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AbstratIn the framework of the synthesis of monopulse array antennas for searh-and-trak appliations, the thesis fouses on the development and the analysis of amethod based on the sub-arraying tehnique aimed at generating an optimal sumand ompromise di�erene patterns through an exitation mathing proedure.By exploiting some properties of the solution spae, the synthesis problem is re-formulated as a ombinatorial one to allow a onsiderable saving of omputationalresoures. Thanks to a graph-based representation of the solution spae, the useof an e�ient path-searhing algorithm to speed-up the onvergene of the pro-edure for the synthesis of large array antennas as well as the use of the AntColony Optimizer (ACO) to bene�t of its hill-limbing properties in dealing withthe non-onvexity of the sub-arraying problem are onsidered. Moreover, a hybridapproah is developed to individually ontrol the level of the seondary lobes. Inpartiular, the sub-array on�guration is determined at the �rst step by exploitingthe knowledge of the optimum di�erene mode oe�ients and in the seond step,the sub-array weights are omputed by means of a quadrati programming proe-dure. In the numerial validation, a set of representative examples onerned withboth pattern mathing problems and pattern-feature optimization are reported inorder to assess the e�etiveness and �exibility of the proposed approah. Com-parisons with previously published results are reported and disussed, as well.KeywordsMonopulse array antennas, sum and di�erene patterns, exitation mathing,ontiguous partition, hybrid optimization.
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Struture of the Thesis
The thesis is strutured in hapters aording to the organization detailed inthe following.The �rst hapter deals with an introdution to the thesis, fousing on themain motivations and on the subjet of this work as well as a presentation of thestate-of-the-art tehniques dealing with the same antenna synthesis problem.Chapter 2 presents the proposed exitation mathing method for the synthesisof monopulse linear array antennas, fousing on the de�nition of the solutionspae as a non-omplete binary tree as well as on the deterministi searhingalgorithm.In Chapter 3 the proposed method is integrated in an iterative mathingapproah integrated in an iterative proedure ensuring, at the same time, theoptimization of the sidelobe level (or other beam pattern features). The �exibilityand e�etiveness of suh an approah are pointed out in the numerial validationthrough an extensive set of omparative examples.The extension of the approah from linear to planar arrays is desribed andassessed in Chapter 4. A more ompat graph struture is onsidered startingfrom the observation that some parts of the non-omplete binary tree are re-ursively shared in it, enabling the synthesis of arrays with a large number ofelements. Aordingly, the searhing strategy is ustomized to look for the bestompromise solution within the graph.Chapter 5 deals with the presentation of an ant olony metaheuristi usedto bene�t of its hill-limbing properties in dealing with the non-onvexity of thesub-arraying as well as in managing graph searhes.xv



LIST OF FIGURES
A hybrid approah for the synthesis of linear and planar monopulse arrayantennas is presented in Chapter 6. At the �rst step, the sub-array on�gurationis determined by means of the proposed exitation mathing method. In theseond step, the sub-array weights are omputed through the solution of a onvexprogramming problem for a �xed lustering to obtain a diret ontrol on thebehavior of the seondary lobes.Conlusions and further developments are presented in Chapter 7. Finally,two appendies give more details on the de�nition of ontiguous partition andon the dimension of the solution spae.
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Chapter 1Introdution and State-of-the-ArtIn the introdution, the motivation of the thesis is pointed out starting from abrief overview on the tehniques presented in the state-of-the-art an regardingthe solution of the optimal ompromise problem between sum and di�erenepatterns for the synthesis of sub-arrayed monopulse array antennas.
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A monopulse traker [1℄[2℄[3℄ is a devie aimed at deteting the position of atarget by using the information olleted from an antenna that generates sumand di�erene patterns. These beams an be synthesized by means of a re�etorantenna with two (traking on a plane) or three (3D traking) feeds, or by usinglinear or planar array antennas, respetively. The latter solution is usually pre-ferred sine array antennas are easy to built and they do not require mehanialpositioning systems to steer the beam pattern. Moreover, array strutures analso be easily installed on mobile vehiles (e.g., airrafts). Unlike linear stru-tures, a planar array allows the generation of a sum and two spatially-orthogonaldi�erene patterns [4℄ [i.e., the azimuth di�erene mode (H −mode) and the el-evation di�erene mode (E−mode)℄ useful to give a omplete desription of thetrajetory of a target in terms of range, azimuth, and elevation. These patternsare required to satisfy some onstraints as narrow beamwidth, low side lobe level(SLL) and high diretivity. In partiular, as far as the sum pattern is onerned,there is the need of maximizing the gain. On the other hand, the more ritialissue to be addressed dealing with di�erene patterns is onerned with the nor-malized di�erene slope on boresight diretion, sine it is strongly related to thesensitivity of the radar (i.e., to the angular error).In order to synthesize independent optimal sum and di�erene patterns,Taylor [5℄[6℄ and Bayliss [7℄ developed analytial tehniques to ompute theorresponding exitation oe�ients by sampling suitable ontinuous distribu-tions. However, these optimal solutions require three independent feeding net-works. Hene, high manufaturing osts usually arise and eletromagneti in-terferenes unavoidably take plae beause of the large number of elements inplanar monopulse arrays. In order to overome these drawbaks, the sub-arrayingtehnique [8℄ is a suitable ompromise solution aimed at optimizing pre-spei�edsub-array layouts.As far as linear arrays are onerned, MNamara proposed in [8℄ an exita-tion mathing method aimed at determining a best ompromise di�erene patternlose as muh as possible to the optimum in the Dolph-Chebyshev sense [9℄ (i.e.,narrowest �rst null beamwidth and largest normalized di�erene slope on theboresight for a spei�ed sidelobe level). Towards this end, for eah possible group-ing, the orresponding sub-arrays oe�ients are iteratively omputed throughpseudo-inversion of an overdetermined system of linear equations. It is evidentthat sine the best sub-array on�guration is not a-priori known, the whole pro-ess is extremely time-expensive due to the exhaustive evaluations. Moreover,beause of the ill-onditioning of the matrix system, large arrays annot be easilymanaged. In order to overome the ill-onditioning and related issues, optimiza-tion approahes have been widely used [10℄[11℄[12℄[13℄[14℄[15℄. Although suhtehniques allows a signi�ant advanement in the framework of sum-di�erenepattern synthesis, they are still time-onsuming when dealing with large arrays.As a matter of fat, even though the solution spae is sampled with e�ientsearhing riteria, the dimension of the solution spae is very large.2



CHAPTER 1. INTRODUCTION AND STATE-OF-THE-ARTTo overome suh drawbaks allowing an e�etive hoie of the array elementsgrouping as well as a fast and simple solution proedure, an innovative approahis proposed in this hapter that, likewise [8℄ and unlike [10℄[11℄[12℄[13℄[14℄[15℄,is aimed at obtaining a ompromise di�erene pattern optimum in the Dolph-Chebyshev sense [9℄ starting from the observation that the sub-arraying is notblind. As a matter of fat, it an be guided by onsidering similarity propertiesamong the array elements, thus signi�antly reduing the dimension of the so-lution spae. Starting from suh an idea and by representing eah solution bymeans of a path in a graph struture, the synthesis problem is then reast as thesearhing of the minimal-ost path within the graph.
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Chapter 2The Exitation Mathing Approah- Linear ArraysThe approah presented in this hapter regards a strategy for the synthesis ofsub-arrayed monopulse linear arrays based on the optimal mathing of indepen-dently optimum sum and di�erene exitations. By exploiting the relationshipbetween the independently optimal sum and di�erene exitations, the set ofpossible solutions is onsiderably redued and the synthesis problem is reast asthe searh of the best solution in a non-omplete binary tree. Towards this end,a fast resolution algorithm that exploits the presene of elements more suitableto hange sub-array membership is presented. The results of a set of numerialexperiments are reported in order to validate the proposed approah pointingout its e�etiveness also in omparison with state-of-the-art optimal mathingtehniques.
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2.1. INTRODUCTION2.1 IntrodutionIn this hapter, starting from the general idea pointed out in Setion 1, it isdemonstrated how the solution spae an be represented by means of a non-omplete binary tree, and onsequently the synthesis problem is reast as thesearhing of the minimal-ost path from the root to the leafs of the solution tree.Generally speaking, in graph theory, a tree is a graph de�ned as a non-empty�nite set of vertexes or nodes in whih any two nodes are onneted by exatlyone path. The nodes are labeled suh that there is only one node alled theroot of the tree, and the remaining nodes are partitioned in subtrees. In ourase, sine the tree is either empty or eah node has not more than two subtrees,it is a binary tree. Aordingly, eah node of a binary tree has either (i) nohildren, or (ii) one left/right hild (i.e., non-omplete binary tree), or (iii) aleft hild and a right hild (i.e., omplete binary tree), eah hild being the rootof a binary tree alled a subtree [16℄. In order to solve the problem at hand,thus e�iently exploring the solution tree, a suitable ost funtion or metri isde�ned and an innovative algorithm for the exploration of the solution spae isde�ned by exploiting the loseness (to a sub-array) property of some elements,alled border elements, of the array.The hapter is organized as follows. In Setion 2.2, the problem is mathe-matially formulated de�ning a set of metris aimed at quantifying the losenessof eah solution to the optimal one (Set. 2.2.1) as well as the tree struture(Set. 2.2.2) and the algorithm for e�etively exploring the solution spae (Set.2.2.3). In Setion 2.3, the results of seleted numerial experiments are reportedand ompared with those from state-of-the-art optimal mathing solutions.2.2 Mathematial FormulationLet us onsider a linear uniform array ofN = 2M elements {ξm; m = ±1, ...,±M}.Following a sub-optimal strategy, the sum pattern is generated by means of thesymmetri set of the real optimal1 exitations Aopt = {αm; m = 1, ...,M} [5℄[17℄,while the di�erene pattern is de�ned through an anti-symmetri real exitationset B = {bm = −b−m; m = 1, ...,M} [7℄[9℄. Thanks to suh symmetry properties,one half of the elements of the array S = {ξm; m = 1, ...,M} is desriptive ofthe whole array.Grouping operation yields to a sub-array on�guration mathematially de-sribed in terms of the grouping vetor C = {cm; m = 1, . . . ,M}, cm ∈ [1, Q]being the sub-array index of the m-th element of the array [11℄. Suessively,a weight oe�ient wq is assoiated to eah sub-array, q = 1, ..., Q, and, as aonsequene, the sub-optimal di�erene exitation set is given by (Fig. 2.1)1In the Dolph-Chebyshev sense [9℄, unless mentioned elsewhere.6
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Figure 2.1: Sketh of the sub-arrayed monopulse linear array antenna.
B = {bm = wmqαm; m = 1, ...,M ; q = 1, ..., Q} (2.1)where wmq = δcmqwq (δcmq = 1 if cm = q, δcmq = 0 otherwise) is the weightassoiated to the m-th array element belonging to the q-th sub-array.Aordingly, the original problem is reast as the de�nition of a sub-arrayon�guration C and the orresponding set of weights W = {wq; q = 1, ..., Q}suh that the sub-optimal di�erene pattern B is as lose as possible to theoptimal one, Bopt = {βm; m = 1, ...,M}. Towards this end the problem metri is�rstly de�ned in order to quantify the loseness of the sub-optimal solution to theoptimal one. Then, exploiting some properties of the sub-array on�gurations, anon-omplete binary tree, where eah path odes a possible elements grouping, isbuilt. Finally, a simple algorithm for a fast searh of the lowest ost path in thebinary tree is presented for de�ning the best sub-optimal solution of the problemin hand.2.2.1 De�nition of the Solution-MetriIn order to �nd the optimal solution, let us de�ne a suitable ost funtion ormetri that quanti�es the loseness of every andidate/trial solution Ct to theoptimal one,

Ψ {Ct} =
1

M

M
∑

m=1

α2
m [vm − dm {Ct}]

2 , (2.2)where vm and dm are referene and estimated parameters, respetively. Theestimated parameters dm {Ct} are de�ned as the weighted arithmeti mean of7



2.2. MATHEMATICAL FORMULATIONthe referene parameters vm related to the array elements belonging to the samesub-array:
dm {Ct}|q =

∑M
m=1 α

2
mδcmqvm

∑M
m=1 α

2
m

. (2.3)As far as the referene parameters V = {vm; m = 1, ...,M} and the sub-arraysweights W = {wq; q = 1, ..., Q} are onerned, they are de�ned aording to theGain Sorting (GS) algorithm.Conerning the GS tehnique, the referene parameters vm are set to theoptimal gains
vm =

βm
αm

, m = 1, . . . ,M, (2.4)while the sub-array weights are assumed to be equal to the omputed gains dm
wq = δcmqdm {Ct} , q = 1, ..., Q, m = 1, . . . ,M. (2.5)2.2.2 De�nition of the Solution-TreeIn general, the total number of sub-array on�gurations is equal to T = QM sineeah of them might be expressed as a sequene of M digits in a Q-based nota-tion system. Without any loss of information, suh a number an be redued byonsidering only the admissible (or reliable) solutions, i.e., grouping where thereare no empty sub-arrays. Moreover, let us observe that if an equivalene rela-tionship2 among sub-array on�gurations holds true, it is onvenient to onsiderjust one sub-array on�guration for eah set (instead of the whole set), thereforeobtaining a set of non-redundant solutions.Now, let us sort the known referene parameters {vm; m = 1, ...,M} [om-puted aording to either theGS (2.4)℄ for obtaining a ordered list L = {lm; m = 1, ...,M},where li ≤ li+1, i = 1, ...,M − 1, l1 = minm {vm}, and lM = maxm {vm}. Sinethe ost funtion is minimized provided that elements belonging to eah sub-array are onseutive elements of the ordered list L (see Appendix A for adetailed proof), the solution spae an be further redued to the so-alled es-sential solution spae ℜ(ess) omposed by allowed solutions. Consequently, thedimension T of the solution spae turns out to be redued from T = QM up to

T (ess) =

(

M − 1
Q− 1

) (see Appendix B for a detailed proof) and the essentialsolution spae ℜ(ess) an be formally represented by means of the non-ompletebinary tree depited in Figure 2.2. In partiular, eah omplete path in the treeodes an allowed sub-array on�guration C(ess)
t ∈ ℜ(ess) and the positive integer2A sub-array on�guration Ci is equivalent to the on�guration Cj when it is possible toobtain the one from the other just using a di�erent numbering for the same cm oe�ients.As an example, the sub-array on�guration Ci = {1, 2, 3, 3, 2, 3, 2, 1} is equivalent to Cj =

{2, 3, 1, 1, 3, 1, 3, 2}. 8
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Figure 2.2: Solution-Tree struture representing the essential solution spae
ℜ(ess).
q inside eah node at the lm-th level indiates that the array element identi�edby lm is a member of the q-th sub-array. Thanks to this formulation, the originalminimization problem (i.e., Copt = arg {mint=1,...,T [Ψ (Ct)]}) is reast as that of�nding the optimal path in the solution tree.2.2.3 Tree-Searhing ProedureAlthough the set of andidate solutions has been onsiderably redued by limit-ing the solution spae to the essential spae, its dimension T (ess) beomes verylarge when M ≫ Q and an exhaustive searhing would be omputationallyexpensive. In order to overome suh a drawbak, let us observe that onlysome elements of the list L are andidate to hange their sub-array membershipwithout violating the sorting ondition of the allowed sub-array on�gurations,
{

C
(ess)
t ; t = 1, ..., T (ess)

} [see Eq. (B.1) -Appendix B ℄. These elements, referredto as border elements, satisfy the following property: an array element related9



2.2. MATHEMATICAL FORMULATIONto lm is a border element if one of the elements whose list value is lm−1 or/and
lm+1 belongs to a di�erent sub-array. Therefore, the aggregation Copt ∈ ℜ

(ess)minimizing the ost funtion Ψ is found starting from an initial path randomlyhosen among the set of paths in the solution tree and iteratively updating theandidate solution just modifying the membership of the border elements. Morein detail, the iterative proedure (k being the iteration index) onsists of thefollowing steps.
• Step 0 - Initialization . Initialize the iteration ounter (k = 0) and thesequene index (m = 0). Randomly generate a trial path in the solutiontree orresponding to a andidate sub-arrays on�guration C(0) ∈ ℜ(ess).Set the optimal path to C(k)

opt

⌋

k=0
= C(0).

• Step 1 - Cost Funtion Evaluation . Compute the ost funtion value ofthe urrent andidate path C(k) by means of (2.2), Ψ(k) = Ψ
{

C(k)
}. Com-pare the ost of the aggregation C(k) to the best ost funtion value attainedat any iteration up to the urrent one, Ψ

(k−1)
opt = minh=1,...,k−1

(

Ψ
{

C(h)
})and update the optimal trial solutionC(k)

opt = C(k) ifΨ {

C(k)
}

< Ψ
{

C
(k−1)
opt

}.
• Step 2 - Convergene Chek . If the termination riterion, based on amaximum number of iterations K or on a stationary ondition for the �t-ness value (i.e., ˛

˛

˛KwindowΨ
(k−1)
opt −

PKwindow
j=1 Ψ

(j)
opt

˛

˛

˛

Ψ
(k)
opt

≤ η, Kwindow and η being a �xednumber of iterations and a �xed numerial threshold, respetively), is sat-is�ed then set Copt = C
(k)
opt and stop the minimization proess. Otherwise,go to Step 3.

• Step 3 - Iteration Updating . Update the iteration index (k ← k+1) andreset the sequene index (m = 0).
• Step 4 - Sequene Updating . Update the sequene index (m← m+ 1).If m > M then go to Step 3 else go to Step 5.
• Step 5 - Aggregation Updating . If the array element related to l(k)m is aborder element belonging to the q-th sub-array then de�ne a new grouping
C(k,m) by aggregating suh an element to the (q − 1)-th sub-array [if thearray element orresponding to l(k)m−1 is a member of the (q − 1)-th sub-array℄ or to the (q + 1)-th sub-array [if the array element orresponding to
l
(k)
m+1 is a member of the (q + 1)-th sub-array℄. If Ψ(k,m) = Ψ

{

C(k,m)
}

<

Ψ
{

C(k)
} then set C(k) = C(k,m) and go to Step 1. Otherwise, go to Step

4. 10



CHAPTER 2. THE EXCITATION MATCHING APPROACH - LINEARARRAYS2.3 Numerial ValidationIn order to assess the e�etiveness of the proposed method, an exhaustive set ofnumerial experiments has been performed and some representative results willbe shown in the following.For a quantitative evaluation, a set of beam pattern indexes has been de�nedand omputed. More in detail, (a) the pattern mathing ∆ that quanti�es thedistane between the synthesized sub-optimal pattern and the optimal one
∆ =

∫ π

0

∣

∣|AF (ψ)|optn − |AF (ψ)|recn
∣

∣ dψ
∫ π

0
|AF (ψ)|optn dψ

, (2.6)where ψ = (2πd/λ) sinθ, θ ∈ [0, π/2], (λ and d being the free-spae wavelengthand the inter-element spaing, respetively), |AF (ψ)|optn and |AF (ψ)|recn are thenormalized optimal and generated array patterns, respetively; (b) the mainlobes beamwidth BW and () the power slope Pslo that give some indiations onthe slope on the boresight diretion
Pslo = 2×

[

max
ψ

(|AF (ψ)|n)× ψmax −

∫ ψmax

0

|AF (ψ)|n dψ

]

, (2.7)
ψmax being the angular position of the maximum in the array pattern; (d) thesidelobes power Psll

Psll =

∫ π

ψ1

|AF (ψ)|n dψ, (2.8)where ψ1 is the angular position of the �rst null in the di�erene beam pattern.The remaining of this setion is organized as follows. Firstly, some experi-ments aimed at showing the asymptoti behaviour of the proposed solution arepresented (Set. 2.3.1) and a omparative study is arried out (Set. 2.3.2).Furthermore, some experiments devoted at showing the potentialities of the pro-posed solution in dealing with large arrays are disussed in Set. 2.3.3. Finally,the omputational issues are analyzed (Set. 2.3.4).2.3.1 Asymptoti Behavior AnalysisIn order to assess that inreasing the number of sub-arrays Q the synthesizeddi�erene patterns get loser and loser to the optimal one, let us onsider a lineararray ofN = 2×M = 20 elements haraterized by a d = λ
2
inter-element spaing.The optimal sum pattern exitations, {αm, m = 1, ...,M}, have been �xed to thatof the linear Villeneuve pattern [17℄ with n = 4 and 25 dB sidelobe ratio (Fig.2.3 - Villeneuve, 1984), while the optimal di�erene weights {βm, m = 1, ...,M},have been hosen equal to those of a Zolotarev di�erene pattern [9℄ with asidelobe level SLL = −30 dB (Fig. 2.3 - MNamara, 1993). Then, Q has beenvaried between 2 and M and the GS tehnique has been applied. For sake of11



2.3. NUMERICAL VALIDATION
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Figure 2.3: Asymptoti Behavior (M = 10, d = λ
2
) - Sum {αm; m = 1, ...,M}and di�erene {βm; m = 1, ...,M} optimal exitations. Compromise di�ereneoe�ients {bm; m = 1, ...,M} for di�erent values of Q.spae, seleted results onerned with Q = 3, Q = 6, and Q = 9 are reportedin terms of di�erene exitations. As expeted, the oe�ients obtained withthe GS onverge to the optimal ones and, starting from Q = 6, the di�erenesbetween generated and referene di�erene patterns turn out to be smaller andsmaller.2.3.2 Comparative AssessmentFor omparison purposes and in the framework of synthesis tehniques aimed atdetermining the best ompromise di�erene pattern as lose as possible to theoptimal one, let us onsider the EMM by MNamara [8℄ as referene3. As faras the test ases are onerned, the same benhmark investigated in [8℄ has beentaken into aount. The array geometry and the optimal sum exitations wasas in Set. 2.3.1, while the optimal di�erene exitation vetor Bopt has beenhosen for generating a modi�ed Zolotarev di�erene pattern with n = 4, ε = 3and a sidelobe ratio of 25 dB [9℄.3No omparison with optimization-based proedures (i.e., [10℄[11℄[12℄[13℄[14℄) have beenreported sine they are aimed at minimizing a pattern parameter (e.g., the SLL) and not atbetter mathing an optimal di�erene pattern.12
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Figure 2.4: Uniform sub-arraying (M = 10, d = λ
2
, Q = 5) - Referene optimumand normalized di�erene patterns obtained by means of the EMM and the GS.The �rst test ase deals with a uniform sub-arraying over the antenna with

Q = 5. The values of the sub-arrays weights optimized with the GS are WGS =
{0.2951 , 0.8847, 1.1885, 1.3994, 1.4878}. Moreover, the synthesized di�erenepattern is shown in Figure 2.4, while the omputed beam-pattern indexes arereported in Table 2.1. The advantages on the use of the tree-based approahesare evident, as on�rmed by the values of both the SLL (4 dB below the levelahieved by the EMM , SLLEMM = −17.00 dB vs. SLLGS = −21.00) andthe pattern mathing index (∆EMM

∆GS ≃ 1.5 - Tab. 2.1). Moreover, it is worthnoting that, thanks to the struture of the solution tree, the dimension of theessential spae redues to T (ess) = 1 (sine l1 and l2 belong to the �rst sub-array,
l3 and l4 to the seond one, and so on), thus allowing a signi�ant saving of

Approach Pslo BW Psll max {SLL} ∆

EMM [8℄ 0.1970 0.3610 0.1038 −17.00 0.4015
GS 0.1811 0.3784 0.1082 −21.10 0.2633

Optimal [9℄ 0.1802 0.3735 0.0598 −25.00 −Table 2.1: Uniform sub-arraying (M = 10, d = λ
2
, Q = 5) - Beam patternindexes. 13



2.3. NUMERICAL VALIDATION
Q = 3 Q = 5

EMM [8℄ GS EMM [8℄ GS Optimal [9℄
Pslo 0.2117 0.1800 0.2000 0.1806 0.1802
BW 0.3745 0.3735 0.3854 0.3735 0.3735
Psll 0.1798 0.1054 0.0950 0.0823 0.0598

max {SLL} −14.70 −18.63 −23.40 −23.00 −25.00
∆ 0.5438 0.4073 0.2562 0.1571 −Table 2.2: Non-uniform sub-arraying (M = 10, d = λ

2
, Q = 3, 5) - Beam patternindexes.omputational resoures. As a matter of fat, the EMM requires the solution ofan overdetermined system of linear equations in orrespondene with any possibleuniform grouping [8℄, i.e., a number of T = 945 evaluations.Seond and third test ases onsider non-uniform sub-arraying. The formeron�guration is an example of the limited number of sub-arrays (Q = 3) thatmight be used with a small monopulse antenna. The latter has the same numberof sub-arrays as that of the �rst on�guration (Q = 5). The tree-based algo-rithms have been applied and the following sub-array on�gurations have beendetermined. In partiular, the grouping CGS

opt = {1, 2, 3, 3, 4, 5, 5, 5, 4, 3} hasbeen synthesized when Q = 5, while CGS
opt = {1, 1, 2, 2, 3, 3, 3, 3, 3, 2} has beenobtained for Q = 3. The obtained beam patterns are shown in Fig. 2.5 and theorresponding values of the pattern indexes are reported in Tab. 2.2. As it anbe notied, the GS improves the performanes of the EMM in mathing theoptimal di�erene pattern as pointed out by the behavior of the global mathingindex ∆ ( ∆EMM

∆GS

⌋

Q=3
= 1.33 and ∆EMM

∆GS

⌋

Q=5
= 1.63). Conerning the smalleron�guration, it is further on�rmed (as already pointed out in Setion 2.3.1)the �exibility and reliability of the GS algorithm in dealing also with omplexases where a limited number of sub-arrays is taken into aount. As a matterof fat, for Q = 3 the solution of the GS has a sidelobe ratio of SLL = 18.63 dBand a main lobe very lose to the optimal one, i.e., BGS

w = Bopt
w = 0.3735 and

PGS
slo = 0.1800 vs. P opt

slo = 0.1802.2.3.3 Large Arrays AnalysisThis setion is aimed at analyzing the performanes of the proposed tree-basedtehniques when dealing with large arrays. As far as the optimal setup is on-erned, sum {αm, m = 1, ...,M} and di�erene {βm, m = 1, ...,M} optimal ex-itations have been hosen to generate a Dolph-Chebyshev pattern [19℄ with
SLL = −25 dB and a Zolotarev pattern [9℄ with SLL = −30 dB, respetively.As a �rst experiment, a linear array of N = 200 elements with λ/2 spaing14
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(b)Figure 2.5: Non-uniform sub-arraying (M = 10, d = λ
2
) - Referene optimumand normalized di�erene patterns obtained by means of the EMM , and the GSwhen (a) Q = 3 and (b) Q = 5.
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2.3. NUMERICAL VALIDATION
GS Optimal Difference [9℄

Pslo 0.0066 0.0066
BW 0.0148 0.0151
Psll 0.0868 0.0824

max {SLL} −18.00 −30.00
∆ 0.2921 −Table 2.3: Large Arrays (M = 250, d = λ

2
, Q = 4) - Beam pattern indexes.has been used by onsidering various sub-arraying on�gurations. Figure 2.6shows the optimal di�erene pattern (i.e., the synthesis target) and the patternsobtained when Q = 4 and Q = 6 by using the GS. For ompleteness, the valuesof the synthesized di�erene exitations are displayed in Figure 2.7. The GSalgorithm satisfatorily approximates the optimal main lobe harateristis interms of both BW and Pslo, and the solution presents a sidelobe ratio lose tothe referene one (SLLGS⌋

Q=4
= −21.90 and SLLGS

⌋

Q=6
= −25.13). The lasttest ase (and seond experiment dealing with large strutures) is onerned witha linear array of N = 2 ×M = 500 elements (d = λ/2). As a representativeexample, the ase of Q = 4 is reported and analyzed (Tab. 2.3). The arisingbeam patterns allow one to drawn similar onlusions to those from the previoussenario, sine one again the e�etiveness of the GS tehnique in dealing witha limited number of sub-arrays is pointed out. As a matter of fat, it is worthnoting that unlike tree-based proedures the EMM is not reliable in dealingwith large arrays sine it requires the numerial proessing of overdeterminedlinear systems, whose ill-onditioning get worse when the ratio M

Q
grows.In order to evaluate the performane of the tree-based method versus thearray dimension, N has been varied from 20 (small/medium arrays, i.e. M < 50)up to 500 (large arrays, i.e. M ≥ 50) and di�erent array partitions (Q ∈ [3, 10])have been onsidered. The plot of ∆ versus M for di�erent values of Q is shownin Figure 2.8. As it an be observed, for a �xed number Q of sub-arrays, thedistane between the optimal di�erene pattern and the ompromise one doesnot signi�antly vary as the number of elements M inreases (M > 50) rangingfrom ∆ ∼= 0.15 (Q = 10) up to ∆ ∼= 0.36 (Q = 3). Moreover, as expeted,for eah array aperture (i.e., M = cost), the synthesized di�erene patterns getloser and loser to the optimal one when the value of Q grows (Q→M).2.3.4 Computational IssuesNow, let us analyze the omputational osts of the tree-based approahes, pro-viding a omparison with the EMM , as well. Towards this end, let us �rstlyonsider the dependene of the dimension of the solution spae on the numberof elements of the array M . As a representative ase, let us analyze the behavior16
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Figure 2.6: Large Arrays (M = 100, d = λ
2
) - Referene optimum and normalizeddi�erene patterns obtained by means of the GS tehnique when Q = 4 and

Q = 6.
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2.4. DISCUSSIONS
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Q.of T and T (ess) when Q = 3 (K = 100 and η = 10−3) (Fig. 2.9). As it an beobserved, the dimension of the solution spae T of the EMM grows exponen-tially with M , while, as expeted [see Appendix A℄, T (ess) shows a polynomialbehavior. Obviously, the same behavior holds true also for di�erent values of Q(Fig. 2.9).On the other hand, the omputational e�etiveness of the Tree-Searhingproedure in sampling the solution spae is further pointed out from the evalua-tion of the CPU-time, t (on a 3GHz Pentium 4 and 512MB of RAM), neededfor reahing the onvergene (Fig. 2.10). As a matter of fat, maxQ {tQ} =
70 [sec] (kopt = 90) in orrespondene with the largest array (M = 250), while
maxQ {tQ} = 12.8 [sec] (kopt = 8) and maxQ {tQ} = 2.3 [sec] (kopt = 4) when
M = 100 and M = 50, respetively.2.4 DisussionsThe methodologial novelties of the proposed approah lie in the appropriatede�nition of the solution spae, the innovative formulation of the problem interms of a searh inside a non omplete binary tree and the possibility of applyinga fast resolution algorithm. All these improvements allow the proposed approahto deal with the synthesis of large arrays in an e�etive and reliable way.As on�rmed in the omparative assessment, beause of the favorable trade-18
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2.4. DISCUSSIONSo� between omplexity/osts and e�etiveness, the proposed tree-based strategyseems a promising tool to be further analyzed and extended to other geometriesand synthesis problems. Aordingly, some of the possible extensions will beonsidered in the next hapters of this work.
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Chapter 3The Iterative Mathing ApproahIn this hapter, the optimal exitations mathing method presented in Chapter 2is integrated in an iterative proedure ensuring, at the same time, the optimiza-tion of the sidelobe level (or other beam pattern features) for the ompromisedi�erene pattern. The �exibility of suh an approah allows one to synthesizevarious di�erene patterns haraterized by di�erent trade-o� between angularresolution and noise/interferenes rejetion in order to math the user-de�ned re-quirements. On the other hand, thanks to its omputational e�ieny, synthesisproblems onerned with large arrays are easily managed, as well. An exhaustivenumerial validation assesses the reliability and auray of the method pointingout the improvements upon state-of-the-art sub-arraying tehniques.
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3.1. INTRODUCTION3.1 IntrodutionThe design of monopulse radar systems [2℄[3℄ requires the synthesis of both a sumpattern and a di�erene pattern, whih satisfy some spei�ations suh as nar-row beamwidth, low side-lobe-level (SLL), and high diretivity. When the sub-arraying strategy is onsidered, aording to the guidelines of [8℄[10℄[12℄[11℄[14℄,the sum pattern is �xed to the optimal one, while di�erene exitations are ob-tained from the sum oe�ients by properly grouping the array elements and byweighting eah sub-array in order to satisfy the user-de�ned onstraints. In suha ontext, two di�erent methodologial approahes might be reognized. Theformer (indiated in the following as �optimal mathing�) is aimed at determin-ing the �best ompromise� di�erene pattern, whih is as lose as possible to theoptimum in the Dolph-Chebyshev sense [9℄ (i.e., narrowest �rst null beamwidthand largest normalized di�erene slope on the boresight for a spei�ed sidelobelevel), as onsidered in Chapter 2. The other, denoted as �feature optimization�,where the beam pattern parameters (usually, the SLL [10℄-[11℄ or the diretivity[20℄) are ontrolled by inluding them in a ost funtion to minimize aordingto a global optimization stohasti proedure.Conerning the �optimal mathing� tehniques, sine the the �ExitationMathing� method (EMM) proposed by MNamara in [8℄ does not allow theontrol of the beam pattern SLL, hene a onstrained version of the method hasbeen also introdued ([8℄, Set. 5) in order to redue the grating lobes e�etsand lead to sub-optimal di�erene patterns with a suitable ompromise between
SLL, beamwidth, and slope on boresight. Unfortunately, when the ratio betweenarray elements and number of sub-arrays gets larger, the EMM is not alwaysreliable/e�ient beause of the ill-onditioning of the matrix system as well asthe large omputational osts of the arising exhaustive evaluation proess.As far as the �feature optimization� lass of sub-arraying methods is on-erned, Ares et al. onsidered in [10℄ the appliation of a simulated annealing(SA) algorithm for de�ning the optimal sub-array weights (i.e., aimed at obtain-ing a di�erene pattern that satis�es a �xed onstraint on the SLL) starting froman assigned sub-array on�guration. On the other hand, taking advantage of theproblem onvexity with respet to the weights of the subarrays and followingthe same line of the reasoning as in [21℄, a two-step hybrid optimization strategyhas been proposed in [13℄[14℄. By optimizing at the same time both partitionfuntions (i.e., those funtions that de�ne the membership of the array elementsto eah sub-array) and the sub-array oe�ients, Lopez et al. [12℄ proposed aGeneti Algorithm (GA) based tehnique. In a similar fashion, a Di�erentialEvolution (DE) algorithm has been used in [11℄.Although the optimization of elements membership and sub-array weightssigni�antly improved the performane of sum-di�erene optimization method-ologies, some drawbaks still remain. As a matter of fat, suh tehniques areusually time-onsuming espeially when dealing with large arrays sine the di-22



CHAPTER 3. THE ITERATIVE MATCHING APPROACHmension of the solution spae signi�antly enlarges. Moreover, �feature optimiza-tion� approahes are usually formulated in terms of single-objetive problems andthe ontrol of multiple features of the beam pattern (e.g., SLL, beamwidth, dif-ferene slope on boresight) would require the use of ustomized and omplexmulti-objetive strategies.In the framework of optimal mathing tehniques, the present ontribution isaimed at proposing a new approah for synthesizing best ompromise patternswith SLL ontrol. Towards this end, following the guidelines of the EMM ,the proposed approah determines the di�erene solution lose to the optimalDolph-Chebyshev pattern through the searh of the minimum ost-path in thenon-omplete binary tree of the possible aggregations by satisfying the SLLonstraints through an iterative proedure (unlike global optimization methodsthat diretly de�ne a SLL penalty term in the ost funtion [10℄-[11℄).The remaining of the hapter is organized as follows. The proposed synthesisproedure is desribed in detail Setion 3.2. Setion 3.3 deals with an exhaustivenumerial validation aimed at assessing the e�etiveness of the proposed teh-nique and at providing a omparison with state-of-the-art solutions. Some �nalremarks are drawn in Setion 3.4.3.2 Mathematial FormulationLet us onsider a linear uniform array of N = 2M elements and let us assumethat the sum and di�erene patterns are obtained through a symmetri, A =
{am = a−m; m = 1, ...,M}, and an anti-symmetri,B = {bm = −b−m; m = 1, ...,M},real exitations set, respetively. Thanks to these symmetry properties, only onehalf of the array elements is onsidered.Aording to the guidelines of sub-arraying tehniques, the sum pattern is ob-tained by �xing the sum exitations to the ideal ones, Aideal = {αm; m = 1, ...,M}[19℄[5℄[17℄, while the di�erene exitations set is synthesized starting from thesum mode as follows

bm =

Q
∑

q=1

αm (δcmqwq) ; m = 1, ...,M, (3.1)where Q is the number of sub-arrays, wq is the weight assoiated to the q-thsub-array in the di�erene feed network, and δcmq is the Kroneker delta whosevalue is determined aording to the sub-array membership of eah element ofthe array (δcmq = 1 if cm = q, δcmq = 0 otherwise, cm ∈ [1, Q] being the sub-arrayindex of the m-th array element).In order to obtain the best ompromise di�erene exitations (i.e., a set ofexitations giving a pattern as lose as possible to the ideal one in the Dolph-Chebyshev sense that satis�es at the same time a onstraint on the SLL), aninnovative adaptive searhing tehnique, indiated as Iterative Contiguous Parti-tion Method (ICPM), is applied. It onsists of an inner loop aimed at ensuring23



3.2. MATHEMATICAL FORMULATIONthe loseness of the trial solution to a �referene� ideal pattern through the teh-nique proposed in Chapter 2 and by an outer loop devoted at satisfying therequirements on the SLL (or another beam pattern feature).With referene to Fig. 3.1 , the main steps of the iterative proedure aredesribed in the following:
• Step 0 - Initialization . The external iteration index is initialized (e = 0),the optimal sum exitations Aideal = {αm; m = 1, ...,M} are omputed[19℄[5℄[17℄, and the user-desired sidelobe level threshold is set, SLLd;
• Step 1 - Referene Di�erene Pattern Seletion . At the �rst iteration(e = 1), an optimal - in the Dolph-Chebyshev sense - di�erene exitationsset B(e)

ref =
{

β
(e)
m ; m = 1, ...,M

} that generates a beam pattern with a side-lobe level SLL(e)
ref = SLLd is omputed as in [9℄ and assumed as referenein the inner loop. Then, for eah element of the array, an identi�ationparameter is evaluated aording to the Gain Sorting (GS) algorithm
v(e)
m =

β
(e)
m

αm
, m = 1, ...,M. [Optimal Gain] (3.2)The identi�ation indexes {

v
(e)
m ; m = 1, . . . ,M

} are ordered in a sortedlist L = {lm; m = 1, . . . ,M} (i.e., an ensemble where lk ≤ lk+1, k =

1, . . . ,M − 1, l1 = min
m

{

v
(e)
m

}, and lM = max
m

{

v
(e)
m

});
• Step 2 - Computation of the Compromise Solution . With refereneto the e-th target pattern, the approximation algorithm based on the Con-tiguous Partition tehnique is run until a suitable �termination riterion�is satis�ed. Aordingly, the following steps are performed:� Step 2.a - Solution Initialization . The internal iteration ounter isinitialized [i(e) = 0℄ and a starting trial grouping Ci(e) =

{

c
i(e)
m ; m = 1, . . . ,M

},orresponding to a Contiguous Partition(1)1 of L in Q subsets P i(e)
Q =

{

Li(e)q ; q = 1, . . . Q
}, is randomly generated and assumed as the op-timal grouping C
i(e)
opt = Ci(e). Suessively, the sub-array weights1(1)With referene to [18℄, it an be easily shown that, one the parameters v

(e)
m have beenordered in the sorted list L = {lm; m = 1, ..., M}, the grouping minimizing the ost funtion(3.5) orresponds to a Contiguous Partition. A grouping of array elements is a ContiguousPartition if the generi mj-th array element belongs to the q-th sub-array only when twoelements, namely the mi-th element and the mn-th one, belong to the same sub-array and theondition v

(e)
i < v

(e)
j < v

(e)
n holds true. 24
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3.2. MATHEMATICAL FORMULATION
W i(e) =

{

w
i(e)
q ; q = 1, . . . , Q

} are analytially omputed as
wi(e)q =

M
∑

m=1

δcmqdm

(

Ci(e)
)

, q = 1, ..., Q [EstimatedGain] (3.3)
dm

(

Ci(e)
) being an estimate of the identi�ation parameter v(e)

m givenby
dm

(

Ci(e)
)

=

∑M
s=1 α

2
sδcscmv

(e)
s

∑M
s=1 α

2
sδcscm

, m = 1, ...,M ; (3.4)� Step 2.b - Cost Funtion Evaluation . The loseness to the targetpattern of the urrent andidate solution Bi(e) (or in an equivalentfashion, the ouple of oe�ients Ci(e) andW i(e)) is quanti�ed throughthe following ost funtion
Ψ

{

Ci(e)
}

=
1

M

M
∑

m=1

α2
m

[

v(e)
m − dm

(

Ci(e)
)]2

. (3.5)The ost funtion value Ψi(e) = Ψ
{

Ci(e)
} is ompared to the bestvalue attained up till now, Ψ

{

C
i(e)−1
opt

}

= min
h(e)=1,...,i(e)−1

[

Ψh(e)
], and if

Ψ
{

Ci(e)
}

< Ψ
{

C
i(e)−1
opt

}, then the optimal trial solution is updated,
B
i(e)
opt = Bi(e), Ci(e)

opt = Ci(e), and W i(e)
opt = W i(e) as well as the optimalost funtion value, Ψ

i(e)
opt = Ψi(e);� Step 2.c - Termination Criterion Chek . If a maximum numberof iterations I is reahed or a stationary ondition [i(e) = I

(e)
stat℄ for theost funtion value,

∣

∣

∣
KwindowΨ

i(e)−1
opt −

∑Iwindow

t=1 Ψ
t(e)
opt

∣

∣

∣

Ψ
i(e)
opt

≤ η , (3.6)holds true (Iwindow and η being a �xed number of iterations and a�xed numerial threshold, respetively), then the inner loop is stoppedand the following setting is assumed: C
(e)
opt = C

i(e)
opt , W (e)

opt = W
i(e)
opt(i.e., B(e)

opt = Bi(e)), and Ψ
(e)
opt = Ψ

i(e)
opt . The proedure goes to Step 3.Otherwise, the Step 2.d is performed;� Step 2.d - Aggregation Updating . The inner index is updated[i(e)← i(e)+1℄ and a new grouping vetor Ci(e) is de�ned. More in de-tail, a new ontiguous partition P i(e)
Q is derived from the previous one26
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P
i(e)−1
Q just modifying the sub-array memberships of the �Border Ele-ments� de�ned as follows lm ∈ Li(e)t ∧

{(

lm−1 ∈ L
i(e)
t−1

)

∨
(

lm+1 ∈ L
i(e)
t+1

)},
t ∈ [1;Q]. The orresponding sub-array weights W i(e) are then ana-lytially omputed as in (3.3). The proedure goes to Step 2.b;

• Step 3 - Side-Lobe-Level Chek . The desriptive parameters of the beampattern generated by the oe�ients B(e)
opt are omputed as well as the

SLL, SLL(e)
opt = SLL

{

B
(e)
opt

}. If SLL(e)
opt ≤ SLLd and the �degree of lose-ness� to the referene pattern is satisfatory (e.g., some onstraints on thebeamwidth/diretivity are satis�ed), then the whole proess ends and the�nal solution is: Copt = C

(e)
opt, W opt = W

(e)
opt (i.e., Bopt = B

(e)
opt), Ψopt = Ψ

(e)
opt.Otherwise, the outer iteration index is updated (e ← e + 1) and anotherreferene pattern that satis�es the ondition SLL(e)

ref < SLL
(e−1)
ref is hosen.Then, the proedure restarts from Step 1 until e = E, E being a �xednumber of outer-loop iterations.It is worth noting that the Contiguous Partition tehnique applied in the innerloop allows a non-negligible saving of omputational resoures as pointed out inSetion 3.3 by means of some numerial experiments as well as in Setion 2.3.4.3.3 Numerial ResultsIn this setion, representative results from seleted test ases are reported forassessing the e�etiveness of the ICPM in providing a suitable trade-o� betweendesired SLL, diretivity, and beamwidth (Set. 3.3.1) as well as in dealing withsmaller (Set. 3.3.2) and larger arrays (Set. 3.3.3). Comparisons with state-of-the-art synthesis tehniques are presented (Sets. 3.3.2-3.3.3), as well.In order to quantify the optimality and auray of the obtained solutions,the quantitative indexes introdued in Setion 2.3 are onsidered. Moreover,onerning the omputational osts, the total number of inner iterations, Itot =

∑E
e=1 I

(e)
stat, the CPU-time needed for reahing the �nal solution, T , and the totalnumber of possible sub-array on�gurations, U , are analyzed.3.3.1 ICPM Performane AnalysisThis setion is aimed at analyzing the behavior of the iterative SLL ontrol proe-dure in providing a suitable trade-o� between SLL, diretivity, and beamwidth.Towards this end, a linear on�guration of N = 2 × M = 20 elements with

λ/2 inter-element spaing is hosen and the sum exitations Aideal have been setto those of the linear Villeneuve pattern [17℄ with n = 4 and 25 dB sideloberatio. Then, for �xed values of Q (Q = 2, 4, 7), the ICPM has been appliedby setting the sidelobe threshold to SLLd = −25 dB and requiring a main lobe27



3.3. NUMERICAL RESULTSwidth smaller than Bwref = 6.0o. The adaptive searhing proedure has beenarried out by onsidering a suession of di�erent referene exitation sets B(e)
ref ,

e = 1, ., 3, [9℄ with SLL(1)
ref = −25 dB, SLL(2)

ref = −30 dB, and SLL(3)
ref = −40 dB,respetively.Figure 3.2 shows the results obtained by applying the sidelobe ontrol pro-edure. As an be observed, the beam patterns synthesized by applying ateah e-th iteration the Contiguous Partition tehnique show a trade-o� betweenthe angular resolution auray and noise rejetion apabilities depending onthe referene exitations B(e)

ref . As a matter of fat, when the di�erene mainlobes get narrower, more power is wasted in the side lobes, and vie versa ason�rmed by the values of the indexes reported in Tab. 3.1 . On the otherhand, as expeted, the SLL of the synthesized patterns get loser and loserto the referene one SLL(e)
ref when Q grows (e.g., SLL(3)

opt

⌋

Q=2
= −16.20 dB vs.

SLL
(3)
opt

⌋

Q=7
= −31.30 dB when SLL(3)

ref = −40 dB). Consequently, it turns outthat the ICPM more suessfully applies (i.e., satisfying the SLL and band-width requirements) when Q is not very small (Q > 2). As a matter of fat,the iterative (e = 1, ..., E) proedure yields a satisfatory solution at e = 2 when
Q = 4 (being SLL

(2)
opt

⌋

Q=4
= −22.30 dB and Bw(2)

⌋

Q=4
= 5.1622o) and Q = 7(being SLL

(2)
opt

⌋

Q=7
= −28.80 dB and Bw(2)

⌋

Q=7
= 5.1555o), while for Q = 2,whatever the iteration (e = 1, 2, 3), the ful�llment of the SLL riterion is notmet.As far as the omputational issues are onerned, it is worth noting thatthe ICPM allows a signi�ant redution of the dimension of the solution spae(U (ess) vs. U - Tab. 3.1). Moreover, although the number of possible aggregationshanges (U (ess)

⌋

Q=2
= 9, U (ess)

⌋

Q=4
= 84, and U (ess)

⌋

Q=7
= 84) for di�erentvalues of Q, the omputational ost for reahing the termination riterion of theinner loop remains almost the same. In fat, I(e)

stat = 2 inner iterations are usuallyenough for determining B(e)
opt, exept for the ase of Q = 7 when I(1)

stat = 3.Another interesting observation is onerned with the value of the ost fun-tion at the inner loop onvergene [i.e., when i(e) = I
(e)
stat℄. For a �xed refer-ene pattern, it monotonially dereases as the number of sub-arrays Q tendsto M (e.g., Ψ

(1)
opt

⌋

Q=2
= 3.81 × 10−1, Ψ

(1)
opt

⌋

Q=4
= 9.53 × 10−2, and Ψ

(1)
opt

⌋

Q=7
=

2.29× 10−3) pointing out asymptotially a more aurate mathing between thesub-optimal di�erene mode and the referene one.3.3.2 Comparative AssessmentIn this setion, a omparative analysis between the proposed approah and state-of-the-art tehniques, based on the optimization of a suitable ost funtion on-struted with referene to a SLL with a presribed value, is arried out. Both28
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()Figure 3.2: ICPM Performane Analysis (M = 10, d = λ
2
) - Normalized di�er-ene patterns when (a) Q = 2 , (b) Q = 4, and () Q = 7.29



3.3.NUMERICALRESULTSQ = 2 Q = 4 Q = 7

e 1 2 3 1 2 3 1 2 3

SLL
(e)
ref

−25 dB −30 dB −40 dB −25 dB −30 dB −40 dB −25 dB −30 dB −40 dB

Aslo 0.1773 0.1865 0.1953 0.1759 0.1840 0.1981 0.1753 0.1844 0.1955

Bw [deg] 4.9239 5.2356 5.7661 4.8910 5.1622 5.7976 4.8547 5.1555 5.7217

ψ1 0.6458 0.7474 0.8463 0.6226 0.7043 0.8653 0.6197 0.6753 0.8368

Asll 0.1761 0.1722 0.1333 0.1112 0.0780 0.0375 0.0938 0.0495 0.0179

SLL
(e)
opt −14.80 −16.70 −16.20 −15.80 −22.30 −26.90 −24.35 −28.80 −31.30

I
(e)
stat 2 2 2 2 2 2 3 2 2

Ψ
(e)
opt 3.81 × 10−1 4.62 × 10−1 2.76 × 10−1 9.53 × 10−2 1.10 × 10−1 3.89 × 10−2 2.29 × 10−3 9.93 × 10−4 5.45 × 10−3

U (ess) 9 84 84

U 1024 1048580 2.8247 × 108

Table3.1:
I
C
P
MPerformaneAnalysis(M

=
10,

d
=

λ2 )-Di�erenepattern
quantitativeindexesandomputationalindiatorsfordi�erentvaluesof

Q.
30
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Figure 3.3: Comparative Assessment (M = 10, d = λ
2
, Q = 3) - Normalizeddi�erene patterns synthesized with the ICPM − GS and the SA algorithm[10℄.�xed-partition (Test Case 1) and global-synthesis (Test Case 2) problems havebeen onsidered.Test Case 1. Fixed-Partition SynthesisThe �rst test ase deals with the synthesis of a �xed sub-array on�guration.With referene to the same benhmark in [10℄ and addressed by Ares et al. witha SA-based tehnique [10℄, a linear array of N = 2 ×M = 20 equally-spaed(d = λ/2) elements and Q = 3 is onsidered. The optimal sum exitationshave been �xed to that of a Dolph-Chebyshev pattern with SLL = −35 dBand a Zolotarev di�erene pattern with SLLref = −35 dB has been hosen asreferene.In Figure 3.3 , the di�erene patterns synthesized with the GS algorithmare ompared with that shown in [10℄. Moreover, the orresponding sub-arraygrouping and weights are given in Tab. 3.2 . The GS tehnique outperforms the

SA-based solution in terms of the maximum value the sidelobe level (SLL(SA)
opt =

−19.74 dB [10℄ vs. SLL
(GS)
opt = −25.25 dB) and allows a three fold redutionof the side lobe power (i.e., A

(SA)
sll

A
(GS)
sll

⌋

≃ 3). Moreover, by imposing the ompro-31



3.3. NUMERICAL RESULTS
M = 10 C

(GS)
opt 1 1 2 2 2 3 3 3 3 0

Q = 3 W
(GS)
opt 0.2804 0.5839 1.3971

W
(GS∗)
opt 0.4618 2.1607 2.9448Table 3.2: Comparative Assessment (M = 10, d = λ

2
, Q = 3, SLLref = −35 dB)- Sub-array on�guration and weights synthesized with the ICPM −GS.mise patterns having a maximum Bw lose to that of the SA-based tehnique(Bw(SA) = 5.5528o), the solution of the GS algorithm is shown in Fig. 3.3 (i.e.,

GS∗ - SLLref = −33.75 dB), while the orresponding sub-array on�gurationsand weights are summarized in Tab. 3.2. In suh a situation, the GS is stillable to �nd a better ompromise pattern with a SLL below that in [10℄ of about
0.5 dB (SLL(GS∗)

opt = −20.21 dB - Bw(GS∗) = 5.4947o).Test Case 2. Simultaneous Global-SynthesisThe seond test ase is devoted to the omparative assessment when dealingwith the simultaneous optimization of the sub-array membership and sub-arrayweights. Towards this purpose, the proposed method is ompared with the GA-based method [12℄ and the DE algorithm [11℄.The �rst omparison is onerned with the SLLminimization of the di�erenepattern in a linear array of N = 2 × M = 20 elements with d = λ/2 inter-element spaing. The optimal sum exitations have been �xed to generate alinear Villeneuve pattern [17℄ with n = 4 and sidelobe ratio of 25 dB. Moreover,the number of sub-arrays has been set to Q = 3 for onsidering the same exampledealt with in [12℄. Conerning the ICPM , the referene di�erene pattern hasbeen hosen to be equal to a Zolotarev pattern [9℄ with SLLref = −35 dB.The results of the synthesis proess are shown in Figure 3.4 where the refer-ene di�erene pattern and those obtained with the GA [12℄ and the onstrained
EMM [8℄ are displayed, as well. Conerning the omparison with the GA-based method, the GS outperforms the result in [12℄ (SLL(GA)

opt = −26.18 dB)with a maximum side-lobe level equal to SLL
(GS)
opt = −28.60 dB [Tab. 3.3℄ ,and similar bandwidths (B(GA)

w = 5.7934o and B
(GS)
w = 5.8004o). It is inter-esting to observe that the sub-array on�guration determined by the GS al-gorithm (i.e., C = {1, 2, 0, 3, 3, 3, 3, 0, 2, 1}) is the same obtained in [12℄, butthe sub-array weights are di�erent (W (GA) = {0.3260, 0.6510, 1.2990}, W (GS) =

{0.2456, 0.6018, 1.2580}). Suh an event is due to the fat that in [12℄ thesub-array gains are part of the optimization proess, while in the ICPM-basedmethod they are analytially omputed one the sub-array on�guration has beenfound. This allows a redution of the number of unknowns (i.e., only the aggre-gations instead of weights and aggregations) and, indiretly, of the possibility32
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Figure 3.4: Comparative Assessment (M = 10, d = λ
2
, Q = 3) - Referenepattern (SLLref = −35 dB) and normalized di�erene patterns synthesized withthe ICPM −GS, the GA-based method [12℄, and the onstrained EMM [8℄.

Aslo Bw [deg] Asll SLL

Reference Difference [9℄ 0.1933 5.7668 0.0273 −35.00
GS 0.2046 5.8004 0.0382 −28.60

Reference Difference∗ [9℄ 0.1645 4.4747 0.1526 −18.87
GS∗ 0.1690 4.5961 0.1453 −17.25

GA Optimization [12℄ 0.2038 5.7934 0.0440 −26.18
Constrained EMM [8℄ 0.1715 4.6090 0.2223 −16.50Table 3.3: Comparative Assessment (M = 10, d = λ

2
, Q = 3) - Quantitativeindexes of the referene pattern (SLLref = −35 dB) and of the di�erene pat-terns synthesized with the ICPM − GS, the GA-based method [12℄, and theonstrained EMM [8℄. 33
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Figure 3.5: Comparative Assessment (M = 10, d = λ
2
, Q = 3) - Normalizeddi�erene patterns synthesized with the ICPM − GS, the GA-based method[12℄, and the onstrained EMM [8℄.the solution being trapped in loal minima of the ost funtion.As far as the omputational osts are onerned, thanks to the redutionof the number of possible aggregations (U (GA) = 310 vs. U (ess) = 36) and thesearhing limited to the sub-array membership, the number of iterations neededfor reahing the �nal solution turns out to be signi�antly lowered (I(GS)

stat = 3 vs.
I

(GA)
stat = 500 [12℄) with a huge omputational saving (T (ICPM) < 0.085 [sec]).In order to obtain a di�erent trade-o� between sidelobe level and beamwidth,exploiting the �exibility of the proposed method, a di�erent referene patternould be hosen (as highlighted through the analysis in Set. 3.3.1). As anexample and for a further omparison now with another �optimal mathing�tehnique instead of the GA, let us relax the requirement on the SLL and requestthe BW of the ompromise patterns being as lose as possible to that of theonstrained EMM [8℄. Towards this aim, a Zolotarev pattern [9℄ with SLLref =
−19 dB has been used as referene di�erene pattern. The synthesized beampatterns are shown in Figure 3.5 . As far as the main lobe is onerned, thebeamwidth of the GS∗ pattern is narrower (Bw(GS∗) = 4.5961o) than that of theunonstrained GS and very lose to that by MNamara [8℄ (Bw(Const−EMM) =
4.6090o). On the other hand, as expeted, the performanes in terms of SLLget worse (−17.25 dB vs. −28.60 dB), but they are still better than that of the34



CHAPTER 3. THE ITERATIVE MATCHING APPROACH
M = 10 C

(GS)
opt 1 2 3 4 4 4 4 4 3 1

C
(GS∗)
opt 1 2 3 3 4 4 4 4 3 1

Q = 4 W
(GS)
opt 0.2201 0.4601 0.6932 0.9568

W
(GS∗)
opt 0.3593 0.7882 1.5351 2.0122

M = 10 C
(GS)
opt 1 2 3 4 5 6 4 3 2 1

C
(GS∗)
opt 1 2 3 5 6 6 6 4 3 1

Q = 6 W
(GS)
opt 0.1714 0.5075 0.7332 0.9083 0.9901 0.9926

W
(GS∗)
opt 0.1876 0.4765 0.6894 0.8189 0.8914 0.9857Table 3.4: Comparative Assessment (M = 10, d = λ

2
) - Sub-array on�gurationand weights synthesized with the ICPM −GS, when Q = 4 and Q = 6.

SLL-onstrained EMM (Tab. 3.3).The seond example addresses the same problem onsidered in [11℄[14℄ on-erned with a 20-elements linear array with Q = 4 and Q = 6, where the sumpattern is of Dolph-Chebyshev type and haraterized by SLL = −20 dB. Byassuming referene Zolotarev patterns with SLLref = −30 dB (Q = 4) and
SLLref = −35 dB (Q = 6), the optimized di�erene patterns are shown in Fig.3.6 , while the �nal sub-array on�gurations and weights are summarized in Tab.3.4 .The ontiguous partition method is more e�etive than both the DE-basedapproah [11℄ and the two-step proedure proposed in [14℄ (indiated in �guresand tables as Hybrid−SA approah) in minimizing the level of the sidelobes asgraphially shown in Fig. 3.6 and quantitatively on�rmed by the behavior of thebeam pattern indexes in Tab. 3.5 . Similar onlusions hold true in dealing withthe required omputational burden (Tab. 3.5) and CPU-time (T (GS) < 0.2 [sec]).For ompleteness, the Bw-onstrained problem has been also addressed. A-ordingly, the SLL minimization has been performed by requiring a beamwidthvalue lose to that in [11℄ and [14℄ (Tab. 3.5). The patterns omputed withthe sub-array on�gurations and weights given in Tab. 3.4 and synthesized bymeans of the GS∗ algorithm (Q = 4 - SLLZolotarevref = −27.50 dB, Q = 6 -
SLLZolotarevref = −33.00 dB) are shown in Fig. 3.6. Moreover, the orrespondingpattern indexes are summarized in Tab. 3.5.3.3.3 Extension to Large ArraysThe numerial study ends with analysis of the synthesis of large array patterns(M ≥ 50) where usually loal minima problems, unmanageable (or very di�ult)inreasing omputational osts, and ill-onditioning issues unavoidably arise. Insuh a framework, the �rst experiment is onerned with a N = 2 ×M = 100elements array (d = λ/2) with sum pattern �xed to the Taylor distribution [5℄35
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(b)Figure 3.6: Comparative Assessment (M = 10, d = λ
2
) - Normalized di�erenepatterns synthesized with the ICPM−GS, the Hybrid−SA approah [14℄, andthe DE algorithm [11℄ when (a) Q = 4 and (b) Q = 6.36



CHAPTER 3. THE ITERATIVE MATCHING APPROACH

Aslo Bw [deg] Asll SLL U Istat

Q = 4

Reference Difference [9℄ 0.1786 5.1496 0.0510 −30.00 − −

GS 0.1809 5.2247 0.0564 −25.40 84 2

Reference Difference∗ [9℄ 0.1803 5.0000 0.0694 −27.50 − −

GS∗ 0.1863 5.1449 0.0748 −24.30 84 2

Hybrid− SA [14℄ 0.1844 5.1442 0.0919 −24.10 O
(

103
)

25

DE Algorithm [11℄ 0.1878 5.1834 0.1107 −21.30 O
(

103
)

9

Q = 6

Reference Difference [9℄ 0.1929 5.4188 0.0281 −35.00 − −

GS 0.1948 5.4928 0.0291 −31.56 126 2

Reference Difference∗ [9℄ 0.1897 5.3138 0.0355 −33.00 − −

GS∗ 0.1893 5.2694 0.0356 −29.52 126 2

Hybrid− SA [14℄ 0.1884 5.2615 0.0439 −29.50 O
(

105
)

25

DE Algorithm [11℄ 0.1942 5.3872 0.0727 −21.66 O
(

105
)

7Table 3.5: Comparative Assessment (M = 10, d = λ
2
) - Quantitative indexesand omputational indiators for the solutions obtained with the ICPM −GS,the Hybrid − SA [Istat = 25 indiates the number of SA iterations (i.e., �rststep), no indiations on the onvex programming proedure (i.e., seond step)are available℄ approah [14℄, and the DE algorithm [11℄ when Q = 4 and Q = 6.

37



3.3. NUMERICAL RESULTS

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

 0

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

R
el

at
iv

e 
P

o
w

er
  
 [

d
B

]

ψ/π

GS
Hybrid-SA

DE
GA
SA

Figure 3.7: Extension to Large Arrays (M = 50, d = λ
2
, Q = 4) - Normalizeddi�erene patterns synthesized with the ICPM − GS (SLLref = −40 dB), the

SA algorithm [10℄, the Hybrid− SA approah [14℄, the GA-based method [12℄,and the DE algorithm [11℄.with n = 12 and SLL = −35 dB. For omparison purposes, the ase of Q = 4sub-arrays [10℄[12℄[11℄[14℄ is dealt with. Dealing with suh a senario, the ICPMhas been applied by onsidering a referene Zolotarev pattern [9℄ with sidelobelevel equal to SLLref = −40 dB.The synthesized di�erene pattern is shown in Fig. 3.7 , while the sub-arraygrouping and weights are given in Tab. 3.6 . By observing both Fig. 3.7 andTab. 3.7 , it turns out that the GS approah outperforms other single-steptehniques and, unlike the ase M = 10, its performanes are quite similar (interms of sidelobe level) to that of the two-step method even though it is muhmore omputationally e�etive. Moreover, although it ahieves the minimumvalue of SLL, the orresponding main lobe beamwidth does not signi�antly
M = 50 C

(GS)
opt 11112223333304444444444444444444303333232222211111

Q = 4 W
(GS)
opt 0.1624 0.5162 0.8579 1.1736Table 3.6: Extension to Large Arrays (M = 50, d = λ

2
, Q = 4) - Sub-arrayon�guration and weights synthesized with the ICPM −GS.38



CHAPTER 3. THE ITERATIVE MATCHING APPROACH
Synthesis Approach SLLopt Asll Bw [deg] Aslo U Istat T [sec]

SA Optimization [10℄ −25.56 0.0432 1.0745 0.0329 O
`

1030
´

− −

GA Optimization [12℄ −31.00 0.0504 1.3585 0.0529 O
`

1030
´

500 ∼ 15

DE Algorithm [11℄ −30.00 0.0361 1.3256 0.0361 O
`

1030
´

804 ∼ 20

Hybrid − SA Method [14℄ −32.00 0.0305 1.2776 0.0401 O
`

1030
´

25 −

GS −32.10 0.0363 1.2952 0.0444 18424 5 1.0785Table 3.7: Extension to Large Arrays (M = 50, d = λ
2
, Q = 4) - Quantita-tive indexes and omputational indiators for the solutions obtained with the

ICPM − GS (SLLref = −40 dB), the Hybrid − SA [Istat = 25 indiates thenumber of SA iterations (i.e., �rst step), no indiations on the onvex program-ming proedure (i.e., seond step) are available℄, the SA algorithm [10℄, the
GA-based method [12℄, and the DE algorithm [11℄.

M = 50 C
(GS)
opt 11111222202000333333333333303300002222222211111111

Q = 3 W
(GS)
opt 0.2437 0.7079 1.0976Table 3.8: Extension to Large Arrays (M = 50, d = λ

2
, Q = 3) - Sub-arrayon�guration and weights synthesized with the ICPM −GS.di�er from that of the other methods (Tab. 3.7).In the seond experiment, the same array geometry of the previous ase isanalyzed, but with Q = 3 sub-arrays analogous to [12℄. The sub-array on�g-uration and weights obtained with the GS-based strategy are reported in Tab.3.8 . Also in this ase, the GS di�erene pattern presents a SLL lower thanthat shown in [12℄ (SLL(GS)

opt = −30.25 vs. SLL(GA)
opt = −29.50) and on�rms itse�etiveness in terms of omputational resoure sine I

(GA)
stat

I
(GS)
stat

= 250.3.4 DisussionsThe proposed method onsists of an adaptive searhing proedure whose resultis a ompromise solution as lose as possible to an optimal one in the Dolph-Chebyshev sense, whih allows a satisfatory trade-o� between angular resolutionand redution of noise and interferenes e�ets. In partiular, the narrowestbeamwidth and the largest slope around the boresight diretion are looked forby applying the optimal exitation mathing method based on the ontiguouspartition tehnique, while the ful�llment of the requirements on the SLL (orother beam pattern features) is ensured by an outer iterative loop.The obtained results have proved the e�etiveness of the proposed approahin providing di�erene patterns with a satisfatory trade-o� among beam pat-tern features dealing with large arrays, as well. Although the iterative ontiguous39



3.4. DISCUSSIONSpartition method is aimed at synthesizing the �best ompromise� mathing anoptimal (in the Dolph-Chebyshev sense) referene pattern, the obtained solutionspositively ompare with state-of-the-art approahes in the related literature in anumber of measures where only the SLL minimization is required, thus showinghow the proposed approah, whih is numerially e�ient, works su�iently well.As a matter of fat, the proposed tehnique allows one to overome some draw-baks of both the EMM approah proposed by MNamara (i.e., ill-onditioningand the exhaustive evaluation of the whole set of aggregations) and the synthe-sis tehniques based on stohasti optimization algorithms (i.e., single-objetiveoptimization and low onvergene rate when dealing with very large arrays).On the other hand, de�nite onlusions about the relative performane of the
ICPM annot be drawn from the presented omparisons, sine the various ex-amples deal with di�erent synthesis problems and/or optimization riteria. Thismeans that, depending on the seleted feature, the ICPM performs di�erentlyeven though keeping a great omputational e�ieny. Moreover, sine the pro-posed proedure is an adaptive searhing tehnique, it does not guarantee toalways obtain better solutions than those from global optimization tehniques.As a matter of fat, these latter should outperform any other approah when op-timizing a given funtional, unless the optimum is not atually ahieved, whihis likely to happen when exploiting global optimization algorithms in large sizeproblems.

40



Chapter 4Monopulse Planar Array SynthesisIn this hapter, the extension of the Contiguous Partition Method (CPM) fromlinear to planar arrays is desribed and assessed. By exploiting some propertiesof the solution-tree the solution spae is represented in terms of a more ompatgraph. The generation of ompromise sum-di�erene patterns is thus obtainedthrough an optimal exitation mathing proedure based on a ombinatorialmethod. A set of representative results are reported for the assessment as wellas for omparison purposes.
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4.1. INTRODUCTION4.1 IntrodutionExat methods of synthesizing independently optimum sum and di�erene arraysexist for both linear [19℄[17℄[9℄[22℄ and planar arhitetures [6℄[7℄. Whether theomplexity and ost of the arising feed networks are a�ordable, then the abovemethods an be diretly used. However, sine the implementation of two (orthree) totally independent signal feeds is generally expensive and omplex, anumber of alternative solutions have been proposed to generate the two or threerequired patterns via shared feed networks at the ost of a redution in thequality of one or more patterns [2℄[1℄.In order to avoid the need of a ompletely di�erent feeding (reeiving) net-work for eah operation mode, several researhes [8℄[10℄[12℄[11℄[14℄ proposed topartition the original array in sub-arrays. In suh a sheme, the feeding networkis usually devoted to the optimization of the sum hannel, so that the exitationsof the arrays elements for suh a mode orrespond to the optimal one (e.g., Tay-lor [6℄). Then, the di�erene mode is obtained thanks to a suitable hoie of theweight of eah sub-array. Consequently, a large part of the whole arhitetureis ommon to both modes with a non negligible saving of osts. On the otherhand, a ompromise di�erene pattern is obtained. The degree of optimality ofthe ompromise solution is related to the number of sub-arrays, whih estab-lishes a trade-o� between osts and performanes. As a matter of fat, a largenumber of sub-arrays allows better performanes, but also implies higher osts.Otherwise, few sub-arrays may imply unaeptable di�erene patterns. For a�xed number of sub-arrays, one the exitations of the sum pattern have been�xed, the problem is onerned with the grouping of the array elements into sub-arrays and the omputation of their weights to determine the best ompromisedi�erene pattern. As far as the number of unknowns is onerned, it growsproportionally to the dimension of the array and, usually, it turns out to be verylarge when real appliations of planar arrays are onsidered. Consequently, astandard use of global optimization tehniques is not onvenient sine a subop-timal solution is generally obtained in the limited time one has at his disposal.As a matter of fat, the arising omputational burden raises very rapidly withthe dimension of the solution spae. Although this irumstane is quite under-estimated in antenna design sine synthesis problems may have many di�erentsatisfatory suboptimal solutions, nevertheless they an be signi�antly worsethan the global ones.In order to overome suh drawbaks, in Ares et al. [10℄ the antenna aperturehas been divided into four quadrants and the monopulse funtion has been ob-tained by ombining the outputs in a monopulse omparator. The sum patternand the di�erene one have been generated with all quadrants added in phaseand with pairs of quadrants added in phase reversal, respetively. Moreover,in order to redue the number of unknowns, eah antenna quadrant has beena-priori divided into sub-arrays (i.e., the setors) and only the sub-array weights42



CHAPTER 4. MONOPULSE PLANAR ARRAY SYNTHESIShave been alulated by minimizing a suitable ost funtion again aording toa Simulated Annealing (SA) algorithm. In an alternative fashion, D'Urso et al.[13℄ formulated the problem in suh a way that global optimization tools haveto deal with a redued number of unknowns. By exploiting the onvexity of theost funtional to be minimized with respet to a part of the unknowns (i.e., thesub-array gains), an hybrid two-step optimization strategy has been applied in-stead of simultaneously optimizing (in the same way) both the involved variables.As a matter of fat, one the lustering into sub-arrays has been determined byusing a SA tehnique, the problem at hand gives rise to a Convex Programming(CP ) problem with a single minimum that an be retrieved with a loal opti-mization tehnique. Unfortunately, although unlike [10℄ no a-priori informationsare neessary, the evaluation of the auxiliary CP objetive funtion is usuallymore umbersome than the original ost funtion. Suh an event ould resultin an exessively large omputational burden that would prevent the retrieval ofthe global optimum in the available amount of time or to e�iently deal withlarge planar arrays.In the following, the method proposed in Chapter 3 is onsidered for thesynthesis of planar monopulse array antenna. Towards this end, a suitable im-plementation is mandatory to keep also in the planar ase the best features ofthe linear approah both in term of reliability and omputational e�ieny. Asa matter of fat, unlike the linear ase, the planar struture requires two di�er-ene patterns (i.e., the di�erene E −mode and the H −mode). Moreover, thedimensionality of the problem at hand signi�antly grows with respet to thelinear situation, thus enhaning the omputational problems in applying globaloptimization methodologies and thus preventing their use also in hybrid modal-ities.Therefore this paper is aimed at desribing and assessing the planar extensionof the CPM (in the following PCPM) aording to the following outline. Themathematial formulation is presented in Set. 4.2 pointing out the main di�er-enes ompared to the linear array ase. Setion 4.3 is devoted to the numerialassessment. Both a onsisteny hek, arried out through an asymptoti study,and a omparative analysis (unfortunately, just only a test ase is available inthe reent literature) are onsidered.4.2 Mathematial FormulationLet us onsider a planar array lying on the xy−plane whose array fator is givenby
AF (θ, φ) =

R
∑

r=−R

S(r)
∑

s=−S(r)

ξrse
j(kxxr+kyys), r, s 6= 0 (4.1)43
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φ

y

x

Σ ∆
Sum Mode Difference ModeFigure 4.1: Sketh of the antenna feed network.where xr =

[

r − sgn(r)
2

]

× dx and ys =
[

s− sgn(s)
2

]

× dy, dx and dy beingthe inter-element distane along the x and y diretion, respetively. More-over, kx = 2π
λ
sinθcosφ and ky = 2π

λ
sinθsinφ. Conerning independently op-timum sum and di�erene patterns, they are generated by using three inde-pendent feeding networks and setting the exitation vetor ξ = {ξrs; r =

±1, ...,±R; s = ±1, ...,±S(r)} to ζ =
{

ζrs = ζ(−r)s = ζr(−s) = ζ(−r)(−s); r =

1, ..., R; s = 1, ..., S(r)} and to ς△ =
{

ς△rs = ς△(−r)s = −ς△r(−s) = −ς△(−r)(−s); r =

1, ..., R; s = 1, ..., S(r)}, △ = E, H , respetively. Otherwise, when sub-arrayingstrategies are onsidered [10℄ (Fig. 4.1), the sum beam is generated in an optimalfashion by �xing ξ = ζ, while the ompromise △−modes are obtained througha grouping operation desribed by the aggregation vetors c△
c△ =

{

c△rs; r = 1, ..., R; s = 1, ..., S(r)
} (4.2)where c△rs ∈ [1, Q] is the sub-array index of the element loated at the r-th rowand s-th olumn within the array arhiteture. Aordingly, the ompromise44



CHAPTER 4. MONOPULSE PLANAR ARRAY SYNTHESISdi�erene exitations are given by
γ△ =

{

γ△rs = ζrsO
(

c△rs, q
)

g△q ; r = 1, ..., R; s = 1, ..., S(r); q = 1, ..., Q
} (4.3)where g△q is the gain oe�ient of the q-th sub-array and O (

c△rs, q
)

= 1 if c△rs = qand O
(

c△rs, q
)

= 0, otherwise. Summarizing, the problem of de�ning the bestompromise between sum and di�erene patterns is reast as the de�nition ofthe on�guration c△opt and the orresponding set of weights g△
opt

so that γ△
opt

is aslose as muh as possible to ς△.Towards this end, the CPM is applied. Similarly to the linear array ase,the following ost funtion is de�ned
Ψ

(

c△
)

=
1

N

R
∑

r=1

S(r)
∑

s=1

ζ2
rs

∣

∣

∣

∣

∣

[

α△
rs −

Q
∑

q=1

wrsq
(

c△
)

]
∣

∣

∣

∣

∣

2 (4.4)where N is the number of elements lying on the aperture [i.e., N =
∑R

r=1 S(r)℄.Moreover, α△
rs = ς△rs

ζrs
and w△

rsq = wrsq
(

c△
) is given by

w△
rsq =

∑R
r=1

∑S(r)
s=1 ζ

2
rsO

(

c△rs, q
)

α△
rs

∑R
r=1

∑S(r)
s=1 ζ

2
rsO

(

c△rs, q
) , r = 1, ..., R; s = 1, ..., S(r); q = 1, ..., Q.(4.5)As regards to the sub-array weights, they are omputed one the aggregationvetor c△ has been identi�ed by simply using the following relationship

g△q = O
(

c△rs, q
)

w△
rsq r = 1, ..., R; s = 1, ..., S(r); q = 1, ..., Q. (4.6)In order to determine the unknown lustering that minimizes (4.4), the indi-ation given in [18℄ has been exploited. More in detail, it has been proved thata ontiguous partition of the array elements is the optimal ompromise solution.Aordingly, the set of ontiguous partitions (i.e., the set of admissible solutions)is de�ned by iteratively partitioning in Q sub-sets the list V = {vn; n = 1, ..., N}(n being the list index) of the array elements ordered aording to the orre-sponding α△

rs values suh that vn ≤ vn+1 (n = 1, ..., N − 1), v1 = minrs
{

α△
rs

},
vN = maxrs

{

α△
rs

}.Although the dimension of the PCPM solution spae, ℑPCPM , is signi�antlyredued ompared to that of full global optimizers [U (PCPM) =

(

N − 1
Q− 1

) vs.
U (GA) = Q

(

QN−1 + 1
)℄ or hybrid global-loal optimization tehniques [U (Hybrid) =

QN ℄, non-negligible omputational problems still remain sine the large amountof omputational resoures needed to sample ℑPCPM espeially when N enlargesas it happens in realisti planar arhiteture. Therefore, it is mandatory to de-vise an e�etive sampling proedure able to guarantee a good trade-o� between45
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Figure 4.2: Pitorial representation of the redundant parts within the solutiontree.omputational osts and optimality of the synthesized ompromise solution. To-wards this end, the �solution tree� of the linear ase has been ollapsed intoa more ompat struture (Fig. 4.2) , namely the diret ayli graph (DAG)[16℄, to desribe the whole solution spae. Suh a representation enables theexitation mathing synthesis of planar arrays with large numbers of elementsthanks to the signi�ant redution of both the omputational time and the CPUmemory requirements. Moreover, the DAG allows the implementation and ane�etive use of a fast graph-searhing algorithm to look for the optimal planarompromise.More in detail, the DAG is omposed by Q rows and N olumns. The q-th row is related to the q-th sub-array (q = 1, ..., Q), whereas the n-th olumn(n = 1, ..., N) maps the vn-th element of the ordered list V . An admissibleompromise solution is oded into a path, denoted by ψ, in the DAG. Eahpath ψ is desribed by a set of N vertexes, {tn; n = 1, ..., N} and through N − 1relations/links {en; n = 1, ..., N − 1} among the vertexes belonging to the path.46
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(

c△
) (4.4), a sequene of trial paths

ψ(k) =
{(

t
(k)
n , e

(k)
m

)

; n = 1, ..., N ; m = 1, ..., N − 1
} (k being the iteration/trialindex) is generated. Starting from an initial path ψ(k) (k = 0) de�ned by setting

arg
(

t
(0)
1

)

= 1 and arg
(

t
(0)
N

)

= Q and randomly hoosing the other vertexessuh as arg (

t
(0)
n−1

)

≤ arg
(

t
(0)
n

)

≤ arg
(

t
(0)
n+1

), the path ψ(k) is iteratively up-dated (ψ(k) ← ψ(k+1), c△(k) ← c△(k+1)) just modifying the memberships of theborder elements of the DAG. More in detail, the �border � vertexes are updatedas follows
arg

(

t(k+1)
n

)

=

{

r
(k)
n + 1 if r

(k)
n−1 = r

(k)
n

r
(k)
n − 1 if r

(k)
n+1 = r

(k)
n

, (4.7)while the links e(k)n−1 , link
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t
(k)
n−1

)

, arg
(
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(k)
n

)] and e(k)n , link
[

arg
(

t
(k)
n

)

, arg
(

t
(k)
n+1

)]47



4.3. NUMERICAL RESULTSonneted to the �border� vertex t(k)n are modi�ed through the relationships
e
(k+1)
n−1 =







link
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r
(k)
n , r

(k)
n + 1

]

if r
(k)
n−1 = r

(k)
n

link
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r
(k)
n − 1, r

(k)
n − 1

]

if r
(k)
n+1 = r

(k)
n

(4.8)and
e(k+1)
n =







link
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r
(k)
n + 1, r

(k)
n + 1

]

if r
(k)
n−1 = r

(k)
n

link
[

r
(k)
n − 1, r

(k)
n

]

if r
(k)
n+1 = r

(k)
n

. (4.9)The iterative proess stops when a maximum number of iterations Kmax(k > Kmax) or the following stationary ondition holds true:
∣

∣

∣
KwΨ(k−1) −

∑Kw

h=1 Ψ(h)
∣

∣

∣

Ψ(k)
≤ η (4.10)where Ψ(k) = Ψ

(

c△(k)
), Kw and η being a �xed number of iterations and a�xed numerial threshold, respetively. At the end of the iterative sampling ofthe DAG, the path ψopt is found and the orresponding aggregation vetor, c△opt,is assumed as the optimal ompromise solution.4.3 Numerial ResultsThis setion is aimed at assessing the e�etiveness of the PCPM through a setof representative results from several numerial simulations. The remaining ofthis setion is organized as follows. Firstly, some experiments are presented inSub-Set. 4.3.1 to analyze the behavior of the proposed approah in mathing areferene pattern for di�erent numbers of sub-arrays. Suessively, a omparativestudy is arried out (Sub-Set. 4.3.2) by onsidering the available test aseonerned with planar geometries and previously faed in [10℄.4.3.1 Pattern MathingIn the �rst test ase, the planar array onsists of Ntot = 4 × N = 316 elementsequally-spaed (dx = dy = λ

2
) elements arranged on a irular aperture r = 5λin radius. Beause of the irular symmetry, the synthesis proedure is onlyonerned with N = 79 elements. Moreover, the sum pattern exitations ζ havebeen �xed to those of a Taylor pattern [6℄ with SLL = −35 dB and n = 6. On theother hand, the optimal di�erene H −mode exitations ςH have been hosen toa�ord a Bayliss pattern [7℄ with SLL = −40 dB and n = 5. The orrespondingthree-dimensional (3D) representations of the relative power distributions arereported in Fig. 4.4 where u = sin θ cos φ and v = sin θ sinφ [23℄, being θ ∈48
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(a) (b)Figure 4.4: Pattern Mathing (N = 316, d = λ
2
, r = 5λ) - Relative powerdistribution of the referene (a) Taylor sum pattern (SLL = −35 dB, n = 6) [6℄and of the (b) H −mode Bayliss di�erene pattern (SLL = −40 dB, n = 5) [7℄,respetively.

[0, 90o] and φ ∈ [0, 360o], respetively. As regards to the ompromise synthesis,the optimization has been limited to the di�erene H −mode by exploiting thefollowing relationship γE =
{

γErs = −γHrs; r = 1, ..., R; s = 1, ..., S(r)
} that holdsfor the E −mode exitations due to the symmetry properties.In the �rst experiment, the number of sub-arrays has been varied from Q = 3up to Q = 10. Figure 4.5 shows the 3D representations of the synthesized

H −mode patterns. As it an be observed, the shapes of both the main lobesand the sidelobes of the ompromise distributions get loser to the referene one[Fig. 4.4(b)℄ when the ratio N
Q
redues. In order to better show suh a trend andto e�iently represent the behavior of the side-lobes, let us analyze the sideloberatio (SLR) de�ned as

SLR (φ) =
SLL (φ)

maxθ [AF (θ, φ)]
, 0 ≤ θ <

π

2
(4.11)where AF (θ, φ) indiates the array fator. By following the same guidelines in[10℄, the SLR has been ontrolled in the range φ ∈ [0o, 80o] sine the H −modepattern vanishes at φ = 90o. As expeted, the behavior of the SLR approximatesthat of the referene pattern when Q inreases (Fig. 4.6) . Suh an indiation isquantitatively on�rmed by the statistis of the SLR values given in Tab. 4.1 aswell as, pitorially, by the plots in Fig. 4.7 where the pattern values along the

φ = 0o ut are shown.4.3.2 Comparative AssessmentTo the best of the author's knowledge, the topi of planar sub-arraying has beenreently addressed only by Ares et al. in [10℄. More in detail, a Simulated49
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(a) (b)

(c) (d)Figure 4.5: Pattern Mathing (N = 316, d = λ
2
, r = 5λ) - Relative powerdistribution of the synthesized H −mode di�erene pattern when (a) Q = 3, (b)

Q = 4, () Q = 6, and (d) Q = 10.
[dB] min {SLR} max {SLR} av {SLR} var {SLR}

Reference [7℄ −40.44 −27.29 −36.68 6.05
Q = 3 −33.82 −16.48 −26.74 14.26
Q = 4 −37.32 −15.68 −31.56 15.11
Q = 6 −36.67 −17.47 −31.25 26.30
Q = 10 −38.72 −23.75 −34.77 11.46Table 4.1: Pattern Mathing (N = 316, d = λ

2
, r = 5λ) - Statistis of the SLRvalues in Fig. 3. 50
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Figure 4.6: Pattern Mathing (N = 316, d = λ
2
, r = 5λ) - Plots of the SLRvalues of the Bayliss pattern (SLL = −40 dB, n = 5) [7℄ and of the ompromise

H −mode di�erene patterns when Q = 3, 4, 6, 10 (φ ∈ [−80o, 80o]).
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4.3. NUMERICAL RESULTS
[dB] min {SLR} max {SLR} av {SLR} var {SLR}

SA [10℄ −27.70 −18.93 −22.52 6.41

CPM : SLL
H(1)
ref = −25 dB −23.30 −14.58 −21.48 3.93

CPM : SLL
H(2)
ref = −30 dB −28.78 −16.95 −24.08 14.15

CPM : SLL
H(3)
ref = −35 dB −29.43 −18.94 −25.87 5.74Table 4.2: Comparative Assessment (N = 300, d = λ

2
, r = 4.85λ, Q = 3) -Statistis of the SLR values of the H−mode di�erene pattern synthesized withthe SA approah [10℄ and with the iterative PCPM (Referene Bayliss pattern

n = 6 [7℄: SLLH(1)
ref = −25 dB, SLLH(2)

ref = −30 dB, and SLLH(3)
ref = −35 dB).Annealing (SA) proedure has been used to determine the sub-array weightsfor a pre-�xed sub-array on�guration by minimizing a suitable ost funtionaimed at penalizing the distane of the SLL of the ompromise pattern from apresribed value.For omparison purposes, let us onsider the same array geometry of [10℄.More in detail, the elements are plaed on a 20× 20 regular grid (dx = dy = λ

2
)lying on the xy-plane. The radius of the irular aperture of the antenna is equalto r = 4.85 λ. The sum exitations have been �xed to those values a�ordinga irular Taylor pattern [6℄ with SLL = −35 dB and n = 6. Conerning theompromise solution, Q = 3 sub-arrays have been onsidered.As far as the omparative study is onerned, the �nal solution of the CPM-based algorithm (i.e., de�nition of cHopt and gH

opt
) has been required to present

SLR values smaller than those from the SA approah [10℄. Sine the PCPM isan exitation mathing method, it has been iteratively applied by updating thereferene di�erene pattern until the onstraints on the ompromise solution weresatis�ed. Aordingly, a suession of referene exitations ςH(k), k = 1, ..., Khave been seleted. In partiular, they have been �xed to those of a Baylissdi�erene pattern [7℄ with n = 6 and SLL
H(k)
ref = −25 dB (k = 1), SLLH(k)

ref =

−30 dB (k = 2), and SLL
H(k)
ref = −35 dB (k = 3). The aggregations obtainedat the end of eah k-th iteration by the PCPM have ost funtion values equalto Ψ

(

c
H(1)
opt

)

= 0.65 × 10−1, Ψ
(

c
H(2)
opt

)

= 0.31 × 10−1, and Ψ
(

c
H(3)
opt

)

= 0.27 ×

10−1, respetively. Although the appliation of the PCPM ould be furtheriterated by de�ning others referene targets, the proess has been stopped at
k = kopt = 3 sine the requirement [SLRPCPM (φ) < SLRSA (φ), 0o ≤ φ ≤

80o℄ has been ful�lled by the ompromise solution (cHopt = c
H(3)
opt , gH

opt
= gH(3)

opt
).The orresponding relative power distributions are shown in Fig. 4.8 where thesolution obtained by Ares et. al [10℄ is reported [Fig. 4.8(a)℄, as well. To betterpoint out the apabilities of the iterative PCPM , also the plots of the SRL values(Fig. 4.9) and the orresponding statistis (Tab. 4.2) are given. Moreover, inorder to make the PCPM results reproduible, the sub-array on�gurations and52
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(a) (b)

(c) (d)Figure 4.8: Comparative Assessment (N = 300, d = λ
2
, r = 4.85λ, Q = 3) -Relative power distribution of the H − mode ompromise pattern synthesizedwith (a) the SA approah [10℄ and the PCPM when the Referene Baylisspattern n = 6 [7℄ presents a sidelobe level equal to (b) SLLH(1)

ref = −25 dB, ()
SLL

H(2)
ref = −30 dB, and (d) SLLH(3)

ref = −35 dB.
53
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Figure 4.9: Comparative Assessment (N = 300, d = λ
2
, r = 4.85λ, Q = 3) - Plotsof the SLR values of the ompromiseH−mode di�erene patterns synthesized bythe SA approah [10℄ and the PCPM when the Referene Bayliss pattern n = 6[7℄ presents a sidelobe level equal to SLLH(1)

ref = −25 dB, SLLH(2)
ref = −30 dB,and (d) SLLH(3)

ref = −35 dB (φ ∈ [−80o, 80o]).
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1 1 2 2 2 3 3 3
1 1 2 2 3 3 3 3 3
1 1 2 2 3 3 3 3 3
1 1 2 2 3 3 3 3 3
1 1 2 2 3 3 3 3 3 3
1 1 2 2 3 3 3 3 3 3

1 1
1 1 1 1 1
1 1 1 1 1 2
1 1 1 2 2 2 2
1 1 2 2 2 2 2 2
1 1 2 2 3 3 3 2 2
1 1 2 2 3 3 3 3 2
1 1 2 2 3 3 3 3 3
1 1 2 3 3 3 3 3 3 2
1 1 2 3 3 3 3 3 3 2

g1 0.4668 0.3337 0.3355
g2 1.3435 0.9763 0.9381
g3 2.1736 1.6091 1.4469Table 4.3: Comparative Assessment (N = 300, d = λ

2
, r = 4.85λ, Q = 3) - Sub-array on�gurations and weights obtained with the PCPM (Referene Baylisspattern n = 6 [7℄: SLL

H(1)
ref = −25 dB, SLLH(2)

ref = −30 dB, and SLL
H(3)
ref =

−35 dB).weights are given in Tab. 4.3. The lists of digits of Tab. 4.3 (seond row)indiate the sub-array memberships of the N = 75 array elements belonging toa quadrant of the antenna aperture.Finally, let us analyze the omputational issues. The total amount of CPU-time to get the �nal solution (on a 3.4GHz PC with 2GB of RAM) was Ttot =
2.6361 [sec] (i.e., T (1) = 0.8148 [sec], T (2) = 0.8302 [sec], and T (3) = 0.9911 [sec]).Moreover, the number of iterations required at eah step to synthesize an inter-mediate ompromise solution is equal to K(1)

opt = 14, K(2)
opt = 14, and K(3)

opt = 17,respetively.
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Chapter 5The Ant Colony Optimizer forGraph SearhingDealing with the proposed exitation mathing method, this hapter presents aglobal optimization strategy for the optimal lustering in sum-di�erene om-promise linear arrays. Starting from a ombinatorial formulation of the problemat hand as shown in the previous part of this thesis, the proposed tehniqueis aimed at determining the sub-array on�guration expressed as the optimalpath inside a direted ayli graph struture modelling the solution spae. To-wards this end, an ant olony metaheuristi is used to bene�t of its hill-limbingproperties in dealing with the non-onvexity of the sub-arraying as well as inmanaging graph searhes. A seleted set of numerial experiments are reportedto assess the e�ieny and urrent limitations of the ant-based strategy also inomparison with the loal ombinatorial searh method previously presented.
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5.1. INTRODUCTION5.1 IntrodutionIn the framework of the optimal mathing tehniques for the solution of the opti-mal ompromise between sum and di�erene patterns, besides the methodologialand algorithmi novelties introdued in this work, the main result yielded is theproof that the ompromise synthesis problem an be formulated as a ombinato-rial one where the dimension of the solution spae grows as a binomial funtion ofthe number of array elements (and not exponentially as in lassial optimizationformulations). Moreover, only the sub-array aggregations are looked for, whilethe sub-array weights are obtained as a �free by-produt�. In order to solve theproblem at hand, the solution spae has been represented through a tree stru-ture where the best ompromise solution orresponds to the minimum ost path.Moreover, an ad-ho loal searh strategy (alled BEM ) has been implementedto e�etively sample the solution spae. In spite of the good results obtained inpattern mathing (Chapter 2), and SLL ontrol (Chapter 3), the whole proe-dure ould su�er from a misleading lustering of the array elements that woulddeeply in�uene the seond step (i.e., the weight omputation) sine the fun-tional to be optimized is non-onvex with respet to the sub-array membershipsof the array elements. To avoid this drawbak, global optimization is requiredfor solving the lustering step sine loal searhes ould get stuk into loal min-ima. However, �standard� evolutionary tehniques or general purpose optimizersannot be adopted beause of their omputational osts espeially when dealingwith high-dimension problems and ad-ho algorithms must be used. Aordingly,this paper desribes and analyzes the performane of a suitable state-of-the-artevolutionary strategy, namely the Ant Colony Optimizer (ACO) [24℄, whose in-trinsi struture seems to be very appropriate to fully exploit a suitable de�nedgraph-like model of the solution spae. As a matter of fat, suh an approahshould in priniple avoid the loal minima of the ost funtion beause of its hilllimbing behavior as a global optimizer. On the other hand, it should performbetter than other 'physially inspired' optimization algorithms beause its intrin-si ombinatorial nature able to fully adapt to the desription of the solutions asan ensemble of ontiguous partitions.The outline of the hapter is as follows. After a short review of the BEM(Set. 5.2), the ACO for graph-searhing is arefully desribed (Set. 5.3). InSetion 5.4, the results of a seleted set of numerial experiments are reported inorder to �rstly desribe the ACO behavior and then to point out its advantagesand best features ompared to the BEM . Finally, some onlusions are drawn(Set. 5.5).5.2 BEM for Graph-SearhingConerning the notation adopted in the following, it is the same of Chapter (2).There, it has been shown how the solution spae of the ontiguous partitions58
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3 3()Figure 5.1: Evolution of the BEM solution within the DAG.
an be represented in an e�etive fashion through a non-omplete binary tree ofdepth M − 1, wherein eah level of the tree from the root to the leaves de�nesthe sub-array membership for an element of the array. A more ompat andnon-redundant struture able to give a omplete representation of the wholeset of admissible sub-array on�gurations is based on a Direted Ayli Graph(DAG) (Chapter 4). As a matter of fat, the non-omplete binary tree anbe redued to an equivalent DAG by simply notiing that some parts of thetree reursively repeat themselves. Generally speaking, the DAG is a graph
G = (V ,E) omposed by a set of V vertexes and E edges indiated in Fig. 5.1by irles and arrows, respetively. As regards to the ompromise problem, the
DAG is made of Q rows (i.e., the number of sub-arrays) and M −Q+1 vertexeswithin eah row (i.e., the maximum number of elements that an be assigned toa single sub-array by onsidering non-null lusters). Moreover, the paths inside59



5.2. BEM FOR GRAPH-SEARCHINGthe solution graph have the same length1 equal to M − 1 and eah path odes atrial sub-array on�guration C.In order to explore the solution graph looking for the path minimizing (2.2),the Border Element Method (BEM) dealing with a tree arhiteture is adaptedhere to work with the DAG, as well. Aordingly, the so-alled border elementsare now those elements of the atual on�guration/path whereof at least onelosest element of the path belongs to a di�erent row of the DAG (i.e., it isassigned to a di�erent sub-array). For sake of larity and with referene to Fig.5.1, the luster on�gurations are indiated by the red edges and the borderelements are denoted by the blue vertexes. It is worth notie that it is possibleto obtain a new admissible trial aggregation C ′ just hanging the membershipof a border element as shematially desribed in the following pseudo-ode thatsummarizes the BEM for the sampling of the DAG struture:Compute vm : m = 1, . . . ,MSort vm : m = 1, . . . ,M to obtain L: l1 = min {vm}, lM = max {vm}Initialize C(0) =
n

c
(0)
m ; m = 1, . . . ,M : c

(0)
m (l1) = 1, c

(0)
m (lM ) = Q

ofor eah iteration k : k = 1, . . . ,K

C(k) = C(k−1)

c
(k)
m (l1) = c

(0)
m (l1) , c

(k)
m (lM ) = c

(0)
m (lM )for eah element lh : h = 2, . . . ,M − 1if (c(k)

m (lh) is a border element) AND (is not a single element sub-array) thenAssign c
(k)
m the membership of the loser/different sub-array to obtain C′End ifCalulate Fitness of C′if (Ψ {C′} < Ψ

n

C(k)
o) thenNew solution found: C(k) = C′End ifEnd forif (Ψ

n

C(k)
o stationary) then

CBEM = C(k); kend = kStopEnd ifEnd for
CBEM = C(K); kend = KStopMore in detail, the BEM is �rst aimed at looking for the border elements ofthe urrent path C(k) belonging to the DAG and suessively at hanging theirmemberships (one a time), until a termination riterion based on a maximumnumber of iterations K (k = 0, ..., K; k being the iteration index) or on a sta-tionary ondition of the ost funtion value Ψ

{

C(k)
} is reahed. For illustrativepurposes, a pitorial representation of the BEM-based searhing is given in Fig.5.1. It is onerned with the test ase haraterized by M = 10 and Q = 3.1The length of a DAG is equal to the number of edges of the longest direted path.60



CHAPTER 5. THE ANT COLONY OPTIMIZER FOR GRAPHSEARCHINGStarting from the guess solution C(0) displayed in Fig. 5.1(a), the iterative pro-ess stops after two iterations determining the �nal aggregation CBEM = C(2)shown in Fig. 5.1().5.3 ACO for Graph-SearhingFrom the BEM pseudo-ode, it is simple to reognize that suh a method, forboth tree and graph-like arhitetures, is a deterministi tehnique that su�ersof the usually standard drawbaks of loal searh algorithms. In partiular, the
BEM solution might be trapped in a loal minimum and strongly in�uenedby the starting guess aggregation C(0) hosen at the initialization beause of thenon-onvexity of the problem at hand.In order to overome the problems related to the presene of loal minimain the ost funtion (2.3), the Ant Colony Optimizer (ACO) is adopted here tosearh for the optimal path Copt within the solution graph that minimizes (2.3).The ACO is a global optimization algorithm inspired by the foraging behaviorof ant olonies looking for food soures [24℄. The ants look for the shortestpath between the food soures and the nest. Towards this end, eah ant leavesa hemial substane, alled pheromone, while moving in the spae surroundingthe nest. The amount of pheromone on a path quanti�es its degree of optimality,but it deays with time (evaporation mehanism). These mehanisms allow oneto avoid poor food soures on one hand (pheromone release) and on the other,to e�iently sample the whole solution spae (pheromone evaporation).The ACO developed by Dorigo [25℄ has been widely applied espeially indistributed and disrete problems suh as routing [26℄[27℄, assignment [28℄[29℄,sheduling [30℄[31℄, subset [32℄, but it is relatively infrequent in eletromagnet-is. To the best of authors' knowledge, it has been reently applied to feweletromagneti problems (e.g., antenna synthesis onsidering binary [33℄ or realimplementations [34℄[35℄[36℄ and mirowave imaging [37℄). However, beause ofits e�etiveness in faing hard ombinatorial problems and sine the ombinato-rial formulation of the optimal ompromise between sum and di�erene patternsrequires the searhing of the best path within a graph, the ACO seems to bea suitable metaheuristi for the problem at hand. Towards this aim, the sim-plest version of the ACO, namely Ant System [24℄, is used. The proposed ACOimplementation is ustomized to the graph arhiteture to properly address thesynthesis of small as well as large arrays. As a matter of fat, due to the highnumber of vertexes needed for the storage of the solution, applying the ACOto the searh within the solution-graph presents some memory limitations whendealing with very large dimensional spaes. On the other hand, it must bepointed out that the ACO performanes in terms of solution auray do notdepend on the representation of the solution spae, but only the feasibility andthe omputational indexes (i.e., the storage resoures and the rate of samplingthe solution spae) are a�eted by the arhiteture at hand.61
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Figure 5.2: Evolution of the ACO solution within the DAG.The proposed implementation of the ACO-based approah an be summa-rized as follows. Eah i-th (i = 1, ..., I) ant odes a vetor ai of M integer valuesthat models a trial sub-array on�guration Ci (i.e., ai = a {Ci}). Every vetoris initialized to the null one at eah iteration (i.e., a(k)
i = {0, ..., 0}, k = 1, ..., Kand i = 1, ..., I) and it is �lled step-by-step while the ants are moving througheah level of the graph as shown in Fig. 5.2 . At the initialization (k = 0), thequantity of pheromone on eah edge τ (0) (erz), erz = 1, ..., E is the same and eahedge of the graph an be explored with a uniform probability p(0) (erz) = 0.5. Asregards to the apex r, it is equal to q → q if the edge erz onnets two vertexesbelonging to the same sub-array (i.e., the same row of the DAG) and to q → q+1if it onnets two vertexes assigned to di�erent sub-arrays (i.e., di�erent rows ofthe DAG). Moreover, the pedex z, z = z1, ..., zM−1, identi�es the level of theedge within the graph. Conerning the iterative loop (k > 0), the probability ofhoosing one of the two subsequent edges (if present) at eah vertex is given by

p(k) (erz) =
τ (k) (erz)

τ (k) (eq→q
z ) + τ (k)

(

eq→q+1
z

) , z = z1, ..., zM−1; r = q → q + [0, 1] .(5.1)When the whole ant olony has ompleted a path within theDAG, the pheromonelevel τ (k) (erl ) of eah edge is updated as follows
τ (k+1) (erz)← τ (k) (erz) +

I
∑

i=1

δ
er
za

(k)
i

H

Ψ
(

C
(k)
i

) , ∀τ (k) (erz) (5.2)where δ
er
za

(k)
i

= 1 when erz ∈ a(k)
i [a(k)

i = a
{

C
(k)
i

}℄ and δ
er
za

(k)
i

= 0 otherwise, Hbeing a positive onstant. Suessively, the evaporation proedure takes plae inorder to redue and at most delete worse paths from the graph
τ (k+1) (erz)← (1− ρ) τ (k+1) (erz) , ∀τ

(k+1) (erz) (5.3)62



CHAPTER 5. THE ANT COLONY OPTIMIZER FOR GRAPHSEARCHING
ρ ∈ (0 , 1] being a parameter aimed at ontrolling the evaporation rate. Finally,the same stopping riterion (k = kend) used for the BEM is adopted here for the
ACO-based method to allow fair omparisons.5.4 Numerial Simulations and ResultsBeause of the novelty of the proposed approah, the �rst part of this setion(Set. 5.4.1) is devoted to the alibration of the ACO algorithm [38℄ when dealingwith the searhing of the �best ompromise� solution among those admissiblewithin the solution graph. Suessively, the use of the ACO is motivated (Set.5.4.2) showing how the BEM solution su�ers from the non-onvexity of theaggregation problem beause of the loal nature of the algorithm. Finally, a setof omparative results onerned with a wide number of ompromise problemsare reported (Set. 5.4.3) to point out potentialities and urrent limitations ofthe ACO-based approah.5.4.1 ACO CalibrationA key feature of the ACO algorithm is the simple implementation. As a matterfat, besides the number I of ants in the olony, it only requires the de�nitionof two parameters to work, namely the pheromone update oe�ient H and thepheromone evaporation oe�ient ρ. In order to determine their optimal valuesfor the problem at hand, an extensive set of numerial experiments has beenarried out by onsidering an array of N = 40 elements and Q = 6 sub-arrays asreferene benhmark. In this ase, the number of ontiguous partitions is equalto U (ess) =

(

19
5

)

= 11628. As far as the referene exitations are onerned,those a�ording a Dolph-Chebyshev sum pattern with SLL = −25 dB [19℄ anda Zolotarev di�erene pattern with SLL = −30 dB [9℄ have been hosen. Con-erning the alibration study, the values of the ACO ontrol oe�ients havebeen varied in the range H ∈ [0 : 5] and ρ ∈ (0 : 1] [24℄, respetively. Moreover,beause of the stohasti nature of the ACO algorithm, 100 di�erent simulationshave been performed for eah setting of the alibration parameters. Eah simu-lation has been run with a number of ants equal to I = [3, 5, 8, 10, 100, 1000]for a maximum number of K = 1000 iterations.As a representative result, the average performanes for eah parameter on-�guration when I = 3 are reported in Fig. 5.3 . As it an be observed, theonvergene ost funtion value is more sensitive to the evaporation oe�ient ρand less to the value of the parameter H that ontrols the pheromone update.A similar onlusion holds true whatever the value of I. Conerning the optimalsetup, the on�guration H = 1 and ρ = 0.05 has been seleted sine the orre-sponding representative point in Fig. 5.3 lies in the lowest region and the value63
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H = 1 has already been identi�ed as an optimal hoie in other graph searhingproblems (e.g., TSP [26℄).As regards to the dimension of the ant olony, the analysis has been devotedto de�ne the optimal value of I in relationship to the dimension of the solutionspae U (ess). Towards this end, I has been varied between 1 and 1

10
U (ess). Figure5.4 shows the results of the statistial study, eah ross being the average Ψamong the values reahed at the end of eah group of 100 simulations. Forompleteness, the standard deviation is shown, as well. From these results, itan be inferred that the hoie I ≃ [

1
125
U (ess) : 1

100
U (ess)

] de�nes a good ruleof thumb to reah the global solution with a perentage above 90% 2. On theother hand, the minimum value of Ilb = 5 ants has been set as lower bound inorder to exploit the ooperative behavior of the ACO in those problems wherethe previous riterion would give too small values (i.e., I < Ilb).2It is worth noting that the results here reported have been obtained under the assumptionof a maximum number of iterations equal to K = 1000. Probably, inreasing the number ofiterations would allow a redution of the number of ants for obtaining the same onlusions.65
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2
. The optimal sum and di�erene oe�ients have beenhosen to a�ord a Dolph-Chebyshev sum pattern with SLL = −25 dB [19℄ anda Zolotarev di�erene pattern with SLL = −30 dB [9℄, respetively. As regardsto the ompromise feed network, Q = 3 sub-arrays have been used.Conerning the Contiguous Partition Method (CPM) ustomized in the presentwork to the searhing within the solution graph, the optimal gains vm, m =

1, . . . ,M , are �rst omputed as desribed in Chapter (2) and then sorted ona line in order to obtain the list L = {lh : lh ≤ lh+1, h = 1, ...,M − 1}, where
l1 = min {vm} and lM = max {vm}. Eah element of the sorted list L is assignedto a level of the solution graph as shown in Fig. 5.1. Starting from a uniform sub-arraying (i.e., a sub-array on�guration wherein the number of elements withineah sub-array di�ers at most of one element when M is or not a multiple of
Q), the initial sub-array vetor turns out to be C(0) = {1 1 1 2 2 3 3 3 2 1} (Fig.5.5) . Then, the iterative loop of the BEM takes plae aording to the pseudo-ode of Set. (5.2) and as detailed in Fig. 5.5. For ompleteness, Figure 5.1shows the orresponding evolution of the BEM trial solution in the solutiongraph. As it an be notied, the BEM gets stuk only after kBEMend = 2 iter-ations. The �nal grouping is CBEM = C(2) = {1 1 2 2 3 3 3 3 2 1} [Fig. 5.1()℄with a onvergene �tness value of Ψ

(

CBEM
)

= 1.08 × 10−2, while the inter-mediate solution C(1) = {1 1 2 2 2 3 3 3 2 1} [Fig. 5.1(b)℄ has a �tness equal to
Ψ

(

C(1)
)

= 1.48× 10−2. The radiation patterns generated at the various itera-tions and the referene pattern are reported in Fig. 5.6, as well.Suessively, the ACO has been applied to the same test ase. Sine the66
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Figure 5.6: ACO's Hill Climbing Behavior (N = 20, Q = 3) - BEM powerpattern at di�erent iterations of the iterative optimization (k = 1, ..., kend).number of trial solutions within the graph is equal to U (ess) =

(

9
2

)

= 36 and
I, aording to the riterion previously de�ned, would result lower than one, the
ACO population has been set to I = Ilb = 5. Moreover, the pheromone updateHand the evaporation ρ have been �xed to their optimal values. As expeted, the
ACO outperforms the BEM sine the �tness value of the synthesized solution
CACO = {1 2 2 3 3 3 3 3 3 2} is equal to Ψ

(

CACO
)

= 8.26×10−3 [vs. Ψ
(

CBEM
)

=
1.08× 10−2℄. To further on�rm the ACO e�etiveness, it is worth noting thatthe lustering determined by the ACO is the one having the minimum �tnessamong the U (ess) = 36 admissible di�erent lustering. On the ontrary, the BEMhas been able to retrieve the seond best solution oded into the solution graphas shown in Fig. 5.7 (red line) where eah ross denotes the Ψ value amongthe U (ess) = 36 ontiguous partitions ranked aording to their ost funtionvalues. More spei�ally, the BEM solution is evidened with a irle, whilethe minimum �tness value or global minimum of the exitation mathing ostfuntion oinides with the ACO lustering [i.e., Ψopt = Ψ

(

CACO
)℄. On the otherhand, it is also interesting to point out that, even though the BEM solution isthe seond best ompromise, it has three elements over ten whose sub-arraymemberships are di�erent from those of the global optimum Copt reognized bythe ACO-based algorithm, CACO = Copt.67
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M = 10 aBEMm {1 1 2 2 3 3 3 3 2 1}

aACOm {1 2 2 3 3 3 3 3 3 2}
Q = 3 wBEMq 0.3827 0.9736 1.3363

wACOq 0.1798 0.6602 1.2549Table 5.1: ACO's Hill Climbing Behavior (N = 20, Q = 3) - Sub-array on�gu-rations and weights determined by the BEM and the ACO.
Approach Ψopt ∆ SLL [dB] BW [deg] kend Fend t [sec] T (ess)

N = 2M = 20 , Q = 3

BEM 1.08 × 10−2 0.3199 −18.25 5.28 2 3 < 10−8 36

ACO 8.26 × 10−3 0.2689 −18.75 5.12 2 10 < 10−8 36

N = 2M = 20 , Q = 8

BEM 2.49 × 10−4 0.0545 −35.20 5.74 2 3 < 10−8 36

ACO 1.13 × 10−5 0.0145 −37.50 5.68 2 10 < 10−8 36

N = 2M = 40 , Q = 4

BEM 5.60 × 10−3 0.2886 −20.10 2.50 21 22 < 10−7 969

ACO 4.99 × 10−3 0.2609 −22.85 2.50 34 340 4.5 × 10−3 969Table 5.2: ACO's Hill Climbing Behavior - Pattern performanes and omputa-tional indexes.For ompleteness, Table 5.1 details the results obtained with the BEM andthe ACO by reporting the �nal sub-array on�gurations and the gain values.Moreover, the synthesized di�erene ompromises are shown in Fig. 5.8(a) . Be-ause of the exitation-mathing nature of the proposed tehnique, let us quantifythe loseness of the arising patterns with respet to the optimal/referene oneby omputing the pattern mathing ∆ (2.6). As expeted and indiated by theorresponding lower �tness value, the ACO pattern is loser to the refereneone. As a matter of fat, it is ∆ACO = 0.2689 vs. ∆BEM = 0.3199 (Tab. 5.2). Table 5.2 also reports the values of other indexes in order to give a ompleteoverview of the features of the obtained patterns (i.e., sidelobe level, SLL, andmain lobe width, Bw). Moreover, the omputational issues are pointed out bythe following indexes: the number of onvergene iterations, kend, the numberof funtion evaluations, Fend, and the CPU-time t neessary to �nd C(kend) on a
3.4GHz PC with 2GB of RAM. As it an be notied, both BEM and ACO areable to �nd a onvergene solution almost in real time sine t < 10−8. Suh anevent points out one again the omputational e�ieny of the CPM approah,but also the usefulness of the graph representation that enables the use of anevolutionary algorithm without exessively inreasing the omputational ostsand memory resoures. 69
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(b)Figure 5.8: ACO's Hill Climbing Behavior - Compromise di�erene power pat-terns obtained with the BEM and the ACO when (a) N = 20, Q = 3 (Zolotarev[9℄, SLL = −30 dB) and (b) N = 20, Q = 8 (Zolotarev [9℄, SLL = −40 dB).70



CHAPTER 5. THE ANT COLONY OPTIMIZER FOR GRAPHSEARCHING
M = 10 aBEM

m {1 2 3 5 7 8 6 4 2 1}

aACO
m {1 3 5 7 8 8 7 6 4 2}

Q = 8 wBEM
q 0.2146 0.6107 0.9221 0.9825 1.1582 1.1797 1.2818 1.2864

wACO
q 0.2049 0.2432 0.5937 0.7250 0.9221 0.9825 1.1650 1.2838Table 5.3: ACO's Hill Climbing Behavior (N = 20, Q = 8) - Sub-array on�gu-rations and weights omputed with the BEM and the ACO.In the seond experiment, the same array geometry of the previous ex-ample has been onsidered, but the array has been partitioned into Q = 8sub-arrays. Moreover, a Zolotarev di�erene pattern with SLL = −40 dB [9℄has been adopted as referene target. It is worth observing that despite thehigher number of sub-arrays, the dimension of the solution spae is still equalto U (ess) = 36 thanks to the symmetri nature of the binomial distribution [i.e.,

U (ess) =

(

9
7

)

=

(

9
2

)

= 36℄. Analogously to the previous example, the BEMstops after kBEMend = 2 iterations synthesizing the solution in Tab. 5.3 , but in thisase other 8 solutions with lower �tness values are present in the solution graph(Fig. 5.7 - green line). On the other hand, the ACO has been able to reah theglobal optimum in Tab. 5.3 after kACOend = 2 iterations with a total number of�tness evaluation equal to FACO
end = 10 sine I = Ilb = 5. In partiular, the ACOsolution presents a �tness value of more than one order in magnitude below theone of the BEM [i.e., Ψ

(

CACO
)

= 1.13 × 10−5 vs. Ψ
(

CBEM
)

= 2.49 × 10−4℄and ∆BEM

∆ACO ≃ 3.76 as it an be qualitatively observed by omparing the patternsin Fig. 5.8(b). For the sake of ompleteness, Table 5.2 ompares the retrievedsolutions in terms of performane indexes.The last experiment of this setion is onerned with a larger uniform arrayof 40 λ
2
-spaed elements. A Dolph-Chebyshev sum pattern with SLL = −25 dB[19℄ and a Zolotarev di�erene pattern with SLL = −30 dB [9℄ have been hosenas referene patterns and the number of sub-arrays has been set to Q = 4. Insuh a ase, the number of possible sub-array on�guration within the solutionspae is equal to U (ess) = 969. As far as the ACO is onerned, I = 10 ants havebeen used. The two approahes have found the orresponding solutions after

kBEMend = 21 and kACOend = 34 as shown in Fig. 5.9 where the behavior of the ostfuntion during the iterative searhing proess for both the BEM and the ACOis desribed. The synthesized sub-array on�gurations and weights are given inTab. 5.4 , whereas the orresponding patterns are displayed in Fig. 5.10 . Asexpeted and likewise to the previous experiments, the BEM is still trapped intoa loal minimum and the retrieved solution turns out to be sub-optimal. However,it should be observed (Fig. 5.7 - blue line) that the BEM on�guration is thethird best ontiguous partition among U (ess) = 969 di�erent solutions and thevalue of the ratio ∆BEM

∆ACO ≃ 1.11 assesses its loseness to the optimal one. As71
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Figure 5.9: ACO's Hill Climbing Behavior (N = 40, Q = 4) - Behavior of theost funtion value Ψ(k) during the iterative optimization proess when applyingthe BEM and the ACO.
M = 20 aBEMm {1 1 2 2 2 3 3 3 4 4 4 4 4 4 4 4 4 3 3 2}

aACOm {1 1 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 3 2}
Q = 4 wBEMq 0.1779 0.5658 1.0257 1.3288

wACOq 0.1779 0.5055 0.8989 1.2923Table 5.4: ACO's Hill Climbing Behavior (N = 40, Q = 4) - Sub-array on�gu-rations and weights synthesized by means of the BEM and the ACO.
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Figure 5.10: ACO's Hill Climbing Behavior (N = 40, Q = 4) - Referene(Zolotarev [9℄, SLL = −30 dB) and ompromise di�erene power patterns syn-thesized with the BEM and the ACO.
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5.4. NUMERICAL SIMULATIONS AND RESULTSregards to the omputational issues, suh a test further on�rms the e�ieny ofthe BEM (in terms of speed) in exploring the solution spae being tBEM < 10−7while tACO = 4.5× 10−3. As a matter of fat, although the CPU-time requiredby the ACO-based approah is ertainly smaller than that of standard globaloptimizers, it annot be omitted that from a omputational point of view the
BEM results more ompetitive than the ACO when the ratio M

Q
gets larger andlarger. Suh a statement will be further analyzed in the following setion.5.4.3 ACO's Performanes and Problem DimensionsIn dealing with the optimal ompromise between sum and di�erene patterns,di�erent global optimization tehniques have been applied to determine the mostsuitable partition of the array elements into sub-arrays that minimizes a suitableost funtion related to some pattern features. Among them, it is worth men-tioning the Geneti Algorithm [12℄, the Di�erential Evolution Algorithm [11℄ andits enhaned version [15℄, and the Simulated Annealing [14℄. Despite the di�er-ent way of takling the problem at hand (i.e., diret optimization of elementmemberships and weights [12℄[11℄[15℄ or two-step nested approah [14℄ exploit-ing funtional onvexity), the dimension of the solution spae to be explored forretrieving the elements aggregation is equal to U (tot) = QM sine eah lusteredon�guration an be expressed as a string ofM digits in a Q-based notation sys-tem. Let us now suppose to use in a standard fashion (i.e., without reformulatingthe problem at hand as a ombinatorial one) a global optimizer and to apply therule dedued in Set. (5.4.1) for the population size [i.e., I(tot) ≃ 10−2 × T (tot)℄for running a simulation in a �xed number of iterations K̂ looking for the opti-mal aggregation within the set of I(tot) possible solutions. The total CPU timeneessary to omplete suh a simulation turns out be ∆t(tot) = δt × K̂ × I(tot),

δt being the CPU-time for one evaluation of the ost funtion. Moreover, itshould be pointed out that there is not guarantee that the synthesized aggrega-tion is the global optimum of the funtional at hand. Then, let us refer to theombinatorial formulation of the ompromise problem and map the redued so-lution spae of dimension I(ess) into the graph representation desribed in Set.5.3. By exploiting suh a struture and aordingly using the proposed im-plementation of the ACO, the number of ants of the olony turns out to be
I(ess) ≃ 10−2× T (ess) muh smaller than I(tot) sine U (ess) grows at most polyno-mially [i.e., U (ess) =

(

M − 1
Q− 1

)℄ and not exponentially as U (tot) [U (tot) = QM ℄.Therefore, the iterative optimization runs for a time ∆t(ess) = δt × K̂ × I(ess),whih satis�es the following ondition ∆t(ess) ≪ ∆ttot3 sine I(ess) ≪ I(tot). Suh3For the sake of simpliity, δt has been assumed to be equivalent for both standard andombinatorial optimizations. However, please also onsider that δt(ess) < δt(tot) sine usually
δt(tot) requires the omputation of a pattern feature, while δt(ess) is related to a mathingoperation. 74
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K̂ ′ = ∆t(tot)

δt×I(ess) . On the other hand, it would be possible to use a larger olonyof I(ess)
1 = ∆t(tot)

δt×K̂
ants for the same number of iterations K̂ and the followingonditions would hold true: I(ess)

1 ≫ I(ess) and I(ess)
1 ≃ U (ess). In this latter ase,the onvergene of the ACO-based proedure to the optimum lustering wouldbe assured sine eah ant ould be assigned to explore a single and di�erent pathof the solution graph thus overing/sampling the whole solution spae.In order to assess and on�rm these indiations, Figures 5.11 and 5.12 summarizethe performane ahieved with the BEM and ACO methods. The plots refer toa representative set of simulations performed by varying the number of elementsof the array aperture between N = 20 and N = 500, but maintaining a uniform75
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CHAPTER 5. THE ANT COLONY OPTIMIZER FOR GRAPHSEARCHINGinter-element distane (d = λ
2
). In all the experiments, the sets of refereneexitations have been hosen to generate a Dolph-Chebyshev sum pattern with

SLL = −25 dB [19℄ and a Zolotarev di�erene pattern with SLL = −25 dB [9℄.Moreover, the number of sub-arrays has been �xed to Q = 8. As regards to the
ACO values, they are related to the average performane over a statistial setof 50 independent exeutions of the same simulation (i.e., with the same para-metri on�guration, but varying the randomness in the ACO). In partiular,the plots denoted by ACO and ACO∗ indiate the values obtained when the
ACO algorithm has been run for K̂ = 1000 iterations with a olony of I(ess) and
I

(ess)
1 ants, respetively. As expeted, the ACO-based approah with I(ess)

1 trialsolutions for eah iteration always outperforms the BEM . Unfortunately, when
U (ess) turns out to be too large, both the omputational load and the storage re-quirements of the ACO result quite umbersome and one again, although withlarger dimensions, verify the same drawbaks usually enountered by standardglobal optimizers when dealing with non-small array geometries. In suh a sit-uation, the BEM seems to be more attrative even though less robust againstloal minima problems.5.5 ConlusionsIn Chapter 2, it has been shown how the exitation mathing formulation of theoptimal ompromise problem an be reast as a ombinatorial one by exploitingthe knowledge of independently optimal sum and di�erene modes. Thanks toa tree representation of the set of admissible solutions, a loal searh strategy,alled border element method (BEM), has been implemented to e�iently ex-plore the redued solution spae with a large saving of omputational resoures.Instead, an ACO-based tehnique has been here onsidered in order to avoid theourrene of sub-optimal aggregations aused by the presene of loal minimain the non-onvex exitation mathing funtional where the solution spae hasbeen desribed through a direted ayli graph.From the analysis arried out within this researh work and summarized inthis hapter, the following onlusions an be drawn:
• unlike ACO-based approah, both the dimension of the solution spae andomputational burden rise muh more rapidly when standard global op-timizers are used. In pratie, these standard stohasti algorithms worke�etively only with small arrays thus synthesizing array solutions havinga limited angular resolution;
• being a loal searh tehnique, the BEM depends on the initial solution,but it is an exellent omputational saving tehnique suitable for synthesiz-ing very large arrays (N ≥ 200) although without any guarantee of avoidingloal minima solutions; 77



5.5. CONCLUSIONS
• the ACO takes on one side the advantages of global optimization ap-proahes in faing non-onvexity, while on the other and to the best ofthe authors' knowledge, it is the most suitable algorithm among state-of-the-art metaheuristis for path-searhing in a graph-represented solutionspae.
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Chapter 6The Hybrid ApproahA hybrid approah for the synthesis of the �optimal� ompromise between sumand di�erene patterns for sub-arrayed monopulse antennas is presented. Firstly,the sub-array on�guration is determined by exploiting the knowledge of theoptimum di�erene mode oe�ients to redue the dimension of the searhingspae. In the seond step, the sub-array weights are omputed by means of aonvex programming proedure, whih takes advantages from the onvexity, fora �xed lustering, of the problem at hand. A set of representative results arereported to assess the e�etiveness of the proposed approah. Comparisons withstate-of-the-art tehniques are also presented.
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6.1. INTRODUCTION6.1 IntrodutionIn the reent literature, the use of a hybrid approah, namely, the SimulatedAnnealing Convex Programming (Hybrid − SA) method [13℄, for the synthe-sis of sub-arrayed monopulse linear antennas has improved the performanes inshaping ompromise patterns with respet to referene approahes [10℄-[11℄. Byonsidering a sub-arraying strategy [8℄, the proedure proposed in [13℄ is aimed at�nding �the sub-array on�guration and the oe�ients of the sub-array sum sig-nals suh that the orresponding radiation pattern has a null with the maximumpossible slope in a given diretion, while being bounded by an arbitrary funtionelsewhere.� Suh a solution allows one the use of simpler feeding networks thatguarantee both a redued iruit omplexity and low eletromagneti interfer-enes as well as to obtain patterns with user-de�ned harateristis. It is basedon the exploitation of the onvexity of the funtional with respet to a subset ofthe unknowns (i.e., the sub-array gains) and it is arried out by means of a Con-vex Programming (CP ) method [13℄. However, sine the sub-array membershipsof the array elements are determined by means of a Simulated Annealing (SA)algorithm, the proedure involves non-negligible omputational osts to ahievethe global minimum or there is the possibility that the solution is trapped ina loal minimum (whether the riterion for the SA onvergene has not beenveri�ed [39℄). In order to save omputational resoures, the Contiguous Parti-tion Method (CPM) is used. The CPM takes advantage from the knowledge ofthe optimal exitations of the di�erene pattern [7℄[9℄[40℄ and from the oneptof ontiguous partitions [18℄ to redue the searhing spae and, thus, e�etivelyhandling the problem of the optimal lustering. As a matter of fat, the arisingomputational burden turns out to be signi�antly redued ompared to that ofprevious optimization shemes.In the following, a hybrid approah (alledHybrid−CPM method), whih in-tegrates the CPM with a gradient-based CP proedure [13℄ to pro�tably bene�tof the positive features of both CPM and CP approah is arefully desribed andvalidated. At the �rst step, the �optimal� sub-array on�guration is omputedaording to the proedure desribed in Chapter 2 by exploiting the relationshipbetween the exitation oe�ients of the optimal sum [19℄[5℄[17℄[41℄ and di�er-ene [7℄[9℄[40℄ modes. One the lustering has been determined, the sub-arraygains are omputed as in [13℄.6.2 Synthesis of Linear ArraysLet us onsider a linear array of N = 2M equally-spaed isotropi elementswhose generi exitation oe�ients are an, n = −M, . . . ,−1, 1, . . . ,M and theorresponding spae fator given by: 80



CHAPTER 6. THE HYBRID APPROACH
f (θ) =

M
∑

n=−M

ane
j(n−sgn(n)/2)kd cos(θ) (6.1)where k and d = λ

2
are the wavenumber of the bakground medium and theinter-element spaing, respetively. Moreover, θ indiates the angular rotationwith respet to the diretion orthogonal to the array.The Hybrid − CPM approah belongs to sub-arraying tehniques, but un-like the Hybrid− SA, it onsiders a two-stage-iterative proedure instead of aniterative one step proess wherein eah step involves in turn the solution of aonvex optimization problem. The �rst step is based on the CPM , just pre-sented in Chapter 2. As already pointed out, the solution of suh a problem is �aontiguous partition of M ompletely ordered elements into Q subsets that maybe represented by Q − 1 points of division lying in any of the M − 1 intervalsbetween adjaent elements� [18℄. This solution represents the best step-wise ap-proximation of the onsidered partition and �the number of possible ontiguouspartitions is equal to the number of ways of hoosing the division points, whih isthe number of ombinations of M − 1 di�erent things taken Q− 1 at a time [i.e.,

UCPM =

(

M − 1
Q− 1

)

, UCPM being the number of ontiguous partition℄�. A-ordingly, CCPM is determined by generating a sequene of ontiguous partitions
{

C(k); k = 0, ..., K
} starting from a guess aggregation C(0) and updating the so-lution [C(k) ← C(k+1)℄ just modifying the membership of the �border elements�of the array.The seond step exploits the following property [13℄: �the optimal ompro-mise between sum and di�erene patterns is a onvex problem with respet tothe sub-array weights for a �xed sub-array on�guration C�. Aordingly, onethe element membership has been determined [i.e., C(opt) = CCPM ℄, the optimalweight vetor W (opt) is omputed by minimizing the following ost funtion

ΨCP (W ) =
dℜ

{

fd (θ)
}

dθ

∣

∣

∣

∣

∣

θ=θ0

(6.2)subjet to dℑ{fd(θ)}
dθ

∣

∣

∣

∣

θ=θ0

= 0 and ∣

∣fd (θ)
∣

∣

2
≤ ℵ (θ), where θ0 indiates theboresight diretion and ℵ (θ) is a non-negative funtion that de�nes the upperbounds for the sidelobes. Moreover, W = {wq; q = 1, . . . , Q} is the sub-arrayweight vetor and ℜ and ℑ denote the real part and the imaginary one, re-spetively. Towards this end, a standard gradient-based optimization is per-formed by generating a suession of trial solutions {

W (h); h = 0, ..., H
} start-ing from the initial guess given by W (0) =

{

wCPMq ; q = 1, . . . , Q
} being wCPMq =

[

PM
j=1 δqcj (as

ja
d
j)

PM
j=1 δqcj (as

j)
2

]. 81



6.2. SYNTHESIS OF LINEAR ARRAYS
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Figure 6.1: Uniform Sub-arraying (M = 10, Q = 5) - Normalized ompromisedi�erene patterns obtained by means of the Hybrid−CPM method, the CPM ,and the EMM [8℄.6.2.1 Numerial AssessmentIn this setion, the e�etiveness and potentialities of the proposed hybrid methodwill be assessed dealing with three benhmarks of the related literature. As amatter of fat, the test ases under analysis are onerned with linear arraysand, for the sake of ompleteness, with both a small (M = 10) and a large(M = 100) number of elements. Whatever the experiment, the synthesis isaimed at minimizing the SLL of the ompromise di�erene pattern for a �xedbeamwidth or, analogously, at maximizing the slope along the boresight diretion[13℄ �xed at θ0 = 0o.The �rst test ase deals with a linear array of N = 20 elements. As far as thesum mode is onerned, it has been �xed to a Villeneuve sum pattern [17℄, with
n̄ = 4 and SLL = −25 dB, in the �rst experiment, whereas a Dolph-Chebyshev[19℄ pattern with SLL = −20 dB has been hosen for the seond one. In the �rstexperiment, a on�guration with Q = 5 sub-arrays and uniform lustering is on-sidered. Moreover, as regards the optimal/referene di�erene pattern of the ap-proahes that exploit the onept of ontiguous partitions, the optimal di�ereneexitations have been �xed to a modi�ed Zolotarev distribution (n = 4, ε = 3)whose pattern is haraterized by SLLref = −25 dB. Figure 6.1 pitorially om-pares the patterns obtained with the EMM [8℄, the CMP , and the Hybrid −82



CHAPTER 6. THE HYBRID APPROACH
[dB] Reference Hybrid − CPM CPM EMM Hybrid− SA DE

M = 10 Q = 5 −25.0 −22.4 −21.0 −17.0 − −

M = 10 Q = 8 −39.0 −37.5 −35.2 − −36.5 −21.6

M = 10 Q = 8 −41.0 −38.0 −32.7 − −36.5 −21.6

M = 100 Q = 6 −30.0 −28.3 −25.7 − − −Table 6.1: Values of the SLL of the array fators in Figs. 6.1-6.3.
CPM approah, whose �nal sub-array on�guration and weights are C(opt) =
{1 1 2 3 3 5 5 4 4 2} and W (opt) = {0.3352, 1.1299, 1.3708, 1.8309, 1.8699}, respe-tively. It is worth noting that the Hybrid − CPM approah outperforms othermethods with a redution of over 5 dB and more than 1 dB of the the SLL withrespet to the EMM and the CPM , respetively (Tab. 6.1) .The seond experiment is devoted to omplete the omparison by onsider-ing the state-of-the-art methods based on stohasti optimizations. In partiular,the results from the Hybrid−SA [13℄ and the Di�erential Evolution (DE) opti-mization algorithm [11℄ have been taken into aount. The array on�guration isthat with Q = 8. The array patterns obtained from the appliation of the CPM-based methods and by assuming a referene Zolotarev pattern [9℄ with SLLref =
−39 dB are shown in Fig. 6.2(a) together with those from the other approahes.With referene to Fig. 6.2(a) and as quantitatively estimated in Tab. 6.1, the
Hybrid − CPM plot presents a SLL of −37.5 dB (i.e., almost 1 dB below the
SLL of the Hybrid−SA [13℄ and more than 15 dB when ompared to the patternin [11℄ with the same number of sub-arrays), with C(opt) = {2 3 5 7 8 8 6 4 3 1} and
W (opt) = {1.1836, 1.8818, 4.9795, 6.9286, 7.3462, 8.5109, 9.1480, 9.7003}. Fur-thermore, it is worth analyzing the beamwidths (BW s) (or, similarly, the �rstnull positions) of the results in Fig. 6.2(a). As a matter of fat, the Hybrid −
CPM solution presents not only the lowest SLL value, but also the narrower BW(i.e., BWHybrid−CPM = 0.097 vs. BWHybrid−SA = 0.102 and BWDE = 0.113).Suh a result further on�rms the e�etiveness of the Hybrid−CPM in dealingwith the non-onvex part of the problem at hand, thus allowing the synthesisof ompromise patterns with better harateristis. As expeted, the improve-ments in terms of SLL are even larger by setting the same BW onstraint usedwith Hybrid − SA [13℄. Towards this aim, the referene exitations have beenhosen to a�ord a Zolotarev di�erene pattern [9℄ with SLLref = −41 dB. Insuh a ase, the ahieved solution has a SLL = −38.0 dB with an improvementof about 0.5 dB [Tab. 6.1℄ ompared to that in Fig. 6.2(a). For ompleteness,the values of the obtained lustering and sub-array weights are equal to C(opt) =
{2 4 6 8 8 8 7 5 3 1} andW (opt) = {0.7461, 2.0518, 4.0934, 5.4616, 6.5563, 8.2545, 8.5060, 10.0768},respetively.As far as the omputational osts are onerned, the number of iterations,
K, required to get the �nal lustering starting from a uniform one at the initial-83
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M = 100 C
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Q = 6 W 0.2133 0.7235 0.9417 1.0909 1.2752 1.4294Table 6.2: Large Arrays (M = 100, Q = 6) - Sub-array on�guration and weightsdetermined by the Hybrid − CPM method (see Fig. 6.3 for the orrespondingpattern).
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CHAPTER 6. THE HYBRID APPROACHto those of the ideal pattern, while some perturbations only a�et the behaviorof the seondary lobes without ompromising the performane of the di�erenebeam.6.3 Synthesis of Linear ArraysA hybrid version of the ICPM (i.e., the Hybrid−ICPM) presented in Chapter3 is ustomized to the synthesis of planar arrays in order to extend the range ofappliability of the planar CPM from exitation mathing to pattern optimiza-tion allowing, unlike the ICPM , a diret ontrol of the pattern features (i.e.,
SLL, BW , et...).Similarly to linear array ase, the hybrid approah onsists of a two-stepproedure where at the �rst step the sub-array on�guration is omputed a-ording to the IBEM (i.e., C△

Hybrid−ICPM = C△
opt). Suessively, the weights

W△
Hybrid−ICPM , △ = E, H , of the sub-arrayed di�erene network are omputedby means of a standard CP proedure minimizing the following ost funtion(where the notation is the same of Chapter 4)
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γ△rs = 0 (6.5)and to |AF (θ, φ)|2 ≤ M (θ, φ) where M (θ, φ) is a funtion desriptive of auser-de�ned mask on the synthesized di�erene power pattern. In Eq. (6.3), ℜ (·)and ℑ (·) denote the real and imaginary part, respetively. At the initializationof the CP proedure, the guess solution is set to the values of the sub-arrayweights obtained at the end of the ICPM , W△,(0) = W△
opt.87
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(b)Figure 6.5: Hybrid Formulation (N = 300, d = λ
2
, r = 4.85λ) - Behavior of the(a) SLL and of the (b) BW for the ompromise patterns synthesized by meansof the ICPM and the Hybrid− ICPM when Q ∈ [2, 8].88



CHAPTER 6. THE HYBRID APPROACH
CPU − T ime [sec] TCP

Q 2 3 5 8 2 3 5 8

ICPM 2.30 2.64 3.12 7.23 37 45 57 120

Hybrid − ICPM 7554.68 8678.15 9623.57 7314.06 2114 2415 2675 2113Table 6.3: Hybrid Formulation (N = 300, d = λ
2
, r = 4.85λ) - Computationalindexes for the solution obtained with the ICPM and the Hybrid− ICPM .In order to show the SLL/BW ontrol allowed by the hybrid approah, Figure6.5 summarizes the results from a omparative study between the ICPM and itshybrid version in terms of maximum SLL [Fig. 6.5(a)℄ and orresponding BWomputed on the prinipal plane [i.e., the φ = 0o℄ [Fig. 6.5(b)℄ dealing with thesame array on�guration of Set. 4.3.2. To better and more exhaustively analyzethe potentialities of the proposed hybrid approah, the number of sub-arrays hasbeen varied in the range Q ∈ [2, 8] and the synthesized sub-arrays on�gurationsand weights are shown in Fig. 6.6 . For ompleteness, the orresponding patternsare also given [Fig. 6.7℄ . As it an be observed (Figs. 6.7-6.5), the solutions fromthe Hybrid−ICPM outperform those of the ICPM in terms of pattern indexeseven though with heavier omputational osts. As far as the omputationalissues are onerned, the dimension of the solution spae U (DAG) and the storageresoures M (DAG) are given in Fig. 6.8 , whereas the CPU-time and number ofiterations TCP required to get the �nal solution for the Hybrid − ICPM and

ICPM are reported in Tab. 6.3 to point out the trade-o� between patterne�ieny and omputational burden.6.4 DisussionsConerning the optimization problem at hand, the proposed CPM-based pro-edure does not guarantee that the retrieved sub-array on�guration is the besthoie for optimizing the SLL. As a matter of fat, suh a on�guration an be(theoretially) obtained only by means of global optimization proedures. How-ever, the proposed proedure has shown to outperform state-of-the-art globaloptimization strategies. Furthermore, starting from the assumption that CPM-based strategies are mathing tehniques, the proposed approah an be easilyextended to arbitrary sidelobe masks or pattern shapes (for both sum and di�er-ene patterns) by pro�tably using the state-of-the-art approahes (e.g., [40℄[41℄)to set the referene patterns.
89
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2
, r = 4.85λ, Q = 3) - Sub-arrayon�gurations (left olumn) and array element weights (right olumn) synthe-sized with the ICPM and the Hybrid− ICPM for di�erent values of Q [Q = 2(�rst row), Q = 3 (seond row), Q = 5 (third row), and Q = 8 (fourth row)℄.90
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Chapter 7Conlusions and FutureDevelopmentsIn this last setion, some onlusions are drawn and further advanes are envis-aged in order to address the possible developments of the proposed tehnique.
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In this thesis, an approah for the synthesis of monopulse array antennas hasbeen presented and validated. The method is based on an exitation mathingproedure to design sub-arrayed antennas generating an optimal sum and om-promise di�erene patterns. Thanks to the knowledge of the referene exitationset, the synthesis problem has been reformulated as a ombinatorial one to allowa onsiderable saving of omputational resoures. Thanks to a graph-based rep-resentation of the solution spae, the use of an e�ient path-searhing algorithmto speed-up the onvergene of the proedure for the synthesis of large arrayantennas as well as the use of the Ant Colony Optimizer (ACO) to bene�t ofits hill-limbing properties in dealing with the non-onvexity of the sub-arrayingproblem have been onsidered. Moreover, a hybrid approah has been developedto individually ontrol the level of the seondary lobes. A set of representativeexamples onerned with both pattern mathing problems and pattern-featureoptimization have been reported in order to assess the e�etiveness and �exibilityof the proposed approah. Comparisons with previously published results havebeen shown and disussed, as well.Conerning the methodologial novelties of this work, the main ontributionis onerned with the following issues:
• an appropriate de�nition of the solution spae by means of a graph stru-ture;
• an original and innovative formulation of the sum-di�erene problem interms of a searh in a graph;
• a simple and fast solution proedure based on swapping operations amongborder elements and ost funtion evaluations.Moreover, the main features of the proposed graph-based tehniques are thefollowing:
• a redution of the dimensionality of the solution spae for the synthesisproblem at hand, by exploiting the information ontent of independentlyoptimal sum and di�erene exitations;
• a signi�ant redution of the omputational burden, by applying a fast so-lution algorithm for exploring the solution graph (i.e., sampling the solutionspae);
• the apability to deal with the synthesis of large linear and planar arraysin an e�etive and reliable way.As far as future developments are onerned, this approah promises to showits �exibility and apability also with time-varying senarios and not only withthe �stati� array synthesis. In suh a framework, tehniques for the ontrol and94



CHAPTER 7. CONCLUSIONS AND FUTURE DEVELOPMENTSsynthesis of adaptive phase-array are of interest sine they allow to shape in realtime the radiation pattern and in partiular the seondary lobes for noise andinterferene rejetion.Moreover, the possibility of integrating the time modulating strategy for thesynthesis of patterns with low and ultra-low sidelobes an be investigated wherea set of RF swithes are used to ommute between the open and short iruitstate in order to enfore a time modulation on the element/sub-array exitations.
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Appendix AContiguous PartitionThis appendix is aimed at proving that, given Q sub-arrays, the value of the ostfuntion (3.5) is minimum provided that the elements belonging to eah sub-arrayare onseutive elements of the ordered list L = {lm; m = 1, . . . ,M ; lm ≤ lm+1}.With referene to a set of elements V = {vm; m = 1, ...,M} be to be dividedin Q sub-sets, the thesis to be proved is that the partition minimizing the ostfuntion (3.5) is a ontiguous partition (i.e., if two elements vi and vn belong tothe same lass and vi < vj < vn, then element vj is assigned to the same subsetof elements). Towards this end, the proof follows the guidelines reported in [18℄.Let us onsider a non-ontiguous partition PQ = {Vq; q = 1, ..., Q} of the set
V and three elements vi, vj, vn suh that vi < vj < vn. Let elements vi and
vn belong to a subset with mean value dr and let vj belong to a di�erent subsethaving mean value ds. Whatever the values of dr and ds, at least one the followingstatements holds true







|vj − ds| ≥ |vj − dr| > 0,
|vi − dr| ≥ |vi − ds| > 0,
|vn − dr| ≥ |vn − ds| > 0.

(A.1)Let us denote with vt the element satisfying (A.1) and its own subset as V k =
{vk; k = 1, ..., Nk}. Moreover, let us refer to the other subset as V h = {vh; h = 1, ..., Nh}.Aordingly, the ost funtion (3.5) assoiated to the partition PQ may be writ-ten as:

Ψ =

M
∑

m=1

v2
m −Nk · d

2
k −Nh · d

2
h −

Q
∑

q=1; q 6=h,k

Nq · d
2
q (A.2)

Nq and dq being the number of elements and the mean value of the q-th sub-array,respetively.Now, let us onsider a new partition P (1)
Q obtained by moving the element vt fromthe subset V k to the subset V h. We obtain two new subsets V (1)

k = V k \{vt} and
V

(1)
h = V k∪{vt}

(4)1 with mean values equal to d(1)
k = Nkdk−vt

Nk−1
and d(1)

h = Nhdh+vt

Nh+1
,1 (4) We expliitly note that the new partition P

(1)
Q has the same number of subsets as PQ.101



respetively. Aordingly, the ost funtion assoiated to the partition P (1)
Q anbe written as:

Ψ(1) =
M

∑

m=1

v2
m −

(Nkdk − vt)
2

Nk − 1
−

(Nhdh − vt)
2

Nh − 1
−

Q
∑

q=1; q 6=h,k

Nqd
2
q. (A.3)Now, by subtrating (A.3) from (A.2), after some manipulations, it turns outthat

Ψ−Ψ(1) =
Nk

Nk − 1
(vt − dk)

2 −
Nh

Nh + 1
(vt − dh)

2 . (A.4)Aording to (A.1), Ψ > Ψ(1) and it an be onluded that for every non-ontiguous partition we an �nd another one with the same number of subsets,but with a smaller ost. Hene, the partition minimizing the ost funtion (3.5)is a ontiguous partition.

As a matter of fat, aording to (A.1), the element vt annot be equal to the mean value dkand thus, V k has ardinality greater than one. It follows that the sub-set V
(1)
k has at least oneelement. 102



Appendix BDimension of the Essential SpaeThis setion is devoted at quantifying the dimension T (ess) of the essential so-lution spae ℜ(ess) =
{

C
(ess)
t ; t = 1, ..., T (ess)

}, thus pointing out the omputa-tional saving allowed by the proposed approah ompared to exhaustive or globalsampling solution proedures. More in detail, the aim is that of determining thenumber T (ess) of andidate solutions or, in an equivalent fashion, the number ofallowed paths in the solution tree.Generally speaking, sine a sub-array on�guration C an be mathematiallydesribed by a sequene ofM digits of aQ-symbols alphabet, the whole number ofaggregations is equal to T = QM . Thanks to the equivalene relationship, the setof andidate solutions an be limited to the number of paths in a omplete binarytree of depth M , thus the number of non-redundant solutions results T = 2M−1.Moreover, by taking into aount only admissible (i.e., grouping where there isat least one element in eah sub-array) and allowed (i.e., sorted aggregations)omplete sequenes, the set of solution an be further redued. With refereneto the ordered list L = {lm; m = 1, . . . ,M ; lm ≤ lm+1}, the allowed paths aremathematially desribed as
C

(ess)
t =

{

c
(ess)
t,m

∣

∣

∣
c
(ess)
t,m ≤ c

(ess)
t,m+1, c

(ess)
t,1 = 1, c

(ess)
t,M = Q

}

, t = 1, ..., T (ess),(B.1)where c(ess)m denotes the sub-array number to whih the m-th element lm of theordered list L belongs.In order to determine the essential dimension T (ess) = T (ess)(Q,M) of the solutionspae, let us onsider the �reursive� nature of the binary solution tree and, asa referene example, the ase Q = 2. In suh a situation, the grouping vetor
C

(ess)
t is a sequene of M symbols from the set {1, 2} that satis�es the followingonstraints: (a) c(ess)t,1 = 1, (b) c(ess)t,M = 2, and () if c(ess)t,m = 2 then c

(ess)
t,m+1 =

c
(ess)
t,M = 2. Thus, eah possible solution C(ess)

t is made up of a sub-sequene ofonseutive symbols 1 followed by a sub-sequene of symbols 2. Aordingly, thetrial solutions C(ess)
t , t = 1, ..., T (ess), are obtained by moving the starting point103



of the sub-sequene of symbols 2 from m = 2 (being c1 = 1) up to m = M ,
T (ess) (Q,M)

⌋

Q=2
=

(

M − 1
1

)

= M − 1. (B.2)As far as the ase Q = 3 is onerned, similar onsiderations hold true. In par-tiular, eah allowed trial solution C(ess)
t ends with a sub-sequene of suessivesymbols 3. The number of elements of suh a sub-sequene ranges from 1 to

M − 2, leading to a omplementary sub-sequene of symbols 1 and 2 of length
M − i. Aordingly,

T (ess) (Q,M)
⌋

Q=3
=

M−2
∑

i=1

T (ess) (Q,M − i)
⌋

Q=2
(B.3)Generalizing, sine the smallest and largest number of ourrenes of the symbol

Q in a sequene is 1 and M − (Q− 1), respetively, the essential dimension ofthe solution spae when a M elements array is partitioned into Q sub-arrays isequal to
T (ess) (Q,M) =

M−(Q−1)
∑

i=1

T (ess) (Q− 1,M − i) =

(

M − 1
Q− 1

)

. (B.4)
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