2.49) are connected by one single wave.

2.3.2.1 Wave relations

Before proceeding to the study of waves, we recall the notion of Riemann invariants and the

Rankine-Hugoniot condition.

Let us turn our x-split system (2.47) in quasi-linear form

∂tQ+A1 (Q)∂xQ = 0 , (2.50)

with vector of unknowns given by

Q = [q1,q2, ...,qm]
T (2.51)

and consider the wave associated with the λ
(l)
x (Q) characteristic field, with eigenvalue λ

(l)
x and

corresponding right eigenvector

R(l)
x =

[
r(l)1 ,r(l)2 , ...,r(l)m

]T
. (2.52)

Definition 2.3.8: Generalised Riemann invariants. The generalised Riemann invariants are relations

that hold across the wave structure (for certain types of waves) and lead to the following m− 1

ordinary differential equations:

dq1

r(l)1

=
dq2

r(l)2

= ...=
dqm

r(m)
1

. (2.53)

They relate rates of change dqk of a quantity qk to the respective components r(l)k of the right

eigenvector R(l)
x corresponding to a λ

(l)
x wave family.

An important concept which is applicable to discontinuous solutions of hyperbolic systems in

conservation-law form (2.47) is the Rankine-Hugoniot jump condition or simply Rankine-Hugoniot

23



2. The mathematical model

condition. It applies to a discontinuous wave travelling with speed sx, which is related to jumps in

the conserved variables Q and fluxes F(Q) across the wave as follows:

F(Qahead)−F(Qbehind) = sx (Qahead−Qbehind) . (2.54)

Here subscript ahead denotes the state immediately ahead of the discontinuity while behind denotes

the state immediately behind the discontinuity. We remark that the Rankine-Hugoniot condition

holds only for systems in conservation-law form.

We will now turn to the study of elementary wave solutions of the Riemann problem (2.48) for the

shallow water equations.

2.3.2.2 Rarefaction waves

Here we are interested in the situation in which the two data states are connected, through a

smooth transition, in a genuinely non-linear field, say, a rarefaction wave. A rarefaction wave is a

smooth wave, i.e. all flow quantities vary continuously across the wave, at any fixed time. Across

the bounding characteristic corresponding to the wave head and tail, however, all flow variables

have a discontinuity in the x derivative. For the shallow water equations, rarefactions are associated

with the genuinely non-linear field l = 1 and l = 3. They satisfy the following conditions:

• constancy of generalised Riemann invariants across the wave (2.53);

• divergence of characteristics:

λ
(l)
x (QL)< λ

(l)
x (QR) . (2.55)

Condition (2.55) says that the corresponding eigenvalue increases monotonically as the wave is

crossed from left to right.

2.3.2.3 Shear waves

Shear waves are discontinuous solutions across which the tangential velocity component v

jumps discontinuously. Suppose that the two states on the left and right sides of the wave are

respectively denoted by Q∗L and Q∗R. The states on either side of the discontinuity are connected

through a single jump discontinuity of speed s
(l)
x , in a linearly degenerate field. This field is that

of the eigenvalue λ
(2)
x for the two-dimensional x-split shallow water equations. The following

conditions apply:

• the Rankine-Hugoniot condition

F(Q∗R)−F(Q∗L) = s
(2)
x (Q∗R−Q∗L) ; (2.56)
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• constancy of the generalised Riemann invariants across the wave (2.53);

• the parallel characteristic condition:

λ
(2)
x (Q∗L) = λ

(2)
x (Q∗R) = s

(2)
x . (2.57)

From the above relations we obtain that the water depth and the normal component of velocity u

are constant across the wave, while the tangential component v changes discontinuously. Contact

waves or discontinuities arising from pollutant transport models behave identically to shear waves.

See section 3.5 of chapter 3 for more details about contact waves.

2.3.2.4 Shock waves

Here we assume that the solution of the Riemann problem (2.48) consists of an isolated shock

of wave speed s
(l)
x . The two constant data states QL and QR are connected through a single jump

discontinuity in a genuinely non-linear field l = 1 or l = 3 and the following conditions apply:

• the Rankine-Hugoniot condition

F(QR)−F(QL) = s
(l)
x (QR−QL) ; (2.58)

• the entropy condition

λ
(l)
x (QL)> s

(l)
x > λ

(l)
x (QR) . (2.59)

The latter condition says that characteristics of both sides shall run into the shock wave. The entropy

condition is the criterion for selecting the physically meaningful solution, in case of non-unique

solutions. Hyperbolic conservation laws admit, for instance, rarefaction shocks and compression

shocks, but only the latter ones are physically acceptable.

2.3.2.5 Weak solutions and convergence of conservative methods

We have been focusing on hyperbolic systems of PDEs expressed in differential form (2.28). An

implicit assumption when dealing with conservation laws in differential form is that their solution is

smooth enough, i.e. it admits the definition of the derivatives contained in the mathematical problem.

However, hyperbolic systems of conservation laws may develop discontinuities in the solution

even starting from purely continuous initial conditions, thus making the differential formulation

inadequate.

Here we concern about expression of the solutions of conservation laws in weak (or integral)
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form. Consider the two-dimensional x-split shallow water equations and a one-dimensional space

control volume [xL,xR]. Integration of the system of PDEs over the selected control volume gives

d
dt

∫ xR

xL

Q(x, t) = F(Q(xL, t))−F(Q(xR, t)) . (2.60)

Further integration in time of (2.60) in the set
[
t1, t2

]
gives

∫ xR

xL

Q
(
x, t2)dx =

∫ xR

xL

Q
(
x, t1)dx+

∫ t2

t1
F(Q(xL, t))dt−

∫ t2

t1
F(Q(xR, t))dt . (2.61)

There are important reasons for considering the integral forms of conservation laws. First, the

derivation of the governing equations for a wide range of physical problems is based on physical

conservation principles originally expressed as integral relations on control volumes. Subsequent

expression of these laws in differential form relies on certain hypotheses over regularity of the

considered functions, which makes differential forms less general. Thus the definition of the

integral form indicates a strategy for designing numerical methods able to capture the discontinuous

solutions arising from non-linear hyperbolic systems.

Furthermore the concept of weak solutions is used for assessing convergence of numerical schemes.

A basic requirement for numerical schemes solving hyperbolic systems of PDEs is the following: if

the approximations produced by the scheme converge to some function as the mesh is refined, then

this function must be a weak solution of the system. In the case of systems of conservation laws,

the classical Lax-Wendroff theorem [78] ensures that conservative numerical methods have this

property.

2.3.3 Non-conservative formulation

Definition 2.3.9: Non-conservative systems. A system of PDEs is said to be non-conservative if it

cannot be recast in conservation-law form (2.44).

For this class of systems only the quasi-linear formulation (2.29) is available. Conversely, conserva-

tive systems can always be expressed in non-conservative form using (2.45).

Non-conservative hyperbolic systems arise in a wide range of applications, which makes their

theoretical study and numerical approximation a very important topic. To this category, for in-

stance, belongs the coupled shallow water-Exner model (2.6) governing the hydro-morphodynamic

evolution of gravel-bed rivers, as we will show in section 2.5. In one space dimension, they assume

the form

∂tQ+A∂xQ = 0 . (2.62)
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The major problem in solving system (2.62) comes from the presence of the non-conservative

product A∂xQ which poses difficulties even in the definition of weak solutions. Hou and LeFloch

[59] proved a theorem which states that non-conservative methods converge towards wrong solutions

if shock waves are present. The challenge is thus to generalise the notion of weak solutions, so as

to give a correct definition of shock waves. Next we focus on this topic, which is currently matter

of debate in the literature.

2.3.3.1 The path-conservative framework

Recently, starting from the pioneering work of Dal Maso et al. [42], a rigorous definition of

weak solutions has been given provided a family of Lipschitz continuous paths ΨΨΨ(QL,QR,s) in

the phase space is prescribed. These paths, connecting two states QL and QR, with s ∈ [0, 1], must

satisfy some natural regularity conditions, namely:

ΨΨΨ(QL,QR,0) = QL , ΨΨΨ(QL,QR,1) = QR , ΨΨΨ(QL,QL,s) = QL . (2.63)

Following Castro et al. [30], it is convenient to assume some particular structure on the family of

paths:

• given an integral curve γ(l) of a linearly degenerate l field and QL,QR ∈ γ(l), the path

ΨΨΨ(QL,QR,s) is a parametrisation of the arc of γ(l) connecting QL and QR;

• given an integral curve γ(l) of a genuinely non-linear l field and QL,QR ∈ γ(l), with λ
(l)
x (QL)<

λ
(l)
x (QR), the path ΨΨΨ(QL,QR,s) is a parametrisation of the arc of γ(l) connecting QL and QR;

• given a Riemann problem

PDEs: ∂tQ+A∂xQ = 0

IC: Q(x,0) =

{
QL if x < 0

QR if x > 0

 (2.64)

having a unique solution consisting of m waves, the curve described by the path ΨΨΨ(QL,QR,s)

is equal to the union of the curves corresponding to the paths connecting the constant states

across each wave.

Once defined a suitable family of paths, the Rankine-Hugoniot condition can be generalised in the

form

sx (QR−QL) =
∫ 1

0
A(ΨΨΨ(QL,QR,s))

∂ΨΨΨ

∂s
(QL,QR,s)ds , (2.65)

being sx the shock speed. Such extended Rankine-Hugoniot condition (2.65) allows an acceptable

definition of shock waves even for systems expressed in non-conservative form. Notice that if
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matrix A is the Jacobian of some flux vector, then (2.65) reduces to the classical Rankine-Hugoniot

condition for conservative methods (2.54). However, in contrast to the classical Rankine-Hugoniot

condition, here the shock speed depends also on the path employed. This represents a major problem

while designing shock-capturing numerical schemes based on the path-conservative framework.

2.3.3.2 Convergence of path-conservative schemes

The introduction of the theory of Dal Maso et al. [42] gives a way to properly define weak

solutions to non-conservative systems (2.62) and indicates a strategy for designing shock-capturing

numerical methods for these systems [95]. This framework is based on the concept of path-

conservative numerical schemes, which is a generalisation of the usual concept of conservative

method for systems of conservation laws.

However, assessment of convergence for general path-conservative schemes is still matter of debate

in the literature. We recall that the basic requirement concerning the convergence of a numerical

scheme is the following: if the approximations produced by the scheme converge to some function

as the mesh is refined, then this function should be a weak solution of the system. For conservative

systems this is ensured by the Lax-Wendroff theorem [78]. Castro et al. [30] have extended the

classical Lax-Wendroff theorem to non-conservative systems proving that the approximations

produced by a path-conservative method converge uniformly in the sense of graphs. However, in

general this notion of convergence is too strong and cannot be recovered for finite-difference type

methods. Moreover failure of convergence of non-conservative schemes has been experimentally

reported in the literature (see e.g. Abgrall and Karni [1]).

2.4 Hyperbolicity of the shallow water-Exner model

This section is devoted to determining the nature of the shallow water-Exner model (2.6)

together with the closure relations in section 2.1.2. The question is whether or not, or for which

range of flow data, the considered system of partial differential equations is hyperbolic. The

answer to this question is crucial. For a few classes of systems of PDEs, including hyperbolic

systems, a mature mathematical theory assessing well-posedness of the initial value problem

(IVP) exists. Moving away from these problems, no mathematical certainty of existence and

uniqueness of the IVP solution is available, thus making the numerical approximation of these

solutions meaningless. Hence, we aim at proving that the considered mathematical model is hy-

perbolic, at least in the range of data which are commonly found in applications to gravel-bed rivers.

Unfortunately, in the case of the shallow water-Exner model, unlike for the shallow water equations,

the problem eigenstructure is not readily available in explicit form, at least if complex relations
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based on the Shields parameter are applied in the evaluation of bedload transport. For this reason,

here we are not able to carry out a detailed analysis like that presented in the previous section for

the shallow water equations. In spite of these difficulties, the problem at hand has been recently

addressed by Cordier et al. [35], who have developed simple criteria to determine the hyperbolicity

domain of the shallow water-Exner model in the one-dimensional inviscid case, avoiding direct

computation of eigenvalues. These methods allow us to assess whether the system is hyperbolic

for any given pair of hydraulic variables u, D (velocity and depth). In this section we review and

extend their analysis.

The section outlines as follows. First in section 2.4.1 we introduce the one-dimensional inviscid

shallow water-Exner model. Then in section 2.4.2 we present and extend the method of Cordier et

al. [35]. Last in section 2.4.3 we apply these criteria in order to draw the hyperbolicity domains in

certain cases. Based on these results, in section 2.4.4 we conclude that the shallow water-Exner

model is hyperbolic in the range of data which are of interest in practical applications in real rivers.

2.4.1 The one-dimensional mathematical model

We consider a one-dimensional system of PDEs having three equations and unknowns, describ-

ing free-surface shallow flow in absence of friction over erodible bed. The system, representing the

one-dimensional inviscid version of the two-dimensional shallow water-Exner system (2.6), reads
∂tD+∂x (Du) = 0

∂t (Du)+∂x
(
Du2 + 1

2 gD2
)
=−gD∂xη

∂tη+∂xqsx = 0

. (2.66)

The notation is explained in section 2.1.1.

Algebraic closure relations are needed for the evaluation of bedload transport discharge qsx in (2.66).

As we have found in the two-dimensional case (2.16), most bedload transport formulae are given as

function of the Shields stress θ in the form

qsx = sign(qx)

√
g∆D3

s

1−λp
Φ(θ) , (2.67)

where reduced density ∆ is defined in (2.17) and Φ(θ) depends on the transport formula adopted

(see Tab. 2.1). The Shields stress θ is given by (2.18) where we set q = |qx|. Evaluation of θ

requires the adoption of a closure relation for friction such as the Manning law (2.10) or the Chézy

law (2.12), giving (2.19) or (2.20) respectively. Cordier et al. [35] consider the Darcy-Weisbach
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friction law, having the form

S f =
χq2

8g(H−η)3 , (2.68)

where χ is Darcy-Weisbach’s coefficient. This friction formula has identical structure as the Chézy

law (2.12) with constant Ch coefficient and reduces to (2.12) imposing Ch =
√

8
χ

.

Coming back to bedload transport formulae, we finally consider the one-dimensional Grass formula,

in which qsx does not depend on θ, thus avoiding use of a friction model:

qsx = AGu |u|mG−1 . (2.69)

System (2.66) written in quasi-linear form reads:

∂tQ+A∂xQ = 0 , (2.70)

where the vector of conserved variables Q and the system matrix A are given by:

Q =

 D

uD

η

 , A =

 0 1 0

gD−u2 2u gD
∂qsx
∂D

∂qsx
∂qx

0

 . (2.71)

The third line in matrix A contains the derivatives of bedload discharge with respect to the conserved

variables. For formulae of the type (2.67) these derivatives read:

∂qsx

∂D
= sign(qx)

√
g∆D3

s

1−λp

∂θ

∂D
dΦ

dθ
,

∂qsx

∂qx
= sign(qx)

√
g∆D3

s

1−λp

∂θ

∂qx

dΦ

dθ
. (2.72)

In (2.72) adoption of the Manning law (2.19) in the evaluation of θ yields the following expressions

for its derivatives:
∂θ

∂D
=−7

3
u2n2

∆DsD
4
3

,
∂θ

∂qx
=

2un2

∆DsD
4
3
, (2.73)

while adoption of the Chézy law (2.20) gives

∂θ

∂D
=− 2u2

∆DsgDC2
h

(
1+

D
Ch

∂Ch

∂D

)
,

∂θ

∂qx
=

2u
∆DsgDC2

h
. (2.74)

Notice that dΦ

dθ
in (2.72) depends on the bedload transport formula in use (see Tab. 2.1).
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2.4.2 Criteria for assessing hyperbolicity of the shallow water-Exner model

Here, following Cordier et al. [35] we present two different criteria which can be used for

assessing hyperbolicity of the one-dimensional inviscid shallow water-Exner system (2.66) by

checking the values of the hydrodynamic variables u and D. The first condition, derived in section

2.4.2.1, is the necessary and sufficient condition for hyperbolicity, i.e. the condition representing

the actual hyperbolicity domain. Moreover, in section 2.4.2.2 we turn the necessary and sufficient

condition in dimensionless form, in order to highlight the role of the flow control parameters.

Finally, a simplified sufficient condition, resulting in reduced hyperbolicity domains, which can be

easily applied analytically, is presented in section 2.4.2.3.

2.4.2.1 The necessary and sufficient condition

By Definition 2.3.2 (see section 2.3.1), the necessary and sufficient condition for hyperbolicity

of system (2.70) is that the system matrix A (2.71) possesses three real eigenvalues, i.e. that the

three roots of its characteristic polynomial

pA (λ) =−λ

(
(u−λ)2−gD

)
+gD

(
∂qsx

∂D
λ+

∂qsx

∂qx

)
(2.75)

are real. It can be shown [35] that pA (λ) is the difference between a linear function

d (λ) = gD
(

∂qsx

∂qx
λ+

∂qsx

∂D

)
, (2.76)

containing the derivatives of bedload discharge, and a cubic polynomial

f (λ) = λ

(
(u−λ)2−gD

)
, (2.77)

related to the characteristic polynomial of the fixed-bed model. Therefore the necessary and

sufficient condition can be geometrically interpreted as the existence of three real intersection points

between these two curves. This condition can be equivalently written as

α− < k f u < α+ , (2.78)

where α± is given by

α± = λ±−
f (λ±)

gD ∂qsx
∂qx

with λ± =

2u±
√

u2 +3gD
(

1+ ∂qsx
∂qx

)
3

(2.79)
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and f (λ±) given in (2.77). Coefficient k f [−] in (2.78), defined as

k f =−
∂qsx

∂D

(
u

∂qsx

∂qx

)−1

, (2.80)

depends on the bedload transport formula and on the friction law adopted for evaluation of Shields

stress (if required by the transport formula). In detail:

• the Grass transport formula (2.69) is characterised by k f = 1;

• for the bedload transport formulae based on Shields stress (2.67), use of the Manning

law (2.73) gives k f =
7
6 , while use of the Chézy law (2.74) gives k f = 1+ D

Ch

dCh
dD . The

latter relation specialises as k f = 1 if the Chézy coefficient is constant and k f = 1+ 2.5
Ch

if

logarithmic dependence on depth (2.13) is assumed.

2.4.2.2 The necessary and sufficient condition in dimensionless form

We can turn (2.78) into dimensionless form in order to highlight the role of dimensionless flow

parameters. Thus, the necessary and sufficient condition for hyperbolicity reads:

α̃− < k f Fr < α̃+ , (2.81)

where Fr =
u√
gD is the flow Froude number and α̃± = α±√

gD [−] is given by

α̃± = λ̃±− f̃
(

λ̃±

)(
∂qsx

∂qx

)−1

, (2.82)

with

λ̃± =

2Fr±
√

F2
r +3

(
1+ ∂qsx

∂qx

)
3

, f̃
(

λ̃

)
= λ̃

((
Fr− λ̃

)2
−1
)

. (2.83)

In (2.82) and (2.83), for the transport formulae based on the Shields stress (2.67), ∂qsx
∂qx

can be

expressed as
∂qsx

∂qx
=

2
√

∆

1−λp
d

3
2
s θ |Fr|−1 dΦ

dθ
(θ) , (2.84)

where ds =
Ds
D is the dimensionless grain size. Equation (2.84) is based on the assumption that

the Shields parameter depends on the square of discharge (θ ∝ q2) as it is found for the Chézy

(2.20) and Manning (2.19) laws. In equations (2.81)-(2.84) dependence on three dimensionless
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flow parameters is found, namely Fr, θ and ds. We remark that θ itself may weakly depend on ds if

we use the logarithmic Chézy law (2.13).

2.4.2.3 A simplified sufficient condition

Furthermore, Cordier et al. [35] propose a sufficient condition for hyperbolicity of the system

(2.70). A sufficient condition is by definition non-unique and defines a reduced hyperbolicity

domain, which may be excessively limited compared to the actual domain defined by the necessary

and sufficient condition (2.78). However the sought condition will be of practical interest due to very

simple analytical application. Since it can be proved that α− < u−
√

gD < k f u < u+
√

gD < α+,

from (2.78) the sought sufficient condition reads:

(k f −1) |u|<
√

gD i.e. |Fr|<
1

k f −1
. (2.85)

We observe that, unlike the necessary and sufficient condition (2.78), the proposed sufficient

condition does not require evaluation of ∂qsx
∂qx

and therefore can be checked analytically. From

equation (2.85) some conclusions can be easily drawn:

• use of the Grass formula, characterised by k f = 1, guarantees unconditional hyperbolicity;

• use of the transport formulae based on Shields stress (2.67) coupled with the Chézy friction

law with constant Ch coefficient (or equivalently on the Darcy-Weisbach law), characterised

by k f = 1, results in unconditional hyperbolicity;

• use of the transport formulae (2.67) coupled with the Manning law or with the logarithmic

Chézy law, having k f > 1, results in specific requirements on data, namely:

|u|< 6
√

gD i.e. |Fr|< 6 (2.86)

for the Manning law and

|u|< Ch

2.5

√
gD i.e. |Fr|< 2.4+ ln

(
D

kChDs

)
(2.87)

for the Chézy law.

2.4.3 Applications

In order to test the necessary and sufficient condition (2.78) and the sufficient condition (2.85)

in cases of practical relevance we have developed a code implementing the bisection method. The
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code runs on different values of water depth in a given interval and identifies the corresponding

threshold for hyperbolicity in terms of velocity. Moreover it converts the results into the space of

the Froude (Fr) and Shields (θ) dimensionless numbers. The code may run with different bedload

transport formulae (2.67) and may consider the Manning law or the logarithmic Chézy law for

evaluation of θ. Here we present the results of two set of runs, namely Test 1 and Test 2.

2.4.3.1 Test 1

In the first set of runs, we assess the hyperbolicity domain associated to the Meyer-Peter

and Müller formula with the Manning law. We set different reasonable values for the Manning

coefficient n (or, equivalently, for the Strickler coefficient Ks = n−1) and use grain size Ds = 0.01m.

Results are given in Fig. 2.3 in terms of dimensional variables (top panel) and in terms of di-

mensionless variables (bottom panel). Together with the actual hyperbolicity domains associated

to different values of n, which are represented by coloured lines, in Fig. 2.3 we depict with a

black line the reduced hyperbolicity domain associated to the sufficient condition (2.86). Since

the formulation of the sufficient condition does not include any friction law, thus being insensitive

to the value of the friction coefficient n, the threshold for the associated hyperbolicity domain is

unique in the plot.

In the top profile we observe that the lines representing the actual hyperbolicity domains are

tangent to that of the reduced domain and that the actual domains are wider than the domain given

by (2.86), as expected. The position and shape of the non-hyperbolicity region strongly depends on

the friction coefficient. In the bottom profile, where results are plotted in dimensionless form, we

observe that the curves obtained for low values of n present a vertical asymptote corresponding

to θ = θcr. This is related to the fact that under the critical Shields stress the considered shallow

water-Exner model reduces to the shallow water model, which is unconditionally hyperbolic as we

have seen in section 2.3.1. However, the threshold curves associated to higher values of n do not

present any vertical asymptote. It is also seen that, accordingly with the sufficient condition (2.86),

hyperbolicity is always verified for Fr < 6.

2.4.3.2 Test 2

In the second set of runs we have assessed the hyperbolicity domains of the shallow water-Exner

model using two different bedload formulae (Meyer-Peter and Müller and Wong and Parker) in

combination with two friction laws (Manning and logarithmic Chézy). In the friction laws we

assume sediment diameter Ds = 0.01 m and compute the Manning coefficient n = 0.022 from the

Strickler formula (2.11). In the logarithmic Chézy law we set kCh = 2.5. We remark that strictly
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Figure 2.3: The actual hyperbolicity domains obtained testing the necessary and sufficient condition
(2.78) numerically (coloured lines) are plotted together with the reduced domain of
the sufficient condition (2.86) (black line). The Meyer-Peter and Müller formula
in conjunction with the Manning friction law is applied, with different values of n.
Sediment diameter is Ds = 0.01 m. Results are presented in terms of water velocity u
and depth D (top panel) and of the dimensionless parameters θ and Fr (bottom panel).
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speaking the Chézy law applies only for D≥ kChDs, i.e. for D≥ 0.025 m in this case. Results are

given in Fig. 2.4 in terms of dimensional variables (top panel) and in terms of dimensionless vari-

ables (bottom panel). The hyperbolicity domains obtained using the Manning law are represented

by full lines, while those of the Chézy law are represented by dashed lines. Dark-grey lines are

associated to the Wong and Parker formula and light-grey lines are associated to the Meyer-Peter

and Müller formula. Moreover with black lines we represent the reduced hyperbolicity domains of

the sufficient condition.

Comparison of the actual domains of the two transport formulae suggests that the Wong and

Parker formula, which predicts lower sediment transport than the Meyer-Peter and Müller formula,

returns wider hyperbolicity domains.

Comparing the actual domains of the Chézy law to these of the Manning law, we observe that the

Chézy law gives rise to smaller hyperbolicity domains, as a result of higher prediction of friction

and bedload transport on low depth. This is evident concerning the sufficient conditions (black

lines) obtained using the two friction laws, where the threshold value of the Froude number in the

hyperbolicity domain is equal to Fr = 2.4 for the Chézy law when D = kChDs, while it is Fr = 6 for

the Manning law (see the bottom panel).

2.4.4 Conclusions

In this section we have reported and extended the analysis of Cordier et al. [35] concerning as-

sessment of the hyperbolicity domains of the one-dimensional inviscid shallow water-Exner model

describing the hydro-morphodynamic evolution of open channels with erodible bottom in absence

of friction. We have presented two criteria for assessing hyperbolicity of this system: the necessary

and sufficient condition, associated to the actual domain of hyperbolicity, and a simplified sufficient

condition, returning reduced hyperbolicity domains. These conditions, originally presented in terms

of inequalities on the flow data (depth and velocity) have been here conveniently expressed in

terms of dimensionless parameters. Finally, we have applied these criteria to draw the hyperbolicity

domains in practical cases.

In general, the shallow water-Exner model is not unconditionally hyperbolic. Unconditional

hyperbolicity is obtained using the Grass transport formula or other transport formulae depending

on the Shields parameter used in conjunction with the Chézy law with constant Ch coefficient.

However, in many other cases of practical relevance, the request of hyperbolicity results in specific

requirements on the flow data or dimensionless parameters.

The question at hand is now how strong these requirements are, i.e. whether in practical ap-
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Figure 2.4: The actual hyperbolicity domains obtained testing the necessary and sufficient condition
(2.78) numerically (grey lines) are plotted together with the reduced domains of the
sufficient conditions (2.86) and (2.87) (black lines). The Meyer-Peter and Müller
(MPM) and the Wong and Parker (WP) formulae in conjunction with the Manning and
the logarithmic Chézy friction law are applied. Sediment diameter is Ds = 0.01 m, n
in the Manning law is set to 0.022. Results are presented in terms of water velocity u
and depth D (top panel) and in terms of the dimensionless parameters θ and Fr (bottom
panel).
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plications concerning real rivers we can safely assume the system to be hyperbolic. The answer

to the latter question is yes. As we have seen, if we adopt the Manning law for evaluation of

the Shields number, the threshold value of the Froude number for hyperbolicity, according to

the sufficient condition, is Fr = 6. Since such value in nature is very hardly exceeded, we can

confidently assume in this case that the shallow water-Exner model is hyperbolic. Some concerns

about the use of the logarithmic Chézy law instead may arise, since the threshold associated to

the sufficient condition may be as low as Fr = 2.4 on very shallow depth (see Fig. 2.4), which

might be locally exceeded in a gravel-bed river. However, from Fig. 2.4 we observe that the actual

hyperbolicity domains of the Chézy law (grey dashed lines) are much wider than these predicted by

the sufficient condition: using the Meyer-Peter and Müller formula we get Fr . 5. Thus even in

this case we conclude that in practice the model is hyperbolic.

The present analysis has been carried out using the inviscid model, i.e. neglecting friction in

the momentum equation. The adoption of such idealised approach makes us even more safe in

claiming that the system applications in natural rivers must be hyperbolic. The reason is that

friction increases with decreasing depth, thus preventing the occurrence of excessive values of

water velocity in shallow regions, i.e. limiting the range of Froude numbers which are reasonably

found in natural flows.

We extend these conclusions to the two-dimensional case in a straightforward manner. These

results ensure that the shallow water-Exner model representing the hydro-morphodynamic problem

in open channels is mathematically well-posed and pave the way for the numerical approximation

of the solutions of the system. Moreover, they motivate the use of schemes for hyperbolic systems

of PDEs in the construction of a numerical hydro-morphodynamic solver, as we will do in section

5.2.2 of chapter 5.

2.5 Non-conservativity of the shallow water-Exner model

From the previous section we can safely conclude that the shallow water-Exner model (2.6),

together with the closure relations presented in section 2.1.2, is hyperbolic in the applications con-

cerning real rivers. The question at hand is whether this hyperbolic system of PDEs is conservative,

i.e. whether it can be recast in conservation-law form. The answer is intimately related to the

numerical solution strategy to be adopted and requires some preliminary discussion on the available

solution approaches.

Essentially two approaches are available in the literature to solve the system (2.6). In the un-
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coupled approach the hydrodynamic problem governed by the shallow water equations is solved

separately from the Exner equation: the solution of the hydrodynamic unknowns is then passed to

the morphodynamic module (and vice-versa) at the end of each time step (asynchronous solution

strategy), see e.g. [41, 45, 136]. Uncoupling allows the use of a conservative formulation, relying

on the fact that the shallow water equations possess a conservation-law form with source terms.

More subtle forms of uncoupled strategies can be designed by uncoupling just single terms in the

equations, while maintaining a synchronous one-step algorithm. This is for instance the case of the

models presented in [19, 23, 61, 24, 90, 137]. The system of governing equations (2.6) is recast in

conservation-law form with source terms as follows:

∂tQ+∂xF(Q)+∂yG(Q) = S(Q) , (2.88)

where the vector of unknowns Q, the flux vectors F(Q) and G(Q) and the source term vector S(Q)

are given by

Q =


H

qx

qy

η

 , F(Q) =


qx +qsx

q2
x

H−η
+ 1

2 gH2−gHη

qxqy
H−η

qsx



G(Q) =


qy +qsy

qxqy
H−η

q2
y

H−η
+ 1

2 gH2−gHη

qsy

 , S(Q) =


0

−gH∂xη−g(H−η)S f x

−gH∂yη−g(H−η)S f y

0

 . (2.89)

This formulation ultimately relies on the ambiguous role of riverbed elevation η, which provides

topographic momentum source terms through its gradients ∂yη and ∂yη in S(Q), while being a

problem unknown in Q. Since the source terms are updated only at the end of the integration

time step and do not take part in the definition of the problem eigenstructure, from a mathematical

point of view this approximation results in uncoupling the hydrodynamic and morphodynamic part

[110], even though models based on this formulation are often claimed to be coupled in the literature.

Conversely, the coupled approach provides a synchronous solution for all the unknowns, which

are jointly updated within the same time step [83, 58, 74, 36, 37, 110, 22, 21, 111]. Adoption of a

fully-coupled formulation results in a non-conservative hyperbolic system of PDEs having the form

∂tQ+A1∂xQ+A2∂yQ = S(Q) , (2.90)

where the vector of unknowns Q, the coefficient matrices A1 and A2 and the vector of source terms
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S(Q) are given by

Q =


H

qx

qy

η

 , A1 =


∂qsx
∂H 1+ ∂qsx

∂qx

∂qsx
∂qy

∂qsx
∂η

g(H−η)− q2
x

(H−η)2
2qx

H−η
0 q2

x
(H−η)2

− qxqy
(H−η)2

qy
H−η

qx
H−η

qxqy
(H−η)2

∂qsx
∂H

∂qsx
∂qx

∂qsx
∂qy

∂qsx
∂η

 ,

A2 =


∂qsy
∂H

∂qsy
∂qx

1+ ∂qsy
∂qy

∂qsy
∂η

− qxqy
(H−η)2

qy
H−η

qx
H−η

qxqy
(H−η)2

g(H−η)− q2
y

(H−η)2 0 2qy
H−η

q2
y

(H−η)2

∂qsy
∂H

∂qsy
∂qx

∂qsy
∂qy

∂qsy
∂η

 , (2.91)

S(Q) =


0

−g(H−η)S f x

−g(H−η)S f y

0

 . (2.92)

In the development of our hydro-morphodynamic numerical model we will implement the latter

coupled formulation, solving the non-conservative problem (2.90)-(2.92) by means of a path-

conservative scheme. As a consequence of this choice, the model will be able to correctly account

for sediment transport in Froude trans-critical flow conditions. This will be discussed and motivated

in section 5.1 of chapter 5.

We shall now move to the presentation of our original achievements in the field of applied mathemat-

ics. In the next two chapters we will design novel numerical schemes of the centred upwind-biased

type for the solution of hyperbolic systems of PDEs. In detail, in chapter 3 we will focus on

the solution of hyperbolic systems of conservation laws, while in chapter 4 we will extend the

centred upwind-biased approach to the solution of non-conservative hyperbolic systems in the

path-conservative framework.

Later, in chapter 5 we will come back to the solution of the initial problem, i.e. addressing the

morphodynamic evolution of open channels with erodible bed, by developing a two-dimensional

hydro-morphodynamic solver based on the numerical techniques in chapter 4.
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hyperbolic systems in conservation-law form

In this thesis we aim at numerically solving the non-conservative non-homogeneous hyperbolic

system of PDEs (2.90)-(2.92) arising from the coupled shallow water-Exner model (2.6), governing

the morphodynamic evolution of gravel-bed rivers. The hydro-morphodynamic problem can be

split into a purely advective problem, represented by a homogeneous system of PDEs, describing

the propagation of waves in absence of friction, and an ordinary differential problem related to

the presence of frictional source terms. Focusing on the advection problem, this chapter and the

following one are devoted to the derivation of numerical schemes for the approximation of homoge-

neous hyperbolic systems of PDEs, with applications to the inviscid shallow water equations on

horizontal bed.

Among the numerous techniques available for the solution of homogeneous systems (finite differ-

ence, finite element, spectral methods and many others) in this thesis we concentrate on numerical

schemes based on the finite volume framework. The main reason for this choice is the simplicity of

the finite volume approach, which relies on the discretisation of the weak form of systems. This

leads to a formulation of the numerical problem which is immediately conservative, provided the

underlying system of PDEs can be recast in conservation-law form. Conservativity of the numerical

scheme has fundamental consequences: the theorem of Lax and Wendroff [78] guarantees in this

case that the numerical method will converge to the weak solution of the problem even in the

presence of shock waves, while the complementary theorem of Hou and LeFloch [59] states that a

non-conservative method in general will not. The latter statement represents a major difficulty in

the case of the considered hydro-morphodynamic problem since, as we know from the previous

chapter, the coupled shallow water-Exner model is non-conservative. However, as we have seen in

section 2.3.3, the path-conservative framework [42] allows to recover an acceptable definition of

weak solutions and the development of shock-capturing methods even in this case.

Initially, we will focus on the development of numerical schemes for the solution of hyperbolic

systems of conservation laws, thus getting rid of the uncertainties and difficulties of the path-
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conservative framework. This is the matter of the present chapter. The solution techniques here

developed will then be extended to path-conservative schemes in chapter 4. Finally, source terms

will be re-introduced into the model in chapter 5: the scheme in chapter 5 will be able to handle all

the features of the shallow water-Exner model.

In the framework of finite volume methods, there are essentially two approaches for design-

ing non-oscillatory numerical schemes for the numerical solution of hyperbolic systems PDEs. The

first approach is the upwind approach, represented by Godunov’s method [53] and the other one

is the centred approach, typically represented by the Lax-Friedrichs method [77]. The upwind

approach, based on the application of Riemann solvers, provides more accurate solutions than the

centred approach especially in the computations carried out at small Courant numbers and in the

resolution of intermediate waves, the disadvantage being its complexity and computational expense.

The centred approach is more general and simpler to apply to complicated sets of equations. A

centred strategy is required by many physical and engineering problems of practical interest for

which the solution of the Riemann problem is not easily achieved; our coupled shallow water-Exner

model belongs to this category [21].

In this chapter two centred upwind-biased schemes are developed. The schemes partially use

upwind information, while retaining the simplicity and efficiency of a centred scheme. Kurganov

and Tadmor put forward an analogous idea in their central-upwind approach [73], using an adaptive

staggered mesh. Multi-dimensional extensions of the scheme of Kurganov and Tadmor have been

presented in [70] (Cartesian version) and [72] (unstructured version), while a modified version of

the scheme, optimised for treating contact discontinuities, has been presented in [71].

Our schemes are modifications of the FORCE centred method, first put forward for one-dimensional

systems in [119]. A multidimensional version of FORCE for unstructured meshes has recently

been proposed by Toro et al. [120]. Their approach is of the predictor-corrector type and has

conservative form, with a numerical flux defined on a secondary mesh. This secondary mesh is

edge-based and is typically defined by joining the barycentre to the vertices of the primary mesh, in

which conservative variables are defined. The FORCE-type upwind biased schemes presented in

this chapter, regarded as UFORCE and UFORCE-δ, put forward the idea of varying the shape of the

secondary mesh in an adaptive manner in order to achieve fine tuning numerical dissipation. In the

UFORCE scheme for Cartesian meshes [112] the secondary mesh is redefined using one moving

point which does not have to lay in the barycentres of the primary cells. In the UFORCE-δ method

[113] we fully exploit this idea, allowing each subvolume composing the secondary mesh to be

resized independently from the other ones, which makes the scheme more accurate and suitable for

implementation on general unstructured meshes in multi-dimensions.
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The proposed methods are linearly analysed in order to determine the optimal upwind bias, i.e. the

secondary mesh setup resulting in the least dissipative monotone method. Our schemes in linear

applications identically reproduce the Godunov upwind method constructed by solving Riemann

problems normal to each interface. In fact, as proved here in the Cartesian case, the Godunov

method is the most accurate scheme that can be constructed for the given stencil. Extension of

UFORCE and UFORCE-δ to non-linear hyperbolic systems of PDEs is empirical and makes use of

estimates of the eigenvalues of the system, which are in any case needed for selecting a time step.

The basic first-order accurate UFORCE and UFORCE-δ methods are extended to second-order

accuracy using standard techniques in the framework of finite volumes and implemented for solving

the two-dimensional inviscid shallow water equations. Performance of the schemes is thoroughly

assessed on a number of well-established test problems, some of them with exact solutions. Sig-

nificant improvements in accuracy are observed with respect to the conventional FORCE scheme

without upwind information.

The rest of this chapter proceeds as follows. In section 3.1 we set the background by review-

ing the FORCE method in multiple-space dimensions, in the Cartesian and unstructured case.

The first-order accurate UFORCE and UFORCE-δ methods are presented in section 3.2 and 3.3

respectively. In section 3.4 we extend the first-order UFORCE and UFORCE-δ fluxes to second

order accuracy. Finally, numerical applications are presented in section 3.5.

3.1 Background

In this section we first briefly introduce the finite volume framework for the solution of systems

of conservation laws (section 3.1.1). The rest of the section is devoted to reviewing the multi-

dimensional FORCE numerical flux [120] in the Cartesian (section 3.1.2) and unstructured mesh

configuration (section 3.1.3). For the latter scheme, in section 3.1.4 following Stecca et al. [113]

we develop an alternative formulation which is explicit in terms of the number of space dimensions.

This formulation will be useful in the development of the UFORCE-δ scheme in section 3.3.

3.1.1 Finite volume numerical methods

Finite volume numerical methods are based on the discretisation of weak forms of systems of

PDEs. This approach, in the case of schemes for the solution of conservative systems, naturally

leads to the development of conservative numerical schemes, whose convergence properties even in

presence of shock waves are guaranteed by the Lax-Wendroff theorem [78] (see section 2.3.2.5 in

the previous chapter). Here we introduce the finite volume approach in the one-dimensional case.

For a more detailed presentation of this subject we refer the reader to Toro [118].
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Consider a one-dimensional homogeneous hyperbolic system of conservation laws in differential

form

∂tQ+∂xF(Q) = 0 (3.1)

where Q(x, t) is the vector of unknowns (or conserved variables) and F(Q) is the flux vector.

The development of finite volume schemes requires suitable domain discretisation. The one-

dimensional domain for the problem at hand is discretised using spatial volumes having extent ∆x,

which we denote with Ti. Each cell Ti has barycentre in xi = i∆x and lays between xi− 1
2
=
(
i− 1

2

)
∆x

and xi+ 1
2
=
(
i+ 1

2

)
∆x, being i an integer index. Furthermore, we assume a discretisation of the

time variable by time step ∆t. With tn we denote the time level at which the initial condition is

provided, while with tn+1 = tn +∆t we indicate the time level at which the solution is sought.

The sought weak formulation of (3.1), is obtained integrating the system in the space-time control

volume
[
xi− 1

2
,xi+ 1

2

]
×
[
tn, tn+1

]
. It reads

1
∆t

{∫ xi+ 1
2

xi− 1
2

Q
(
x, tn+1)dx −

∫ xi+ 1
2

xi− 1
2

Q(x, tn)dx

}
=

− 1
∆x

{∫ tn+1

tn
F
(

Q
(

xi+ 1
2
, t
))

dt −
∫ tn+1

tn
F
(

Q
(

xi− 1
2
, t
))

dt
} (3.2)

and is conveniently recast as

Qn+1
i = Qn

i −
∆t
∆x

(
Fi+ 1

2
−Fi− 1

2

)
. (3.3)

Relation (3.3) is exact, i.e. it is satisfied by the exact solution of (3.1), provided the following

definitions hold:

Qn
i =

1
∆x

∫ xi+ 1
2

xi− 1
2

Q(x, tn)dx , Qn+1
i =

1
∆x

∫ xi+ 1
2

xi− 1
2

Q
(
x, tn+1)dx , (3.4)

Fi− 1
2
=

1
∆t

∫ tn+1

tn
F
(

Q
(

xi− 1
2
, t
))

dt , Fi+ 1
2
=

1
∆t

∫ tn+1

tn
F
(

Q
(

xi+ 1
2
, t
))

dt . (3.5)

Notice that in (3.4) Qn
i and Qn+1

i denote cell averages of the conserved variables at time tn and

tn +1 respectively.

The finite volume approach is based on the use of numerical approximations to the time inte-
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grals of fluxes in (3.5):

Fi− 1
2
≈ 1

∆t

∫ tn+1

tn
F
(

Q
(

xi− 1
2
, t
))

dt , Fi+ 1
2
≈ 1

∆t

∫ tn+1

tn
F
(

Q
(

xi+ 1
2
, t
))

dt (3.6)

The (cell-averaged) solution is updated applying the update formula (3.3) where the numerical

approximated fluxes (3.6) are inserted. Finite volume schemes differ among each other by the

relations and procedures which are needed for the computation of these fluxes.

3.1.2 The FORCE scheme on Cartesian meshes

Here we review the derivation of the FORCE scheme [120] on two-dimensional Cartesian

meshes. We consider a two-dimensional system of m non-linear hyperbolic equations written in

differential conservation-law form:

∂tQ+∂xF(Q)+∂yG(Q) = 0 , (3.7)

where Q is the vector of conserved variables and F(Q) and G(Q) are the flux vectors in the x and

y direction respectively. We adopt a two-dimensional Cartesian mesh by rectangular elements (or

cells) Ti, j. Each cell Ti, j has barycentre ~Gi, j = (i∆x, j∆y), and vertices ~Ki± 1
2 , j±

1
2

given by:

~Ki+ 1
2 , j−

1
2
=
((

i+ 1
2

)
∆x,
(

j− 1
2

)
∆y
)

, ~Ki+ 1
2 , j+
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2
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2

)
∆x,
(

j+ 1
2

)
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)
,
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2 , j+

1
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2
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(

j+ 1
2
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)

, ~Ki− 1
2 , j−

1
2
=
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i− 1
2

)
∆x,
(

j− 1
2

)
∆y
)
,

(3.8)

being i and j the Cartesian indices and ∆x and ∆y mesh spacing.

By analogy with the one-dimensional case previously reviewed, finite volume schemes on two-

dimensional Cartesian meshes are obtained by integration of (3.7) over the control volume

Ti, j× [tn, tn+1], yielding:

Qn+1
i, j = Qn

i, j−
∆t
∆x

(
Fi+ 1

2 , j
−Fi− 1

2 , j

)
− ∆t

∆y

(
Gi, j+ 1

2
−Gi, j− 1

2

)
, (3.9)

where ∆t = tn+1− tn is time step, Qn
i, j is the cell average at time level tn, Qn+1

i, j denotes the sought

numerical solution at time tn+1 and Fi+ 1
2 , j

, Fi− 1
2 , j

and Gi, j+ 1
2
, Gi, j− 1

2
represent numerical approxi-

mations to fluxes.

The derivation of the FORCE flux [120] requires the adoption of two different meshes: the primary

mesh, where the numerical solution is sought, and a staggered secondary mesh, used to define

numerical fluxes. Fig. 3.1 depicts the primary and secondary mesh setup for the two-dimensional
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Figure 3.1: Sketch of the primary and secondary mesh for the FORCE method set on two-
dimensional Cartesian meshes.

case. The primary mesh is the Cartesian mesh by elements Ti, j chosen for domain discretisation.

Each primary cell Ti, j possesses four edges (or interfaces or inter-cell boundaries). To each of these

edges one element (or volume) of the secondary mesh is associated. These secondary elements are

generated by joining the barycentre of Ti, j and that of its neighbour across the current edge with the

edge vertices. This results in a quadrilateral straddling each edge, as depicted in Fig. 3.1. The four

edge-based secondary control volumes and the corresponding edges of cell Ti, j are defined as

Vi+ 1
2 , j

=V−
i+ 1

2 , j

⋃
V+

i+ 1
2 , j

, Vi, j+ 1
2
=V−

i, j+ 1
2

⋃
V+

i, j+ 1
2
,

Vi− 1
2 , j

=V−
i− 1

2 , j

⋃
V+

i− 1
2 , j

, Vi, j− 1
2
=V−

i, j− 1
2

⋃
V+

i, j− 1
2
,

(3.10)
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where V−
i± 1

2 , j
, V−

i, j± 1
2

denote the portions of the corresponding secondary volumes of the staggered

mesh that lay inside Ti, j and V+
i± 1

2 , j
, V+

i, j± 1
2

denote the portions of these volumes that lay outside (see

Fig. 3.1). In the following, these portions will be regarded as subvolumes.

The FORCE method is derived as a two-step method of the predictor-corrector type and then

recast as a one-step conservative method on a non-staggered mesh. Assuming Qn
i, j as initial condi-

tion at time tn in each cell Ti, j of the primary mesh, the construction of the FORCE scheme is then

achieved in three stages.

• The initial condition Qn
i, j in the current cell Ti, j and in all its immediate neighbours determines

initial conditions for each of the four volumes (3.10) of the staggered mesh associated with

the boundaries of Ti, j. Starting from these initial conditions, in the first stage we define

intermediate states at time tn+ 1
2 = tn + 1

2 ∆t in each control volume of the staggered mesh.

This is achieved evolving the solution for a time interval 1
2 ∆t by integrating the conservation

law (3.7) in each volume (3.10), thus obtaining

Qn+ 1
2

i+ 1
2 , j

= 1
2

(
Qn

i, j +Qn
i+1, j

)
− ∆t

∆x

{
F(Qn

i+1, j)−F(Qn
i, j)
}
,

Qn+ 1
2

i, j+ 1
2

= 1
2

(
Qn

i, j +Qn
i, j+1

)
− ∆t

∆y

{
G(Qn

i, j+1)−G(Qn
i, j)
}
,

Qn+ 1
2

i− 1
2 , j

= 1
2

(
Qn

i−1, j +Qn
i, j

)
− ∆t

∆x

{
F(Qn

i, j)−F(Qn
i−1, j)

}
,

Qn+ 1
2

i, j− 1
2

= 1
2

(
Qn

i, j−1 +Qn
i, j

)
− ∆t

∆y

{
G(Qn

i, j)−G(Qn
i, j−1)

}
.

(3.11)

• In the second stage, with initial condition at time tn+ 1
2 given by the intermediate states

(3.11) we further integrate the conservation law (3.7) within each cell Ti, j by a time step 1
2 ∆t,

obtaining averages at time tn+1 = tn +∆t in the form

Qn+1
i, j = 1

4

(
Qn+ 1

2
i+ 1

2 , j
+Qn+ 1

2
i, j+ 1

2
+Qn+ 1

2
i− 1

2 , j
+Qn+ 1

2
i, j− 1

2

)
− 1

2
∆t
∆x

{
F(Qn+ 1

2
i+ 1

2 , j
)−F(Qn+ 1

2
i− 1

2 , j
)

}
− 1

2
∆t
∆y

{
G(Qn+ 1

2
i, j+ 1

2
)−G(Qn+ 1

2
i, j− 1

2
)

}
.

(3.12)

• In the final stage of the derivation of the scheme we perform algebraic manipulations on

(3.12) so as to reproduce the conservative formula (3.9). The resulting FORCE numerical
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flux in the two-dimensional case (FORCE-2) is

FFORCE−2
i+ 1

2 , j
=

1
2

{
F
(

Qn+ 1
2

i+ 1
2 , j

)
+

1
2
(
F
(
Qn

i, j
)
+F

(
Qn

i+1, j
))
− 1

4
∆x
∆t

(
Qn

i+1, j−Qn
i, j
)}

,

(3.13)

with analogous formulae for the other fluxes. It is possible to rewrite the intercell flux (3.13)

as the arithmetic average of two fluxes:

FFORCE−2
i+ 1

2 , j
=

1
2

(
FLW−2

i+ 1
2 , j

+FLF−2
i+ 1

2 , j

)
. (3.14)

These two fluxes may be regarded as a two-dimensional generalisation of the Lax-Wendroff

(LW-2) and Lax-Friedrichs (LF-2) flux respectively. The Lax-Wendroff type flux is given

by the physical flux F evaluated at the intermediate state obtained from the first averaging

procedure (3.11):

FLW−2
i+ 1

2 , j
= F

(
QLW−2

i+ 1
2 , j

)
(3.15)

with

QLW−2
i+ 1

2 , j
=

1
2
(
Qn

i, j +Qn
i+1, j

)
− 1

2

(
2∆t
∆x

)(
F
(
Qn

i+1, j
)
−F

(
Qn

i, j
))

. (3.16)

The Lax-Friedrichs type flux is given by

FLF−2
i+ 1

2 , j
=

1
2
(
F
(
Qn

i+1, j
)
+F

(
Qn

i, j
))
− 1

2

(
∆x
2∆t

)(
Qn

i+1, j−Qn
i, j
)
. (3.17)

The factor α = 2 multiplying the time step ∆t in (3.16) and (3.17) denotes the number of spatial

dimensions.

Toro et al. [120] generalise the two-dimensional flux (3.14)-(3.17), thus obtaining a formula-

tion which applies for α space dimensions on Cartesian meshes:

FFORCE−α

i+ 1
2

=
1
2

(
FLW−α

i+ 1
2

+FLF−α

i+ 1
2

)
. (3.18)

In (3.18), the Lax-Wendroff type flux is given by

FLW−α

i+ 1
2

= F
(

QLW−α

i+ 1
2

)
(3.19)

with

QLW−α

i+ 1
2

=
1
2
(
Qn

i +Qn
i+1
)
− 1

2

(
α∆t
∆x

)(
F
(
Qn

i+1
)
−F(Qn

i )
)
, (3.20)
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while the Lax-Friedrichs type flux is

FLF−α

i+ 1
2

=
1
2
(
F
(
Qn

i+1
)
+F(Qn

i )
)
− 1

2

(
∆x

α∆t

)(
Qn

i+1−Qn
i
)
. (3.21)

In equations (3.18)-(3.21), x indicates the current direction and subscript i is the index along the x

direction.

A linear analysis shows that the FORCE scheme is monotone under the following conditions:

c2
x + c2

y ≤ 1
2 in two space dimensions

c2
x + c2

y + c2
z ≤ 1

3 in three space dimensions
(3.22)

where

cx = λx
∆t
∆x

, cy = λy
∆t
∆y

, cz = λz
∆t
∆z

(3.23)

represent the Courant numbers in x, y and z directions and λx,λy,λz are the corresponding charac-

teristic speeds.

3.1.3 The FORCE scheme on multi-dimensional unstructured meshes

Here we review the derivation of the FORCE scheme in the more general case of multi-

dimensional unstructured meshes. We consider a multi-dimensional system of non-linear conserva-

tion laws having the form

∂tQ+∇ ·
(
F(Q)

)
= 0 , (3.24)

where F(Q) is the flux tensor. The discretisation of the computational domain Ω⊂ Rα, being α

the number of spatial dimensions, is achieved using a conforming tessellation TΩ by ne elements Ti

such that

TΩ =
ne⋃

i=1

Ti . (3.25)

Each element Ti, having size |Ti|, has n f plane interfaces S j of size
∣∣S j
∣∣, with associated outward-

pointing normal unit vectors~n j. The neighbouring element of the primary mesh sharing interface

S j with Ti is denoted with Tj.

By analogy with the Cartesian case, the method derivation makes use of two meshes: a pri-

mary mesh (3.25) and a secondary, edge-based staggered mesh. The setup is illustrated in Fig. 3.2

for the case of triangular meshes in two space dimensions. In order to define the secondary mesh,

each primary element Ti is sub-divided into subvolumes V−j generated by connecting the barycentre
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of Ti with the vertices of S j. The corresponding adjacent subvolume in the neighbouring element

that shares face S j with element Ti is denoted with V+
j . With reference to Fig. 3.2 we distinguish

two kinds of elements: primary elements Ti, at which the solution is sought at each time step, and

secondary elements formed by V−j
⋃

V+
j , for 1≤ j ≤ n f .

Finite volume schemes on unstructured meshes are obtained by integration of the conservation law

(3.24) over the space-time control volume Ti×
[
tn, tn+1

]
, yielding

Qn+1
i = Qn

i −
∆t
|Ti|

n f

∑
j=1

∫
S j

F
j+ 1

2

(
Qn

i ,Q
n
j
)
·~n j dS , (3.26)

where Qn
i is the cell average at time tn and Qn+1

i is the numerical solution at time tn+1, being

∆t = tn+1− tn the time step. The multi-dimensional FORCE flux on unstructured meshes is

constructed in three stages as follows.

• First, assuming averages in each primary element at time t = tn, an intermediate state for each

interface S j is defined at the half-time level tn+ 1
2 = tn + 1

2 ∆t by integrating the conservation

law (3.24) by 1
2 ∆t over the secondary elements:

Qn+ 1
2

j+ 1
2
=

Qn
i

∣∣∣V−j ∣∣∣+Qn
j

∣∣∣V+
j

∣∣∣∣∣∣V−j ∣∣∣+ ∣∣∣V+
j

∣∣∣ − 1
2

∆t
∣∣S j
∣∣∣∣∣V−j ∣∣∣+ ∣∣∣V+

j

∣∣∣
(
F
(
Qn

j
)
−F(Qn

i )
)
·~n j , (3.27)

where
∣∣∣V−j ∣∣∣ and

∣∣∣V+
j

∣∣∣ indicate the size of subvolumes V−j and V+
j respectively, namely their

length in 1D, surface area in 2D and volume in 3D.

• Then, with initial condition at time tn+ 1
2 given by (3.27), integration of the conservation law

(3.24) over the primary elements Ti by 1
2 ∆t yields averages at time tn+1, namely

Qn+1
i =

1
|Ti|

n f

∑
j=1

(
Qn+ 1

2
j+ 1

2

∣∣∣V−j ∣∣∣− 1
2

∆t
∣∣S j
∣∣F(Qn+ 1

2
j+ 1

2

)
·~n j

)
. (3.28)

Equations (3.27) and (3.28) constitute a first-order accurate, explicit two-step method for

solving (3.24) on a staggered mesh.

• Finally, following the FORCE approach [119] the scheme can be written as a one-step scheme

in conservative form on a non-staggered mesh, with a corresponding numerical flux. After

some algebraic manipulations involving the Gauss theorem (∑ j S j~n j =~0) and normalizing
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the face-normal vectors (~n2
j = 1) the scheme is recast into the sought conservative form:

Qn+1
i = Qn

i −
∆t
|Ti|

n f

∑
j=1

∣∣S j
∣∣FFORCE

j+ 1
2
·~n j , (3.29)

where the multidimensional FORCE flux on general meshes FFORCE
j+ 1

2
is given by

FFORCE
j+ 1

2
=

1
2

(
FLW

j+ 1
2

(
Qn

i ,Q
n
j
)
+FLF

j+ 1
2

(
Qn

i ,Q
n
j
))

. (3.30)

The FORCE flux is then the arithmetic average of two fluxes: a two-point flux of the Lax-

Wendroff type and a two-point flux of the Lax-Friedrichs type. The Lax-Wendroff type flux

is given by the physical flux F evaluated at the intermediate state obtained from the first

averaging procedure (3.27):

FLW
j+ 1

2
= F

(
QLW

j+ 1
2

)
, (3.31)

QLW
j+ 1

2
=

Qn
i

∣∣∣V−j ∣∣∣+Qn
j

∣∣∣V+
j

∣∣∣∣∣∣V−j ∣∣∣+ ∣∣∣V+
j

∣∣∣ − 1
2

∆t
∣∣S j
∣∣∣∣∣V−j ∣∣∣+ ∣∣∣V+

j

∣∣∣
(
F
(
Qn

j
)
−F(Qn

i )
)
·~n j , (3.32)

while the Lax-Friedrichs type flux is given by

FLF
j+ 1

2
=

F
(

Qn
j

)∣∣∣V−j ∣∣∣+F(Qn
i )
∣∣∣V+

j

∣∣∣∣∣∣V−j ∣∣∣+ ∣∣∣V+
j

∣∣∣ −

∣∣∣V−j ∣∣∣ ∣∣∣V+
j

∣∣∣∣∣∣V−j ∣∣∣+ ∣∣∣V+
j

∣∣∣ 2
∆t
∣∣S j
∣∣ (Qn

j −Qn
i
)
~nT

j . (3.33)

3.1.4 The FORCE-α scheme on general meshes

Although the FORCE flux on unstructured meshes [120] generally applies in multi-dimensions,

the original formulation (3.30)-(3.33) is not explicit in terms of the number of spatial dimensions

α. An explicit formulation of this type is instead available in the Cartesian case (3.18)-(3.21).

In this section, following Stecca et al. [113], we fill in this gap by developing an alternative α

formulation of the FORCE flux on unstructured meshes, which generalises (3.18)-(3.21). The

proposed FORCE-α formulation, providing much insight on the role of the size of subvolumes V±j
in controlling numerical dissipation, will be useful in the derivation of the UFORCE-δ method in

section 3.3.

We recall that the secondary mesh cells in the multidimensional FORCE method are composed

of two subvolumes V−j and V+
j having triangular shape in 2D (α = 2) and pyramidal shape in
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Figure 3.2: Sketch of the primary and secondary mesh for the FORCE method set on two-
dimensional unstructured triangular meshes.

3D (α = 3). With
∣∣∣V−j ∣∣∣ and

∣∣∣V+
j

∣∣∣ we indicate the size of these subvolumes, which dimensionally

corresponds to their surface area in 2D and their volume in 3D, given by

∣∣∣V+
j

∣∣∣= h+j
∣∣S j
∣∣

α
,

∣∣∣V−j ∣∣∣= h−j
∣∣S j
∣∣

α
, (3.34)

where h+j and h−j are the altitudes of
∣∣∣V+

j

∣∣∣ and
∣∣∣V−j ∣∣∣ respectively and

∣∣S j
∣∣ represents the length of

the triangle base or the area of the pyramid base surface (see Fig. 3.2). Substitution of (3.34) into

the FORCE flux formulae (3.30)-(3.33) gives

FFORCE−α

j+ 1
2

=
1
2

(
FLW−α

j+ 1
2

(
Qn

i ,Q
n
j
)
+FLF−α

j+ 1
2

(
Qn

i ,Q
n
j
))

, (3.35)

with

FLW−α

j+ 1
2

= F
(

QLW−α

j+ 1
2

)
, (3.36)

QLW−α

j+ 1
2

=
Qn

i h−j +Qn
jh

+
j

h−j +h+j
− 1

2
α∆t

h−j +h+j

(
F
(
Qn

j
)
−F(Qn

i )
)
·~n j (3.37)
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and

FLF−α

j+ 1
2

=
F
(

Qn
j

)
h−j +F(Qn

i )h+j
h−j +h+j

−
h−j h+j

h−j +h+j

2
α∆t

(
Qn

j −Qn
i
)
~nT

j . (3.38)

The above formulation applies to any kind of mesh and reduces to (3.18)-(3.21) in the Cartesian case.

The altitudes h±j , which are required by the method, in the case of triangular and tetrahedral

meshes are simply given by

h−j =
α |Ti|

n f
∣∣S j
∣∣ , h+j =

α
∣∣Tj
∣∣

n f
∣∣S j
∣∣ , (3.39)

where n f represents the number of cell boundaries (n f = 3 on triangular meshes and n f = 4 on

tetrahedral meshes).

3.2 The UFORCE scheme on Cartesian meshes

In this section we develop an upwind-biased variation of the FORCE method on Cartesian

meshes. This is achieved by modifying the shape of the staggered mesh in the FORCE scheme

accordingly with upwind information represented by the system eigenvalues. The resulting scheme,

first presented by Stecca et al. [112], is regarded as UFORCE. The method is first derived in

the two-dimensional case and then generalised on α space dimensions. We proceed as follows:

first in section 3.2.1 we construct our upwind-biased version of the FORCE method, in which the

secondary mesh setup is determined by two parameters per cell, still to be determined. Then in

section 3.2.2 we analytically determine the optimal setup for these parameters in applications to

the two-dimensional linear advection equation with constant coefficients. Last in section 3.2.3

the recipe for the optimal upwind bias is extended to the case of non-linear hyperbolic systems of

PDEs.

3.2.1 Derivation

As for the classical FORCE scheme reviewed in section 3.1.2, the derivation of UFORCE

requires the adoption of a primary mesh for computing cell averages and of a staggered mesh

used to define numerical fluxes for the conservative form of the scheme. We initially focus on the

two-dimensional case. The primary mesh, by elements Ti, j, is Cartesian and is defined in identical

manner as in section 3.1.2. The staggered mesh is now defined with reference to a generic point
~Pi, j laying inside each primary cell Ti, j, which does not have to coincide with the barycentre ~Gi, j

of Ti, j. This is shown in Fig. 3.3. The subvolumes composing the secondary staggered mesh are
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Figure 3.3: The upwind bias parameters in the UFORCE scheme.

then obtained by joining the four vertices of cell Ti, j with ~Pi, j. The resulting primary and secondary

mesh setup are illustrated in Fig. 3.4.

With upwind bias we define a set of two dimensionless parameters −1
2 ≤ (βx)i, j ≤ 1

2 and −1
2 ≤

(βy)i, j ≤
1
2 for each primary cell controlling the distance between ~Pi, j and the cell barycentre:

~Pi, j− ~Gi, j ≡
(
−(βx)i, j ∆x,−(βy)i, j ∆y

)
. (3.40)

Positive values of the directional bias are assumed in the i−1 and j−1 direction. See Fig. 3.3,

where positive values for the bias are depicted. Notice that the case
(
(βx)i, j ,(βy)i, j

)
=~0 reproduces

the standard FORCE scheme. The areas of volumes in the secondary mesh are then given as function

of the upwind bias (3.40) in the form∣∣∣Vi+ 1
2 , j

∣∣∣= {∣∣∣V−i+ 1
2 , j

∣∣∣= ∆y∆x
2

(1
2 +(βx)i, j

)}
+
{∣∣∣V+

i+ 1
2 , j

∣∣∣= ∆y∆x
2

(1
2 − (βx)i+1, j

)}
,∣∣∣Vi− 1

2 , j

∣∣∣= {∣∣∣V−i− 1
2 , j

∣∣∣= ∆y∆x
2

(1
2 − (βx)i, j

)}
+
{∣∣∣V+

i− 1
2 , j

∣∣∣= ∆y∆x
2

(1
2 +(βx)i−1, j

)}
,∣∣∣Vi, j+ 1

2

∣∣∣= {∣∣∣V−i, j+ 1
2

∣∣∣= ∆x∆y
2

(1
2 +(βy)i, j

)}
+
{∣∣∣V+

i, j+ 1
2

∣∣∣= ∆x∆y
2

(1
2 − (βy)i, j+1

)}
,∣∣∣Vi, j− 1

2

∣∣∣= {∣∣∣V−i, j− 1
2

∣∣∣= ∆x∆y
2

(1
2 − (βy)i, j

)}
+
{∣∣∣V+

i, j− 1
2

∣∣∣= ∆x∆y
2

(1
2 +(βy)i, j−1

)}
.

(3.41)

Following an identical procedure as that used in the derivation of the FORCE method (see section

3.1.2) the derivation of UFORCE is achieved in three stages:
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Figure 3.4: Sketch of the primary and secondary mesh for the UFORCE method set on two-
dimensional Cartesian meshes.
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• In the first stage, assuming initial condition Qn
i, j in cells Ti, j at time tn, cell averages are

evolved for a time step 1
2 ∆t in the control volumes of the staggered mesh associated with

each edge of Ti, j. The resulting intermediate states read

Qn+ 1
2

i+ 1
2 , j

= 1∣∣∣∣V−i+ 1
2 , j

∣∣∣∣+∣∣∣∣V+

i+ 1
2 , j

∣∣∣∣
{∣∣∣V−i+ 1

2 , j

∣∣∣Qn
i, j +

∣∣∣V+
i+ 1

2 , j

∣∣∣Qn
i+1, j

−∆t∆y
2

(
F(Qn

i+1, j)−F(Qn
i, j)
)}

,

Qn+ 1
2

i, j+ 1
2
= 1∣∣∣∣V−i, j+ 1

2

∣∣∣∣+∣∣∣∣V+

i, j+ 1
2

∣∣∣∣
{∣∣∣V−i, j+ 1

2

∣∣∣Qn
i, j +

∣∣∣V+
i, j+ 1

2

∣∣∣Qn
i, j+1

−∆t∆x
2

(
G(Qn

i, j+1)−G(Qn
i, j)
)}

,

Qn+ 1
2

i− 1
2 , j

= 1∣∣∣∣V−i− 1
2 , j

∣∣∣∣+∣∣∣∣V+

i− 1
2 , j

∣∣∣∣
{∣∣∣V+

i− 1
2 , j

∣∣∣Qn
i−1, j +

∣∣∣V−i− 1
2 , j

∣∣∣Qn
i, j

−∆t∆y
2

(
F(Qn

i, j)−F(Qn
i−1, j)

)}
,

Qn+ 1
2

i, j− 1
2
= 1∣∣∣∣V−i, j− 1

2

∣∣∣∣+∣∣∣∣V+

i, j− 1
2

∣∣∣∣
{∣∣∣V−i, j− 1

2

∣∣∣Qn
i, j +

∣∣∣V+
i, j− 1

2

∣∣∣Qn
i, j−1

−∆t∆x
2

(
G(Qn

i, j)−G(Qn
i, j−1)

)}
.

(3.42)

• In the second stage of the scheme derivation the solution is evolved by another time step 1
2 ∆t

within each element Ti, j, assuming (3.42) at time t = tn + 1
2 ∆t as initial condition. We obtain

Qn+1
i, j = 1

∆x∆y

(
Qn+ 1

2
i+ 1

2 , j

∣∣∣V−i+ 1
2 , j

∣∣∣+Qn+ 1
2

i, j+ 1
2

∣∣∣V−i, j+ 1
2

∣∣∣+Qn+ 1
2

i− 1
2 , j

∣∣∣V−i− 1
2 , j

∣∣∣+Qn+ 1
2

i, j− 1
2

∣∣∣V−i, j− 1
2

∣∣∣)
− 1

2
∆t
∆x

{
F
(

Qn+ 1
2

i+ 1
2 , j

)
−F

(
Qn+ 1

2
i− 1

2 , j

)}
− 1

2
∆t
∆y

{
G
(

Qn+ 1
2

i, j+ 1
2

)
−G

(
Qn+ 1

2
i, j− 1

2

)}
.

.(3.43)

• Finally we perform algebraic manipulations on (3.43) so as to reproduce the conservative

formula (3.9). As for the classical FORCE method the intercell flux can be rewritten as the

arithmetic average of two fluxes, namely

FUFORCE−2
i+ 1

2 , j
=

1
2

(
FULW−2

i+ 1
2 , j

+FULF−2
i+ 1

2 , j

)
. (3.44)

Here FULW−2
i+ 1

2 , j
and FULF−2

i+ 1
2 , j

represent two-dimensional upwind-biased versions of the Lax-

Wendroff (3.15)-(3.16) and Lax-Friedrichs (3.17) fluxes. They read

FULW−2
i+ 1

2 , j
= F

(
QULW−2

i+ 1
2 , j

)
(3.45)
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with
QULW−2

i+ 1
2 , j

= 1∣∣∣∣V+

i+ 1
2 , j

∣∣∣∣+∣∣∣∣V−i+ 1
2 , j

∣∣∣∣
{∣∣∣V−i+ 1

2 , j

∣∣∣Qn
i, j +

∣∣∣V+
i+ 1

2 , j

∣∣∣Qn
i+1, j

−1
2 ∆t∆y

(
F
(

Qn
i+1, j

)
−F

(
Qn

i, j

))} (3.46)

and

FULF−2
i+ 1

2 , j
= 1∣∣∣∣V+

i+ 1
2 , j

∣∣∣∣+∣∣∣∣V−i+ 1
2 , j

∣∣∣∣
{∣∣∣V−i+ 1

2 , j

∣∣∣F(Qn
i+1, j)+

∣∣∣V+
i+ 1

2 , j

∣∣∣F(Qn
i, j)

−2
(

1
∆t∆y

)∣∣∣V−i+ 1
2 , j

∣∣∣ ∣∣∣V+
i+ 1

2 , j

∣∣∣(Qn
i+1, j−Qn

i, j

)}
.

(3.47)

Last, we generalise the UFORCE flux for α space dimension, obtaining

FUFORCE−α

i+ 1
2

=
1
2

(
FULW−α

i+ 1
2

+FULF−α

i+ 1
2

)
. (3.48)

Here

FULW−α

i+ 1
2

= F
(

QULW−α

i+ 1
2

)
(3.49)

with
QULW−α

i+ 1
2

= 1
2(1−(βx)i+1+(βx)i)

{
(1+2(βx)i)Qn

i +
(
1−2(βx)i+1

)
Qn

i+1

)
−
(

α∆t
∆x

)(
F
(
Qn

i+1

)
−F(Qn

i )
)} (3.50)

and

FULF−α

i+ 1
2

= 1
2(1−(βx)i+1+(βx)i)

{
(1+2(βx)i)F

(
Qn

i+1

)
+
(
1−2(βx)i+1

)
F(Qn

i )

−
(

∆x
α∆t

)
(1+2(βx)i)

(
1−2(βx)i+1

)(
Qn

i+1, j−Qn
i, j

)}
.

(3.51)

In equations (3.48)-(3.51) x indicates the current direction and subscript i is the index along the x

direction.

The UFORCE flux is a function of the upwind bias parameters and its performance is expected to

depend on their setup. Next, we shall derive optimal values for the upwind bias, taking into account

upwind information based on the system eigenvalues.

3.2.2 Optimal choice for the upwind bias: the linear case

Here we analyse how to determine the optimal bias for the UFORCE scheme taking into account

information from the eigenvalues of the system. The analysis is based on the two-dimensional
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linear advection equation with constant coefficients, which reads

∂tq+∂x f (q)+∂yg(q) = 0 , (3.52)

having fluxes f (q) = λxq and g(q) = λyq, where λx and λy are the (constant) characteristic speeds

in the x and y direction.

Application of the optimal upwind bias into the UFORCE flux (3.44)-(3.47) shall result in the least

dissipative monotone method in the solution of (3.52). We proceed as follows: in section (3.2.2.1)

we demonstrate that the Godunov upwind method is the least dissipative monotone method among

five-point schemes on two-dimensional Cartesian meshes and then in section (3.2.2.2) we identify

the optimal upwind bias, which allows UFORCE to identically reproduce the Godunov method in

applications to (3.52).

3.2.2.1 Accuracy of the two-dimensional Godunov upwind method

Finite volume schemes for (3.52) are written as

qn+1
i, j = qn

i, j−
∆t
∆x

(
fi+ 1

2 , j
− fi− 1

2 , j

)
− ∆t

∆y

(
gi, j+ 1

2
−gi, j− 1

2

)
. (3.53)

We restrict our analysis to five-point schemes on two-dimensional Cartesian meshes, i.e. the

schemes in which the stencil includes the current cell Ti, j and its four neighbours Ti, j−1, Ti+1, j,

Ti, j+1, Ti−1, j. This implies that the scheme (3.53) can be rewritten as

qn+1
i, j =

1

∑
l=−1

1

∑
m=−1

bl,mq
n
i+l, j+m with b±1,±1 = 0 . (3.54)

All the schemes considered in this section belong to this class.

We recall the Godunov upwind method, whose flux in the one-dimensional case is given by

FGodunov
i+ 1

2
= F

(
Qi+ 1

2

(
0+
))

, (3.55)

where Qi+ 1
2
(0+) is the solution of the Riemann problem

PDEs: ∂tQ+∂xF(Q) = 0 ,

IC: Q(x,0) =

{
Qn

i if x < xi+ 1
2

Qn
i+1 if x > xi+ 1

2

 (3.56)
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obtained at local time τ = 0+ at intercell xi+ 1
2
. Here we consider a two-dimensional extension of

the Godunov method in which fluxes are calculated by solving one-dimensional Riemann problems

(3.56) orthogonally to the current edge.

The coefficients in (3.54) of the Godunov upwind method in two space dimensions read

b−1,0 = 1
2 (cx + |cx|) , b1,0 =

1
2 (|cx|− cx) ,

b0,−1 = 1
2 (cy + |cy|) , b0,1 =

1
2 (|cy|− cy) ,

b0,0 = 1−|cx|− |cy| ,
(3.57)

where cx = λx
∆t
∆x and cy = λy

∆t
∆y are the directional CFL numbers. The numerical scheme (3.54),

(3.57) proves to be stable if the following condition holds:

|cx|+ |cy| ≤ 1 . (3.58)

Proposition 3.2.1. The Godunov upwind scheme in two space dimensions for the linear advection

equation is the monotone scheme with the smallest truncation error among all the five-point schemes

(3.54).

Proof. We consider the generic five-point scheme (3.54). Coefficients bl,m, −1 ≤ l,m ≤ 1 are

constant. We assume the scheme to be at least first-order, that is consistent. Then from Roe’s

accuracy lemma (see [118]) we have the following three equations relating the five coefficients:
∑

1
l=−1 ∑

1
m=−1 bl,m = 1 (b±1,±1 = 0)

b−1,0−b1,0 = cx

b0,−1−b0,1 = cy

. (3.59)

System (3.59) gives a two-parameter family of solutions. We set

b−1,0 +b1,0 = q̂x , b0,−1 +b0,1 = q̂y (3.60)

and solve the complete system in terms of the arbitrary parameters q̂x and q̂y:

b−1,0 =
1
2 (q̂x + cx) , b0,−1 =

1
2 (q̂y + cy) ,

b1,0 =
1
2 (q̂x− cx) , b0,1 =

1
2 (q̂y− cy) ,

b0,0 = 1− (q̂x +q̂y) .

(3.61)

By performing a truncation error analysis, both cross contributions to numerical viscosity (pro-

portional to ∂x∂yq) and normal contributions (proportional to ∂2
xq, ∂2

yq) are found. The cross
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coefficients of viscosity, reading

µx,y =−
∆x∆y

∆t
cxcy (3.62)

are independent from q̂x and q̂y. Instead, the normal coefficients of viscosity in the x and y direction,

reading

µx,x =
∆x2

2∆t

(
q̂x− c2

x
)

, µy,y =
∆y2

2∆t

(
q̂y− c2

y
)

(3.63)

depend on the parameters q̂x and q̂y. In order to minimise the truncation error, the normal contribu-

tions (3.63) must be minimised.

Monotonicity requires positivity (non-negativity) of all coefficients (3.61). This leads to the

conditions {
|cx| ≤ q̂x ≤ 1− q̂y

|cy| ≤ q̂y ≤ 1− q̂x
. (3.64)

From (3.64), being |cx| ≥ 0 and |cy| ≥ 0, a wider set of inequalities can be written as{
0≤ |cx| ≤ q̂x ≤ 1− q̂y ≤ 1

0≤ |cy| ≤ q̂y ≤ 1− q̂x ≤ 1
, (3.65)

from which the widest admissible range of variation for |cx|, |cy| and q̂x, q̂y can be found:{
0≤ |cx| ≤ 1

0≤ |cy| ≤ 1
(3.66)

and {
|cx| ≤ q̂x ≤ 1
|cy| ≤ q̂y ≤ 1

. (3.67)

For any given value of |cx|, |cy| in the range (3.66), taking into account (3.67) and noting that µx,x

and µy,y in (3.63) are linearly increasing functions of q̂x, q̂y, we can write:

min|cx|≤q̂x≤1 (µx,x) = µx,x
(
min|cx|≤q̂x≤1 (q̂x)

)
= µx,x

∣∣
q̂x=|cx| ,

min|cy|≤q̂y≤1 (µy,y) = µy,y

(
min|cy|≤q̂y≤1 (q̂y)

)
= µy,y

∣∣
q̂y=|cy| .

(3.68)
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Therefore, the values of q̂x and q̂y which minimise µx,x and µy,y in (3.63), also satisfying (3.67), are{
q̂x = |cx|
q̂y = |cy|

. (3.69)

In order to fully satisfy the monotonicity requirements (3.64), by substituting (3.69) into (3.64) a

further condition is found:
|cx|+ |cy| ≤ 1 . (3.70)

Substitution of (3.69) into (3.61) gives the Godunov upwind coefficients (3.57), while (3.70) turns

out to be the Godunov upwind stability condition (3.58). �

This proof can be easily extended in three space dimensions.

3.2.2.2 The optimal upwind bias in UFORCE

All the numerical methods considered in this section, i.e. the UFORCE (3.44)-(3.47), FORCE

(3.13), Lax-Friedrichs (3.17), Lax-Wendroff (3.15)-(3.16) and Godunov upwind (3.55)-(3.56)

methods belong to the class of five-point schemes. The coefficients of these methods to be inserted

in (3.54) are given in Tab. 3.1. In the considered linear case we assume upwind bias βx and βy

constant all over the domain and indicate with cx =
λx∆t
∆x and cy =

λy∆t
∆y the directional CFL numbers.

All the methods given in Tab. 3.1 are directionally split, i.e. the coefficients b−1,0 and b1,0 depend

only on parameters evaluated along the x direction (cx and/or βx) while b0,−1 and b0,1 depend on

quantities along the y-direction (cy and/or βy).

The UFORCE method is able to exactly reproduce other numerical methods provided suitable

values for the upwind bias βx and βy are chosen. From Tab. 3.1 we observe that setting βx = βy = 0,

Table 3.1: Coefficients of two-dimensional five-point schemes.
UFORCE FORCE Lax-Friedrichs Godunov Lax-Wendroff

b−1,0
1
8 −

1
2 β2

x +
1
2 c2

x +
1
2 cx

1
8 +

1
2 c2

x +
1
2 cx

1
2

( 1
2 + cx

) 1
2 (cx + |cx|) cx

( 1
2 + cx

)
b1,0

1
8 −

1
2 β2

x +
1
2 c2

x− 1
2 cx

1
8 +

1
2 c2

x− 1
2 cx

1
2

( 1
2 − cx

) 1
2 (|cx|− cx) −cx

( 1
2 − cx

)
b0,0

1
2 +β2

x +β2
y− c2

x− c2
y

1
2 − c2

x− c2
y 0 1−|cx|− |cy| 1−2c2

x−2c2
y

b0,−1
1
8 −

1
2 β2

y +
1
2 c2

y +
1
2 cy

1
8 +

1
2 c2

y +
1
2 cy

1
2

( 1
2 + cy

) 1
2 (cy + |cy|) cy

( 1
2 + cy

)
b0,1

1
8 −

1
2 β2

y +
1
2 c2

y− 1
2 cy

1
8 +

1
2 c2

y− 1
2 cy

1
2

( 1
2 − cy

) 1
2 (|cy|− cy) −cy

( 1
2 − cy

)
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the classical FORCE method (3.13) is exactly recovered, while setting

βx =±
√

1
4
− c2

x , βy =±
√

1
4
− c2

y (3.71)

the Lax-Wendroff method (3.15)-(3.16) is reproduced and assuming

β
2
x− c2

x +
1
4
= 0 , β

2
y− c2

y +
1
4
= 0 (3.72)

the Lax-Friedrichs scheme (3.17) is obtained.

Amongst all the possibilities, the optimal choice for the upwind bias is the choice providing the

first-order monotone scheme with the smallest truncation error. In section 3.2.2.1 we have proved

that among five-point schemes (3.54) the first-order monotone method with the smallest truncation

error is the Godunov upwind method. By forcing the coefficients of the UFORCE method to be

equal to those of the Godunov method (see Tab. 3.1), we obtain

βx =±
1
2
(1−2 |cx|) , βy =±

1
2
(1−2 |cy|) . (3.73)

Thus equation (3.73) denotes the optimal upwind bias in UFORCE.

The optimal upwind bias (3.73) also defines the monotonicity region of UFORCE: it is easy to

prove that the UFORCE method is monotone provided

|βx| ≤
1
2
(1−2 |cx|) and |βy| ≤

1
2
(1−2 |cy|) . (3.74)

Furthermore, the optimal upwind bias (3.73) gives the same stability region as in the Godunov

upwind method (3.58).

In Fig. 3.5 we represent the above choices by plotting these relationships between the upwind bias

and the directional Courant number. The directionally-split property of methods allows us to draw

the same relations in the cx−βx or cy−βy plane, independently.

Finally, if we restrict the stability condition assuming |cx| ≤ 1
2 and |cy| ≤ 1

2 , the following consider-

ations can be drawn:

• the FORCE scheme is reproduced for any cx (cy) assuming βx = 0 (βy = 0);

• the Godunov upwind method is represented by a quadrilateral with vertices (cx =±1
2 ,βx = 0),

(cx = 0,βx =±1
2 ) which is inscribed in a circle (radius= 1

2 ) representing the Lax-Wendroff

method;

• no choice of βx (βy) exists which can reproduce the Lax-Friedrichs method except for |cx|= 1
2
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(|cy|= 1
2 );

• any choice of βx (βy) lying within the quadrilateral representing the Godunov upwind method

gives stable and monotone methods.

The normal numerical viscosity coefficients of the methods in Fig. 3.5 are

µxx =
1
4

∆x2

∆t

(
1−4β

2
x
)

, µyy =
1
4

∆y2

∆t

(
1−4β

2
y
)
. (3.75)

The scheme possessing the maximum viscosity is the FORCE method (βx = 0, βy = 0), while

increasing the bias to βx =±1
2 (βy =±1

2 ), numerical viscosity vanishes, thus giving second order

methods. The monotone scheme possessing the smallest numerical viscosity is the Godunov

method. Exceeding the threshold imposed by the Godunov method, numerical viscosity decreases,

but oscillatory methods are found. Finally, setting cx =±1
2 and βx = 0, all the methods given in

Tab. 3.1 coincide.

The analysis presented in this section can be easily generalised to α space dimensions. The

optimal upwind bias is then given by:

βx =±
1
2
(1−α |cx|) , (3.76)

where x denotes the current direction and cx is the directional Courant number.

3.2.3 Optimal choice of the upwind bias: the non-linear case

Here we empirically extend the theory developed in the previous section for the linear case

to non-linear homogeneous hyperbolic systems. For the purpose at hand we consider the two-

dimensional non-linear inviscid shallow water equations over horizontal bed (2.27), having real

eigenvalues λ
(1)
x = u− a, λ

(2)
x = u, λ

(3)
x = u+ a along the x direction and λ

(1)
y = v− a, λ

(2)
y = v,

λ
(3)
y = v+a along the y direction (see section 2.3.1). Here, u and v represent velocity along x and y

and a =
√

gD is celerity, being g the acceleration due to gravity and D water depth. With respect to

the linear case previously considered, we observe the following differences:

• in the linear case, any choice for the sign in the optimal upwind bias (3.73) gives rise to

identical results, while this is not true for the non-linear case;

• in applications to the scalar linear equation (3.52) the local directional Courant number is

precisely defined since there is only one possible choice for the eigenvalue, while this is not

the case for non-linear systems.
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Figure 3.5: The UFORCE method applied to the linear advection equation (3.52): monotonicity
and stability regions for different choices of the directional bias in the βx− cx and in
the βy− cy plane.

The open questions for non-linear systems are thus finding the correct sign si and the most suitable

estimate for the eigenvalue λS to be used in equation (3.73). Based on our numerical experiments,

we extend the linear upwind bias (3.73) to the non-linear case in the form

(βx)i, j = si

{
1
2
−λ

S

(
∆t

(∆x)i, j

)}
, (3.77)

with

si =


sign(ui, j) if (ui, j 6= 0)

sign
((

λ
(3)
x

)
i−1, j

+
(

λ
(1)
x

)
i+1, j

)
if (ui, j = 0) and

(
λ
(3)
x

)
i−1, j

+
(

λ
(1)
x

)
i+1, j
6= 0

0 if(ui, j = 0)and
(

λ
(3)
x

)
i−1, j

+
(

λ
(1)
x

)
i+1, j

= 0

.

(3.78)
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In (3.78) the sign function assumes the value of 1 if its argument is positive and −1 if it is negative.

This means that in general the sign si in (3.77) is chosen, in an upwind fashion, accordingly with

the sign of the particle velocity inside the cell. If velocity inside the current cell vanishes, then

the choice for the sign is made using upwind information coming from the neighbouring cells, i.e.

assuming the sign accordingly to the summation between the maximum eigenvalue coming from

the left and minimum eigenvalue coming from the right. Otherwise we choose si = 0 and end up

with (βx)i, j = 0, thus recovering the standard FORCE scheme.

In (3.77), λS is an estimate for the maximum local characteristic speed in absolute value. A suitable

expression in the case of the shallow water equations is

λ
S = max

k=1,2,3

∣∣∣∣(λ
(k)
x

)
i, j

∣∣∣∣= |u|+a . (3.79)

Based on the directionally-split property, analogous expressions are found in the y direction.

A generalisation of the non-linear upwind bias (3.77) in α space dimensions is readily achieved in

the form

(βx)i =
1
2

si

{
1−αλ

S
(

∆t
(∆x)i

)}
. (3.80)

3.3 The UFORCE-δ scheme

The purpose of this section is to design another upwind-biased FORCE-type method, fully

exploiting the idea of adaptively varying the secondary mesh setup first introduced in the derivation

of the UFORCE method (section 3.2). With respect to UFORCE, here we remove the constraint that

the subvolumes composing the secondary mesh must join in one unique point ~P laying inside the

current cell of the primary mesh. In the sought method we will use for the definition of subvolumes

as many moving points as the number of edges in the primary cell, in order to allow finer adaptation

to local upwind information. The resulting flux, regarded as UFORCE-δ by Stecca et al. [113],

will contain two upwind bias parameters δ
+
j and δ

−
j controlling the shape of the secondary mesh.

The method derivation will be carried out in the light of the theory for the optimal upwind bias

developed in the previous section.

A key requirement for the UFORCE-δ flux is that it shall be generally applicable to any kind

of meshes in multi-dimensions, i.e. it shall be natively derived on unstructured meshes. Thus

the starting point for the construction of the method will be the multi-dimensional unstructured

FORCE-α flux (3.35)-(3.38) [113] presented in section 3.1.4.
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3.3.1 Derivation

As for the multi-dimensional FORCE scheme [120], the derivation of the UFORCE-δ method

requires the adoption of a primary mesh for computing cell averages and of a staggered secondary

mesh used to define numerical fluxes for the conservative form of the scheme. The primary mesh

corresponds to a conforming tassellation of the computational domain by ne elements Ti in α

space dimensions (3.25). Each cell Ti has n f plane interfaces S j of size
∣∣S j
∣∣, with associated

outward-pointing normal unit vectors ~n j. The secondary mesh is staggered with respect to the

primary mesh. The primary and secondary mesh setup for UFORCE is depicted in Fig. 3.6 for the

two-dimensional case on triangular meshes. Each cell of the secondary mesh is composed by two

subvolumes V−j and V+
j associated to interface S j of the current primary cell Ti, the former laying

within cell Ti, the latter laying outside.

In deriving the proposed numerical method we allow the vertex of each subvolume V−j to not

necessarily join in the barycentre of Ti. Each subvolume is generated independently from the other

ones by connecting the vertices of interface S j to one point ~Pj associated with S j laying within Ti.

Unlike in the UFORCE method developed in the previous section, where a unique moving point

per cell ~P was considered in the definition of the secondary mesh, here we use as many moving

points ~Pj as the number of edges (compare Figs. 3.6 and 3.4).

For the proposed scheme we impose that each volume V−j cannot be greater than the corresponding

V−j in the FORCE method. This condition ensures that the primary mesh subvolumes V+
j have

smaller size than their counterparts in the FORCE method. As a consequence, unlike in FORCE

and UFORCE, in UFORCE-δ the subvolumes composing the secondary mesh will not entirely

cover the computational domain. Since the amount of numerical dissipation associated to the aver-

aging procedure described in (3.27) and (3.28) increases with subvolume size
∣∣∣V±j ∣∣∣, this constraint

guarantees that the proposed method will be less dissipative than FORCE.

Adopting an explicit formulation in terms of α as in (3.34) we obtain

∣∣∣V−j ∣∣∣= δ
−
j h−j

∣∣S j
∣∣

α
,

∣∣∣V+
j

∣∣∣= δ
+
j h+j

∣∣S j
∣∣

α
, (3.81)

where δ
−
j and δ

+
j are the upwind bias parameters associated to S j, which must satisfy the constraint

0≤ δ
−
j ≤ 1 , 0≤ δ

+
j ≤ 1 . (3.82)
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Once the secondary mesh (3.81) is defined, the UFORCE-δ numerical flux is obtained from

(3.30)-(3.33) in the form

FUFORCE−δ

j+ 1
2

=
1
2

{
FULW−δ

j+ 1
2

(
Qn

i ,Q
n
j
)
+FULF−δ

j+ 1
2

(
Qn

i ,Q
n
j
)}

, (3.83)

with

FULW−δ

j+ 1
2

= F
(

QULW−δ

j+ 1
2

)
, (3.84)

QULW−δ

j+ 1
2

=
1(

δ
−
j h−j +δ

+
j h+j + εc

) {(Qn
i δ
−
j h−j +Qn

jδ
+
j h+j

)
− 1

2
α∆t

(
F
(
Qn

j
)
−F(Qn

i )
)
·~n j

}
(3.85)

and

FULF−δ

j+ 1
2

= 1
(δ
−
j h−j +δ

+
j h+j +εc)

{(
F
(

Qn
j

)
δ
−
j h−j +F(Qn

i )δ
+
j h+j

)
−2

δ
−
j h−j δ

+
j h+j

α∆t

(
Qn

j −Qn
i

)
~nT

j

}
,

(3.86)

where a slight correction in the denominator has been introduced in order to handle the case of both

vanishing δ
−
j and δ

+
j . Here εc is a small positive real number, e.g. εc ∼ 10−10.

At this stage the UFORCE-δ flux is expressed as a function of the upwind bias parameters δ
±
j , still

to be determined. In the next section we shall derive optimal values for these parameters.

3.3.2 Optimal choice of the upwind bias: the linear case

Different choices for δ
±
j in (3.83)-(3.86) give different numerical methods. Here we concentrate

on an adaptive choice of the upwind bias parameters, i.e. a relation governing their variation in

space and (if the problem is non-linear) in time.

The purpose of this section is to determine the optimal upwind bias, i.e. the choice of δ
+
j and δ

−
j

providing the least dissipative monotone first order flux. To this aim we adopt an approach which is

analogous to that used in the derivation of the optimal upwind bias for UFORCE (see section 3.2.2).

The steps are:

• choice of the appropriate linear test problem;

• identification of an existing upwind numerical method to be used as reference;

• evaluation of the optimal upwind bias for the UFORCE-δ method by equating its flux to the

reference method flux for the selected test equation.
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Figure 3.6: Sketch of the primary and secondary mesh for the UFORCE-δ method set on two-
dimensional unstructured triangular meshes.

For sake of generality, we perform our analysis on a three-dimensional test problem on an unstruc-

tured mesh using the following linear system:

∂tQ+∂xF(Q)+∂yG(Q)+∂zH(Q) = 0 , (3.87)

where Q = [q1,q2]
T is the vector of conserved variables and F(Q), G(Q), H(Q) are the x, y, z

fluxes, given by

F(Q) = A1Q , G(Q) = A2Q , H(Q) = A3Q . (3.88)

Here, A1, A2, A3 are 2× 2 hyperbolic matrices with constant entries. Hyperbolicity of these

matrices ensures that each of them possesses two real eigenvalues. Therefore (3.87) presents two

waves in each space direction that can be used for evaluating the two bias δ
+
j and δ

−
j .

We focus on one cell Ti of the considered unstructured mesh, whose boundaries are denoted with

S j. Let~n j be the outward-pointing normal unit vector and Tj the neighbouring cell associated to

the current boundary. The initial condition at time t = tn (local time τ = 0) is given by piecewise

constant data Q(x,y,z ∈ Ti) = Qn
i = [q1i,q2i]

T and Q(x,y,z ∈ Tj) = Qn
j = [q1 j,q2 j]

T .
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The sought reference method shall be monotone and characterised by minimum numerical dissipa-

tion. In section 3.2.2.1 for the linear advection equation we have proved that the Godunov upwind

scheme on two-dimensional Cartesian meshes is the monotone scheme with the smallest truncation

error among all the five-point schemes. Since the same proof is not viable on general unstructured

meshes, here we assume a straightforward extension of this result and adopt the Godunov upwind

method as reference. The Godunov flux at interface S j is given by

FGodunov
j+ 1

2

(
Qn

i ,Q
n
j
)
= F

j+ 1
2

(
Q
(
n̂ = 0,τ = 0+

))
, (3.89)

where Q(n̂ = 0,τ = 0+) is the solution of a classical one-dimensional Riemann problem projected

orthogonally to cell interface S j and n̂ denotes a local normal coordinate defined by~n j with origin

at S j.

In order to obtain identical numerical methods we proceed by equating the projected fluxes of the

UFORCE-δ and Godunov methods

FUFORCE−δ

j+ 1
2

(
Qn

i ,Q
n
j
)
·~n j = FGodunov

j+ 1
2

(
Qn

i ,Q
n
j
)
·~n j , (3.90)

in applications to the system (3.87)-(3.88). The Godunov flux for this system is obtained by the

solution of the following Riemann problem:

PDEs: ∂tQ+∂n̂ (An̂Q) = 0 ,

IC: Q(n̂,τ = 0) =

 Qn
i if n̂ < 0 ,

Qn
j if n̂ > 0

 , (3.91)

where An̂ is the projected flux Jacobian matrix:

An̂ =

[
a11 a12

a21 a22

]
= (A1,A2,A3) ·~n j . (3.92)

Hyperbolicity of all the matrices in (3.88) guarantees that the matrix An̂ is itself hyperbolic.

Therefore An̂ possesses two real eigenvalues λ
(1)
n̂ and λ

(2)
n̂ (sorted in increasing order), defined as

λ
(1)
n̂ =

1
2
(a11 +a22−R) , λ

(2)
n̂ =

1
2
(a11 +a22 +R) , (3.93)
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with R =

√
(a11−a22)

2 +4a12a21. The exact solution at cell interface for the Riemann problem

(3.91) is

Q
(
n̂ = 0,τ = 0+

)
=


Qn

i if λ
(1)
n̂ > 0 ,

Qn
j if λ

(2)
n̂ < 0 ,[

R+a11−a22
2R+ q1i +

R−a11+a22
2R+ q1 j− a12

R+ (q2 j−q2i)

−a21
R+ (q1 j−q1i)+

R−a11+a22
2R+ q2i +

R+a11−a22
2R+ q2 j

]
otherwise ,

(3.94)

where R+ = (R+ εc) allows to handle the case of two vanishing projected eigenvalues. Finally,

recalling (3.92), the projected Godunov upwind flux reads

FGodunov
j+ 1

2

(
Qn

i ,Q
n
j
)
·~n j = An̂Q

(
n̂ = 0,τ = 0+

)
. (3.95)

The three-dimensional UFORCE-δ flux for the linear problem (3.87)-(3.88) is obtained by substitu-

tion of (3.88) into (3.83)-(3.86). The projected UFORCE-δ flux reads

FUFORCE−δ

j+ 1
2

·~n j =
1
2

{
An̂− 1

(δ
−
j h−j +δ

+
j h+j +εc)

(
α∆t

2 A2
n̂ +

2(δ
−
j h−j δ

+
j h+j )

α∆t I
)}(

Qn
j −Qn

i

)
, (3.96)

where I is the 2×2 identity matrix.

Equating the UFORCE-δ flux (3.96) to the Godunov flux (3.95), after algebraic manipulations, two

solutions for the optimal upwind bias can be found:

δ
−
j =

∣∣∣λ(1)
n̂

∣∣∣α∆t

2h−j
, δ

+
j =

∣∣∣λ(2)
n̂

∣∣∣α∆t

2h+j
, (3.97)

δ
−
j =

∣∣∣λ(2)
n̂

∣∣∣α∆t

2h−j
, δ

+
j =

∣∣∣λ(1)
n̂

∣∣∣α∆t

2h+j
. (3.98)

For the linear case the two solutions (3.97) and (3.98) are equivalent, both allowing the UFORCE-δ

flux to reproduce the Godunov upwind flux.

In order to satisfy constraint (3.82), the following condition must hold:

max
(∣∣∣λ(1)

n̂

∣∣∣ , ∣∣∣λ(2)
n̂

∣∣∣)∆t

2h−j
≤ 1

α
, (3.99)
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for each h j in the domain. Therefore the time step ∆t will be chosen accordingly with the CFL

condition

∆t =
2
α

CFL min
1≤i≤ne

 min
1≤ j≤n f

 h−j

max
(∣∣∣λ(1)

n̂

∣∣∣ , ∣∣∣λ(2)
n̂

∣∣∣)


Ti

, (3.100)

being CFL the Courant-Friedrichs-Lewy coefficient (0 <CFL≤ 1).

We are now able to write our UFORCE-δ flux for the considered problem by inserting (3.97) or

(3.98) into (3.96):

FUFORCE−δ

j+ 1
2

·~n j =
1
2

An̂−
1

max
(∣∣∣λ(1)

n̂

∣∣∣+ ∣∣∣λ(2)
n̂

∣∣∣+ εc

) (A2
n̂ +
∣∣∣λ(1)

n̂

∣∣∣ ∣∣∣λ(2)
n̂

∣∣∣I)
(Qn

j −Qn
i
)
.

(3.101)

Comparing (3.96) and (3.101) we observe that the original cell subvolume altitudes h±j have been

replaced by adaptive subvolumes whose size is controlled by the local characteristic speeds in

absolute value. The amount of numerical dissipation, which is related to the size of secondary

subvolumes, is now controlled by local parameters related to characteristic speeds. We remark

that given the optimal upwind bias (3.97) or (3.98), the proposed UFORCE-δ method identically

reproduces the results of the Godunov upwind method in applications to the linear system (3.87)-

(3.88). Next, we will experimentally prove this statement.

3.3.3 Application to a three-dimensional linear system

The aim of the present application is twofold: first to prove that the proposed UFORCE-δ

method is identical to the Godunov upwind method in the linear case; second to show that the

considered upwind-biased formulation applies to three-dimensional unstructured meshes. In order

to prove the above statements we solve the three-dimensional linear system (3.87)-(3.88) where

matrices (3.88) are set to

A1 =

[
10 6

2 −1

]
, A2 = A3 =

[
0 0

0 0

]
. (3.102)

Matrix A1 has eigenvalues λ
(1)
x = −2 and λ

(2)
x = 11. The initial condition is represented by a

discontinuity located at x = 0 for both conserved variables q1 and q2, namely:

q1 = q2 =

{
1 if x < 0

−1 otherwise
. (3.103)
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Figure 3.7: Application to the linear system (3.87)-(3.88). Three-dimensional unstructured tetrahe-
dral mesh of 15000 cells.

The system is solved in the domain [−50,50]× [−2.5,2.5]× [−2.5,2.5] on a tetrahedral mesh

composed of 15000 cells (see Fig. 3.7) and solutions are displayed at final time t = 3 s. Stability

is imposed enforcing the CFL condition (3.100) with α = 3 and CFL = 0.9. In Fig. 3.8 we

compare the results of the UFORCE-δ method and of the Godunov upwind method (3.89), (3.94)

together with the exact solution. The numerical profiles in Fig. 3.8 have been obtained slicing the

numerical solutions along the x axis at y = z = 0, while the exact solution has been obtained using

the one-dimensional exact Riemann solver (3.94). In this case we have verified that the results of

the UFORCE-δ method and of the Godunov upwind method are identical (see Fig. 3.8 for a visual

confirmation).

3.3.4 Optimal choice of the upwind bias: the non-linear case

The aim of this section is to find a suitable modification of relations (3.97), (3.98) in order

to express the upwind bias as a function of available wave speed estimates for general non-linear

hyperbolic systems.

Let us consider the following three-dimensional hyperbolic system of m equations and m unknowns,

with m≥ 2:

∂tQ+∂xF(Q)+∂yG(Q)+∂zH(Q) = 0 , (3.104)
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Figure 3.8: Applications to the linear system (3.87)-(3.88). The solution obtained using two numer-
ical methods (Godunov upwind and UFORCE-δ) is compared to the exact solution at
t = 3 s. Numerical solution profiles are sliced along the x axis at y = z = 0.

where F(Q), G(Q) and H(Q) are the flux vectors in the x, y and z direction respectively. The

Jacobian matrices of these flux vectors are

A1 (Q) =

[
∂F
∂Q

]
, A2 (Q) =

[
∂G
∂Q

]
, A3 (Q) =

[
∂H
∂Q

]
. (3.105)

In order to evaluate the flux associated to interface S j of cell Ti we consider the projected Jacobian

matrix:

An̂ (Q) = (A1 (Q) ,A2 (Q) ,A3 (Q)) ·~n j . (3.106)

Unlike in the linear case, Jacobians (3.105) are generally data-dependent. Therefore, given piece-

wise constant initial data presenting a discontinuity at interface S j, namely Q(x,y,z ∈ Ti) = Qn
i and

Q(x,y,z ∈ Tj) = Qn
j , we have to consider two projected Jacobian matrices:

Ain̂ = An̂ (Qn
i ) , A jn̂ = An̂

(
Qn

j
)
. (3.107)

Notice that the two projected Jacobians (3.107) have been obtained with different data, but using

the same unit vector~n j (outward-pointing from cell Ti). Each of these Jacobians possesses m real

eigenvalues (sorted in increasing order), namely λ
(1)
in̂ , ...,λ

(m)
in̂ and λ

(1)
jn̂ , ...,λ

(m)
jn̂ respectively.

Compared to the linear case with m = 2 we have to address the following questions:

• which waves should be taken into account when dealing with a system possessing more than

two waves?

• how the wave speeds can be estimated in practice in order to use an expression based on

(3.97) or (3.98) for the upwind bias?
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Concerning the first question we consider a two-wave approach similar to HLL [57] or to the

central-upwind method developed by Kurganov, Noelle and Petrova (in the following KNP) [70].

Following this approach we conclude that for systems possessing more than two waves we have to

consider the smallest and largest characteristic speed of the entire Riemann fan. In the following we

will denote these wave speeds as s(1)n and s
(m)
n . Therefore the optimal upwind bias can be written as

δ
−
j =

∣∣∣s(1)n̂

∣∣∣α∆t

2h−j
, δ

+
j =

∣∣∣s(m)
n̂

∣∣∣α∆t

2h+j
(3.108)

or

δ
−
j =

∣∣∣s(m)
n̂

∣∣∣α∆t

2h−j
, δ

+
j =

∣∣∣s(1)n̂

∣∣∣α∆t

2h+j
. (3.109)

The associated CFL condition reads

∆t =
2
α

CFL min
1≤i≤ne

 min
1≤ j≤n f

 h−j

max
(∣∣∣s(1)n̂

∣∣∣ , ∣∣∣s(m)
n̂

∣∣∣)


Ti

, (3.110)

with 0 <CFL≤ 1.

The second question requires more discussion and different solutions can be obtained using different

approaches. Hereby we present two possible choices leading to genuinely centred methods:

1. The first approach considers the smallest and largest wave speeds of the Riemann fan, which

are obtained using the eigenvalues of the projected Jacobian matrices (3.107) as linearised

wave speed estimates, i.e.∣∣∣s(1)n̂

∣∣∣= max
(∣∣∣λ(1)

in̂

∣∣∣ , ∣∣∣λ(1)
jn̂

∣∣∣) ,
∣∣∣s(m)

n̂

∣∣∣= max
(∣∣∣λ(m)

in̂

∣∣∣ , ∣∣∣λ(m)
jn̂

∣∣∣) . (3.111)

The upwind bias is obtained inserting (3.111) into (3.109). Since these eigenvalues are in

any case needed for selecting a time step, no computational effort is added. Based on our

experience with the two-dimensional inviscid shallow water equations, in order to avoid

spurious oscillations we recommend the use of (3.109). The resulting method is genuinely

centred since no detailed knowledge of the system eigenstructure is required, therefore being

very general and suitable to be applied to systems for which the solution of the Riemann

problem is not viable. Moreover, compared to classical centred methods like FORCE

(3.30)-(3.33), it will be characterised by reduced numerical dissipation.

2. A second approach is based on a one-wave framework, where both wave speeds are estimated
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based on the maximum eigenvalue in absolute value:∣∣∣s(1)n̂

∣∣∣= ∣∣∣s(m)
n̂

∣∣∣= max
(

max
1≤l≤m

(∣∣∣λ(l)
in̂

∣∣∣) , max
1≤l≤m

(∣∣∣λ(l)
jn̂

∣∣∣)) . (3.112)

In this case use of (3.108) or (3.109) returns identical methods. Use of a one-wave method

is mandatory when dealing with scalar equations, possessing only one wave (m = 1). In

applications to systems of PDEs this choice may be convenient whether only an estimate of

the maximum eigenvalue in absolute value is available. The resulting one-wave UFORCE-δ

method is expected to be more dissipative than the two-wave UFORCE-δ method given by

(3.111), but still more accurate than FORCE.

3.3.5 The UFORCE-δ flux on Cartesian meshes

In this section we derive a Cartesian formulation for the UFORCE-δ flux (3.83)-(3.86). The

formulation here proposed is also suitable for one-dimensional applications. We consider again the

non-linear system (3.104) and focus only on the fluxes in the x direction, while the other fluxes will

be written in analogous manner. Here we use a multi-dimensional Cartesian-type indexation of

cells: we indicate with Ti the current cell and with Ti+1 its right neighbour in the x direction. We

assume piecewise constant initial data Qn
i and Qn

i+1. The UFORCE-δ flux at interface Si+ 1
2

is given

by

FUFORCE−δ

i+ 1
2

=
1
2

{
FULW−δ

i+ 1
2

(
Qn

i ,Q
n
i+1
)
+FULF−δ

i+ 1
2

(
Qn

i ,Q
n
i+1
)}

, (3.113)

with

FULW−δ

i+ 1
2

= F
(

QULW−δ

i+ 1
2

)
, (3.114)

QULW−δ

i+ 1
2

=
1(

δ
−
i+ 1

2
+δ

+
i+ 1

2
+ εc

) {(Qn
i δ
−
i+ 1

2
+Qn

i+1δ
+
i+ 1

2

)
− α∆t

∆x

(
F
(
Qn

i+1
)
−F(Qn

i )
)}

(3.115)

and

FULF−δ

i+ 1
2

=
1(

δ
−
i+ 1

2
+δ

+
i+ 1

2
+ εc

) {(F
(
Qn

i+1
)

δ
−
i+ 1

2
+F(Qn

i )δ
+
i+ 1

2

)
−δ
−
i+ 1

2
δ
+
i+ 1

2

∆x
α∆t

(
Qn

i+1−Qn
i
)}

,

(3.116)

where ∆x is mesh spacing in the x direction, assumed as constant. In contrast we remark that if

the mesh is variably-spaced only the general formulation (3.83)-(3.86) holds. Note that imposing

δ± = 1 the FORCE-α method on Cartesian meshes (3.18)-(3.21) is recovered.
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The optimal upwind bias is given by

δ
−
i+ 1

2
=

∣∣∣s(m)
x

∣∣∣α∆t

∆x
, δ

+
i+ 1

2
=

∣∣∣s(1)x

∣∣∣α∆t

∆x
, (3.117)

where s
(1)
x , and s

(m)
x are the extrema of the Riemann fan in the current x direction, which can be

approximated using both of the strategies already presented for the general case. In particular,

seeking for a two-wave method, we consider the eigenvalues of the Jacobian matrix A1 defined in

(3.105). Across the current interface Si+ 1
2

we have two Jacobians

Ai = A1 (Qn
i ) , Ai+1 = A1

(
Qn

i+1
)
, (3.118)

giving rise to two sets of eigenvalues (sorted in increasing order) λ
(1)
i , ...,λ

(m)
i and λ

(1)
i+1, ...,λ

(m)
i+1.

We use these eigenvalues as wave speed estimates in the form∣∣∣s(1)x

∣∣∣= max
(∣∣∣λ(1)

i

∣∣∣ , ∣∣∣λ(1)
i+1

∣∣∣) ,
∣∣∣s(m)

x

∣∣∣= max
(∣∣∣λ(m)

i

∣∣∣ , ∣∣∣λ(m)
i+1

∣∣∣) . (3.119)

3.3.6 Comparison of UFORCE and UFORCE-δ

As a concluding remark, here we highlight the similarities and differences between the UFORCE

and the UFORCE-δ method. UFORCE represents our first attempt to develop an upwind-bias

method, in the simple case of Cartesian meshes. The simplicity of the Cartesian setup has allowed

us to establish the theoretical framework presented in section 3.2.2, on which the more refined and

general UFORCE-δ method for unstructured meshes is based.

Both methods are of the upwind-biased type, derived from FORCE. The upwind bias is inserted

into the schemes by varying the secondary mesh setup of the classical FORCE method. The size

of subvolumes composing the secondary mesh is determined by the position of moving points,

varying in space and time. The upwind bias parameters ((βx)i, j ,(βy)i, j in the case of UFORCE

and δ
−
j ,δ

+
j in the case of UFORCE-δ) determine the secondary mesh setup and tune the amount of

numerical dissipation in the resulting method. These parameters are determined so as to reduce

numerical dissipation, still retaining monotonicity. This result is achieved in both cases by equating

the parametric fluxes to the Godunov upwind flux in linear applications. Thus, our upwind-biased

FORCE methods in linear applications are identical to the Godunov-upwind method. Extension

of the optimal upwind bias to non-linear systems is achieved for both methods using a centred

approach, i.e. considering the system eigenvalues as wave speed estimates, without application of

any Riemann solver.
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The secondary mesh setup in UFORCE and UFORCE-δ is different. While in UFORCE the

subvolumes composing the secondary mesh join in one single point per cell ~P, in UFORCE-δ each

subvolume V−j , associated to each edge in the primary cells, is independently determined using one

point ~Pj and is by construction smaller than its counterpart in FORCE. Thus, while in UFORCE

the secondary mesh subvolumes entirely cover the computational domain, in UFORCE-δ they do

not. In UFORCE, the geometrical constraint relating subvolumes within the primary cell makes the

problem of determining the optimal upwind bias to be directionally split and very easily solved on

Cartesian meshes. In contrast, in UFORCE-δ the problem of determining the optimal upwind bias

is edge-based (no geometrical constraints link the size of different subvolumes within the same

primary cell) and this makes the formulation suitable for applications on unstructured meshes.

Finally, in UFORCE one upwind bias parameter in each Cartesian direction per cell is considered,

while in UFORCE-δ two upwind bias parameters per edge are used. This feature allows us to

consider two waves travelling normal to the current edge, i.e. extrema of the Riemann fan, in the

flux computation in UFORCE-δ, while in UFORCE only one wave speed per Cartesian direction

(the maximum directional eigenvalue in absolute value) is used in the evaluation of the upwind

bias. Therefore, we have used different linear problems to determine the optimal upwind bias in

the linear case. Concerning UFORCE, we have considered the scalar linear advection equation,

describing the propagation of one wave, while for UFORCE-δ we have used a linear system having

two equations and two unknowns, providing two different characteristic speeds.

3.4 Second order extension

First-order monotone fluxes such as UFORCE and UFORCE-δ can be used as a basic building

block for high-order extension. The key ingredients for extending a first-order flux to order of

accuracy p > 1 in the Finite Volume framework are the availability of a non-oscillatory polynomial

reconstruction of degree p−1 and of a temporal evolution technique.

Concerning the reconstruction technique, Total Variation Diminishing (TVD) schemes are most

frequently used for second-order accuracy (see e.g. [118, 130, 89, 17]), while essentially non-

oscillatory (ENO) schemes (see e.g. [26, 56]) or weighted essentially non-oscillatory (WENO)

schemes (see e.g. [67, 82, 48, 49]) are used for accuracy higher than two.

For the temporal evolution of reconstructed polynomials, several techniques are available. The

one-step MUSCL-Hancock approach [131, 118, 17] is conveniently applied for achieving second-

order accuracy. The method-of-lines based on Runge-Kutta time stepping (see e.g. [108]) allows

achievement of higher order accuracy, but is hardly extended beyond fourth order accuracy due to

the so called Butcher barriers [18], which cause the number of intermediate Runge-Kutta stages to

become larger than the formal order of accuracy. In contrast, the one-step ADER technique (see
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e.g. [121, 123]), based on space and time Taylor expansions and on the semi-analytical Cauchy-

Kowalewski procedure for replacing time with space derivatives, has no theoretical accuracy barrier,

even though the algebraic manipulations contained in the Cauchy-Kowalewski procedure may be

very cumbersome for high-order accuracy. Finally, a new class of one-step high-order methods

has been developed based on a fully numeric alternative to the Cauchy-Kowalewski procedure, in

which local space-time finite element methods are used in order to compute the polynomial [47].

In this section we apply standard techniques in the finite volume framework to extend the UFORCE

and UFORCE-δ fluxes to second-order accuracy. For the UFORCE method, we use the MUSCL-

Hancock procedure associated to the ENO reconstruction on Cartesian meshes. Concerning the

UFORCE-δ method, we apply the ADER technique in conjunction with the WENO reconstruction

on unstructured triangular meshes. The review is specialised for the two-dimensional applications

which will be presented in section 3.5.

3.4.1 The MUSCL-Hancock approach with ENO reconstruction on Cartesian
meshes

Here we extend the first order UFORCE method to second order in space and time using the

MUSCL-Hancock approach [131] with ENO reconstruction [56] for the two-dimensional case.

• ENO reconstruction.

The cell averages Qn
i, j are reconstructed independently in the x and y direction by selecting

limited slope (difference) vectors ∆̄i and ∆̄ j respectively. Limited slope vectors are obtained

using the ENO technique in the form

∆̄i = minmax
((

Qn
i+1, j−Qn

i, j),(Q
n
i, j−Qn

i−1, j
))

, (3.120)

where the minmax function

minmax(a,b) =

{
a if |a| ≤ |b|
b otherwise

(3.121)

is applied component-wise to the left and right difference vectors. Boundary-extrapolated

values of the reconstructed variables are given by

Q−x
i, j = Qn

i, j−
1
2

∆̄i , Q+x
i, j = Qn

i, j +
1
2

∆̄i , (3.122)

Q−y
i, j = Qn

i, j−
1
2

∆̄ j , Q+y
i, j = Qn

i, j +
1
2

∆̄ j . (3.123)
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• Evolution of these states by 1
2 ∆t.

Evolution of the extrapolated values is achieved in the MUSCL-Hancock framework as

follows:

Q̄l
i, j = Ql

i, j +
∆t

2∆x

{
F
(

Q−x
i, j

)
−F

(
Q+x

i, j

)}
+

∆t
2∆y

{
G
(

Q−y
i, j

)
−G

(
Q+y

i, j

)}
, (3.124)

for l = −x,+x,−y,+y. Notice that the evolution stage is cell-based, i.e. the extrapolated

values are evolved within the cells without any contribution from the cell boundaries.

• Computation of the UFORCE flux.

This is achieved by application of the UFORCE scheme (3.44) to the boundary-extrapolated

evolved values (3.124). The resulting flux is

FUFORCE−2
i+ 1

2 , j
= FULW−2

i+ 1
2 , j

+FULF−2
i+ 1

2 , j
, (3.125)

with

FULW−2
i+ 1

2 , j
= F

(
QULW−2

i+ 1
2 , j

)
, (3.126)

QULW−2
i+ 1

2 , j
= 1

2(1−(βx)i+1, j+(βx)i, j)

{(
1+2(βx)i, j

)
Q̄−x

i+1, j +
(

1−2(βx)i+1, j

)
Q̄+x

i, j

−
(2∆t

∆x

)(
F
(

Q̄−x
i+1, j

)
−F

(
Q̄+x

i, j

))} (3.127)

and

FULF−2
i+ 1

2 , j
= 1

2(1−(βx)i+1, j+(βx)i, j)

{(
1+2(βx)i, j

)
F
(

Q̄−x
i+1, j

)
+
(

1−2(βx)i+1, j

)
F
(

Q̄+x
i, j

)
−
(

∆x
2∆t

)(
1+2(βx)i, j

)(
1−2(βx)i+1, j

)(
Q̄−x

i+1, j− Q̄+x
i, j

)}
.

(3.128)

For empirical assessment of second-order accuracy of the present implementation we refer the

reader to [112].

3.4.2 The ADER approach with WENO reconstruction on triangular meshes

In this section we review the one-step ADER-WENO technique used for extending the

UFORCE-δ flux to second-order accuracy in space and time on two-dimensional triangular meshes.

3.4.2.1 Non-linear reconstruction technique

Here we present a non-linear weighted essentially non-oscillatory (WENO) reconstruction

procedure to reconstruct polynomial data within each spatial cell at time tn from the given cell
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averages. The reconstruction procedure, which is non-linear and depends strongly on the input

data, follows directly from the guidelines given in [48, 49] for general unstructured two- and

three-dimensional meshes. We point out that, even though UFORCE-δ flux has been natively

developed to be applied to any kind of unstructured mesh, the proposed reconstruction method

applies only to triangular or tetrahedral meshes in two or three space dimensions respectively [48].

This restricts our two-dimensional applications to triangular meshes. The procedure reconstructs

entire polynomials, as the original ENO approach [56]. However, we formally write the method like

a WENO scheme [67, 82] with a particularly simple choice for the linear weights. For each stencil

S s
i =

⋃
Tk, having defined with ws

i the reconstruction polynomial, we require integral conservation:

1
|Tk|

∫
Tk

ws
i (~x, t

n)d~x = Qn
k ∀Tk ∈ S s

i . (3.129)

The reconstruction equations (3.129) are solved using a constrained least squares method in order

to guarantee that (3.129) is exactly satisfied at least inside element Ti. This procedure is performed

in a transformed coordinate space~ξ≡ (ξ,η) in order to avoid ill-conditioning due to scaling effects.

In practice cell Ti of vertices (X1,Y1), (X2,Y2), (X3,Y3) is mapped into a reference triangle with

vertices in (0,0), (1,0), (0,1) by applying the transformation:

x = X1 +(X2−X1)ξ+(X3−X1)η , y = Y1 +(Y2−Y1)ξ+(Y3−Y1)η , (3.130)

whose Jacobian matrix is defined as

~J =

[
∂~x

∂~ξ

]
. (3.131)

Therefore polynomials ws
i are naturally expressed in terms of transformed coordinates as ws

i

(
~ξ, tn

)
.

The WENO reconstruction polynomial is obtained by a weighted combination of the polynomials

ws
i

(
~ξ, tn

)
in the form

wi

(
~ξ, tn

)
=

7

∑
s=1

ωsws
i

(
~ξ, tn

)
. (3.132)

Seven stencils are required to be used in (3.132): one centred stencil (s = 1), three forward sector

stencils (s = 2,3,4) and three reverse sector stencils (s = 5,6,7) [48]. The non-linear WENO

weights ωs are computed as follows:

ωs =
ω̃s

∑
7
k=1 ω̃k

, ω̃s =
λs

(σs + εW )r , λs =

{
102÷105 if s = 1,

1 otherwise
(3.133)

with the oscillation indicators σs defined in [48], r = 4 and εW = 10−5.
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3.4.2.2 Second-order accurate one-step time discretisation

The result of the reconstruction procedure is a non-oscillatory spatial polynomial wi

(
~ξ, tn

)
defined at time tn inside each spatial element Ti. Next, we need to compute the temporal evolution

of these polynomials inside each space-time element Ti×
[
tn, tn+1

]
in order to be able to construct

the final second-order accurate one-step finite volume scheme.

We consider a two-dimensional system of PDEs having the form

∂tQ+∂xF(Q)+∂yG(Q) = 0 . (3.134)

Second-order accuracy is obtained using the ADER approach [123]. The key idea is to solve

high-order Riemann problems at the element boundaries. This is achieved by use of a Taylor

series expansion in time, of the Cauchy-Kowalewski procedure and of solutions of classical

Riemann problems for the state variables and their spatial derivatives. Here, consistently with the

reconstruction polynomial procedure, we apply the ADER technique in the transformed coordinate

system~ξ≡ (ξ,η). We adopt the following strategy: we expand the local solution Qi

(
~ξ, t
)

of the

PDE in each cell in a space-time Taylor series with respect to the element barycentre (ξi,ηi)=
(1

3 ,
1
3

)
Qi (ξ,η, t) = Q(ξi,ηi, tn)+(ξ−ξi)∂ξQ+(η−ηi)∂ηQ+(t− tn)∂tQ+O

(
ξ

2,η2, t2) . (3.135)

Then we use the Cauchy-Kowalewski procedure in order to substitute time derivatives with space

derivatives in (3.135). To this aim we rewrite the governing PDE system (3.134) in the transformed

coordinate space

∂tQ+∂ξF′ (Q)+∂ηG′ (Q) = 0 , (3.136)

where F′ (Q) and G′ (Q) are given by

F′ (Q) = F(Q)∂xξ+G(Q)∂yξ , G′ (Q) = F(Q)∂xη+G(Q)∂yη , (3.137)

being ∂xξ,...,∂yη the (constant) entries of the inverse of the transformation Jacobian (3.131). For

second-order accuracy it suffices to obtain the first time derivative by differentiating (3.136) as

follows:

∂tQ =−
(

A′
ξ
∂ξQ+A′η∂ηQ

)
, (3.138)

where A′
ξ

and A′η are the Jacobian matrices of fluxes (3.137) in the transformed space

A′
ξ
=

[
∂F′

∂Q

]
, A′η =

[
∂G′

∂Q

]
. (3.139)
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The value of Q(ξi,ηi, tn) and its spatial derivatives are obtained from the WENO reconstruction

polynomial wi

(
~ξ, t
)

.

3.4.2.3 The fully-discrete second-order accurate one-step scheme

Once the WENO reconstruction and the Cauchy-Kowalewski procedure have been performed

for each cell, the final high-order accurate one-step scheme can be written as follows:

Qn+1
i = Qn

i −
∆t
|Ti|

3

∑
j=1

∣∣S j
∣∣(F

j+ 1
2
·~n j

)
, (3.140)

where F
j+ 1

2
is given by

F
j+ 1

2
=

1∣∣∣S′j∣∣∣
∫

S′j

1
∆t

∫ tn+1

tn
FUFORCE−δ

j+ 1
2

(
Qn

i

(
~ξ, t
)
,Qn

j

(
~ξ, t
))

dt d~ξ , (3.141)

where S′j is the counterpart of edge S j in the transformed coordinate system,
∣∣∣S′j∣∣∣ represents its

length, FUFORCE−δ

j+ 1
2

is the UFORCE-δ flux given by (3.83)-(3.86) and Qi

(
~ξ, t
)

and Q j

(
~ξ, t
)

are

space-time polynomials in cells Ti and Tj obtained applying the Cauchy-Kowalewski procedure to

the WENO reconstruction polynomials. Space and time integrals in (3.141) can be approximated

using Gaussian quadratures. For second-order accuracy we use a very compact and efficient

midpoint quadrature rule both in time and space, resulting in one single flux evaluation per edge at

each evolution step. Therefore in practice we use

F
j+ 1

2
= FUFORCE−δ

j+ 1
2

(
Qn

i

(
~ξM, tn+ 1

2

)
,Qn

j

(
~ξM, tn+ 1

2

))
, (3.142)

being tn+ 1
2 = tn + 1

2 ∆t and~ξM equal to
(1

2 ,0
)
,
(1

2 ,
1
2

)
and

(
0, 1

2

)
for first, second and third edge

respectively. For higher order extension, where quadratures may get computationally heavy, this

approach can be modified using fully-analytical procedures [48].

3.5 Applications to the shallow water equations

The purpose of this section is to assess the performance of the proposed UFORCE and UFORCE-

δ method comparing their numerical results with the numerical solutions of well-established centred

and upwind finite volume methods and exact solutions. A suite of standard tests for the two-

dimensional inviscid shallow water equations, for Cartesian and unstructured meshes, is presented.

The material covered in this section is published in [112, 113].
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We consider the two-dimensional non-linear inviscid shallow water equations augmented by an

equation for a passive scalar. The system written in conservative form reads

∂tQ+∂xF(Q)+∂yG(Q) = 0 , (3.143)

where the vector of conserved variables Q and the flux vectors along the x and y direction F(Q),

G(Q) are given by

Q =


D

Du

Dv

DC

 , F(Q) =


Du

Du2 + 1
2 gD2

Duv

DuC

 , G(Q) =


Dv

Duv

Dv2 + 1
2 gD2

DvC

 . (3.144)

Here u(x,y, t) and v(x,y, t) are the x and y components of velocity, D(x,y, t) is water depth, C (x,y, t)

is the passive scalar concentration and g= 9.81ms−2 is the acceleration due to gravity. The Jacobian

matrices of fluxes F(Q) and G(Q) have three distinct eigenvalues,

λ
(1)
x = u−a , λ

(2)
x = u , λ

(3)
x = u+a ,

λ
(1)
y = v−a , λ

(2)
y = v , λ

(3)
y = v+a ,

(3.145)

where a =
√

gD is celerity. Given a unit vector~n j, the projected Jacobian matrix, defined by (3.106),

has three distinct real eigenvalues

λ
(1)
n̂ = un̂−a , λ

(2)
n̂ = un̂ , λ

(3)
n̂ = un̂ +a , (3.146)

where un̂ = (u,v) ·~n j is projected velocity. The eigenvalue λ
(2)
n̂ (and equivalently λ

(2)
x and λ

(2)
y ),

defining a linearly degenerate field as we have seen in section 2.3.2 of chapter 2, has multiplicity

2. This is the consequence of the inclusion of the equation for passive-scalar transport, which

provides a contact wave associated to λ
(2)
n̂ = un̂. The computation of this wave provides additional

difficulties to numerical methods, as we shall see in section 3.5.2.

Results have been obtained enforcing the CFL condition (3.110) with 0 <CFL≤ 1, which for the

considered two-dimensional system specialises as

∆t =
1
2

CFL min
i, j

(
min

(
∆x

(|u|+a)i, j
+

∆y
(|v|+a)i, j

))
(3.147)
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on Cartesian meshes and as

∆t =CFL min
1≤i≤ne

 min
1≤ j≤3

 h−j

max
(
(|u|+a)i ,(|u|+a) j

)


Ti

, (3.148)

on unstructured meshes.

Four test problems have been chosen in order to assess the behaviour of the UFORCE and UFORCE-

δ methods. Two of them, namely the collapse of a circular dam (section 3.5.1) and the propagation

of a passive scalar discontinuous wave (section 3.5.2) have been solved using first-order accurate

methods on Cartesian meshes, while the advection of a potential vortex (section 3.5.3) has been

performed on triangular unstructured meshes using second-order extensions of numerical methods.

Furthermore this test, possessing a smooth exact solution, is used for assessing second-order con-

vergence of the ADER-WENO extension of UFORCE-δ. The last test, namely the collapse of a

circular dam solved on a variably-spaced grid, is solved using second-order accurate schemes both

on Cartesian meshes (section 3.5.4) and unstructured meshes (section 3.5.5).

The results obtained with the proposed UFORCE and UFORCE-δ methods have been compared

with those obtained using one centred method (the FORCE method), one centred upwind-biased

method (the KNP method [70]) and two purely upwind methods. Among upwind methods we used

the Godunov method coupled with an exact Riemann solver (Godunov-exact) and the Godunov

method coupled with the HLL approximate Riemann solver (Godunov-HLL).

These numerical methods can be classified considering the number of waves taken into account

for the flux evaluation. Thus, we have one zero-wave method (FORCE), one one-wave method

(UFORCE), three two-wave methods (HLL, KNP, UFORCE-δ), one complete method (Godunov-

exact).

3.5.1 Collapse of a circular dam

This test case consists of the instantaneous breaking of a cylindrical tank initially filled with

2.5 meter deep still water at rest, surrounded by a square, half-meter deep lake at rest. When the

water column is released, the shock wave results in a dramatic increase of water depth in the lower

depth region, propagating in the radial direction.
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We solve (3.143)-(3.144) with initial condition

D(x,y,0) =

{
2.5 m if x2 + y2 ≤ R2

0.5 m if x2 + y2 > R2
, u(x,y,0) = v(x,y,0) = 0 ∀ x,y . (3.149)

being R = 2.5 m the tank radius. With this test we aim to assess the ability of the UFORCE-δ

method of accurately reproducing shock and rarefaction waves. Shock waves are discontinuous

waves associated with the genuinely non-linear fields λ
(1),(3)
x = u±a, λ

(1),(3)
y = v±a. These waves

require correct speed of propagation, sharp resolution of the transition zone and absence of spuri-

ous oscillations around the shock. Rarefaction waves are smooth waves and numerical methods

should be able to resolve these features accurately, especially their heads and tails, which contain

discontinuities in space derivatives.

Numerical solutions have been obtained using a coarse mesh of 101× 101 cells in the square

computational domain [−20,20]× [−20,20] m with transmissive boundary conditions. This com-

parison has been carried out with the first order version of the above mentioned numerical methods.

We provide an accurate reference solution, which has been obtained by turning the problem

(3.143)-(3.144)-(3.149) into a one-dimensional problem in the radial direction [117]:

∂t

[
D

Dur

]
+∂r

[
Dur

Du2
r +

1
2 gD2

]
=−1

r

[
Dur

Du2
r

]
, (3.150)

where r is the radial coordinate and ur(r, t) the radial velocity. The initial conditions (3.149) in the

radial coordinate system read:{
D(r,0) = 2.5 m if r ≤ R ,

D(r,0) = 0.5 m if r > R
, u(r,0) = 0 ∀r . (3.151)

The reference solution is obtained solving numerically system (3.150), (3.151) on a fine mesh of

1000 cells using the WAF method in conjunction with the HLLC approximate Riemann solver

[117]. The CFL number is set to 0.9 and the limiter used is SUPERBEE [101].

Results for water depth D(x,y, t) for this test are displayed in Fig. 3.9 at time t = 1.4 s and

in Fig. 3.10 at time t = 3.5 s. Here, numerical solutions (symbols) are presented in terms of slices

along the x axis (y = 0) and compared with the reference radial solution (full line). Each figure

presents the results obtained setting CFL = 0.9 (top panel) and CFL = 0.2 (bottom panel). From

both Figs. 3.9 and 3.10 the Godunov-exact method, based on exact evaluation of all the three waves,
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is found to be the least dissipative among all methods and to have a consistent performance with

low and high CFL numbers. In contrast, the accuracy of the FORCE centred method significantly

depends on the CFL number. While the solution obtained with FORCE at CFL = 0.2 is excessively

smoothed and smeared both in the shock and in the rarefaction zones, for larger values of the CFL

number the behavioural differences among centred and upwind methods tend to disappear. However

even with CFL = 0.9 FORCE fails in the accurate description of inflections in the free-surface

profile (Fig. 3.10 around x = 0).

The proposed one-wave UFORCE method significantly improves accuracy especially at low CFL

numbers, but still the solution is slightly more diffused than that of two-wave solvers like HLL

and KNP (see Fig. 3.9 at x =±3). These two-wave methods give indistinguishable results. The

results of the proposed UFORCE-δ method are significantly more accurate than those of KNP and

HLL for both values of CFL. The UFORCE-δ solution profile is always bounded between that of

Godunov-exact and that of KNP and HLL.

We speculate that improved accuracy of UFORCE compared to FORCE and of UFORCE-δ over

all the other methods except Godunov-exact is due to improved resolution of contact waves, i.e. the

shear wave in this case. This feature of UFORCE and UFORCE-δ is proved in the next section.

Finally, in Fig. 3.11 it is shown that the proposed UFORCE method, here extended to second-order

accuracy using the MUSCL-Hancock ENO technique, converges to the correct solution as the grid

is refined.
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Figure 3.9: Collapse of a circular dam. The numerical results for water depth D of six numerical
methods (symbols) are compared with the reference radial solution (full line) at time
t = 1.4 s. The numerical solution profiles are sliced on the x axis. The mesh used is
101×101 cells and CFL is set to 0.2 (top profile) and 0.9 (bottom profile).

87



3. Upwind-biased centred schemes for hyperbolic systems in conservation-law form

−15 −10 −5 0 5 10 15

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x [m]

D
 [

m
]

 

 

CFL = 0.2

Ref. solution

FORCE

UFORCE

UFORCE−δ

KNP

Godunov−exact

Godunov−HLL

−15 −10 −5 0 5 10 15

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x [m]

D
 [

m
]

 

 

CFL = 0.9

Ref. solution

FORCE

UFORCE

UFORCE−δ

KNP

Godunov−exact

Godunov−HLL

Figure 3.10: Collapse of a circular dam. The numerical results for water depth D of six numerical
methods (symbols) are compared with the reference radial solution (full line) at time
t = 3.5 s. The numerical solution profiles are sliced on the x axis. The mesh used is
101×101 cells and CFL is set to 0.2 (top profile) and 0.9 (bottom profile).
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Figure 3.11: Collapse of a circular dam. The numerical results for water depth D of the second-
order MUSCL-Hancock ENO UFORCE scheme (symbols) obtained at different grid
resolution (101×101, 201×201, 601×601 cells) are compared with the reference
radial solution (full line) at time t = 1.4 s. The numerical solution profiles are sliced
on the x axis. CFL is set to 0.9.

3.5.2 Propagation of a passive scalar discontinuity

The aim of this test is to assess the accuracy of the UFORCE-δ method when dealing with

contact waves. The flow field results from the collapse of a dam initially placed at x = 0. Across the

wall the water depth D initially exhibits a discontinuity, being 1 m on the left side of the domain and

0.5 m on the other side. Also the concentration field C is discontinuous across the dam, while water

is initially at rest all over the domain. The dam removal causes the propagation of a rarefaction wave

orthogonally to the dam towards the left side of the domain and of a shock wave on the other side.

This shock wave travels faster than the water particles. An intermediate wave for the concentration

discontinuity, passively transported at a speed equal to water velocity, is also produced.
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We solve (3.143)-(3.144) with initial condition
{

D(x,y,0) = 1 m

C(x,y,0) = 1
if x≤ 0 ,

{
D(x,y,0) = 0.5 m

C(x,y,0) = 0
if x > 0

u(x,y,0) = v(x,y,0) = 0 ∀ x,y .

(3.152)

We use a Cartesian mesh of 100× 100 cells in the square computational domain [−25,25]×
[−25,25] with transmissive boundary conditions. The solution is computed at time t = 5 s.

The exact solution for this problem is obtained by solving a one-dimensional dam-break problem in

the x direction using an exact Riemann solver. It contains a left rarefaction, a right-facing shock

wave and a contact discontinuity in the middle, across which the concentration C (x,y, t) varies

discontinuously (see [122] for an accurate description). We focus our attention to the contact

discontinuity and discuss the results in terms of C (x,y, t). In general, the computation of con-

tact waves, associated with the linearly degenerate fields (λ(2)
x = u, λ

(2)
y = v) is very challenging.

One main difficulty is to preserve sharpness in the resolution of these waves in time evolution

problems. Upwind methods are distinctly better than centred methods on this task; however, only

the upwind methods based on complete Riemann solvers (in our case, Godunov-exact) explic-

itly include the contact wave in the flux computation. In contrast, schemes based on the HLL

Riemann solver behave like centred methods for linear fields [118]. Similarly, refined centred

schemes like UFORCE, UFORCE-δ and KNP do not include any upwind bias related to linear fields.

We compare the results of the first-order version of the proposed method with the first-order

version of the same six numerical methods used in the previous section. The results for this

test, obtained with CFL = 0.2 and CFL = 0.9, are displayed in Fig. 3.12 (top and bottom panel

respectively). The solution for variable C is represented in terms of slices along the x axis. As

expected, for both values of the CFL number, the Godunov-exact method gives rise to the sharpest

resolution of the contact wave, outperforming all the other methods, while HLL and KNP are found

to perform in analogous manner. These two-wave methods perform consistently over the entire

range of CFL numbers considered, but the solution profile is always found to be more smeared than

that of Godunov-exact. In contrast, the behaviour of the genuinely centred FORCE method is deeply

influenced by the CFL number: at CFL = 0.2 the solution is affected by excessive dissipation,

while at CFL = 0.9 the solution is found to be slightly more accurate than that of KNP and HLL.

The one-wave UFORCE method represents a significant improvement with respect to the FORCE

method for low values of the CFL parameter, while the improvement in accuracy over FORCE

vanishes at high CFL numbers. Finally, let us focus on the proposed UFORCE-δ method. From

Fig. 3.12 it is clear that the solution obtained using UFORCE-δ is affected by small values of
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numerical dissipation and outperforms the results obtained using all the other methods except the

Godunov-exact method, as it was expected.

3.5.3 Vortex advection: convergence test

In the present test, originally proposed by Ricchiuto and Bollermann [99], we examine the

case of a vortex travelling at mean velocity ~u∞ = (u∞,v∞) while maintaining its properties (wa-

ter surface level and velocity field). Since an exact solution of this problem is available, we use

this test case for assessing the second-order convergence of our ADER-WENO UFORCE-δ method.

In order to derive the exact solution we apply the following decomposition to flow field

~u =~u′+~u∞ , (3.153)

where~u′ in cylindrical coordinates reads:

~u′ =
(
u′r,u

′
θ

)
=
(
0,u′θ

)
(3.154)

being u′r and u′
θ

the relative radial and tangential velocity respectively. Then, the first equation in

(3.143)-(3.144) becomes

∂tD+~u∞ ·∇D = 0 , (3.155)

which admits the following exact solution:

D(x,y, t) = D0 (γ) , (3.156)

being γ = (x−u∞t,y− v∞t) and D0 (x,y) the initial condition for water depth distribution. Substi-

tuting (3.153)-(3.154) into the second and third equation in (3.143)-(3.144) we obtain

∂t~u′+(~u∞ ·∇)~u′+
(
~u′ ·∇

)
~u′+g∇D0 (γ) =~0 , (3.157)

which admits an exact solution of the form

~u′ (x,y, t) =~u′0 (γ) , (3.158)
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Figure 3.12: Propagation of a passive scalar discontinuity. The numerical results for concentration
C of six numerical methods (symbols) are compared with the exact solution (full line)
at time t = 5 s. The numerical solution profiles are obtained slicing the solution along
the x axis. The mesh used is 100×100 cells and CFL is set to 0.2 (top panel) and 0.9
(bottom panel).
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by which initial conditions are advected over the spatial domain, as in the case of the linear

advection equation. Appropriate initial conditions for the velocity field are

~u′0 (rc) =

{
Γ(1+ cos(ωrc))(yc− y,x− xc) if ωrc ≤ π

(0,0) otherwise
, (3.159)

where Γ is vortex intensity, (xc,yc) are the coordinates of the vortex centre at initial time, rc is

the distance to the vortex core and ω the angular wave frequency determining the vortex width.

Integration of (3.157) along the radial direction yields the initial conditions for the water surface

profile

D0 (rc) = D∞ +

{
1
g

(
Γ

ω

)2 (
φR (ωrc)−φR (π)

)
if ωrc ≤ π

0 otherwise
, (3.160)

where φR (a) = 2cos(a)+2asin(a)+ 1
8 cos(2a)+ 1

4 sin(2a)+ 3
4 a2 and D∞ is water depth outside

the vortex.

Following Ricchiuto and Bollermann [99], the parameters used in computations are Γ = 15,

ω = 4π,~u∞ = (6,0), D∞ = 5, g = 1. We solve the problem in the rectangular computational domain

[0,1]× [0,2] with weak far field conditions prescribed at the four boundaries. The initial position of

vortex centre is (xc,yc) =
(1

2 ,
1
2

)
. Having set timeout equal to t = 1

6 s, the vortex centre is expected

to be located at
(3

2 ,
1
2

)
at the end of computations.

We use a sequence of regularly-refined triangular meshes characterised by N (reciprocal of mesh

length) equal to 10, 20, 40, 80, 160. The CFL condition (3.148) is applied, using CFL = 0.9.

We solve the problem using the second-order ADER-WENO method together with the FORCE,

UFORCE-δ and HLL flux.

In Tab. 3.2 we present error norms and resulting order of accuracy for the ADER-WENO UFORCE-

δ method for variable D. Expected second-order accuracy is achieved in each norm. Moreover,

in Tabs. 3.3 and 3.4 we present the error norms and order of accuracy obtained using the ADER-

WENO method together with the FORCE and HLL flux respectively. Comparing the norms in

Tabs. 3.2 and 3.3 we assess the great improvement of UFORCE-δ over FORCE (the norms of

UFORCE-δ are about half of those of FORCE) and comparing the norms in Tabs. 3.2 and 3.4 we

observe a slight but significant improvement with respect to HLL.

In Fig. 3.13a we show the convergence of the proposed UFORCE-δ method to the exact so-

lution. Solution profiles are sliced along the x axis at y = 1
2 . We observe that the numerical profile

obtained with N = 160 is almost indistinguishable from the exact solution. In Fig. 3.13b we
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compare the results of UFORCE-δ to those of HLL and FORCE obtained on the same coarse mesh

(N = 20). The UFORCE-δ method in this condition is seen to be more accurate than FORCE and

HLL. In detail, the improvement of UFORCE-δ with respect to the standard FORCE method is

very significant. The reason for this can be identified in improved resolution of contact waves, i.e.

the shear wave associated to tangential velocity in this case, which is expected to play an important

role in determining overall accuracy in the present vortical problem.

Table 3.2: Vortex advection. Convergence rate study for the second-order ADER-WENO UFORCE-
δ method for variable D. N denotes the reciprocal of mesh length, N0 = 10.

N/N0 L∞ O(L∞) L1 O(L1) L2 O(L2)
2 1.101E+00 1.69 3.645E-02 1.51 1.086E-01 1.63
4 2.679E-01 2.04 7.748E-03 2.23 2.143E-02 2.34
8 5.114E-02 2.39 1.747E-03 2.15 4.243E-03 2.34

16 1.355E-02 1.92 4.388E-04 1.99 9.965E-04 2.09

Table 3.3: Vortex advection. Convergence rate study for the second-order ADER-WENO FORCE
method for variable D. N denotes the reciprocal of mesh length, N0 = 10.

N/N0 L∞ O(L∞) L1 O(L1) L2 O(L2)
2 2.669E+00 0.67 6.893E-02 0.84 2.456E-01 0.76
4 5.332E-01 2.32 1.643E-02 2.07 5.275E-02 2.22
8 1.336E-01 2.00 3.484E-03 2.24 1.083E-02 2.28

16 3.021E-02 2.14 7.976E-04 2.13 2.290E-03 2.24

Table 3.4: Vortex advection. Convergence rate study for the second-order ADER-WENO HLL
method for variable D. N denotes the reciprocal of mesh length, N0 = 10.

N/N0 L∞ O(L∞) L1 O(L1) L2 O(L2)
2 1.301E+00 1.51 4.118E-02 1.43 1.292E-01 1.45
4 2.831E-01 2.20 8.399E-03 2.29 2.428E-02 2.41
8 5.644E-02 2.33 1.837E-03 2.19 4.648E-03 2.39

16 1.356E-02 2.06 4.455E-04 2.04 1.033E-03 2.17

3.5.4 Collapse of a circular dam on a Cartesian variably-spaced grid

As it was shown in the previous sections, an attractive feature of the proposed methods relies

on their ability to perform consistently throughout the range of stable CFL numbers. This fact has

important consequences in practical applications when the shallow water equations are solved in

irregular domains, where a wide range of CFL numbers from small to large is generated.
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Figure 3.13: Vortex advection. The solution profiles are sliced along the x axis. a) The numerical
results for water depth D of the second-order ADER-WENO UFORCE-δ method
obtained with different grid resolution (grey lines) are compared with the exact solution
(black line) at time t = 1/6 s. N denotes the reciprocal of mesh length. b) Numerical
results for water depth D obtained using the second-order ADER-WENO method with
the FORCE, UFORCE-δ and HLL numerical fluxes on the same coarse mesh (N = 20)
are compared with the exact solution (black line) at time t = 1/6 s.
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In order to highlight this behaviour of the UFORCE method we solve again the problem defined by

(3.143)-(3.144)-(3.149), regarded as the collapse of a circular dam in section 3.5.1. However, here

we use a different mesh from that previously adopted. We set the square computational domain

[−40,40]× [−40,40]. Along the y direction we adopt a regular grid spacing ∆y = 0.398 m corre-

sponding to 201 computational cells. Along the x direction we adopt an irregular grid spacing, i.e.

∆x = 0.99 for x < 0, ∆x = 0.24 for x > 0 and ∆x = 0.62 for the cell centred in x = 0, corresponding

to 201 variably-spaced computational cells. The grid for this test is displayed in Fig. 3.14. We im-

pose transmissive boundary conditions. The solution is computed at time t = 4.7s using CFL = 0.9.

The solution to this problem is expected to exhibit an outer-facing shock, a circular rarefac-

tion following the shock and an inner shock which has been formed by the over-expansion of the

flow caused by the reflection of the interior rarefaction from the centre of the dam [117]. The exact

reproduction of the complicated wave pattern in the shock reflection would be challenging itself

even on a fine regularly spaced grid.

However, here, due to irregular grid spacing we provide an additional difficulty to numerical

methods. In fact, being the test problem symmetrical along the y axis (x = 0), the CFL condition

is enforced where ∆x reaches its minimum value, that is, within the fine grid side of the domain.

Being the time step ∆t common to all the cells in the domain, in the coarse mesh side low local

values of the CFL number will be found, causing a poor performance of numerical methods in

terms of accuracy. Thus, in this test case, preserving symmetry along the y axis is the challenge.

Results, obtained using second-order MUSCL-Hancock ENO extensions of numerical methods, are

displayed in Figs. 3.15a-3.15d in terms of contourplots, while in Figs. 3.16a-3.16b they are given

in terms of slices along the x axis (y = 0). In Fig. 3.15a we show that the FORCE method does not

preserve symmetry in the solution because of excessive smearing at low local CFL in the coarse

mesh side of the domain, while the Godunov-exact solution (Fig. 3.15c) gives rise to optimal results

preserving symmetry in all the directions. The UFORCE solution (Fig. 3.15b) shows a significant

improvement compared that of the FORCE method, possessing the same degree of symmetry as

the Godunov-HLL numerical solution (Fig. 3.15d). Similar conclusions can be drawn analysing

Figs. 3.16a-3.16b. All methods turn out to solve to the same degree of accuracy in the finer mesh

region of the domain, while significant differences can be found in the coarser mesh side. Results

obtained with the centred FORCE method (Fig. 3.16a) are affected by severe numerical diffusion

on the coarse mesh side of the domain if compared with the solution of Godunov-exact, which

outperforms all the other methods. The centred UFORCE method and the upwind Godunov-HLL

method give rise to very close results through all the domain (see Fig. 3.16b). Even though the

Godunov-HLL method has a slight advantage over the UFORCE method in the solution of the
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Figure 3.14: Collapse of a circular dam on a Cartesian variably-spaced grid. Sketch of the grid.

shock reflection around x = 0, it turns out to be slightly less accurate in the description of the

rarefactions (see Fig. 3.16b).

3.5.5 Collapse of a circular dam on an unstructured variably-spaced grid

Aim of this test is to assess the improvement in accuracy of the UFORCE-δ method on un-

structured meshes when dealing with a great variety of local CFL numbers. We propose again the

test case presented in the Cartesian case in section 3.5.4, namely the collapse of a circular dam

defined by equations (3.143)-(3.144)-(3.149) solved on a variably-spaced grid. Here we use an

irregular triangular mesh of 34753 cells as depicted in Fig. 3.17, whose length ranges from 2.08

on the left boundary to 0.15 on the right boundary, covering the square computational domain

[−25,25]× [−25,25]. We impose transmissive boundary conditions. The solution is computed at

time t = 4.7 s setting CFL = 0.9. For a description of the features of this test problem we refer the

reader to the previous section.

The results for water depth D obtained using the second-order ADER-WENO method in con-

junction with the FORCE and UFORCE-δ fluxes are presented in Fig. 3.18 in terms of slices

along the x axis. The numerical profiles are compared to a refined reference solution obtained

solving (3.150)-(3.151) as explained in section 3.5.1. It is seen that the UFORCE-δ method solves

the left-facing shock (x = −18) with a higher degree of accuracy compared to FORCE method,
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Figure 3.15: Collapse of a circular dam on a Cartesian variably-spaced grid. Numerical results for
water depth D for the second-order MUSCL-Hancock ENO extension of the FORCE
(a), UFORCE (b), Godunov-exact (c), Godunov-HLL (d) methods are presented at
time t = 4.7 s in terms of contourplots. The mesh used has 201 equally-spaced cells
in the y direction and 201 variably-spaced cells in the x direction (∆x = 0.99 for x < 0,
∆x = 0.24 for x > 0 and ∆x = 0.62 for the cell centred in x = 0). CFL is set to 0.9.

while the right-facing shock (x = 18) is solved almost to the same accuracy by both methods. This

behaviour of UFORCE-δ gives rise to a more symmetric solution. Moreover, the influence of the

upwind-bias is dominant in the rarefaction zones (x =±3), and in the central reflected shock (x = 0)

where UFORCE-δ outperforms FORCE.

The results of the UFORCE-δ and FORCE methods are then presented in Fig. 3.19 in terms of

contourplots. Comparing Fig. 3.19a (FORCE) with Fig. 3.19b (UFORCE-δ) the same conclusion

as for Fig. 3.18 about resolution of the left-facing shock and overall degree of symmetry can be

drawn.
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Figure 3.16: Collapse of a circular dam on a Cartesian variably-spaced grid. Numerical results for
water depth D for the second-order MUSCL-Hancock ENO extension of the FORCE
and Godunov-exact methods (a) and of the UFORCE and Godunov-HLL methods
(b) are presented at time t = 4.7 s. The numerical solution profiles are sliced along
the x axis. The mesh used has 201 equally-spaced cells in the y direction and 201
variably-spaced cells in the x direction (∆x = 0.99 for x < 0, ∆x = 0.24 for x > 0 and
∆x = 0.62 for the cell centred in x = 0). CFL is set to 0.9.
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Figure 3.17: Collapse of a circular dam on an unstructured variably-spaced grid: variably-spaced
mesh of 34753 triangles. Mesh length ranges from 2.08 on the left boundary to 0.15
on the right boundary.

3.6 Conclusions

Two upwind-biased versions of the multi-dimensional FORCE flux for solving hyperbolic

systems of PDEs in conservation-law form have been presented. The proposed UFORCE flux

applies to multidimensional Cartesian meshes, while the proposed UFORCE-δ flux applies to

general meshes in multi-dimensions. The first-order accurate UFORCE and UFORCE-δ methods

are genuinely centred since the use of Riemann solvers either exact or approximate is not required.

To be implemented, the methods require only knowledge of the eigenvalues evaluated at current

time tn which are needed in any case for selecting the integration time step. In particular, the

one-wave UFORCE method includes only the maximum eigenvalue in absolute value in the flux

computation, while the two-wave UFORCE-δ method considers the maximum and minimum

eigenvalues of the entire set. We demonstrate that for the linear case the UFORCE and UFORCE-δ

are identical to the Godunov upwind method and then we empirically extend the validity of our

methods to non-linear hyperbolic systems of PDEs. Extension to second-order accuracy in space

and time has been obtained using standard techniques (the MUSCL-Hancock approach with ENO

reconstruction for UFORCE and the ADER approach with WENO reconstruction for UFORCE-δ).
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Figure 3.18: Collapse of a circular dam on an unstructured variably-spaced grid. Numerical results
for water depth D of the second-order ADER-WENO FORCE and UFORCE-δ numer-
ical methods (symbols) are compared with the reference radial solution (full line) at
time t = 4.7 s. The numerical solution profiles are sliced on the x axis. The mesh used
is depicted in Fig. 3.17.

Numerical performance of our methods has been assessed by solving the two-dimensional shallow

water equations on structured and unstructured meshes. Four different test problem have been

solved and the numerical results have been compared with those obtained using two well-established

centred methods (the classical centred FORCE scheme [120] and the central-upwind scheme de-

veloped by Kurganov, Noelle and Petrova [70]) and two upwind methods (the Godunov upwind

method in conjunction with the exact Riemann solver and the approximate HLL Riemann solver).

It is shown that the UFORCE method provides a great improvement compared to FORCE, while

the UFORCE-δ method outperforms all the other methods except Godunov-exact. Moreover the

proposed methods improve the accuracy in the solution for small Courant numbers and intermediate

waves associated with linearly degenerate fields (contact discontinuities and shear waves), thus

achieving comparable accuracy to that of upwind methods based on the HLL Riemann solver.
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Figure 3.19: Collapse of a circular dam on an unstructured variably-spaced grid. Numerical results
for water depth D of the second-order ADER-WENO FORCE (a) and ADER-WENO
UFORCE-δ (b) methods are presented in terms of contourplots at time t = 4.7 s.

Finally, the main features of the proposed methods are simplicity and generality (due to their

centred nature) and improved accuracy compared to classical centred methods. These characteris-

tics turn out to be very attractive when dealing with hyperbolic systems for which the application

of the upwind approach is not viable due to difficulties in the solution of the Riemann problem.

This is for instance the case of the two-dimensional hyperbolic system of PDEs governing the

hydro-morphodynamic evolution of gravel-bed rivers (2.90)-(2.92), arising from the coupled shal-

low water-Exner model (2.6). Finding an accurate numerical solution to this system of PDEs is

one of the main goals of the present thesis. Since this system is non-conservative, the next step

is to extend the UFORCE-δ method to non-conservative hyperbolic systems in the framework of

path-conservative methods [42]. This is the object of the next chapter.
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hyperbolic systems in non-conservative form

In this chapter we derive a novel upwind-biased centred scheme for the solution of two-

dimensional non-conservative homogeneous hyperbolic systems of PDEs in the path-conservative

framework. Our scheme, referred to as UPRICE2-Cδ, comes as a modification of the PRICE2-C

scheme recently developed by Canestrelli et al. [21], representing the path-conservative version of

the FORCE centred method [120]. The upwind bias is inserted into PRICE2-C by suitably varying

the shape and size of the secondary mesh subvolumes in agreement with upwind information based

on the system eigenvalues, in order to achieve fine local control on numerical dissipation.

A key feature of path-conservative schemes of the PRICE-C type is simplicity and generality

due to their centred nature (Riemann solvers are not required) and to fully-numerical integration

of the Roe matrix, for which no detailed knowledge of the problem eigenstructure is needed. The

proposed UPRICE2-Cδ scheme retains these characteristics, while significantly improving accuracy

in the solution of the waves associated to linearly degenerate fields (as we show by one test for

the shallow water equations in this chapter) and in the computations carried out at low CFL (as

we will show in the next chapter) due to insertion of the upwind bias. As we shall see in the next

chapter, these features make the proposed scheme very attractive when solving the non-conservative

hyperbolic problem arising from the coupled shallow water-Exner model, for which the upwind

approach instead is not easily applicable [21] due to the difficulties in the solution of the Riemann

problem.

The procedure adopted in the derivation of UPRICE2-Cδ is identical to that presented in the

previous chapter concerning the development of the upwind-biased UFORCE-δ method. First the

method is derived in the linear case by identifying the optimal upwind-bias, i.e. the relations which

allow the UPRICE2-Cδ method to linearly reproduce the Godunov upwind method. Since in the

linear case UPRICE2-Cδ is identical to UFORCE-δ, these relations come in a straightforward

manner from the framework established in the previous chapter for the conservative case. Then
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we develop a formulation of the upwind bias suitable to be applied in the solution of non-linear

non-conservative hyperbolic problems and we extend the method to second-order accuracy in the

ADER-TVD framework. Finally we apply the scheme to the vortex advection test [99] for the

two-dimensional inviscid shallow water equations in order to assess the improvement in the solution

of shear waves and empirically prove second-order convergence. The material presented in this

chapter is partially covered in a paper in preparation, see Siviglia et al. [111].

The chapter outlines as follows. In section 4.1 we review the PRICE2-C centred method. Then in

section 4.2 we develop our UPRICE2-Cδ method and in section 4.3 we extend it to second-order

accuracy. Finally, the vortex advection test for the shallow water equations is presented in section

4.4.

4.1 The two-dimensional PRICE-C scheme

In this section we review the PRICE2-C method by Canestrelli et al. [21] for non-conservative

systems, recently developed as the path-conservative version of the FORCE method [120] in the

two-dimensional case.

We consider a homogeneous non-conservative hyperbolic system of m partial differential equations

having the form

∂tQ+A1∂xQ+A2∂yQ = 0 , (4.1)

where Q = [q1, ...,qm]
T denotes the vector of conserved variables and A1 and A2 are hyperbolic

matrices. Given a unit vector~n j, the projected system matrix

An̂ = (A1,A2) ·~n j (4.2)

is also hyperbolic, therefore admitting m real eigenvalues λ
(1)
n̂ , ...,λ

(m)
n̂ , sorted in increasing order.

The mesh is represented by a conforming tassellation by ne triangular elements Ti of the computa-

tional domain

TΩ =
ne⋃

i=1

Ti . (4.3)

Each element Ti has three edges S j of length
∣∣S j
∣∣, with associated outward-pointing face-normal

vectors~n j. Data are represented by cell averages Qn
i and the numerical solution, sought at time

tn+1 = tn +∆t, is denoted with Qn+1
i .

By analogy with the FORCE method, the derivation of PRICE2-C makes use of two meshes: a
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primary mesh, at which the solution is sought at each time step, i.e. the triangulation (4.3), and a

secondary staggered mesh. Each element Ti of the primary mesh, having size |Ti|, is sub-divided

into subvolumes V−j generated by connecting the barycentre ~Gi of Ti with the vertices of S j. The

corresponding adjacent subvolume in the neighbouring element Tj that shares edge S j with element

Ti is denoted with V+
j . The intersection of V−j and V+

j gives edge S j of the element Ti. With h+j
and h−j we denote the altitudes of triangular subvolumes V+

j and V−j with respect to S j. Fig. 3.2

illustrates the above definitions and notation.

For the two-dimensional case the area of subvolumes is given by

∣∣∣V−j ∣∣∣= h−j
∣∣S j
∣∣

2
,

∣∣∣V+
j

∣∣∣= h+j
∣∣S j
∣∣

2
. (4.4)

The one-step PRICE2-C scheme is based on the following update formula:

Qn+1
i = Qn

i −
∆t
|Ti|

3

∑
j=1

S jA−j+ 1
2

(
Qn

j −Qn
i
)
, (4.5)

where A−
j+ 1

2
is

A−
j+ 1

2
=

1
2

Â j+ 1
2
−

V+
j V−j

V+
j +V−j

1
∆tS j

Im−
1
4

∆tS j

V+
j +V−j

Â2
j+ 1

2
. (4.6)

In equation (4.6) Im is the modified identity matrix, i.e. a hyperbolic matrix resulting from possible

modification of some entries in the m×m identity matrix representing the Lax-Friedrichs type

numerical diffusion. The definition of a modified identity matrix is a problem-specific issue (it

depends on the considered system of PDEs and on the considered test case) and may be motivated

• by the achievement of well-balancing of the scheme with respect to certain steady states, i.e.

in order to exactly reproduce these steady states in the numerical solution;

• in order to avoid or limit spurious diffusion on certain conserved variables, especially those

related to intermediate and steady waves.

About these issues we refer the reader to section 5.2.2 in the next chapter in the applications to the

shallow water-Exner model (2.6).

Matrix Â j+ 1
2

in (4.6) is a function of two states Qn
i and Qn

j . The system (4.1) contains non-

conservative products, which, in general, does not make sense in the classical framework of the

theory of distributions. However, as we have seen in section 2.3.3 of chapter 2, with the theory

developed by Dal Maso et al. [42] a rigorous definition of weak solutions can be given using a

family of paths ΨΨΨ =ΨΨΨ

(
Qn

i ,Qn
j ,s,~n j

)
connecting two states Qn

i and Qn
j across a discontinuity with
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s ∈ [0,1]. With this insight Â j+ 1
2

in (4.6) is evaluated as a Roe-type matrix

Â j+ 1
2
= AΨΨΨ

(
Qn

i ,Q
n
j ,~n j
)
=

∫ 1

0
A
(
ΨΨΨ
(
s,Qn

i ,Q
n
j
))
·~n j ds (4.7)

where ΨΨΨ denotes a path connecting states Qn
i and Qn

j . Canestrelli et al. [22, 21] propose a simple

segment path

ΨΨΨ = Qn
i + s

(
Qn

j −Qn
i
)

(4.8)

connecting the states represented by the conserved variables Qn
i and Qn

j . Consistently with the

underlying centred philosophy, integration of the Roe matrix (4.7) over the path (4.8) is carried out

numerically, by means of a M-point Gaussian quadrature rule:

AΨΨΨ

(
Qn

i ,Q
n
j ,~n j
)
≈ AM

ΨΨΨ

(
Qn

i ,Q
n
j ,~n j
)
=

M

∑
q=1

ωqA
(
ΨΨΨ
(
sq,Qn

i ,Q
n
j
))
·~n j , (4.9)

where sq are the Gaussian abscissas and ωq are the Gaussian weights. Conservation can be man-

tained up to the desired order of accuracy by using a suitable number M of Gaussian points. In our

applications we use three-point quadratures.

The centred nature of the PRICE-C method, where no Riemann solver is applied and the Roe matrix

is evaluated numerically (4.9) makes the resulting scheme very simple and general. Canstrelli et

al. [22, 21] apply the PRICE-C scheme to the coupled shallow water-Exner model, for which the

solution of the Riemann problem is not generally viable if complex empirically-derived formulae

for sediment transport are used.

However, from the previous chapter we are aware that the solutions obtained using a genuinely

centred approach are likely to be affected by excessive numerical dissipation in some specific

cases, namely for computations carried out at low local CFL and intermediate waves. One possible

remedy is to develop an upwind-biased version of the present method, combining the simplicity

and generality of centred methods with the accuracy of upwind methods: this is achieved in the

next section.

4.2 The two-dimensional UPRICE-Cδ scheme

The purpose of this section is to develop an upwind-biased variation of the PRICE2-C method

(4.5)-(4.7) which will be regarded as UPRICE2-Cδ. The sought method shall result from straight-

forward application in the path-conservative framework of the theory presented in the previous

chapter concerning the derivation of the UFORCE-δ method for conservative hyperbolic systems.
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As we have done in that case, here we insert an upwind bias into the PRICE-C scheme by suitably

varying the size of secondary volumes V±j , in order to achieve fine local control on numerical

dissipation. This is obtained by removing the constraint that subvolumes V−j must join in the

barycentre of primary cells Ti and introducing the constraint that each subvolume must have lower

size than its own counterpart in PRICE2-C (4.4). See section 3.3.1 of chapter 3 for details. The

secondary subvolume size is now given by

∣∣∣V−j ∣∣∣= δ
−
j h−j

∣∣S j
∣∣

2
,

∣∣∣V+
j

∣∣∣= δ
+
j h+j

∣∣S j
∣∣

2
. (4.10)

where δ
−
j and δ

+
j are the upwind-bias parameters associated to S j. The above geometrical constraints

give the following range of variation for the upwind bias parameters:

0≤ δ
−
j ≤ 1 , 0≤ δ

+
j ≤ 1 . (4.11)

Notice that the value δ
±
j = 1 inserted in (4.10) recovers the secondary mesh setup of the centred

method (4.4). In Fig. 3.4 the mesh setup for the upwind-biased method in the two-dimensional

case is illustrated.

The sought method is given by the update formula (4.5), where in matrix A−
j+ 1

2
(4.6) we use

the subvolume size given by (4.10), obtaining

A−
j+ 1

2
=

1
2

(
Â j+ 1

2
−

h+j δ
+
j h−j δ

−
j

h+j δ
+
j +h−j δ

−
j

1
∆t

Im−
∆t

h+j δ
+
j +h−j δ

−
j

Â2
j+ 1

2

)
. (4.12)

At this stage the values of the upwind bias δ
±
j to be inserted in (4.12) are still undetermined. Next,

we shall determine the optimal value for the upwind bias, i.e. adaptive functions varying in time

and space providing the least-diffusive linearly non-oscillatory method.

In the previous chapter in section 3.3.2 we have addressed an analogous problem for the UFORCE-δ

method. The derivation has been carried out in applications to a linear hyperbolic system having

two equations and unknowns (3.87)-(3.88), representing the propagation of two waves. System

(3.87)-(3.88), turned for the purpose at hand in non-conservative form, reads

∂tQ+A1∂xQ+A2∂yQ = 0 , (4.13)

where A1 and A2 are 2×2 hyperbolic matrices with constant entries. Given a unit vector~n j, the

projected system matrix An̂ (4.2) is also hyperbolic, therefore admitting two eigenvalues λ
(1)
n̂ and
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λ
(2)
n̂ .

Since the PRICE-Cδ and UFORCE-δ methods are identical in the solution of linear systems of PDEs,

the analysis presented in section 3.3.2, to which we refer the reader, applies in a straightforward

manner in the present case. Thus, we can borrow the optimal upwind bias formulation for our

UPRICE2-Cδ method for the linear case, obtaining

δ
−
j =

∣∣∣λ(1)
n̂

∣∣∣∆t

h−j
, δ

+
j =

∣∣∣λ(2)
n̂

∣∣∣∆t

h+j
(4.14)

or

δ
−
j =

∣∣∣λ(2)
n̂

∣∣∣∆t

h−j
, δ

+
j =

∣∣∣λ(1)
n̂

∣∣∣∆t

h+j
. (4.15)

Last, we shall extend the formulation (4.14) or (4.15) to non-linear hyperbolic systems of PDEs.

The sought formulation shall be suitable for applications to general non-conservative non-linear

two-dimensional systems of PDEs composed of m equations and unknowns having the form (4.1).

We apply again the procedures developed for the UFORCE-δ method in the previous chapter (see

section 3.3.4). Consider edge S j laying between cells Ti and Tj and the projected system matrix An̂

(4.2), which is in general data-dependent. Given piecewise constant initial data Q(x,y ∈ Ti) = Qn
i ,

and Q(x,y ∈ Tj) = Qn
j , two choices of the projected matrix can be made:

Ain̂ = An̂ (Qn
i ) , A jn̂ = An̂

(
Qn

j
)
. (4.16)

Each of these matrices possesses m real eigenvalues λ
(1)
in̂ , ...,λ

(m)
in̂ , λ

(1)
jn̂ , ...,λ

(m)
jn̂ (sorted in increasing

order). The optimal upwind bias is:

δ
−
j =

∣∣∣s(1)n̂

∣∣∣∆t

h−j
, δ

+
j =

∣∣∣s(m)
n̂

∣∣∣∆t

h+j
(4.17)

or

δ
−
j =

∣∣∣s(m)
n̂

∣∣∣∆t

h−j
, δ

+
j =

∣∣∣s(1)n̂

∣∣∣∆t

h+j
. (4.18)

where s(m)
n̂ and s

(1)
n̂ are the fastest and slowest wave travelling normal to interface S j in the direction

given by~n j. These wave speeds can be easily estimated with reference to the system eigenvalues

computed at initial time, which are in any case needed for selecting a time step, in the form∣∣∣s(1)n̂

∣∣∣= max
(∣∣∣λ(1)

in̂

∣∣∣ , ∣∣∣λ(1)
jn̂

∣∣∣) ,
∣∣∣s(m)

n̂

∣∣∣= max
(∣∣∣λ(m)

in̂

∣∣∣ , ∣∣∣λ(m)
jn̂

∣∣∣) . (4.19)
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Equations (4.19) introduce the speed of the slowest and fastest wave (extrema of the Riemann fan)

in the flux computation, giving a HLL flavour to the PRICE2-C scheme, thus reducing numerical

dissipation compared to the standard PRICE2-C. However the method is still centred (not requiring

detailed knowledge of the problem eigenstructure), therefore retaining simplicity and generality.

Substitution of (4.17) or (4.18) into (4.12) gives the following relation for A−
j+ 1

2
:

A−
j+ 1

2
=

1
2

Â j+ 1
2
−

∣∣∣s(1)n̂

∣∣∣ ∣∣∣s(m)
n̂

∣∣∣∣∣∣s(1)n̂

∣∣∣+ ∣∣∣s(m)
n̂

∣∣∣Im−
1∣∣∣s(1)n̂

∣∣∣+ ∣∣∣s(m)
n̂

∣∣∣ Â2
j+ 1

2

 . (4.20)

Notice that in this case, unlike in the conservative case, we do not have to chose whether to apply

(4.17) or (4.18) since they both give (4.20).

Finally, the CFL condition satisfying the constraint (4.11) reads:

∆t =CFL min
1≤i≤ne

 min
1≤ j≤3

 h−j

max
(∣∣∣s(1)n̂

∣∣∣ , ∣∣∣s(m)
n̂

∣∣∣)


Ti

, (4.21)

with 0 <CFL≤ 1.

Summarising, application of the UPRICE2-Cδ method to non-linear systems of PDEs is given by:

• computation of two sets of eigenvalues λ
(1)
in̂ , ...,λ

(m)
in̂ , λ

(1)
jn̂ , ...,λ

(m)
jn̂ for each interface S j;

• evaluation of wave speeds using (4.19);

• selection of the integration time step ∆t using (4.21);

• evaluation of the Roe-type matrix ÂM
Ψ

for each interface S j using (4.9)

• application of the update formula (4.5) with the matrix A−
j+ 1

2
given by (4.20).

4.3 Second-order extension

The first-order UPRICE2-Cδ method can be used as a building block for the development of a

high-order accurate upwind-biased centred scheme. For a presentation of some of the available

techniques for achieving high-order accuracy in the framework of finite volume methods see section

3.4 and references therein. Here we briefly review the one-step ADER-TVD technique used for

extending the UPRICE2-Cδ scheme to second-order accuracy. The key ingredients in order to

obtain second-order accuracy in the ADER framework [123] are
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• a non-oscillatory reconstruction polynomial;

• a space-time predictor based on the Cauchy-Kowalewski procedure;

• the solution of local derivative Riemann problems for the state variables and their derivatives.

4.3.1 The TVD reconstruction technique

We seek for a reconstruction polynomial of degree one in the TVD framework. For each

element Ti we identify a stencil of four cells composed of Ti itself and of its three neighbouring

cells Tj, with j = 1,2,3:

Si = Ti
⋃

Tj=1
⋃

Tj=2
⋃

Tj=3 . (4.22)

With wi = w0
i +ai1 (x− xi)+ai2 (y− yi) we define the linear reconstruction polynomial in cell Ti,

being ai1 and ai2 the slopes of the reconstructed variables and (xi,yi) are the coordinates of the cell

barycentre ~Gi. We initially compute the values of w0
i , ai1 and ai2 by requiring integral conservation

all over Si:
1
|Tk|

∫
Tk

wi (~x)d~x = Qn
k ∀Tk ∈ Si . (4.23)

The reconstruction equation (4.23) is solved using a constrained least-squares method in order

to guarantee that it is exactly satisfied at least inside element Ti. For sake of simplicity in our

implementation the procedure is performed in a transformed coordinate space (3.130). See section

3.4.2.1 and references [48, 49] for details.

In order to avoid spurious oscillations in the vicinity of large gradients, for each conserved vari-

able we apply a TVD limiter to the linear reconstruction. The following limited reconstruction

polynomial is used:

ŵi = Qn
i + âi1 (x− xi)+ âi2 (y− yi) , (4.24)

where âi1 = φφφiai1 and âi2 = φφφiai2 are the limited reconstruction slopes. Following Buffard and Clain

[17], we adopt a vector of monoslope limiters φφφi, whose components φi, associated to each variable

qn
i in Qn

i , are given by

φi = min
j=1,2,3

(φi, j) , (4.25)

with

φi, j =

 max
(

0, f j
|qn

j−qn
i |

~ai·~s j

)
if ~ai ·~s j 6= 0

1 otherwise
, (4.26)
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where~ai denotes the components of the reconstruction slope vector ~ai = (ai1,ai2) and~s j and f j are

given by

~s j = sign
(
qn

j −qn
i
)(

~R j− ~Gi

)
, f j =

∣∣∣~R j− ~Gi

∣∣∣∣∣∣~G j− ~Gi

∣∣∣ , (4.27)

being ~R j the intersection of the segment connecting ~Gi and ~G j with the straight line containing

edge S j.

4.3.2 Second-order accurate one-step time discretisation

Next we compute the temporal evolution of the reconstructed polynomial (4.24) in order to

construct the final second-order accurate one-step finite volume scheme. The key idea in the ADER

approach is to solve high-order Riemann problems at the element boundaries. This is done by using

a Taylor series expansion in space and time:

Qi (x,y, t) = Q(xi,yi, tn)+(x− xi)∂xQ+(y− yi)∂yQ+(t− tn)∂tQ+O
(
x2,y2, t2) . (4.28)

Then, the Cauchy-Kowalewski procedure is applied in order to substitute time derivatives with

space derivatives in (4.28). For second-order accuracy it suffices to rewrite system (4.1) as follows:

∂tQ =−(A1∂xQ+A2∂yQ) . (4.29)

The value of Q(xi,yi, tn) and its spatial derivatives are obtained from the reconstruction polynomial

(4.24).

4.3.3 The fully discrete second-order accurate one-step scheme

Once the TVD reconstruction and the Cauchy-Kowalewski procedure have been performed for

each cell, giving the space-time polynomial Qi (x,y, tn), the final second-order accurate one-step

scheme can be written as:

Qn+1
i = Qn

i −
1
|Ti|

∫ tn+1

tn

(∫
Ti

A(Qi) ·∇Qi d~x+
3

∑
j=1

∫
S j

D−
j+ 1

2
d~x

)
dt , (4.30)

with:

D−
j+ 1

2
= A−

j+ 1
2

(
Q+

i ,Q
−
j ,~n j

)(
Q−j −Q+

i

)
, (4.31)

where A−
j+ 1

2
is given by (4.20), Q+

i denotes the boundary-extrapolated data from the element Ti and

Q−j indicates the boundary-extrapolated data from the neighbouring cell Tj. In our implementation
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space and time integrals in (4.30) are approximated using Gaussian quadratures of suitable order.

4.4 Applications to the two-dimensional shallow water equations:
vortex advection

In this section we apply the UPRICE2-Cδ scheme in one test case for the two-dimensional

inviscid shallow water equations. Further detailed assessment of the performance of the proposed

scheme will be found in section 5.5 of the next chapter in applications to the two-dimensional

shallow water-Exner model.

The aim of this section is twofold: first to prove second-order convergence of the ADER schemes

presented in the previous section, then to show that the upwind-biased formulation of the PRICE2-C

method presents a significant improvement in accuracy with respect to the centred formulation

of PRICE2-C in the computation of waves associated to linearly degenerate fields. We consider

the test problem concerning advection of a potential vortex presented in section 3.5.3. Since this

test presents an exact smooth solution, it is suitable for rate convergence study. We recall that

in section 3.5.3, comparing the solution profiles obtained by the FORCE (centred) method, the

UFORCE-δ (upwind-biased) method and the Godunov-HLL (upwind) method, we have claimed

that the degree of accuracy in the solution of shear waves, associated to the linearly degenerate

field λ
(2)
n̂ = un̂, in the case of vortical flows plays a fundamental role in determining overall accuracy.

The shallow water equations written in non-conservative form read

∂tQ+A1∂xQ+A2∂yQ = 0 , (4.32)

where the vector of unknowns Q and the Jacobian matrices A1 and A2 are given by

Q =

 D

uD

vD

 , A1 =

 0 1 0

gD−u2 2u 0

−uv v u

 , A2 =

 0 0 1

−uv v u

gD− v2 0 2v

 , (4.33)

being D water depth and u and v the x and y components of velocity. The eigenvalues of these

Jacobians are given by (3.145) and (3.146).

We solve the system (4.32)-(4.33) with initial condition given by (3.160)-(3.159) and test pa-

rameters given in section 3.5.3. In contrast to that solution however, here we use the computational

domain [0,1]× [0,1] with weak far field conditions prescribed at the boundaries y = 0 and y = 1
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and periodic boundary conditions prescribed at the boundaries x = 0 and x = 1. Since the vortex

core is initially located at
(1

2 ,
1
2

)
and travels with speed equal to (6,0), having set timeout t = 1

6 s

and imposed periodic boundary conditions, it is expected to be located again at
(1

2 ,
1
2

)
at the end of

computations.

We use a sequence of regularly-refined triangular meshes characterised by N (reciprocal of mesh

length) equal to 10, 20, 40, 80, 160. In order to select a time step we apply the CFL condition

(4.21) setting CFL = 0.9. We solve the problem using the second-order ADER UPRICE2-Cδ and

ADER PRICE2-C schemes with unlimited reconstruction polynomials, i.e. setting φi = 1 in (4.25).

In both schemes, the modified identity matrix Im in (4.7) is simply set as the 3×3 identity matrix.

In Tab. 4.1 and Tab. 4.2 we present the error norms and resulting order of accuracy for variable D

of ADER UPRICE2-Cδ and ADER PRICE2-C respectively. Expected second-order accuracy is

achieved in each norm. Moreover comparing the norms of the two methods, we notice that those

of the centred PRICE2-C method are significantly higher than those of the centred upwind-biased

UPRICE2-Cδ method, as expected. This is a clear indication of the improvement in accuracy given

by insertion of an upwind bias into the scheme.

Table 4.1: Vortex advection. Convergence rate study for the second-order ADER UPRICE2-Cδ

method for variable D. N denotes the reciprocal of mesh length, N0 = 10.
N/N0 L∞ O(L∞) L1 O(L1) L2 O(L2)

2 1.487E-01 1.35 7.233E-03 1.40 1.874E-02 1.43
4 3.403E-02 2.13 1.932E-03 1.90 4.145E-03 2.18
8 6.345E-03 2.42 4.186E-04 2.21 7.818E-04 2.41

16 1.524E-03 2.06 9.756E-05 2.10 1.680E-04 2.22

Table 4.2: Vortex advection. Convergence rate study for the second-order centred ADER PRICE2-C
method for variable D. N denotes the reciprocal of mesh length, N0 = 10.

N/N0 L∞ O(L∞) L1 O(L1) L2 O(L2)
2 2.415E-01 0.77 8.501E-03 1.02 2.890E-02 0.92
4 6.597E-02 1.87 2.606E-03 1.71 7.628E-03 1.92
8 1.246E-02 2.40 5.677E-04 2.20 1.474E-03 2.37

16 3.234E-03 1.95 1.266E-04 2.17 2.899E-04 2.35

4.5 Conclusions

In this chapter we have applied in the framework of path-conservative schemes for non-

conservative hyperbolic systems of PDEs the upwind-biased approach developed in chapter 3 for
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conservative methods. We have derived an upwind-biased modification of the PRICE2-C scheme

[21] by suitably varying the secondary mesh setup in the genuinely centred PRICE2-C method.

The resulting UPRICE2-Cδ scheme in linear applications is identical to the UFORCE-δ scheme

[113] presented in the previous chapter: therefore the development of UPRICE2-Cδ simply consists

in straightforward application of the mathematical theory underlying UFORCE-δ. The proposed

scheme identically reproduces the Godunov upwind method in the solution of a linear hyperbolic

system having two equations and unknowns, provided the optimal upwind bias is used. Extension of

UPRICE-Cδ to non-linear hyperbolic systems of PDEs is obtained empirically following a centred

approach, i.e. using the system eigenvalues as wave speed estimates. Finally, the scheme has been

extended to second-order accuracy in the ADER-TVD framework and second-order convergence

has been assessed using the vortex advection test for the two-dimensional inviscid shallow water

equations. In this test, comparison with the results of the standard PRICE2-C method highlights the

improvement in accuracy in the resolution of intermediate waves given by insertion of the upwind

bias.

Application of the UPRICE2-Cδ scheme requires only estimates of the system eigenvalues, which

are in any case needed for selecting a time step: no detailed knowledge of the system eigenstructure

is required. The main feature of the scheme, beyond improved accuracy, is generality, due to its

centred nature and to the use of a numerical procedure for the integration of the Roe matrix. These

characteristics make the proposed scheme very attractive for the numerical solution of the non-

conservative system of PDEs arising from the coupled shallow water-Exner model (2.6), for which

the system eigenstructure in general is not easily available. The construction of a two-dimensional

hydro-morphodynamic solver including the ADER-TVD UPRICE2-Cδ scheme is achieved in the

next chapter.

114



5 GIAMT2D: a two-dimensional
hydro-morphodynamic solver

In this chapter we design and test our two-dimensional hydro-morphodynamic numerical

model, which we regard as the GIAMT2D1 model. GIAMT2D solves the two-dimensional shallow

water-Exner model (2.6) written in non-conservative form (2.90)-(2.92) on unstructured triangular

meshes. The non-conservative character of the system arises from the adoption of a fully-coupled

formulation of the hydro-morphodynamic problem, i.e. from seeking for a numerical solution to

be obtained in a synchronous fashion for all the unknowns. The advantage of this approach is

that the model is correctly able to deal with sediment transport near Froude-critical conditions.

As a consequence of this choice, a path-conservative scheme has to be applied in the solution.

GIAMT2D embeds the path-conservative UPRICE2-Cδ upwind-biased centred scheme developed

in the previous chapter, able to combine accuracy comparable to that of upwind schemes with the

simplicity and generality of centred schemes. A key feature of the scheme is the ability to include

any existing algebraic bedload transport formula in computations, regardless of its mathematical

complexity. The UPRICE2-Cδ scheme is extended to second-order accuracy in the ADER-TVD

framework and included in a robust second-order preserving splitting technique for the treatment of

frictional source terms. A novel wetting-and-drying procedure enables the GIAMT2D model to deal

with partially dry domains in an adaptive and robust manner. For sake of computational efficiency,

the code is parallelised using the OpenMP protocol on shared memory. The performance of the

numerical model is carefully assessed in well-established test cases by checking the numerical

solutions against analytical solutions and laboratory experiments. The material presented in this

chapter is partially covered in a paper in preparation, see Siviglia et al. [111]

The chapter outlines as follows. In section 5.1 we address some preliminary problems in or-

der to identify the most suitable solution technique. In section 5.2 we present the splitting technique

1The GIAMT2D model has been developed within my research activity in the Gruppo di Idraulica Ambientale e
Morfologia, Trento - GIAMT (research Group in Environmental Hydraulics and Morphology, Trento), from which
the name comes.
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adopted for treating the frictional source terms, which embeds the solution of a homogeneous

hyperbolic system of PDEs in non-conservative form obtained using the ADER-TVD UPRICE2-Cδ

scheme. Our original recipe for the treatment of wetting-and-drying is presented in section 5.3 and

the code parallelisation is introduced and tested in section 5.4. Finally in section 5.5 we employ a

suite of classical tests with fixed and movable bed to demonstrate the capabilities of the GIAMT2D

model.

5.1 Preliminaries

Before designing our numerical solver for the shallow water-Exner model, three questions must

be addressed, concerning

• the mathematical nature of the system of PDEs: is the system hyperbolic?

• the coupling or uncoupling of the hydrodynamic and morphodynamic part of the problem:

shall we seek for a coupled or uncoupled solution?

• the choice of the numerical scheme: do we need a centred or an upwind scheme?

The first question is preliminary with respect to the other ones since it deals with assessing well-

posedness of the initial value problem given by system (2.6) together with appropriate initial

conditions. In section 2.4 of chapter 2, following the analysis carried out by Cordier et al. [35]

we have proved in the one-dimensional inviscid case that the considered mathematical model

is hyperbolic in the range of flow data which are of interest in practical applications in rivers.

The sufficient condition for hyperbolicity (2.86), namely that the local Froude number does not

exceed the threshold value of 6 if the Manning friction law is adopted, is satisfied in all the hydro-

morphodynamic applications which will be presented in the following of this thesis.

Concerning the second question, we recall from section 2.5 of chapter 2 that essentially two

approaches are available in the literature to solve this system of equations. The first one is the

uncoupled approach, according to which the shallow water equations are solved separately from the

Exner equation: the solution of the hydrodynamic problem is then passed to the morphodynamic

module (and vice-versa) at the end of each time step, see e.g. [41, 45, 136]. Alternatively, the

uncoupling may concern only some terms in the partial differential system, such as the bed elevation

gradients in the momentum equations [19, 23, 61, 24, 90, 137] (see section 2.5): although one-step

synchronous solution strategies can be adopted in this case, mathematically this formulation is still

uncoupled. Conversely, the second approach is referred to as coupled and relies on full coupling of

the governing equations within each time step, see e.g. [83, 58, 74, 36, 37, 110, 22, 21, 111].
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The choice of the solution strategy ultimately relies on the relative order of magnitude of the

celerities associated with the characteristic curves of the hyperbolic system. The uncoupled strategy

is usually justified by the different time scales characterising flow and sediment transport and

the inherent inaccuracies introduced by the use of empirical formulae for friction and sediment

transport capacity. It is well known that far from the critical flow conditions the bed evolves on a

time scale which is considerably greater than that on which the surface water evolves, i.e. the bed

interacts only weakly with the water surface, thus justifying an approach in which the equations

that govern the dynamics of the liquid phase are solved separately from those governing the solid

phase.

However, a Froude trans-critical region exists (0.8. Fr . 1.2) in which the celerity of the wave

associated to bed variations has the same order of magnitude as that of one of the non-linear waves

associated to the hydrodynamic variables [109]. In this case, the free surface strongly interacts with

the bed [84] and the coupled approach is mandatory. Moreover, Saiedi [104], Cao et al. [25] and

Cordier et al. [35] have compared the numerical stability of coupled and uncoupled models, finding

that coupled models are more stable, especially in the case of rapid variation of bottom elevation.

From these considerations and recalling the importance of correctly solving trans-critical flows in

gravel-bed rivers, in GIAMT2D we use a coupled strategy for the solution of the hydrodynamic

and morphodynamic problem. This results in the non-conservative problem (2.90)-(2.92), which

requires the adoption of a path-conservative method.

Concerning the last question, from chapter 3 we know that in the framework of finite volume

methods two different approaches exist for the solution of hyperbolic systems of PDEs: the upwind

approach and the centred approach.

Examples of the application of both strategies for the solution of hydro-morphodynamic problems

in one and two space dimensions are available in the literature. Upwind schemes have been applied

to the case of high sediment transport in the one-dimensional case [102] and in the two-dimensional

case on Cartesian meshes [2], while examples of two-dimensional hydro-morphodynamic models

on unstructured meshes based on upwind schemes are given in [46, 81, 7, 27]. The centred approach

has been used in the solution of one-dimensional hydro-morphodynamic problems in [61, 19, 22]

and two-dimensional problems on unstructured meshes in [21].

Upwind methods are generally recognised as more accurate than centred methods, the disadvantage

being however that they are of more difficult implementation and less general due to the use of

Riemann solvers. We refer the reader to chapters 3 and 4, where a detailed comparison of the

features of these two approaches has been carried out. For the problem at hand, i.e. solving

the shallow water-Exner model, following Canestrelli et al. [22, 21], we claim that the upwind

approach has an evident drawback, since the solution of the Riemann problem for this hyperbolic
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system of PDEs is not generally available, at least if complex empirical formulae for sediment

transport (2.16), which are of common use in the engineering practice, are employed. The PRICE-C

centred approach [22, 21] instead, which does not require the adoption of Riemann solvers and

relies on fully-numerical integration of the Roe matrix (4.9), does not pose any limitation on the

bedload transport formulae to be used. For these reasons in the GIAMT2D numerical model we

choose a refined PRICE-C type centred upwind-biased numerical scheme, including some upwind

information based on estimates of the system eigenvalues, still avoiding the use of Riemann solvers.

Thus the GIAMT2D model will be able to apply any bedload transport formula, obtaining solutions

of accuracy comparable to that of upwind methods. We remark that, since the system eigenvalues

are in any case needed to select a time step using the CFL condition, the application of an upwind

bias does not add any computational effort with respect to the genuinely centred scheme.

Finally, the GIAMT2D solver shall be applied easily in the case of complex polygonal computa-

tional domains, which may occur in simulations aiming at reproducing the hydro-morphodynamic

evolution of natural and regulated river reaches characterised by complex planforms. Therefore the

problem shall be conveniently discretised using unstructured meshes. The UPRICE2-Cδ numerical

scheme developed in chapter 4 possesses all the characteristics and requirements previously listed,

i.e.:

• being path-conservative, is able to solve the non-conservative problem (2.90)-(2.92) arising

from the adoption of a coupled formulation for the mathematical model (2.6), thus being able

to correctly deal with bedload transport in trans-critical flow conditions;

• being centred and using a numerical procedure for the evaluation of the Roe matrix, can

handle any bedload transport formula required in the engineering practice;

• being upwind-biased, it is characterised by improved accuracy with respect to the genuinely

centred PRICE2-C scheme and may reach comparable accuracy to that of upwind methods

based on incomplete Riemann solvers;

• has been natively developed on unstructured triangular meshes.

5.2 Splitting technique

We aim at solving the two-dimensional non-conservative hyperbolic system (2.90)-(2.92). We

discretise the domain assuming a conforming triangulation TΩ of the computational domain Ω⊂R2

by ne elements Ti such that

TΩ =
ne⋃

i=1

Ti . (5.1)
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Each element Ti has 3 edges S j of length
∣∣S j
∣∣, with associated outward-pointing face-normal vectors

~n j = (n jx,n jy). Data are represented by cell averages Qn
i at time tn and the numerical solution

sought at time tn+1 = tn +∆t is denoted with Qn+1
i .

The system (2.90)-(2.92) is non-homogeneous due to the presence of the frictional source terms

(2.92). We handle inhomogeneity adopting a robust splitting technique which formally preserves

second-order accuracy [117]. We rewrite the considered system in the form

C (Q) = S (Q) , (5.2)

where C (Q) represents the advective operator

C (Q) = ∂tQ+A1∂xQ+A2∂yQ (5.3)

and S (Q) represents the frictional source term operator. Consider the full initial value problem

(IVP):

PDEs: C (Q) = S (Q)

IC: Q(x,y,0) = Qn
i

}
IVP . (5.4)

In the present splitting technique, the complete IVP (5.4) is split into three different IVPs as

ODEs: dQ
dt = S (Q)

IC: Q(x,y,0) = Qn
i

}
1
2 ∆t
=⇒Qi IVP1 , (5.5)

PDEs: C (Q) = 0

IC: Q(x,y,0) = Qi

}
∆t
=⇒Qi IVP2 , (5.6)

ODEs: dQ
dt = S (Q)

IC: Q(x,y,0) = Qi

}
1
2 ∆t
=⇒Qn+1

i IVP3 . (5.7)

IVP1 (5.5) and IVP3 (5.7) contain systems of ODEs related to the frictional source terms (2.92)

while IVP2 (5.6) contains a homogeneous non-conservative hyperbolic system of PDEs represent-

ing the advective part of the hydro-morphodynamic problem (2.90)-(2.92). The proposed splitting

procedure formally preserves second-order accuracy for the solution to (5.4), provided the solutions

of IVP1, IVP2 and IVP3 are themselves second-order accurate [117]. The time step ∆t is obtained

imposing a CFL condition of the type (4.21) for IVP2; then IVP1 and IVP3 are integrated by 1
2 ∆t

119



5. GIAMT2D: a two-dimensional hydro-morphodynamic solver

while IVP2 is integrated by ∆t.

We emphasise that the technique here described concerns the uncoupling of the frictional source

term only, but does not affect the coupling of the hydrodynamic and morphodynamic part in the

solution of the advective problem IVP2 (5.6).

The splitting technique allows the adoption of different numerical schemes for different types

of problems: for IVP1 and IVP3 we use the second-order implicit Runge-Kutta method, while for

IVP2 we apply the second-order ADER-TVD extension of the UPRICE2-Cδ scheme presented in

chapter 4.

5.2.1 The implicit Runge-Kutta method

In order to integrate the systems of ODEs in IVP1 (5.5) and IVP3 (5.7) by a time step 1
2 ∆t each,

we use a second-order accurate implicit discretisation via the Runge-Kutta method. Implicitness

allows the scheme to handle possibly stiff source terms (2.92) under arbitrarily large time steps. At

this stage, the integration procedure is cell-based, i.e. the solution is updated in time within each

cell Ti with no contribution from the boundaries. In the following we illustrate the solution for

IVP1. An analogous procedure is implemented for solving IVP3.

The right-hand side of the ODEs in (5.5) is evaluated at time t = 1
2 ∆t making use of a time

Taylor expansion. After straightforward manipulations, the system is discretised in the form

dQ
dt

=

(
I− 1

2
∆t
[

∂S
∂Q

]
Qn

i

)−1

S(Qn
i ) , (5.8)

where I represents the 4×4 identity matrix and
[

∂S
∂Q

]
is the matrix containing the derivatives of the

source terms (2.92) with respect to the unknowns, which reads:

[
∂S
∂Q

]
=



0 0 0 0

7
3 gn2 qxq

(H−η)
10
3
−gn2 q+ q2

x
q

(H−η)
7
3
−gn2 qxqy

q(H−η)
7
3
−7

3 gn2 qxq

(H−η)
10
3

7
3 gn2 qyq

(H−η)
10
3
−gn2 qxqy

q(H−η)
7
3
−gn2 q+

q2
y
q

(H−η)
7
3
−7

3 gn2 qyq

(H−η)
10
3

0 0 0 0


(5.9)

if the Manning law is adopted.
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Equation (5.8) is suitable for time integration using the well-established second-order accurate

Runge-Kutta scheme, assuming as initial condition Qn
i at time tn:

Qi = Qn
i +

1
2
(K1 +K2) , (5.10)

with

K1 =
1
2

∆t

(
I− 1

2
∆t
[

∂S
∂Q

]
Qn

i

)−1

S(Qn
i ) , (5.11)

and

K2 =
1
2

∆t

(
I− 1

2
∆t
[

∂S
∂Q

]
Qn

i +K1

)−1

S(Qn
i +K1) . (5.12)

5.2.2 The advection scheme

This section concerns the solution to the advective part of the hydro-morphodynamic problem

IVP2 (5.6) to be performed after the solution to IVP1 (5.5) has been computed. As discussed and

motivated in section 5.1, for IVP2 we adopt a coupled approach, relying on synchronous treatment

of the hydrodynamic and morphodynamic part of the problem. This strategy results in the solution

of a non-conservative homogeneous problem having the form

∂tQ+A1∂xQ+A2∂yQ = 0 , (5.13)

with vector of unknowns Q and system matrices A1 and A2 given in (2.91), to be obtained by means

of a path-conservative method. With initial condition given by Qi (5.10), we seek for a numerical

solution Qi of (5.13) applying the centred upwind-biased UPRICE2-Cδ method presented in the

previous chapter extended to second-order accuracy in the ADER-TVD framework (4.30)-(4.31).

Next, we shall tailor the ADER-TVD UPRICE2-Cδ scheme for the solution of the considered

problem.

Application of the UPRICE2-Cδ method requires knowledge of approximations of the system

eigenvalues, to be used as estimates of wave speed celerities in the form (4.19) for the selection

of the integration time step using the CFL condition (4.21) and for local fine tuning of numerical

dissipation through (4.20). Here we employ an approximation of the eigenvalues of the shallow

water-Exner model obtained in the one-dimensional case by Lyn and Altinakar [84]. We apply this

approximation using the flow data projected normal to the current cell interface S j, i.e. considering

the velocity projection

un̂ = (u, v) ·~n j , (5.14)
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which allows us to define a projected Froude number Frn̂ =
|un̂|√

g(H−η)
.

The one-dimensional model possesses three eigenvalues λ
(1)
n̂ < λ

(2)
n̂ < λ

(3)
n̂ . Two distinct cases must

be considered, namely the case of sub-critical (Frn̂ . 0.8) or super-critical flows (Frn̂ & 1.2) and the

case of trans-critical flows (0.8. Frn̂ . 1.2):

• in sub-critical or super-critical flows the extrema of the eigenvalue set are readily identified

with the eigenvalues of the fixed-bed shallow water model

λ
(1)
n̂ = un̂−

√
g(H−η) , λ

(3)
n̂ = un̂ +

√
g(H−η) , (5.15)

while the intermediate eigenvalue, associated to bedload transport, reads

λ
(2)
n̂ =

[
ζ

1−F2
rn̂

]
un̂ , (5.16)

being ζ = 1
(1−λp)(H−η)

∂qsn̂
∂un̂

, with qsn̂ = (qsx,qsy) ·~n j;

• in trans-critical flows, eigenvalues are given by

λ
(1)
n̂ =

{
1
4

(
1− 1

F2
rn̂

)
−
√(

1− 1
F2

rn̂

)2
+ 8ζ

F2
rn̂

}
un̂ ,

λ
(2)
n̂ =

{
1
4

(
1− 1

F2
rn̂

)
+

√(
1− 1

F2
rn̂

)2
+ 8ζ

F2
rn̂

}
un̂ , λ

(3)
n̂ =

(
3
2 +

1
2F2

rn̂

)
un̂

(5.17)

if un̂ > 0 and

λ
(1)
n̂ =

(
3
2 +

1
2F2

rn̂

)
un̂ , λ

(2)
n̂ =

{
1
4

(
1− 1

F2
rn̂

)
+

√(
1− 1

F2
rn̂

)2
+ 8ζ

F2
rn̂

}
un̂ ,

λ
(3)
n̂ =

{
1
4

(
1− 1

F2
rn̂

)
−
√(

1− 1
F2

rn̂

)2
+ 8ζ

F2
rn̂

}
un̂

(5.18)

if un̂ < 0.

Following Canestrelli et al. [21], in the definition of the matrix A−
j+ 1

2
(4.20) we use the following

modified identity matrix:

Im =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 εb

 , (5.19)

122



5. GIAMT2D: a two-dimensional hydro-morphodynamic solver

where εb represents the ratio between the speed of waves associated to bed elevation and the

maximum wave speed in absolute value of the entire Riemann fan. The formulation (5.19) not

only improves accuracy in the solution of the waves associated to bed variations, but is also crucial

for avoiding undesirable diffusion of bed elevation gradients with quiescent water: when water is

locally at rest, εb shall be set to zero. We estimate εb using the above eigenvalues in the form

ε
b = max


∣∣∣λ(2)

in̂

∣∣∣
max

(∣∣∣λ(1)
in̂

∣∣∣ , ∣∣∣λ(3)
in̂

∣∣∣) ,

∣∣∣λ(2)
jn̂

∣∣∣
max

(∣∣∣λ(1)
jn̂

∣∣∣ , ∣∣∣λ(3)
jn̂

∣∣∣)
 , (5.20)

where subscripts i and j indicate that eigenvalues are computed with the data Qi and Q j associated

to cells Ti and Tj respectively, still using the normal unit vector~n j outward-pointing from Ti. Notice

that elimination of spurious diffusion of bed gradients with quiescent water is immediately achieved

in our implementation: if the projected velocity un̂ vanishes in both cells Ti and Tj sharing edge S j,

application of (5.16) gives εb = 0 in (5.20).

5.3 Treatment of wetting-and-drying fronts

In applications aiming at reproducing the behaviour of real gravel-bed rivers, the case of par-

tially dry domains is likely to occur. Since the location and extent of these dry regions may change

during simulations, numerical models must be able to deal with these features in an adaptive and

robust manner. From the point of view of numerical analysis, several issues are required by the

solution of system (2.90)-(2.92) over possibly dry domains, including satisfaction of the extended

C-property [28], preservation of depth positivity and correct prediction of the celerity of wet-dry

fronts propagating over flat and sloping domains. Since these requirements are not generally

satisfied by standard numerical methods developed for fully-wet domains, increasingly refined

numerical solution strategies have been developed. Most of these schemes apply only to fixed-bed

problems. Among them, Brufau et al. [16] and Castro et al. [29] locally modify the Roe upwind

method in order to achieve a better description of wet-dry fronts, while robust depth-positivity

preserving schemes have been built using the hydrostatic reconstruction procedure [3, 4, 31].

The mathematical model composed by the system of PDEs (2.6) along with the closure rela-

tions for friction and bedload transport presented in section 2.1.2 is inadequate for straightforward

numerical treatment in possibly dry domains. On very shallow depth (D→ 0), the relationship

linking velocity, discharge and depth

u =
qx

D
, v =

qy

D
(5.21)
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5. GIAMT2D: a two-dimensional hydro-morphodynamic solver

becomes singular since, from a physical point of view, all these quantities have to tend to zero.

In general on vanishing depth the computations involving evaluation of the inverse of D might

be source of numerical instability. This is likely to happen when applying the Manning (2.10)

or Chézy (2.12) friction laws for the evaluation of the dimensionless friction term ~S f . In detail,

difficulties are found in the computation of

• the second and third line of the system matrices A1 and A2 (2.91), containing velocities

(inertial terms);

• the derivatives of bedload transport in the first and fourth line of matrices A1 and A2 (2.91),

for which formulae based on the Shields stress θ (2.16), requiring the adoption of the above

friction models, are commonly applied;

• of the vector of source terms (2.92) and of its derivatives with respect to the conserved

variables, employing the above mentioned friction formulae.

Notice that, in our solution procedure based on the splitting technique, the first two difficulties

concern the solution of the advection problem IVP2 (5.6), i.e. the evaluation of the system matrices

(2.91), while the last problem is encountered in the solution of IVP1 (5.5) and IVP3 (5.7) for the

numerical treatment of the frictional source terms (2.92). We observe that over-prediction of these

terms on vanishing depth may result in a friction-dominated, stiff problem: this is the motivation

for the adoption of a splitting technique, in which the frictional source terms are taken into account

using an implicit integration scheme, able to handle possible stiffness as claimed in section 5.2.1.

In practice, most of the existing algorithms embedded in hydro-morphodynamic models use

a small preset value of minimum depth to detect dry cells and stabilise the propagation of wet-dry

fronts, see e.g. [15, 80, 91, 103]. Our wetting-and drying procedure is based on values for threshold

depth as well, which are used in order to smooth the inertial and bedload transport terms in the

system matrices and the frictional source terms on vanishing depth. While in the wet core of the

domain we use a second-order accurate method, at the transition between wet and dry regions we

employ a first-order monotone scheme, which in this case is more robust due to higher numerical

dissipation and absence of spurious oscillations. We define three different thresholds:

• εD is minimum depth used for detecting dry cells;

• εF > εD is minimum depth under which the discharge values are reduced in the computation

of the system matrices (2.91);

• ε1o > εD is used for detecting cells to be solved using a first-order scheme.
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5. GIAMT2D: a two-dimensional hydro-morphodynamic solver

Next, we give the modifications in the solution procedure which are needed to handle wetting-and-

drying fronts.

• Friction modifications.

The present modifications apply in solution to (5.5) and (5.7) carried out in the cells having

local depth lower than εD (dry cells). They are required for the evaluation of the right-hand

side of (5.8), containing the frictional source terms and their derivatives with respect to the

conserved variables. Before performing Runge-Kutta time integration, each cell Ti is checked

for minimum depth εD. If local depth is lower than εD, the Runge-Kutta procedure is skipped

and in its output the discharge terms are simply set to zero; conversely in the wet cells (depth

higher than εD) the Runge-Kutta procedure (5.10)-(5.12) is performed normally.

• Momentum and Shields parameter modifications.

These modifications aim at stabilising the computation of inertial terms (velocities) in the

second and third line in the system matrices (2.91) and of the derivatives of bedload transport

in the first and fourth line of the matrices. Stabilisation is achieved by reducing the momentum

terms qx and qy, i.e. multiplying these values by a reduction coefficient rF having the form

rF =


1 if D > εF

D−εD

εF−εD if εD < D≤ εF

0 if D≤ εD

, (5.22)

D = H−η being the associated value of depth in the matrix evaluation. Thus, such reduction

of qx and qy is effective only for D < εF . The reduced momentum values are also applied

in the computation of the Shields number using (2.19) or (2.20) and of its derivatives with

respect to the unknowns, which ensures that bedload transport tends to vanish on shallow

depth.

• Renounce to second-order accuracy.

First-order schemes prove to be more robust in the treatment of wet and dry fronts. Thus,

whereas in general we use a second-order ADER-TVD scheme throughout the wet portions

of the domain, we adopt a first-order scheme on vanishing depth. For this purpose we use

a preset of depth ε1o: if depth is lower than ε1o at least one cell in the stencil associated to

the current cell Ti (4.22), i.e. Ti and its three neighbours, the ADER-TVD procedure for Ti is

simply skipped, thus recovering a first-order method.

• Treatment of emerging topography.

Consider the situation in which the current cell Ti is wet (Di > εD), the neighbouring cell

Tj across interface S j is dry (D j < εD) and water elevation in Ti is lower than bed elevation
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5. GIAMT2D: a two-dimensional hydro-morphodynamic solver

in Tj (Hi < η j), i.e. dry topography emerges in cell Tj. Notice that in the dry cell free-

surface elevation coincides with bed elevation (H j = η j), thus being greater than free-surface

elevation in the wet cell (H j > Hi). Ordinary numerical schemes for fully-wet domains will

fail in this case: they would predict a momentum flux from Tj to Ti due to such gradient in

free-surface elevation, regardless of the fact that Tj is dry [16, 29]. Thus, some modifications

of the scheme are required. We treat this case by locally imposing a reflective boundary

condition for the wet cell Ti, either inviscid (slip condition) or viscous (no-slip condition),

located at interface S j. When updating the solution in the dry cell in the corresponding edge,

we simply assume a dry-dry interface.

The setup of the three threshold parameters εD, εF , ε1o must be done empirically. Some guidelines

based on our experience may be helpful in this respect.

• εD is known to control the celerity of wet-dry fronts, i.e. the speed of these fronts is better

predicted setting this parameter to low values. Our approach is to set εD as some fraction of

sediment diameter Ds, i.e. εD ∼ 1
10 ÷1 Ds.

• εF is crucial for the stability of the numerical method, especially in movable-bed computation.

We propose the range εF ∼ 1÷5 Ds.

• For ε1o we propose the range ε1o ∼ 2÷10 Ds.

5.4 Parallelisation

In order to increase the GIAMT2D model performance in terms of computational efficiency,

we have parallelised the code using the OpenMP2 protocol on shared memory. OpenMP allows

the programmer to create parallelised regions of the code by invoking specific directives. We have

parallelised only the regions which have proved to be heavy in terms of the computational time

required. For complete explanation of the method and its advantages and disadvantages we refer

the reader to [32].

In this section we wish to test the increase in computational performance given by the paral-

lelisation. We have performed a series of numerical runs varying the number of cores in order to

quantify such increase. Tests have been performed on a domain of 33372 cells. Runs have been

executed using 1 to 10 cores on a workstation having 12 cores: not all the available cores have been

employed in order to avoid the interaction with the operating system, requiring at least one core to

2www.openmp.org
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Figure 5.1: Speedup and efficiency of the parallelised GIAMT2D code.

run. To evaluate the parallelisation performance two different parameters have been used, namely

Speedup and Efficiency, defined as

Speedupnc
=

time1

timenc

, Efficiencync
(%) = 100

Speedupnc

nc
, (5.23)

where subscript nc is the number of cores used and time is real simulation time. The theoretical

optimal Speedup is equal to nc, but in practical implementations this value is never reached. The

Efficiency parameter represents the fraction cores effectively employed and assumes the value of

100% only in the ideal case (Speedup= nc).

The results obtained in the test for these two parameters are given in Fig. 5.1. The Speedup

is found almost linear with nc even with 10 cores: hence the code implementation has a good

scalability also over 10 cores. Efficiency is always over 70% and its curve is almost flat, i.e. the

decrease in efficiency almost ceases between 6 and 10 cores.

5.5 Applications

In this section we apply the GIAMT2D numerical model to classical numerical test cases with

fixed and movable bed in order to test our implementation and show the model capabilities. We

compare the numerical solution of the model with analytical solutions and experimental results.

The selected test cases aim at highlighting some characteristics of the model and motivate the

choices we have made in designing the numerical solution strategy.
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5. GIAMT2D: a two-dimensional hydro-morphodynamic solver

First, we devote some attention to assessing the performance of the numerical scheme in tests

conducted in fully-wet domains. The first test, presented in section 5.5.1, concerning the evolution

of a conical dune of sediments, highlights the advantage in accuracy connected to insertion of an

upwind bias into the centred scheme and extension to second order, thus motivating the research in

applied mathematics carried out in the previous chapters. The second test (section 5.5.2) consists of

the modelling of sediment transport due to a hydraulic jump over erodible-bed: since the Froude

critical state is crossed, by this test we prove the ability of the model in dealing with sediment

transport in trans-critical flow conditions.

Then, we focus on assessing the performance of our original approach for the treatment of wetting-

and-drying fronts presented in section 5.3. To this aim we first prove in section 5.5.3 that the

model satisfies the extended C-property, i.e. exactly reproduces still water at rest in partially dry

domains characterised by emerging topography. Then in section 5.5.4 we move to the simulation

of dam-break fronts over dry domains with horizontal or sloping fixed bed in order to test the

numerical model against analytical solutions for the front position and speed. Finally in section

5.5.5 we conduct numerical simulations of dam-break flow in a dry erodible channel and compare

our numerical results with laboratory experimental data.

5.5.1 Evolution of a conical dune

In this two-dimensional test proposed by Hudson [60] we consider the evolution of a conical

dune of sediments under almost uniform sub-critical flow. During the simulation, the sediment

bump propagates downstream and evolves towards a star-shaped pattern expanding in time with

a certain angle. For the spread angle an approximate analytical solution has been obtained by de

Vriend [43]. Due to very long simulation (the timeout is set equal to 100 h) and very low sediment

transport, this test highlights the performance of numerical schemes in terms of amount of spurious

numerical diffusion in the solution of the morphodynamic problem: excessive numerical dissipation

causes overestimation of the spread angle and underestimation of maximum dune height. Thus

this case is commonly used in the accuracy assessment of hydro-morphodynamic solvers, see e.g.

[27, 7, 6, 21]. In detail, here we aim at assessing the advantage in accuracy connected to the insertion

of an upwind bias into the centred PRICE2-C scheme and to the extension to second-order accuracy.

We solve the problem in the square computational domain [0, 1000]× [0, 1000] m. The initial

condition for bed elevation is given by flat horizontal bed with a sediment bump

η(x,y,0) =

{
0.1+ sin2

(
π(x−300)

200

)
sin2

(
π(y−400)

200

)
if x ∈ [300,500] and y ∈ [400,600]

0.1 otherwise
.(5.24)
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The initial condition for the hydrodynamic variables is

H(x,y,0) = 10.1 m , qx(x,y,0) = 10 m2s−1 , qy(x,y,0) = 0 , (5.25)

representing uniform sub-critical flow in the x direction. Flow is inviscid in this test. At the

upstream boundary x = 0 we prescribe constant discharge qx = 10 m2s−1. A free outflow condition

is set at the downstream boundary x = 1000 m. At the side boundaries y = 0 and y = 1000 m we

impose a reflective slip condition (inviscid bank). Timeout is t = 100 h and the CFL number is

set equal to CFL = 0.8. The initial condition for the hydrodynamic variables in the movable-bed

simulation is obtained by preliminarily running fixed-bed computations until steady flow state.

We solve the problem on two different mesh setups applying the first-order (centred) PRICE2-C

method, the (upwind-biased) UPRICE2-Cδ method and the second-order ADER extension of the

latter scheme. Bedload transport is computed with the two-dimensional Grass formula (2.26).

The analytical solution for the spread angle [43] relies on the hypothesis of weak interaction be-

tween sediment layer and fluid. Recalling the Grass formula (2.26), having parameters AG ∈ [0, 1]

and mG ∈ [1, 4], this is ensured by setting AG < 0.01. The spread angle αS is then given by

α
S = arctan

(
3
√

3(mG−1)
9mG−1

)
. (5.26)

In our numerical simulations we choose mG = 3, which gives analytical spread angle αS = 21.787◦,

and AG = 0.00167.

5.5.1.1 Evolution of a conical dune on a uniformly-spaced grid

In this test we wish to assess the advantage in accuracy connected to the use of a second-order

extension of the scheme. Thus we present the numerical results of the upwind-biased UPRICE2-Cδ

method both in the basic first-order configuration and in the second-order ADER extension. Being

the solution smooth in all variables, we do not apply a TVD limiter in this case. Comparison of

numerical results is carried out in terms of spread angle and maximum bed elevation. We discretise

the domain with a triangular mesh of 32406 cells having approximately uniform size.

In Fig. 5.2 we represent the solution profiles of the first-order and second-order upwind-biased

schemes (red and blue line respectively) sliced along the x axis at y = 500 m . Improved resolution

of the bed profile connected to second-order accuracy is evident. Maximum bed elevation is equal to

0.58m and 0.81m for the first and second-order scheme, respectively. The result of the second-order

upwind-biased scheme in terms of maximum elevation is similar to that obtained by Castro et al.
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Figure 5.2: Evolution of a conical dune on a uniformly-spaced grid. Longitudinal bed profile
obtained slicing the solution at y = 500m and t = 100h for the first-order UPRICE2-Cδ

scheme and the second-order ADER UPRICE2-Cδ scheme.

[27] with a second-order upwind scheme.

Concerning the spread angle, the advantage of using a second-order scheme is not so evident: we

measure αS = 23.133◦ for the first-order scheme and αS = 22.972◦ for the second order scheme,

both quite close to the theoretical value αS = 21.787◦.

5.5.1.2 Evolution of a conical dune on a variably-spaced grid

Here we perform another set of simulations in order to highlight the advantage given by inser-

tion of an upwind bias into the scheme. From the numerical tests for the two-dimensional shallow

water equations with fixed bed carried out in chapter 3 we know that genuinely centred methods

may fail in the accurate description of the solution when a wide variety of local CFL numbers is

produced. In the present test the flow field is almost homogeneous since the disturbance given by

the dune is very weak. Thus, if uniformly-spaced grids are used, the distribution of CFL numbers

is expected to be homogeneous as well.

We artificially introduce inhomogeneity by solving the problem on a variably-spaced grid, as we

have done for the circular dam-break problem in sections 3.5.4 and 3.5.5. The mesh adopted,

composed of 22554 triangular elements, is coarser in the upper side of the domain (y > 500 m) than

in the lower side. See Fig. 5.3, where a sketch of the domain discretisation across the centerline

y = 500 m is depicted. The solution of any numerical method is expected to be more smeared on

the coarse side of the domain (y > 500 m) than on the other side. Thus, preserving symmetry in

the transverse profile is challenging and highlights the ability of numerical methods in performing
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y=500m

flow

y

x

Figure 5.3: Evolution of a conical dune on a variably-spaced grid. Sketch of the computational
mesh.

consistently over a wide range of CFL numbers. We solve the problem using second-order ADER

extensions of the UPRICE2-Cδ (upwind-biased) method and of the PRICE2-C (centred) method.

The results of the two numerical methods are given in Fig. 5.4 in terms of transversal profiles,

obtained slicing the solution along the y axis at x = 565 m, and in Fig. 5.5 in terms of contourplots.

In Fig 5.4 the profile of the centred method (blue dashed line) is found to be much more smeared

than that of the upwind-biased method (red line) as a consequence of higher numerical dissipation.

Moreover, as expected, the solution of the upwind-biased method is much more symmetrical, thus

indicating more consistent performance over the entire range of stable CFL numbers.

From Fig. 5.5, where the solutions of the two methods are represented in terms of contourplots,

analogous conclusions can be drawn. The solution of the centred method (left panel) is deeply

influenced by inhomogeneity in the mesh concerning the degree of symmetry and sharpness, while

these problems are not observed for the upwind-biased method.

We conclude that the increase in accuracy connected to the introduction of an upwind bias into

the scheme, which had been carefully assessed in the case of conservative methods in chapter 3,

is evident even in the solution of the shallow water- Exner model by means of path-conservative

schemes.
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5.5.2 Propagation of a sediment bore

This numerical tests concerns the reproduction of the experimental data obtained by Bellal

et al. [5], concerning the propagation of a sediment bore in a steep erodible channel under the

hydrodynamic action of a hydraulic jump. Their experimental setup consists of a 7.6 meter long,

half meter wide glass-walled channel with adjustable slope, linked to a water recirculating system,

an upstream sand feeder supplying dry sediments at a constant rate, and a downstream settling

tank. The flume bed is covered by a layer of quasi-uniform coarse sand having mean diameter 1.65

mm and porosity 0.42. The authors indicate a bed roughness Manning coefficients n= 0.0165m−
1
3 s.

As described by Bellal et al. [5], the experimental runs start from an equilibrium configura-

tion, corresponding to uniform super-critical flow over movable bed fully developed throughout the

channel length. Upstream sediment supply is in equilibrium with the hydrodynamic conditions. At

time t = 0, the equilibrium condition is perturbed by the rapid raise of a submerged weir having

height Hw = 15.75 cm at the downstream end of the flume, which raises the local water level up

to 20.93 cm, thus imposing local sub-critical flow. This generates a hydraulic jump propagating

in the upstream direction. The discontinuity in the hydraulic conditions induces longitudinal

variations of sediment transport capacity, thus triggering riverbed morphological evolution. While

the upstream-migrating hydraulic jump progressively slows down, a bore of sediments is generated

and grows underneath. Subsequently, the bed further interacts with the hydraulic jump. Continuous

deposition at the front of the sediment bore makes it grow in amplitude as it migrates downstream.

Finally, the hydraulic jump noticeable at the free surface decreases in amplitude and progressively

vanishes as the sediment front takes over the transition from supercritical to sub-critical flow.

Since Froude trans-critical flow conditions are encountered in correspondence to the hydraulic

jump, the numerical reproduction of this experiment severely tests the ability of the numerical

model in correctly addressing bedload transport in these conditions. In the case of GIAMT2D, as

we have claimed, this is guaranteed by the adoption of a coupled formulation of the hydrodynamic

and morphodynamic problem: here we aim at proving this statement. We solve the problem

in the computational domain [0,7.6]× [−0.25,0.25] m discretised using 25002 triangular cells.

The initial bed setup is given by the slope vector ~S = (0.0302,0). Flow is in the x direction. At

the lateral boundaries (y =±0.25 m) we use inviscid reflective conditions, while at the upstream

boundary x = 0 we prescribe inlet flow with discharge q = 0.024 m2s−1 and at the downstream

boundary x = 7.6 m we simulate the presence of the submerged weir by imposing water elevation

H (7.6,y, t) = 0.2093 m above the reference level. We solve the problem setting timeout t = 400 s

and imposing CFL = 0.95. Sediment transport is accounted by a calibrated Meyer-Peter and

133



5. GIAMT2D: a two-dimensional hydro-morphodynamic solver

 

T
im

e 
[s

]

0

100

200

300

400

 

0

100

200

300

400

Front position [m]
2.5 3 3.5 4 4.5

2.5 3 3.5 4 4.5

experimental
numerical

experimental
numerical

Figure 5.6: Propagation of a sediment bore. The position of the sediment bore front, obtained
by numerical simulations using the GIAMT2D model embedding the second-order
upwind-biased UPRICE2-Cδ method, is plotted in the x− t plane (black symbols and
full line) against the experimental results of Bellal et al. [5] (blue symbols).

Müller-type formula, reading

Φ(θ) = 5.5max((θ−θcr) ,0)
3
2 , (5.27)

with θcr = 0.047. Numerical simulations are conducted using the GIAMT2D model, embedding

the second-order upwind-biased ADER-TVD UPRICE2-Cδ path-conservative scheme.

In our numerical results we track the position of the sediment bore front. This is reported in

Fig. 5.6 , where the front position is plotted in the x− t plane and compared with the experimental

data of Bellal et al. [5]. Good agreement is found, confirming that the GIAMT2D model is able to

predict the front advancement by correctly taking into account sediment transport in quasi-critical

conditions.

In Fig. 5.7 in the top panel we plot a profile for water and bed elevation obtained slicing the

numerical solution along the x axis at the channel centerline y = 0 at t = 150 s. The sediment

bore and hydraulic jump are located at x∼ 3.6 m. On the bottom panel, we plot the corresponding

Froude number, which is seen to decrease from Fr ∼ 1.4 upstream of the hydraulic jump to Fr ∼ 0.2

downstream of the jump. The trans-critical Froude region is thus crossed by the numerical profile.

Cordier et al. [35] report examples of failure of uncoupled numerical methods in solving analogous
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Figure 5.7: Propagation of a sediment bore. Top panel: profile of the numerical solution for free-
surface and riverbed elevation, obtained slicing the solution of the GIAMT2D model at
t = 150 s along the x axis at y = 0. Bottom panel: representation of the solution profile
in terms of the Froude number.

hydro-morphodynamic problems conducted in trans-critical conditions: they observe that the nu-

merical solution may get unstable, initially in the riverbed profile and then in the water elevation

profile, until finally the code crashes. In the case depicted in Fig. 5.7, instead, the GIAMT2D model

proves to be able to produce a correct, stable solution for the hydro-morphodynamic problem due

to the coupled formulation adopted.

5.5.3 Verification of the extended C-property

Bermúdez and Vázquez Cendón [8] have introduced a well-balancedness condition called

conservation property or C-property, which prevents the appearance of non-physical oscillations

due to the discretisation of the source terms in the shallow water equations over sloping bed.

Definition 5.5.1: C-property. A numerical scheme is said to verify the C-property if it solves

exactly the steady-state solutions corresponding to water at rest with flat free surface over non-

movable bed η(x,y), i.e.

qx (x,y, t) = 0 , qy (x,y, t) = 0 , H (x,y, t) = H0 ∀ x,y, t (5.28)
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where H0 is a constant such that H0 > max(η(x,y ∈Ω)).

Verification of the C-property is a key issue for a numerical method. There is wide consensus in the

literature that well-balancing with respect to water at rest crucially contributes to improving the

solution of steady and transient flows in any condition.

Concerning schemes able to deal with wet-dry fronts, Castro et al. [28] generalise the above

definition introducing the extended C-property:

Definition 5.5.2: Extended C-property. A numerical scheme is said to verify the extended C-

property if it solves exactly the steady-state solutions of the form{
qx (x,y, t) = qy (x,y, t) = 0

H (x,y, t) = max(H0, η(x,y))
∀ x,y, t . (5.29)

Notice that the extended C-property (5.29) includes the C-property (5.28), which must hold in

the wet portions of the domain. Moreover it poses some requirements over the solution in the dry

portions of the domain and the treatment of wet-dry transitions. In particular, in these transition

zones no spurious momentum flux shall be generated by the presence of dry emerging topography

nearby a wet cell.

In this section we analytically and numerically test the ability of the GIAMT2D model to satisfy

the extended C-property. Notice that the initial data (5.29), which also give the exact solution at any

time, representing steady water, do not give rise to frictional terms nor to bedload discharge. Thus

strictly speaking here we test only the solution of the the homogeneous problem (5.6) in fixed-bed

computations.

5.5.3.1 Analytical verification of the C-property on wet domains

Canestrelli et al. [21] have analytically proved that high-order schemes based on PRICE-C

solving the shallow water equations in wet domains are well-balanced as a consequence of the

choice of a segment path (4.8) in the integration of the Roe matrix and of the adoption of a modified

identity matrix (5.19) with εb = 0 for quiescent water. Here we report their analysis, showing that

it applies to our upwind-biased scheme as well.

Consider the following initial condition in two neighbouring cells Ti and Tj, given in terms of the
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vectors of conserved variables Qn
i and Qn

j :

Qn
i =


H0

0

0

ηi

 , Qn
j =


H0

0

0

η j

 , (5.30)

with ηi 6= η j and H0 > max(ηi,η j). It follows from linearity of the integration path (4.8) that the

Roe matrix and its square are

AΨΨΨ =


0 1 0 0

gD̄(n jx +n jy) 0 0 0

0 0 0 0

0 0 0 0

 , A2
ΨΨΨ =


gD̄(n jx +n jy) 0 0 0

0 gD̄(n jx +n jy) 0 0

0 0 0 0

0 0 0 0

 , (5.31)

where D̄ is given by

D̄ = H0−
∫ 1

0
ηi + s(η j−ηi)ds = H0−

1
2
(ηi +η j) =

1
2
(Di +D j) . (5.32)

Using the modified identity matrix (5.19) with εb = 0, it follows trivially from (4.20) for the

upwind-biased method or from (4.12) for the centred method that A−
j+ 1

2

(
Qn

j −Qn
i

)
= 0. Therefore

first-order schemes (4.5) satisfy the C-property. Concerning second-order schemes, the term∫
Ti

A(Qi) ·∇Qi d~x (4.30) clearly vanishes, thus preserving well-balancing even in this case.

5.5.3.2 Numerical verification of the extended C-property

Once theoretically verified the C-property in fully-wet domains, we empirically assess that

the GIAMT2D model satisfies the extended C-property. This test case not only proves the well-

balancedness of the numerical scheme in the wet case, but also it tests the strategy presented in

section 5.3 for the treatment of wet-dry transitions with emerging topography.

We solve the problem in the square computational domain [−5,5]× [−5,5] m imposing reflective

boundary conditions. We discretise the domain using a mesh having 860 triangular cells. We use

CFL = 0.95 and set timeout t = 60 s. Bed elevation is prescribed by

η(x,y) = exp
(
−1

4
(
x2 + y2)) (5.33)
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Table 5.1: Numerical verification of the extended C-property. Error norms at time t = 60 s for q =√
q2

x +q2
y of four schemes used in conjunction with the wetting-and-drying procedure

presented in section 5.3.
first-order second-order ADER-TVD

L∞ L1 L2 L∞ L1 L2
UPRICE2-Cδ 0.000E+00 0.000E+00 0.000E+00 9.800E-16 2.203E-16 2.659E-16

PRICE2-C 0.000E+00 0.000E+00 0.000E+00 9.044E-16 2.438E-16 3.078E-16

and the initial condition for the flow variables is given by{
qx (x,y,0) = qy (x,y,0) = 0

H (x,y,0) = max(H0, η(x,y))
∀ x,y , (5.34)

with H0 = 0.5 m. Notice that (5.34) also gives the exact solution to this problem at any time. We

solve this test applying first- and second-order schemes based on the centred PRICE2-C and on

the upwind-biased UPRICE2-Cδ method in conjunction with the wetting-and-drying procedure

presented in section 5.3.

In Tab. 5.1 we present the error norms obtained comparing the module of discharge q =
√

q2
x +q2

y

computed by the numerical schemes with the exact solution q = 0 ∀x,y. We observe that the results

of first-order numerical methods are exact, while those of second-order methods are exact up to

machine precision due to round-off errors in the TVD reconstruction procedure. These errors arise

in the wet part of the domain. Comparing the results of centred and upwind schemes we do not find

significant differences.

In Fig. 5.8 we plot the results for water and bed elevation of the second-order ADER-TVD

UPRICE2-Cδ scheme. From Fig. 5.8 we obtain a visual confirmation that the model exactly

reproduces flat water at rest over sloping bed in the wet portions of the domain (up to machine

precision), correctly deals with the dry portions of the domain and exactly handles the transition

between the two, avoiding prediction of spurious momentum fluxes at wet-dry interfaces with

emerging topography.

5.5.4 Modelling of dam-break flow over fixed dry bed

In this section we numerically solve two inviscid dam-break problems over partially dry do-

mains, resulting in the propagation of wet-dry fronts in fixed-bed channels. The aim of these tests is

to assess the accuracy of the GIAMT2D model, based on the second-order ADER-TVD UPRICE2-

Cδ scheme and on the wetting-and-drying procedure presented in section 5.3, in predicting the

celerity of wet-dry fronts.

138



5. GIAMT2D: a two-dimensional hydro-morphodynamic solver

Figure 5.8: Numerical verification of the extended C-property. Solution of the second-order ADER-
TVD UPRICE2-Cδ scheme used in conjunction with the wetting-and-drying procedure
in section 5.3 for water elevation H (blue) and bed elevation η (brown) computed at
t = 60 s.

In general, a key requirement for numerical methods is that they should be able to describe fronts

arising from initial discontinuities by correctly predicting their propagation speed in agreement

with exact analytical solutions of the Riemann problem. Concerning dambreak problems in fully-

wet domains, this requirement is commonly satisfied by the existing shock-capturing numerical

methods. For conservative methods, convergence towards the exact weak solution, guaranteed by

the Lax-Wendroff theorem [78], implies that the numerical solution satisfies this requirement. For

path-conservative methods, even though theoretical assessment of convergence is still a matter of

debate (see section 2.3.3), encouraging results concerning convergence to the exact weak solution

in discontinuous problems have been experimentally obtained for the shallow water equations [22].

However, moving to the numerical modelling of front propagation over dry domains, experimental

failure of convergence towards the exact solution due to under-prediction of front celerity is widely

reported. Even the use of refined solutions of the Riemann problem with a dry state in upwind

schemes guarantees only moderate improvement in this respect [29].

For the two tests presented in this section we consider a thirty-meter long fixed-bed channel

whose axis is aligned with the x axis, having width equal to W = 1 m. The computational domain is

given in the range [−15,15]× [0.5,0.5] m and discretised with 16446 triangular cells. We apply

inviscid reflective conditions at the side boundaries (y =±0.5 m) and transmissive conditions at the
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upstream and downstream boundaries (x =±15 m). The channel bed is flat, i.e. it is characterised

by constant slope vector ~S = (Sx,0). Thus the bed setup is given by

η(x) =−Sxx . (5.35)

Our two tests differ in the value of x-slope Sx. In the first test we use a channel with horizontal bed

(Sx = 0), while in the second one we consider a sloping-bed channel characterised by Sx =− tan3◦.

A dam is initially placed in the cross-section corresponding to half channel length, namely x = 0.

On the left side of this gate (x < 0), a layer of water at rest having horizontal free-surface is found,

while on the other side the channel is dry. The initial condition is thus given by

H (x,y,0) =

{
1 m if x < 0

η(x) otherwise
, qx (x,y,0) = qy (x,y,0) = 0 ∀ x,y . (5.36)

Notice that such initial condition combined with the bed setup (5.35) gives a discontinuity by one

meter in water depth and elevation in the dam cross-section:

H
(
0−,y,0

)
= D0 = 1 m , H

(
0+,y,0

)
= 0 , (5.37)

where with D0 we denote initial water depth just upstream of the dam (at x = 0−). At initial time

we remove the dam and observe the propagation of waves arising from the discontinuity (5.37) in

the positive and negative direction of the x axis. The waves in the right side of the domain (x > 0)

propagate on initially dry bed. As reported by Castro et al. [29], the position x f (t) of the wet-dry

front is known by exact analytical solutions of the dam-break problem in the form

x f (t) = 2t
√

gD0 cosγD−
1
2

gt2 tanγD , (5.38)

being γD = −arctanSx. The exact solution for the front position (5.38), together with the com-

plete solution profile, was first computed by Ritter [100] in the horizontal-bed case (γD = 0).

We use these solutions as benchmarks for our GIAMT2D model embedding the second-order

ADER-TVD UPRICE2-Cδ method and our wetting-and-drying procedure described in section 5.3.

We remark that use of a second-order method may improve accuracy in the computations in the

wet part of the domain, but does not directly affect the solution of the front since on vanishing

depth the scheme always reduces to first-order accuracy. We use CFL = 0.95 and set timeout t = 2s.

The first test is conducted in a horizontal channel. Starting from the initial condition (5.36)

we observe the propagation of a rarefaction wave towards the left side (x < 0) and of a wet-dry
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Figure 5.9: Modelling of dam-break flow over dry horizontal bed. The position of the wet-dry
front of the numerical solution (symbols) is compared to the exact solution. The
numerical solution is obtained with the GIAMT2D model embedding the ADER-TVD
UPRICE2-Cδ scheme and the wetting-and-drying procedure described in section 5.3.

front in the right side of the domain (x > 0). The results are represented in Figs. 5.9 and 5.10.

In Fig. 5.9 we plot the position of the wet-dry front every 0.2 s (symbols) and compare it with the

exact solution (5.38) represented by a full line. It is seen that the front celerity is underestimated by

the numerical model. This causes a moderate but evident lag between the exact and the numerical

solution.

In Fig. 5.10 in the top panel we plot the profile of the numerical solution sliced on the x axis along

the channel centerline (y = 0) at t = 2 s. The numerical solution is compared to the exact analytical

solution. Good overall agreement is found between the two solutions from this perspective. The nu-

merical solution seems to be slightly inaccurate only in the description of the tail of the rarefaction

at x =−6 m, being locally excessively smeared.

However if we zoom the view focusing on the solution carried out at the wet-dry interface, as we

do in the bottom panel of Fig. 5.10, we observe a discrepancy in the front position between the

exact and numerical solution, causing inaccurate description of the profile on very shallow water

depth. Analogous results are widely reported in the numerical literature. The results here presented

are in line with those obtained by the numerical techniques presently available. For instance, the

front position computed by GIAMT2D well compares to that obtained by Castro et al. [29] using a
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refined solution of the Riemann problem with a dry state embedded in Roe’s upwind Q-scheme.

Then, we consider the case of a sloping channel with γD = 3◦, i.e. characterised by adverse

slope with respect to the wet-dry front propagation. In this test, while the wet-dry interface moves

towards positive values of the x direction, water climbs over the steps generated by emerging

topography. The treatment of emerging topography is expected to play a key role in determining the

wave propagation speed. Thus by this test we assess the performance of our simple recipe presented

in section 5.3, in which emerging topography is modelled imposing a local reflective condition at

the wet-dry interface. As we have explained, in the GIAMT2D model we are allowed to choose

whether to impose a no-slip or slip condition. In the present run we use a slip condition (inviscid

bank), which is in agreement with the inviscid character of the considered dam-break problem and

maximises the front celerity.

In Fig. 5.11 we plot the position of the wet-dry front obtained by numerical modelling every 0.2 s

(symbols) and the exact solution (5.38) (full line). Due to the influence of the emerging topography,

this test is found more challenging than the previous one carried out over horizontal bed. The

spread between the numerical and the exact solution is higher than in the previous case (Fig. 5.9)

due to significant under-prediction of the front speed. Still however our results are similar to those

of Castro et al. [29] obtained with a modified Roe’s upwind Q-scheme.

Finally, we wish to give a comment on the role of the parameters of the wetting-and-drying

procedure in determining the speed of fronts. The values adopted in the present tests are reported in

Tab. 5.2. We have used the lowest possible values of parameters, in order to maximise the front

speed while retaining numerical stability. Determining the optimal values in this respect is matter

of empirical calibration, depending on the current test. From Tab. 5.2 we notice that the values

in use are extremely low, thus being possibly unsafe from the point of view of numerical stability

when moving to more complex, movable-bed simulations.

From our experience, εD, used for detecting the dry cells, plays the most important role in determin-

ing the front celerity in the flat-bed case: high values of this parameter result in significant slowing

down of the wet-dry front. The values for the test conducted on a sloping bed are higher than those

for the horizontal-bed test: this is an indication of the fact that the numerical simulation of front

propagation over adverse slope is more challenging due to the presence of emerging topography

modelled by a reflective condition. In the case of adversely-sloping bed, the reflective condition is

found to significantly influence the front celerity: in the calibration process, at some stage further

reduction of εD is found to be ineffective and only mesh refinement, reducing the height of emerging

topography in the first dry cell, is able to improve the prediction.
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Figure 5.10: Modelling of dam-break flow over dry horizontal bed. The numerical solution for
water elevation of the GIAMT2D model embedding the ADER-TVD UPRICE2-Cδ

scheme and the wetting-and-drying procedure described in section 5.3 is sliced along
the x axis at y = 0 and compared to the exact solution. Top panel: the full solution is
presented. Bottom panel: zoom of the wet-dry front.
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Figure 5.11: Modelling of dam-break flow over dry sloping bed. Bed slope Sx =− tan3◦ is adverse
to the wet-dry front propagation direction. The position of the wet-dry front of the
numerical solution (symbols) is compared to the exact solution. The numerical solution
is obtained with the GIAMT2D model embedding the ADER-TVD UPRICE2-Cδ

scheme and the wetting-and-drying procedure described in section 5.3.

Table 5.2: Parameters of the wetting-and-drying procedure used in the modelling of dam-break
flow over dry bed.

εD [m] εF [m] ε1o [m]
horizontal bed (Sx = 0) 8.000E-06 1.000E-05 1.000E-05

sloping bed (Sx =− tan3◦) 4.000E-05 2.200E-04 2.200E-04

The tests presented in this section highlight the capabilities and limitations of the proposed simple

technique for the treatment of wetting-and-drying. The recipes adopted prove to be robust (i.e. the

code does not crash, even using very low values of the wetting-and-drying parameters) but the speed

of fronts describing the transition between wet and dry portions of the domain is under-predicted.

These results however are in line with those contained in the recent literature about numerical

modelling of shallow flows in partially dry domains. Under-prediction of the front speed with

respect to the exact solution emphasises the need of further fundamental numerical research on this

topic. This however is out of the scope of the present thesis.
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5.5.5 Simulation of dam-break flow in a movable-bed channel with a sudden
enlargement

This section is devoted to the numerical reproduction of the laboratory experiments conducted

at the Civil Engineering Laboratory of the Université Catholique de Louvain, Belgium, by Palumbo

et al. [94], concerning dam-break flow over erodible bed. Experiments have been conducted in a

flume with a non-symmetrical sudden enlargement as shown in Fig. 5.12. The flume bed is com-

posed of uniform coarse sand having median diameter Ds = 1.82 mm and density ρs = 2680 kgm−3,

deposited with bulk concentration 53%, and is initially covered by a 0.1 meter thick layer of fully

saturated sand.

A dam is initially placed in the cross-section located at x = 3 m. Upstream of this cross-section

(x < 3), the flume is initially filled by 0.25 m deep still water, while in the downstream region

(x > 3 m) the bed is dry. At t = 0 the dam is suddenly removed. The propagation of hydrodynamic

waves associated to dam-break flow induces variations in riverbed elevation. As reported by Xia et

al. [137], due to relatively coarse bed material and moderate velocity of the dam-break flow, the

bed evolution can be assumed to be determined by bedload transport only.

We numerically reproduce this test case using the GIAMT2D model, including the second-order

ADER-TVD UPRICE2-Cδ scheme and the wetting-and-drying procedure presented in section 5.3.

We discretise the domain using an unstructured triangular mesh having 23070 cells. We apply

reflective inviscid conditions at all side walls, while free outflow boundary conditions are used at

the downstream outlet. We use the Manning friction law with n = 0.0167 m−
1
3 s. Timeout for the

simulation is t = 12s and the CFL number is CFL = 0.95. We compare the output of the GIAMT2D

model with the time series for water elevation surveyed in six different locations P1, ...,P6 (see

[94] for details) and with the final bed elevation measured along two cross-sections, namely CS1

(located at x = 4.1 m) and CS2 (x = 4.4 m). See Fig. 5.12, where a sketch of the domain and of the

survey points and cross-sections is reported. This experimental dataset has been already used for

testing other numerical models, see e.g. [94, 138, 63, 137].

In our simulations we have found that the final bed configuration is significantly influenced by the

bedload transport formula employed. Therefore we have calibrated a Meyer-Peter and Müller-type

formula (see Tab. 2.1) to achieve the best fitting of experimental data, obtaining

Φ(θ) = 12max((θ−θcr) , 0)
3
2 (5.39)

with θcr = 0.047. The flexibility of the UPRICE-Cδ scheme due to numerical integration of the

Roe matrix (4.9) allows us to easily change the bedload transport formula in order to best fit the
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Figure 5.12: Simulation of dam-break flow in a movable-bed channel with a sudden enlargement.
Sketch of the experimental setup and survey points.

experimental data.

In Fig. 5.13 we plot the numerical time series of water elevation in P1, ...,P6 (blue line) compared

to the experimental results (symbols). Numerical results show good agreement with experimental

data.

In Fig. 5.14 we show the comparison between the final experimental and numerical cross-sectional

profiles of bed elevation obtained at time t = 12 s. The profiles of the numerical simulation fairly

agree with these surveyed experimentally: the numerical model is reasonably able to predict the

location of scour and deposit regions along the cross-sections. In detail, in CS1 the position and

extent of the scour is well predicted by the numerical model, while some mismatch between the

computed and surveyed profile is instead found concerning the position of the right deposit region.

Concerning CS2, the model is correctly able to locate the deposit region along the cross-section,

but overestimates the peak value. These mistakes, which are found close to the bank, may be

explained by locally three-dimensional flow induced by the sudden enlargement, which cannot

be correctly handled in a depth-averaged approach [137], as well as by the difficulties of friction

and sediment transport models in accurately describing the complex dynamics of dam-break front
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waves. Anyway, our results well compare to those obtained by Xia et al. [137] in the numerical

simulation of the same test case.

5.6 Conclusions

In this chapter we have built and tested a two-dimensional hydro-morphodynamic numerical

model, referred to as GIAMT2D, solving the shallow water equations coupled with the Exner

equation. The model has been designed in order to be able to reproduce two-dimensional flow and

transport in gravel-bed rivers. Its main features are:

• adoption of a coupled solution approach in order to correctly deal with sediment transport in

trans-critical flow conditions;

• use of an upwind-biased centred scheme (the second-order ADER-TVD UPRICE2-Cδ

scheme developed in chapter 4) able to embed any bedload transport formula due to its

centred nature, still retaining accuracy comparable to that of upwind methods;

• inclusion of an original algorithm for wetting-and-drying able to treat wet-dry fronts over

fixed and dry bed in an adaptive and robust manner;

• implementation on triangular unstructured meshes in order to be able to deal with domains

characterised by complex boundaries;

• parallelisation using the OpenMP protocol on shared memory for improving computational

efficiency.

The performance of the model has been carefully assessed on a suite of classical tests with fixed

and movable bed, using benchmark analytical solutions and experimental results. These tests

allow us to claim that the GIAMT2D model correctly solves the equations describing flow over

erodible bed and is able to simulate the flow and transport processes arising in the idealised physical

configurations of laboratory conditions.

We shall now move to the second part of this thesis, concerning the applications of the GIAMT2D

model aiming at reproducing the morphodynamic evolution of gravel-bed rivers. Our applications

will be initially devoted to reproducing the dynamics of basic morphodynamic processes in rivers

such as bar and bifurcation instability. By these applications we will show that the model not

only satisfactorily performs in classical tests as we have seen in this chapter, but is also able to

address the evolution of morphodynamic units (bars, bifurcations) in agreement with analytical

morphodynamic theories and laboratory experiments. Finally, we will apply the GIAMT2D model
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Figure 5.13: Simulation of dam-break flow in a movable-bed channel with a sudden enlargement.
The time series for water elevation of the GIAMT2D model (blue line) is compared to
the experimental data of Palumbo et al. [94] (symbols) collected in six survey points
P1, ...,P6.
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Figure 5.14: Simulation of dam-break flow in a movable-bed channel with a sudden enlargement.
The bed elevation profiles computed by the GIAMT2D numerical model (blue line)
at t = 12 s are compared with the experimental data of Palumbo et al. [94] (symbols)
along the cross-sections CS1 and CS2.

in an original study concerning the interaction of free and forced bars in straight channels, together

with theoretical speculations and experimental observations.

The next chapter is introductory to these applications: we will review some of the main achieve-

ments in river morphodynamics obtained by analytical an physical modelling, concerning the

dynamics of free and forced bars and of channel bifurcations.
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6 Bars and bifurcations in gravel-bed rivers:
theoretical and experimental state of art

The second part of the present thesis, namely this chapter together with chapters 7 and 8, is

devoted to applications of the GIAMT2D numerical model to the morphodynamics of gravel-bed

rivers. In detail, in chapter 7 we will test the ability of GIAMT2D of reproducing the behaviour of

basic morphodynamic processes such as bars and bifurcations, while in chapter 8 we will present

novel achievements on the interaction of free and forced bars obtained by integrating the application

of GIAMT2D with analytical theories and observations. The present chapter represents an introduc-

tion to the physical processes which will be subsequently investigated, namely the dynamics of free

and forced bars and of channel bifurcations.

River bars are often regarded as the basic morphodynamic process at the scale of channel width:

the morphological behaviour of movable bed rivers is essentially governed by the interaction

between "free" bars, spontaneously developing in almost-straight channels as the result of inherent

instability of the flow-erodible bed system, and "forced" bars produced by physical constraints,

such as curvature, width variations, backwater effects and local persistent discontinuities in channel

geometry [106]. In many cases it has been observed that, provided the forcing effect is large enough,

free migrating bars are suppressed in favour of a steady bar pattern which in turn may affect the

channel planform evolution. The case of planimetric forcing produced by channel curvature has

received much attention [68, 127, 134] because of its inherent association with the development of

river meanders. In the same way that curvature-forced bars can be seen as the fundamental units of

meandering rivers, central bars developing in channels with spatial width variations can be seen

as the fundamental bedform units of braided rivers [98]. The development and abandonment of

channels in braided networks is governed by the dynamics of river bifurcations, to which much

work has been recently devoted [14, 86, 125, 11]. In braided networks, evidence has been provided

of intriguing legacies between the characteristic length of channels and the central anabranch width,

in analogy to the consistent scaling of the length of free bars with channel width [62].

151



6. Bars and bifurcations in gravel-bed rivers: theoretical and experimental state of art

The above considerations highlight the role of bars and bifurcations as basic morphodynamic

units of single and multi-thread natural rivers. The key idea beyond the second part of this thesis

is that computational tools that aim at reproducing the morphodynamic evolution of real river

systems should be carefully tested against the established dynamics of these basic features in simple

and controlled conditions, such as those emerging from well-known and consolidated analytical

theories, besides the outcomes of laboratory flume experiments. Thus, the dynamics of bars and

bifurcations can be regarded as a fundamental morphodynamic benchmark for any numerical

hydro-morphodynamic model.

Mathematical modelling of bar and bifurcation dynamics has been tackled by means of sim-

plified analytical solutions. These solutions have the advantage of capturing the salient features

and behaviour of the considered physical problems and identifying the controlling parameters. The

main drawbacks are that simplified geometrical configurations are considered in order to keep

the problem amenable to analytical treatment and that the interaction of different processes often

cannot be taken into account. In addition to analytical modelling, physical modelling at laboratory

scale allows the reproduction of morphodynamic processes in controlled conditions and provides

quantitative benchmarks to test analytical theories.

In this chapter we will review the most remarkable and established results on the dynamics of bars

and bifurcations in gravel-bed rivers. The chapter outlines as follows. In section 6.1 we introduce

the main dimensionless parameters governing the evolution of morphodynamic units according to

analytical theories. In section 6.2 we present the outcomes of analytical and physical models of

free and forced bars. The linear bar theory, prescribing the conditions of formation of free bars in

straight channels, and the weakly non-linear theory of Colombini et al. [33], giving the equilibrium

amplitude of free bars, are reviewed in section 6.2.1. The linear theory of spatial bars, originally

developed by De Vriend and Struiksma [44] and Olesen [92] and further refined by Seminara and

Tubino [107] and Zolezzi and Seminara [141] is reviewed in section 6.2.2. The available theories

concerning the interaction of free an forced bars in regular channel configurations are reviewed

in section 6.2.3 together with related experimental results. The knowledge gap related to such

interaction in the basic straight channel configuration will be the object of a novel application of

the GIAMT2D model in chapter 8.

Section 6.3 concerns about channel bifurcations. The analytical model of Bolla Pittaluga et al. [14]

is reviewed in section 6.3.1 and applied in section 6.3.2 . The analytical results of Bertoldi and

Tubino [11] are presented in section 6.3.3 and compared to the outcomes of the analytical model.
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6.1 Governing parameters

The mathematical modelling of bar morphodynamics in single-thread channels is commonly

achieved through approximate solutions of the two-dimensional shallow water-Exner model (2.6),

along with appropriate closure relations that relate sediment transport rate and friction to the

local flow properties (see section 2.1.2). Concerning river bifurcations, more simplified models

are usually adopted, in which flow in channels is assumed to be one-dimensional and a quasi

two-dimensional model is employed only at the bifurcation node.

Analytical models are commonly based on a series of simplifying assumptions with the aim of

focusing on the fundamental morphodynamic processes, while keeping the mathematical problem

amenable to analytical treatment. It is often assumed that the system is fed by a representative

constant value of flow discharge, the grain size is uniform and sediment transport mainly occurs as

bedload at a rate that is in equilibrium with the stream transport capacity. Concerning bar models,

the effects of flow unsteadiness [124], grain size heterogeneity [75] and suspended load [126, 52]

have also been investigated, although their presentation is out of the scope of this chapter.

Mathematical models of physical processes can be conveniently cast in dimensionless form, which

allows generality in the analysis and easy identification of the controlling parameters. The physical

scale of morphodynamic processes is commonly given by the reference uniform flow, occurring in

a straight channel carrying the same discharge and having the same channel width, longitudinal

slope and sediment size. The key dimensionless parameters arising from the theories are:

• aspect ratio β (half-width-to-depth ratio) of the channel, defined as

β =
W

2D0
, (6.1)

where W is channel width and D0 is water depth of the reference uniform flow;

• dimensionless grain size ds, expressing relative bed roughness

ds =
Ds

D0
, (6.2)

Ds being sediment diameter;

• the Shields parameter θ, reading

θ =
τ

(ρs−ρw)gDs
, (6.3)

which represents a dimensionless measure of relative sediment mobility, expressed through
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the near-bed shear stress τ and the relative sediment submerged weight, ρs and ρw being

sediment and water density and g the acceleration due to gravity. Equation (6.3) specialises

as (2.19) if the Manning law is adopted for the evaluation of τ, while adoption of the Chézy

law gives (2.20). Notice that in the latter case θ may weakly depend on the inverse of ds (6.2)

through (2.13).

The three above parameters apply in the description of the morphodynamic evolution of channels at

any scale, from laboratory flumes to natural channels. Once these parameters have been set, the

reference uniform flow is defined through the closure relations in section 2.1.2.

6.2 Free and forced bars in straight channels

The classification of free and forced bars has a precise physical and mathematical meaning

[106]. Free bars are repetitive sequences of scour holes and depositional diagonal fronts, with

vertical scale of the order of the flow depth. They develop spontaneously and migrate in almost-

straight channels with constant width, provided the width-to-depth ratio exceeds a threshold value

which depends on the flow and sediment characteristics. Free bars display a variety of possible

topographic patterns depending upon the most unstable transverse mode (alternate, central or

multiple-row bars). Theoretical analyses and experimental results suggest that, when sediments are

mainly transported as bedload, the alternate bar configuration is dominant for the typical channel

aspect ratio values of single-thread alluvial gravel-bed rivers.

Forced bars develop in response to an external forcing and keep fixed with respect to the planform

itself. Forcing effects can be both distributed along river systems and localised in space. To the

former category belong longitudinal variations of channel curvature [13] or width [97, 98], whereas

local perturbations are typically represented by groynes, bridge piers or other local river structures,

as well as by any other abrupt planform change in space, like confluences or bifurcations. Two

typical examples of localised disturbance are the transition between a bend of constant radius

and a straight reach [114], causing a discontinuity in channel curvature, and a bifurcation located

downstream of a straight channel [11]. Localised forcing effects are able to produce steady bars

also in straight river reaches [93]. Recent numerical and experimental research [40] suggests that

the presence of steady bars in straight channels can be justified even in the absence of any detectable

planform discontinuity.

6.2.1 Free bar formation: a perturbative analysis

The formation of free bars is connected with intrinsic altimetric instability of the system

composed by water flowing over an erodible bed. Linear stability of free bars has been increasingly
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investigated in the seventies starting from the work of Callander [20]. Following Colombini et al.

[33] in this section we present a brief overview of the analytical theories of free bars.

These theories mostly refer to a straight and regular channel with rectangular cross-section having

width W . For sake of simplicity in the presentation we assume the x axis to be oriented in the

direction given by the longitudinal coordinate of the channel. Positive values of x are in the

downstream direction. The y axis is transverse to the considered channel. The channel centreline is

associated to y = 0, the left bank to y = W
2 , the right bank to y =−W

2 . The initial bed configuration

η0 (x) is flat, i.e. the associated bed slope vector ~S = (Sx,0), having magnitude S, is constant

everywhere.

The system evolution in terms of variables H, qx, qy, η is governed by the two-dimensional

shallow water-Exner model (2.6) together with appropriate closure relations for friction and bedload

transport (see section 2.1.2), provided appropriate boundary conditions for water and sediment

discharge have been set. System (2.6) admits equilibrium solutions. The simplest of these solution

is uniform flow, which we denote with
H (x,y, t) = H0 (x) = D0 +η0 (x)

qx (x,y, t) = qx0

qy (x,y, t) = 0

η(x,y, t) = η0 (x)

. (6.4)

D0 being water depth associated to qx0 in uniform flow condition. Notice that the values D0 and qx0

are linked together by the friction formula (2.10) or (2.12) where we impose S f = S. We assume

uniform flow (6.4) as initial condition.

Free bar development is typically studied by means of linear stability analyses. The solutions of

system (2.6) can be found by expanding each unknown as follows:

H (x,y, t) = H0 +H1 (x,y, t)

qx (x,y, t) = qx0 +qx1 (x,y, t)

qy (x,y, t) = 0+qy1 (x,y, t)

η(x,y, t) = η0 (x)+η1 (x,y, t)

, (6.5)

H1 (x,y, t), qx1 (x,y, t), qy1 (x,y, t), η1 (x,y, t) being the perturbation of the uniform flow steady-state

solution (6.4) for each variable. The assumed indefinite length and the problem linearity suggests

to impose a time-dependent periodic perturbation having the form

η1 (x,y, t) = ε
P exp(Ωt + Iλ

∗x)sin
(mπy

W

)
+ c. c. , (6.6)
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W

Figure 6.1: Definitions and notation for the analytical free bar theory.

while analogous structure is assumed for the wave perturbation of the other variables. In (6.6) εP is

wave amplitude, assumed to be negligible compared to D0 in order to perform a linear analysis, I is

the imaginary unit, m is the bar mode, expressing the number of bar rows in the channel (m = 1:

alternate bars; m = 2: central bars ...), c. c. stands for complex conjugate, Ω is the signal growth

rate and λ∗ is the dimensional wavenumber of the perturbation, given by

λ
∗ =

2π

L
, (6.7)

where L is the bar wavelength. Fig. 6.1 illustrates these definitions and the notation.

The wavenumber λ∗ can be non-dimensionalised in the form

λ = λ
∗W

2
=

πW
L

. (6.8)

As a general rule, both the growth rate Ω and the wavenumber λ are complex:

Ω = Ωr + IΩi , λ = λr + Iλi . (6.9)

The theory of free bars assumes λ to be real, i.e. λ = λr and λi = 0, while this assumption will

be relaxed in the theory of spatial bars (see section 6.2.2). In (6.9) the real part of growth rate Ωr

represents the amplification rate in time, whereas the imaginary part Ωi carries information about

the signal migration direction.

Both Ωr and Ωi are functions of the undisturbed flow parameters θ, β and ds computed in uniform

flow conditions (6.4), of the bar wavelength λ and lateral mode m. Moreover they depend on the

bedload transport formula adopted. This is obtained by inserting the perturbation relation (6.6) for
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all variables into the system of governing equations (2.6) and linearising. A homogeneous algebraic

system is found, which poses a solvability condition that results in the eigenrelation

Ω = Ω(θ, β, ds, λ, m) . (6.10)

Time-dependent bar amplitude A(t) is an exponential function of Ωr, having the form

A(t) = exp(Ωrt) . (6.11)

Thus from (6.11) we identify two distinct asymptotic regime configurations for riverbed elevation:

• if Ωr < 0 then A(t)→ 0, i.e. we find a stable regime in which the initial bar wave is damped

and uniform flow (6.4) represents a stable solution;

• otherwise we find an unstable regime in which the wave amplitude tends to grow, which

physically corresponds to the condition for bar formation.

In the latter case we obtain a bar having spatial periodic structure, growing in time and migrating in

space along the x direction. Concerning migration, the sign of the imaginary part of the growth rate

coefficient (6.9) Ωi discriminates between two cases:

• if Ωi < 0, the wave signal migrates downstream;

• otherwise, the wave signal migrates upstream.

The latter behaviour may seem unrealistic concerning finite-amplitude bars of real rivers; we remark

however that it results from the adoption of a linearised approach, which strictly applies only for

perturbations of infinitesimal amplitude.

In Fig. 6.2 we give a visual representation of the outcomes of the linear theory. Here we plot the

predicted growth rate Ωr (red line) and migration rate Ωi (blue line) obtained as functions of λ for a

given set of parameters θ = 0.06, ds = 0.02 and β = 10. The bedload formula of Wong and Parker

[135] (see Tab. 2.1) has been adopted. From the chart we observe that a central range of wavenum-

bers exists for which the growth rate Ωr is positive, i.e. perturbations of riverbed elevation tend to

amplify. Even though most of this region is characterised by negative values of Ωi (downstream-

propagating bars) a small subset with Ωi > 0 exists, giving unstable and upstream-migrating bars.

However, we notice that the highest value of Ωr corresponds to downstream-migrating bars, thus

suggesting that the instability process tends to select downstream-migrating wavenumbers. Bars

having excessive or too small wavenumber, falling outside the unstable range of λ, tend to be

suppressed.
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Figure 6.2: The real part Ωr and the imaginary part Ωi of the amplification rate parameter (6.11)
are plotted as functions of wavenumber (6.8), with θ = 0.06, ds = 0.02 and β = 10,
adopting the bedload transport formula of Wong and Parker [135].

The key controlling parameter for bar instability emerges when considering the λ−β plane, plotting

the curves associated to Ωr = 0 and Ωi = 0 respectively, still using constant values of ds and θ.

These two curves, which are commonly regarded as the marginal curves, represent the loci of states

characterised by neutral stability, i.e. the hydrodynamic and transport conditions for which bars

neither amplify nor get damped (Ωr = 0) and do not propagate (Ωi = 0). In Fig. 6.3 we depict

the marginal curves associated to θ = 0.1 and ds = 0.01 computed using the bedload transport

formula of Wong and Parker [135]. The marginal curve associated to Ωr = 0 is represented by a

black full line. The region above such curve represents the states expressing intrinsic instability of

the system, giving bar amplification, while the region below corresponds to the states for which

any disturbance of uniform flow is damped. The minimum β value of the black marginal curve in

Fig. 6.3 corresponds to a critical value of aspect ratio βcr, i.e. the minimum aspect ratio for which

amplification is possible. βcr depends on ds, θ and on the bedload transport formula adopted. Phys-

ically, this parameter carries information of crucial importance: the theory predicts that alternate

bars can develop only in channels that are wide and shallow enough in formative conditions, i.e.

only if β > βcr (θ,ds). With λcr we denote the wavenumber corresponding to βcr on the marginal

curve. Notice that, while a precise value βcr of aspect ratio exists above which free bars amplify,

the amplification mechanism does not clearly indicate the bar wavenumber likely to be selected,

since the marginal curve is rather smooth.
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Figure 6.3: Marginal curves obtained with θ = 0.1 and ds = 0.01 using the bedload transport
formula of Wong and Parker [135].

The blue dashed line in Fig. 6.3 represents the wavenumber associated to the maximum value

of Ωr for given β, i.e. the signal which is more likely amplified for any value of β. This curve

intersects the marginal curve (Ωr = 0) in the critical point (λcr,βcr). The critical wavenumber is

usually found in the range λcr ∼ 0.35÷0.45, which in terms of dimensional variables gives L in

the range of 7÷9W . This is consistent with the values of bar length reported from experimental

observations, which have consistently provided a validation of the linear theory.

The marginal curve associated to Ωi = 0 is depicted in red in Fig. 6.3. On the right of this curve the

states associated to downstream migration of free bars are represented, while on the left the states

associated to upstream migration are found.

The value of β for which Ωr = 0 and Ωi = 0, i.e. the aspect ratio associated to the intersection

point of the marginal curves, identifies the resonant value of aspect ratio βres: above this threshold

linearly unstable signals may migrate upstream (provided λ is sufficiently small), while below βres

only downstream migration occurs. βres depends on θ, ds and on the bedload transport formula

adopted. The threshold βres is named resonant because it corresponds to theoretically infinite

growth rate of sinusoidal channels having λ = λres [13]. Such concept will be further explored in

section 6.2.2.

The linear theory focuses on the conditions of incipient formation of free bars due to the lin-

ear base flow instability, but is not able to provide information on the growth of finite-amplitude

free bars. This topic has been investigated experimentally by Ikeda [65] and by Colombini et al.
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[33] by means of a weakly non-linear perturbation analysis. Colombini et al. [33] found that the

exponential bar growth predicted by (6.11) is damped by non-linear effects, eventually leading to

an equilibrium configuration in time. Equilibrium bar amplitude AE is then given by

AE = D0

{
b1

(
β−βcr

βcr

) 1
2

+b2

(
β−βcr

βcr

)}
for β < 2βcr , (6.12)

b1 and b2 being functions of θ and ds. From equation (6.12) we observe that bar equilibrium

amplitude (from maximum scour to maximum deposition) scales with uniform flow depth D0.

Moreover, equation (6.12) highlights the role of the relative distance of aspect ratio from the critical

value β−βcr
βcr

as a measure of the strength of free bars: for increasing values of this parameter, the

amplitude of free bars increases. This result will be found again in section 6.2.3 concerning the

coexistence of free and forced bars. We will use the same concept in chapter 8 in order to interpret

our novel numerical results on the interaction between free and forced bars.

6.2.2 Forced bars

On the basis of theoretical analyses [93, 107] we recall the distinctive features of forced bars in

straight channels:

• forced origin: unlike free bars, forced bars are generated by a forcing effect, often represented

by localised or distributed variation in channel planform;

• steadiness: forced bars do not migrate, but instead they keep adjoint to the forcing distur-

bance;

• length: steady bars are typically longer than free bars (L∼ 15W );

• spatial damping: spatial bars due to localised planform disturbances decay with increasing

distance from the forcing itself.

Steadiness of forced bars implies that they can be theoretically investigated by means of a linear

pertubative approach in asymptotic steady conditions, i.e. neglecting time derivatives in the shallow

water-Exner model (2.6). Consider a straight channel as described in section 6.2.1. Zolezzi and

Seminara [141] use a perturbative approach analogous to that already presented for free bars

(6.5)-(6.6). However, here the perturbation of infinitesimal amplitude has only spatial structure:

η = η0 (x)+η1 (x,y) . (6.13)
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with θ = 0.08 and ds = 0.02 using the bedload transport formula of Wong and Parker
[135].

In (6.13) η0 (x) is initial bed elevation in uniform flow (6.4) and η1(x,y) is the spatial perturbation,

reading

η1 (x,y) = ε
P exp(λ∗x)sin

(mπy
W

)
+ c. c. . (6.14)

In equation (6.14) the amplitude εP is assumed to be negligible with respect to uniform flow depth

D0 as requested by the linear approach, while the perturbation wavenumber λ∗, made dimensionless

using (6.8), is assumed as complex:

λ = λr + Iλi , (6.15)

λr and λi being the damping rate and spatial oscillation wavenumber respectively. Insertion of

(6.13)-(6.15) into (2.6) and linearisation gives four solutions of the perturbed homogeneous system

in terms of the four complex wavenumbers λ1, ...,λ4.

These solutions depend on β, θ, ds, on the bedload transport formula adopted and on the lateral

bar mode m. In Fig. 6.4 we show the solutions as functions of β having set ds = 0.02, θ = 0.08

and adopting the bedload transport formula of Wong and Parker [135]. Here, λ1i, ...,λ4i denote the

imaginary part of λ1, ...,λ4 respectively, representing the signal spatial wavelength, while λ1r, ...,λ4r

denote the real part associated to the spatial damping rate of steady bars. Positive values of the

real part indicate that the signal decays in the upstream direction, while negative values indicate

downstream damping. Next we describe in detail all the four solutions.

• λ1 is a real positive number, corresponding to a non-alternate bar which rapidly decays
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upstream.

• λ2 describes an analogous configuration as λ1 but with opposite sign, namely a non-oscillating

signal that quickly decays downstream.

• λ3 represents a wave of considerable length which decays either upstream or downstream

of the forcing disturbance. The imaginary part λ3i ∼ 0.15÷0.2 corresponds to wavelength

L∼ 15÷20W (i.e. approximately double than that of free bars). The direction of decay is

governed by the sign of the real part λ3r: for small values of β the signal is damped in the

downstream direction, while for high values of β the signal decays upstream;

• λ4 has the same real part as λ3 and the same absolute value for the imaginary part, i.e. it is

the complex conjugate of λ3. It is associated to an identical signal.

From Fig. 6.4 we notice that the transition between upstream and downstream damping (i.e. positive

and negative values of λ3r) is found in correspondence to the resonant value of aspect ratio βres

already defined in section 6.2.1: if β < βres forced bars are expected to decay downstream of the

forcing discontinuity while if β > βres forced bars are expected to decay upstream. We define

sub-resonant the former and super-resonant the latter behaviour. Notice that the characteristic

distance of decay is proportional to the inverse of |λ3r|. Thus in resonant condition β = βres, where
|λ3r| = 0, no damping of forced bars is predicted by the linear theory, i.e. the influence of the

forcing disturbance is theoretically felt at infinite distance. Identical considerations apply to λ4. For

sake of simplicity hereinafter with λsi we denote the spatial wavenumber of forced steady bars λ3i

and λ4i and with λsr we indicate the spatial damping rate λ3r = λ4r.

In Fig. 6.5 we compare the outcomes of the linear theories of forced bars [141] (left panel)

and of free bars [33] (right panel), plotted using the same set of parameters. We observe that

the concept of resonance deeply interlaces the two theories, so that the resonant value of aspect

ratio βres is the same in both panels. This is readily explained recalling the meaning of resonance

according to the considered theories. The resonant condition corresponds both (left panel) to steady

bars whose decay distance tends to infinity (λsr = 0) and (right panel) to non-migrating free bars

(Ωi = 0) which do not amplify and neither get damped in time (Ωr = 0) nor in space. Notice that

the wavenumber of resonant free bars λres coincides with the imaginary part λsi of the complex

wavenumber of steady bars. Thus the resonant condition identifies the only state which is common

between the two plots in Fig. 6.5, describing the same steady bar.

The theory of spatial bars prescribes the direction of damping of a forced bar triggered by a

localised variation of the planimetric configuration, which shall happen in the downstream or
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representing the fastest-growing bar wavenumber (light-blue dotted line). Parameters
are θ = 0.1 and ds = 0.07. The bedload transport formula of Wong and Parker [135]
has been used.

upstream direction if undisturbed flow is sub-resonant or super-resonant respectively. Zolezzi and

Seminara [141] have explicitly linked the direction of two-dimensional morphodynamic influence of

the local planform disturbance to the direction of bar damping: forced bars are expected to develop

only in the direction of damping (decay) prescribed by the theory. The rationale of this link can be

easily understood thinking of a straight channel with a localized disturbance in its middle section.

If the channel is long enough, it is physically reasonable to assume the occurrence of uniform flow

conditions over flat bed at its downstream and upstream ends, provided these are located far enough

from the disturbance itself. On the contrary, if a forced bar pattern could spatially develop in the

opposite direction with respect to the damping direction, it would amplify towards infinite ampli-

tude, which would not match the above uniform flow-bed boundary conditions. In other words, the

presence of the localized disturbance must be felt only upstream under super-resonant conditions

and only downstream under sub-resonant condition. Thus, the super-resonant and sub-resonant

regimes are associated to upstream and downstream morphodynamic influence respectively.

Concerning numerical modelling, to our knowledge a correct reproduction of the sub-resonant

and super-resonant flow regime has been achieved only very recently by van der Meer et al. [129]

using the Delft3D model [79] and by Siviglia et al. [111] using the GIAMT2D model, as we will

show in chapter 7. Finally, Crosato et al. [40] investigate both experimentally and numerically the

possibility of steady bar formation in straight channels without planimetric forcing occurring at

very long time scales.
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6.2.3 Interaction between free and forced bars

Free and forced bars have been intensively investigated in the last decades by means of theoret-

ical analysis carried out in simple geometrical configurations as well as laboratory experiments.

Even though the fundamental mechanisms and the governing parameters have been identified, a

comprehensive description of the actual bar dynamics occurring in real rivers has not been achieved

so far. Both kinds of bars can be present in real river systems. Theoretical and experimental

evidence has been provided that free and forced bars interact through non-linear processes: the

bar configuration actually observed in a stream should therefore be fundamentally determined

by such interaction. This emerges from experimental and theoretical studies in slowly-varying

planform geometries characterised by spatial periodicity, like small-amplitude meanders [68, 127],

large-amplitude meanders [134] and channels with longitudinal width oscillations [97, 98]. Here

we review the case of weakly meandering channels and the case of straight channels characterised

by periodic width variations, for which the interaction has been studied in more detail.

The interactions of free bars with forced bars induced by curvature in small-amplitude mean-

ders has been first experimentally investigated by Kinoshita and Miwa [68]. They observed the

coexistence of free bars with the forced topography driven by curvature at low sinuosity and the

suppression of migrating bars for larger values of channel curvature. Their results suggest that the

interaction between migrating free and steady forced bars is responsible for the suppression of the

former perturbations. This has been also documented in subsequent laboratory experiments [34].

Starting from the representation of finite-amplitude free bars given in [33], Tubino and Seminara

[127] give a theoretical interpretation of the suppression process by means of a weakly non-linear

analysis. The solution is expanded in terms of a small parameter β−βcr
βcr

measuring the distance from

the marginal conditions for free bar formation. A finite-amplitude representation of forced bars is

also used in terms of a dimensionless parameter ν = W
4Rm

, Rm being the meander radius at the bend

apex, measuring curvature effects. The results of the model of Tubino and Seminara [127] highlight

the role of curvature in damping free bars and modifying their propagation celerity. In particular,

a threshold value νc1 (θ,ds,λm,β) of the curvature ratio is found, where λm denotes the meander

dimensionless wavenumber: if ν < νc1 (low sinuosity, weak forcing disturbance) free bars are

damped and slowed down, but still present, otherwise (high sinuosity, strong forcing disturbance)

free bars are suppressed. Such threshold value essentially depends on the amplitude of bars which

would develop in the channel in absence of the forcing effect of the curvature (6.12):

νc1 ∝

√
β−βc

βc
. (6.16)
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Repetto and Tubino [97] develop a linear stability theory for free bar formation in a straight

channel with sinusoidal width variations of small amplitude. They employ a new dimensionless

parameter δW expressing the amplitude of sinusoidal width variations with respect to the reach-

averaged channel width. Their solution results in a linear correction to the growth rate of free bars

as predicted in the case of constant width channels (6.9) governed by aspect ratio β [33]. The effect

of width variations is found to be invariably stabilizing. In particular, free bars are suppressed

provided δW exceeds some threshold value. Such threshold is found to be an increasing function of

β, i.e. of distance from the critical value for free bar formation β−βcr expressing the strength of

free bars. Below this threshold, width variations are unable to suppress free bars, even though they

significantly affect the selection process of the most unstable free bar depending on the perturbation

wavelength.

In both configurations, the interaction of free and forced bars is found to be invariably destructive,

i.e. free bars are suppressed provided the forcing disturbance is strong enough compared to the

strength of free bars. The strength of free bars is found to be a function of the distance from the

critical aspect ratio β−βcr or of its relative value β−βcr
βcr

as it was found in the case of a straight

channel characterised by free bars only (6.12).

In spite of so much analytical work, however, no theory or predictive model is available at present

to describe the interaction of free and forced bars in the basic straight channel configuration having

one localised forcing disturbance. In chapter 8 we will present the original results of a numerical

study conducted using the GIAMT2D model, concerning free-forced bar interaction in such a

planform configuration [132, 142]. While interpreting our numerical results in chapter 8 we will

take advantage of the results of analytical modelling, arguing that the distance from the critical

conditions β−βcr and the distance from the resonant conditions β−βres can represent a measure

of the strength of free and forced bars in their non-linear interaction.

6.3 Channel bifurcations

Channel bifurcations are the key morphological units of braided rivers, governing the evolution

of gravel-bed braided networks. One of the most relevant field evidences is that channel bifurcations

often show markedly unbalanced configurations: downstream branches are generally asymmetrical

in terms of discharge, width and topographic configuration [86]. Theoretical and experimental work

on the morphodynamics of river bifurcations has been developed only relatively recently (Wang

et al. [133], Bolla Pittaluga et al. [14], Bertoldi [10], Tubino and Bertoldi [125], Kleinhans et al.

[69]) and has been focusing on the following key questions.

• equilibrium: does an equilibrium configuration exist?
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Figure 6.6: Bifurcation in a braided river (Tagliamento River, Italy).

• stability of equilibrium: is such equilibrium configuration stable?

• role of different processes: what is the role of external processes (bar migration, planimet-

ric variations, unsteadiness of flow regime, back-water effects) and intrinsic processes on

equilibrium and stability?

Modelling of river bifurcations has been tackled by means of simplified quasi-two-dimensional

analytical theories and laboratory experiments; following the summary of Tubino and Bertoldi

[125], next we present an introduction to the theoretical approach and experimental observations.

6.3.1 Analytical modelling of river bifurcations

Although several contributions have been proposed, here we focus on reviewing the analytical

model of river bifurcations developed by Bolla Pittaluga et al. [14], that will be used as a reference

theory in the presentation of the numerical results of GIAMT2D in chapter 7. In the model of Bolla

Pittaluga et al. [14] bifurcations are schematised as a system having one upstream channel, denoted

hereinafter with subscript a, and two downstream channels, denoted with b and c respectively (see

Fig. 6.7). The geometrical configuration consists of a Y-shaped bifurcation having the upstream

channel aligned with the x axis and two symmetrical downstream branches. All the channels are

straight and have rectangular cross-section with constant width and bed slope. For each channel we

define aspect ratio βl , Shields stress θl and relative roughness dsl (where l = a, b, c) and we solve a

one-dimensional hydro-morphodynamic problem. Use of a one-dimensional scheme requires three

boundary conditions for each channel: two conditions at the upstream end and one downstream.

At the inlet section of channel a water and sediment discharges are prescribed, while a constant

water level is set at the downstream sections of channels a, b, c. Concerning the node, Bolla
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Pittaluga et al. [14] adopt a quasi two-dimensional formulation in order to take into account solid

discharge partition between channels b and c. As highlighted in Fig. 6.7, the final reach of channel

a is subdivided into two contiguous cells having length αBWa, where αB is related to the spatial

extension of the upstream branch that is affected by the bifurcation. Five nodal conditions must be

set to ensure the correct closure of the problem, namely:

• water mass conservation

Qa = Qb +Qc , (6.17)

• constancy of water level in the node

Hl = Ha for l = b, c , (6.18)

where two additional conditions expressing the relationship between depth and discharge in

the downstream channels using uniform flow approximation are employed:

Ql =WlChlDl
√

gRhlSl for l = b, c , (6.19)

Ql being water discharge, Wl channel width, Chl the Chézy coefficient, Dl water depth, Rhl

the hydraulic radius and Sl bed slope;

• sediment mass conservation equation applied to both cells of the final reach of channel a (see

Fig. 6.7):

1
2
(1−λp)

(
1+

Wa

Wb +Wc

)
dηl

dt
+

qsl−qsa

(
Wa

Wb+Wc

)
αBWa

∓
qsy

Wl
= 0 for l = b, c , (6.20)

λp being porosity, η bed elevation and qsl solid discharge per unit width in respective channels. In

(6.20), qsy denotes the lateral swap of solid discharge between the two cells due to water discharge

partition and to local gravitational effects caused by transversal bed deformation. Generalising the

relation (2.25) due to Ikeda et al. [66] we obtain:

qsy = qsa

{
QyDa

qaαBD̄
− 2rik (ηb−ηc)√

θa (Wb +Wc)

}
, (6.21)

where D̄ is average depth in the contiguous cells, given by

D̄ =
1
2

(
Db +Dc

2
+Da

)
(6.22)
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Figure 6.7: Analytical model of Bolla Pittaluga et al. [14]. Scheme of the nodal point relation.

and Qy is water discharge swapped by the cells, computed imposing mass balance applied to each

cell:

Qy =
1
2

(
Qb−Qc−Qa

Wb−Wc

Wb +Wc

)
. (6.23)

The swap of solid discharge (6.21) proves to be the key mechanism governing the evolution of

channel bifurcations: when one branch decreases its activity in terms of bedload transport, the swap

mechanism forces a diversion of solid discharge into the second branch.

The present approach has been extended to the case of erodible banks by Miori et al. [86].

However in order to introduce the numerical simulations which will be presented in the next chapter

we focus on the fixed-bank case only. In the next section we review the main achievements of Bolla

Pittaluga et al. [14].

6.3.2 Equilibrium configurations

We consider the geometrical configuration shown in Fig. 6.7, composed by one upstream

channel a having width Wa joining two downstream channels b and c having the same width

Wb =Wc =
1
2Wa. Different choices for the model parameters ds, rik and αB produce quantitatively

different results. For all the results presented in this section, if not stated otherwise, we set

Wa = 10 m, Ds = 0.01 m, Sa = 0.005, rik = 0.5, αB = 2 and we apply the bedload transport formula

of Wong and Parker [135] (see Tab. 2.1) together with the logarithmic Chézy law for friction
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Figure 6.8: Analytical model of Bolla Pittaluga et al. [14]. Stable and unstable equilibrium
solutions, plotted in terms of discharge ratio (6.24) versus aspect ratio βa.

(2.20)-(2.13). With the discharge ratio parameter rQ ∈ [0, 1], defined as

rQ = min(rQb, rQc) with rQb =
Qb

Qc
, rQc =

Qc

Qb
, (6.24)

we express the degree of symmetry in flow partition. The symmetrical configuration is associated

to the value rQ = 1, whereas if one downstream branch of the bifurcation tends to close, we have

rQ→ 0. In non-symmetrical configurations, the downstream branch carrying most of discharge has

larger bedload, which generates an increment in bed erosion; on the other hand the channel with

lower discharge experiences bed aggradation. The absolute difference in bed elevation between the

two channels measured at the inlet section is called inlet step ∆η, given by

∆η = |ηb−ηc|= |(Hb−Db)− (Hc−Dc)|= |Dc−Db| , (6.25)

under the hypothesis that water elevation measured just downstream of the node is equal in both

branches (Hb = Hc).

From Fig. 6.8 we observe that two regions exist depending on the aspect ratio of the upstream

channel βa:

• for low values of βa, corresponding to high values of Qa, an unique equilibrium solution
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exists, i.e. the symmetric configuration (rQ = 1), which is stable;

• increasing the aspect ratio a threshold is reached: hereinafter the model gives three possible

solutions. One of them, representing the symmetrical configuration, is unstable, while the

others give non-symmetrical equilibrium, diverting most of discharge in channel b (Qb > Qc)

or c (Qc > Qb) respectively. Both stable configurations give rQ < 1 (6.24).

It is worth noticing that if a bifurcation reaches non-symmetrical stable equilibrium diverting most

of the discharge to one downstream channel (say, channel b), a switch towards the opposite stable

configuration is possible at any time due to intrinsic or external causes. Among external causes

we mention the interference given by propagation of free bars from the inlet channel a into the

bifurcation. The existence of two opposite non-symmetrical equilibrium configurations motivates

the use of the minimum function in the definition of rQ (6.24).

The same considerations about existence of symmetrical equilibrium solutions can be drawn

from Fig. 6.9, where the discharge ratio is plotted versus discharge Qa in the upstream chan-

nel. High values of Qa (low βa) give symmetrical equilibrium, whereas low Qa (high βa) gives

non-symmetrical equilibrium. In Fig. 6.10 these two different kinds of behaviour can be ob-

served in terms of inlet step ∆η. In detail, in the top panel the model output is represented in

terms of inlet step ∆η and depth in the inlet channel Da, while in the bottom panel we plot the

dimensionless inlet step given by their ratio ∆η

Da
. We observe that with decreasing discharge the in-

let step increases and becomes of the same order of magnitude as the average upstream water depth.

The transition between configurations characterised by symmetrical or non-symmetrical equi-

librium can be represented by threshold curves in the plane βa−θa, (Fig. 6.11). Here, for each

curve we have used one constant value of dsa by varying the dimensional sediment size Ds accord-

ingly with Da. Thus, the Chézy coefficient Cha computed using the logarithmic relation (2.13)

is constant within each curve as well. Depending on the Shields stress in the upstream channel,

for high values of θa the bifurcation tends to keep both branches open in a stable symmetrical

configuration, while for low values of θa the symmetrical configuration is unstable. This is in

agreement with the field observations of Zolezzi et al. [139]. In the latter case the system may

reach a stable non-symmetrical equilibrium configuration or may even tend to close one branch.

Furthermore, external processes such as free bar migration in channel a may generate a repeated

switch between the two non-symmetrical equilibrium configurations, which may result in general

unstable and possibly cyclic behaviour [12].

The threshold curves in Fig. 6.11 show moderate sensitivity to variations of Cha, rik and Sa,
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Figure 6.9: Analytical model of Bolla Pittaluga et al. [14]. Discharge ratio (6.24) versus upstream
discharge Qa.

especially for low values of β and θ. On the other hand, different values of the αB parameter

generate quantitatively different curves. Hence an open issue is to find the value of αB which best

matches the model predictions with experimental observations. This question has been experimen-

tally addressed by Bertoldi and Tubino [11]. In the next section we will present an overview of the

experimental results available, compared with the theoretical predictions.

6.3.3 Overview of experimental observations

Experimental observations of channel bifurcations have been made in several studies, as re-

ported by Tubino and Bertoldi [125]. Laboratory experiments have been performed in a single

bifurcation system by Bertoldi and Tubino [11]. Several works also focus on bifurcations in a

braided network, in order to better understand their role in overall braided rivers evolution (see e.g.

Federici and Paola [50]). From all these experimental works the role of the Shields parameter and

of the aspect ratio in the upstream channel as key controlling parameters emerges, in agreement

with the outcomes of analytical modelling. Here we concisely review the experimental results

obtained by Bertoldi and co-workers [11] in a comprehensive set of experiments at the Department

of Civil and Environmental Engineering of the Università di Trento.

In Figs. 6.12 and 6.13 we plot the discharge ratio rQ and the dimensionless inlet step ∆η

Da
as

function of θa (Figs. 6.12a and 6.13a) and βa (Figs. 6.12b and 6.13b) reported in [11] and observe
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that quasi-symmetrical configurations (rQ ∼ 1, ∆η

Da
→ 0) are likely to occur for high θa and low βa,

in agreement with the analytical model [14]. In contrast, low values of discharge tend to destabilise

balanced equilibrium, finally giving non-symmetrical configurations.

In Fig. 6.14 all the experimental runs of Bertoldi and Tubino [11] are reported in the βa− θa

plane together with the threshold curve separating the region of symmetrical equilibrium configura-

tions to that of non-symmetrical equilibrium according to the theoretical model of Bolla Pittaluga

et al. [14]. The latter curve has been obtained using a set of parameters which well represents the

average hydraulic conditions in the experiments. Good agreement is found between experimental

data and the output of the analytical model.

Finally, we introduce a dimensionless time variable allowing us to compare the time develop-

ment of different experiments by dropping the dependence on bedload intensity:

T =
t

TM
. (6.26)
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the upstream channel βa (b).

The morphological scale TM expresses the duration of morphological processes and is defined with

reference to the Exner equation (2.4)

TM =
WaDa√

g∆D3
saΦ(θa)

, (6.27)

where the meaning of symbols has been introduced in section 2.1.2.
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7 Morphodynamic benchmarks: numerical
applications

In this chapter we apply the GIAMT2D numerical model to three well-established morpho-

dynamic benchmarks, namely the development of free alternate bars in straight channels, the

assessment of bifurcation stability and the assessment of the direction of morphodynamic influence

in a straight channel with a local planimetric disturbance. We compare the numerical results of

GIAMT2D with those of analytical modelling and laboratory experiments. With these applications

we wish to test the ability of the numerical model in reproducing well-known morphodynamic

behaviours in controlled conditions.

Concerning the development of free bars, we consider the theory of Colombini et al. [33], while for

bifurcations we use the experimental results of Bertoldi and Tubino [11] and the analytical model

of Bolla Pittaluga et al [14]. Concerning morphodynamic influence, we check the numerical results

with the linear theory developed by Zolezzi et al. [141]. For an overview of these theories and

experimental achievements we refer the reader to chapter 6.

With these tests we aim at assessing the ability of GIAMT2D in reproducing the behaviour of

migrating and steady bars and bifurcations in regular channel geometry, which we propose as the

basic morphodynamic units having strong significance for the evolution of complex river systems.

Thus, these tests are preliminary for the application of the numerical model as a predictive tool in

order to carry out original research in morphodynamics, as we will do in chapter 8, and for future

upscaling in order to simulate the dynamics of complex gravel-bed river systems. We emphasise

that testing a numerical model against the major outcomes of analytical and physical modelling

in morphodynamics seems quite a novel approach in the literature, since few systematic appli-

cations of this kind can be presently found. The material here presented is partially covered in [111].

The present chapter outlines as follows. In section 7.1 we present our results concerning the

development of free bars in straight channels. In section 7.2 we focus on reproducing the morpho-

dynamic evolution of river bifurcations. Finally in section 7.3 we prove that the GIAMT2D model

is able to correctly account for the direction of morphodynamic influence.
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Q
[
m3s−1

]
500 Fr [−] 1.1

W [m] 60 rik [−] 0.5

Ks
[
m

1
3 s−1

]
30 ds [−] 0.067

Ds [m] 0.12 β [−] 16.7

D0 [m] 1.79 βcr [−] 8.1

Sx [−] 0.011 βres [−] 13.3

λp [−] 0.4 λcr [−] 0.46

∆ [−] 1.65 λres [−] 0.17

θ0 [−] 0.100 TM [s] 14425

Table 7.1: Time evolution of free bars. Parameters used in the simulation.

7.1 Free bar formation

Alternate bars appear due to intrinsic instability of the system composed by water flowing over

erodible bottom in almost-straight channels. This section concerns the numerical simulation of free

bar dynamics in straight computational domains. We propose two tests. In the first test we observe

the development of a train of bars from an initially almost-flat riverbed configuration. In the second

test, we assess the ability of GIAMT2D in correctly predicting the stability properties of selected

bars depending on flow parameters. We compare our results to those of the analytical bar theories

presented in section 6.2.1.

7.1.1 Time evolution of free bars

In this test we generate a train of free migrating bars from an almost-flat initial riverbed con-

figuration and assess the time evolution of bar amplitude. We set a straight, rectangular channel

having width W = 60 m in the computational domain [0,6000]× [0,60] m discretised with 33372

triangular cells. Flow is in the x direction. The lateral reflective boundary conditions are slip.

Concerning the upstream condition, we prescribe constant liquid inlet flow discharge Q and solid

feed in equilibrium with the hydrodynamic conditions, while a free outflow condition is applied

at the downstream end. We use the bedload transport formula of Wong and Parker [135] (see Tab.

2.1). The values of parameters for this test are given in Tab. 7.1.

Numerical generation of free bars has to be triggered by introducing some localised or diffused

perturbation. One approach consists of prescribing a small hump or scour in the river bed near the

inlet section. Such local perturbation triggers instability, which results in the growth of alternate

bed forms. Examples of this procedure are given in Bernini et al. [9] and Defina [45]. Another

178



7. Morphodynamic benchmarks: numerical applications

approach consists of introducing a small random perturbation throughout the domain of flat bed.

Here we choose the latter approach, which proves to be effective in triggering the development of

bar instability, and impose the following initial riverbed configuration:

η(x,y,0) = η0 (x)+η
R (x,y) (7.1)

being η0 (x) the flat configuration associated to the slope vector ~S = (Sx,0) and ηR (x,y) the random

perturbation, whose amplitude is set 5% of uniform flow depth. The numerical generation of free

bars requires to be constantly fed by periodically introducing a small perturbation of flat riverbed

elevation close to the upstream end. Otherwise, a train of bars would develop and propagate

downstream, finally leaving a flat configuration [9, 45]. This can be related to the convective nature

of free bar instability assessed by Federici and Seminara [51].

From the analytical theories of bars we recall that the key parameter controlling the formation

of free bars is aspect ratio β, to be compared with its critical value βcr. For the set of data in

the present test (Tab. 7.1) we have β > βcr, thus free bars of finite amplitude are expected to

develop from the slightly perturbed initial configuration (7.1). Notice that the wavenumber of

these bars is spontaneously selected by the amplification mechanism and, according to the lin-

ear theory, is equal to the wavenumber of the fastest-growing bar, i.e. slightly higher than λcr = 0.46.

Starting from the initial riverbed configuration (7.1) and conducting a movable-bed simulation we

observe the development of a train of alternate bars and measure their amplitude. The survey is

performed in the central part of the domain, far from the upstream and downstream boundary con-

ditions, and the final representative value of bar amplitude is obtained by averaging the amplitude

of each bar. The temporal trend obtained is represented in dimensionless form in Fig. 7.1. Bar

amplitude is scaled with the reference uniform depth ( A
D0

) while dimensionless time T (6.26) is

computed with reference to the morphological time scale TM = 14425 s (6.27). Markers represent

the output of the numerical model, while the full red line is a best fit of the numerical results

obtained using a sigmoid Boltzmann curve in order to highlight the general trend. This curve well

qualitatively compares with the output of analytical bar theories. From these results we observe that

initially, say for T < 3, the trend well approximates exponential growth prescribed by the linear

theory (6.11), while later non-linear effects damp the exponential growth, eventually allowing the

achievement of equilibrium amplitude (6.12), in agreement with the weakly non-linear theory [33].

The wavenumber obtained at equilibrium by averaging the wavelength of bars is λ = 0.47. This

value is in good agreement with that prescribed by the linear theory (λcr = 0.46) and with the

outcomes of weakly non-linear analyses [33], which suggest that bar wavelength selection is only
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Figure 7.1: Time evolution of free bars. The dimensionless amplitude of free alternate bars A
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is
plotted against dimensionless time T (6.26)-(6.27). The numerical results, represented
by symbols, are fitted with a Boltzmann sigmoid curve.

weakly affected by non-linear effects.

7.1.2 Numerical reproduction of the marginal curve

According to the linear bar theory, the evolution of a monochromatic perturbation having

wavenumber λ and infinitesimal amplitude is fully determined by the dimensionless parameters β,

ds and θ of the undisturbed uniform flow. Such perturbation may either get damped or amplify and

migrate and in the latter case propagate in the downstream or upstream direction. The marginal

curves reported in Fig. 6.3, drawn in the λ− β plane for given values of θ and ds, allow easy

identification of the states associated to these three kinds of behaviour, as we have explained in

section 6.2.1.

In this test we wish to prove the ability of the GIAMT2D numerical model in predicting the

fate of bar perturbations of selected wavenumber in agreement with the linear bar theory. We

remark that, unlike the previous test, here we wish to assess the response of the numerical model to

a monochromatic perturbation initially imposed having wavelength λ. Thus we assign the following

initial condition for bed elevation, given by a wave perturbation of the flat bed configuration

η0 (x) =−Sx:

η(x,y,0) = η0 (x)+ ε
P sin

(
πy
W

)
cos
(

2λ

W
x
)

. (7.2)
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# λ β

1 0.05 16.3

2 0.15 16.3

3 0.3 16.3

4 0.08 10.1

5 0.4 7.9

6 0.6 5.6

7 0.8 8.4

8 1 11.2

9 0.2 6.0

10 0.5 16.3

11 0.9 16.3

12 0.4 23.0

13 0.15 23.0

Table 7.2: Parameters for numerical reproduction of the marginal curve.

Perturbation amplitude εP must be small in order to comply with the hypotheses of the linear bar

theory. In practice we set εP = 0.05 D0, D0 being the uniform flow depth.

We have performed 13 runs setting different values of λ and β, as reported in Tab. 7.2. In

all the numerical runs we have been using the same values of the dimensionless parameters θ = 0.1,

ds = 0.061, with slope S = 0.01, relative density ∆ = 1.65 and porosity of the river bed λp = 0.4.

We have applied the bedload transport formula of Wong and Parker [135] and used rik = 0.3. For

the given set of data, the linear theory prescribes βcr = 6.28, λcr = 0.42, βres = 10.37, λres = 0.13.

For all the runs, the domain is [0, 300]× [0, 1] m, representing a channel having width W = 1 m,

discretised with 71476 triangular cells. Dimensional data such as discharge Q, uniform flow depth

D0 and sediment diameter Ds vary in each run and can be computed from the non-dimensional

parameters.

Numerical runs are conducted just for a few seconds: in the few initial integration steps the per-

turbation amplitude is seen to decay or amplify and, in the latter case, to propagate upstream or

downstream. The survey of numerical results is performed before amplifying waves could reach to

finite amplitude, i.e. still within the hypotheses of the linear bar theory.

The results of two runs, namely run 8 and run 12, are depicted in Figs. 7.2 and 7.3 respec-

tively in terms of longitudinal profiles of riverbed elevation computed at the left bank (analogous
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Figure 7.2: Numerical reproduction of the marginal curve. Bar stability (run 8). Longitudinal
profile of riverbed elevation obtained slicing the numerical solution along the left bank
plotted at time t = 0, 10, 20 s.

results are obtained on the other bank).

Let us focus on run 8 (Fig. 7.2). According to the linear theory, the combination of parameters

in this run should give rise to perturbation damping. Such behaviour is due to the extremely high

wavenumber (λ = 1, representing a very short bar), even though the channel aspect ratio for this

run is super-critical. Our numerical results well agree with the prediction of the linear theory, as we

observe from Fig. 7.2, where wave amplitude is seen to decay in time.

Let us consider then run 12 (Fig. 7.3). The linear theory in this case predicts amplification and

downstream migration. In detail, the value λ = 0.4 is quite close to that associated to maximum

amplification rate and the channel aspect ratio for this run is super-critical (β = 23.0 > βcr). From

Fig. 7.3 we observe that bar amplification for this run is correctly reproduced by the numerical

model. While amplifying, the bars migrate downstream, accordingly with the theory.

Concerning the runs associated to small wavenumbers, e.g. run 1 and run 13, the theory predicts

upstream migration and amplification: our numerical results confirm this prediction showing that

wave peaks grow and slightly move upstream with respect to the initial position.

The results of all the numerical runs are presented in Fig. 7.4. Here we plot the marginal curves of

the linear theory (full lines) together with the results of numerical runs represented by symbols.

Three kinds of behaviour are observed, namely suppression (damping) of riverbed perturbation

(red symbols), amplification and downstream migration (triangular blue symbols), amplification
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Figure 7.3: Numerical reproduction of the marginal curve. Bar instability (run 12). Longitudinal
profile of riverbed elevation obtained slicing the numerical solution along the left bank
plotted at time t = 0, 30, 90 s.

and upstream migration (circular light-blue symbols). The numerical results of GIAMT2D closely

match the linear theory.

The two tests presented in this section prove that the GIAMT2D numerical model is able to

correctly simulate the bar generation mechanism, both in terms of time evolution and wavelength

selection.

7.2 Numerical simulation of bifurcation stability

In this section we apply the GIAMT2D model to study the evolution of channel bifurcations.

Our benchmarks are the experimental observations of Bertoldi and Tubino [11] and the theoretical

model of Bolla Pittaluga et al. [14], which have been reviewed in section 6.3. The aim of the

present tests is to assess the capability of the numerical model to correctly predict the threshold

between the symmetrical and asymmetrical configurations depending on the characteristics of the

inlet flow.

Numerical simulations are performed on a Y-shaped domain coherently with the analytical model

[14]. The planimetric configuration is symmetrical and the downstream branches (b and c) draw

an angle of 15◦ with the longitudinal direction of the inlet channel a. Channels b and c have the
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Figure 7.4: Numerical reproduction of the marginal curve. The stability properties of all numerical
runs (symbols) are plotted together with the marginal curves of the linear bar theory
(full lines).

same width, the sum of which is equal to 1.3 times the width of channel a, as suggested by Griffiths

[55] in the case of symmetrical configurations. Such planimetric configuration is analogous to that

used by Bertoldi and Tubino [11]. We have performed 18 numerical runs. The dimensional size of

the domain changes in different runs in order to obtain the required values of the dimensionless

parameters β, θ, ds. This approach relies on the assumption that the morphodynamic processes

governing the evolution of bifurcations depend on dimensionless parameters and not on the absolute

size of channels, as suggested by the analytical model. In Fig. 7.5 a sketch of one computational

domain, discretised with a triangular mesh, is shown. Tab. 7.3 reports the parameters associated to

reference uniform flow in the upstream channel a for each run. The initial bed setup is given by

η(x,y,0) = η0 (x)+η
R (x,y) , (7.3)

where η0 (x) represents the initial setup associated to the slope vector ~S = (Sx,0), i.e. a flat plane

aligned with the direction of channel a, while ηR (x,y) is a random disturbance having amplitude

equal to 5% of undisturbed flow depth in channel a. For all runs we use Sx = 0.005. We apply

the disturbance throughout channel a, except close to the upstream boundary conditions. Use of a

random disturbance shall trigger instability, provided the considered configuration is physically

unstable. Runs are conducted using the bedload transport formula of Wong and Parker [135] and

imposing rik = 0.5 to quantify the effect of the lateral bed slope.
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Figure 7.5: Numerical simulation of bifurcation stability. Sketch of the computational domain.

Simulations are first conducted in fixed-bed mode until hydrodynamic equilibrium is achieved. At

this stage, the bed being perfectly flat in the transverse direction at the downstream end of channel

a, flow partition between channels b and c is symmetrical, which gives rQ = 1 (6.24).

Afterwards, we allow bedload transport and observe changes in riverbed elevation throughout the

domain. A key role in bifurcation evolution is played by alternate bars: if they form in channel

a and migrate downstream they may interact with the bifurcation, possibly causing alternate dis-

charge swaps around the equilibrium configuration. The random disturbance imposed in the initial

condition (7.3) may initially trigger the development of free bars; however, in order to limit their

influence, their formation is not further sustained.

We use the discharge ratio parameter rQ (6.24) as an indicator for the degree of symmetry in

the topographic configuration. Measuring rQ at different time stages during the simulation allows

us to detect the evolution trend. In order to compare different simulations, characterised by different

bedload intensity, we conveniently recast time in dimensionless form T (6.26) using the morpholog-

ical time scale TM (6.27). In Fig. 7.6 we report the computed patterns of discharge ratio rQ versus

dimensionless time T for runs 1, 2 and 9. Run 1 (black dashed line) and 2 (red line) represent the

evolution of bifurcations towards non-symmetrical configurations, while the bifurcation in run 9

(green line) has symmetrical equilibrium. Our results show that the characteristic time scale for

destabilisation is of the order of 10 times the morphological scale TM (6.27).
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# βa θa dsa

1 19.7 0.090 0.034
2 12.2 0.090 0.034
3 24.0 0.090 0.034
4 7.7 0.080 0.038
5 10.2 0.110 0.028
6 6.7 0.160 0.019
7 10.2 0.200 0.015
8 14.5 0.150 0.020
9 4.2 0.110 0.028

10 14.1 0.060 0.051
11 18.2 0.060 0.051
12 15.1 0.150 0.020
13 20.2 0.070 0.043
14 3.5 0.080 0.038
15 5.1 0.100 0.030
16 15.1 0.080 0.038
17 17.2 0.120 0.025
18 14.5 0.120 0.025

Table 7.3: Numerical simulation of bifurcation stability: non-dimensional parameters βa, θa and
dsa of each run.

In order to prove that the final configuration is not determined by the balanced initial condition (7.3)

we have performed again some runs imposing initial markedly imbalanced riverbed configurations.

The final configuration obtained with this setup is identical to that obtained using (7.3), which

confirms that asymptotic equilibrium only depends on the parameters of inlet flow, as predicted by

the analytical model [14].

In Fig. 7.7 we give a comprehensive presentation of our runs in terms of the discharge ratio

rQ measured at final time t = 10 TM. Results are presented in terms of the dimensionless pa-

rameters βa and θa related to the characteristics of undisturbed inlet flow. The runs ending with

non-symmetrical discharge partition (rQ < 1) are represented by square symbols in the βa−θa

plane, while those ending with symmetrical equilibrium (rQ ∼ 1) are represented by full triangular

symbols. Two distinct regions are clearly identified: stable symmetrical configurations are asso-

ciated to low values of βa and high values of θa, while unstable symmetrical configurations are

found for higher βa and lower θa. This general behaviour qualitatively agrees with the outcomes of

analytical and physical modelling (see section 6.3).

The numerical results can be interpreted in the light of the analytical model of Bolla Pittaluga et

al. [14] obtaining good qualitative agreement. We evaluate the parameter αB in the theoretical
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Figure 7.6: Numerical simulation of bifurcation stability. Discharge ratio rQ versus dimensionless
time T (6.26)-(6.27) for three numerical runs.

model which best fits the numerical results. As we show in Fig. 7.7, where the thresholds given by

the analytical model are represented by full lines, the optimal values of αB are found in the range

αB = 2.5÷3.

In Fig. 7.8 we plot our numerical results in the θa− βa plane together with the experimental

results of Bertoldi and Tubino [11]. Numerical results are represented by blue symbols, experimen-

tal data by red symbols. Triangular symbols are associated to symmetrical final configurations,

square symbols to non-symmetrical final configurations. Good agreement between the numerical

results and the experimental results is found, suggesting that the GIAMT2D model is able to

correctly reproduce the dynamics of bifurcations highlighted by physical modelling.

Moreover, with full lines we represent the threshold given by the theoretical model [14] plotted

for three different values of parameter αB. We use αB = 2.5 and αB = 3 (red and blue line) which

best fit the numerical results and αB = 6 (green line) which best fits the experimental results. Both

values fall within the suitable range αB = 1÷7 suggested by Bolla Pittaluga et al. [14]. The reasons

for the slight mismatch may be attributed to the approximations of mathematical and numerical

modelling and could be the matter for further analysis in future work.

The results of the numerical runs concerning channel bifurcations reported in this section confirm

that the GIAMT2D model correctly identifies the threshold in the inlet flow parameters separating
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the asymptotically symmetric and non-symmetric configuration, as described by the analytical

model of Bolla Pittaluga et al. [14]. Good agreement is found between the numerical results of

GIAMT2D and the experimental data of Bertoldi and Tubino [11].

7.3 Numerical simulation of morphodynamic influence

As we have seen in section 6.2.2, the morphodynamic influence of a localised planimetric

forcing perturbation is felt in the upstream or downstream direction depending on the channel

aspect ratio. According to the theory of Zolezzi and Seminara [141], forced bars shall develop only

and decay in the downstream direction if flow is sub-resonant (β < βres) or in the upstream direction

if flow is super-resonant (β > βres). This picture is supported by experimental observations by

Zolezzi et al. [141] on an U-shaped flume, where a 180◦ bend determines the forcing discontinuities

triggering steady patterns. Recently, Crosato et al. [38] have performed experimental runs in a

straight flume having a localised half-width constriction at the inlet section in order to investigate

the formation of steady bars downstream of the constriction.

In this section we aim at proving that the GIAMT2D model is able to correctly reproduce the

morphodynamic influence of a localised forcing disturbance by developing steady bar patterns in

agreement with the theory of morphodynamic influence. We conduct our numerical simulations

in a straight domain with a localised constriction, analogous to that in the laboratory experiments

of Crosato et al. [38]. The obstacle size is half the channel width and is located halfway from the

upstream and downstream end of the channel in order to observe the development of steady bars in

both directions. A zoom of the computational domain close to the constriction is given in Fig. 7.9.

We present the results of two runs: one is conducted in sub-resonant condition, the other one

in super-resonant condition. In both cases, the parameters defining the reference uniform flow are

θ = 0.100 and ds = 0.067 and the bedload transport formula of Wong and Parker [135] is applied.

The critical and resonant values of aspect ratio predicted by the linear theories for these values of

ds and θ are βcr = 8.06 and βres = 13.28. In the sub-resonant run we use β = 10.42 while in the

super-resonant test we use β = 16.72. In both cases we set channel slope Sx = 0.011 and rik = 0.5.

Starting from an initially flat bed configuration η0 (x) =−Sxx, we follow the time evolution of the

riverbed configuration. At the beginning of the simulation a pronounced alternate perturbation

appears downstream of the obstacle due to local scour both in the sub-resonant and super-resonant

case. This alternate perturbation quickly amplifies and migrates downstream while elongating. At

the same time, albeit at slower pace, in the upstream channel free bar formation and downstream
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Figure 7.9: Numerical simulation of morphodynamic influence. Sketch of the straight computa-
tional domain with a localised constriction.

migration is observed. This is particularly evident in the super-resonant run. These migrating bars

are able to pass through the constricted section and interact also with the downstream forced bars.

Later, only in the super-resonant case, we observe that migrating bars coming from the upstream

reach tend to slow down and eventually stop as they reach the constricted section. These steady

bars are longer than typical free alternate bars.

During all the simulation, we observe bed aggradation associated with one-dimensional non-

uniformity in bedload transport capacity due to the constriction. The characteristic time of aggra-

dation is well described by the morphological scale TM derived in (6.26), from the Exner one-

dimensional balance. We remark however that the longitudinal adaptation is too weak to alter the

values of θ, ds and β appreciably and therefore does not seem to significantly affect two-dimensional

morphodynamic influence. For both configurations, the final almost-steady topographic configura-

tion is reached at about T ∼ 10 TM.

The difference between the final riverbed configuration in the sub- and super-resonant case is

reported in Fig. 7.10. Here we represent in terms of contourplots the variation in riverbed ele-

vation ∆η with respect to the initial setup obtained at dimensionless time T = 12.3 (6.27) in the

sub-resonant (SUB) and T = 13.1 in the super-resonant (SUPER) run. The bed elevation variation

has been preliminarily filtered of one-dimensional variations and is made dimensionless with the

reference to uniform flow depth D0. While in both runs a steady bar pattern is found downstream

of the constriction, only in the super-resonant case a steady pattern is observed upstream of the

constriction.
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Figure 7.10: Numerical simulation of morphodynamic influence. The bed variation with respect
to the flat initial condition scaled with uniform flow depth ∆η/D0 is computed at
dimensionless time T = 12.3 (6.26)-(6.27) in the sub-resonant (SUB) and T = 13.1 in
the super-resonant (SUPER) run. Planimetric axes are distorted.

In Fig. 7.11 we plot the riverbed configuration obtained in the super-resonant case at dimensionless

time T = 13.1 . The solution is represented by two longitudinal profiles taken close to the right,

unperturbed straight bank (blue line) and to the left bank with the obstacle (red line) respectively.

The alternate steady bar pattern is evident both downstream and upstream of the constriction.

These results agree with the theoretical suggestions concerning morphodynamic influence from

the linear theory of Zolezzi and Seminara [141] and the experimental observations of Zolezzi et al.

[140], suggesting that the GIAMT2D model correctly predicts the direction of morphodynamic

influence.

Besides representing an important morphodynamic test, this is a preliminary outcome on a topic

that deserves further investigations. A key question is related to the nature of the steady bars we

have observed. Are they purely forced bars in the sense of the spatial bars in Zolezzi and Seminara

[141] or instead free bars which have progressively ceased their migration due to the effect of the

constriction on sediment transport? A possible way to answer is to measure their length. From

the theory we know indeed that the wavelength of forced bars is L ∼ 15÷20W , corresponding

to wavenumber λs = 0.15÷0.2, i.e. roughly twice as long as free migrating bars. For the set of

data used in the present simulations, the theory predicts λs = 0.17 corresponding to L = 18W and

λcr = 0.46, corresponding to L = 6.8W . Concerning our numerical results, in the sub-resonant

case we measure L∼ 16W , while in the super-resonant case (Fig. 7.11) we obtain L∼ 11W in the

downstream reach and L ∼ 9W in the upstream reach, corresponding to λ = 0.28 and λ = 0.35
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respectively.

These bars are too long to be considered free bars, but too short to be purely forced bars. A possible

interpretation of this discrepancy is that they result from the non-linear interaction between purely

free and forced bar components. Such interaction combines the natural tendency to the formation

of free bars (notice that both simulations are conducted in β super-critical conditions) with the

tendency to the development of forced bars. This seems reasonable because both types of bars are

theoretically predicted to occur in the straight reaches separated by the constriction.

No theory or modelling approach has been developed so far to predict the dynamics of such

interaction in the basic straight channel configuration. To test the interaction hypothesis, in the

next chapter the GIAMT2D model is integrated with the linear theories and remotely-sensed field

observations.

7.4 Conclusions

In this chapter we have presented applications of the GIAMT2D numerical model to well-

established problems in river morphodynamics, namely the development of free bars in straight

channels, the dynamics of river bifurcations and the assessment of the direction of two-dimensional

morphodynamic influence associated to a localised disturbance. These cases, which had already

been studied by classical morphodynamic approaches (analytical models and laboratory experi-

ments) provide morphodynamic benchmarks for our numerical model. From the results presented

192



7. Morphodynamic benchmarks: numerical applications

in this chapter we can state that the numerical model well reproduces the basic two-dimensional

mechanisms responsible for the morphodynamic evolution of single-thread and bifurcating channels.

Bars and bifurcations constitute basic morphodynamic units composing real river systems: their

evolution and interaction plays a key role in determining the morphodynamic changes in natural

rivers.
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8 Non-linear interaction between free and
forced bars in straight channels

In the previous chapter we have performed extensive validation of the GIAMT2D numerical

model against well-established results of analytical theories and laboratory experiments in river

morphodynamics. Once ascertained that GIAMT2D is able to correctly reproduce the salient fea-

tures of basic morphodynamic processes such as bars and bifurcations and to predict the direction

of morphodynamic influence associated to a localised disturbance, we can confidently apply it in

order to carry out an original study in morphodynamics.

We focus on the steady bar patterns generated by a local disturbance in a straight channel, obtained

by numerical simulations in section 7.3 of chapter 7. The starting point for the present study is

the left-open question concerning the nature of these bars: they have been found longer than free

bars, but too short compared with the forced bars in the linear theory of Zolezzi et al. [141]. In this

chapter we will observe the same behaviour in the steady bar pattern in a channelised reach of the

Rhine river bordering Switzerland and Lichtenstein. These observations will be integrated by a

theoretical analysis of the potential interaction dynamics between free and forced bars and their

consequences in determining the final steady bar pattern associated to a localised disturbance.

Although existing morphodynamic theories provide solutions for free bars or forced bars as individ-

ual concepts, or even for their interaction in periodic geometrical configurations, understanding

these interactions in general channel configurations is still out of the capabilities of analytical

modelling (see section 6.2.3 of chapter 6 and references therein). In the present chapter, merging

the outcomes of the free bar theory of Colombini et al. [33] with those of the theory of forced bars

[141], we argue that two parameters control the interaction, namely the channel aspect ratio β and

the distance between the resonant and critical threshold βres−βcr or its relative value βres−βcr
βres

. While

the role of β in controlling the development of free and forced bars is widely accepted, the role of

the distance βres−βcr in favouring the free or forced components in the interaction is quite a novel

and interesting concept. We further validate our theoretical speculations by means of numerical

modelling, using the fully non-linear GIAMT2D solver. The research hypothesis developed on the
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8. Non-linear interaction between free and forced bars in straight channels

basis of the existing theories are satisfactorily confirmed by the numerical simulations. Finally, we

check our results against the field data of the Rhine river obtaining good agreement. These results

have been first presented in [132]. A full journal paper is in preparation [142].

The chapter outlines as follows. In section 8.1 we introduce the physical problem moving from the

case of the Rhine river and highlight the need for a theory of free-forced bar interaction, which is

presented in section 8.2. Finally in section 8.3 we prove our theoretical speculations by means of

numerical modelling and comparison with the field data.

8.1 Interaction between free and forced bars in the Rhine river

As common to many morphologically regulated rivers worldwide, the considered channelised

reach of the Rhine river has been designed as a sequence of straight reaches of varying length and

constant channel width. In Fig. 8.1 the reach under investigation is represented. Consider the

mildly curved bend with uniform radius highlighted with a yellow ellipse in the figure. Upstream

of that bend, the river is almost straight for about 9.5 km, thus reasonably allowing for complete

development of free migrating bars. Downstream of the planar discontinuity, a bar pattern appears

again. A couple of kilometres downstream of the considered bend, flow discharge abruptly increases

due to a lateral tributary and channel width decreases, thus decreasing the channel aspect ratio and

suppressing free bar instability.

Fig. 8.2 illustrates the initial and final alternate bar configuration over a nine-year time span. The

background represents the pattern observed in October 2009, while that in December 2000 is

represented by contour lines. Notice that between 2000 and 2009 the bars in reach U (upstream of

the bend) have migrated for about 300 m while the bars in reach D (downstream of the bend) have

remained fixed.

These bar configurations allow us to draw some hypotheses about the underlying morphody-

namics in the Rhine river. The presence of free migrating bars in the upstream reach suggests

that channel aspect ratio in formative conditions might be super-critical (β > βcr). The observed

steady bar pattern in reach D could be triggered by the planimetric disturbance represented by the

localised curvature discontinuity at the downstream end of the bend. Since the forced bars appear

only downstream of the bend and not upstream, recalling the concept of morphodynamic influence

[141] we hypothesise that flow is in sub-resonant condition (β < βres).

These hypotheses are tested by computing the channel aspect ratio and its critical and resonant value

in formative conditions. We assume channel width W ∼ 100 m from aerial geo-referenced images.

Channel slope is estimated as S∼ 0.003. Flow rate statistics available at the Swiss Federal Office
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N

~9.5 km

Figure 8.1: Wide aerial photography of a reach of the Rhine river bordering Switzerland and
Lichtenstein.

for the Environment1 allow us to calculate the formative discharge as 1730 m3s−1. An estimate for

the mean sediment diameter is Ds ∼ 0.05 m (courtesy of Dr. Jaeggi2), which gives the Manning

and Strickler friction parameters n−1 = Ks = 35 m1/3s−1 using relation (2.11). From this set of

data we compute uniform flow water depth D0 ∼ 3.7 m, which gives channel aspect ratio β = 13.5.

Moreover, from the dimensional data we obtain θ = 0.13 and ds = 0.014, for which the linear free

bar theory predicts βcr = 11.9 and βres = 21.0 adopting the bedload transport formula of Wong and

Parker [135]. Thus, the considered reach in formative flow condition is in bar super-critical and

sub-resonant regime, which confirms the initial hypotheses made on the basis of the multi-temporal

image analysis.

We shall now compare the theoretically predicted bar wavenumbers to those obtained by field

observations. For the above values of parameters, the linear theory gives λcr = 0.41 and λres = 0.13.

From the aerial geo-referenced snapshot in Fig. 8.2 we measure bar wavelength L = 855 m in reach

U and L = 1530m in reach D, which correspond to λ = 0.40 and λ = 0.22 respectively. Concerning

the migrating bars in reach U, very good agreement between the predicted wavelength of free bars

1http://www.bafu.admin.ch/hydrologie/01834/02049/index.html?lang=de
2http://www.rivers.ch
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Figure 8.2: Location of alternate bars in the considered reach of the Rhine River. Red contours
indicate the bar pattern observed in December 2000 and the background image refers to
the pattern in October 2009. During this period, in the upstream straight segment U
shorter alternate bars have been migrating downstream, while longer alternate bars in
the downstream straight segment D have been keeping fixed, both being subjected to
the same formative conditions.

and the measured wavelength is found. This is coherent with the finding that the reach is under

sub-resonant conditions, indicating that migrating bars should be the only type of bars to be found

upstream of the bend.

Let us then focus on the steady bar pattern in reach D, where theoretically both steady and migrating

bars can occur. The nature of these bars poses a problem analogous to that discussed at the end

of section 7.3, in relation to morphodynamic influence. Our field observations show that the bars

in reach D present intermediate wavelength between that of free and forced bars, being longer

than free bars, but shorter than the purely forced bars described by the theory of Zolezzi and

Seminara [141]. Thus, analogously to our numerical results on two-dimensional morphodynamic

influence (section 7.3), we hypothesise that the steady bars observed on the Rhine river arise from

the non-linear interaction of free and forced bars and that their final wavelength is controlled by the

relative "strength" of these components in the natural competition.

This field example highlights the need for a non-linear theory able to account for these inter-

actions in order to explain the actual bar dynamics in real gravel-bed rivers. However, as we have
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seen in section 6.2.2 of chapter 6, a morphodynamic theory able to account for these processes in

the basic straight-channel configuration does not exist. We choose to revisit the outcomes of the

existing linear theories, in order to develop a unified interpretation framework. This is achieved in

the next section.

8.2 Re-examination of linear theories

Here we re-examine the linear theories of free bars and forced bars exposed in sections 6.2.1

and 6.2.2 of chapter 6 in order to merge their most relevant outcomes and develop a framework

useful for interpreting free and forced bar interaction in straight reaches. Herein we argue that the

interaction process can be viewed as a competition between free and forced bars. We therefore

revisit these theories in order to assess how the relative "strength" of free and forced bars can

depend on the controlling parameters.

We recall from the two theories the role of channel aspect ratio β compared to the critical and

resonant thresholds βcr and βres in controlling the bar dynamics.

Free bars are able to develop only if β exceeds βcr; their amplitude from the theory of Colombini

et al. [33] increases with the distance β−βcr accordingly with equation (6.12). We claim that

the strength of free bars can be represented by their amplitude, i.e. free bars producing larger

scour-deposition sequences can increasingly dominate the competition with steady bars. Therefore,

the distance β−βcr is here identified as the controlling parameter for the strength of free bars.

Measuring the strength of steady bars requires a different approach, because their amplitude is

related to the type of forcing disturbance. Because these bars are damped in space, a convenient

inherent measure is their spatial damping rate λsr. Aspect ratio β compared to its resonant value

βres is the parameter controlling characteristic damping length and direction. In the sub-resonant

region (β < βres) bar amplitude shall decay in the downstream direction, while in the super-resonant

region (β > βres) it shall decay in the upstream direction. When aspect ratio approaches the resonant

value, the characteristic damping length tends to infinity, i.e. the morphodynamic influence of a

disturbance does not get spatially damped, thus maximising the spatial occurrence of forced bars

and therefore their strength in the interaction with free bars. Therefore we assume the distance
|β−βres| as inverse measure of the strength of forced bars, no matter in this case whether in sub- or

super-resonant condition.

What does the combination of the two theories tell us concerning the interaction of free and

forced bars? We preliminarily observe that βres is always higher than βcr. Consider Fig. 8.3, where

the outcomes of the theory of forced bars (left panel) and of the theory of free bars (right panel) are
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Figure 8.3: Variation of expected steady and migrating bar wavelength with channel aspect ratio
according to the linear theory for steady forced bars (left panel) and free migrating bars
(right panel). Three regions are identified. S: Steady region β < βcr: steady bars are
expected to grow and develop in presence of a local disturbance. I: Interaction region
βcr < β < βres: free and forced bars can interact at non-linear level. M: Migrating bar
region β > βres: free migrating bars tend to overcome possible steady bars.

jointly represented. On this basis, in Fig. 8.3 we propose to distinguish three distinct regions in

which we expect different interaction dynamics:

• S: Steady bar region, β < βcr. No migrating bars occur for β < βcr and therefore only steady

bars can develop in this region.

• I: Interaction region, βcr < β < βres. The extent of this region, defined as the distance

βres−βcr, is expected to control the relative importance of migrating bars and forced bars in

the interaction. In detail, if such extent is low, migrating bars will play a relatively minor

role in the interaction, while if it is high they are expect to govern the interaction. This is

readily explained starting from the above considerations about the distances β−βcr and
|β−βres|. We have assumed that the strength of free bars increases with the distance β−βcr,

while the strength of forced bars increases with proximity to resonance, i.e. with decreasing
|β−βres|. Thus if the width of the Interaction region βres− βcr is low, forced bars are

favoured by the low values of |β−βres|, while the low values of β−βcr are unfavourable for

free bars. Conversely, if the Interaction region is wide, free bars are expected to prevail in

the interaction.

• M: Migrating bar region, β > βres. For increasing values of β larger than βres, the amplitude

of free migrating bars increases along with the spatial damping of steady bars; in this region

migrating bars are expected to increasingly dominate the interaction as β increases.
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We therefore hypothesise that the main morphodynamic parameters controlling steady-migrating bar

interaction are aspect ratio β and the difference βres−βcr computed under bar formative conditions.

The fully non-linear GIAMT2D numerical model is a suitable tool for studying the considered

non-linear processes. Thus in the next section we will test our hypotheses by means of numerical

modelling. Moreover, we will use the field case presented in section 8.1 for the validation of our

study.

8.3 Steady-migrating bar interaction in a straight channel with a
localised constriction

8.3.1 Simulation setup

We consider again the channel configuration adopted in section 7.3. The domain is represented

by a straight channel with a localised constriction obstructing half of the channel width (see Fig.

7.9). We perform three sets of numerical simulations, which we denote with T1, T2 and T3. For

all sets, we use the bedload transport formula of Wong and Parker [135] (see Tab. 2.1). Each of

these sets of runs is characterised by a unique combination of θ and ds, which gives a unique value

for the critical and resonant aspect ratio (βcr and βres) per set. We wish to investigate whether the

interaction of free and forced bars is controlled by the distance between the resonant and critical

aspect ratio βres−βcr, as we have hypothesised in the previous section. Thus the combinations

of θ and ds are chosen so as to obtain different values for such distance. The non-dimensional

parameters for the three sets and the related critical and resonant threshold are summarised in Tab.

8.1.

Within the same set, several runs have been performed varying the value of aspect ratio β. These

values are reported in Tab. 8.2. This procedure allows us to explore the three regions defined by the

two thresholds βcr and βres. Notice that all runs are in β super-critical conditions (β > βcr), i.e. in

all runs free bars are expected to play a role in determining the final steady bar wavenumber. In

order to keep ds and θ constant within each set of runs, even with varying uniform flow depth, the

absolute sediment size Ds changes in each run.

Furthermore in Tab. 8.1 we report the uniform flow Froude number Fr of the three considered

configurations, given by

Fr =Ch
√

θ∆ds =Ch
√

S , (8.1)

where the Chézy coefficient Ch (ds) has been estimated using the logarithmic relation (2.13). Notice

that all the three sets of simulations are characterised by trans-critical values of the Froude number

0.8 . Fr . 1.2. As we have explained in section 5.1 of chapter 5, the numerical solution of
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hydro-morphodynamic problems in trans-critical flow conditions requires a coupled approach.

Thus, the present application once again motivates the choice of a coupled solution strategy in the

GIAMT2D numerical solver.

parameters T1 T2 T3

θ 0.10 0.06 0.15

ds 0.067 0.111 0.044

rik 0.5 0.5 0.5

S 0.011 0.011 0.011

Fr 1.10 0.97 1.20

βcr 8.06 4.63 9.64

βres 13.28 6.24 19.33

λcr 0.46 0.47 0.43

λres 0.17 0.15 0.15

Table 8.1: Steady-migrating bar interaction in a straight channel with a localised constriction.
Parameters and thresholds of the sets T1, T2 and T3.

8.3.2 Results and discussion

In all runs we have observed similar evolution dynamics. Migrating bars develop in the reach

located upstream of the obstacle and are initially able to pass through the constricted section. The

development of the steady bar pattern is usually slower. At some stage in the downstream reach

the migrating bars slow down and tend to elongate while in the upstream reach the migrating bars

tend to be stopped by the obstacle. Both in the upstream and downstream reach the length of the

resulting bars changes in different runs, depending on the reference flow aspect ratio β.

In Fig. 8.4 we observe time evolution of the steady bar wavenumber measured downstream

run T1 T2 T3

1 10.42 6.52 14.29

2 12.16 7.46 18.06

3 14.56 8.45 22.53

4 18.06 9.89 23.98

5 20.03 - 26.55

Table 8.2: Steady-migrating bar interaction in a straight channel with a localised constriction.
Values of aspect ratio β in the simulations in sets T1, T2 and T3.
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Figure 8.4: Steady-migrating bar interaction in a straight channel with a localised constriction.
Time evolution of the first downstream bar wavenumber for the runs of set T1.

of the constriction for the runs in set T1. Bars are initially very short (λ∼ 0.55÷0.7) and tend to

elongate in time, finally reaching a steady state. The time needed to reach a steady bar pattern is

found around ten times the morphological time scale (6.27). The final wavenumber is found to

be an increasing function of the reference uniform flow aspect ratio β of each run (see Tab. 8.2):

for higher values of β shorter bars are found, having wavelength closer to that of free bars. This

suggests that, for increasing β, free bars tend to play a progressively dominant role, in agreement

with our speculations presented in the previous section. Analogous results are obtained for sets T2

and T3.

We shall now interpret our numerical results by analysing the values of these equilibrium wavenum-

bers. In Fig. 8.5 we report in the β−λ plane the steady-state values of bar wavenumber for the five

runs in set T1 by circular symbols, together with the marginal curves of the free-bar theory (red and

dashed black line), the curve corresponding to the fastest-growing free bars (light-blue dashed line)

and the wavenumber of forced bars (blue dashed line). Full symbols represent the wavenumber of

the bars observed downstream of the constriction, while empty symbols represent the bars observed

upstream (if present, i.e. only in super-resonant runs).

As we have observed in Fig. 8.4 concerning steady-state wavenumbers, a consistent trend relating

wavenumbers and aspect ratio can be detected. The bar wavenumber progressively increases with

increasing values of β, tending to the most unstable free bar wavenumber λm predicted by the

linear theory. Such behaviour can be interpreted recalling that the amplitude of free bars, i.e. their

strength in the interaction with the forced component, increases with the difference β−βcr. Larger
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amplitudes reasonably imply that free bars progressively dominate in the competition, thus shifting

the wavenumber of the equilibrium bar pattern towards the wavenumber of the fastest growing free

bar. Conversely, when the aspect ratio decreases, the wavenumber of the resulting bar configuration

progressively tends to that of the steady bars.

This trend is detected for the bar wavelengths measured both upstream and downstream of the

constriction. However, the strength of the free-bar component is found to be higher in the upstream

case compared to the downstream case. This may be due to stronger interaction of the free bars in

the upstream reach, possibly because in this case free bars are allowed to directly collide with the

constricted section, while in the downstream case the propagation of free bars from the upstream

reach is partially prevented by the constriction.

In Fig 8.5 we notice that the theoretical wavenumber of steady bars λsi (β,θ,ds), represented

by a blue dashed line, is very well approximated, for all the values of β corresponding to the numer-

ical runs (symbols), by the resonant wavenumber λres (θ,ds), which takes the value λres = 0.17 in

set T1. In the following, for sake of clarity in the graphical presentation of our results, we will use

λres in place of λsi, thus dropping the (very weak) dependence of the steady bar wavenumber on the

204



8. Non-linear interaction between free and forced bars in straight channels

aspect ratio value of each run.

Next, we consider the role of the second control parameter, i.e. the distance between βres and βcr,

focusing on the bar wavenumbers measured downstream of the constriction for the three sets T1, T2

and T3. We recall that these sets are characterised by different values of θ and ds, giving different

values of βcr and βres. Results are represented in Fig. 8.6 in terms of wavenumber λ and relative

distance of aspect ratio from the resonant value β−βres
βres

. In Fig. 8.6 we highlight by horizontal full

lines the values of βcr−βres
βres

for each set of runs, related to the amplitude of the Interaction regions I1,

I2 and I3. Moreover we plot by dashed lines the theoretical wavenumber of steady bars λres and of

free bars λcr. Preliminarily we notice that all the sets show a consistent trend with β, analogous to

that obtained for T1 in Fig. 8.5. Then, we focus on the range of wavenumbers associated to each

set.

We observe that the runs of set T2 (red symbols) give a wavenumber close to λres, while those of T3

(blue symbols) give a wavenumber closer to λcr and T1 gives intermediate wavenumbers between

T2 and T3. Such behaviour can be interpreted considering the value of the relative distance βcr−βres
βres

associated to each set and related to the amplitude of the Interaction region. We have argued that

this is a good measure of the strength of free and forced bars in their mutual interaction (see section

8.2). Set T3 is associated to the widest Interaction region, set T2 to the narrowest.

Higher wavenumbers, closer to those of free bars, are found for sets of simulations with wider

Interaction region, thus suggesting that the larger the Interaction region is, the stronger free bars

are in the non-linear mix. This substantiates the theoretical speculations in section 8.2.

In Fig. 8.7 we plot the same wavenumbers as in Fig. 8.6, measured downstream of the con-

striction (full symbols), together with the wavenumbers of the bars observed upstream (empty

symbols). Due to intense interaction with free bars upstream of the constriction, it is more difficult

to identify a clear trend concerning the simulations carried out in super-resonant conditions. Gener-

ally the upstream wavenumbers are higher than the downstream wavenumbers, thus supporting the

idea that the signal competition might be stronger in the upstream case than in the downstream case.

Finally, we aim at re-plotting our results in terms of the uniform flow parameters β and Fr. The

latter parameter can be obtained from the Shields number θ, relative grain size ds and the Chézy

coefficient Ch in the form (8.1), where we assume Ch =Ch (ds) through the logarithmic relation

(2.13). In the following, we take ds as constant, thus obtaining from equation (8.1) that Fr = Fr (θ)

in the form

Fr ∝
√

θ . (8.2)
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In general, critical and resonant aspect ratio βcr and βres depend on θ and ds. With constant ds,

we are allowed to drop their dependence on this parameter, which enables us to draw the curves

representing βcr (θ) and βres (θ) as functions of Fr (θ) (8.2) in the Fr−β plane. This is achieved in

Fig. 8.8, using ds = 0.02. The critical threshold βcr (red line) discriminates between the sub-critical

and super-critical bar region, while the resonant threshold βres (blue line) separates the sub- and

super-resonant bar region. Thus, the three regions introduced in section 8.2, namely the Steady

bar region S (β < βcr), the Interaction region I (βcr < β < βres) and the Migrating bar region M

(β > βres) are easily identified in this representation. Fig. 8.8 clearly shows that the amplitude

of the Interaction region decreases moving towards small Froude numbers and increases for high

values of Froude.

In Fig. 8.9 our numerical results of three sets of runs (symbols) are plotted together with the

critical and resonant thresholds (full and dashed line respectively). Notice that three sets of critical

and resonant thresholds are represented, matching the dimensionless grain size of each set of runs

(see Tab. 8.1). This representation does not carry any information about the bar wavenumbers,

but gives immediate visualisation of the expected behaviour in terms of the free and forced bar

interaction. It suggests that the influence of migrating bars in set T2 should be weak because the

Interaction region is rather narrow for these runs. Set T3 instead, for which the Interaction region

is much wider, is expected to show greater influence of free bars.
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8.3.3 The case of the Rhine river

Finally, we come back to the case of the Rhine river introduced in section 8.1 and compare

these field observations with our theoretical-numerical framework. We focus on the wavelength of

the steady bars observed downstream of the bend in Fig. 8.2. In section 8.1 we have observed that

these bars, having wavenumber λ = 0.22, are longer than linear free bars (λcr = 0.41), but shorter

than purely forced bars (λres = 0.13). This has suggested that they may result from their non-linear

interaction.

Using the parameters given in section 8.1, we represent the Rhine river by a green star-shaped

symbol in Fig. 8.10. With a green line we also represent the relative distance between the critical

and resonant threshold βcr−βres
βres

for the Rhine, representing the amplitude of the Rhine Interaction

region IRhine. Moreover we plot the output of the numerical runs T1, T2 and T3 previously described

and the associated lines representing the relative distance of the critical and resonant threshold for

the numerical simulations. Here, concerning the numerical results we restrict our attention to those

obtained downstream of the constriction. From the chart we notice that the case of the Rhine river

is intermediate between that of runs T1 and T3 in terms of the distance βcr−βres
βres

, i.e. amplitude of

the Interaction region. Moreover we observe that the wavenumber of the bars in the Rhine river

approximately falls in the range of the chart between the results of sets T1 and T3, thus providing

good agreement of the observations with the numerical results. This represents a confirmation of
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Figure 8.10: Steady-migrating bar interaction in a straight channel with a localised constriction.
The wavenumber of the steady bar pattern of the Rhine river is plotted together with the
wavenumbers of the three sets of numerical runs T1, T2 and T3 measured downstream
of the constriction. The horizontal full lines denote the parameter βcr−βres

βres
for the Rhine

river (green line) and for each set of runs, related to the amplitude of the Interaction
region IRhine, I1, I2, I3.

the role of the parameter βres−βcr
βres

in controlling the interaction of free and forced bars in nature,

together with aspect ratio β. This field application provides further support to the suitability of the

GIAMT2D numerical model to simulate the morphodynamics of gravel-bed rivers.

8.4 Conclusions

In this chapter we have conducted an original study in river morphodynamics by integrating

numerical modelling, existing morphodynamic theories and remotely-sensed field data. The aim of

this study was to address the non-linear interaction between free and forced bars in straight channels.

We have hypothesised that the steady bar pattern arising from a forcing disturbance in a straight

channel results from the interaction of a free and forced bar component. This was suggested by our

previous observations on the wavenumber of the steady bar pattern generated by the GIAMT2D

model in a straight channel with a localised constriction (section 7.3), is coherent with existing

theoretical analyses and matches our observations of a steady bar pattern in an almost-straight

channelised reach in the Rhine river from remotely-sensed field data.

Reviewing the bar theories, we argued that the channel aspect ratio β and the distance between the

resonant and critical thresholds βres−βcr, or its relative value βres−βcr
βres

, are the two parameters con-
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trolling the non-linear interaction between free and forced components in steady bars. For different

values of aspect ratio three regions can be identified, namely the Steady bar region (β < βcr), the

Interaction region (βcr < β < βres) and the Migrating bar region (β > βcr).

We have conducted three sets of numerical runs in a straight channel with a localised constriction

and studied the resulting steady bars in order to highlight the relationship between their wavenumber

and the above controlling parameters. Furthermore we have reconsidered the case of the Rhine

river in light of the theoretical framework. The numerical and field results are fairly consistent with

our theoretical speculations.

The applications presented in this chapter prove that the GIAMT2D model is a tool able to

reproduce the highly non-linear morphodynamic behaviour of gravel-bed rivers and can also be

used for the development and testing of theories in river morphodynamics.
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This thesis concerns the development, testing and application of a two-dimensional numerical

model, regarded as GIAMT2D, able to address the hydro-morphodynamic evolution of gravel-bed

rivers. GIAMT2D solves the two-dimensional shallow water-Exner model, describing free-surface

flow in open channels with erodible bed, where sediment transport mainly occurs as bedload. The

model shall be generally applicable to natural and regulated gravel-bed river systems: thus the

solution strategy has been developed having in mind the main distinctive features of gravel-bed

rivers.

More specifically, the model is able to account for the two-dimensional (x, y) character of the flow

and transport condition, which reflects the typical shallowness encountered in gravel-bed rivers,

by employing a two-dimensional formulation of the mathematical problem. Planform complexity,

resulting in irregularly-shaped computational domains, is handled using domain discretisation by

unstructured meshes. An adaptive and robust wetting-and-drying procedure allows GIAMT2D to

deal with the presence of possibly dry regions in the domain, whose extent and location may change

in time accordingly with the unsteady flow regime and the hydro-morphodynamic evolution of the

river system. Bedload transport and related morphodynamics in Froude trans-critical flow condi-

tions, which are likely to occur under formative conditions in many gravel-bed rivers, is correctly

taken into account by adopting a coupled formulation of the hydrodynamic and morphodynamic

problem.

The coupled shallow water-Exner model results in a non-conservative system of PDEs, which is

hyperbolic within the range of flow data typically found in rivers, to be solved by a shock-capturing

path-conservative method in the framework of finite volumes. A key characteristic of the con-

sidered problem is that the solution of the Riemann problem is not readily available if complex,

empirically-derived bedload transport formulae of common use in the engineering practice are

applied in computations, thus making the upwind solution approach unsuitable: application of the

centred approach, not requiring detailed knowledge of the system eigenstructure, is mandatory.

The GIAMT2D model is based on a refined finite volume scheme of the centred type, namely

UPRICE2-Cδ, in which an upwind bias, consisting of upwind information based on the system
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eigenvalues, is included in computations. Absence of Riemann solvers and numerical integration of

the Roe matrix (centred philosophy) allows the use of any bedload transport formula, while the

insertion of an upwind bias significantly improves accuracy in the solution of contact waves and

in computations carried out at low CFL number. The UPRICE-Cδ scheme results from original

research in applied mathematics, concerning the development of upwind-biased centred schemes for

conservative and non-conservative homogeneous hyperbolic systems of PDEs, whose performance

is thoroughly assessed in a suite of classical numerical tests for the shallow water equations. These

numerical applications show that the proposed schemes are able to improve accuracy with respect to

standard centred methods in the solution of contact waves (shear waves, contact discontinuities), in

the computations performed at low CFL and in general on irregular meshes, where a wide range of

CFL number is induced by mesh variability. In these cases, the solution of upwind-biased methods

is comparable to those obtained by upwind methods based on incomplete Riemann solvers.

The model, based on the above path-conservative upwind-biased scheme extended to second-

order accuracy in the ADER framework, is first tested employing well-established test cases with

fixed and movable bed conducted in idealised configurations. These applications highlight the

capabilities of the model to correctly and accurately solve the equations in various cases of most

interest for gravel-bed streams, e.g. in computations at low local CFL, in the solution of wet-dry

fronts with fixed and movable bed and in the prediction of sediment transport in Froude trans-critical

conditions.

After proving that the GIAMT2D model correctly solves the equations, we have assessed its ability

in reproducing the basic processes which are responsible for the morphodynamic evolution of

gravel-bed rivers, namely the development of free and forced bars and the stability of bifurcations,

for which analytical solutions and laboratory data, obtained in simplified configurations, exist. The

approach of systematically testing the numerical model performance against these "morphody-

namic benchmarks" has seldom been employed in numerical morphodynamic modelling and is

herein proposed as a preliminary step with respect to the model application to real cases. These

applications show that GIAMT2D correctly reproduces most of the relevant dynamics of the unit

morphodynamic processes.

With the support of the above testing, the model has been employed to study the non-linear in-

teractions between free and forced bars in straight channels, responsible for the development of

the actual bar pattern observed in rivers, for which a mature analytical theory is not available.

Focusing on the simple configuration given by a straight channel having one localised constriction,

the aim of this analysis was to identify the parameters controlling the relative weight of free and

forced bars in their non-linear competition. This exercise has resulted in an original modelling

analysis in the field of river morphodynamics, conducted by integrating remotely-sensed field
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observations on alternate bars dynamics in the upper Rhine River with the outcomes of the existing

linear bar theories and numerical results. Critical re-examination of the bar theories has allowed

identification of two controlling parameters for the interaction, namely the channel aspect ratio

β and the distance between the resonant and critical aspect ratio βres−βcr, or its relative value
βres−βcr

βres
. These physically-based research hypotheses have been extensively validated by performing

numerical runs using the GIAMT2D model and by comparison with the field data.

The present Ph.D. research has allowed to develop the GIAMT2D numerical model, whose innova-

tion relates both to the discipline of applied mathematics and of river morphodynamics. Further

work is needed to develop applications to real cases and to improve the existing algorithms.

Preliminary applications to the morphodynamics of real gravel-bed rivers are currently in progress.

During the last part of this Ph.D. activity, a collaboration with Dr. M. Hicks, NIWA, Christchurch

(New Zealand) has been developed in order to study the morphodynamic evolution of the Sel-

wyn River (New Zealand), a reference river system for alluvial gravel-bed rivers [76], for which

high-resolution, multi-temporal bed topography data provide ideal information of morphological

changes due to bar- and channel-forming events.

The morphodynamic applications in chapters 7 and 8, together with the ongoing research activity

on the Selwyn river, suggest the need for the inclusion of the following modelling ingredients:

• a two-dimensional parametrisation of secondary flows associated with streamline curvature,

which is essential to achieve general applicability to configurations in which curvature plays

an important role, such as bends and meanders;

• a multiple grain size formulation of the sediment transport module, in order to study selection

and sorting processes, which can play a key morphodynamic role in gravel-bed rivers

especially in braided systems;

• a physically-based bank erosion and accretion sub-model, which is required to study river

planform change.

From the point of view of the code implementation, we have in mind to fully exploit the power of

parallel computing by using GPU acceleration. This would dramatically increase the computational

performance in term of time efficiency, which is likely to be required for upscaling the model in

applications to real rivers over long spatial and temporal scales.
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