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Abstra
tIn the framework of the synthesis of monopulse array antennas for sear
h-and-tra
k appli
ations, the thesis fo
uses on the development and the analysis of amethod based on the sub-arraying te
hnique aimed at generating an optimal sumand 
ompromise di�eren
e patterns through an ex
itation mat
hing pro
edure.By exploiting some properties of the solution spa
e, the synthesis problem is re-formulated as a 
ombinatorial one to allow a 
onsiderable saving of 
omputationalresour
es. Thanks to a graph-based representation of the solution spa
e, the useof an e�
ient path-sear
hing algorithm to speed-up the 
onvergen
e of the pro-
edure for the synthesis of large array antennas as well as the use of the AntColony Optimizer (ACO) to bene�t of its hill-
limbing properties in dealing withthe non-
onvexity of the sub-arraying problem are 
onsidered. Moreover, a hybridapproa
h is developed to individually 
ontrol the level of the se
ondary lobes. Inparti
ular, the sub-array 
on�guration is determined at the �rst step by exploitingthe knowledge of the optimum di�eren
e mode 
oe�
ients and in the se
ond step,the sub-array weights are 
omputed by means of a quadrati
 programming pro
e-dure. In the numeri
al validation, a set of representative examples 
on
erned withboth pattern mat
hing problems and pattern-feature optimization are reported inorder to assess the e�e
tiveness and �exibility of the proposed approa
h. Com-parisons with previously published results are reported and dis
ussed, as well.KeywordsMonopulse array antennas, sum and di�eren
e patterns, ex
itation mat
hing,
ontiguous partition, hybrid optimization.





Published Journals Papers[R1℄ P. Ro

a, L. Mani
a, and A. Massa, �Synthesis of monopulse anten-nas through the iterative 
ontiguous partition method,� Ele
troni
sLetters, vol. 43, no. 16, pp. 854-856, August 2007.[R2℄ P. Ro

a, L. Mani
a, A. Martini, and A. Massa, �Synthesis of largemonopulse linear arrays through a tree-based optimal ex
itationsmat
hing,� IEEE Antennas and Wireless Propagation Letters, vol.7, pp. 436-439, 2007.[R3℄ L. Mani
a, P. Ro

a, A. Martini, and A. Massa, �An innovative ap-proa
h based on a tree-sear
hing algorithm for the optimal mat
h-ing of independently optimum sum and di�eren
e ex
itations,� IEEETransa
tions on Antennas and Propagation, vol. 56, no. 1, pp. 58-66,January 2008.[R4℄ P. Ro

a, L. Mani
a, and A. Massa, �Hybrid approa
h for sub-arrayedmonopulse antenna synthesis,� Ele
troni
s Letters, vol. 44, no. 2, pp.75-76, January 2008.[R5℄ P. Ro

a, L. Mani
a, and A. Massa, �An e�e
tive ex
itation mat
h-ing method for the synthesis of optimal 
ompromises between sumand di�eren
e patterns in planar arrays,� Progress in Ele
tromagneti
Resear
h B, vol. 3, pp. 115-130, 2008.[R6℄ P. Ro

a, L. Mani
a, and A. Massa, �Dire
tivity optimization inplanar sub-arrayed monopulse antenna,� Progress in Ele
tromagneti
Resear
h L, vol. 4, pp. 1-7, 2008.[R7℄ P. Ro

a, L. Mani
a, F. Stringari, and A. Massa, �Ant 
olony opti-mization for tree-sear
hing based synthesis of monopulse array an-tenna,� Ele
troni
s Letters, vol. 44, no. 13, pp. 783-785, June 19,2008.[R8℄ L. Mani
a, P. Ro

a, and A. Massa, �On the synthesis of sub-arrayedplanar array antennas for tra
king radar appli
ations,� IEEE Anten-nas and Wireless Propagation Letters, (a

epted 25/04/08).i



[R9℄ L. Mani
a, P. Ro

a, and A. Massa, �An ex
itation mat
hing pro
e-dure for sub-arrayed monopulse arrays with maximum dire
tivity,�IET Radar, Sonar & Navigation, (a

epted 05/08/08).[R10℄ P. Ro

a, L. Mani
a, M. Pastorino, and A. Massa, �Boresight slopeoptimization of sub-arrayed linear arrays through the 
ontiguous par-tition method,� IEEE Antennas and Wireless Propagation Letters,(a

epted 18/07/08).[R11℄ P. Ro

a, L. Mani
a, A. Martini, and A. Massa, �Compromise sum-di�eren
e optimization through the iterative 
ontiguous partitionmethod,� IET Mi
rowaves, Antennas & Propagation, (a

epted 29/08/08).[R12℄ P. Ro

a, L. Mani
a, R. Azaro, and A. Massa, �Hybrid approa
h forthe synthesis of sub-arrayed monopulse linear arrays,� IEEE Trans-a
tions on Antennas and Propagation, (a

epted 23/09/08).[R13℄ L. Mani
a, P. Ro

a, M. Benedetti, and A. Massa, �A fast graph-sear
hing algorithm enabling the e�
ient synthesis of sub-arrayedplanar monopulse antennas,� IEEE Transa
tions on Antennas andPropagation, (a

epted 08/10/08).

ii





iv



Contents
1 Introdu
tion and State-of-the-Art 12 The Ex
itation Mat
hing Approa
h - Linear Arrays 52.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.2 Mathemati
al Formulation . . . . . . . . . . . . . . . . . . . . . . 62.2.1 De�nition of the Solution-Metri
 . . . . . . . . . . . . . . 72.2.2 De�nition of the Solution-Tree . . . . . . . . . . . . . . . 82.2.3 Tree-Sear
hing Pro
edure . . . . . . . . . . . . . . . . . . 92.3 Numeri
al Validation . . . . . . . . . . . . . . . . . . . . . . . . . 112.3.1 Asymptoti
 Behavior Analysis . . . . . . . . . . . . . . . . 112.3.2 Comparative Assessment . . . . . . . . . . . . . . . . . . . 122.3.3 Large Arrays Analysis . . . . . . . . . . . . . . . . . . . . 142.3.4 Computational Issues . . . . . . . . . . . . . . . . . . . . . 162.4 Dis
ussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 The Iterative Mat
hing Approa
h 213.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223.2 Mathemati
al Formulation . . . . . . . . . . . . . . . . . . . . . . 233.3 Numeri
al Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 273.3.1 ICPM Performan
e Analysis . . . . . . . . . . . . . . . . 273.3.2 Comparative Assessment . . . . . . . . . . . . . . . . . . . 283.3.3 Extension to Large Arrays . . . . . . . . . . . . . . . . . . 353.4 Dis
ussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 Monopulse Planar Array Synthesis 414.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424.2 Mathemati
al Formulation . . . . . . . . . . . . . . . . . . . . . . 434.3 Numeri
al Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 484.3.1 Pattern Mat
hing . . . . . . . . . . . . . . . . . . . . . . . 484.3.2 Comparative Assessment . . . . . . . . . . . . . . . . . . . 495 The Ant Colony Optimizer for Graph Sear
hing 575.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585.2 BEM for Graph-Sear
hing . . . . . . . . . . . . . . . . . . . . . . 58v



5.3 ACO for Graph-Sear
hing . . . . . . . . . . . . . . . . . . . . . . 615.4 Numeri
al Simulations and Results . . . . . . . . . . . . . . . . . 635.4.1 ACO Calibration . . . . . . . . . . . . . . . . . . . . . . . 635.4.2 ACO 's Hill-Climbing Behavior . . . . . . . . . . . . . . . . 665.4.3 ACO 's Performan
es and Problem Dimensions . . . . . . . 745.5 Con
lusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776 The Hybrid Approa
h 796.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 806.2 Synthesis of Linear Arrays . . . . . . . . . . . . . . . . . . . . . . 806.2.1 Numeri
al Assessment . . . . . . . . . . . . . . . . . . . . 826.3 Synthesis of Linear Arrays . . . . . . . . . . . . . . . . . . . . . . 876.4 Dis
ussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 897 Con
lusions and Future Developments 93A Contiguous Partition 101B Dimension of the Essential Spa
e 103

vi



List of Tables
2.1 Uniform sub-arraying (M = 10, d = λ

2
, Q = 5) - Beam patternindexes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132.2 Non-uniform sub-arraying (M = 10, d = λ

2
, Q = 3, 5) - Beampattern indexes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.3 Large Arrays (M = 250, d = λ

2
, Q = 4) - Beam pattern indexes. . 163.1 ICPM Performan
e Analysis (M = 10, d = λ

2
) - Di�eren
e pat-tern quantitative indexes and 
omputational indi
ators for di�er-ent values of Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303.2 Comparative Assessment (M = 10, d = λ

2
, Q = 3, SLLref =

−35 dB) - Sub-array 
on�guration and weights synthesized withthe ICPM −GS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 323.3 Comparative Assessment (M = 10, d = λ
2
, Q = 3) - Quantitativeindexes of the referen
e pattern (SLLref = −35 dB) and of thedi�eren
e patterns synthesized with the ICPM − GS, the GA-based method [12℄, and the 
onstrained EMM [8℄. . . . . . . . . . 333.4 Comparative Assessment (M = 10, d = λ

2
) - Sub-array 
on�gura-tion and weights synthesized with the ICPM −GS, when Q = 4and Q = 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353.5 Comparative Assessment (M = 10, d = λ

2
) - Quantitative indexesand 
omputational indi
ators for the solutions obtained with the

ICPM − GS, the Hybrid− SA [Istat = 25 indi
ates the numberof SA iterations (i.e., �rst step), no indi
ations on the 
onvexprogramming pro
edure (i.e., se
ond step) are available℄ approa
h[14℄, and the DE algorithm [11℄ when Q = 4 and Q = 6. . . . . . 373.6 Extension to Large Arrays (M = 50, d = λ
2
, Q = 4) - Sub-array
on�guration and weights synthesized with the ICPM −GS. . . 383.7 Extension to Large Arrays (M = 50, d = λ

2
, Q = 4) - Quantitativeindexes and 
omputational indi
ators for the solutions obtainedwith the ICPM − GS (SLLref = −40 dB), the Hybrid − SA[Istat = 25 indi
ates the number of SA iterations (i.e., �rst step),no indi
ations on the 
onvex programming pro
edure (i.e., se
ondstep) are available℄, the SA algorithm [10℄, the GA-based method[12℄, and the DE algorithm [11℄. . . . . . . . . . . . . . . . . . . . 39vii



3.8 Extension to Large Arrays (M = 50, d = λ
2
, Q = 3) - Sub-array
on�guration and weights synthesized with the ICPM −GS. . . 394.1 Pattern Mat
hing (N = 316, d = λ

2
, r = 5λ) - Statisti
s of the

SLR values in Fig. 3. . . . . . . . . . . . . . . . . . . . . . . . . . 504.2 Comparative Assessment (N = 300, d = λ
2
, r = 4.85λ, Q = 3)- Statisti
s of the SLR values of the H − mode di�eren
e pat-tern synthesized with the SA approa
h [10℄ and with the iterative

PCPM (Referen
e Bayliss pattern n = 6 [7℄: SLLH(1)
ref = −25 dB,

SLL
H(2)
ref = −30 dB, and SLLH(3)

ref = −35 dB). . . . . . . . . . . . . 524.3 Comparative Assessment (N = 300, d = λ
2
, r = 4.85λ, Q = 3) -Sub-array 
on�gurations and weights obtained with the PCPM(Referen
e Bayliss pattern n = 6 [7℄: SLLH(1)

ref = −25 dB, SLLH(2)
ref =

−30 dB, and SLLH(3)
ref = −35 dB). . . . . . . . . . . . . . . . . . . 555.1 ACO's Hill Climbing Behavior (N = 20, Q = 3) - Sub-array
on�gurations and weights determined by the BEM and the ACO. 695.2 ACO's Hill Climbing Behavior - Pattern performan
es and 
om-putational indexes. . . . . . . . . . . . . . . . . . . . . . . . . . . 695.3 ACO's Hill Climbing Behavior (N = 20, Q = 8) - Sub-array
on�gurations and weights 
omputed with the BEM and the ACO. 715.4 ACO's Hill Climbing Behavior (N = 40, Q = 4) - Sub-array
on�gurations and weights synthesized by means of the BEMand the ACO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 726.1 Values of the SLL of the array fa
tors in Figs. 6.1-6.3. . . . . . . 836.2 Large Arrays (M = 100, Q = 6) - Sub-array 
on�guration andweights determined by the Hybrid− CPM method (see Fig. 6.3for the 
orresponding pattern). . . . . . . . . . . . . . . . . . . . 866.3 Hybrid Formulation (N = 300, d = λ

2
, r = 4.85λ) - Computa-tional indexes for the solution obtained with the ICPM and the

Hybrid− ICPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

viii



List of Figures
2.1 Sket
h of the sub-arrayed monopulse linear array antenna. . . . . 72.2 Solution-Tree stru
ture representing the essential solution spa
e

ℜ(ess). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.3 Asymptoti
 Behavior (M = 10, d = λ
2
) - Sum {αm; m = 1, ...,M}and di�eren
e {βm; m = 1, ...,M} optimal ex
itations. Compro-mise di�eren
e 
oe�
ients {bm; m = 1, ...,M} for di�erent valuesof Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.4 Uniform sub-arraying (M = 10, d = λ

2
, Q = 5) - Referen
e op-timum and normalized di�eren
e patterns obtained by means ofthe EMM and the GS. . . . . . . . . . . . . . . . . . . . . . . . 132.5 Non-uniform sub-arraying (M = 10, d = λ

2
) - Referen
e opti-mum and normalized di�eren
e patterns obtained by means ofthe EMM , and the GS when (a) Q = 3 and (b) Q = 5. . . . . . . 152.6 Large Arrays (M = 100, d = λ

2
) - Referen
e optimum and normal-ized di�eren
e patterns obtained by means of the GS te
hniquewhen Q = 4 and Q = 6. . . . . . . . . . . . . . . . . . . . . . . . 172.7 Large Arrays (M = 100, d = λ

2
) - Di�eren
e ex
itations deter-mined by the tree-based te
hniques when Q = 4 and Q = 6. . . . 172.8 Large Arrays (d = λ

2
) - Behavior of ∆ versus M for various valuesof Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182.9 Computational Analysis - Behavior of T versus M when the tree-based sear
hing is applied [T = T (ess)℄. . . . . . . . . . . . . . . . 192.10 Computational Analysis - Behavior of t versus M for di�erentvalues of Q (GS Approa
h). . . . . . . . . . . . . . . . . . . . . . 193.1 Flow 
hart of the Iterative Contiguous Partition Method. . . . . . 253.2 ICPM Performan
e Analysis (M = 10, d = λ

2
) - Normalizeddi�eren
e patterns when (a) Q = 2 , (b) Q = 4, and (
) Q = 7. . . 293.3 Comparative Assessment (M = 10, d = λ

2
, Q = 3) - Normalizeddi�eren
e patterns synthesized with the ICPM −GS and the SAalgorithm [10℄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31ix



LIST OF FIGURES3.4 Comparative Assessment (M = 10, d = λ
2
, Q = 3) - Referen
epattern (SLLref = −35 dB) and normalized di�eren
e patternssynthesized with the ICPM − GS, the GA-based method [12℄,and the 
onstrained EMM [8℄. . . . . . . . . . . . . . . . . . . . 333.5 Comparative Assessment (M = 10, d = λ

2
, Q = 3) - Normalizeddi�eren
e patterns synthesized with the ICPM − GS, the GA-based method [12℄, and the 
onstrained EMM [8℄. . . . . . . . . . 343.6 Comparative Assessment (M = 10, d = λ

2
) - Normalized di�eren
epatterns synthesized with the ICPM − GS, the Hybrid − SAapproa
h [14℄, and the DE algorithm [11℄ when (a) Q = 4 and(b) Q = 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363.7 Extension to Large Arrays (M = 50, d = λ
2
, Q = 4) - Normalizeddi�eren
e patterns synthesized with the ICPM −GS (SLLref =

−40 dB), the SA algorithm [10℄, the Hybrid− SA approa
h [14℄,the GA-based method [12℄, and the DE algorithm [11℄. . . . . . . 384.1 Sket
h of the antenna feed network. . . . . . . . . . . . . . . . . . 444.2 Pi
torial representation of the redundant parts within the solutiontree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464.3 DAG Representation. . . . . . . . . . . . . . . . . . . . . . . . . . 474.4 Pattern Mat
hing (N = 316, d = λ
2
, r = 5λ) - Relative power dis-tribution of the referen
e (a) Taylor sum pattern (SLL = −35 dB,

n = 6) [6℄ and of the (b) H − mode Bayliss di�eren
e pattern(SLL = −40 dB, n = 5) [7℄, respe
tively. . . . . . . . . . . . . . . 494.5 Pattern Mat
hing (N = 316, d = λ
2
, r = 5λ) - Relative powerdistribution of the synthesized H −mode di�eren
e pattern when(a) Q = 3, (b) Q = 4, (
) Q = 6, and (d) Q = 10. . . . . . . . . . 504.6 Pattern Mat
hing (N = 316, d = λ

2
, r = 5λ) - Plots of the SLRvalues of the Bayliss pattern (SLL = −40 dB, n = 5) [7℄ and of the
ompromise H − mode di�eren
e patterns when Q = 3, 4, 6, 10(φ ∈ [−80o, 80o]). . . . . . . . . . . . . . . . . . . . . . . . . . . 514.7 Pattern Mat
hing (N = 316, d = λ

2
, r = 5λ) - Azimuthal (φ = 0o)plots of the relative power of the Bayliss pattern (SLL = −40 dB,

n = 5) [7℄ and of the 
ompromise H −mode patterns when Q =
3, 4, 6, 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514.8 Comparative Assessment (N = 300, d = λ

2
, r = 4.85λ, Q = 3) -Relative power distribution of the H −mode 
ompromise patternsynthesized with (a) the SA approa
h [10℄ and the PCPM whenthe Referen
e Bayliss pattern n = 6 [7℄ presents a sidelobe levelequal to (b) SLLH(1)

ref = −25 dB, (
) SLLH(2)
ref = −30 dB, and (d)

SLL
H(3)
ref = −35 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . 53x



LIST OF FIGURES4.9 Comparative Assessment (N = 300, d = λ
2
, r = 4.85λ, Q = 3) -Plots of the SLR values of the 
ompromise H −mode di�eren
epatterns synthesized by the SA approa
h [10℄ and the PCPMwhen the Referen
e Bayliss pattern n = 6 [7℄ presents a sidelobelevel equal to SLLH(1)

ref = −25 dB, SLLH(2)
ref = −30 dB, and (d)

SLL
H(3)
ref = −35 dB (φ ∈ [−80o, 80o]). . . . . . . . . . . . . . . . . 545.1 Evolution of the BEM solution within the DAG. . . . . . . . . . 595.2 Evolution of the ACO solution within the DAG. . . . . . . . . . . 625.3 ACO Calibration (N = 40, Q = 6) - Behavior of the average 
on-vergen
e 
ost fun
tion value versus the pheromone update 
on-stant, H , and the pheromone evaporation parameter, ρ. . . . . . . 645.4 ACO Calibration (N = 40, Q = 6; H = 1, ρ = 0.05) - Behaviors ofthe statisti
 values of the average 
onvergen
e 
ost fun
tion valueversus the ant 
olony dimension, C. . . . . . . . . . . . . . . . . . 655.5 ACO's Hill Climbing Behavior (N = 20, Q = 3) - Iterative BEMpro
edure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665.6 ACO's Hill Climbing Behavior (N = 20, Q = 3) - BEM powerpattern at di�erent iterations of the iterative optimization (k =

1, ..., kend). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675.7 ACO's Hill Climbing Behavior - Cost fun
tion values of the solu-tions 
oded in the solution DAG. . . . . . . . . . . . . . . . . . . 685.8 ACO's Hill Climbing Behavior - Compromise di�eren
e powerpatterns obtained with the BEM and the ACO when (a) N = 20,
Q = 3 (Zolotarev [9℄, SLL = −30 dB) and (b) N = 20, Q = 8(Zolotarev [9℄, SLL = −40 dB). . . . . . . . . . . . . . . . . . . . 705.9 ACO's Hill Climbing Behavior (N = 40, Q = 4) - Behavior of the
ost fun
tion value Ψ(k) during the iterative optimization pro
esswhen applying the BEM and the ACO. . . . . . . . . . . . . . . 725.10 ACO's Hill Climbing Behavior (N = 40, Q = 4) - Referen
e(Zolotarev [9℄, SLL = −30 dB) and 
ompromise di�eren
e powerpatterns synthesized with the BEM and the ACO. . . . . . . . . 735.11 Comparative Assessment (Zolotarev [9℄, SLL = −25 dB, Q = 8)- Behavior of the average 
onvergen
e 
ost fun
tion value versusthe number of array elements, N . . . . . . . . . . . . . . . . . . . 755.12 Comparative Assessment (Zolotarev [9℄, SLL = −25 dB, Q = 8) -Behaviors of (a) the SLL and (b) the BW values of the synthesized
ompromise patterns versus the number of array elements, N . . . 766.1 Uniform Sub-arraying (M = 10, Q = 5) - Normalized 
ompro-mise di�eren
e patterns obtained by means of the Hybrid−CPMmethod, the CPM , and the EMM [8℄. . . . . . . . . . . . . . . . 82xi



LIST OF FIGURES6.2 Non-Uniform Sub-arraying (M = 10, Q = 8) - Normalized 
om-promise di�eren
e patterns obtained by means of the Hybrid −
CPM method, the CPM , the SA− CP approa
h [13℄, and the
DE optimization [11℄. . . . . . . . . . . . . . . . . . . . . . . . . 846.3 Large Arrays (M = 100, Q = 6) - Normalized 
ompromise di�er-en
e patterns obtained with the Hybrid−CPM method and the
CPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 856.4 Large Arrays (M = 100, Q = 6) - Normalized 
ompromise di�er-en
e patterns obtained with the Hybrid−CPM method and the
CPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 866.5 Hybrid Formulation (N = 300, d = λ

2
, r = 4.85λ) - Behaviorof the (a) SLL and of the (b) BW for the 
ompromise patternssynthesized by means of the ICPM and the Hybrid − ICPMwhen Q ∈ [2, 8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 886.6 Hybrid Formulation (N = 300, d = λ

2
, r = 4.85λ, Q = 3) - Sub-array 
on�gurations (left 
olumn) and array element weights (right
olumn) synthesized with the ICPM and the Hybrid − ICPMfor di�erent values of Q [Q = 2 (�rst row), Q = 3 (se
ond row),

Q = 5 (third row), and Q = 8 (fourth row)℄. . . . . . . . . . . . . 906.7 Hybrid Formulation (N = 300, d = λ
2
, r = 4.85λ, Q = 3) -Beam patterns synthesized with the ICPM (left 
olumn) and the

Hybrid− ICPM (right 
olumn) for di�erent values of Q [Q = 2(�rst row), Q = 3 (se
ond row), Q = 5 (third row), and Q = 8(fourth row)℄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 916.8 Sub-Arrayed Planar Array Synthesis (d = λ
2
, r = 4.85λ). Compu-tational Analysis - (a) Dimension of the solution spa
e U and (b)memory resour
es, M , and number of vertexes, V , for the storageof the representations of the solution spa
e versus Q in 
orrespon-den
e with N = 300 and N = 40 (CBT →Complete Binary Tree,

IBT →Non-Complete Binary Tree, and DAG →Dire
t A
y
li
Graph). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

xii





LIST OF FIGURES

xiv



Stru
ture of the Thesis
The thesis is stru
tured in 
hapters a

ording to the organization detailed inthe following.The �rst 
hapter deals with an introdu
tion to the thesis, fo
using on themain motivations and on the subje
t of this work as well as a presentation of thestate-of-the-art te
hniques dealing with the same antenna synthesis problem.Chapter 2 presents the proposed ex
itation mat
hing method for the synthesisof monopulse linear array antennas, fo
using on the de�nition of the solutionspa
e as a non-
omplete binary tree as well as on the deterministi
 sear
hingalgorithm.In Chapter 3 the proposed method is integrated in an iterative mat
hingapproa
h integrated in an iterative pro
edure ensuring, at the same time, theoptimization of the sidelobe level (or other beam pattern features). The �exibilityand e�e
tiveness of su
h an approa
h are pointed out in the numeri
al validationthrough an extensive set of 
omparative examples.The extension of the approa
h from linear to planar arrays is des
ribed andassessed in Chapter 4. A more 
ompa
t graph stru
ture is 
onsidered startingfrom the observation that some parts of the non-
omplete binary tree are re-
ursively shared in it, enabling the synthesis of arrays with a large number ofelements. A

ordingly, the sear
hing strategy is 
ustomized to look for the best
ompromise solution within the graph.Chapter 5 deals with the presentation of an ant 
olony metaheuristi
 usedto bene�t of its hill-
limbing properties in dealing with the non-
onvexity of thesub-arraying as well as in managing graph sear
hes.xv



LIST OF FIGURES
A hybrid approa
h for the synthesis of linear and planar monopulse arrayantennas is presented in Chapter 6. At the �rst step, the sub-array 
on�gurationis determined by means of the proposed ex
itation mat
hing method. In these
ond step, the sub-array weights are 
omputed through the solution of a 
onvexprogramming problem for a �xed 
lustering to obtain a dire
t 
ontrol on thebehavior of the se
ondary lobes.Con
lusions and further developments are presented in Chapter 7. Finally,two appendi
es give more details on the de�nition of 
ontiguous partition andon the dimension of the solution spa
e.

xvi



Chapter 1Introdu
tion and State-of-the-ArtIn the introdu
tion, the motivation of the thesis is pointed out starting from abrief overview on the te
hniques presented in the state-of-the-art an regardingthe solution of the optimal 
ompromise problem between sum and di�eren
epatterns for the synthesis of sub-arrayed monopulse array antennas.

1



A monopulse tra
ker [1℄[2℄[3℄ is a devi
e aimed at dete
ting the position of atarget by using the information 
olle
ted from an antenna that generates sumand di�eren
e patterns. These beams 
an be synthesized by means of a re�e
torantenna with two (tra
king on a plane) or three (3D tra
king) feeds, or by usinglinear or planar array antennas, respe
tively. The latter solution is usually pre-ferred sin
e array antennas are easy to built and they do not require me
hani
alpositioning systems to steer the beam pattern. Moreover, array stru
tures 
analso be easily installed on mobile vehi
les (e.g., air
rafts). Unlike linear stru
-tures, a planar array allows the generation of a sum and two spatially-orthogonaldi�eren
e patterns [4℄ [i.e., the azimuth di�eren
e mode (H −mode) and the el-evation di�eren
e mode (E−mode)℄ useful to give a 
omplete des
ription of thetraje
tory of a target in terms of range, azimuth, and elevation. These patternsare required to satisfy some 
onstraints as narrow beamwidth, low side lobe level(SLL) and high dire
tivity. In parti
ular, as far as the sum pattern is 
on
erned,there is the need of maximizing the gain. On the other hand, the more 
riti
alissue to be addressed dealing with di�eren
e patterns is 
on
erned with the nor-malized di�eren
e slope on boresight dire
tion, sin
e it is strongly related to thesensitivity of the radar (i.e., to the angular error).In order to synthesize independent optimal sum and di�eren
e patterns,Taylor [5℄[6℄ and Bayliss [7℄ developed analyti
al te
hniques to 
ompute the
orresponding ex
itation 
oe�
ients by sampling suitable 
ontinuous distribu-tions. However, these optimal solutions require three independent feeding net-works. Hen
e, high manufa
turing 
osts usually arise and ele
tromagneti
 in-terferen
es unavoidably take pla
e be
ause of the large number of elements inplanar monopulse arrays. In order to over
ome these drawba
ks, the sub-arrayingte
hnique [8℄ is a suitable 
ompromise solution aimed at optimizing pre-spe
i�edsub-array layouts.As far as linear arrays are 
on
erned, M
Namara proposed in [8℄ an ex
ita-tion mat
hing method aimed at determining a best 
ompromise di�eren
e pattern
lose as mu
h as possible to the optimum in the Dolph-Chebyshev sense [9℄ (i.e.,narrowest �rst null beamwidth and largest normalized di�eren
e slope on theboresight for a spe
i�ed sidelobe level). Towards this end, for ea
h possible group-ing, the 
orresponding sub-arrays 
oe�
ients are iteratively 
omputed throughpseudo-inversion of an overdetermined system of linear equations. It is evidentthat sin
e the best sub-array 
on�guration is not a-priori known, the whole pro-
ess is extremely time-expensive due to the exhaustive evaluations. Moreover,be
ause of the ill-
onditioning of the matrix system, large arrays 
annot be easilymanaged. In order to over
ome the ill-
onditioning and related issues, optimiza-tion approa
hes have been widely used [10℄[11℄[12℄[13℄[14℄[15℄. Although su
hte
hniques allows a signi�
ant advan
ement in the framework of sum-di�eren
epattern synthesis, they are still time-
onsuming when dealing with large arrays.As a matter of fa
t, even though the solution spa
e is sampled with e�
ientsear
hing 
riteria, the dimension of the solution spa
e is very large.2



CHAPTER 1. INTRODUCTION AND STATE-OF-THE-ARTTo over
ome su
h drawba
ks allowing an e�e
tive 
hoi
e of the array elementsgrouping as well as a fast and simple solution pro
edure, an innovative approa
his proposed in this 
hapter that, likewise [8℄ and unlike [10℄[11℄[12℄[13℄[14℄[15℄,is aimed at obtaining a 
ompromise di�eren
e pattern optimum in the Dolph-Chebyshev sense [9℄ starting from the observation that the sub-arraying is notblind. As a matter of fa
t, it 
an be guided by 
onsidering similarity propertiesamong the array elements, thus signi�
antly redu
ing the dimension of the so-lution spa
e. Starting from su
h an idea and by representing ea
h solution bymeans of a path in a graph stru
ture, the synthesis problem is then re
ast as thesear
hing of the minimal-
ost path within the graph.

3





Chapter 2The Ex
itation Mat
hing Approa
h- Linear ArraysThe approa
h presented in this 
hapter regards a strategy for the synthesis ofsub-arrayed monopulse linear arrays based on the optimal mat
hing of indepen-dently optimum sum and di�eren
e ex
itations. By exploiting the relationshipbetween the independently optimal sum and di�eren
e ex
itations, the set ofpossible solutions is 
onsiderably redu
ed and the synthesis problem is re
ast asthe sear
h of the best solution in a non-
omplete binary tree. Towards this end,a fast resolution algorithm that exploits the presen
e of elements more suitableto 
hange sub-array membership is presented. The results of a set of numeri
alexperiments are reported in order to validate the proposed approa
h pointingout its e�e
tiveness also in 
omparison with state-of-the-art optimal mat
hingte
hniques.

5



2.1. INTRODUCTION2.1 Introdu
tionIn this 
hapter, starting from the general idea pointed out in Se
tion 1, it isdemonstrated how the solution spa
e 
an be represented by means of a non-
omplete binary tree, and 
onsequently the synthesis problem is re
ast as thesear
hing of the minimal-
ost path from the root to the leafs of the solution tree.Generally speaking, in graph theory, a tree is a graph de�ned as a non-empty�nite set of vertexes or nodes in whi
h any two nodes are 
onne
ted by exa
tlyone path. The nodes are labeled su
h that there is only one node 
alled theroot of the tree, and the remaining nodes are partitioned in subtrees. In our
ase, sin
e the tree is either empty or ea
h node has not more than two subtrees,it is a binary tree. A

ordingly, ea
h node of a binary tree has either (i) no
hildren, or (ii) one left/right 
hild (i.e., non-
omplete binary tree), or (iii) aleft 
hild and a right 
hild (i.e., 
omplete binary tree), ea
h 
hild being the rootof a binary tree 
alled a subtree [16℄. In order to solve the problem at hand,thus e�
iently exploring the solution tree, a suitable 
ost fun
tion or metri
 isde�ned and an innovative algorithm for the exploration of the solution spa
e isde�ned by exploiting the 
loseness (to a sub-array) property of some elements,
alled border elements, of the array.The 
hapter is organized as follows. In Se
tion 2.2, the problem is mathe-mati
ally formulated de�ning a set of metri
s aimed at quantifying the 
losenessof ea
h solution to the optimal one (Se
t. 2.2.1) as well as the tree stru
ture(Se
t. 2.2.2) and the algorithm for e�e
tively exploring the solution spa
e (Se
t.2.2.3). In Se
tion 2.3, the results of sele
ted numeri
al experiments are reportedand 
ompared with those from state-of-the-art optimal mat
hing solutions.2.2 Mathemati
al FormulationLet us 
onsider a linear uniform array ofN = 2M elements {ξm; m = ±1, ...,±M}.Following a sub-optimal strategy, the sum pattern is generated by means of thesymmetri
 set of the real optimal1 ex
itations Aopt = {αm; m = 1, ...,M} [5℄[17℄,while the di�eren
e pattern is de�ned through an anti-symmetri
 real ex
itationset B = {bm = −b−m; m = 1, ...,M} [7℄[9℄. Thanks to su
h symmetry properties,one half of the elements of the array S = {ξm; m = 1, ...,M} is des
riptive ofthe whole array.Grouping operation yields to a sub-array 
on�guration mathemati
ally de-s
ribed in terms of the grouping ve
tor C = {cm; m = 1, . . . ,M}, cm ∈ [1, Q]being the sub-array index of the m-th element of the array [11℄. Su

essively,a weight 
oe�
ient wq is asso
iated to ea
h sub-array, q = 1, ..., Q, and, as a
onsequen
e, the sub-optimal di�eren
e ex
itation set is given by (Fig. 2.1)1In the Dolph-Chebyshev sense [9℄, unless mentioned elsewhere.6
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Figure 2.1: Sket
h of the sub-arrayed monopulse linear array antenna.
B = {bm = wmqαm; m = 1, ...,M ; q = 1, ..., Q} (2.1)where wmq = δcmqwq (δcmq = 1 if cm = q, δcmq = 0 otherwise) is the weightasso
iated to the m-th array element belonging to the q-th sub-array.A

ordingly, the original problem is re
ast as the de�nition of a sub-array
on�guration C and the 
orresponding set of weights W = {wq; q = 1, ..., Q}su
h that the sub-optimal di�eren
e pattern B is as 
lose as possible to theoptimal one, Bopt = {βm; m = 1, ...,M}. Towards this end the problem metri
 is�rstly de�ned in order to quantify the 
loseness of the sub-optimal solution to theoptimal one. Then, exploiting some properties of the sub-array 
on�gurations, anon-
omplete binary tree, where ea
h path 
odes a possible elements grouping, isbuilt. Finally, a simple algorithm for a fast sear
h of the lowest 
ost path in thebinary tree is presented for de�ning the best sub-optimal solution of the problemin hand.2.2.1 De�nition of the Solution-Metri
In order to �nd the optimal solution, let us de�ne a suitable 
ost fun
tion ormetri
 that quanti�es the 
loseness of every 
andidate/trial solution Ct to theoptimal one,

Ψ {Ct} =
1

M

M
∑

m=1

α2
m [vm − dm {Ct}]

2 , (2.2)where vm and dm are referen
e and estimated parameters, respe
tively. Theestimated parameters dm {Ct} are de�ned as the weighted arithmeti
 mean of7



2.2. MATHEMATICAL FORMULATIONthe referen
e parameters vm related to the array elements belonging to the samesub-array:
dm {Ct}|q =

∑M
m=1 α

2
mδcmqvm

∑M
m=1 α

2
m

. (2.3)As far as the referen
e parameters V = {vm; m = 1, ...,M} and the sub-arraysweights W = {wq; q = 1, ..., Q} are 
on
erned, they are de�ned a

ording to theGain Sorting (GS) algorithm.Con
erning the GS te
hnique, the referen
e parameters vm are set to theoptimal gains
vm =

βm
αm

, m = 1, . . . ,M, (2.4)while the sub-array weights are assumed to be equal to the 
omputed gains dm
wq = δcmqdm {Ct} , q = 1, ..., Q, m = 1, . . . ,M. (2.5)2.2.2 De�nition of the Solution-TreeIn general, the total number of sub-array 
on�gurations is equal to T = QM sin
eea
h of them might be expressed as a sequen
e of M digits in a Q-based nota-tion system. Without any loss of information, su
h a number 
an be redu
ed by
onsidering only the admissible (or reliable) solutions, i.e., grouping where thereare no empty sub-arrays. Moreover, let us observe that if an equivalen
e rela-tionship2 among sub-array 
on�gurations holds true, it is 
onvenient to 
onsiderjust one sub-array 
on�guration for ea
h set (instead of the whole set), thereforeobtaining a set of non-redundant solutions.Now, let us sort the known referen
e parameters {vm; m = 1, ...,M} [
om-puted a

ording to either theGS (2.4)℄ for obtaining a ordered list L = {lm; m = 1, ...,M},where li ≤ li+1, i = 1, ...,M − 1, l1 = minm {vm}, and lM = maxm {vm}. Sin
ethe 
ost fun
tion is minimized provided that elements belonging to ea
h sub-array are 
onse
utive elements of the ordered list L (see Appendix A for adetailed proof), the solution spa
e 
an be further redu
ed to the so-
alled es-sential solution spa
e ℜ(ess) 
omposed by allowed solutions. Consequently, thedimension T of the solution spa
e turns out to be redu
ed from T = QM up to

T (ess) =

(

M − 1
Q− 1

) (see Appendix B for a detailed proof) and the essentialsolution spa
e ℜ(ess) 
an be formally represented by means of the non-
ompletebinary tree depi
ted in Figure 2.2. In parti
ular, ea
h 
omplete path in the tree
odes an allowed sub-array 
on�guration C(ess)
t ∈ ℜ(ess) and the positive integer2A sub-array 
on�guration Ci is equivalent to the 
on�guration Cj when it is possible toobtain the one from the other just using a di�erent numbering for the same cm 
oe�
ients.As an example, the sub-array 
on�guration Ci = {1, 2, 3, 3, 2, 3, 2, 1} is equivalent to Cj =

{2, 3, 1, 1, 3, 1, 3, 2}. 8
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Figure 2.2: Solution-Tree stru
ture representing the essential solution spa
e
ℜ(ess).
q inside ea
h node at the lm-th level indi
ates that the array element identi�edby lm is a member of the q-th sub-array. Thanks to this formulation, the originalminimization problem (i.e., Copt = arg {mint=1,...,T [Ψ (Ct)]}) is re
ast as that of�nding the optimal path in the solution tree.2.2.3 Tree-Sear
hing Pro
edureAlthough the set of 
andidate solutions has been 
onsiderably redu
ed by limit-ing the solution spa
e to the essential spa
e, its dimension T (ess) be
omes verylarge when M ≫ Q and an exhaustive sear
hing would be 
omputationallyexpensive. In order to over
ome su
h a drawba
k, let us observe that onlysome elements of the list L are 
andidate to 
hange their sub-array membershipwithout violating the sorting 
ondition of the allowed sub-array 
on�gurations,
{

C
(ess)
t ; t = 1, ..., T (ess)

} [see Eq. (B.1) -Appendix B ℄. These elements, referredto as border elements, satisfy the following property: an array element related9



2.2. MATHEMATICAL FORMULATIONto lm is a border element if one of the elements whose list value is lm−1 or/and
lm+1 belongs to a di�erent sub-array. Therefore, the aggregation Copt ∈ ℜ

(ess)minimizing the 
ost fun
tion Ψ is found starting from an initial path randomly
hosen among the set of paths in the solution tree and iteratively updating the
andidate solution just modifying the membership of the border elements. Morein detail, the iterative pro
edure (k being the iteration index) 
onsists of thefollowing steps.
• Step 0 - Initialization . Initialize the iteration 
ounter (k = 0) and thesequen
e index (m = 0). Randomly generate a trial path in the solutiontree 
orresponding to a 
andidate sub-arrays 
on�guration C(0) ∈ ℜ(ess).Set the optimal path to C(k)

opt

⌋

k=0
= C(0).

• Step 1 - Cost Fun
tion Evaluation . Compute the 
ost fun
tion value ofthe 
urrent 
andidate path C(k) by means of (2.2), Ψ(k) = Ψ
{

C(k)
}. Com-pare the 
ost of the aggregation C(k) to the best 
ost fun
tion value attainedat any iteration up to the 
urrent one, Ψ

(k−1)
opt = minh=1,...,k−1

(

Ψ
{

C(h)
})and update the optimal trial solutionC(k)

opt = C(k) ifΨ {

C(k)
}

< Ψ
{

C
(k−1)
opt

}.
• Step 2 - Convergen
e Che
k . If the termination 
riterion, based on amaximum number of iterations K or on a stationary 
ondition for the �t-ness value (i.e., ˛

˛

˛KwindowΨ
(k−1)
opt −

PKwindow
j=1 Ψ

(j)
opt

˛

˛

˛

Ψ
(k)
opt

≤ η, Kwindow and η being a �xednumber of iterations and a �xed numeri
al threshold, respe
tively), is sat-is�ed then set Copt = C
(k)
opt and stop the minimization pro
ess. Otherwise,go to Step 3.

• Step 3 - Iteration Updating . Update the iteration index (k ← k+1) andreset the sequen
e index (m = 0).
• Step 4 - Sequen
e Updating . Update the sequen
e index (m← m+ 1).If m > M then go to Step 3 else go to Step 5.
• Step 5 - Aggregation Updating . If the array element related to l(k)m is aborder element belonging to the q-th sub-array then de�ne a new grouping
C(k,m) by aggregating su
h an element to the (q − 1)-th sub-array [if thearray element 
orresponding to l(k)m−1 is a member of the (q − 1)-th sub-array℄ or to the (q + 1)-th sub-array [if the array element 
orresponding to
l
(k)
m+1 is a member of the (q + 1)-th sub-array℄. If Ψ(k,m) = Ψ

{

C(k,m)
}

<

Ψ
{

C(k)
} then set C(k) = C(k,m) and go to Step 1. Otherwise, go to Step

4. 10



CHAPTER 2. THE EXCITATION MATCHING APPROACH - LINEARARRAYS2.3 Numeri
al ValidationIn order to assess the e�e
tiveness of the proposed method, an exhaustive set ofnumeri
al experiments has been performed and some representative results willbe shown in the following.For a quantitative evaluation, a set of beam pattern indexes has been de�nedand 
omputed. More in detail, (a) the pattern mat
hing ∆ that quanti�es thedistan
e between the synthesized sub-optimal pattern and the optimal one
∆ =

∫ π

0

∣

∣|AF (ψ)|optn − |AF (ψ)|recn
∣

∣ dψ
∫ π

0
|AF (ψ)|optn dψ

, (2.6)where ψ = (2πd/λ) sinθ, θ ∈ [0, π/2], (λ and d being the free-spa
e wavelengthand the inter-element spa
ing, respe
tively), |AF (ψ)|optn and |AF (ψ)|recn are thenormalized optimal and generated array patterns, respe
tively; (b) the mainlobes beamwidth BW and (
) the power slope Pslo that give some indi
ations onthe slope on the boresight dire
tion
Pslo = 2×

[

max
ψ

(|AF (ψ)|n)× ψmax −

∫ ψmax

0

|AF (ψ)|n dψ

]

, (2.7)
ψmax being the angular position of the maximum in the array pattern; (d) thesidelobes power Psll

Psll =

∫ π

ψ1

|AF (ψ)|n dψ, (2.8)where ψ1 is the angular position of the �rst null in the di�eren
e beam pattern.The remaining of this se
tion is organized as follows. Firstly, some experi-ments aimed at showing the asymptoti
 behaviour of the proposed solution arepresented (Se
t. 2.3.1) and a 
omparative study is 
arried out (Se
t. 2.3.2).Furthermore, some experiments devoted at showing the potentialities of the pro-posed solution in dealing with large arrays are dis
ussed in Se
t. 2.3.3. Finally,the 
omputational issues are analyzed (Se
t. 2.3.4).2.3.1 Asymptoti
 Behavior AnalysisIn order to assess that in
reasing the number of sub-arrays Q the synthesizeddi�eren
e patterns get 
loser and 
loser to the optimal one, let us 
onsider a lineararray ofN = 2×M = 20 elements 
hara
terized by a d = λ
2
inter-element spa
ing.The optimal sum pattern ex
itations, {αm, m = 1, ...,M}, have been �xed to thatof the linear Villeneuve pattern [17℄ with n = 4 and 25 dB sidelobe ratio (Fig.2.3 - Villeneuve, 1984), while the optimal di�eren
e weights {βm, m = 1, ...,M},have been 
hosen equal to those of a Zolotarev di�eren
e pattern [9℄ with asidelobe level SLL = −30 dB (Fig. 2.3 - M
Namara, 1993). Then, Q has beenvaried between 2 and M and the GS te
hnique has been applied. For sake of11
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Figure 2.3: Asymptoti
 Behavior (M = 10, d = λ
2
) - Sum {αm; m = 1, ...,M}and di�eren
e {βm; m = 1, ...,M} optimal ex
itations. Compromise di�eren
e
oe�
ients {bm; m = 1, ...,M} for di�erent values of Q.spa
e, sele
ted results 
on
erned with Q = 3, Q = 6, and Q = 9 are reportedin terms of di�eren
e ex
itations. As expe
ted, the 
oe�
ients obtained withthe GS 
onverge to the optimal ones and, starting from Q = 6, the di�eren
esbetween generated and referen
e di�eren
e patterns turn out to be smaller andsmaller.2.3.2 Comparative AssessmentFor 
omparison purposes and in the framework of synthesis te
hniques aimed atdetermining the best 
ompromise di�eren
e pattern as 
lose as possible to theoptimal one, let us 
onsider the EMM by M
Namara [8℄ as referen
e3. As faras the test 
ases are 
on
erned, the same ben
hmark investigated in [8℄ has beentaken into a

ount. The array geometry and the optimal sum ex
itations wasas in Se
t. 2.3.1, while the optimal di�eren
e ex
itation ve
tor Bopt has been
hosen for generating a modi�ed Zolotarev di�eren
e pattern with n = 4, ε = 3and a sidelobe ratio of 25 dB [9℄.3No 
omparison with optimization-based pro
edures (i.e., [10℄[11℄[12℄[13℄[14℄) have beenreported sin
e they are aimed at minimizing a pattern parameter (e.g., the SLL) and not atbetter mat
hing an optimal di�eren
e pattern.12
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Figure 2.4: Uniform sub-arraying (M = 10, d = λ
2
, Q = 5) - Referen
e optimumand normalized di�eren
e patterns obtained by means of the EMM and the GS.The �rst test 
ase deals with a uniform sub-arraying over the antenna with

Q = 5. The values of the sub-arrays weights optimized with the GS are WGS =
{0.2951 , 0.8847, 1.1885, 1.3994, 1.4878}. Moreover, the synthesized di�eren
epattern is shown in Figure 2.4, while the 
omputed beam-pattern indexes arereported in Table 2.1. The advantages on the use of the tree-based approa
hesare evident, as 
on�rmed by the values of both the SLL (4 dB below the levela
hieved by the EMM , SLLEMM = −17.00 dB vs. SLLGS = −21.00) andthe pattern mat
hing index (∆EMM

∆GS ≃ 1.5 - Tab. 2.1). Moreover, it is worthnoting that, thanks to the stru
ture of the solution tree, the dimension of theessential spa
e redu
es to T (ess) = 1 (sin
e l1 and l2 belong to the �rst sub-array,
l3 and l4 to the se
ond one, and so on), thus allowing a signi�
ant saving of

Approach Pslo BW Psll max {SLL} ∆

EMM [8℄ 0.1970 0.3610 0.1038 −17.00 0.4015
GS 0.1811 0.3784 0.1082 −21.10 0.2633

Optimal [9℄ 0.1802 0.3735 0.0598 −25.00 −Table 2.1: Uniform sub-arraying (M = 10, d = λ
2
, Q = 5) - Beam patternindexes. 13



2.3. NUMERICAL VALIDATION
Q = 3 Q = 5

EMM [8℄ GS EMM [8℄ GS Optimal [9℄
Pslo 0.2117 0.1800 0.2000 0.1806 0.1802
BW 0.3745 0.3735 0.3854 0.3735 0.3735
Psll 0.1798 0.1054 0.0950 0.0823 0.0598

max {SLL} −14.70 −18.63 −23.40 −23.00 −25.00
∆ 0.5438 0.4073 0.2562 0.1571 −Table 2.2: Non-uniform sub-arraying (M = 10, d = λ

2
, Q = 3, 5) - Beam patternindexes.
omputational resour
es. As a matter of fa
t, the EMM requires the solution ofan overdetermined system of linear equations in 
orresponden
e with any possibleuniform grouping [8℄, i.e., a number of T = 945 evaluations.Se
ond and third test 
ases 
onsider non-uniform sub-arraying. The former
on�guration is an example of the limited number of sub-arrays (Q = 3) thatmight be used with a small monopulse antenna. The latter has the same numberof sub-arrays as that of the �rst 
on�guration (Q = 5). The tree-based algo-rithms have been applied and the following sub-array 
on�gurations have beendetermined. In parti
ular, the grouping CGS

opt = {1, 2, 3, 3, 4, 5, 5, 5, 4, 3} hasbeen synthesized when Q = 5, while CGS
opt = {1, 1, 2, 2, 3, 3, 3, 3, 3, 2} has beenobtained for Q = 3. The obtained beam patterns are shown in Fig. 2.5 and the
orresponding values of the pattern indexes are reported in Tab. 2.2. As it 
anbe noti
ed, the GS improves the performan
es of the EMM in mat
hing theoptimal di�eren
e pattern as pointed out by the behavior of the global mat
hingindex ∆ ( ∆EMM

∆GS

⌋

Q=3
= 1.33 and ∆EMM

∆GS

⌋

Q=5
= 1.63). Con
erning the smaller
on�guration, it is further 
on�rmed (as already pointed out in Se
tion 2.3.1)the �exibility and reliability of the GS algorithm in dealing also with 
omplex
ases where a limited number of sub-arrays is taken into a

ount. As a matterof fa
t, for Q = 3 the solution of the GS has a sidelobe ratio of SLL = 18.63 dBand a main lobe very 
lose to the optimal one, i.e., BGS

w = Bopt
w = 0.3735 and

PGS
slo = 0.1800 vs. P opt

slo = 0.1802.2.3.3 Large Arrays AnalysisThis se
tion is aimed at analyzing the performan
es of the proposed tree-basedte
hniques when dealing with large arrays. As far as the optimal setup is 
on-
erned, sum {αm, m = 1, ...,M} and di�eren
e {βm, m = 1, ...,M} optimal ex-
itations have been 
hosen to generate a Dolph-Chebyshev pattern [19℄ with
SLL = −25 dB and a Zolotarev pattern [9℄ with SLL = −30 dB, respe
tively.As a �rst experiment, a linear array of N = 200 elements with λ/2 spa
ing14
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(b)Figure 2.5: Non-uniform sub-arraying (M = 10, d = λ
2
) - Referen
e optimumand normalized di�eren
e patterns obtained by means of the EMM , and the GSwhen (a) Q = 3 and (b) Q = 5.
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2.3. NUMERICAL VALIDATION
GS Optimal Difference [9℄

Pslo 0.0066 0.0066
BW 0.0148 0.0151
Psll 0.0868 0.0824

max {SLL} −18.00 −30.00
∆ 0.2921 −Table 2.3: Large Arrays (M = 250, d = λ

2
, Q = 4) - Beam pattern indexes.has been used by 
onsidering various sub-arraying 
on�gurations. Figure 2.6shows the optimal di�eren
e pattern (i.e., the synthesis target) and the patternsobtained when Q = 4 and Q = 6 by using the GS. For 
ompleteness, the valuesof the synthesized di�eren
e ex
itations are displayed in Figure 2.7. The GSalgorithm satisfa
torily approximates the optimal main lobe 
hara
teristi
s interms of both BW and Pslo, and the solution presents a sidelobe ratio 
lose tothe referen
e one (SLLGS⌋

Q=4
= −21.90 and SLLGS

⌋

Q=6
= −25.13). The lasttest 
ase (and se
ond experiment dealing with large stru
tures) is 
on
erned witha linear array of N = 2 ×M = 500 elements (d = λ/2). As a representativeexample, the 
ase of Q = 4 is reported and analyzed (Tab. 2.3). The arisingbeam patterns allow one to drawn similar 
on
lusions to those from the previouss
enario, sin
e on
e again the e�e
tiveness of the GS te
hnique in dealing witha limited number of sub-arrays is pointed out. As a matter of fa
t, it is worthnoting that unlike tree-based pro
edures the EMM is not reliable in dealingwith large arrays sin
e it requires the numeri
al pro
essing of overdeterminedlinear systems, whose ill-
onditioning get worse when the ratio M

Q
grows.In order to evaluate the performan
e of the tree-based method versus thearray dimension, N has been varied from 20 (small/medium arrays, i.e. M < 50)up to 500 (large arrays, i.e. M ≥ 50) and di�erent array partitions (Q ∈ [3, 10])have been 
onsidered. The plot of ∆ versus M for di�erent values of Q is shownin Figure 2.8. As it 
an be observed, for a �xed number Q of sub-arrays, thedistan
e between the optimal di�eren
e pattern and the 
ompromise one doesnot signi�
antly vary as the number of elements M in
reases (M > 50) rangingfrom ∆ ∼= 0.15 (Q = 10) up to ∆ ∼= 0.36 (Q = 3). Moreover, as expe
ted,for ea
h array aperture (i.e., M = cost), the synthesized di�eren
e patterns get
loser and 
loser to the optimal one when the value of Q grows (Q→M).2.3.4 Computational IssuesNow, let us analyze the 
omputational 
osts of the tree-based approa
hes, pro-viding a 
omparison with the EMM , as well. Towards this end, let us �rstly
onsider the dependen
e of the dimension of the solution spa
e on the numberof elements of the array M . As a representative 
ase, let us analyze the behavior16
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Figure 2.6: Large Arrays (M = 100, d = λ
2
) - Referen
e optimum and normalizeddi�eren
e patterns obtained by means of the GS te
hnique when Q = 4 and

Q = 6.
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2
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Q.of T and T (ess) when Q = 3 (K = 100 and η = 10−3) (Fig. 2.9). As it 
an beobserved, the dimension of the solution spa
e T of the EMM grows exponen-tially with M , while, as expe
ted [see Appendix A℄, T (ess) shows a polynomialbehavior. Obviously, the same behavior holds true also for di�erent values of Q(Fig. 2.9).On the other hand, the 
omputational e�e
tiveness of the Tree-Sear
hingpro
edure in sampling the solution spa
e is further pointed out from the evalua-tion of the CPU-time, t (on a 3GHz Pentium 4 and 512MB of RAM), neededfor rea
hing the 
onvergen
e (Fig. 2.10). As a matter of fa
t, maxQ {tQ} =
70 [sec] (kopt = 90) in 
orresponden
e with the largest array (M = 250), while
maxQ {tQ} = 12.8 [sec] (kopt = 8) and maxQ {tQ} = 2.3 [sec] (kopt = 4) when
M = 100 and M = 50, respe
tively.2.4 Dis
ussionsThe methodologi
al novelties of the proposed approa
h lie in the appropriatede�nition of the solution spa
e, the innovative formulation of the problem interms of a sear
h inside a non 
omplete binary tree and the possibility of applyinga fast resolution algorithm. All these improvements allow the proposed approa
hto deal with the synthesis of large arrays in an e�e
tive and reliable way.As 
on�rmed in the 
omparative assessment, be
ause of the favorable trade-18
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2.4. DISCUSSIONSo� between 
omplexity/
osts and e�e
tiveness, the proposed tree-based strategyseems a promising tool to be further analyzed and extended to other geometriesand synthesis problems. A

ordingly, some of the possible extensions will be
onsidered in the next 
hapters of this work.

20



Chapter 3The Iterative Mat
hing Approa
hIn this 
hapter, the optimal ex
itations mat
hing method presented in Chapter 2is integrated in an iterative pro
edure ensuring, at the same time, the optimiza-tion of the sidelobe level (or other beam pattern features) for the 
ompromisedi�eren
e pattern. The �exibility of su
h an approa
h allows one to synthesizevarious di�eren
e patterns 
hara
terized by di�erent trade-o� between angularresolution and noise/interferen
es reje
tion in order to mat
h the user-de�ned re-quirements. On the other hand, thanks to its 
omputational e�
ien
y, synthesisproblems 
on
erned with large arrays are easily managed, as well. An exhaustivenumeri
al validation assesses the reliability and a

ura
y of the method pointingout the improvements upon state-of-the-art sub-arraying te
hniques.
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3.1. INTRODUCTION3.1 Introdu
tionThe design of monopulse radar systems [2℄[3℄ requires the synthesis of both a sumpattern and a di�eren
e pattern, whi
h satisfy some spe
i�
ations su
h as nar-row beamwidth, low side-lobe-level (SLL), and high dire
tivity. When the sub-arraying strategy is 
onsidered, a

ording to the guidelines of [8℄[10℄[12℄[11℄[14℄,the sum pattern is �xed to the optimal one, while di�eren
e ex
itations are ob-tained from the sum 
oe�
ients by properly grouping the array elements and byweighting ea
h sub-array in order to satisfy the user-de�ned 
onstraints. In su
ha 
ontext, two di�erent methodologi
al approa
hes might be re
ognized. Theformer (indi
ated in the following as �optimal mat
hing�) is aimed at determin-ing the �best 
ompromise� di�eren
e pattern, whi
h is as 
lose as possible to theoptimum in the Dolph-Chebyshev sense [9℄ (i.e., narrowest �rst null beamwidthand largest normalized di�eren
e slope on the boresight for a spe
i�ed sidelobelevel), as 
onsidered in Chapter 2. The other, denoted as �feature optimization�,where the beam pattern parameters (usually, the SLL [10℄-[11℄ or the dire
tivity[20℄) are 
ontrolled by in
luding them in a 
ost fun
tion to minimize a

ordingto a global optimization sto
hasti
 pro
edure.Con
erning the �optimal mat
hing� te
hniques, sin
e the the �Ex
itationMat
hing� method (EMM) proposed by M
Namara in [8℄ does not allow the
ontrol of the beam pattern SLL, hen
e a 
onstrained version of the method hasbeen also introdu
ed ([8℄, Se
t. 5) in order to redu
e the grating lobes e�e
tsand lead to sub-optimal di�eren
e patterns with a suitable 
ompromise between
SLL, beamwidth, and slope on boresight. Unfortunately, when the ratio betweenarray elements and number of sub-arrays gets larger, the EMM is not alwaysreliable/e�
ient be
ause of the ill-
onditioning of the matrix system as well asthe large 
omputational 
osts of the arising exhaustive evaluation pro
ess.As far as the �feature optimization� 
lass of sub-arraying methods is 
on-
erned, Ares et al. 
onsidered in [10℄ the appli
ation of a simulated annealing(SA) algorithm for de�ning the optimal sub-array weights (i.e., aimed at obtain-ing a di�eren
e pattern that satis�es a �xed 
onstraint on the SLL) starting froman assigned sub-array 
on�guration. On the other hand, taking advantage of theproblem 
onvexity with respe
t to the weights of the subarrays and followingthe same line of the reasoning as in [21℄, a two-step hybrid optimization strategyhas been proposed in [13℄[14℄. By optimizing at the same time both partitionfun
tions (i.e., those fun
tions that de�ne the membership of the array elementsto ea
h sub-array) and the sub-array 
oe�
ients, Lopez et al. [12℄ proposed aGeneti
 Algorithm (GA) based te
hnique. In a similar fashion, a Di�erentialEvolution (DE) algorithm has been used in [11℄.Although the optimization of elements membership and sub-array weightssigni�
antly improved the performan
e of sum-di�eren
e optimization method-ologies, some drawba
ks still remain. As a matter of fa
t, su
h te
hniques areusually time-
onsuming espe
ially when dealing with large arrays sin
e the di-22



CHAPTER 3. THE ITERATIVE MATCHING APPROACHmension of the solution spa
e signi�
antly enlarges. Moreover, �feature optimiza-tion� approa
hes are usually formulated in terms of single-obje
tive problems andthe 
ontrol of multiple features of the beam pattern (e.g., SLL, beamwidth, dif-feren
e slope on boresight) would require the use of 
ustomized and 
omplexmulti-obje
tive strategies.In the framework of optimal mat
hing te
hniques, the present 
ontribution isaimed at proposing a new approa
h for synthesizing best 
ompromise patternswith SLL 
ontrol. Towards this end, following the guidelines of the EMM ,the proposed approa
h determines the di�eren
e solution 
lose to the optimalDolph-Chebyshev pattern through the sear
h of the minimum 
ost-path in thenon-
omplete binary tree of the possible aggregations by satisfying the SLL
onstraints through an iterative pro
edure (unlike global optimization methodsthat dire
tly de�ne a SLL penalty term in the 
ost fun
tion [10℄-[11℄).The remaining of the 
hapter is organized as follows. The proposed synthesispro
edure is des
ribed in detail Se
tion 3.2. Se
tion 3.3 deals with an exhaustivenumeri
al validation aimed at assessing the e�e
tiveness of the proposed te
h-nique and at providing a 
omparison with state-of-the-art solutions. Some �nalremarks are drawn in Se
tion 3.4.3.2 Mathemati
al FormulationLet us 
onsider a linear uniform array of N = 2M elements and let us assumethat the sum and di�eren
e patterns are obtained through a symmetri
, A =
{am = a−m; m = 1, ...,M}, and an anti-symmetri
,B = {bm = −b−m; m = 1, ...,M},real ex
itations set, respe
tively. Thanks to these symmetry properties, only onehalf of the array elements is 
onsidered.A

ording to the guidelines of sub-arraying te
hniques, the sum pattern is ob-tained by �xing the sum ex
itations to the ideal ones, Aideal = {αm; m = 1, ...,M}[19℄[5℄[17℄, while the di�eren
e ex
itations set is synthesized starting from thesum mode as follows

bm =

Q
∑

q=1

αm (δcmqwq) ; m = 1, ...,M, (3.1)where Q is the number of sub-arrays, wq is the weight asso
iated to the q-thsub-array in the di�eren
e feed network, and δcmq is the Krone
ker delta whosevalue is determined a

ording to the sub-array membership of ea
h element ofthe array (δcmq = 1 if cm = q, δcmq = 0 otherwise, cm ∈ [1, Q] being the sub-arrayindex of the m-th array element).In order to obtain the best 
ompromise di�eren
e ex
itations (i.e., a set ofex
itations giving a pattern as 
lose as possible to the ideal one in the Dolph-Chebyshev sense that satis�es at the same time a 
onstraint on the SLL), aninnovative adaptive sear
hing te
hnique, indi
ated as Iterative Contiguous Parti-tion Method (ICPM), is applied. It 
onsists of an inner loop aimed at ensuring23



3.2. MATHEMATICAL FORMULATIONthe 
loseness of the trial solution to a �referen
e� ideal pattern through the te
h-nique proposed in Chapter 2 and by an outer loop devoted at satisfying therequirements on the SLL (or another beam pattern feature).With referen
e to Fig. 3.1 , the main steps of the iterative pro
edure aredes
ribed in the following:
• Step 0 - Initialization . The external iteration index is initialized (e = 0),the optimal sum ex
itations Aideal = {αm; m = 1, ...,M} are 
omputed[19℄[5℄[17℄, and the user-desired sidelobe level threshold is set, SLLd;
• Step 1 - Referen
e Di�eren
e Pattern Sele
tion . At the �rst iteration(e = 1), an optimal - in the Dolph-Chebyshev sense - di�eren
e ex
itationsset B(e)

ref =
{

β
(e)
m ; m = 1, ...,M

} that generates a beam pattern with a side-lobe level SLL(e)
ref = SLLd is 
omputed as in [9℄ and assumed as referen
ein the inner loop. Then, for ea
h element of the array, an identi�
ationparameter is evaluated a

ording to the Gain Sorting (GS) algorithm
v(e)
m =

β
(e)
m

αm
, m = 1, ...,M. [Optimal Gain] (3.2)The identi�
ation indexes {

v
(e)
m ; m = 1, . . . ,M

} are ordered in a sortedlist L = {lm; m = 1, . . . ,M} (i.e., an ensemble where lk ≤ lk+1, k =

1, . . . ,M − 1, l1 = min
m

{

v
(e)
m

}, and lM = max
m

{

v
(e)
m

});
• Step 2 - Computation of the Compromise Solution . With referen
eto the e-th target pattern, the approximation algorithm based on the Con-tiguous Partition te
hnique is run until a suitable �termination 
riterion�is satis�ed. A

ordingly, the following steps are performed:� Step 2.a - Solution Initialization . The internal iteration 
ounter isinitialized [i(e) = 0℄ and a starting trial grouping Ci(e) =

{

c
i(e)
m ; m = 1, . . . ,M

},
orresponding to a Contiguous Partition(1)1 of L in Q subsets P i(e)
Q =

{

Li(e)q ; q = 1, . . . Q
}, is randomly generated and assumed as the op-timal grouping C
i(e)
opt = Ci(e). Su

essively, the sub-array weights1(1)With referen
e to [18℄, it 
an be easily shown that, on
e the parameters v

(e)
m have beenordered in the sorted list L = {lm; m = 1, ..., M}, the grouping minimizing the 
ost fun
tion(3.5) 
orresponds to a Contiguous Partition. A grouping of array elements is a ContiguousPartition if the generi
 mj-th array element belongs to the q-th sub-array only when twoelements, namely the mi-th element and the mn-th one, belong to the same sub-array and the
ondition v

(e)
i < v

(e)
j < v

(e)
n holds true. 24



CHAPTER3.THEITERATIVEMATCHINGAPPROACH

Step

Cost Function EvaluationStep 2.   −b

Step Computation of the Compromise Solution2 −

Step Initialization0 −

m{α   ; m = 1,...,M}

Step Reference Difference Pattern Selection1 −

c

i(e) > I
(e)

stat

= m m = 1,...,M}{β    ;
(e)

opt

(e)
B

(e)
refSLL = SLL d

e=1 ?

= m m = 1,...,M}{β    ;
(e)

opt

(e)
B

(e)
refSLL     <

(e)−1
refSLL

Solution InitializationStep 2.   −a

=
opt

CC
i(e) i(e)

=C      : C C
i(e) i(e) k(e)

; k = 1,...,i(e)−1

= C

no

yes

yes

no

yes

no

e = 0

SIDELOBE CONTROL PROCEDURE

Set:

A

=
opt

=opt

opt
=

opt
(e)

opt
=

opt
(e)

Define:

Step 2.   −d

(e)

(e)

Ψ = Ψ{         }

C C

W W

C C

W W

W

C

ideal
=

SLL d

i(e) i(e)

Ψ < opt
Ψi(e) i(e)−1

i(e) i(e)

i(e) i(e)

= Ψ
opt

Ψ i(e) i(e)

Stationary ?

i(e)

i(e)

i(e)              i(e)+1

i(e)

3 −

opt
=

e                e + 1

e = 1

i(e) = 0

=W
i(e)

q = 1,...,Q}{ w       ;q
i(e)

yes

no

SLL
(e)
opt < SLL d

no

yes

optopt

opt

Step Sidelobe Level Check

C

W W

2.   −Termination Criterion Check

Aggregation Updating

Figure3.1:Flow
hartoftheIterativeContiguousPartitionMethod.
25



3.2. MATHEMATICAL FORMULATION
W i(e) =

{

w
i(e)
q ; q = 1, . . . , Q

} are analyti
ally 
omputed as
wi(e)q =

M
∑

m=1

δcmqdm

(

Ci(e)
)

, q = 1, ..., Q [EstimatedGain] (3.3)
dm

(

Ci(e)
) being an estimate of the identi�
ation parameter v(e)

m givenby
dm

(

Ci(e)
)

=

∑M
s=1 α

2
sδcscmv

(e)
s

∑M
s=1 α

2
sδcscm

, m = 1, ...,M ; (3.4)� Step 2.b - Cost Fun
tion Evaluation . The 
loseness to the targetpattern of the 
urrent 
andidate solution Bi(e) (or in an equivalentfashion, the 
ouple of 
oe�
ients Ci(e) andW i(e)) is quanti�ed throughthe following 
ost fun
tion
Ψ

{

Ci(e)
}

=
1

M

M
∑

m=1

α2
m

[

v(e)
m − dm

(

Ci(e)
)]2

. (3.5)The 
ost fun
tion value Ψi(e) = Ψ
{

Ci(e)
} is 
ompared to the bestvalue attained up till now, Ψ

{

C
i(e)−1
opt

}

= min
h(e)=1,...,i(e)−1

[

Ψh(e)
], and if

Ψ
{

Ci(e)
}

< Ψ
{

C
i(e)−1
opt

}, then the optimal trial solution is updated,
B
i(e)
opt = Bi(e), Ci(e)

opt = Ci(e), and W i(e)
opt = W i(e) as well as the optimal
ost fun
tion value, Ψ

i(e)
opt = Ψi(e);� Step 2.c - Termination Criterion Che
k . If a maximum numberof iterations I is rea
hed or a stationary 
ondition [i(e) = I

(e)
stat℄ for the
ost fun
tion value,

∣

∣

∣
KwindowΨ

i(e)−1
opt −

∑Iwindow

t=1 Ψ
t(e)
opt

∣

∣

∣

Ψ
i(e)
opt

≤ η , (3.6)holds true (Iwindow and η being a �xed number of iterations and a�xed numeri
al threshold, respe
tively), then the inner loop is stoppedand the following setting is assumed: C
(e)
opt = C

i(e)
opt , W (e)

opt = W
i(e)
opt(i.e., B(e)

opt = Bi(e)), and Ψ
(e)
opt = Ψ

i(e)
opt . The pro
edure goes to Step 3.Otherwise, the Step 2.d is performed;� Step 2.d - Aggregation Updating . The inner index is updated[i(e)← i(e)+1℄ and a new grouping ve
tor Ci(e) is de�ned. More in de-tail, a new 
ontiguous partition P i(e)
Q is derived from the previous one26
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P
i(e)−1
Q just modifying the sub-array memberships of the �Border Ele-ments� de�ned as follows lm ∈ Li(e)t ∧

{(

lm−1 ∈ L
i(e)
t−1

)

∨
(

lm+1 ∈ L
i(e)
t+1

)},
t ∈ [1;Q]. The 
orresponding sub-array weights W i(e) are then ana-lyti
ally 
omputed as in (3.3). The pro
edure goes to Step 2.b;

• Step 3 - Side-Lobe-Level Che
k . The des
riptive parameters of the beampattern generated by the 
oe�
ients B(e)
opt are 
omputed as well as the

SLL, SLL(e)
opt = SLL

{

B
(e)
opt

}. If SLL(e)
opt ≤ SLLd and the �degree of 
lose-ness� to the referen
e pattern is satisfa
tory (e.g., some 
onstraints on thebeamwidth/dire
tivity are satis�ed), then the whole pro
ess ends and the�nal solution is: Copt = C

(e)
opt, W opt = W

(e)
opt (i.e., Bopt = B

(e)
opt), Ψopt = Ψ

(e)
opt.Otherwise, the outer iteration index is updated (e ← e + 1) and anotherreferen
e pattern that satis�es the 
ondition SLL(e)

ref < SLL
(e−1)
ref is 
hosen.Then, the pro
edure restarts from Step 1 until e = E, E being a �xednumber of outer-loop iterations.It is worth noting that the Contiguous Partition te
hnique applied in the innerloop allows a non-negligible saving of 
omputational resour
es as pointed out inSe
tion 3.3 by means of some numeri
al experiments as well as in Se
tion 2.3.4.3.3 Numeri
al ResultsIn this se
tion, representative results from sele
ted test 
ases are reported forassessing the e�e
tiveness of the ICPM in providing a suitable trade-o� betweendesired SLL, dire
tivity, and beamwidth (Se
t. 3.3.1) as well as in dealing withsmaller (Se
t. 3.3.2) and larger arrays (Se
t. 3.3.3). Comparisons with state-of-the-art synthesis te
hniques are presented (Se
ts. 3.3.2-3.3.3), as well.In order to quantify the optimality and a

ura
y of the obtained solutions,the quantitative indexes introdu
ed in Se
tion 2.3 are 
onsidered. Moreover,
on
erning the 
omputational 
osts, the total number of inner iterations, Itot =

∑E
e=1 I

(e)
stat, the CPU-time needed for rea
hing the �nal solution, T , and the totalnumber of possible sub-array 
on�gurations, U , are analyzed.3.3.1 ICPM Performan
e AnalysisThis se
tion is aimed at analyzing the behavior of the iterative SLL 
ontrol pro
e-dure in providing a suitable trade-o� between SLL, dire
tivity, and beamwidth.Towards this end, a linear 
on�guration of N = 2 × M = 20 elements with

λ/2 inter-element spa
ing is 
hosen and the sum ex
itations Aideal have been setto those of the linear Villeneuve pattern [17℄ with n = 4 and 25 dB sideloberatio. Then, for �xed values of Q (Q = 2, 4, 7), the ICPM has been appliedby setting the sidelobe threshold to SLLd = −25 dB and requiring a main lobe27



3.3. NUMERICAL RESULTSwidth smaller than Bwref = 6.0o. The adaptive sear
hing pro
edure has been
arried out by 
onsidering a su

ession of di�erent referen
e ex
itation sets B(e)
ref ,

e = 1, ., 3, [9℄ with SLL(1)
ref = −25 dB, SLL(2)

ref = −30 dB, and SLL(3)
ref = −40 dB,respe
tively.Figure 3.2 shows the results obtained by applying the sidelobe 
ontrol pro-
edure. As 
an be observed, the beam patterns synthesized by applying atea
h e-th iteration the Contiguous Partition te
hnique show a trade-o� betweenthe angular resolution a

ura
y and noise reje
tion 
apabilities depending onthe referen
e ex
itations B(e)

ref . As a matter of fa
t, when the di�eren
e mainlobes get narrower, more power is wasted in the side lobes, and vi
e versa as
on�rmed by the values of the indexes reported in Tab. 3.1 . On the otherhand, as expe
ted, the SLL of the synthesized patterns get 
loser and 
loserto the referen
e one SLL(e)
ref when Q grows (e.g., SLL(3)

opt

⌋

Q=2
= −16.20 dB vs.

SLL
(3)
opt

⌋

Q=7
= −31.30 dB when SLL(3)

ref = −40 dB). Consequently, it turns outthat the ICPM more su

essfully applies (i.e., satisfying the SLL and band-width requirements) when Q is not very small (Q > 2). As a matter of fa
t,the iterative (e = 1, ..., E) pro
edure yields a satisfa
tory solution at e = 2 when
Q = 4 (being SLL

(2)
opt

⌋

Q=4
= −22.30 dB and Bw(2)

⌋

Q=4
= 5.1622o) and Q = 7(being SLL

(2)
opt

⌋

Q=7
= −28.80 dB and Bw(2)

⌋

Q=7
= 5.1555o), while for Q = 2,whatever the iteration (e = 1, 2, 3), the ful�llment of the SLL 
riterion is notmet.As far as the 
omputational issues are 
on
erned, it is worth noting thatthe ICPM allows a signi�
ant redu
tion of the dimension of the solution spa
e(U (ess) vs. U - Tab. 3.1). Moreover, although the number of possible aggregations
hanges (U (ess)

⌋

Q=2
= 9, U (ess)

⌋

Q=4
= 84, and U (ess)

⌋

Q=7
= 84) for di�erentvalues of Q, the 
omputational 
ost for rea
hing the termination 
riterion of theinner loop remains almost the same. In fa
t, I(e)

stat = 2 inner iterations are usuallyenough for determining B(e)
opt, ex
ept for the 
ase of Q = 7 when I(1)

stat = 3.Another interesting observation is 
on
erned with the value of the 
ost fun
-tion at the inner loop 
onvergen
e [i.e., when i(e) = I
(e)
stat℄. For a �xed refer-en
e pattern, it monotoni
ally de
reases as the number of sub-arrays Q tendsto M (e.g., Ψ

(1)
opt

⌋

Q=2
= 3.81 × 10−1, Ψ

(1)
opt

⌋

Q=4
= 9.53 × 10−2, and Ψ

(1)
opt

⌋

Q=7
=

2.29× 10−3) pointing out asymptoti
ally a more a

urate mat
hing between thesub-optimal di�eren
e mode and the referen
e one.3.3.2 Comparative AssessmentIn this se
tion, a 
omparative analysis between the proposed approa
h and state-of-the-art te
hniques, based on the optimization of a suitable 
ost fun
tion 
on-stru
ted with referen
e to a SLL with a pres
ribed value, is 
arried out. Both28
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)Figure 3.2: ICPM Performan
e Analysis (M = 10, d = λ
2
) - Normalized di�er-en
e patterns when (a) Q = 2 , (b) Q = 4, and (
) Q = 7.29



3.3.NUMERICALRESULTSQ = 2 Q = 4 Q = 7

e 1 2 3 1 2 3 1 2 3

SLL
(e)
ref

−25 dB −30 dB −40 dB −25 dB −30 dB −40 dB −25 dB −30 dB −40 dB

Aslo 0.1773 0.1865 0.1953 0.1759 0.1840 0.1981 0.1753 0.1844 0.1955

Bw [deg] 4.9239 5.2356 5.7661 4.8910 5.1622 5.7976 4.8547 5.1555 5.7217

ψ1 0.6458 0.7474 0.8463 0.6226 0.7043 0.8653 0.6197 0.6753 0.8368

Asll 0.1761 0.1722 0.1333 0.1112 0.0780 0.0375 0.0938 0.0495 0.0179

SLL
(e)
opt −14.80 −16.70 −16.20 −15.80 −22.30 −26.90 −24.35 −28.80 −31.30

I
(e)
stat 2 2 2 2 2 2 3 2 2

Ψ
(e)
opt 3.81 × 10−1 4.62 × 10−1 2.76 × 10−1 9.53 × 10−2 1.10 × 10−1 3.89 × 10−2 2.29 × 10−3 9.93 × 10−4 5.45 × 10−3

U (ess) 9 84 84

U 1024 1048580 2.8247 × 108

Table3.1:
I
C
P
MPerforman
eAnalysis(M

=
10,

d
=

λ2 )-Di�eren
epattern
quantitativeindexesand
omputationalindi
atorsfordi�erentvaluesof

Q.
30
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Figure 3.3: Comparative Assessment (M = 10, d = λ
2
, Q = 3) - Normalizeddi�eren
e patterns synthesized with the ICPM − GS and the SA algorithm[10℄.�xed-partition (Test Case 1) and global-synthesis (Test Case 2) problems havebeen 
onsidered.Test Case 1. Fixed-Partition SynthesisThe �rst test 
ase deals with the synthesis of a �xed sub-array 
on�guration.With referen
e to the same ben
hmark in [10℄ and addressed by Ares et al. witha SA-based te
hnique [10℄, a linear array of N = 2 ×M = 20 equally-spa
ed(d = λ/2) elements and Q = 3 is 
onsidered. The optimal sum ex
itationshave been �xed to that of a Dolph-Chebyshev pattern with SLL = −35 dBand a Zolotarev di�eren
e pattern with SLLref = −35 dB has been 
hosen asreferen
e.In Figure 3.3 , the di�eren
e patterns synthesized with the GS algorithmare 
ompared with that shown in [10℄. Moreover, the 
orresponding sub-arraygrouping and weights are given in Tab. 3.2 . The GS te
hnique outperforms the

SA-based solution in terms of the maximum value the sidelobe level (SLL(SA)
opt =

−19.74 dB [10℄ vs. SLL
(GS)
opt = −25.25 dB) and allows a three fold redu
tionof the side lobe power (i.e., A

(SA)
sll

A
(GS)
sll

⌋

≃ 3). Moreover, by imposing the 
ompro-31



3.3. NUMERICAL RESULTS
M = 10 C

(GS)
opt 1 1 2 2 2 3 3 3 3 0

Q = 3 W
(GS)
opt 0.2804 0.5839 1.3971

W
(GS∗)
opt 0.4618 2.1607 2.9448Table 3.2: Comparative Assessment (M = 10, d = λ

2
, Q = 3, SLLref = −35 dB)- Sub-array 
on�guration and weights synthesized with the ICPM −GS.mise patterns having a maximum Bw 
lose to that of the SA-based te
hnique(Bw(SA) = 5.5528o), the solution of the GS algorithm is shown in Fig. 3.3 (i.e.,

GS∗ - SLLref = −33.75 dB), while the 
orresponding sub-array 
on�gurationsand weights are summarized in Tab. 3.2. In su
h a situation, the GS is stillable to �nd a better 
ompromise pattern with a SLL below that in [10℄ of about
0.5 dB (SLL(GS∗)

opt = −20.21 dB - Bw(GS∗) = 5.4947o).Test Case 2. Simultaneous Global-SynthesisThe se
ond test 
ase is devoted to the 
omparative assessment when dealingwith the simultaneous optimization of the sub-array membership and sub-arrayweights. Towards this purpose, the proposed method is 
ompared with the GA-based method [12℄ and the DE algorithm [11℄.The �rst 
omparison is 
on
erned with the SLLminimization of the di�eren
epattern in a linear array of N = 2 × M = 20 elements with d = λ/2 inter-element spa
ing. The optimal sum ex
itations have been �xed to generate alinear Villeneuve pattern [17℄ with n = 4 and sidelobe ratio of 25 dB. Moreover,the number of sub-arrays has been set to Q = 3 for 
onsidering the same exampledealt with in [12℄. Con
erning the ICPM , the referen
e di�eren
e pattern hasbeen 
hosen to be equal to a Zolotarev pattern [9℄ with SLLref = −35 dB.The results of the synthesis pro
ess are shown in Figure 3.4 where the refer-en
e di�eren
e pattern and those obtained with the GA [12℄ and the 
onstrained
EMM [8℄ are displayed, as well. Con
erning the 
omparison with the GA-based method, the GS outperforms the result in [12℄ (SLL(GA)

opt = −26.18 dB)with a maximum side-lobe level equal to SLL
(GS)
opt = −28.60 dB [Tab. 3.3℄ ,and similar bandwidths (B(GA)

w = 5.7934o and B
(GS)
w = 5.8004o). It is inter-esting to observe that the sub-array 
on�guration determined by the GS al-gorithm (i.e., C = {1, 2, 0, 3, 3, 3, 3, 0, 2, 1}) is the same obtained in [12℄, butthe sub-array weights are di�erent (W (GA) = {0.3260, 0.6510, 1.2990}, W (GS) =

{0.2456, 0.6018, 1.2580}). Su
h an event is due to the fa
t that in [12℄ thesub-array gains are part of the optimization pro
ess, while in the ICPM-basedmethod they are analyti
ally 
omputed on
e the sub-array 
on�guration has beenfound. This allows a redu
tion of the number of unknowns (i.e., only the aggre-gations instead of weights and aggregations) and, indire
tly, of the possibility32
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Figure 3.4: Comparative Assessment (M = 10, d = λ
2
, Q = 3) - Referen
epattern (SLLref = −35 dB) and normalized di�eren
e patterns synthesized withthe ICPM −GS, the GA-based method [12℄, and the 
onstrained EMM [8℄.

Aslo Bw [deg] Asll SLL

Reference Difference [9℄ 0.1933 5.7668 0.0273 −35.00
GS 0.2046 5.8004 0.0382 −28.60

Reference Difference∗ [9℄ 0.1645 4.4747 0.1526 −18.87
GS∗ 0.1690 4.5961 0.1453 −17.25

GA Optimization [12℄ 0.2038 5.7934 0.0440 −26.18
Constrained EMM [8℄ 0.1715 4.6090 0.2223 −16.50Table 3.3: Comparative Assessment (M = 10, d = λ

2
, Q = 3) - Quantitativeindexes of the referen
e pattern (SLLref = −35 dB) and of the di�eren
e pat-terns synthesized with the ICPM − GS, the GA-based method [12℄, and the
onstrained EMM [8℄. 33
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Figure 3.5: Comparative Assessment (M = 10, d = λ
2
, Q = 3) - Normalizeddi�eren
e patterns synthesized with the ICPM − GS, the GA-based method[12℄, and the 
onstrained EMM [8℄.the solution being trapped in lo
al minima of the 
ost fun
tion.As far as the 
omputational 
osts are 
on
erned, thanks to the redu
tionof the number of possible aggregations (U (GA) = 310 vs. U (ess) = 36) and thesear
hing limited to the sub-array membership, the number of iterations neededfor rea
hing the �nal solution turns out to be signi�
antly lowered (I(GS)

stat = 3 vs.
I

(GA)
stat = 500 [12℄) with a huge 
omputational saving (T (ICPM) < 0.085 [sec]).In order to obtain a di�erent trade-o� between sidelobe level and beamwidth,exploiting the �exibility of the proposed method, a di�erent referen
e pattern
ould be 
hosen (as highlighted through the analysis in Se
t. 3.3.1). As anexample and for a further 
omparison now with another �optimal mat
hing�te
hnique instead of the GA, let us relax the requirement on the SLL and requestthe BW of the 
ompromise patterns being as 
lose as possible to that of the
onstrained EMM [8℄. Towards this aim, a Zolotarev pattern [9℄ with SLLref =
−19 dB has been used as referen
e di�eren
e pattern. The synthesized beampatterns are shown in Figure 3.5 . As far as the main lobe is 
on
erned, thebeamwidth of the GS∗ pattern is narrower (Bw(GS∗) = 4.5961o) than that of theun
onstrained GS and very 
lose to that by M
Namara [8℄ (Bw(Const−EMM) =
4.6090o). On the other hand, as expe
ted, the performan
es in terms of SLLget worse (−17.25 dB vs. −28.60 dB), but they are still better than that of the34
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M = 10 C

(GS)
opt 1 2 3 4 4 4 4 4 3 1

C
(GS∗)
opt 1 2 3 3 4 4 4 4 3 1

Q = 4 W
(GS)
opt 0.2201 0.4601 0.6932 0.9568

W
(GS∗)
opt 0.3593 0.7882 1.5351 2.0122

M = 10 C
(GS)
opt 1 2 3 4 5 6 4 3 2 1

C
(GS∗)
opt 1 2 3 5 6 6 6 4 3 1

Q = 6 W
(GS)
opt 0.1714 0.5075 0.7332 0.9083 0.9901 0.9926

W
(GS∗)
opt 0.1876 0.4765 0.6894 0.8189 0.8914 0.9857Table 3.4: Comparative Assessment (M = 10, d = λ

2
) - Sub-array 
on�gurationand weights synthesized with the ICPM −GS, when Q = 4 and Q = 6.

SLL-
onstrained EMM (Tab. 3.3).The se
ond example addresses the same problem 
onsidered in [11℄[14℄ 
on-
erned with a 20-elements linear array with Q = 4 and Q = 6, where the sumpattern is of Dolph-Chebyshev type and 
hara
terized by SLL = −20 dB. Byassuming referen
e Zolotarev patterns with SLLref = −30 dB (Q = 4) and
SLLref = −35 dB (Q = 6), the optimized di�eren
e patterns are shown in Fig.3.6 , while the �nal sub-array 
on�gurations and weights are summarized in Tab.3.4 .The 
ontiguous partition method is more e�e
tive than both the DE-basedapproa
h [11℄ and the two-step pro
edure proposed in [14℄ (indi
ated in �guresand tables as Hybrid−SA approa
h) in minimizing the level of the sidelobes asgraphi
ally shown in Fig. 3.6 and quantitatively 
on�rmed by the behavior of thebeam pattern indexes in Tab. 3.5 . Similar 
on
lusions hold true in dealing withthe required 
omputational burden (Tab. 3.5) and CPU-time (T (GS) < 0.2 [sec]).For 
ompleteness, the Bw-
onstrained problem has been also addressed. A
-
ordingly, the SLL minimization has been performed by requiring a beamwidthvalue 
lose to that in [11℄ and [14℄ (Tab. 3.5). The patterns 
omputed withthe sub-array 
on�gurations and weights given in Tab. 3.4 and synthesized bymeans of the GS∗ algorithm (Q = 4 - SLLZolotarevref = −27.50 dB, Q = 6 -
SLLZolotarevref = −33.00 dB) are shown in Fig. 3.6. Moreover, the 
orrespondingpattern indexes are summarized in Tab. 3.5.3.3.3 Extension to Large ArraysThe numeri
al study ends with analysis of the synthesis of large array patterns(M ≥ 50) where usually lo
al minima problems, unmanageable (or very di�
ult)in
reasing 
omputational 
osts, and ill-
onditioning issues unavoidably arise. Insu
h a framework, the �rst experiment is 
on
erned with a N = 2 ×M = 100elements array (d = λ/2) with sum pattern �xed to the Taylor distribution [5℄35
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(b)Figure 3.6: Comparative Assessment (M = 10, d = λ
2
) - Normalized di�eren
epatterns synthesized with the ICPM−GS, the Hybrid−SA approa
h [14℄, andthe DE algorithm [11℄ when (a) Q = 4 and (b) Q = 6.36
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Aslo Bw [deg] Asll SLL U Istat

Q = 4

Reference Difference [9℄ 0.1786 5.1496 0.0510 −30.00 − −

GS 0.1809 5.2247 0.0564 −25.40 84 2

Reference Difference∗ [9℄ 0.1803 5.0000 0.0694 −27.50 − −

GS∗ 0.1863 5.1449 0.0748 −24.30 84 2

Hybrid− SA [14℄ 0.1844 5.1442 0.0919 −24.10 O
(

103
)

25

DE Algorithm [11℄ 0.1878 5.1834 0.1107 −21.30 O
(

103
)

9

Q = 6

Reference Difference [9℄ 0.1929 5.4188 0.0281 −35.00 − −

GS 0.1948 5.4928 0.0291 −31.56 126 2

Reference Difference∗ [9℄ 0.1897 5.3138 0.0355 −33.00 − −

GS∗ 0.1893 5.2694 0.0356 −29.52 126 2

Hybrid− SA [14℄ 0.1884 5.2615 0.0439 −29.50 O
(

105
)

25

DE Algorithm [11℄ 0.1942 5.3872 0.0727 −21.66 O
(

105
)

7Table 3.5: Comparative Assessment (M = 10, d = λ
2
) - Quantitative indexesand 
omputational indi
ators for the solutions obtained with the ICPM −GS,the Hybrid − SA [Istat = 25 indi
ates the number of SA iterations (i.e., �rststep), no indi
ations on the 
onvex programming pro
edure (i.e., se
ond step)are available℄ approa
h [14℄, and the DE algorithm [11℄ when Q = 4 and Q = 6.

37
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Figure 3.7: Extension to Large Arrays (M = 50, d = λ
2
, Q = 4) - Normalizeddi�eren
e patterns synthesized with the ICPM − GS (SLLref = −40 dB), the

SA algorithm [10℄, the Hybrid− SA approa
h [14℄, the GA-based method [12℄,and the DE algorithm [11℄.with n = 12 and SLL = −35 dB. For 
omparison purposes, the 
ase of Q = 4sub-arrays [10℄[12℄[11℄[14℄ is dealt with. Dealing with su
h a s
enario, the ICPMhas been applied by 
onsidering a referen
e Zolotarev pattern [9℄ with sidelobelevel equal to SLLref = −40 dB.The synthesized di�eren
e pattern is shown in Fig. 3.7 , while the sub-arraygrouping and weights are given in Tab. 3.6 . By observing both Fig. 3.7 andTab. 3.7 , it turns out that the GS approa
h outperforms other single-stepte
hniques and, unlike the 
ase M = 10, its performan
es are quite similar (interms of sidelobe level) to that of the two-step method even though it is mu
hmore 
omputationally e�e
tive. Moreover, although it a
hieves the minimumvalue of SLL, the 
orresponding main lobe beamwidth does not signi�
antly
M = 50 C

(GS)
opt 11112223333304444444444444444444303333232222211111

Q = 4 W
(GS)
opt 0.1624 0.5162 0.8579 1.1736Table 3.6: Extension to Large Arrays (M = 50, d = λ

2
, Q = 4) - Sub-array
on�guration and weights synthesized with the ICPM −GS.38



CHAPTER 3. THE ITERATIVE MATCHING APPROACH
Synthesis Approach SLLopt Asll Bw [deg] Aslo U Istat T [sec]

SA Optimization [10℄ −25.56 0.0432 1.0745 0.0329 O
`

1030
´

− −

GA Optimization [12℄ −31.00 0.0504 1.3585 0.0529 O
`

1030
´

500 ∼ 15

DE Algorithm [11℄ −30.00 0.0361 1.3256 0.0361 O
`

1030
´

804 ∼ 20

Hybrid − SA Method [14℄ −32.00 0.0305 1.2776 0.0401 O
`

1030
´

25 −

GS −32.10 0.0363 1.2952 0.0444 18424 5 1.0785Table 3.7: Extension to Large Arrays (M = 50, d = λ
2
, Q = 4) - Quantita-tive indexes and 
omputational indi
ators for the solutions obtained with the

ICPM − GS (SLLref = −40 dB), the Hybrid − SA [Istat = 25 indi
ates thenumber of SA iterations (i.e., �rst step), no indi
ations on the 
onvex program-ming pro
edure (i.e., se
ond step) are available℄, the SA algorithm [10℄, the
GA-based method [12℄, and the DE algorithm [11℄.

M = 50 C
(GS)
opt 11111222202000333333333333303300002222222211111111

Q = 3 W
(GS)
opt 0.2437 0.7079 1.0976Table 3.8: Extension to Large Arrays (M = 50, d = λ

2
, Q = 3) - Sub-array
on�guration and weights synthesized with the ICPM −GS.di�er from that of the other methods (Tab. 3.7).In the se
ond experiment, the same array geometry of the previous 
ase isanalyzed, but with Q = 3 sub-arrays analogous to [12℄. The sub-array 
on�g-uration and weights obtained with the GS-based strategy are reported in Tab.3.8 . Also in this 
ase, the GS di�eren
e pattern presents a SLL lower thanthat shown in [12℄ (SLL(GS)

opt = −30.25 vs. SLL(GA)
opt = −29.50) and 
on�rms itse�e
tiveness in terms of 
omputational resour
e sin
e I

(GA)
stat

I
(GS)
stat

= 250.3.4 Dis
ussionsThe proposed method 
onsists of an adaptive sear
hing pro
edure whose resultis a 
ompromise solution as 
lose as possible to an optimal one in the Dolph-Chebyshev sense, whi
h allows a satisfa
tory trade-o� between angular resolutionand redu
tion of noise and interferen
es e�e
ts. In parti
ular, the narrowestbeamwidth and the largest slope around the boresight dire
tion are looked forby applying the optimal ex
itation mat
hing method based on the 
ontiguouspartition te
hnique, while the ful�llment of the requirements on the SLL (orother beam pattern features) is ensured by an outer iterative loop.The obtained results have proved the e�e
tiveness of the proposed approa
hin providing di�eren
e patterns with a satisfa
tory trade-o� among beam pat-tern features dealing with large arrays, as well. Although the iterative 
ontiguous39



3.4. DISCUSSIONSpartition method is aimed at synthesizing the �best 
ompromise� mat
hing anoptimal (in the Dolph-Chebyshev sense) referen
e pattern, the obtained solutionspositively 
ompare with state-of-the-art approa
hes in the related literature in anumber of measures where only the SLL minimization is required, thus showinghow the proposed approa
h, whi
h is numeri
ally e�
ient, works su�
iently well.As a matter of fa
t, the proposed te
hnique allows one to over
ome some draw-ba
ks of both the EMM approa
h proposed by M
Namara (i.e., ill-
onditioningand the exhaustive evaluation of the whole set of aggregations) and the synthe-sis te
hniques based on sto
hasti
 optimization algorithms (i.e., single-obje
tiveoptimization and low 
onvergen
e rate when dealing with very large arrays).On the other hand, de�nite 
on
lusions about the relative performan
e of the
ICPM 
annot be drawn from the presented 
omparisons, sin
e the various ex-amples deal with di�erent synthesis problems and/or optimization 
riteria. Thismeans that, depending on the sele
ted feature, the ICPM performs di�erentlyeven though keeping a great 
omputational e�
ien
y. Moreover, sin
e the pro-posed pro
edure is an adaptive sear
hing te
hnique, it does not guarantee toalways obtain better solutions than those from global optimization te
hniques.As a matter of fa
t, these latter should outperform any other approa
h when op-timizing a given fun
tional, unless the optimum is not a
tually a
hieved, whi
his likely to happen when exploiting global optimization algorithms in large sizeproblems.

40



Chapter 4Monopulse Planar Array SynthesisIn this 
hapter, the extension of the Contiguous Partition Method (CPM) fromlinear to planar arrays is des
ribed and assessed. By exploiting some propertiesof the solution-tree the solution spa
e is represented in terms of a more 
ompa
tgraph. The generation of 
ompromise sum-di�eren
e patterns is thus obtainedthrough an optimal ex
itation mat
hing pro
edure based on a 
ombinatorialmethod. A set of representative results are reported for the assessment as wellas for 
omparison purposes.

41



4.1. INTRODUCTION4.1 Introdu
tionExa
t methods of synthesizing independently optimum sum and di�eren
e arraysexist for both linear [19℄[17℄[9℄[22℄ and planar ar
hite
tures [6℄[7℄. Whether the
omplexity and 
ost of the arising feed networks are a�ordable, then the abovemethods 
an be dire
tly used. However, sin
e the implementation of two (orthree) totally independent signal feeds is generally expensive and 
omplex, anumber of alternative solutions have been proposed to generate the two or threerequired patterns via shared feed networks at the 
ost of a redu
tion in thequality of one or more patterns [2℄[1℄.In order to avoid the need of a 
ompletely di�erent feeding (re
eiving) net-work for ea
h operation mode, several resear
hes [8℄[10℄[12℄[11℄[14℄ proposed topartition the original array in sub-arrays. In su
h a s
heme, the feeding networkis usually devoted to the optimization of the sum 
hannel, so that the ex
itationsof the arrays elements for su
h a mode 
orrespond to the optimal one (e.g., Tay-lor [6℄). Then, the di�eren
e mode is obtained thanks to a suitable 
hoi
e of theweight of ea
h sub-array. Consequently, a large part of the whole ar
hite
tureis 
ommon to both modes with a non negligible saving of 
osts. On the otherhand, a 
ompromise di�eren
e pattern is obtained. The degree of optimality ofthe 
ompromise solution is related to the number of sub-arrays, whi
h estab-lishes a trade-o� between 
osts and performan
es. As a matter of fa
t, a largenumber of sub-arrays allows better performan
es, but also implies higher 
osts.Otherwise, few sub-arrays may imply una

eptable di�eren
e patterns. For a�xed number of sub-arrays, on
e the ex
itations of the sum pattern have been�xed, the problem is 
on
erned with the grouping of the array elements into sub-arrays and the 
omputation of their weights to determine the best 
ompromisedi�eren
e pattern. As far as the number of unknowns is 
on
erned, it growsproportionally to the dimension of the array and, usually, it turns out to be verylarge when real appli
ations of planar arrays are 
onsidered. Consequently, astandard use of global optimization te
hniques is not 
onvenient sin
e a subop-timal solution is generally obtained in the limited time one has at his disposal.As a matter of fa
t, the arising 
omputational burden raises very rapidly withthe dimension of the solution spa
e. Although this 
ir
umstan
e is quite under-estimated in antenna design sin
e synthesis problems may have many di�erentsatisfa
tory suboptimal solutions, nevertheless they 
an be signi�
antly worsethan the global ones.In order to over
ome su
h drawba
ks, in Ares et al. [10℄ the antenna aperturehas been divided into four quadrants and the monopulse fun
tion has been ob-tained by 
ombining the outputs in a monopulse 
omparator. The sum patternand the di�eren
e one have been generated with all quadrants added in phaseand with pairs of quadrants added in phase reversal, respe
tively. Moreover,in order to redu
e the number of unknowns, ea
h antenna quadrant has beena-priori divided into sub-arrays (i.e., the se
tors) and only the sub-array weights42



CHAPTER 4. MONOPULSE PLANAR ARRAY SYNTHESIShave been 
al
ulated by minimizing a suitable 
ost fun
tion again a

ording toa Simulated Annealing (SA) algorithm. In an alternative fashion, D'Urso et al.[13℄ formulated the problem in su
h a way that global optimization tools haveto deal with a redu
ed number of unknowns. By exploiting the 
onvexity of the
ost fun
tional to be minimized with respe
t to a part of the unknowns (i.e., thesub-array gains), an hybrid two-step optimization strategy has been applied in-stead of simultaneously optimizing (in the same way) both the involved variables.As a matter of fa
t, on
e the 
lustering into sub-arrays has been determined byusing a SA te
hnique, the problem at hand gives rise to a Convex Programming(CP ) problem with a single minimum that 
an be retrieved with a lo
al opti-mization te
hnique. Unfortunately, although unlike [10℄ no a-priori informationsare ne
essary, the evaluation of the auxiliary CP obje
tive fun
tion is usuallymore 
umbersome than the original 
ost fun
tion. Su
h an event 
ould resultin an ex
essively large 
omputational burden that would prevent the retrieval ofthe global optimum in the available amount of time or to e�
iently deal withlarge planar arrays.In the following, the method proposed in Chapter 3 is 
onsidered for thesynthesis of planar monopulse array antenna. Towards this end, a suitable im-plementation is mandatory to keep also in the planar 
ase the best features ofthe linear approa
h both in term of reliability and 
omputational e�
ien
y. Asa matter of fa
t, unlike the linear 
ase, the planar stru
ture requires two di�er-en
e patterns (i.e., the di�eren
e E −mode and the H −mode). Moreover, thedimensionality of the problem at hand signi�
antly grows with respe
t to thelinear situation, thus enhan
ing the 
omputational problems in applying globaloptimization methodologies and thus preventing their use also in hybrid modal-ities.Therefore this paper is aimed at des
ribing and assessing the planar extensionof the CPM (in the following PCPM) a

ording to the following outline. Themathemati
al formulation is presented in Se
t. 4.2 pointing out the main di�er-en
es 
ompared to the linear array 
ase. Se
tion 4.3 is devoted to the numeri
alassessment. Both a 
onsisten
y 
he
k, 
arried out through an asymptoti
 study,and a 
omparative analysis (unfortunately, just only a test 
ase is available inthe re
ent literature) are 
onsidered.4.2 Mathemati
al FormulationLet us 
onsider a planar array lying on the xy−plane whose array fa
tor is givenby
AF (θ, φ) =

R
∑

r=−R

S(r)
∑

s=−S(r)

ξrse
j(kxxr+kyys), r, s 6= 0 (4.1)43



4.2. MATHEMATICAL FORMULATION
φ

y

x

Σ ∆
Sum Mode Difference ModeFigure 4.1: Sket
h of the antenna feed network.where xr =

[

r − sgn(r)
2

]

× dx and ys =
[

s− sgn(s)
2

]

× dy, dx and dy beingthe inter-element distan
e along the x and y dire
tion, respe
tively. More-over, kx = 2π
λ
sinθcosφ and ky = 2π

λ
sinθsinφ. Con
erning independently op-timum sum and di�eren
e patterns, they are generated by using three inde-pendent feeding networks and setting the ex
itation ve
tor ξ = {ξrs; r =

±1, ...,±R; s = ±1, ...,±S(r)} to ζ =
{

ζrs = ζ(−r)s = ζr(−s) = ζ(−r)(−s); r =

1, ..., R; s = 1, ..., S(r)} and to ς△ =
{

ς△rs = ς△(−r)s = −ς△r(−s) = −ς△(−r)(−s); r =

1, ..., R; s = 1, ..., S(r)}, △ = E, H , respe
tively. Otherwise, when sub-arrayingstrategies are 
onsidered [10℄ (Fig. 4.1), the sum beam is generated in an optimalfashion by �xing ξ = ζ, while the 
ompromise △−modes are obtained througha grouping operation des
ribed by the aggregation ve
tors c△
c△ =

{

c△rs; r = 1, ..., R; s = 1, ..., S(r)
} (4.2)where c△rs ∈ [1, Q] is the sub-array index of the element lo
ated at the r-th rowand s-th 
olumn within the array ar
hite
ture. A

ordingly, the 
ompromise44



CHAPTER 4. MONOPULSE PLANAR ARRAY SYNTHESISdi�eren
e ex
itations are given by
γ△ =

{

γ△rs = ζrsO
(

c△rs, q
)

g△q ; r = 1, ..., R; s = 1, ..., S(r); q = 1, ..., Q
} (4.3)where g△q is the gain 
oe�
ient of the q-th sub-array and O (

c△rs, q
)

= 1 if c△rs = qand O
(

c△rs, q
)

= 0, otherwise. Summarizing, the problem of de�ning the best
ompromise between sum and di�eren
e patterns is re
ast as the de�nition ofthe 
on�guration c△opt and the 
orresponding set of weights g△
opt

so that γ△
opt

is as
lose as mu
h as possible to ς△.Towards this end, the CPM is applied. Similarly to the linear array 
ase,the following 
ost fun
tion is de�ned
Ψ

(

c△
)

=
1

N

R
∑

r=1

S(r)
∑

s=1

ζ2
rs

∣

∣

∣

∣

∣

[

α△
rs −

Q
∑

q=1

wrsq
(

c△
)

]
∣

∣

∣

∣

∣

2 (4.4)where N is the number of elements lying on the aperture [i.e., N =
∑R

r=1 S(r)℄.Moreover, α△
rs = ς△rs

ζrs
and w△

rsq = wrsq
(

c△
) is given by

w△
rsq =

∑R
r=1

∑S(r)
s=1 ζ

2
rsO

(

c△rs, q
)

α△
rs

∑R
r=1

∑S(r)
s=1 ζ

2
rsO

(

c△rs, q
) , r = 1, ..., R; s = 1, ..., S(r); q = 1, ..., Q.(4.5)As regards to the sub-array weights, they are 
omputed on
e the aggregationve
tor c△ has been identi�ed by simply using the following relationship

g△q = O
(

c△rs, q
)

w△
rsq r = 1, ..., R; s = 1, ..., S(r); q = 1, ..., Q. (4.6)In order to determine the unknown 
lustering that minimizes (4.4), the indi-
ation given in [18℄ has been exploited. More in detail, it has been proved thata 
ontiguous partition of the array elements is the optimal 
ompromise solution.A

ordingly, the set of 
ontiguous partitions (i.e., the set of admissible solutions)is de�ned by iteratively partitioning in Q sub-sets the list V = {vn; n = 1, ..., N}(n being the list index) of the array elements ordered a

ording to the 
orre-sponding α△

rs values su
h that vn ≤ vn+1 (n = 1, ..., N − 1), v1 = minrs
{

α△
rs

},
vN = maxrs

{

α△
rs

}.Although the dimension of the PCPM solution spa
e, ℑPCPM , is signi�
antlyredu
ed 
ompared to that of full global optimizers [U (PCPM) =

(

N − 1
Q− 1

) vs.
U (GA) = Q

(

QN−1 + 1
)℄ or hybrid global-lo
al optimization te
hniques [U (Hybrid) =

QN ℄, non-negligible 
omputational problems still remain sin
e the large amountof 
omputational resour
es needed to sample ℑPCPM espe
ially when N enlargesas it happens in realisti
 planar ar
hite
ture. Therefore, it is mandatory to de-vise an e�e
tive sampling pro
edure able to guarantee a good trade-o� between45
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Figure 4.2: Pi
torial representation of the redundant parts within the solutiontree.
omputational 
osts and optimality of the synthesized 
ompromise solution. To-wards this end, the �solution tree� of the linear 
ase has been 
ollapsed intoa more 
ompa
t stru
ture (Fig. 4.2) , namely the dire
t a
y
li
 graph (DAG)[16℄, to des
ribe the whole solution spa
e. Su
h a representation enables theex
itation mat
hing synthesis of planar arrays with large numbers of elementsthanks to the signi�
ant redu
tion of both the 
omputational time and the CPUmemory requirements. Moreover, the DAG allows the implementation and ane�e
tive use of a fast graph-sear
hing algorithm to look for the optimal planar
ompromise.More in detail, the DAG is 
omposed by Q rows and N 
olumns. The q-th row is related to the q-th sub-array (q = 1, ..., Q), whereas the n-th 
olumn(n = 1, ..., N) maps the vn-th element of the ordered list V . An admissible
ompromise solution is 
oded into a path, denoted by ψ, in the DAG. Ea
hpath ψ is des
ribed by a set of N vertexes, {tn; n = 1, ..., N} and through N − 1relations/links {en; n = 1, ..., N − 1} among the vertexes belonging to the path.46
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Figure 4.3: DAG Representation.With referen
e to Fig. 4.3 , ea
h vertex tn is indi
ated by a 
ir
le and ea
h link
en with an arrow from a vertex tn to another one tn+1 on the same row [i.e.,
arg (tn) = arg (tn+1) = rn, being rn the row of the n-th vertex, rn ∈ [1, Q]) ordown to an adja
ent row [i.e., arg (tn−1) = rn and arg (tn) = rn + 1℄.In order to identify the optimal 
ompromise (or, in an equivalent fashion,the optimal path ψopt in the DAG), let us reformulate the 
on
ept of �bor-der elements� of the linear 
ase to the planar representation in terms of DAG.Moreover, let us 
onsider that analogously to the linear 
ase, only the �borderelements� of ψ (i.e., those vertexes tn, n = 2, ..., N − 1 having at most oneof the adja
ent vertexes, tn−1 or tn+1, that belongs to a di�erent row of the
DAG) are 
andidate to 
hange their sub-array membership without generatingnon-admissible aggregations. A

ordingly, in order to determine the optimal sub-array 
on�guration c△opt that minimizes Ψ

(

c△
) (4.4), a sequen
e of trial paths

ψ(k) =
{(

t
(k)
n , e

(k)
m

)

; n = 1, ..., N ; m = 1, ..., N − 1
} (k being the iteration/trialindex) is generated. Starting from an initial path ψ(k) (k = 0) de�ned by setting

arg
(

t
(0)
1

)

= 1 and arg
(

t
(0)
N

)

= Q and randomly 
hoosing the other vertexessu
h as arg (

t
(0)
n−1

)

≤ arg
(

t
(0)
n

)

≤ arg
(

t
(0)
n+1

), the path ψ(k) is iteratively up-dated (ψ(k) ← ψ(k+1), c△(k) ← c△(k+1)) just modifying the memberships of theborder elements of the DAG. More in detail, the �border � vertexes are updatedas follows
arg

(

t(k+1)
n

)

=

{

r
(k)
n + 1 if r

(k)
n−1 = r

(k)
n

r
(k)
n − 1 if r

(k)
n+1 = r

(k)
n

, (4.7)while the links e(k)n−1 , link
[

arg
(

t
(k)
n−1

)

, arg
(

t
(k)
n

)] and e(k)n , link
[

arg
(

t
(k)
n

)

, arg
(

t
(k)
n+1

)]47
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onne
ted to the �border� vertex t(k)n are modi�ed through the relationships
e
(k+1)
n−1 =







link
[

r
(k)
n , r

(k)
n + 1

]

if r
(k)
n−1 = r

(k)
n

link
[

r
(k)
n − 1, r

(k)
n − 1

]

if r
(k)
n+1 = r

(k)
n

(4.8)and
e(k+1)
n =







link
[

r
(k)
n + 1, r

(k)
n + 1

]

if r
(k)
n−1 = r

(k)
n

link
[

r
(k)
n − 1, r

(k)
n

]

if r
(k)
n+1 = r

(k)
n

. (4.9)The iterative pro
ess stops when a maximum number of iterations Kmax(k > Kmax) or the following stationary 
ondition holds true:
∣

∣

∣
KwΨ(k−1) −

∑Kw

h=1 Ψ(h)
∣

∣

∣

Ψ(k)
≤ η (4.10)where Ψ(k) = Ψ

(

c△(k)
), Kw and η being a �xed number of iterations and a�xed numeri
al threshold, respe
tively. At the end of the iterative sampling ofthe DAG, the path ψopt is found and the 
orresponding aggregation ve
tor, c△opt,is assumed as the optimal 
ompromise solution.4.3 Numeri
al ResultsThis se
tion is aimed at assessing the e�e
tiveness of the PCPM through a setof representative results from several numeri
al simulations. The remaining ofthis se
tion is organized as follows. Firstly, some experiments are presented inSub-Se
t. 4.3.1 to analyze the behavior of the proposed approa
h in mat
hing areferen
e pattern for di�erent numbers of sub-arrays. Su

essively, a 
omparativestudy is 
arried out (Sub-Se
t. 4.3.2) by 
onsidering the available test 
ase
on
erned with planar geometries and previously fa
ed in [10℄.4.3.1 Pattern Mat
hingIn the �rst test 
ase, the planar array 
onsists of Ntot = 4 × N = 316 elementsequally-spa
ed (dx = dy = λ

2
) elements arranged on a 
ir
ular aperture r = 5λin radius. Be
ause of the 
ir
ular symmetry, the synthesis pro
edure is only
on
erned with N = 79 elements. Moreover, the sum pattern ex
itations ζ havebeen �xed to those of a Taylor pattern [6℄ with SLL = −35 dB and n = 6. On theother hand, the optimal di�eren
e H −mode ex
itations ςH have been 
hosen toa�ord a Bayliss pattern [7℄ with SLL = −40 dB and n = 5. The 
orrespondingthree-dimensional (3D) representations of the relative power distributions arereported in Fig. 4.4 where u = sin θ cos φ and v = sin θ sinφ [23℄, being θ ∈48
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(a) (b)Figure 4.4: Pattern Mat
hing (N = 316, d = λ
2
, r = 5λ) - Relative powerdistribution of the referen
e (a) Taylor sum pattern (SLL = −35 dB, n = 6) [6℄and of the (b) H −mode Bayliss di�eren
e pattern (SLL = −40 dB, n = 5) [7℄,respe
tively.

[0, 90o] and φ ∈ [0, 360o], respe
tively. As regards to the 
ompromise synthesis,the optimization has been limited to the di�eren
e H −mode by exploiting thefollowing relationship γE =
{

γErs = −γHrs; r = 1, ..., R; s = 1, ..., S(r)
} that holdsfor the E −mode ex
itations due to the symmetry properties.In the �rst experiment, the number of sub-arrays has been varied from Q = 3up to Q = 10. Figure 4.5 shows the 3D representations of the synthesized

H −mode patterns. As it 
an be observed, the shapes of both the main lobesand the sidelobes of the 
ompromise distributions get 
loser to the referen
e one[Fig. 4.4(b)℄ when the ratio N
Q
redu
es. In order to better show su
h a trend andto e�
iently represent the behavior of the side-lobes, let us analyze the sideloberatio (SLR) de�ned as

SLR (φ) =
SLL (φ)

maxθ [AF (θ, φ)]
, 0 ≤ θ <

π

2
(4.11)where AF (θ, φ) indi
ates the array fa
tor. By following the same guidelines in[10℄, the SLR has been 
ontrolled in the range φ ∈ [0o, 80o] sin
e the H −modepattern vanishes at φ = 90o. As expe
ted, the behavior of the SLR approximatesthat of the referen
e pattern when Q in
reases (Fig. 4.6) . Su
h an indi
ation isquantitatively 
on�rmed by the statisti
s of the SLR values given in Tab. 4.1 aswell as, pi
torially, by the plots in Fig. 4.7 where the pattern values along the

φ = 0o 
ut are shown.4.3.2 Comparative AssessmentTo the best of the author's knowledge, the topi
 of planar sub-arraying has beenre
ently addressed only by Ares et al. in [10℄. More in detail, a Simulated49



4.3. NUMERICAL RESULTS

(a) (b)

(c) (d)Figure 4.5: Pattern Mat
hing (N = 316, d = λ
2
, r = 5λ) - Relative powerdistribution of the synthesized H −mode di�eren
e pattern when (a) Q = 3, (b)

Q = 4, (
) Q = 6, and (d) Q = 10.
[dB] min {SLR} max {SLR} av {SLR} var {SLR}

Reference [7℄ −40.44 −27.29 −36.68 6.05
Q = 3 −33.82 −16.48 −26.74 14.26
Q = 4 −37.32 −15.68 −31.56 15.11
Q = 6 −36.67 −17.47 −31.25 26.30
Q = 10 −38.72 −23.75 −34.77 11.46Table 4.1: Pattern Mat
hing (N = 316, d = λ

2
, r = 5λ) - Statisti
s of the SLRvalues in Fig. 3. 50
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Figure 4.6: Pattern Mat
hing (N = 316, d = λ
2
, r = 5λ) - Plots of the SLRvalues of the Bayliss pattern (SLL = −40 dB, n = 5) [7℄ and of the 
ompromise

H −mode di�eren
e patterns when Q = 3, 4, 6, 10 (φ ∈ [−80o, 80o]).
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Figure 4.7: Pattern Mat
hing (N = 316, d = λ
2
, r = 5λ) - Azimuthal (φ = 0o)plots of the relative power of the Bayliss pattern (SLL = −40 dB, n = 5) [7℄ andof the 
ompromise H −mode patterns when Q = 3, 4, 6, 10.51



4.3. NUMERICAL RESULTS
[dB] min {SLR} max {SLR} av {SLR} var {SLR}

SA [10℄ −27.70 −18.93 −22.52 6.41

CPM : SLL
H(1)
ref = −25 dB −23.30 −14.58 −21.48 3.93

CPM : SLL
H(2)
ref = −30 dB −28.78 −16.95 −24.08 14.15

CPM : SLL
H(3)
ref = −35 dB −29.43 −18.94 −25.87 5.74Table 4.2: Comparative Assessment (N = 300, d = λ

2
, r = 4.85λ, Q = 3) -Statisti
s of the SLR values of the H−mode di�eren
e pattern synthesized withthe SA approa
h [10℄ and with the iterative PCPM (Referen
e Bayliss pattern

n = 6 [7℄: SLLH(1)
ref = −25 dB, SLLH(2)

ref = −30 dB, and SLLH(3)
ref = −35 dB).Annealing (SA) pro
edure has been used to determine the sub-array weightsfor a pre-�xed sub-array 
on�guration by minimizing a suitable 
ost fun
tionaimed at penalizing the distan
e of the SLL of the 
ompromise pattern from apres
ribed value.For 
omparison purposes, let us 
onsider the same array geometry of [10℄.More in detail, the elements are pla
ed on a 20× 20 regular grid (dx = dy = λ

2
)lying on the xy-plane. The radius of the 
ir
ular aperture of the antenna is equalto r = 4.85 λ. The sum ex
itations have been �xed to those values a�ordinga 
ir
ular Taylor pattern [6℄ with SLL = −35 dB and n = 6. Con
erning the
ompromise solution, Q = 3 sub-arrays have been 
onsidered.As far as the 
omparative study is 
on
erned, the �nal solution of the CPM-based algorithm (i.e., de�nition of cHopt and gH

opt
) has been required to present

SLR values smaller than those from the SA approa
h [10℄. Sin
e the PCPM isan ex
itation mat
hing method, it has been iteratively applied by updating thereferen
e di�eren
e pattern until the 
onstraints on the 
ompromise solution weresatis�ed. A

ordingly, a su

ession of referen
e ex
itations ςH(k), k = 1, ..., Khave been sele
ted. In parti
ular, they have been �xed to those of a Baylissdi�eren
e pattern [7℄ with n = 6 and SLL
H(k)
ref = −25 dB (k = 1), SLLH(k)

ref =

−30 dB (k = 2), and SLL
H(k)
ref = −35 dB (k = 3). The aggregations obtainedat the end of ea
h k-th iteration by the PCPM have 
ost fun
tion values equalto Ψ

(

c
H(1)
opt

)

= 0.65 × 10−1, Ψ
(

c
H(2)
opt

)

= 0.31 × 10−1, and Ψ
(

c
H(3)
opt

)

= 0.27 ×

10−1, respe
tively. Although the appli
ation of the PCPM 
ould be furtheriterated by de�ning others referen
e targets, the pro
ess has been stopped at
k = kopt = 3 sin
e the requirement [SLRPCPM (φ) < SLRSA (φ), 0o ≤ φ ≤

80o℄ has been ful�lled by the 
ompromise solution (cHopt = c
H(3)
opt , gH

opt
= gH(3)

opt
).The 
orresponding relative power distributions are shown in Fig. 4.8 where thesolution obtained by Ares et. al [10℄ is reported [Fig. 4.8(a)℄, as well. To betterpoint out the 
apabilities of the iterative PCPM , also the plots of the SRL values(Fig. 4.9) and the 
orresponding statisti
s (Tab. 4.2) are given. Moreover, inorder to make the PCPM results reprodu
ible, the sub-array 
on�gurations and52
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(a) (b)

(c) (d)Figure 4.8: Comparative Assessment (N = 300, d = λ
2
, r = 4.85λ, Q = 3) -Relative power distribution of the H − mode 
ompromise pattern synthesizedwith (a) the SA approa
h [10℄ and the PCPM when the Referen
e Baylisspattern n = 6 [7℄ presents a sidelobe level equal to (b) SLLH(1)

ref = −25 dB, (
)
SLL

H(2)
ref = −30 dB, and (d) SLLH(3)

ref = −35 dB.
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Figure 4.9: Comparative Assessment (N = 300, d = λ
2
, r = 4.85λ, Q = 3) - Plotsof the SLR values of the 
ompromiseH−mode di�eren
e patterns synthesized bythe SA approa
h [10℄ and the PCPM when the Referen
e Bayliss pattern n = 6[7℄ presents a sidelobe level equal to SLLH(1)

ref = −25 dB, SLLH(2)
ref = −30 dB,and (d) SLLH(3)

ref = −35 dB (φ ∈ [−80o, 80o]).
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CHAPTER 4. MONOPULSE PLANAR ARRAY SYNTHESIS
SLL

H(1)
ref = −25 dB SLL

H(2)
ref = −30 dB SLL

H(kopt)
ref = −35 dB

c

1 1
1 1 1 2 2
1 1 1 2 2 2
1 1 1 2 2 2 3
1 1 1 2 2 2 3 3
1 1 1 2 2 2 3 3 3
1 1 1 2 2 2 3 3 3
1 1 1 2 2 2 3 3 3
1 1 1 2 2 3 3 3 3 3
1 1 1 2 2 3 3 3 3 3

1 1
1 1 1 1 2
1 1 1 2 2 2
1 1 2 2 2 2 2
1 1 2 2 2 3 3 3
1 1 2 2 3 3 3 3 3
1 1 2 2 3 3 3 3 3
1 1 2 2 3 3 3 3 3
1 1 2 2 3 3 3 3 3 3
1 1 2 2 3 3 3 3 3 3

1 1
1 1 1 1 1
1 1 1 1 1 2
1 1 1 2 2 2 2
1 1 2 2 2 2 2 2
1 1 2 2 3 3 3 2 2
1 1 2 2 3 3 3 3 2
1 1 2 2 3 3 3 3 3
1 1 2 3 3 3 3 3 3 2
1 1 2 3 3 3 3 3 3 2

g1 0.4668 0.3337 0.3355
g2 1.3435 0.9763 0.9381
g3 2.1736 1.6091 1.4469Table 4.3: Comparative Assessment (N = 300, d = λ

2
, r = 4.85λ, Q = 3) - Sub-array 
on�gurations and weights obtained with the PCPM (Referen
e Baylisspattern n = 6 [7℄: SLL

H(1)
ref = −25 dB, SLLH(2)

ref = −30 dB, and SLL
H(3)
ref =

−35 dB).weights are given in Tab. 4.3. The lists of digits of Tab. 4.3 (se
ond row)indi
ate the sub-array memberships of the N = 75 array elements belonging toa quadrant of the antenna aperture.Finally, let us analyze the 
omputational issues. The total amount of CPU-time to get the �nal solution (on a 3.4GHz PC with 2GB of RAM) was Ttot =
2.6361 [sec] (i.e., T (1) = 0.8148 [sec], T (2) = 0.8302 [sec], and T (3) = 0.9911 [sec]).Moreover, the number of iterations required at ea
h step to synthesize an inter-mediate 
ompromise solution is equal to K(1)

opt = 14, K(2)
opt = 14, and K(3)

opt = 17,respe
tively.
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Chapter 5The Ant Colony Optimizer forGraph Sear
hingDealing with the proposed ex
itation mat
hing method, this 
hapter presents aglobal optimization strategy for the optimal 
lustering in sum-di�eren
e 
om-promise linear arrays. Starting from a 
ombinatorial formulation of the problemat hand as shown in the previous part of this thesis, the proposed te
hniqueis aimed at determining the sub-array 
on�guration expressed as the optimalpath inside a dire
ted a
y
li
 graph stru
ture modelling the solution spa
e. To-wards this end, an ant 
olony metaheuristi
 is used to bene�t of its hill-
limbingproperties in dealing with the non-
onvexity of the sub-arraying as well as inmanaging graph sear
hes. A sele
ted set of numeri
al experiments are reportedto assess the e�
ien
y and 
urrent limitations of the ant-based strategy also in
omparison with the lo
al 
ombinatorial sear
h method previously presented.
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5.1. INTRODUCTION5.1 Introdu
tionIn the framework of the optimal mat
hing te
hniques for the solution of the opti-mal 
ompromise between sum and di�eren
e patterns, besides the methodologi
aland algorithmi
 novelties introdu
ed in this work, the main result yielded is theproof that the 
ompromise synthesis problem 
an be formulated as a 
ombinato-rial one where the dimension of the solution spa
e grows as a binomial fun
tion ofthe number of array elements (and not exponentially as in 
lassi
al optimizationformulations). Moreover, only the sub-array aggregations are looked for, whilethe sub-array weights are obtained as a �free by-produ
t�. In order to solve theproblem at hand, the solution spa
e has been represented through a tree stru
-ture where the best 
ompromise solution 
orresponds to the minimum 
ost path.Moreover, an ad-ho
 lo
al sear
h strategy (
alled BEM ) has been implementedto e�e
tively sample the solution spa
e. In spite of the good results obtained inpattern mat
hing (Chapter 2), and SLL 
ontrol (Chapter 3), the whole pro
e-dure 
ould su�er from a misleading 
lustering of the array elements that woulddeeply in�uen
e the se
ond step (i.e., the weight 
omputation) sin
e the fun
-tional to be optimized is non-
onvex with respe
t to the sub-array membershipsof the array elements. To avoid this drawba
k, global optimization is requiredfor solving the 
lustering step sin
e lo
al sear
hes 
ould get stu
k into lo
al min-ima. However, �standard� evolutionary te
hniques or general purpose optimizers
annot be adopted be
ause of their 
omputational 
osts espe
ially when dealingwith high-dimension problems and ad-ho
 algorithms must be used. A

ordingly,this paper des
ribes and analyzes the performan
e of a suitable state-of-the-artevolutionary strategy, namely the Ant Colony Optimizer (ACO) [24℄, whose in-trinsi
 stru
ture seems to be very appropriate to fully exploit a suitable de�nedgraph-like model of the solution spa
e. As a matter of fa
t, su
h an approa
hshould in prin
iple avoid the lo
al minima of the 
ost fun
tion be
ause of its hill
limbing behavior as a global optimizer. On the other hand, it should performbetter than other 'physi
ally inspired' optimization algorithms be
ause its intrin-si
 
ombinatorial nature able to fully adapt to the des
ription of the solutions asan ensemble of 
ontiguous partitions.The outline of the 
hapter is as follows. After a short review of the BEM(Se
t. 5.2), the ACO for graph-sear
hing is 
arefully des
ribed (Se
t. 5.3). InSe
tion 5.4, the results of a sele
ted set of numeri
al experiments are reported inorder to �rstly des
ribe the ACO behavior and then to point out its advantagesand best features 
ompared to the BEM . Finally, some 
on
lusions are drawn(Se
t. 5.5).5.2 BEM for Graph-Sear
hingCon
erning the notation adopted in the following, it is the same of Chapter (2).There, it has been shown how the solution spa
e of the 
ontiguous partitions58
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)Figure 5.1: Evolution of the BEM solution within the DAG.

an be represented in an e�e
tive fashion through a non-
omplete binary tree ofdepth M − 1, wherein ea
h level of the tree from the root to the leaves de�nesthe sub-array membership for an element of the array. A more 
ompa
t andnon-redundant stru
ture able to give a 
omplete representation of the wholeset of admissible sub-array 
on�gurations is based on a Dire
ted A
y
li
 Graph(DAG) (Chapter 4). As a matter of fa
t, the non-
omplete binary tree 
anbe redu
ed to an equivalent DAG by simply noti
ing that some parts of thetree re
ursively repeat themselves. Generally speaking, the DAG is a graph
G = (V ,E) 
omposed by a set of V vertexes and E edges indi
ated in Fig. 5.1by 
ir
les and arrows, respe
tively. As regards to the 
ompromise problem, the
DAG is made of Q rows (i.e., the number of sub-arrays) and M −Q+1 vertexeswithin ea
h row (i.e., the maximum number of elements that 
an be assigned toa single sub-array by 
onsidering non-null 
lusters). Moreover, the paths inside59



5.2. BEM FOR GRAPH-SEARCHINGthe solution graph have the same length1 equal to M − 1 and ea
h path 
odes atrial sub-array 
on�guration C.In order to explore the solution graph looking for the path minimizing (2.2),the Border Element Method (BEM) dealing with a tree ar
hite
ture is adaptedhere to work with the DAG, as well. A

ordingly, the so-
alled border elementsare now those elements of the a
tual 
on�guration/path whereof at least one
losest element of the path belongs to a di�erent row of the DAG (i.e., it isassigned to a di�erent sub-array). For sake of 
larity and with referen
e to Fig.5.1, the 
luster 
on�gurations are indi
ated by the red edges and the borderelements are denoted by the blue vertexes. It is worth noti
e that it is possibleto obtain a new admissible trial aggregation C ′ just 
hanging the membershipof a border element as s
hemati
ally des
ribed in the following pseudo-
ode thatsummarizes the BEM for the sampling of the DAG stru
ture:Compute vm : m = 1, . . . ,MSort vm : m = 1, . . . ,M to obtain L: l1 = min {vm}, lM = max {vm}Initialize C(0) =
n

c
(0)
m ; m = 1, . . . ,M : c

(0)
m (l1) = 1, c

(0)
m (lM ) = Q

ofor ea
h iteration k : k = 1, . . . ,K

C(k) = C(k−1)

c
(k)
m (l1) = c

(0)
m (l1) , c

(k)
m (lM ) = c

(0)
m (lM )for ea
h element lh : h = 2, . . . ,M − 1if (c(k)

m (lh) is a border element) AND (is not a single element sub-array) thenAssign c
(k)
m the membership of the 
loser/different sub-array to obtain C′End ifCal
ulate Fitness of C′if (Ψ {C′} < Ψ

n

C(k)
o) thenNew solution found: C(k) = C′End ifEnd forif (Ψ

n

C(k)
o stationary) then

CBEM = C(k); kend = kStopEnd ifEnd for
CBEM = C(K); kend = KStopMore in detail, the BEM is �rst aimed at looking for the border elements ofthe 
urrent path C(k) belonging to the DAG and su

essively at 
hanging theirmemberships (on
e a time), until a termination 
riterion based on a maximumnumber of iterations K (k = 0, ..., K; k being the iteration index) or on a sta-tionary 
ondition of the 
ost fun
tion value Ψ

{

C(k)
} is rea
hed. For illustrativepurposes, a pi
torial representation of the BEM-based sear
hing is given in Fig.5.1. It is 
on
erned with the test 
ase 
hara
terized by M = 10 and Q = 3.1The length of a DAG is equal to the number of edges of the longest dire
ted path.60



CHAPTER 5. THE ANT COLONY OPTIMIZER FOR GRAPHSEARCHINGStarting from the guess solution C(0) displayed in Fig. 5.1(a), the iterative pro-
ess stops after two iterations determining the �nal aggregation CBEM = C(2)shown in Fig. 5.1(
).5.3 ACO for Graph-Sear
hingFrom the BEM pseudo-
ode, it is simple to re
ognize that su
h a method, forboth tree and graph-like ar
hite
tures, is a deterministi
 te
hnique that su�ersof the usually standard drawba
ks of lo
al sear
h algorithms. In parti
ular, the
BEM solution might be trapped in a lo
al minimum and strongly in�uen
edby the starting guess aggregation C(0) 
hosen at the initialization be
ause of thenon-
onvexity of the problem at hand.In order to over
ome the problems related to the presen
e of lo
al minimain the 
ost fun
tion (2.3), the Ant Colony Optimizer (ACO) is adopted here tosear
h for the optimal path Copt within the solution graph that minimizes (2.3).The ACO is a global optimization algorithm inspired by the foraging behaviorof ant 
olonies looking for food sour
es [24℄. The ants look for the shortestpath between the food sour
es and the nest. Towards this end, ea
h ant leavesa 
hemi
al substan
e, 
alled pheromone, while moving in the spa
e surroundingthe nest. The amount of pheromone on a path quanti�es its degree of optimality,but it de
ays with time (evaporation me
hanism). These me
hanisms allow oneto avoid poor food sour
es on one hand (pheromone release) and on the other,to e�
iently sample the whole solution spa
e (pheromone evaporation).The ACO developed by Dorigo [25℄ has been widely applied espe
ially indistributed and dis
rete problems su
h as routing [26℄[27℄, assignment [28℄[29℄,s
heduling [30℄[31℄, subset [32℄, but it is relatively infrequent in ele
tromagnet-i
s. To the best of authors' knowledge, it has been re
ently applied to fewele
tromagneti
 problems (e.g., antenna synthesis 
onsidering binary [33℄ or realimplementations [34℄[35℄[36℄ and mi
rowave imaging [37℄). However, be
ause ofits e�e
tiveness in fa
ing hard 
ombinatorial problems and sin
e the 
ombinato-rial formulation of the optimal 
ompromise between sum and di�eren
e patternsrequires the sear
hing of the best path within a graph, the ACO seems to bea suitable metaheuristi
 for the problem at hand. Towards this aim, the sim-plest version of the ACO, namely Ant System [24℄, is used. The proposed ACOimplementation is 
ustomized to the graph ar
hite
ture to properly address thesynthesis of small as well as large arrays. As a matter of fa
t, due to the highnumber of vertexes needed for the storage of the solution, applying the ACOto the sear
h within the solution-graph presents some memory limitations whendealing with very large dimensional spa
es. On the other hand, it must bepointed out that the ACO performan
es in terms of solution a

ura
y do notdepend on the representation of the solution spa
e, but only the feasibility andthe 
omputational indexes (i.e., the storage resour
es and the rate of samplingthe solution spa
e) are a�e
ted by the ar
hite
ture at hand.61



5.3. ACO FOR GRAPH-SEARCHING
1

2

11

2

3

1

2

3

2

3 3

...

...

...

{1 0 0 ... 0 0 0}

{1 0 0 ... 0 0 0}

{1 1 0 ... 0 0 0}

{1 2 0 ... 0 0 0}

{1 2 3 ... 0 0 0} {1 2 3 ... 3 0 0} {1 2 3 ... 3 3 0}

{1 1 1 ... 0 0 0}

{1 1 1 ... 0 0 0}

{1 1 2 ... 0 0 0}

{1 1 2 ... 2 0 0}

{1 2 2 ... 2 0 0}
{1 1 1 ... 1 2 0}

{1 1 2 ... 2 2 3}

Figure 5.2: Evolution of the ACO solution within the DAG.The proposed implementation of the ACO-based approa
h 
an be summa-rized as follows. Ea
h i-th (i = 1, ..., I) ant 
odes a ve
tor ai of M integer valuesthat models a trial sub-array 
on�guration Ci (i.e., ai = a {Ci}). Every ve
toris initialized to the null one at ea
h iteration (i.e., a(k)
i = {0, ..., 0}, k = 1, ..., Kand i = 1, ..., I) and it is �lled step-by-step while the ants are moving throughea
h level of the graph as shown in Fig. 5.2 . At the initialization (k = 0), thequantity of pheromone on ea
h edge τ (0) (erz), erz = 1, ..., E is the same and ea
hedge of the graph 
an be explored with a uniform probability p(0) (erz) = 0.5. Asregards to the apex r, it is equal to q → q if the edge erz 
onne
ts two vertexesbelonging to the same sub-array (i.e., the same row of the DAG) and to q → q+1if it 
onne
ts two vertexes assigned to di�erent sub-arrays (i.e., di�erent rows ofthe DAG). Moreover, the pedex z, z = z1, ..., zM−1, identi�es the level of theedge within the graph. Con
erning the iterative loop (k > 0), the probability of
hoosing one of the two subsequent edges (if present) at ea
h vertex is given by

p(k) (erz) =
τ (k) (erz)

τ (k) (eq→q
z ) + τ (k)

(

eq→q+1
z

) , z = z1, ..., zM−1; r = q → q + [0, 1] .(5.1)When the whole ant 
olony has 
ompleted a path within theDAG, the pheromonelevel τ (k) (erl ) of ea
h edge is updated as follows
τ (k+1) (erz)← τ (k) (erz) +

I
∑

i=1

δ
er
za

(k)
i

H

Ψ
(

C
(k)
i

) , ∀τ (k) (erz) (5.2)where δ
er
za

(k)
i

= 1 when erz ∈ a(k)
i [a(k)

i = a
{

C
(k)
i

}℄ and δ
er
za

(k)
i

= 0 otherwise, Hbeing a positive 
onstant. Su

essively, the evaporation pro
edure takes pla
e inorder to redu
e and at most delete worse paths from the graph
τ (k+1) (erz)← (1− ρ) τ (k+1) (erz) , ∀τ

(k+1) (erz) (5.3)62



CHAPTER 5. THE ANT COLONY OPTIMIZER FOR GRAPHSEARCHING
ρ ∈ (0 , 1] being a parameter aimed at 
ontrolling the evaporation rate. Finally,the same stopping 
riterion (k = kend) used for the BEM is adopted here for the
ACO-based method to allow fair 
omparisons.5.4 Numeri
al Simulations and ResultsBe
ause of the novelty of the proposed approa
h, the �rst part of this se
tion(Se
t. 5.4.1) is devoted to the 
alibration of the ACO algorithm [38℄ when dealingwith the sear
hing of the �best 
ompromise� solution among those admissiblewithin the solution graph. Su

essively, the use of the ACO is motivated (Se
t.5.4.2) showing how the BEM solution su�ers from the non-
onvexity of theaggregation problem be
ause of the lo
al nature of the algorithm. Finally, a setof 
omparative results 
on
erned with a wide number of 
ompromise problemsare reported (Se
t. 5.4.3) to point out potentialities and 
urrent limitations ofthe ACO-based approa
h.5.4.1 ACO CalibrationA key feature of the ACO algorithm is the simple implementation. As a matterfa
t, besides the number I of ants in the 
olony, it only requires the de�nitionof two parameters to work, namely the pheromone update 
oe�
ient H and thepheromone evaporation 
oe�
ient ρ. In order to determine their optimal valuesfor the problem at hand, an extensive set of numeri
al experiments has been
arried out by 
onsidering an array of N = 40 elements and Q = 6 sub-arrays asreferen
e ben
hmark. In this 
ase, the number of 
ontiguous partitions is equalto U (ess) =

(

19
5

)

= 11628. As far as the referen
e ex
itations are 
on
erned,those a�ording a Dolph-Chebyshev sum pattern with SLL = −25 dB [19℄ anda Zolotarev di�eren
e pattern with SLL = −30 dB [9℄ have been 
hosen. Con-
erning the 
alibration study, the values of the ACO 
ontrol 
oe�
ients havebeen varied in the range H ∈ [0 : 5] and ρ ∈ (0 : 1] [24℄, respe
tively. Moreover,be
ause of the sto
hasti
 nature of the ACO algorithm, 100 di�erent simulationshave been performed for ea
h setting of the 
alibration parameters. Ea
h simu-lation has been run with a number of ants equal to I = [3, 5, 8, 10, 100, 1000]for a maximum number of K = 1000 iterations.As a representative result, the average performan
es for ea
h parameter 
on-�guration when I = 3 are reported in Fig. 5.3 . As it 
an be observed, the
onvergen
e 
ost fun
tion value is more sensitive to the evaporation 
oe�
ient ρand less to the value of the parameter H that 
ontrols the pheromone update.A similar 
on
lusion holds true whatever the value of I. Con
erning the optimalsetup, the 
on�guration H = 1 and ρ = 0.05 has been sele
ted sin
e the 
orre-sponding representative point in Fig. 5.3 lies in the lowest region and the value63



5.4. NUMERICAL SIMULATIONS AND RESULTS

2.5

3.0

3.5

4.0

4.5

5.0

Fitness Value, Ψ   [× 10
3
]

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

Q

 0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1

ρ

2.5

3.0

3.5

4.0

4.5

5.0

Fitness Value, Ψ   [× 10
3
]

Figure 5.3: ACO Calibration (N = 40, Q = 6) - Behavior of the average 
on-vergen
e 
ost fun
tion value versus the pheromone update 
onstant, H , and thepheromone evaporation parameter, ρ.

64



CHAPTER 5. THE ANT COLONY OPTIMIZER FOR GRAPHSEARCHING

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

 1  10  100  1000

F
it

n
es

s 
V

al
u
e,

 Ψ
  
 [

× 
1
0

3
]

Number of Ants,  C

ACO
Global Best

Figure 5.4: ACO Calibration (N = 40, Q = 6; H = 1, ρ = 0.05) - Behaviors ofthe statisti
 values of the average 
onvergen
e 
ost fun
tion value versus the ant
olony dimension, C.
H = 1 has already been identi�ed as an optimal 
hoi
e in other graph sear
hingproblems (e.g., TSP [26℄).As regards to the dimension of the ant 
olony, the analysis has been devotedto de�ne the optimal value of I in relationship to the dimension of the solutionspa
e U (ess). Towards this end, I has been varied between 1 and 1

10
U (ess). Figure5.4 shows the results of the statisti
al study, ea
h 
ross being the average Ψamong the values rea
hed at the end of ea
h group of 100 simulations. For
ompleteness, the standard deviation is shown, as well. From these results, it
an be inferred that the 
hoi
e I ≃ [

1
125
U (ess) : 1

100
U (ess)

] de�nes a good ruleof thumb to rea
h the global solution with a per
entage above 90% 2. On theother hand, the minimum value of Ilb = 5 ants has been set as lower bound inorder to exploit the 
ooperative behavior of the ACO in those problems wherethe previous 
riterion would give too small values (i.e., I < Ilb).2It is worth noting that the results here reported have been obtained under the assumptionof a maximum number of iterations equal to K = 1000. Probably, in
reasing the number ofiterations would allow a redu
tion of the number of ants for obtaining the same 
on
lusions.65
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1.08 x 10Figure 5.5: ACO's Hill Climbing Behavior (N = 20, Q = 3) - Iterative BEMpro
edure.5.4.2 ACO's Hill-Climbing BehaviorIn order to show how the performan
e of the BEM are in�uen
ed from the 
hoi
eof the initial solution, while the ACO is not dependent on the starting guess andtherefore more robust to the lo
al minima problem thanks to its hill-
limbingproperties, three samples of 
ompromise syntheses 
on
erned with small as wellas larger arrays for di�erent number of sub-arrays are dis
ussed in the following.The �rst experiment deals with a 20-elements array (M = 10) with inter-element spa
ing d = λ
2
. The optimal sum and di�eren
e 
oe�
ients have been
hosen to a�ord a Dolph-Chebyshev sum pattern with SLL = −25 dB [19℄ anda Zolotarev di�eren
e pattern with SLL = −30 dB [9℄, respe
tively. As regardsto the 
ompromise feed network, Q = 3 sub-arrays have been used.Con
erning the Contiguous Partition Method (CPM) 
ustomized in the presentwork to the sear
hing within the solution graph, the optimal gains vm, m =

1, . . . ,M , are �rst 
omputed as des
ribed in Chapter (2) and then sorted ona line in order to obtain the list L = {lh : lh ≤ lh+1, h = 1, ...,M − 1}, where
l1 = min {vm} and lM = max {vm}. Ea
h element of the sorted list L is assignedto a level of the solution graph as shown in Fig. 5.1. Starting from a uniform sub-arraying (i.e., a sub-array 
on�guration wherein the number of elements withinea
h sub-array di�ers at most of one element when M is or not a multiple of
Q), the initial sub-array ve
tor turns out to be C(0) = {1 1 1 2 2 3 3 3 2 1} (Fig.5.5) . Then, the iterative loop of the BEM takes pla
e a

ording to the pseudo-
ode of Se
t. (5.2) and as detailed in Fig. 5.5. For 
ompleteness, Figure 5.1shows the 
orresponding evolution of the BEM trial solution in the solutiongraph. As it 
an be noti
ed, the BEM gets stu
k only after kBEMend = 2 iter-ations. The �nal grouping is CBEM = C(2) = {1 1 2 2 3 3 3 3 2 1} [Fig. 5.1(
)℄with a 
onvergen
e �tness value of Ψ

(

CBEM
)

= 1.08 × 10−2, while the inter-mediate solution C(1) = {1 1 2 2 2 3 3 3 2 1} [Fig. 5.1(b)℄ has a �tness equal to
Ψ

(

C(1)
)

= 1.48× 10−2. The radiation patterns generated at the various itera-tions and the referen
e pattern are reported in Fig. 5.6, as well.Su

essively, the ACO has been applied to the same test 
ase. Sin
e the66
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Figure 5.6: ACO's Hill Climbing Behavior (N = 20, Q = 3) - BEM powerpattern at di�erent iterations of the iterative optimization (k = 1, ..., kend).number of trial solutions within the graph is equal to U (ess) =

(

9
2

)

= 36 and
I, a

ording to the 
riterion previously de�ned, would result lower than one, the
ACO population has been set to I = Ilb = 5. Moreover, the pheromone updateHand the evaporation ρ have been �xed to their optimal values. As expe
ted, the
ACO outperforms the BEM sin
e the �tness value of the synthesized solution
CACO = {1 2 2 3 3 3 3 3 3 2} is equal to Ψ

(

CACO
)

= 8.26×10−3 [vs. Ψ
(

CBEM
)

=
1.08× 10−2℄. To further 
on�rm the ACO e�e
tiveness, it is worth noting thatthe 
lustering determined by the ACO is the one having the minimum �tnessamong the U (ess) = 36 admissible di�erent 
lustering. On the 
ontrary, the BEMhas been able to retrieve the se
ond best solution 
oded into the solution graphas shown in Fig. 5.7 (red line) where ea
h 
ross denotes the Ψ value amongthe U (ess) = 36 
ontiguous partitions ranked a

ording to their 
ost fun
tionvalues. More spe
i�
ally, the BEM solution is eviden
ed with a 
ir
le, whilethe minimum �tness value or global minimum of the ex
itation mat
hing 
ostfun
tion 
oin
ides with the ACO 
lustering [i.e., Ψopt = Ψ

(

CACO
)℄. On the otherhand, it is also interesting to point out that, even though the BEM solution isthe se
ond best 
ompromise, it has three elements over ten whose sub-arraymemberships are di�erent from those of the global optimum Copt re
ognized bythe ACO-based algorithm, CACO = Copt.67



5.4. NUMERICAL SIMULATIONS AND RESULTS

10
-5

10
-4

10
-3

10
-2

10
-1

 0  200  400  600  800  1000

 0  6  12  18  24  30  36

F
it

n
es

s 
V

al
u

e,
  
Ψ

Solution Index, i

N=20, Q=3
N=20, Q=8
N=40, Q=4

BEM
i      =28

BEM
i      =967

opti      =969

opti      =36

BEM
i      =35
opti      =36

Figure 5.7: ACO's Hill Climbing Behavior - Cost fun
tion values of the solutions
oded in the solution DAG.

68



CHAPTER 5. THE ANT COLONY OPTIMIZER FOR GRAPHSEARCHING
M = 10 aBEMm {1 1 2 2 3 3 3 3 2 1}

aACOm {1 2 2 3 3 3 3 3 3 2}
Q = 3 wBEMq 0.3827 0.9736 1.3363

wACOq 0.1798 0.6602 1.2549Table 5.1: ACO's Hill Climbing Behavior (N = 20, Q = 3) - Sub-array 
on�gu-rations and weights determined by the BEM and the ACO.
Approach Ψopt ∆ SLL [dB] BW [deg] kend Fend t [sec] T (ess)

N = 2M = 20 , Q = 3

BEM 1.08 × 10−2 0.3199 −18.25 5.28 2 3 < 10−8 36

ACO 8.26 × 10−3 0.2689 −18.75 5.12 2 10 < 10−8 36

N = 2M = 20 , Q = 8

BEM 2.49 × 10−4 0.0545 −35.20 5.74 2 3 < 10−8 36

ACO 1.13 × 10−5 0.0145 −37.50 5.68 2 10 < 10−8 36

N = 2M = 40 , Q = 4

BEM 5.60 × 10−3 0.2886 −20.10 2.50 21 22 < 10−7 969

ACO 4.99 × 10−3 0.2609 −22.85 2.50 34 340 4.5 × 10−3 969Table 5.2: ACO's Hill Climbing Behavior - Pattern performan
es and 
omputa-tional indexes.For 
ompleteness, Table 5.1 details the results obtained with the BEM andthe ACO by reporting the �nal sub-array 
on�gurations and the gain values.Moreover, the synthesized di�eren
e 
ompromises are shown in Fig. 5.8(a) . Be-
ause of the ex
itation-mat
hing nature of the proposed te
hnique, let us quantifythe 
loseness of the arising patterns with respe
t to the optimal/referen
e oneby 
omputing the pattern mat
hing ∆ (2.6). As expe
ted and indi
ated by the
orresponding lower �tness value, the ACO pattern is 
loser to the referen
eone. As a matter of fa
t, it is ∆ACO = 0.2689 vs. ∆BEM = 0.3199 (Tab. 5.2). Table 5.2 also reports the values of other indexes in order to give a 
ompleteoverview of the features of the obtained patterns (i.e., sidelobe level, SLL, andmain lobe width, Bw). Moreover, the 
omputational issues are pointed out bythe following indexes: the number of 
onvergen
e iterations, kend, the numberof fun
tion evaluations, Fend, and the CPU-time t ne
essary to �nd C(kend) on a
3.4GHz PC with 2GB of RAM. As it 
an be noti
ed, both BEM and ACO areable to �nd a 
onvergen
e solution almost in real time sin
e t < 10−8. Su
h anevent points out on
e again the 
omputational e�
ien
y of the CPM approa
h,but also the usefulness of the graph representation that enables the use of anevolutionary algorithm without ex
essively in
reasing the 
omputational 
ostsand memory resour
es. 69
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(b)Figure 5.8: ACO's Hill Climbing Behavior - Compromise di�eren
e power pat-terns obtained with the BEM and the ACO when (a) N = 20, Q = 3 (Zolotarev[9℄, SLL = −30 dB) and (b) N = 20, Q = 8 (Zolotarev [9℄, SLL = −40 dB).70
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M = 10 aBEM

m {1 2 3 5 7 8 6 4 2 1}

aACO
m {1 3 5 7 8 8 7 6 4 2}

Q = 8 wBEM
q 0.2146 0.6107 0.9221 0.9825 1.1582 1.1797 1.2818 1.2864

wACO
q 0.2049 0.2432 0.5937 0.7250 0.9221 0.9825 1.1650 1.2838Table 5.3: ACO's Hill Climbing Behavior (N = 20, Q = 8) - Sub-array 
on�gu-rations and weights 
omputed with the BEM and the ACO.In the se
ond experiment, the same array geometry of the previous ex-ample has been 
onsidered, but the array has been partitioned into Q = 8sub-arrays. Moreover, a Zolotarev di�eren
e pattern with SLL = −40 dB [9℄has been adopted as referen
e target. It is worth observing that despite thehigher number of sub-arrays, the dimension of the solution spa
e is still equalto U (ess) = 36 thanks to the symmetri
 nature of the binomial distribution [i.e.,

U (ess) =

(

9
7

)

=

(

9
2

)

= 36℄. Analogously to the previous example, the BEMstops after kBEMend = 2 iterations synthesizing the solution in Tab. 5.3 , but in this
ase other 8 solutions with lower �tness values are present in the solution graph(Fig. 5.7 - green line). On the other hand, the ACO has been able to rea
h theglobal optimum in Tab. 5.3 after kACOend = 2 iterations with a total number of�tness evaluation equal to FACO
end = 10 sin
e I = Ilb = 5. In parti
ular, the ACOsolution presents a �tness value of more than one order in magnitude below theone of the BEM [i.e., Ψ

(

CACO
)

= 1.13 × 10−5 vs. Ψ
(

CBEM
)

= 2.49 × 10−4℄and ∆BEM

∆ACO ≃ 3.76 as it 
an be qualitatively observed by 
omparing the patternsin Fig. 5.8(b). For the sake of 
ompleteness, Table 5.2 
ompares the retrievedsolutions in terms of performan
e indexes.The last experiment of this se
tion is 
on
erned with a larger uniform arrayof 40 λ
2
-spa
ed elements. A Dolph-Chebyshev sum pattern with SLL = −25 dB[19℄ and a Zolotarev di�eren
e pattern with SLL = −30 dB [9℄ have been 
hosenas referen
e patterns and the number of sub-arrays has been set to Q = 4. Insu
h a 
ase, the number of possible sub-array 
on�guration within the solutionspa
e is equal to U (ess) = 969. As far as the ACO is 
on
erned, I = 10 ants havebeen used. The two approa
hes have found the 
orresponding solutions after

kBEMend = 21 and kACOend = 34 as shown in Fig. 5.9 where the behavior of the 
ostfun
tion during the iterative sear
hing pro
ess for both the BEM and the ACOis des
ribed. The synthesized sub-array 
on�gurations and weights are given inTab. 5.4 , whereas the 
orresponding patterns are displayed in Fig. 5.10 . Asexpe
ted and likewise to the previous experiments, the BEM is still trapped intoa lo
al minimum and the retrieved solution turns out to be sub-optimal. However,it should be observed (Fig. 5.7 - blue line) that the BEM 
on�guration is thethird best 
ontiguous partition among U (ess) = 969 di�erent solutions and thevalue of the ratio ∆BEM

∆ACO ≃ 1.11 assesses its 
loseness to the optimal one. As71
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tion value Ψ(k) during the iterative optimization pro
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M = 20 aBEMm {1 1 2 2 2 3 3 3 4 4 4 4 4 4 4 4 4 3 3 2}

aACOm {1 1 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 3 2}
Q = 4 wBEMq 0.1779 0.5658 1.0257 1.3288

wACOq 0.1779 0.5055 0.8989 1.2923Table 5.4: ACO's Hill Climbing Behavior (N = 40, Q = 4) - Sub-array 
on�gu-rations and weights synthesized by means of the BEM and the ACO.
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Figure 5.10: ACO's Hill Climbing Behavior (N = 40, Q = 4) - Referen
e(Zolotarev [9℄, SLL = −30 dB) and 
ompromise di�eren
e power patterns syn-thesized with the BEM and the ACO.
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5.4. NUMERICAL SIMULATIONS AND RESULTSregards to the 
omputational issues, su
h a test further 
on�rms the e�
ien
y ofthe BEM (in terms of speed) in exploring the solution spa
e being tBEM < 10−7while tACO = 4.5× 10−3. As a matter of fa
t, although the CPU-time requiredby the ACO-based approa
h is 
ertainly smaller than that of standard globaloptimizers, it 
annot be omitted that from a 
omputational point of view the
BEM results more 
ompetitive than the ACO when the ratio M

Q
gets larger andlarger. Su
h a statement will be further analyzed in the following se
tion.5.4.3 ACO's Performan
es and Problem DimensionsIn dealing with the optimal 
ompromise between sum and di�eren
e patterns,di�erent global optimization te
hniques have been applied to determine the mostsuitable partition of the array elements into sub-arrays that minimizes a suitable
ost fun
tion related to some pattern features. Among them, it is worth men-tioning the Geneti
 Algorithm [12℄, the Di�erential Evolution Algorithm [11℄ andits enhan
ed version [15℄, and the Simulated Annealing [14℄. Despite the di�er-ent way of ta
kling the problem at hand (i.e., dire
t optimization of elementmemberships and weights [12℄[11℄[15℄ or two-step nested approa
h [14℄ exploit-ing fun
tional 
onvexity), the dimension of the solution spa
e to be explored forretrieving the elements aggregation is equal to U (tot) = QM sin
e ea
h 
lustered
on�guration 
an be expressed as a string ofM digits in a Q-based notation sys-tem. Let us now suppose to use in a standard fashion (i.e., without reformulatingthe problem at hand as a 
ombinatorial one) a global optimizer and to apply therule dedu
ed in Se
t. (5.4.1) for the population size [i.e., I(tot) ≃ 10−2 × T (tot)℄for running a simulation in a �xed number of iterations K̂ looking for the opti-mal aggregation within the set of I(tot) possible solutions. The total CPU timene
essary to 
omplete su
h a simulation turns out be ∆t(tot) = δt × K̂ × I(tot),

δt being the CPU-time for one evaluation of the 
ost fun
tion. Moreover, itshould be pointed out that there is not guarantee that the synthesized aggrega-tion is the global optimum of the fun
tional at hand. Then, let us refer to the
ombinatorial formulation of the 
ompromise problem and map the redu
ed so-lution spa
e of dimension I(ess) into the graph representation des
ribed in Se
t.5.3. By exploiting su
h a stru
ture and a

ordingly using the proposed im-plementation of the ACO, the number of ants of the 
olony turns out to be
I(ess) ≃ 10−2× T (ess) mu
h smaller than I(tot) sin
e U (ess) grows at most polyno-mially [i.e., U (ess) =

(

M − 1
Q− 1

)℄ and not exponentially as U (tot) [U (tot) = QM ℄.Therefore, the iterative optimization runs for a time ∆t(ess) = δt × K̂ × I(ess),whi
h satis�es the following 
ondition ∆t(ess) ≪ ∆ttot3 sin
e I(ess) ≪ I(tot). Su
h3For the sake of simpli
ity, δt has been assumed to be equivalent for both standard and
ombinatorial optimizations. However, please also 
onsider that δt(ess) < δt(tot) sin
e usually
δt(tot) requires the 
omputation of a pattern feature, while δt(ess) is related to a mat
hingoperation. 74
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Figure 5.11: Comparative Assessment (Zolotarev [9℄, SLL = −25 dB, Q = 8)- Behavior of the average 
onvergen
e 
ost fun
tion value versus the number ofarray elements, N .a 
on
lusion 
learly eviden
es the signi�
ant redu
tion of the 
omputational bur-den as well as the more pro�table and proper use of a suitable global optimizationte
hnique within the 
ombinatorial framework. As a matter of fa
t, although alsoin this 
ase the 
onvergen
e to the global optimum solution is not guaranteed,the probability of rea
hing it signi�
antly grows 
ompared to the standard useof global optimizers. In order to detail su
h an argumentation, let us assume onehas at disposal a limited amount of time ∆t(tot) for de�ning the best aggregationfor the 
ompromise problem at hand. On one hand, the ACO-based approa
hwould have ∆K = K̂ ′−K̂ more iterations for exploring the solution spa
e, being
K̂ ′ = ∆t(tot)

δt×I(ess) . On the other hand, it would be possible to use a larger 
olonyof I(ess)
1 = ∆t(tot)

δt×K̂
ants for the same number of iterations K̂ and the following
onditions would hold true: I(ess)

1 ≫ I(ess) and I(ess)
1 ≃ U (ess). In this latter 
ase,the 
onvergen
e of the ACO-based pro
edure to the optimum 
lustering wouldbe assured sin
e ea
h ant 
ould be assigned to explore a single and di�erent pathof the solution graph thus 
overing/sampling the whole solution spa
e.In order to assess and 
on�rm these indi
ations, Figures 5.11 and 5.12 summarizethe performan
e a
hieved with the BEM and ACO methods. The plots refer toa representative set of simulations performed by varying the number of elementsof the array aperture between N = 20 and N = 500, but maintaining a uniform75
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CHAPTER 5. THE ANT COLONY OPTIMIZER FOR GRAPHSEARCHINGinter-element distan
e (d = λ
2
). In all the experiments, the sets of referen
eex
itations have been 
hosen to generate a Dolph-Chebyshev sum pattern with

SLL = −25 dB [19℄ and a Zolotarev di�eren
e pattern with SLL = −25 dB [9℄.Moreover, the number of sub-arrays has been �xed to Q = 8. As regards to the
ACO values, they are related to the average performan
e over a statisti
al setof 50 independent exe
utions of the same simulation (i.e., with the same para-metri
 
on�guration, but varying the randomness in the ACO). In parti
ular,the plots denoted by ACO and ACO∗ indi
ate the values obtained when the
ACO algorithm has been run for K̂ = 1000 iterations with a 
olony of I(ess) and
I

(ess)
1 ants, respe
tively. As expe
ted, the ACO-based approa
h with I(ess)

1 trialsolutions for ea
h iteration always outperforms the BEM . Unfortunately, when
U (ess) turns out to be too large, both the 
omputational load and the storage re-quirements of the ACO result quite 
umbersome and on
e again, although withlarger dimensions, verify the same drawba
ks usually en
ountered by standardglobal optimizers when dealing with non-small array geometries. In su
h a sit-uation, the BEM seems to be more attra
tive even though less robust againstlo
al minima problems.5.5 Con
lusionsIn Chapter 2, it has been shown how the ex
itation mat
hing formulation of theoptimal 
ompromise problem 
an be re
ast as a 
ombinatorial one by exploitingthe knowledge of independently optimal sum and di�eren
e modes. Thanks toa tree representation of the set of admissible solutions, a lo
al sear
h strategy,
alled border element method (BEM), has been implemented to e�
iently ex-plore the redu
ed solution spa
e with a large saving of 
omputational resour
es.Instead, an ACO-based te
hnique has been here 
onsidered in order to avoid theo

urren
e of sub-optimal aggregations 
aused by the presen
e of lo
al minimain the non-
onvex ex
itation mat
hing fun
tional where the solution spa
e hasbeen des
ribed through a dire
ted a
y
li
 graph.From the analysis 
arried out within this resear
h work and summarized inthis 
hapter, the following 
on
lusions 
an be drawn:
• unlike ACO-based approa
h, both the dimension of the solution spa
e and
omputational burden rise mu
h more rapidly when standard global op-timizers are used. In pra
ti
e, these standard sto
hasti
 algorithms worke�e
tively only with small arrays thus synthesizing array solutions havinga limited angular resolution;
• being a lo
al sear
h te
hnique, the BEM depends on the initial solution,but it is an ex
ellent 
omputational saving te
hnique suitable for synthesiz-ing very large arrays (N ≥ 200) although without any guarantee of avoidinglo
al minima solutions; 77



5.5. CONCLUSIONS
• the ACO takes on one side the advantages of global optimization ap-proa
hes in fa
ing non-
onvexity, while on the other and to the best ofthe authors' knowledge, it is the most suitable algorithm among state-of-the-art metaheuristi
s for path-sear
hing in a graph-represented solutionspa
e.
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Chapter 6The Hybrid Approa
hA hybrid approa
h for the synthesis of the �optimal� 
ompromise between sumand di�eren
e patterns for sub-arrayed monopulse antennas is presented. Firstly,the sub-array 
on�guration is determined by exploiting the knowledge of theoptimum di�eren
e mode 
oe�
ients to redu
e the dimension of the sear
hingspa
e. In the se
ond step, the sub-array weights are 
omputed by means of a
onvex programming pro
edure, whi
h takes advantages from the 
onvexity, fora �xed 
lustering, of the problem at hand. A set of representative results arereported to assess the e�e
tiveness of the proposed approa
h. Comparisons withstate-of-the-art te
hniques are also presented.

79



6.1. INTRODUCTION6.1 Introdu
tionIn the re
ent literature, the use of a hybrid approa
h, namely, the SimulatedAnnealing Convex Programming (Hybrid − SA) method [13℄, for the synthe-sis of sub-arrayed monopulse linear antennas has improved the performan
es inshaping 
ompromise patterns with respe
t to referen
e approa
hes [10℄-[11℄. By
onsidering a sub-arraying strategy [8℄, the pro
edure proposed in [13℄ is aimed at�nding �the sub-array 
on�guration and the 
oe�
ients of the sub-array sum sig-nals su
h that the 
orresponding radiation pattern has a null with the maximumpossible slope in a given dire
tion, while being bounded by an arbitrary fun
tionelsewhere.� Su
h a solution allows one the use of simpler feeding networks thatguarantee both a redu
ed 
ir
uit 
omplexity and low ele
tromagneti
 interfer-en
es as well as to obtain patterns with user-de�ned 
hara
teristi
s. It is basedon the exploitation of the 
onvexity of the fun
tional with respe
t to a subset ofthe unknowns (i.e., the sub-array gains) and it is 
arried out by means of a Con-vex Programming (CP ) method [13℄. However, sin
e the sub-array membershipsof the array elements are determined by means of a Simulated Annealing (SA)algorithm, the pro
edure involves non-negligible 
omputational 
osts to a
hievethe global minimum or there is the possibility that the solution is trapped ina lo
al minimum (whether the 
riterion for the SA 
onvergen
e has not beenveri�ed [39℄). In order to save 
omputational resour
es, the Contiguous Parti-tion Method (CPM) is used. The CPM takes advantage from the knowledge ofthe optimal ex
itations of the di�eren
e pattern [7℄[9℄[40℄ and from the 
on
eptof 
ontiguous partitions [18℄ to redu
e the sear
hing spa
e and, thus, e�e
tivelyhandling the problem of the optimal 
lustering. As a matter of fa
t, the arising
omputational burden turns out to be signi�
antly redu
ed 
ompared to that ofprevious optimization s
hemes.In the following, a hybrid approa
h (
alledHybrid−CPM method), whi
h in-tegrates the CPM with a gradient-based CP pro
edure [13℄ to pro�tably bene�tof the positive features of both CPM and CP approa
h is 
arefully des
ribed andvalidated. At the �rst step, the �optimal� sub-array 
on�guration is 
omputeda

ording to the pro
edure des
ribed in Chapter 2 by exploiting the relationshipbetween the ex
itation 
oe�
ients of the optimal sum [19℄[5℄[17℄[41℄ and di�er-en
e [7℄[9℄[40℄ modes. On
e the 
lustering has been determined, the sub-arraygains are 
omputed as in [13℄.6.2 Synthesis of Linear ArraysLet us 
onsider a linear array of N = 2M equally-spa
ed isotropi
 elementswhose generi
 ex
itation 
oe�
ients are an, n = −M, . . . ,−1, 1, . . . ,M and the
orresponding spa
e fa
tor given by: 80



CHAPTER 6. THE HYBRID APPROACH
f (θ) =

M
∑

n=−M

ane
j(n−sgn(n)/2)kd cos(θ) (6.1)where k and d = λ

2
are the wavenumber of the ba
kground medium and theinter-element spa
ing, respe
tively. Moreover, θ indi
ates the angular rotationwith respe
t to the dire
tion orthogonal to the array.The Hybrid − CPM approa
h belongs to sub-arraying te
hniques, but un-like the Hybrid− SA, it 
onsiders a two-stage-iterative pro
edure instead of aniterative one step pro
ess wherein ea
h step involves in turn the solution of a
onvex optimization problem. The �rst step is based on the CPM , just pre-sented in Chapter 2. As already pointed out, the solution of su
h a problem is �a
ontiguous partition of M 
ompletely ordered elements into Q subsets that maybe represented by Q − 1 points of division lying in any of the M − 1 intervalsbetween adja
ent elements� [18℄. This solution represents the best step-wise ap-proximation of the 
onsidered partition and �the number of possible 
ontiguouspartitions is equal to the number of ways of 
hoosing the division points, whi
h isthe number of 
ombinations of M − 1 di�erent things taken Q− 1 at a time [i.e.,

UCPM =

(

M − 1
Q− 1

)

, UCPM being the number of 
ontiguous partition℄�. A
-
ordingly, CCPM is determined by generating a sequen
e of 
ontiguous partitions
{

C(k); k = 0, ..., K
} starting from a guess aggregation C(0) and updating the so-lution [C(k) ← C(k+1)℄ just modifying the membership of the �border elements�of the array.The se
ond step exploits the following property [13℄: �the optimal 
ompro-mise between sum and di�eren
e patterns is a 
onvex problem with respe
t tothe sub-array weights for a �xed sub-array 
on�guration C�. A

ordingly, on
ethe element membership has been determined [i.e., C(opt) = CCPM ℄, the optimalweight ve
tor W (opt) is 
omputed by minimizing the following 
ost fun
tion

ΨCP (W ) =
dℜ

{

fd (θ)
}

dθ

∣

∣

∣

∣

∣

θ=θ0

(6.2)subje
t to dℑ{fd(θ)}
dθ

∣

∣

∣

∣

θ=θ0

= 0 and ∣

∣fd (θ)
∣

∣

2
≤ ℵ (θ), where θ0 indi
ates theboresight dire
tion and ℵ (θ) is a non-negative fun
tion that de�nes the upperbounds for the sidelobes. Moreover, W = {wq; q = 1, . . . , Q} is the sub-arrayweight ve
tor and ℜ and ℑ denote the real part and the imaginary one, re-spe
tively. Towards this end, a standard gradient-based optimization is per-formed by generating a su

ession of trial solutions {

W (h); h = 0, ..., H
} start-ing from the initial guess given by W (0) =

{

wCPMq ; q = 1, . . . , Q
} being wCPMq =

[

PM
j=1 δqcj (as

ja
d
j)

PM
j=1 δqcj (as

j)
2

]. 81



6.2. SYNTHESIS OF LINEAR ARRAYS
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Figure 6.1: Uniform Sub-arraying (M = 10, Q = 5) - Normalized 
ompromisedi�eren
e patterns obtained by means of the Hybrid−CPM method, the CPM ,and the EMM [8℄.6.2.1 Numeri
al AssessmentIn this se
tion, the e�e
tiveness and potentialities of the proposed hybrid methodwill be assessed dealing with three ben
hmarks of the related literature. As amatter of fa
t, the test 
ases under analysis are 
on
erned with linear arraysand, for the sake of 
ompleteness, with both a small (M = 10) and a large(M = 100) number of elements. Whatever the experiment, the synthesis isaimed at minimizing the SLL of the 
ompromise di�eren
e pattern for a �xedbeamwidth or, analogously, at maximizing the slope along the boresight dire
tion[13℄ �xed at θ0 = 0o.The �rst test 
ase deals with a linear array of N = 20 elements. As far as thesum mode is 
on
erned, it has been �xed to a Villeneuve sum pattern [17℄, with
n̄ = 4 and SLL = −25 dB, in the �rst experiment, whereas a Dolph-Chebyshev[19℄ pattern with SLL = −20 dB has been 
hosen for the se
ond one. In the �rstexperiment, a 
on�guration with Q = 5 sub-arrays and uniform 
lustering is 
on-sidered. Moreover, as regards the optimal/referen
e di�eren
e pattern of the ap-proa
hes that exploit the 
on
ept of 
ontiguous partitions, the optimal di�eren
eex
itations have been �xed to a modi�ed Zolotarev distribution (n = 4, ε = 3)whose pattern is 
hara
terized by SLLref = −25 dB. Figure 6.1 pi
torially 
om-pares the patterns obtained with the EMM [8℄, the CMP , and the Hybrid −82



CHAPTER 6. THE HYBRID APPROACH
[dB] Reference Hybrid − CPM CPM EMM Hybrid− SA DE

M = 10 Q = 5 −25.0 −22.4 −21.0 −17.0 − −

M = 10 Q = 8 −39.0 −37.5 −35.2 − −36.5 −21.6

M = 10 Q = 8 −41.0 −38.0 −32.7 − −36.5 −21.6

M = 100 Q = 6 −30.0 −28.3 −25.7 − − −Table 6.1: Values of the SLL of the array fa
tors in Figs. 6.1-6.3.
CPM approa
h, whose �nal sub-array 
on�guration and weights are C(opt) =
{1 1 2 3 3 5 5 4 4 2} and W (opt) = {0.3352, 1.1299, 1.3708, 1.8309, 1.8699}, respe
-tively. It is worth noting that the Hybrid − CPM approa
h outperforms othermethods with a redu
tion of over 5 dB and more than 1 dB of the the SLL withrespe
t to the EMM and the CPM , respe
tively (Tab. 6.1) .The se
ond experiment is devoted to 
omplete the 
omparison by 
onsider-ing the state-of-the-art methods based on sto
hasti
 optimizations. In parti
ular,the results from the Hybrid−SA [13℄ and the Di�erential Evolution (DE) opti-mization algorithm [11℄ have been taken into a

ount. The array 
on�guration isthat with Q = 8. The array patterns obtained from the appli
ation of the CPM-based methods and by assuming a referen
e Zolotarev pattern [9℄ with SLLref =
−39 dB are shown in Fig. 6.2(a) together with those from the other approa
hes.With referen
e to Fig. 6.2(a) and as quantitatively estimated in Tab. 6.1, the
Hybrid − CPM plot presents a SLL of −37.5 dB (i.e., almost 1 dB below the
SLL of the Hybrid−SA [13℄ and more than 15 dB when 
ompared to the patternin [11℄ with the same number of sub-arrays), with C(opt) = {2 3 5 7 8 8 6 4 3 1} and
W (opt) = {1.1836, 1.8818, 4.9795, 6.9286, 7.3462, 8.5109, 9.1480, 9.7003}. Fur-thermore, it is worth analyzing the beamwidths (BW s) (or, similarly, the �rstnull positions) of the results in Fig. 6.2(a). As a matter of fa
t, the Hybrid −
CPM solution presents not only the lowest SLL value, but also the narrower BW(i.e., BWHybrid−CPM = 0.097 vs. BWHybrid−SA = 0.102 and BWDE = 0.113).Su
h a result further 
on�rms the e�e
tiveness of the Hybrid−CPM in dealingwith the non-
onvex part of the problem at hand, thus allowing the synthesisof 
ompromise patterns with better 
hara
teristi
s. As expe
ted, the improve-ments in terms of SLL are even larger by setting the same BW 
onstraint usedwith Hybrid − SA [13℄. Towards this aim, the referen
e ex
itations have been
hosen to a�ord a Zolotarev di�eren
e pattern [9℄ with SLLref = −41 dB. Insu
h a 
ase, the a
hieved solution has a SLL = −38.0 dB with an improvementof about 0.5 dB [Tab. 6.1℄ 
ompared to that in Fig. 6.2(a). For 
ompleteness,the values of the obtained 
lustering and sub-array weights are equal to C(opt) =
{2 4 6 8 8 8 7 5 3 1} andW (opt) = {0.7461, 2.0518, 4.0934, 5.4616, 6.5563, 8.2545, 8.5060, 10.0768},respe
tively.As far as the 
omputational 
osts are 
on
erned, the number of iterations,
K, required to get the �nal 
lustering starting from a uniform one at the initial-83
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CPM , the SA− CP approa
h [13℄, and the DE optimization [11℄.84
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Figure 6.3: Large Arrays (M = 100, Q = 6) - Normalized 
ompromise di�eren
epatterns obtained with the Hybrid− CPM method and the CPM .ization, is KCPM = 4 and KCPM = 3, for the two CPM-based syntheses, respe
-tively, and the total CPU-time is shorter than 10 [µsec] in both 
ases. More-over, the whole synthesis time of the Hybrid−CPM amounts to 3.078 [sec] and
3.781 [sec], respe
tively. As regards to the higher burden of the Hybrid−CPM
ompared to the CPM , this is due to the solution of the CP problem, whi
h endsin KCP = 18 iterations. For 
omparative purposes, let us noti
e that a greater
omputational burden a�e
ts theHybrid−SA [13℄ method sin
eKHybrid−SA = 25have been 
hosen and CP problem is solved at ea
h iteration. Similar 
on
lu-sions hold true also for the DE approa
h [11℄ where the number of iterations hasbeen set to KDE = 10.The last 
omparative example deals with the synthesis of a large array (N =
200). Thanks to the 
omputational saving, the CPM-based pro
edures are ableto e�e
tively fa
e with su
h a problem dimensionality. The sum 
oe�
ients havebeen 
hosen to generate a Dolph-Chebyshev [19℄ pattern with SLL = −25 dB,while the values of the referen
e di�eren
e ex
itations have been �xed to thoseof the Zolotarev di�eren
e pattern with SLLref = −30 dB. The behaviors of thepatterns in Fig. 6.3 
learly point out that the integration of the CP optimizationwith the CPM allows a non-negligible enhan
ement of the SLL performan
es.As a matter of fa
t, the SLL 
omputed in 
orresponden
e with the 
lusteringdetermined by the Hybrid − CPM method (Tab. 6.2) is of about 3 dB lower85



6.2. SYNTHESIS OF LINEAR ARRAYS
M = 100 C

11111111111111222222223333333344444444555555555666
66666666666666666666666666666555555555444444433331

Q = 6 W 0.2133 0.7235 0.9417 1.0909 1.2752 1.4294Table 6.2: Large Arrays (M = 100, Q = 6) - Sub-array 
on�guration and weightsdetermined by the Hybrid − CPM method (see Fig. 6.3 for the 
orrespondingpattern).
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Figure 6.4: Large Arrays (M = 100, Q = 6) - Normalized 
ompromise di�eren
epatterns obtained with the Hybrid− CPM method and the CPM .than that of the standard version of the CPM (see Tab. 6.1).Finally, in order to assess the reliability of the synthesized solutions, let usevaluate the radiated power patterns when mutual 
oupling (MC) e�e
ts arein
luded into the array model. Towards this purpose, the MC models proposedin [42℄ and [43℄ have been taken into a

ount and 
ompared as in [44℄. The
ase-of-study example deals with a 20-element uniform linear array of thin λ/2dipoles oriented along the z axis [45℄. As a representative example, the e�e
tsof the MC on the solution obtained with the Hybrid − CPM approa
h andshown in Fig. 6.1 are analyzed. Figure 6.4 shows the pi
torial representationsof the relative power patterns for di�erent situations. As it 
an be observed, theradiation pattern obtained by in
luding theMC e�e
ts is similar to the ideal 
asewhatever the 
onsidered MC model. More in detail, the null positions are equal86



CHAPTER 6. THE HYBRID APPROACHto those of the ideal pattern, while some perturbations only a�e
t the behaviorof the se
ondary lobes without 
ompromising the performan
e of the di�eren
ebeam.6.3 Synthesis of Linear ArraysA hybrid version of the ICPM (i.e., the Hybrid−ICPM) presented in Chapter3 is 
ustomized to the synthesis of planar arrays in order to extend the range ofappli
ability of the planar CPM from ex
itation mat
hing to pattern optimiza-tion allowing, unlike the ICPM , a dire
t 
ontrol of the pattern features (i.e.,
SLL, BW , et
...).Similarly to linear array 
ase, the hybrid approa
h 
onsists of a two-steppro
edure where at the �rst step the sub-array 
on�guration is 
omputed a
-
ording to the IBEM (i.e., C△

Hybrid−ICPM = C△
opt). Su

essively, the weights

W△
Hybrid−ICPM , △ = E, H , of the sub-arrayed di�eren
e network are 
omputedby means of a standard CP pro
edure minimizing the following 
ost fun
tion(where the notation is the same of Chapter 4)

ΨCP
“

W△

”

= min
n

w∆
q

; q=1,...,Q
o

∂
n

PR
r=−R

PS(r)
s=−S(r)

h

ℜ
“

γ△rs

”

cos Υ (θ, φ) −ℑ
“

γ△rs

”

sinΥ (θ, φ)
io

∂χ

˛

˛

˛

˛

˛

˛ θ=0

φ=0(6.3)
χ being either θ or φ and Υ (θ, φ) = kxxm + kyyn, subje
t to
∂

{

∑R
r=−R

∑S(r)
s=−S(r)

[

ℜ
(

γ△rs
)

sin Υ (θ, φ) + ℑ
(

γ△rs
)

cos Υ (θ, φ)
]

}

∂χ

∣

∣

∣

∣

∣

∣ θ=0

φ=0

= 0(6.4)and
AF (θ, φ)|

θ=0

φ=0

=

R
∑

r=−R

S(r)
∑

s=−S(r)

γ△rs = 0 (6.5)and to |AF (θ, φ)|2 ≤ M (θ, φ) where M (θ, φ) is a fun
tion des
riptive of auser-de�ned mask on the synthesized di�eren
e power pattern. In Eq. (6.3), ℜ (·)and ℑ (·) denote the real and imaginary part, respe
tively. At the initializationof the CP pro
edure, the guess solution is set to the values of the sub-arrayweights obtained at the end of the ICPM , W△,(0) = W△
opt.87
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(b)Figure 6.5: Hybrid Formulation (N = 300, d = λ
2
, r = 4.85λ) - Behavior of the(a) SLL and of the (b) BW for the 
ompromise patterns synthesized by meansof the ICPM and the Hybrid− ICPM when Q ∈ [2, 8].88
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CPU − T ime [sec] TCP

Q 2 3 5 8 2 3 5 8

ICPM 2.30 2.64 3.12 7.23 37 45 57 120

Hybrid − ICPM 7554.68 8678.15 9623.57 7314.06 2114 2415 2675 2113Table 6.3: Hybrid Formulation (N = 300, d = λ
2
, r = 4.85λ) - Computationalindexes for the solution obtained with the ICPM and the Hybrid− ICPM .In order to show the SLL/BW 
ontrol allowed by the hybrid approa
h, Figure6.5 summarizes the results from a 
omparative study between the ICPM and itshybrid version in terms of maximum SLL [Fig. 6.5(a)℄ and 
orresponding BW
omputed on the prin
ipal plane [i.e., the φ = 0o℄ [Fig. 6.5(b)℄ dealing with thesame array 
on�guration of Se
t. 4.3.2. To better and more exhaustively analyzethe potentialities of the proposed hybrid approa
h, the number of sub-arrays hasbeen varied in the range Q ∈ [2, 8] and the synthesized sub-arrays 
on�gurationsand weights are shown in Fig. 6.6 . For 
ompleteness, the 
orresponding patternsare also given [Fig. 6.7℄ . As it 
an be observed (Figs. 6.7-6.5), the solutions fromthe Hybrid−ICPM outperform those of the ICPM in terms of pattern indexeseven though with heavier 
omputational 
osts. As far as the 
omputationalissues are 
on
erned, the dimension of the solution spa
e U (DAG) and the storageresour
es M (DAG) are given in Fig. 6.8 , whereas the CPU-time and number ofiterations TCP required to get the �nal solution for the Hybrid − ICPM and

ICPM are reported in Tab. 6.3 to point out the trade-o� between patterne�
ien
y and 
omputational burden.6.4 Dis
ussionsCon
erning the optimization problem at hand, the proposed CPM-based pro-
edure does not guarantee that the retrieved sub-array 
on�guration is the best
hoi
e for optimizing the SLL. As a matter of fa
t, su
h a 
on�guration 
an be(theoreti
ally) obtained only by means of global optimization pro
edures. How-ever, the proposed pro
edure has shown to outperform state-of-the-art globaloptimization strategies. Furthermore, starting from the assumption that CPM-based strategies are mat
hing te
hniques, the proposed approa
h 
an be easilyextended to arbitrary sidelobe masks or pattern shapes (for both sum and di�er-en
e patterns) by pro�tably using the state-of-the-art approa
hes (e.g., [40℄[41℄)to set the referen
e patterns.
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on�gurations (left 
olumn) and array element weights (right 
olumn) synthe-sized with the ICPM and the Hybrid− ICPM for di�erent values of Q [Q = 2(�rst row), Q = 3 (se
ond row), Q = 5 (third row), and Q = 8 (fourth row)℄.90
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Chapter 7Con
lusions and FutureDevelopmentsIn this last se
tion, some 
on
lusions are drawn and further advan
es are envis-aged in order to address the possible developments of the proposed te
hnique.
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In this thesis, an approa
h for the synthesis of monopulse array antennas hasbeen presented and validated. The method is based on an ex
itation mat
hingpro
edure to design sub-arrayed antennas generating an optimal sum and 
om-promise di�eren
e patterns. Thanks to the knowledge of the referen
e ex
itationset, the synthesis problem has been reformulated as a 
ombinatorial one to allowa 
onsiderable saving of 
omputational resour
es. Thanks to a graph-based rep-resentation of the solution spa
e, the use of an e�
ient path-sear
hing algorithmto speed-up the 
onvergen
e of the pro
edure for the synthesis of large arrayantennas as well as the use of the Ant Colony Optimizer (ACO) to bene�t ofits hill-
limbing properties in dealing with the non-
onvexity of the sub-arrayingproblem have been 
onsidered. Moreover, a hybrid approa
h has been developedto individually 
ontrol the level of the se
ondary lobes. A set of representativeexamples 
on
erned with both pattern mat
hing problems and pattern-featureoptimization have been reported in order to assess the e�e
tiveness and �exibilityof the proposed approa
h. Comparisons with previously published results havebeen shown and dis
ussed, as well.Con
erning the methodologi
al novelties of this work, the main 
ontributionis 
on
erned with the following issues:
• an appropriate de�nition of the solution spa
e by means of a graph stru
-ture;
• an original and innovative formulation of the sum-di�eren
e problem interms of a sear
h in a graph;
• a simple and fast solution pro
edure based on swapping operations amongborder elements and 
ost fun
tion evaluations.Moreover, the main features of the proposed graph-based te
hniques are thefollowing:
• a redu
tion of the dimensionality of the solution spa
e for the synthesisproblem at hand, by exploiting the information 
ontent of independentlyoptimal sum and di�eren
e ex
itations;
• a signi�
ant redu
tion of the 
omputational burden, by applying a fast so-lution algorithm for exploring the solution graph (i.e., sampling the solutionspa
e);
• the 
apability to deal with the synthesis of large linear and planar arraysin an e�e
tive and reliable way.As far as future developments are 
on
erned, this approa
h promises to showits �exibility and 
apability also with time-varying s
enarios and not only withthe �stati
� array synthesis. In su
h a framework, te
hniques for the 
ontrol and94



CHAPTER 7. CONCLUSIONS AND FUTURE DEVELOPMENTSsynthesis of adaptive phase-array are of interest sin
e they allow to shape in realtime the radiation pattern and in parti
ular the se
ondary lobes for noise andinterferen
e reje
tion.Moreover, the possibility of integrating the time modulating strategy for thesynthesis of patterns with low and ultra-low sidelobes 
an be investigated wherea set of RF swit
hes are used to 
ommute between the open and short 
ir
uitstate in order to enfor
e a time modulation on the element/sub-array ex
itations.
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Appendix AContiguous PartitionThis appendix is aimed at proving that, given Q sub-arrays, the value of the 
ostfun
tion (3.5) is minimum provided that the elements belonging to ea
h sub-arrayare 
onse
utive elements of the ordered list L = {lm; m = 1, . . . ,M ; lm ≤ lm+1}.With referen
e to a set of elements V = {vm; m = 1, ...,M} be to be dividedin Q sub-sets, the thesis to be proved is that the partition minimizing the 
ostfun
tion (3.5) is a 
ontiguous partition (i.e., if two elements vi and vn belong tothe same 
lass and vi < vj < vn, then element vj is assigned to the same subsetof elements). Towards this end, the proof follows the guidelines reported in [18℄.Let us 
onsider a non-
ontiguous partition PQ = {Vq; q = 1, ..., Q} of the set
V and three elements vi, vj, vn su
h that vi < vj < vn. Let elements vi and
vn belong to a subset with mean value dr and let vj belong to a di�erent subsethaving mean value ds. Whatever the values of dr and ds, at least one the followingstatements holds true







|vj − ds| ≥ |vj − dr| > 0,
|vi − dr| ≥ |vi − ds| > 0,
|vn − dr| ≥ |vn − ds| > 0.

(A.1)Let us denote with vt the element satisfying (A.1) and its own subset as V k =
{vk; k = 1, ..., Nk}. Moreover, let us refer to the other subset as V h = {vh; h = 1, ..., Nh}.A

ordingly, the 
ost fun
tion (3.5) asso
iated to the partition PQ may be writ-ten as:

Ψ =

M
∑

m=1

v2
m −Nk · d

2
k −Nh · d

2
h −

Q
∑

q=1; q 6=h,k

Nq · d
2
q (A.2)

Nq and dq being the number of elements and the mean value of the q-th sub-array,respe
tively.Now, let us 
onsider a new partition P (1)
Q obtained by moving the element vt fromthe subset V k to the subset V h. We obtain two new subsets V (1)

k = V k \{vt} and
V

(1)
h = V k∪{vt}

(4)1 with mean values equal to d(1)
k = Nkdk−vt

Nk−1
and d(1)

h = Nhdh+vt

Nh+1
,1 (4) We expli
itly note that the new partition P

(1)
Q has the same number of subsets as PQ.101



respe
tively. A

ordingly, the 
ost fun
tion asso
iated to the partition P (1)
Q 
anbe written as:

Ψ(1) =
M

∑

m=1

v2
m −

(Nkdk − vt)
2

Nk − 1
−

(Nhdh − vt)
2

Nh − 1
−

Q
∑

q=1; q 6=h,k

Nqd
2
q. (A.3)Now, by subtra
ting (A.3) from (A.2), after some manipulations, it turns outthat

Ψ−Ψ(1) =
Nk

Nk − 1
(vt − dk)

2 −
Nh

Nh + 1
(vt − dh)

2 . (A.4)A

ording to (A.1), Ψ > Ψ(1) and it 
an be 
on
luded that for every non-
ontiguous partition we 
an �nd another one with the same number of subsets,but with a smaller 
ost. Hen
e, the partition minimizing the 
ost fun
tion (3.5)is a 
ontiguous partition.

As a matter of fa
t, a

ording to (A.1), the element vt 
annot be equal to the mean value dkand thus, V k has 
ardinality greater than one. It follows that the sub-set V
(1)
k has at least oneelement. 102



Appendix BDimension of the Essential Spa
eThis se
tion is devoted at quantifying the dimension T (ess) of the essential so-lution spa
e ℜ(ess) =
{

C
(ess)
t ; t = 1, ..., T (ess)

}, thus pointing out the 
omputa-tional saving allowed by the proposed approa
h 
ompared to exhaustive or globalsampling solution pro
edures. More in detail, the aim is that of determining thenumber T (ess) of 
andidate solutions or, in an equivalent fashion, the number ofallowed paths in the solution tree.Generally speaking, sin
e a sub-array 
on�guration C 
an be mathemati
allydes
ribed by a sequen
e ofM digits of aQ-symbols alphabet, the whole number ofaggregations is equal to T = QM . Thanks to the equivalen
e relationship, the setof 
andidate solutions 
an be limited to the number of paths in a 
omplete binarytree of depth M , thus the number of non-redundant solutions results T = 2M−1.Moreover, by taking into a

ount only admissible (i.e., grouping where there isat least one element in ea
h sub-array) and allowed (i.e., sorted aggregations)
omplete sequen
es, the set of solution 
an be further redu
ed. With referen
eto the ordered list L = {lm; m = 1, . . . ,M ; lm ≤ lm+1}, the allowed paths aremathemati
ally des
ribed as
C

(ess)
t =

{

c
(ess)
t,m

∣

∣

∣
c
(ess)
t,m ≤ c

(ess)
t,m+1, c

(ess)
t,1 = 1, c

(ess)
t,M = Q

}

, t = 1, ..., T (ess),(B.1)where c(ess)m denotes the sub-array number to whi
h the m-th element lm of theordered list L belongs.In order to determine the essential dimension T (ess) = T (ess)(Q,M) of the solutionspa
e, let us 
onsider the �re
ursive� nature of the binary solution tree and, asa referen
e example, the 
ase Q = 2. In su
h a situation, the grouping ve
tor
C

(ess)
t is a sequen
e of M symbols from the set {1, 2} that satis�es the following
onstraints: (a) c(ess)t,1 = 1, (b) c(ess)t,M = 2, and (
) if c(ess)t,m = 2 then c

(ess)
t,m+1 =

c
(ess)
t,M = 2. Thus, ea
h possible solution C(ess)

t is made up of a sub-sequen
e of
onse
utive symbols 1 followed by a sub-sequen
e of symbols 2. A

ordingly, thetrial solutions C(ess)
t , t = 1, ..., T (ess), are obtained by moving the starting point103



of the sub-sequen
e of symbols 2 from m = 2 (being c1 = 1) up to m = M ,
T (ess) (Q,M)

⌋

Q=2
=

(

M − 1
1

)

= M − 1. (B.2)As far as the 
ase Q = 3 is 
on
erned, similar 
onsiderations hold true. In par-ti
ular, ea
h allowed trial solution C(ess)
t ends with a sub-sequen
e of su

essivesymbols 3. The number of elements of su
h a sub-sequen
e ranges from 1 to

M − 2, leading to a 
omplementary sub-sequen
e of symbols 1 and 2 of length
M − i. A

ordingly,

T (ess) (Q,M)
⌋

Q=3
=

M−2
∑

i=1

T (ess) (Q,M − i)
⌋

Q=2
(B.3)Generalizing, sin
e the smallest and largest number of o

urren
es of the symbol

Q in a sequen
e is 1 and M − (Q− 1), respe
tively, the essential dimension ofthe solution spa
e when a M elements array is partitioned into Q sub-arrays isequal to
T (ess) (Q,M) =

M−(Q−1)
∑

i=1

T (ess) (Q− 1,M − i) =

(

M − 1
Q− 1

)

. (B.4)
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