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Abstract

In the framework of the synthesis of monopulse array antennas for search-and-
track applications, the thesis focuses on the development and the analysis of a
method based on the sub-arraying technique aimed at generating an optimal sum
and compromise difference patterns through an excitation matching procedure.
By exploiting some properties of the solution space, the synthesis problem is re-
formulated as a combinatorial one to allow a considerable saving of computational
resources. Thanks to a graph-based representation of the solution space, the use
of an efficient path-searching algorithm to speed-up the convergence of the pro-
cedure for the synthesis of large array antennas as well as the use of the Ant
Colony Optimizer (ACO) to benefit of its hill-climbing properties in dealing with
the non-convexity of the sub-arraying problem are considered. Moreover, a hybrid
approach 1s developed to individually control the level of the secondary lobes. In
particular, the sub-array configuration is determined at the first step by exploiting
the knowledge of the optimum difference mode coefficients and in the second step,
the sub-array weights are computed by means of a quadratic programming proce-
dure. In the numerical validation, a set of representative ezamples concerned with
both pattern matching problems and pattern-feature optimization are reported in
order to assess the effectiveness and flexibility of the proposed approach. Com-
parisons with previously published results are reported and discussed, as well.

Keywords
Monopulse array antennas, sum and difference patterns, excitation matching,
contiguous partition, hybrid optimization.
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Structure of the Thesis

The thesis is structured in chapters according to the organization detailed in
the following.

The first chapter deals with an introduction to the thesis, focusing on the
main motivations and on the subject of this work as well as a presentation of the
state-of-the-art techniques dealing with the same antenna synthesis problem.

Chapter 2 presents the proposed excitation matching method for the synthesis
of monopulse linear array antennas, focusing on the definition of the solution
space as a non-complete binary tree as well as on the deterministic searching
algorithm.

In Chapter 3 the proposed method is integrated in an iterative matching
approach integrated in an iterative procedure ensuring, at the same time, the
optimization of the sidelobe level (or other beam pattern features). The flexibility
and effectiveness of such an approach are pointed out in the numerical validation
through an extensive set of comparative examples.

The extension of the approach from linear to planar arrays is described and
assessed in Chapter 4. A more compact graph structure is considered starting
from the observation that some parts of the non-complete binary tree are re-
cursively shared in it, enabling the synthesis of arrays with a large number of
elements. Accordingly, the searching strategy is customized to look for the best
compromise solution within the graph.

Chapter 5 deals with the presentation of an ant colony metaheuristic used
to benefit of its hill-climbing properties in dealing with the non-convexity of the
sub-arraying as well as in managing graph searches.

XV



LIST OF FIGURES

A hybrid approach for the synthesis of linear and planar monopulse array
antennas is presented in Chapter 6. At the first step, the sub-array configuration
is determined by means of the proposed excitation matching method. In the
second step, the sub-array weights are computed through the solution of a convex
programming problem for a fixed clustering to obtain a direct control on the
behavior of the secondary lobes.

Conclusions and further developments are presented in Chapter 7. Finally,
two appendices give more details on the definition of contiguous partition and
on the dimension of the solution space.
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Chapter 1

Introduction and State-of-the-Art

In the introduction, the motivation of the thesis is pointed out starting from a
brief overview on the techniques presented in the state-of-the-art an regarding
the solution of the optimal compromise problem between sum and difference
patterns for the synthesis of sub-arrayed monopulse array antennas.



A monopulse tracker [1][2][3] is a device aimed at detecting the position of a
target by using the information collected from an antenna that generates sum
and difference patterns. These beams can be synthesized by means of a reflector
antenna with two (tracking on a plane) or three (3D tracking) feeds, or by using
linear or planar array antennas, respectively. The latter solution is usually pre-
ferred since array antennas are easy to built and they do not require mechanical
positioning systems to steer the beam pattern. Moreover, array structures can
also be easily installed on mobile vehicles (e.g., aircrafts). Unlike linear struc-
tures, a planar array allows the generation of a sum and two spatially-orthogonal
difference patterns [4] [i.e., the azimuth difference mode (H — mode) and the el-
evation difference mode (E —mode)| useful to give a complete description of the
trajectory of a target in terms of range, azimuth, and elevation. These patterns
are required to satisfy some constraints as narrow beamwidth, low side lobe level
(SLL) and high directivity. In particular, as far as the sum pattern is concerned,
there is the need of maximizing the gain. On the other hand, the more critical
issue to be addressed dealing with difference patterns is concerned with the nor-
malized difference slope on boresight direction, since it is strongly related to the
sensitivity of the radar (i.e., to the angular error).

In order to synthesize independent optimal sum and difference patterns,
Taylor [5][6] and Bayliss [7] developed analytical techniques to compute the
corresponding excitation coefficients by sampling suitable continuous distribu-
tions. However, these optimal solutions require three independent feeding net-
works. Hence, high manufacturing costs usually arise and electromagnetic in-
terferences unavoidably take place because of the large number of elements in
planar monopulse arrays. In order to overcome these drawbacks, the sub-arraying
technique [8] is a suitable compromise solution aimed at optimizing pre-specified
sub-array layouts.

As far as linear arrays are concerned, McNamara proposed in [8| an excita-
tion matching method aimed at determining a best compromise difference pattern
close as much as possible to the optimum in the Dolph-Chebyshev sense [9] (i.e.,
narrowest first null beamwidth and largest normalized difference slope on the
boresight for a specified sidelobe level). Towards this end, for each possible group-
ing, the corresponding sub-arrays coefficients are iteratively computed through
pseudo-inversion of an overdetermined system of linear equations. It is evident
that since the best sub-array configuration is not a-priori known, the whole pro-
cess is extremely time-expensive due to the exhaustive evaluations. Moreover,
because of the ill-conditioning of the matrix system, large arrays cannot be easily
managed. In order to overcome the ill-conditioning and related issues, optimiza-
tion approaches have been widely used [10][11|[12][13]|14]|15]. Although such
techniques allows a significant advancement in the framework of sum-difference
pattern synthesis, they are still time-consuming when dealing with large arrays.
As a matter of fact, even though the solution space is sampled with efficient
searching criteria, the dimension of the solution space is very large.



CHAPTER 1. INTRODUCTION AND STATE-OF-THE-ART

To overcome such drawbacks allowing an effective choice of the array elements
grouping as well as a fast and simple solution procedure, an innovative approach
is proposed in this chapter that, likewise |8] and unlike [10]|11][12]|13][14][15],
is aimed at obtaining a compromise difference pattern optimum in the Dolph-
Chebyshev sense [9] starting from the observation that the sub-arraying is not
blind. As a matter of fact, it can be guided by considering similarity properties
among the array elements, thus significantly reducing the dimension of the so-
lution space. Starting from such an idea and by representing each solution by
means of a path in a graph structure, the synthesis problem is then recast as the
searching of the minimal-cost path within the graph.






Chapter 2

The Excitation Matching Approach
- Linear Arrays

The approach presented in this chapter regards a strategy for the synthesis of
sub-arrayed monopulse linear arrays based on the optimal matching of indepen-
dently optimum sum and difference excitations. By exploiting the relationship
between the independently optimal sum and difference excitations, the set of
possible solutions is considerably reduced and the synthesis problem is recast as
the search of the best solution in a non-complete binary tree. Towards this end,
a fast resolution algorithm that exploits the presence of elements more suitable
to change sub-array membership is presented. The results of a set of numerical
experiments are reported in order to validate the proposed approach pointing
out its effectiveness also in comparison with state-of-the-art optimal matching
techniques.



2.1. INTRODUCTION

2.1 Introduction

In this chapter, starting from the general idea pointed out in Section 1, it is
demonstrated how the solution space can be represented by means of a non-
complete binary tree, and consequently the synthesis problem is recast as the
searching of the minimal-cost path from the root to the leafs of the solution tree.

Generally speaking, in graph theory, a tree is a graph defined as a non-empty
finite set of vertexes or nodes in which any two nodes are connected by exactly
one path. The nodes are labeled such that there is only one node called the
root of the tree, and the remaining nodes are partitioned in subtrees. In our
case, since the tree is either empty or each node has not more than two subtrees,
it is a binary tree. Accordingly, each node of a binary tree has either (i) no
children, or (ii) one left/right child (i.e., non-complete binary tree), or (i) a
left child and a right child (i.e., complete binary tree), each child being the root
of a binary tree called a subtree [16]. In order to solve the problem at hand,
thus efficiently exploring the solution tree, a suitable cost function or metric is
defined and an innovative algorithm for the exploration of the solution space is
defined by exploiting the closeness (to a sub-array) property of some elements,
called border elements, of the array.

The chapter is organized as follows. In Section 2.2, the problem is mathe-
matically formulated defining a set of metrics aimed at quantifying the closeness
of each solution to the optimal one (Sect. 2.2.1) as well as the tree structure
(Sect. 2.2.2) and the algorithm for effectively exploring the solution space (Sect.
2.2.3). In Section 2.3, the results of selected numerical experiments are reported
and compared with those from state-of-the-art optimal matching solutions.

2.2 Mathematical Formulation

Let us consider a linear uniform array of N = 2M elements {&,,; m = +1, ..., £M}.
Following a sub-optimal strategy, the sum pattern is generated by means of the

symmetric set of the real optimal' excitations A" = {a,,; m = 1,..., M} [5][17],

while the difference pattern is defined through an anti-symmetric real excitation

set B={by,, = —b_p; m=1,...., M} |7]|9]. Thanks to such symmetry properties,

one half of the elements of the array S = {&,; m=1,..., M} is descriptive of

the whole array.

Grouping operation yields to a sub-array configuration mathematically de-
scribed in terms of the grouping vector C = {¢,; m=1,..., M}, ¢, € [1,Q)]
being the sub-array index of the m-th element of the array |[11|. Successively,
a weight coefficient w, is associated to each sub-array, ¢ = 1,...,Q), and, as a
consequence, the sub-optimal difference excitation set is given by (Fig. 2.1)

'In the Dolph-Chebyshev sense [9], unless mentioned elsewhere.
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,,,,,,,,,,,,,,,,,

Figure 2.1: Sketch of the sub-arrayed monopulse linear array antenna.

B ={by, =wne; m=1,...M;q=1,...,Q} (2.1)

where w,,, = 0¢,qWq (9c,.q = 1 if ¢y = ¢, Oc,,q = 0 otherwise) is the weight
associated to the m-th array element belonging to the ¢-th sub-array.

Accordingly, the original problem is recast as the definition of a sub-array
configuration C' and the corresponding set of weights W = {w,; ¢=1,...,Q}
such that the sub-optimal difference pattern B is as close as possible to the
optimal one, B?" = {Bm; m=1,..., M}. Towards this end the problem metric is
firstly defined in order to quantify the closeness of the sub-optimal solution to the
optimal one. Then, exploiting some properties of the sub-array configurations, a
non-complete binary tree, where each path codes a possible elements grouping, is
built. Finally, a simple algorithm for a fast search of the lowest cost path in the
binary tree is presented for defining the best sub-optimal solution of the problem
in hand.

2.2.1 Definition of the Solution-Metric

In order to find the optimal solution, let us define a suitable cost function or
metric that quantifies the closeness of every candidate/trial solution C, to the
optimal one,

VG = 17 D0 0 [ — dn (O, (2

where v,, and d,, are reference and estimated parameters, respectively. The
estimated parameters d,, {C,} are defined as the weighted arithmetic mean of

7
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the reference parameters v, related to the array elements belonging to the same
sub-array:

Moa2g, v
dn {C,}, = =t Cmlenatn. 23)
Zm:l an
As far as the reference parameters V. = {v,,; m =1,..., M} and the sub-arrays
weights W = {w,; ¢ = 1, ..., Q} are concerned, they are defined according to the
Gain Sorting (GS) algorithm.
Concerning the GS technique, the reference parameters v,, are set to the
optimal gains
A
- )

o770

U m=1,...,M, (2.4)

while the sub-array weights are assumed to be equal to the computed gains d,,

Wy = ¢, qdm {C,} g=1,..,Q, m=1,..., M. (2.5)

2.2.2 Definition of the Solution-Tree

In general, the total number of sub-array configurations is equal to 7' = QM since
each of them might be expressed as a sequence of M digits in a Q-based nota-
tion system. Without any loss of information, such a number can be reduced by
considering only the admissible (or reliable) solutions, i.e., grouping where there
are no empty sub-arrays. Moreover, let us observe that if an equivalence rela-
tionship? among sub-array configurations holds true, it is convenient to consider
just one sub-array configuration for each set (instead of the whole set), therefore
obtaining a set of non-redundant solutions.

Now, let us sort the known reference parameters {v,,; m =1,..., M} |com-
puted according to either the G'S (2.4)| for obtaining a ordered list L = {l,,,; m = 1,..., M},
where [; < l;1q, i =1,...,. M — 1, l; = min,, {v,}, and ly = maz,, {v,}. Since
the cost function is minimized provided that elements belonging to each sub-
array are consecutive elements of the ordered list L (see Appendiz A for a
detailed proof), the solution space can be further reduced to the so-called es-
sential solution space R(¢**) composed by allowed solutions. Consequently, the
dimension T of the solution space turns out to be reduced from 7' = QM up to

M—1 . . .
T(ess) — ( 0-1 ) (see Appendixz B for a detailed proof) and the essential
solution space R(**) can be formally represented by means of the non-complete
binary tree depicted in Figure 2.2. In particular, each complete path in the tree
codes an allowed sub-array configuration Qﬁe“) € Rs) and the positive integer

2A sub-array configuration C; is equivalent to the configuration C; when it is possible to
obtain the one from the other just using a different numbering for the same ¢,, coefficients.
As an example, the sub-array configuration C; = {1,2,3,3,2,3,2,1} is equivalent to C; =
{2,3,1,1,3,1,3,2}.
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Figure 2.2: Solution-Tree structure representing the essential solution space

§R(ess) ]

q inside each node at the [,,-th level indicates that the array element identified
by [,, is a member of the ¢-th sub-array. Thanks to this formulation, the original
minimization problem (i.e., C, . = arg {min,— .1 [V (C,)]}) is recast as that of
finding the optimal path in the solution tree.

2.2.3 'Tree-Searching Procedure

Although the set of candidate solutions has been considerably reduced by limit-
ing the solution space to the essential space, its dimension 7(°**) becomes very
large when M > () and an exhaustive searching would be computationally
expensive. In order to overcome such a drawback, let us observe that only
some elements of the list L are candidate to change their sub-array membership
without violating the sorting condition of the allowed sub-array configurations,

{Qgess); t=1,.., T(ess)} [see Eq. (B.1) - Appendiz B|. These elements, referred

to as border elements, satisfy the following property: an array element related
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to l,, is a border element if one of the elements whose list value is [,,_; or/and
lm+1 belongs to a different sub-array. Therefore, the aggregation C,, € Jr(ess)
minimizing the cost function W is found starting from an initial path randomly
chosen among the set of paths in the solution tree and iteratively updating the
candidate solution just modifying the membership of the border elements. More
in detail, the iterative procedure (k being the iteration index) consists of the
following steps.

e Step 0 - Initialization. Initialize the iteration counter (k = 0) and the
sequence index (m = 0). Randomly generate a trial path in the solution
tree corresponding to a candidate sub-arrays configuration C© ¢ R(ess),

Set the optimal path to Q(k)J =00,
k=0

opt

e Step 1 - Cost Function Evaluation. Compute the cost function value of
the current candidate path C® by means of (2.2), U*) = ¥ {Q(k)}. Com-

pare the cost of the aggregation C® to the best cost function value attained

at any iteration up to the current one, \Ifg;t_l) = MiNp=1, . k-1 (\If {Q(h)}>

and update the optimal trial solution Q(k) c® if @ {Q(k)} <Vv {C(k_l)}.

opt =L ~opt

e Step 2 - Convergence Check. If the termination criterion, based on a

maximum number of iterations K or on a stationary condition for the fit-

1)Ko ;
. ‘Kwindowqj(()pt )_Zj:uizndow \Ijt(ajp)t
ness value (i.e., o

opt

<1, Kyindow and n being a fixed

number of iterations and a fixed numerical threshold, respectively), is sat-

isfied then set C,, = Qg’;,% and stop the minimization process. Otherwise,
go to Step 3.

e Step 3 - Iteration Updating. Update the iteration index (k < k+1) and
reset the sequence index (m = 0).

e Step 4 - Sequence Updating. Update the sequence index (m «— m + 1).
If m > M then go to Step 3 else go to Step 5.

e Step 5 - Aggregation Updating. If the array element related to l,(,'f) is a
border element belonging to the ¢-th sub-array then define a new grouping
Cc®™) by aggregating such an element to the (¢ — 1)-th sub-array [if the

array element corresponding to lﬁ,’j)_l is a member of the (¢ — 1)-th sub-
array| or to the (¢ + 1)-th sub-array |if the array element corresponding to

l,(ﬁzrl is a member of the (g + 1)-th sub-array|. If U*+™ = ¥ {Q(k’m)} <

v {Q(k)} then set ¥ = ™ and go to Step 1. Otherwise, go to Step
4.

10
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2.3 Numerical Validation

In order to assess the effectiveness of the proposed method, an exhaustive set of
numerical experiments has been performed and some representative results will
be shown in the following.

For a quantitative evaluation, a set of beam pattern indexes has been defined
and computed. More in detail, (a) the pattern matching A that quantifies the
distance between the synthesized sub-optimal pattern and the optimal one

_ Jo NIAF @) — JAF (0)[| dv
Jo 1AF ()7 dy ’

where ¢ = (2rd/\) sinf, 6 € [0,7/2], (A and d being the free-space wavelength
and the inter-element spacing, respectively), |AF ()| and |AF ()| are the
normalized optimal and generated array patterns, respectively; (b) the main
lobes beamwidth By and (c¢) the power slope Py, that give some indications on

the slope on the boresight direction

A

(2.6)

Vmaz
Pslozw[m3x<|AF<¢>|n>><wm— [ arwia. en
0

Ymaz being the angular position of the maximum in the array pattern; (d) the
sidelobes power Py,

Pt — / AR ()], di, (2.8)

where 1) is the angular position of the first null in the difference beam pattern.

The remaining of this section is organized as follows. Firstly, some experi-
ments aimed at showing the asymptotic behaviour of the proposed solution are
presented (Sect. 2.3.1) and a comparative study is carried out (Sect. 2.3.2).
Furthermore, some experiments devoted at showing the potentialities of the pro-
posed solution in dealing with large arrays are discussed in Sect. 2.3.3. Finally,
the computational issues are analyzed (Sect. 2.3.4).

2.3.1 Asymptotic Behavior Analysis

In order to assess that increasing the number of sub-arrays () the synthesized
difference patterns get closer and closer to the optimal one, let us consider a linear
array of N = 2x M = 20 elements characterized by a d = % inter-element spacing.
The optimal sum pattern excitations, {c,,, m = 1,..., M}, have been fixed to that
of the linear Villeneuve pattern [17| with @ = 4 and 25dB sidelobe ratio (Fig.
2.3 - Villeneuve, 1984), while the optimal difference weights {3,,, m =1, ..., M },
have been chosen equal to those of a Zolotarev difference pattern 9] with a
sidelobe level SLL = —30dB (Fig. 2.3 - McNamara, 1993). Then, @ has been
varied between 2 and M and the GS technique has been applied. For sake of

11
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Figure 2.3: Asymptotic Behavior (M = 10, d = %) - Sum {a,;m=1,... M}
and difference {f,,; m =1,..., M} optimal excitations. Compromise difference
coefficients {b,,; m = 1,..., M} for different values of Q.

space, selected results concerned with @) = 3, Q = 6, and () = 9 are reported
in terms of difference excitations. As expected, the coefficients obtained with
the G.S converge to the optimal ones and, starting from = 6, the differences
between generated and reference difference patterns turn out to be smaller and
smaller.

2.3.2 Comparative Assessment

For comparison purposes and in the framework of synthesis techniques aimed at
determining the best compromise difference pattern as close as possible to the
optimal one, let us consider the EMM by McNamara [8] as reference’. As far
as the test cases are concerned, the same benchmark investigated in |8| has been
taken into account. The array geometry and the optimal sum excitations was
as in Sect. 2.3.1, while the optimal difference excitation vector B?* has been
chosen for generating a modified Zolotarev difference pattern withm =4, ¢ =3
and a sidelobe ratio of 25dB [9].

3No comparison with optimization-based procedures (i.e., [10][11][12][13][14]) have been
reported since they are aimed at minimizing a pattern parameter (e.g., the SLL) and not at
better matching an optimal difference pattern.

12
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I[McNamara, 19|93] -
GS --------
[McNamara, 1988] - ]

Relative Power [dB]

Y/t

Figure 2.4: Uniform sub-arraying (M = 10, d = %, () = 5) - Reference optimum
and normalized difference patterns obtained by means of the EM M and the G'S.

The first test case deals with a uniform sub-arraying over the antenna with
@Q = 5. The values of the sub-arrays weights optimized with the G.S are W% =
{0.2951, 0.8847, 1.1885, 1.3994, 1.4878}. Moreover, the synthesized difference
pattern is shown in Figure 2.4, while the computed beam-pattern indexes are
reported in Table 2.1. The advantages on the use of the tree-based approaches
are evident, as confirmed by the values of both the SLL (4dB below the level
achieved by the EMM, SLLFMM = —17.00dB vs. SLL% = —21.00) and

the pattern matching index (AAE—CIZM ~ 1.5 - Tab. 2.1). Moreover, it is worth

noting that, thanks to the structure of the solution tree, the dimension of the
essential space reduces to T(¢*) = 1 (since l; and Iy belong to the first sub-array,
I3 and l4 to the second one, and so on), thus allowing a significant saving of

‘ Approach H Py, ‘ By ‘ P ‘ma:c{SLL}‘ A ‘

EMM [8] | 0.1970 | 0.3610 | 0.1038 —17.00 0.4015
GS 0.1811 | 0.3784 | 0.1082 —21.10 0.2633
Optimal [9] || 0.1802 | 0.3735 | 0.0598 —25.00 —

Table 2.1:  Uniform sub-arraying (M = 10, d = %, () = 5) - Beam pattern
indexes.

13
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| | Q=3 | Q=5 | |
| | EMM [8]| GS [EMMI[8]| GS |[Optimal [9]]
Py, 0.2117 0.1800 0.2000 0.1806 0.1802
By 0.3745 0.3735 0.3854 0.3735 0.3735
Py, 0.1798 0.1054 0.0950 0.0823 0.0598
max {SLL} —14.70 | —18.63 | —23.40 | —23.00 —25.00
A 0.5438 0.4073 0.2562 0.1571 —
Table 2.2: Non-uniform sub-arraying (M = 10, d = %, Q) = 3, 5) - Beam pattern

indexes.

computational resources. As a matter of fact, the EM M requires the solution of
an overdetermined system of linear equations in correspondence with any possible
uniform grouping [8|, i.e., a number of T' = 945 evaluations.

Second and third test cases consider non-uniform sub-arraying. The former
configuration is an example of the limited number of sub-arrays () = 3) that
might be used with a small monopulse antenna. The latter has the same number
of sub-arrays as that of the first configuration (@ = 5). The tree-based algo-
rithms have been applied and the following sub-array configurations have been
determined. In particular, the grouping Qopr ={1,2,3,3,4,5, 5,5, 4, 3} has
been synthesized when ) = 5, while Qgﬁ ={1,1,2, 2,3, 3, 3,3, 3, 2} has been
obtained for () = 3. The obtained beam patterns are shown in Fig. 2.5 and the
corresponding values of the pattern indexes are reported in Tab. 2.2. As it can
be noticed, the GS improves the performances of the EMM in matching the

optimal difference pattern as pointed out by the behavior of the global matching

index A (AAE—?;{SMJ = 1.33 and AAE—?;{SMJ = 1.63). Concerning the smaller
Q=3

configuration, it is further confirmed (as already pointed out in Section 2.3.1)
the flexibility and reliability of the G'S algorithm in dealing also with complex
cases where a limited number of sub-arrays is taken into account. As a matter
of fact, for @ = 3 the solution of the GS has a sidelobe ratio of SLL = 18.63dB
and a main lobe very close to the optimal one, i.e., Bgs = B = (.3735 and

PSS = 0.1800 vs. P%" = (.1802.

slo slo

2.3.3 Large Arrays Analysis

This section is aimed at analyzing the performances of the proposed tree-based
techniques when dealing with large arrays. As far as the optimal setup is con-
cerned, sum {a,,, m =1, ..., M} and difference {3,,, m =1,..., M} optimal ex-
citations have been chosen to generate a Dolph-Chebyshev pattern [19] with
SLL = —25dB and a Zolotarev pattern [9] with SLL = —30dB, respectively.

As a first experiment, a linear array of N = 200 elements with \/2 spacing

14
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iMcNamara, 19|93] R
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Figure 2.5: Non-uniform sub-arraying (M = 10, d = %) - Reference optimum

and normalized difference patterns obtained by means of the EM M, and the GS
when (a) @ =3 and (b)) Q = 5.
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| | GS | Optimal Dif ference |9] |

Puo 0.0066 0.0066

By 0.0148 0.0151

Py 0.0868 0.0824

maz {SLL} || —18.00 —30.00
A 0.2921 -

Table 2.3: Large Arrays (M = 250, d = %, () = 4) - Beam pattern indexes.

has been used by considering various sub-arraying configurations. Figure 2.6
shows the optimal difference pattern (i.e., the synthesis target) and the patterns
obtained when ) = 4 and ) = 6 by using the GS. For completeness, the values
of the synthesized difference excitations are displayed in Figure 2.7. The GS
algorithm satisfactorily approximates the optimal main lobe characteristics in
terms of both By, and P,,, and the solution presents a sidelobe ratio close to
the reference one (SLLGSJQ , = —21.90 and SLLY | 06 = —25.13). The last
test case (and second experiment dealing with large structures) is concerned with
a linear array of N = 2 x M = 500 elements (d = \/2). As a representative
example, the case of Q = 4 is reported and analyzed (Tab. 2.3). The arising
beam patterns allow one to drawn similar conclusions to those from the previous
scenario, since once again the effectiveness of the GS technique in dealing with
a limited number of sub-arrays is pointed out. As a matter of fact, it is worth
noting that unlike tree-based procedures the EMM is not reliable in dealing
with large arrays since it requires the numerical processing of overdetermined
linear systems, whose ill-conditioning get worse when the ratio % grows.

In order to evaluate the performance of the tree-based method versus the
array dimension, NV has been varied from 20 (small/medium arrays, i.e. M < 50)
up to 500 (large arrays, i.e. M > 50) and different array partitions (@ € [3, 10])
have been considered. The plot of A versus M for different values of () is shown
in Figure 2.8. As it can be observed, for a fixed number () of sub-arrays, the
distance between the optimal difference pattern and the compromise one does
not significantly vary as the number of elements M increases (M > 50) ranging
from A = 0.15 (Q = 10) up to A = 0.36 (@ = 3). Moreover, as expected,
for each array aperture (i.e., M = cost), the synthesized difference patterns get
closer and closer to the optimal one when the value of @) grows (Q — M).

2.3.4 Computational Issues

Now, let us analyze the computational costs of the tree-based approaches, pro-
viding a comparison with the EM M, as well. Towards this end, let us firstly
consider the dependence of the dimension of the solution space on the number
of elements of the array M. As a representative case, let us analyze the behavior

16
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Figure 2.6: Large Arrays (M = 100, d = %) - Reference optimum and normalized
difference patterns obtained by means of the GS technique when ) = 4 and

Q =6.
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Figure 2.7: Large Arrays (M = 100, d = %) - Difference excitations determined
by the tree-based techniques when () =4 and @) = 6.
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Figure 2.8: Large Arrays (d = 3) - Behavior of A versus M for various values of

0.

of T and T when Q = 3 (K = 100 and n = 1073) (Fig. 2.9). As it can be
observed, the dimension of the solution space T of the EM M grows exponen-
tially with M, while, as expected [see Appendiz A|, T(***) shows a polynomial
behavior. Obviously, the same behavior holds true also for different values of @)
(Fig. 2.9).

On the other hand, the computational effectiveness of the Tree-Searching
procedure in sampling the solution space is further pointed out from the evalua-
tion of the C' PU-time, t (on a 3 GHz Pentium 4 and 512 M B of RAM), needed
for reaching the convergence (Fig. 2.10). As a matter of fact, maxg {tg} =
70 [sec] (kopr = 90) in correspondence with the largest array (M = 250), while
mazg {tg} = 12.8 [sec] (kopr = 8) and maxg {tg} = 2.3 [sec| (kopt = 4) when
M =100 and M = 50, respectively.

2.4 Discussions

The methodological novelties of the proposed approach lie in the appropriate
definition of the solution space, the innovative formulation of the problem in
terms of a search inside a non complete binary tree and the possibility of applying
a fast resolution algorithm. All these improvements allow the proposed approach
to deal with the synthesis of large arrays in an effective and reliable way.

As confirmed in the comparative assessment, because of the favorable trade-
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Figure 2.9: Computational Analysis - Behavior of T versus M when the tree-
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Figure 2.10: Computational Analysis - Behavior of ¢ versus M for different values
of @ (GS Approach).
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off between complexity/costs and effectiveness, the proposed tree-based strategy
seems a promising tool to be further analyzed and extended to other geometries
and synthesis problems. Accordingly, some of the possible extensions will be
considered in the next chapters of this work.
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Chapter 3

The Iterative Matching Approach

In this chapter, the optimal excitations matching method presented in Chapter 2
is integrated in an iterative procedure ensuring, at the same time, the optimiza-
tion of the sidelobe level (or other beam pattern features) for the compromise
difference pattern. The flexibility of such an approach allows one to synthesize
various difference patterns characterized by different trade-off between angular
resolution and noise/interferences rejection in order to match the user-defined re-
quirements. On the other hand, thanks to its computational efficiency, synthesis
problems concerned with large arrays are easily managed, as well. An exhaustive
numerical validation assesses the reliability and accuracy of the method pointing
out the improvements upon state-of-the-art sub-arraying techniques.
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3.1 Introduction

The design of monopulse radar systems [2][3| requires the synthesis of both a sum
pattern and a difference pattern, which satisfy some specifications such as nar-
row beamwidth, low side-lobe-level (SLL), and high directivity. When the sub-
arraying strategy is considered, according to the guidelines of [8][10][12][11][14],
the sum pattern is fixed to the optimal one, while difference excitations are ob-
tained from the sum coefficients by properly grouping the array elements and by
weighting each sub-array in order to satisfy the user-defined constraints. In such
a context, two different methodological approaches might be recognized. The
former (indicated in the following as “optimal matching”) is aimed at determin-
ing the “best compromise” difference pattern, which is as close as possible to the
optimum in the Dolph-Chebyshev sense 9] (i.e., narrowest first null beamwidth
and largest normalized difference slope on the boresight for a specified sidelobe
level), as considered in Chapter 2. The other, denoted as “feature optimization”,
where the beam pattern parameters (usually, the SLL [10]-[11] or the directivity
[20]) are controlled by including them in a cost function to minimize according
to a global optimization stochastic procedure.

Concerning the “optimal matching” techniques, since the the “FEzxcitation
Matching” method (EMM) proposed by McNamara in [8] does not allow the
control of the beam pattern SLL, hence a constrained version of the method has
been also introduced ([8], Sect. 5) in order to reduce the grating lobes effects
and lead to sub-optimal difference patterns with a suitable compromise between
SLL, beamwidth, and slope on boresight. Unfortunately, when the ratio between
array elements and number of sub-arrays gets larger, the EM M is not always
reliable/efficient because of the ill-conditioning of the matrix system as well as
the large computational costs of the arising exhaustive evaluation process.

As far as the “feature optimization” class of sub-arraying methods is con-
cerned, Ares et al. considered in [10] the application of a simulated annealing
(SA) algorithm for defining the optimal sub-array weights (i.e., aimed at obtain-
ing a difference pattern that satisfies a fixed constraint on the SLL) starting from
an assigned sub-array configuration. On the other hand, taking advantage of the
problem convexity with respect to the weights of the subarrays and following
the same line of the reasoning as in [21], a two-step hybrid optimization strategy
has been proposed in [13|[14]. By optimizing at the same time both partition
functions (i.e., those functions that define the membership of the array elements
to each sub-array) and the sub-array coefficients, Lopez et al. [12]| proposed a
Genetic Algorithm (GA) based technique. In a similar fashion, a Differential
Evolution (DE) algorithm has been used in [11].

Although the optimization of elements membership and sub-array weights
significantly improved the performance of sum-difference optimization method-
ologies, some drawbacks still remain. As a matter of fact, such techniques are
usually time-consuming especially when dealing with large arrays since the di-
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CHAPTER 3. THE ITERATIVE MATCHING APPROACH

mension of the solution space significantly enlarges. Moreover, “ feature optimiza-
tion” approaches are usually formulated in terms of single-objective problems and
the control of multiple features of the beam pattern (e.g., SLL, beamwidth, dif-
ference slope on boresight) would require the use of customized and complex
multi-objective strategies.

In the framework of optimal matching techniques, the present contribution is
aimed at proposing a new approach for synthesizing best compromise patterns
with SLL control. Towards this end, following the guidelines of the FMM,
the proposed approach determines the difference solution close to the optimal
Dolph-Chebyshev pattern through the search of the minimum cost-path in the
non-complete binary tree of the possible aggregations by satisfying the SLL
constraints through an iterative procedure (unlike global optimization methods
that directly define a SLL penalty term in the cost function [10]-|11]).

The remaining of the chapter is organized as follows. The proposed synthesis
procedure is described in detail Section 3.2. Section 3.3 deals with an exhaustive
numerical validation aimed at assessing the effectiveness of the proposed tech-
nique and at providing a comparison with state-of-the-art solutions. Some final
remarks are drawn in Section 3.4.

3.2 Mathematical Formulation

Let us consider a linear uniform array of N = 2M elements and let us assume
that the sum and difference patterns are obtained through a symmetric, A =
{am =a_pm; m=1,..., M}, and an anti-symmetric, B = {b,, = —b_,,,; m=1,..., M},
real excitations set, respectively. Thanks to these symmetry properties, only one
half of the array elements is considered.

According to the guidelines of sub-arraying techniques, the sum pattern is ob-
tained by fixing the sum excitations to the ideal ones, A = {a,,; m =1, ..., M}
[19]|5][17], while the difference excitations set is synthesized starting from the
sum mode as follows

Q
b, = Zam (Ocqwq); m=1,..., M, (3.1)
q=1

where () is the number of sub-arrays, w, is the weight associated to the g-th
sub-array in the difference feed network, and d,,,, is the Kronecker delta whose
value is determined according to the sub-array membership of each element of
the array (d.,,, = 1 if ¢;,, = ¢, d.,,, = 0 otherwise, ¢, € [1, Q)] being the sub-array
index of the m-th array element).

In order to obtain the best compromise difference excitations (i.e., a set of
excitations giving a pattern as close as possible to the ideal one in the Dolph-
Chebyshev sense that satisfies at the same time a constraint on the SLL), an
innovative adaptive searching technique, indicated as Iterative Contiguous Parti-
tion Method (IC'PM), is applied. It consists of an inner loop aimed at ensuring

23
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the closeness of the trial solution to a “reference” ideal pattern through the tech-
nique proposed in Chapter 2 and by an outer loop devoted at satisfying the
requirements on the SLL (or another beam pattern feature).

With reference to Fig. 3.1 , the main steps of the iterative procedure are
described in the following:

o Step 0 - Initialization. The external iteration index is initialized (e = 0),
the optimal sum excitations A" = {a,,; m =1,..., M} are computed
[19][5][17], and the user-desired sidelobe level threshold is set, SLLy;

e Step 1 - Reference Difference Pattern Selection. At the first iteration
(e = 1), an optimal - in the Dolph-Chebyshev sense - difference excitations

set Bf,ee)f = {ﬁy(ﬁ); m=1,..., M} that generates a beam pattern with a side-

lobe level SLLiee)f = SLL4 is computed as in [9] and assumed as reference
in the inner loop. Then, for each element of the array, an identification
parameter is evaluated according to the Gain Sorting (GS) algorithm

(e)
v = ﬂl, m=1,... M. [Optimal Gain] (3.2)
Wy

The identification indexes {U,(rf); m=1,..., M} are ordered in a sorted
list L = {l,; m=1,...,M} (ie., an ensemble where I, < [, k =
1,...,M —1, [, = min {v,(ﬁ,)}, and [p; = max {U,(ﬁ,)});

o Step 2 - Computation of the Compromise Solution. With reference
to the e-th target pattern, the approximation algorithm based on the Con-
tiguous Partition technique is run until a suitable “termination criterion®
is satisfied. Accordingly, the following steps are performed:

— Step 2.a - Solution Initialization. The internal iteration counter is

initialized [i(e) = 0] and a starting trial grouping C*(¢) = {ci,(f); m=1,...

corresponding to a Contiguous Partition™! of L in Q subsets Bge) =
{Lf](e); g=1,.. .Q}, is randomly generated and assumed as the op-

timal grouping Qi(p? — (C"®.  Successively, the sub-array weights

'(WWith reference to [18], it can be easily shown that, once the parameters 08 have been

ordered in the sorted list L = {l,,,; m =1,..., M}, the grouping minimizing the cost function
(3.5) corresponds to a Contiguous Partition. A grouping of array elements is a Contiguous
Partition if the generic m;-th array element belongs to the g-th sub-array only when two
elements, namely the m;-th element and the m,,-th one, belong to the same sub-array and the
© < vj(»e) < ¥ holds true.

condition v;
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Wi — {wé(e); g=1,..., Q} are analytically computed as

q

M
w'©) = Z Oernq@m <Qi(e)) ,q=1,...,Q [Estimated Gain] (3.3)
m=1

dpm, (Qi(e)> being an estimate of the identification parameter %) given

by

. M 25 (e)
d, (QZ(@) _ Zifaggcm L om=1,.,M;  (3.4)
s=1 §7CsCm

— Step 2.b - Cost Function Evaluation. The closeness to the target
pattern of the current candidate solution ﬁi(e) (or in an equivalent
fashion, the couple of coefficients C®) and Ei(e)) is quantified through
the following cost function

. 1 & L NT2
ool LS e o g (o). @

=1

The cost function value Ui = @ {Qi(e)} is compared to the best
value attained up till now, ¥ Qi(e)_l = min [\Ifh(e)}, and if
o B(©)=Li(e)-1

{C’i(e)} < v {C’( e }, then the optimal trial solution is updated,

opt
El(e) B, Ci = C"® and mz&:t) = W as well as the optimal

cost function Value \Ifo(pt) pile)

— Step 2.c - Termaination Criterion Check. If a maximum number
of iterations I is reached or a stationary condition [i(e) = I'?),] for the
cost function value,

Z(e window t(e
KU)iTLdOU) opt Zt $ \I]opt

\I,Z(e)

opt

<n, (3.6)

holds true (I indow and n being a fixed number of iterations and a
fixed numerical threshold, respectively), then the inner loop is stopped

and the following setting is assumed: C'((,;t = Qf;;et), E(();)t = Eigft)
(i.e., Bopt B), and \Ifopt = \Iflogft The procedure goes to Step 3.

Otherwise, the Step 2.d is performed;

— Step 2.d - Aggregation Updating. The inner index is updated
li(e) « i(e)+1| and a new grouping vector C*® is defined. More in de-
i(e)

tail, a new contiguous partition BQ is derived from the previous one
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Bge)_l just modifying the sub-array memberships of the “Border Ele-
ments” defined as follows [,,, € Li(e) /\{ (lm_l € Lff_?) V (lm+1 € ngﬁ) },

t € [1;Q]. The corresponding sub-array weights W) are then ana-
lytically computed as in (3.3). The procedure goes to Step 2.b;

e Step 3 - Side-Lobe-Level Check. The descriptive parameters of the beam
pattern generated by the coefficients ﬁf);)t are computed as well as the

SLL, SLLY) = SLL {B“” } If SLL®), < SLLy and the “degree of close-

opt — opt opt
ness” to the reference pattern is satisfactory (e.g., some constraints on the
beamwidth /directivity are satisfied), then the whole process ends and the
final solution is: C,,, = Clo, W, = W), (ie., B,y = B%)), Wop = WL,
Otherwise, the outer iteration index is updated (e < e 4+ 1) and another

reference pattern that satisfies the condition SLL&Z)f < SLL&Z}U is chosen.
Then, the procedure restarts from Step 1 until e = E, E being a fixed
number of outer-loop iterations.

It is worth noting that the Contiguous Partition technique applied in the inner
loop allows a non-negligible saving of computational resources as pointed out in
Section 3.3 by means of some numerical experiments as well as in Section 2.3.4.

3.3 Numerical Results

In this section, representative results from selected test cases are reported for
assessing the effectiveness of the /C' P M in providing a suitable trade-off between
desired SLL, directivity, and beamwidth (Sect. 3.3.1) as well as in dealing with
smaller (Sect. 3.3.2) and larger arrays (Sect. 3.3.3). Comparisons with state-of-
the-art synthesis techniques are presented (Sects. 3.3.2-3.3.3), as well.

In order to quantify the optimality and accuracy of the obtained solutions,
the quantitative indexes introduced in Section 2.3 are considered. Moreover,
concerning the computational costs, the total number of inner iterations, I;,; =
ZE 19 the CPU-time needed for reaching the final solution, 7', and the total

e=1 " stat»
number of possible sub-array configurations, U, are analyzed.

3.3.1 ICPM Performance Analysis

This section is aimed at analyzing the behavior of the iterative S LL control proce-
dure in providing a suitable trade-off between SLL, directivity, and beamwidth.
Towards this end, a linear configuration of N = 2 x M = 20 elements with
\/2 inter-element spacing is chosen and the sum excitations A“** have been set
to those of the linear Villeneuve pattern [17] with 7 = 4 and 25dB sidelobe
ratio. Then, for fixed values of @ (Q = 2, 4, 7), the ICPM has been applied
by setting the sidelobe threshold to SLL; = —25dB and requiring a main lobe
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width smaller than Bw™/ = 6.0°. The adaptive searching procedure has been

carried out by considering a succession of different reference excitation sets ﬁge)f,

e=1,.,3,9] with SLL{,; = ~25dB, SLL{® = —30dB, and SLL’, = —404dB,
respectively.

Figure 3.2 shows the results obtained by applying the sidelobe control pro-
cedure. As can be observed, the beam patterns synthesized by applying at
each e-th iteration the Contiguous Partition technique show a trade-off between
the angular resolution accuracy and noise rejection capabilities depending on
the reference excitations ﬁfnee)f As a matter of fact, when the difference main
lobes get narrower, more power is wasted in the side lobes, and vice versa as
confirmed by the values of the indexes reported in Tab. 3.1 . On the other
hand, as expected, the SLL of the synthesized patterns get closer and closer

to the reference one SLLﬁef when @ grows (e.g., SLL®) J = —16.20dB vs.
Q=2

opt
SLLoth = —31.30dB when SLLY; = —40dB). Consequently, it turns out
Q=7

that the ICPM more successfully applies (i.e., satisfying the SLL and band-
width requirements) when @ is not very small (Q > 2). As a matter of fact,
the iterative (e = 1, ..., F') procedure yields a satisfactory solution at e = 2 when

Q = 4 (being SLLOthQ L —22.30dB and Bw(2)JQ:4 = 5.1622°) and Q =7

(being SLij,tJ = —28.80dB and Bw? | o_7 = 5.1555%), while for Q = 2,
Q=7 -

whatever the iteration (e = 1,2,3), the fulfillment of the SLL criterion is not
met.

As far as the computational issues are concerned, it is worth noting that
the IC'PM allows a significant reduction of the dimension of the solution space
(U(s9) vs. U - Tab. 3.1). Moreover, although the number of possible aggregations
changes (U], =9, U] =84, and U] = 84) for different
values of ), the computational cost for reaching the termination criterion of the
inner loop remains almost the same. In fact, [émt = 2 inner iterations are usually
enough for determining Bopt, except for the case of Q =7 when 1) stat = 9-

Another interesting observation is concerned with the value of the cost func-
tion at the inner loop convergence [i.e., when i(e) = I(M] For a fixed refer-

ence pattern, it monotonically decreases as the number of sub-arrays () tends
to M (e.g., W >J — 3.81 x 10~ \pg;gtJ — 9.53 x 102, and \pg;gtJ -
Q=2 Q=1 Q=7

opt

2.29 x 1073) pointing out asymptotically a more accurate matching between the
sub-optimal difference mode and the reference one.

3.3.2 Comparative Assessment

In this section, a comparative analysis between the proposed approach and state-
of-the-art techniques, based on the optimization of a suitable cost function con-
structed with reference to a SLL with a prescribed value, is carried out. Both
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Figure 3.3: Comparative Assessment (M = 10, d = %, @ = 3) - Normalized
difference patterns synthesized with the ICPM — GS and the SA algorithm
[10].

fixed-partition (Test Case 1) and global-synthesis (Test Case 2) problems have
been considered.

Test Case 1. Fixed-Partition Synthesis

The first test case deals with the synthesis of a fixed sub-array configuration.
With reference to the same benchmark in [10] and addressed by Ares et al. with
a SA-based technique [10], a linear array of N = 2 x M = 20 equally-spaced
(d = A/2) elements and @ = 3 is considered. The optimal sum excitations
have been fixed to that of a Dolph-Chebyshev pattern with SLL = —35dB
and a Zolotarev difference pattern with SLL,.; = —35dB has been chosen as
reference.

In Figure 3.3 , the difference patterns synthesized with the G.S algorithm
are compared with that shown in [10]. Moreover, the corresponding sub-array
grouping and weights are given in Tab. 3.2 . The GS technique outperforms the

S A-based solution in terms of the maximum value the sidelobe level (SLL((E;A) =

—19.74dB [10] vs. SLL'GY = —25.25dB) and allows a three fold reduction
(54)

of the side lobe power (i.e., %J ~ 3). Moreover, by imposing the compro-
sll
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(mM=10] B | 1122233330
Q=3 | W% [ 0.2804 | 0.5839 | 1.3971
WP | 0.4618 | 2.1607 | 2.9448

Table 3.2: Comparative Assessment (M = 10, d = %, Q =3,5LL,s = —35dB)
- Sub-array configuration and weights synthesized with the I[CPM — GS.

mise patterns having a maximum Bw close to that of the SA-based technique
(Bw®4) = 5.5528°), the solution of the G'S algorithm is shown in Fig. 3.3 (i.e.,
GS* - SLL,.; = —33.75dB), while the corresponding sub-array configurations
and weights are summarized in Tab. 3.2. In such a situation, the GS is still
able to find a better compromise pattern with a SLL below that in [10] of about

0.5dB (SLLYS) = —20.21dB - Bw(@5") = 5.4947°).

opt

Test Case 2. Simultaneous Global-Synthesis

The second test case is devoted to the comparative assessment when dealing
with the simultaneous optimization of the sub-array membership and sub-array
weights. Towards this purpose, the proposed method is compared with the GA-
based method 12| and the DFE algorithm |11].

The first comparison is concerned with the S LL minimization of the difference
pattern in a linear array of N = 2 x M = 20 elements with d = A\/2 inter-
element spacing. The optimal sum excitations have been fixed to generate a
linear Villeneuve pattern 17| with @ = 4 and sidelobe ratio of 25 dB. Moreover,
the number of sub-arrays has been set to () = 3 for considering the same example
dealt with in [12]. Concerning the IC'PM, the reference difference pattern has
been chosen to be equal to a Zolotarev pattern [9] with SLL,.; = —35dB.

The results of the synthesis process are shown in Figure 3.4 where the refer-
ence difference pattern and those obtained with the GA [12| and the constrained
EMM [8] are displayed, as well. Concerning the comparison with the GA-
based method, the GS outperforms the result in |12 (SLL(GA) = —26.18dB)

opt
with a maximum side-lobe level equal to SLLGY = —28.60dB [Tab. 3.3 ,
and similar bandwidths (B = 5.7934° and B = 5.8004°). It is inter-
esting to observe that the sub-array configuration determined by the GS al-
gorithm (i.e., C = {1,2,0,3,3,3,3,0,2,1}) is the same obtained in [12|, but
the sub-array weights are different (W(©4 = {0.3260, 0.6510, 1.2990}, W (¢ =
{0.2456, 0.6018, 1.2580}). Such an event is due to the fact that in [12] the
sub-array gains are part of the optimization process, while in the /C'PM-based
method they are analytically computed once the sub-array configuration has been
found. This allows a reduction of the number of unknowns (i.e., only the aggre-
gations instead of weights and aggregations) and, indirectly, of the possibility

32



CHAPTER 3. THE ITERATIVE MATCHING APPROACH

0 T T
[McNamara, 1993] ———
GS -
GA oo
-10 + i
=
=
5 -20 .
2
o
~
g
= 30 F .
=
(]
o~
40 b
-50
0

Y/t

Figure 3.4: Comparative Assessment (M = 10, d = %, @ = 3) - Reference
pattern (SLL,.; = —35dB) and normalized difference patterns synthesized with
the ICPM — GS, the GA-based method [12|, and the constrained EM M [8].

| [ A [ Buldeg] [ Au | SIL |
Reference Dif ference [9] | 0.1933 5.7668 0.0273 | —35.00
GS 0.2046 5.8004 0.0382 | —28.60
Reference Dif ference* |9] || 0.1645 4.4747 0.1526 | —18.87
GS* 0.1690 4.5961 0.1453 | —17.25
G A Optimization [12] 0.2038 5.7934 0.0440 | —26.18
Constrained EMM (8] 0.1715 4.6090 0.2223 | —16.50

Table 3.3: Comparative Assessment (M =
indexes of the reference pattern (SLL,.; =
terns synthesized with the JCPM — GS, the GA-based method [12]|, and the

constrained EM M |8].
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Relative Power [dB]

/Tt

Figure 3.5: Comparative Assessment (M = 10, d = %, @ = 3) - Normalized
difference patterns synthesized with the ICPM — GS, the GA-based method
[12|, and the constrained EMM [8].

the solution being trapped in local minima of the cost function.

As far as the computational costs are concerned, thanks to the reduction
of the number of possible aggregations (U4 = 30 ys. U*) = 36) and the
searching limited to the sub-array membership, the number of iterations needed

for reaching the final solution turns out to be significantly lowered (Is(gf) = 3 vs.

1899 — 500 [12]) with a huge computational saving (TUCFM) < 0.085 [sec]).

In order to obtain a different trade-off between sidelobe level and beamwidth,
exploiting the flexibility of the proposed method, a different reference pattern
could be chosen (as highlighted through the analysis in Sect. 3.3.1). As an
example and for a further comparison now with another “optimal matching”
technique instead of the G A, let us relax the requirement on the SLL and request
the BW of the compromise patterns being as close as possible to that of the
constrained EMM |8|. Towards this aim, a Zolotarev pattern [9] with SLL,.; =
—19dB has been used as reference difference pattern. The synthesized beam
patterns are shown in Figure 3.5 . As far as the main lobe is concerned, the
beamwidth of the G'S* pattern is narrower (Bw(%%") = 4.5961°) than that of the
unconstrained G'S and very close to that by McNamara |8] (Bw(Const=FMM) —
4.6090°). On the other hand, as expected, the performances in terms of SLL
get worse (—17.25dB vs. —28.60dB), but they are still better than that of the
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M=10] c& 1234444431
cle) 1233444431
Q=4 | W% [ o0.2201 0.4601 0.6932 0.9568
w9 0.3593 0.7882 1.5351 2.0122
M=10] c&¥ 1234564321
cle) 1235666431
Q=6 | W% [0.1714]0.5075 | 0.7332 | 0.9083 | 0.9901 | 0.9926
W9 1101876 | 0.4765 | 0.6894 | 0.8189 | 0.8914 | 0.9857

Table 3.4: Comparative Assessment (M = 10, d = %) - Sub-array configuration
and weights synthesized with the I[CPM — GS, when ) = 4 and () = 6.

SLL-constrained EMM (Tab. 3.3).

The second example addresses the same problem considered in [11][14] con-
cerned with a 20-elements linear array with () = 4 and ) = 6, where the sum
pattern is of Dolph-Chebyshev type and characterized by SLL = —20dB. By
assuming reference Zolotarev patterns with SLL,.; = —30dB () = 4) and
SLL,.;y = =35dB (Q = 6), the optimized difference patterns are shown in Fig.
3.6 , while the final sub-array configurations and weights are summarized in Tab.
3.4 .

The contiguous partition method is more effective than both the D FE-based
approach [11] and the two-step procedure proposed in [14] (indicated in figures
and tables as Hybrid — S A approach) in minimizing the level of the sidelobes as
graphically shown in Fig. 3.6 and quantitatively confirmed by the behavior of the
beam pattern indexes in Tab. 3.5 . Similar conclusions hold true in dealing with
the required computational burden (Tab. 3.5) and CPU-time (T(@%) < 0.2 [sec]).

For completeness, the Bw-constrained problem has been also addressed. Ac-
cordingly, the SLL minimization has been performed by requiring a beamwidth
value close to that in [11] and [14] (Tab. 3.5). The patterns computed with
the sub-array configurations and weights given in Tab. 3.4 and synthesized by
means of the GS* algorithm (Q = 4 - SLLZJ"** = —27.50dB, Q@ = 6 -
SLLZf e = —33.00 dB) are shown in Fig. 3.6. Moreover, the corresponding
pattern indexes are summarized in Tab. 3.5.

3.3.3 Extension to Large Arrays

The numerical study ends with analysis of the synthesis of large array patterns
(M > 50) where usually local minima problems, unmanageable (or very difficult)
increasing computational costs, and ill-conditioning issues unavoidably arise. In
such a framework, the first experiment is concerned with a N = 2 x M = 100
elements array (d = \/2) with sum pattern fixed to the Taylor distribution |5]
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Figure 3.6: Comparative Assessment (M = 10, d = %) - Normalized difference
patterns synthesized with the ICPM —GS, the Hybrid — S A approach [14], and
the DE algorithm [11] when (a) @ =4 and (b) @ = 6.
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| | Ao [Buldeg) | A | SLL [ U | Ltat |
| Q- H ||
Reference Dif ference [9] | 0.1786 | 5.1496 | 0.0510 | —30.00 — —
GS 0.1809 | 5.2247 | 0.0564 | —25.40 84 2
Reference Dif ference® [9] || 0.1803 | 5.0000 | 0.0694 | —27.50 — —
GS* 0.1863 | 5.1449 | 0.0748 | —24.30 84 2
Hybrid — SA [14] 0.1844 | 5.1442 | 0.0919 | —24.10 || O (10%) | 25
DE Algorithm [11] 0.1878 | 5.1834 | 0.1107 | —21.30 || O (10%) | 9
| Q=6 H ||
Reference Dif ference [9] | 0.1929 | 5.4188 | 0.0281 | —35.00 — —
GS 0.1948 | 5.4928 | 0.0291 | —31.56 || 126 2
Reference Dif ference* [9] || 0.1897 | 5.3138 | 0.0355 | —33.00 — —
GS* 0.1893 | 5.2694 | 0.0356 | —29.52 || 126 2
Hybrid — SA [14] 0.1884 | 5.2615 | 0.0439 | —29.50 || O (10°) | 25
DE Algorithm [11] 0.1942 | 5.3872 | 0.0727 | —21.66 || O (10°) | 7

Table 3.5: Comparative Assessment (M = 10, d = %) - Quantitative indexes
and computational indicators for the solutions obtained with the ICPM — GS,
the Hybrid — SA |lga = 25 indicates the number of SA iterations (i.e., first
step), no indications on the convex programming procedure (i.e., second step)
are available| approach [14], and the DE algorithm [11] when @ = 4 and @ = 6.
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Figure 3.7: Extension to Large Arrays (M = 50, d = %, @ = 4) - Normalized
difference patterns synthesized with the /JCPM — GS (SLL,.; = —40dB), the
S A algorithm [10], the Hybrid — SA approach [14], the G A-based method |12],
and the DFE algorithm [11].

with m = 12 and SLL = —35dB. For comparison purposes, the case of () = 4
sub-arrays [10][12][11][14] is dealt with. Dealing with such a scenario, the IC'PM
has been applied by considering a reference Zolotarev pattern [9] with sidelobe
level equal to SLL,.; = —40dB.

The synthesized difference pattern is shown in Fig. 3.7 | while the sub-array
grouping and weights are given in Tab. 3.6 . By observing both Fig. 3.7 and
Tab. 3.7 , it turns out that the G.S approach outperforms other single-step
techniques and, unlike the case M = 10, its performances are quite similar (in
terms of sidelobe level) to that of the two-step method even though it is much
more computationally effective. Moreover, although it achieves the minimum
value of SLL, the corresponding main lobe beamwidth does not significantly

M =50 [ O [ 11112223333304444444444444444444303333232222211111
Q=4 | Wi 01624 | 05162 | 08579 | 1.1736

Table 3.6: Extension to Large Arrays (M = 50, d = %, Q) = 4) - Sub-array
configuration and weights synthesized with the ICPM — GS.
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Synthesis Approach H SLLopt ‘ A ‘ By [deg] ‘ Asilo H U ‘ Istat | T [sec] ‘
SA Optimization [10] —25.56 | 0.0432 | 1.0745 | 0.0329 || O (1039) - -
GA Optimization [12] —31.00 | 0.0504 | 1.3585 | 0.0529 || O (103%) | 500 | ~ 15
DE Algorithm [11] —30.00 | 0.0361 | 1.3256 | 0.0361 || © (10%0) | 804 | ~20
Hybrid — SA Method [14] || —32.00 | 0.0305 | 1.2776 | 0.0401 || O (10%°) | 25 -
GS —-32.10 | 0.0363 | 1.2952 | 0.0444 18424 5 1.0785

Table 3.7: Extension to Large Arrays (M = 50, d = %, Q = 4) - Quantita-
tive indexes and computational indicators for the solutions obtained with the
ICPM — GS (SLL,.y = —40dB), the Hybrid — SA |Is, = 25 indicates the
number of SA iterations (i.e., first step), no indications on the convex program-
ming procedure (i.e., second step) are available|, the SA algorithm [10], the
G A-based method [12], and the DE algorithm [11].

M =50 | cBP || 11111222202000333333333333303300002222222211111111
Q=3 | WY 0.2437 | 0.7079 | 1.0976

Table 3.8: Extension to Large Arrays (M = 50, d = %, Q) = 3) - Sub-array
configuration and weights synthesized with the ICPM — GS.

differ from that of the other methods (Tab. 3.7).

In the second experiment, the same array geometry of the previous case is
analyzed, but with ) = 3 sub-arrays analogous to [12|. The sub-array config-
uration and weights obtained with the GS-based strategy are reported in Tab.
3.8 . Also in this case, the G.S difference pattern presents a SLL lower than
that shown in [12] (SLL%Y = —30.25 vs. SLLSY = —29.50) and confirms its

opt opt
(GA)

. . . . It
effectiveness in terms of computational resource since st = 250.
stat

3.4 Discussions

The proposed method consists of an adaptive searching procedure whose result
is a compromise solution as close as possible to an optimal one in the Dolph-
Chebyshev sense, which allows a satisfactory trade-off between angular resolution
and reduction of noise and interferences effects. In particular, the narrowest
beamwidth and the largest slope around the boresight direction are looked for
by applying the optimal excitation matching method based on the contiguous
partition technique, while the fulfillment of the requirements on the SLL (or
other beam pattern features) is ensured by an outer iterative loop.

The obtained results have proved the effectiveness of the proposed approach
in providing difference patterns with a satisfactory trade-off among beam pat-
tern features dealing with large arrays, as well. Although the iterative contiguous
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partition method is aimed at synthesizing the “best compromise” matching an
optimal (in the Dolph-Chebyshev sense) reference pattern, the obtained solutions
positively compare with state-of-the-art approaches in the related literature in a
number of measures where only the SLL minimization is required, thus showing
how the proposed approach, which is numerically efficient, works sufficiently well.
As a matter of fact, the proposed technique allows one to overcome some draw-
backs of both the EM M approach proposed by McNamara (i.e., ill-conditioning
and the exhaustive evaluation of the whole set of aggregations) and the synthe-
sis techniques based on stochastic optimization algorithms (i.e., single-objective
optimization and low convergence rate when dealing with very large arrays).

On the other hand, definite conclusions about the relative performance of the
ICPM cannot be drawn from the presented comparisons, since the various ex-
amples deal with different synthesis problems and/or optimization criteria. This
means that, depending on the selected feature, the ICPM performs differently
even though keeping a great computational efficiency. Moreover, since the pro-
posed procedure is an adaptive searching technique, it does not guarantee to
always obtain better solutions than those from global optimization techniques.
As a matter of fact, these latter should outperform any other approach when op-
timizing a given functional, unless the optimum is not actually achieved, which
is likely to happen when exploiting global optimization algorithms in large size
problems.
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Chapter 4

Monopulse Planar Array Synthesis

In this chapter, the extension of the Contiguous Partition Method (CPM) from
linear to planar arrays is described and assessed. By exploiting some properties
of the solution-tree the solution space is represented in terms of a more compact
graph. The generation of compromise sum-difference patterns is thus obtained
through an optimal excitation matching procedure based on a combinatorial
method. A set of representative results are reported for the assessment as well
as for comparison purposes.
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4.1. INTRODUCTION

4.1 Introduction

Exact methods of synthesizing independently optimum sum and difference arrays
exist for both linear [19][17][9][22] and planar architectures [6][7]. Whether the
complexity and cost of the arising feed networks are affordable, then the above
methods can be directly used. However, since the implementation of two (or
three) totally independent signal feeds is generally expensive and complex, a
number of alternative solutions have been proposed to generate the two or three
required patterns via shared feed networks at the cost of a reduction in the
quality of one or more patterns [2][1].

In order to avoid the need of a completely different feeding (receiving) net-
work for each operation mode, several researches [8]|[10][12][11]|[14] proposed to
partition the original array in sub-arrays. In such a scheme, the feeding network
is usually devoted to the optimization of the sum channel, so that the excitations
of the arrays elements for such a mode correspond to the optimal one (e.g., Tay-
lor [6]). Then, the difference mode is obtained thanks to a suitable choice of the
weight of each sub-array. Consequently, a large part of the whole architecture
is common to both modes with a non negligible saving of costs. On the other
hand, a compromise difference pattern is obtained. The degree of optimality of
the compromise solution is related to the number of sub-arrays, which estab-
lishes a trade-off between costs and performances. As a matter of fact, a large
number of sub-arrays allows better performances, but also implies higher costs.
Otherwise, few sub-arrays may imply unacceptable difference patterns. For a
fixed number of sub-arrays, once the excitations of the sum pattern have been
fixed, the problem is concerned with the grouping of the array elements into sub-
arrays and the computation of their weights to determine the best compromise
difference pattern. As far as the number of unknowns is concerned, it grows
proportionally to the dimension of the array and, usually, it turns out to be very
large when real applications of planar arrays are considered. Consequently, a
standard use of global optimization techniques is not convenient since a subop-
timal solution is generally obtained in the limited time one has at his disposal.
As a matter of fact, the arising computational burden raises very rapidly with
the dimension of the solution space. Although this circumstance is quite under-
estimated in antenna design since synthesis problems may have many different
satisfactory suboptimal solutions, nevertheless they can be significantly worse
than the global ones.

In order to overcome such drawbacks, in Ares et al. [10| the antenna aperture
has been divided into four quadrants and the monopulse function has been ob-
tained by combining the outputs in a monopulse comparator. The sum pattern
and the difference one have been generated with all quadrants added in phase
and with pairs of quadrants added in phase reversal, respectively. Moreover,
in order to reduce the number of unknowns, each antenna quadrant has been
a-priori divided into sub-arrays (i.e., the sectors) and only the sub-array weights

42



CHAPTER 4. MONOPULSE PLANAR ARRAY SYNTHESIS

have been calculated by minimizing a suitable cost function again according to
a Simulated Annealing (SA) algorithm. In an alternative fashion, D’Urso et al.
[13] formulated the problem in such a way that global optimization tools have
to deal with a reduced number of unknowns. By exploiting the convexity of the
cost functional to be minimized with respect to a part of the unknowns (i.e., the
sub-array gains), an hybrid two-step optimization strategy has been applied in-
stead of simultaneously optimizing (in the same way) both the involved variables.
As a matter of fact, once the clustering into sub-arrays has been determined by
using a S'A technique, the problem at hand gives rise to a Convex Programming
(C'P) problem with a single minimum that can be retrieved with a local opti-
mization technique. Unfortunately, although unlike [10| no a-priori informations
are necessary, the evaluation of the auxiliary C'P objective function is usually
more cumbersome than the original cost function. Such an event could result
in an excessively large computational burden that would prevent the retrieval of
the global optimum in the available amount of time or to efficiently deal with
large planar arrays.

In the following, the method proposed in Chapter 3 is considered for the
synthesis of planar monopulse array antenna. Towards this end, a suitable im-
plementation is mandatory to keep also in the planar case the best features of
the linear approach both in term of reliability and computational efficiency. As
a matter of fact, unlike the linear case, the planar structure requires two differ-
ence patterns (i.e., the difference £ — mode and the H — mode). Moreover, the
dimensionality of the problem at hand significantly grows with respect to the
linear situation, thus enhancing the computational problems in applying global
optimization methodologies and thus preventing their use also in hybrid modal-
ities.

Therefore this paper is aimed at describing and assessing the planar extension
of the CPM (in the following PCPM) according to the following outline. The
mathematical formulation is presented in Sect. 4.2 pointing out the main differ-
ences compared to the linear array case. Section 4.3 is devoted to the numerical
assessment. Both a consistency check, carried out through an asymptotic study,
and a comparative analysis (unfortunately, just only a test case is available in
the recent literature) are considered.

4.2 Mathematical Formulation

Let us consider a planar array lying on the zy — plane whose array factor is given
by

S(r)
ST Y g o (4.1
r=—R s=—S5(r)
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YA

> A
Sum Mode Difference Mode

Figure 4.1: Sketch of the antenna feed network.

where z, = [r—ﬂzm} x d, and y, = [s— %(S)} X dy, d, and d, being

the inter-element distance along the x and y direction, respectively. More-

over, k, = 2T’Tsz'n@cosgb and k, = Qfsmé?sz'nqb. Concerning independently op-
timum sum and difference patterns, they are generated by using three inde-
pendent feeding networks and setting the excitation vector { = {&.; r =
+1,...,+R; s==+1,..., :ES(T)} to g = {Crs = C(_T)s = Q(_S) = C(_T)(_S); r =
L.,R; s=1, 7S(T)} and to EA - {gTAS - g(A—r)s - _gﬁ—s) - _g(A—T’)(—S); "=

1,..R, s=1,...,5(r)}, A = E, H, respectively. Otherwise, when sub-arraying
strategies are considered [10] (Fig. 4.1), the sum beam is generated in an optimal
fashion by fixing £ = ¢, while the compromise A—modes are obtained through

a grouping operation described by the aggregation vectors c*

A ={cir=1.,Rs=1.,50r)} (4.2)
A

where ¢ € [1,Q)] is the sub-array index of the element located at the r-th row
and s-th column within the array architecture. Accordingly, the compromise
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CHAPTER 4. MONOPULSE PLANAR ARRAY SYNTHESIS

difference excitations are given by

= {'yT,AS = (.0 (CT,AS, q) qu; r=1,..R;s=1,...,5(r); ¢=1, ,Q} (4.3)

where gq is the gain coefficient of the ¢g-th sub-array and O ( Crss q) =1lifc =g¢
and O( Cras q) = 0, otherwise. Summarizing, the problem of defining the best
compromise between sum and difference patterns is recast as the definition of
the configuration gfpt and the corresponding set of weights gfm so that loApt is as

close as much as possible to ¢2.
Towards this end, the CPM is applied. Similarly to the linear array case,
the following cost function is defined

2

R S(r) 0
N ZZCT’S [ o Zwrsq (QA)] (4.4)

where N is the number of elements lying on the aperture |i.e., N = Zle S(r)].

A
Moreover, o, = <= and w,, = Wyeq (C ( A) is given by

C'rs

R S(r
A 2 e O (chys q) afy
rsq S(r) A
YL Y 20 (e a)

w.

r=1,.,R; s=1,..,5); ¢=1,...,Q.

(4.5)
As regards to the sub-array weights, they are computed once the aggregation
vector ¢® has been identified by simply using the following relationship

qu =0 ( Cros q) Wiy r=1,..R, s=1,...,90); ¢=1,...,Q. (4.6)

In order to determine the unknown clustering that minimizes (4.4), the indi-
cation given in [18] has been exploited. More in detail, it has been proved that
a contiguous partition of the array elements is the optimal compromise solution.
Accordingly, the set of contiguous partitions (i.e., the set of admissible solutions)
is defined by iteratively partitioning in @) sub-sets the list V' = {v,; n =1,..., N}
(n being the list index) of the array elements ordered according to the corre-
sponding % values such that v, < v, (n =1,...,N — 1), v; = min,, {afs},
UN = MaTys {ars}.

Although the dimension of the PC'PM solution space, STPM is significantly
reduced compared to that of full global optimizers [U(F¢PM) = ( g:i ) vs.
UG = @ (QN_l + 1)] or hybrid global-local optimization techniques [[J(H¥¥77d) =
Q"], non-negligible computational problems still remain since the large amount
of computational resources needed to sample I”¢TM egpecially when N enlarges
as it happens in realistic planar architecture. Therefore, it is mandatory to de-
vise an effective sampling procedure able to guarantee a good trade-off between
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Equivalent parts:

Figure 4.2: Pictorial representation of the redundant parts within the solution
tree.

computational costs and optimality of the synthesized compromise solution. To-
wards this end, the “solution tree” of the linear case has been collapsed into
a more compact structure (Fig. 4.2) , namely the direct acyclic graph (DAG)
[16], to describe the whole solution space. Such a representation enables the
excitation matching synthesis of planar arrays with large numbers of elements
thanks to the significant reduction of both the computational time and the C' PU
memory requirements. Moreover, the DAG allows the implementation and an
effective use of a fast graph-searching algorithm to look for the optimal planar
compromise.

More in detail, the DAG is composed by @ rows and N columns. The ¢-
th row is related to the ¢-th sub-array (¢ = 1,...,Q), whereas the n-th column
(n = 1,..., N) maps the v,-th element of the ordered list V. An admissible
compromise solution is coded into a path, denoted by %, in the DAG. Each
path 1 is described by a set of N vertexes, {t,; n =1,..., N} and through N —1
relations/links {e,; n = 1,..., N — 1} among the vertexes belonging to the path.
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Figure 4.3: DAG Representation.

With reference to Fig. 4.3 , each vertex t,, is indicated by a circle and each link
e, with an arrow from a vertex ¢, to another one ¢,,; on the same row [i.e.,
arg (t,) = arg (t,+1) = ryn, being r, the row of the n-th vertex, r, € [1, Q]) or
down to an adjacent row [i.e., arg (t,_1) = r, and arg (t,) = r, + 1].

In order to identify the optimal compromise (or, in an equivalent fashion,
the optimal path t,, in the DAG), let us reformulate the concept of “bor-
der elements” of the linear case to the planar representation in terms of DAG.
Moreover, let us consider that analogously to the linear case, only the “border
elements” of 1 (i.e., those vertexes t,, n = 2,...,N — 1 having at most one
of the adjacent vertexes, t, 1 or t,.1, that belongs to a different row of the
DAG) are candidate to change their sub-array membership without generating
non-admissible aggregations. Accordingly, in order to determine the optimal sub-
array configuration coApt that minimizes ¥ (¢*) (4.4), a sequence of trial paths

Pk = {(tgc) (k)) n=1.,Nym=1,.,N — 1} (k being the iteration/trial

index) is generated. Starting from an initial path ¢»*) (k = 0) defined by setting

arg <t§0)> = 1 and arg (tgs))

such as arg <t510_)1> < arg (t&f”) < arg <t£g)rl), the path ¢®*) is iteratively up-

dated (p®) « o+ AR AKR+D) Gust modifying the memberships of the
border elements of the DAG. More in detail, the “border” vertexes are updated
as follows

= () and randomly choosing the other vertexes

(k) : (k) (k)
+1 iof r2i=r
arg (tFHD) = n o A 4.7
g(n ) r(k)_l if rgfﬂl—r,(@k) ( )

while the links e,(f_)l 2 link [arg <t,(f_)1) , arg ( £Z“)>] and el 2 link [arg (t&k)> , arg (t,(f_zlﬂ
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connected to the “border” vertex % are modified through the relationships

(1) tink [, w1 i =l (4.8)
€ = -
B G B
and
tink [P +1, 0P 1] ap ol =l
elh+1) — ) o)

link [rﬁk) -1, r,(lk)] if 7”1(1]21 = r,(f)

The iterative process stops when a maximum number of iterations K,,q.
(k > Kae) or the following stationary condition holds true:

IR LR R 1
where U = @ (gﬁ(k)), K, and 7 being a fixed number of iterations and a
fixed numerical threshold, respectively. At the end of the iterative sampling of

the DAG, the path 1P is found and the corresponding aggregation vector, gOApt,
is assumed as the optimal compromise solution.

4.3 Numerical Results

This section is aimed at assessing the effectiveness of the PC'PM through a set
of representative results from several numerical simulations. The remaining of
this section is organized as follows. Firstly, some experiments are presented in
Sub-Sect. 4.3.1 to analyze the behavior of the proposed approach in matching a
reference pattern for different numbers of sub-arrays. Successively, a comparative
study is carried out (Sub-Sect. 4.3.2) by considering the available test case
concerned with planar geometries and previously faced in [10].

4.3.1 Pattern Matching

In the first test case, the planar array consists of N;; = 4 X N = 316 elements
equally-spaced (d, = d, = %) elements arranged on a circular aperture r = 5\
in radius. Because of the circular symmetry, the synthesis procedure is only
concerned with N =79 elements. Moreover, the sum pattern excitations ¢ have
been fixed to those of a Taylor pattern [6] with SLL = —35dB and @ = 6. On the
other hand, the optimal difference H —mode excitations ¢” have been chosen to
afford a Bayliss pattern |7| with SLL = —40dB and = = 5. The corresponding
three-dimensional (3D) representations of the relative power distributions are
reported in Fig. 4.4 where v = sinflcos¢ and v = sinfsin ¢ |23|, being 0 €
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Radiation Pattem Radiation Pattern

Figure 4.4: Pattern Matching (N = 316, d = %, r = 5)) - Relative power
distribution of the reference (a) Taylor sum pattern (SLL = —35dB, . = 6) [6]
and of the (b) H — mode Bayliss difference pattern (SLL = —40dB, n = 5) |7|,
respectively.

[0,90°] and ¢ € [0,360°], respectively. As regards to the compromise synthesis,
the optimization has been limited to the difference H — mode by exploiting the
following relationship 1% = {y% = —"; r =1,...,R; s = 1,...,S(r)} that holds
for the ' — mode excitations due to the symmetry properties.

In the first experiment, the number of sub-arrays has been varied from @) = 3
up to ¢ = 10. Figure 4.5 shows the 3D representations of the synthesized
H — mode patterns. As it can be observed, the shapes of both the main lobes
and the sidelobes of the compromise distributions get closer to the reference one
[Fig. 4.4(b)] when the ratio % reduces. In order to better show such a trend and
to efficiently represent the behavior of the side-lobes, let us analyze the sidelobe

ratio (SLR) defined as

SLL () s

SLR(QS)_ma:@ AF (0.9)] 0<6< 5 (4.11)
where AF' (0, ¢) indicates the array factor. By following the same guidelines in
[10], the SLR has been controlled in the range ¢ € [0°,80°] since the H — mode
pattern vanishes at ¢ = 90°. As expected, the behavior of the SLR approximates
that of the reference pattern when @ increases (Fig. 4.6) . Such an indication is
quantitatively confirmed by the statistics of the SLR values given in Tab. 4.1 as
well as, pictorially, by the plots in Fig. 4.7 where the pattern values along the
¢ = 0° cut are shown.

4.3.2 Comparative Assessment

To the best of the author’s knowledge, the topic of planar sub-arraying has been
recently addressed only by Ares et al. in [10]. More in detail, a Simulated
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Radiation Pattem Radiation Pattem
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Relative Power [dB]

Figure 4.5: Pattern Matching (N = 316, d = %, r = 5A) - Relative power

distribution of the synthesized H — mode difference pattern when (a) @ = 3, (b)
Q=4 (c) =06, and (d) Q = 10.

‘ [dB] H min {SLR} ‘ max {SLR} ‘ av {SLR} ‘ var {SLR} ‘
Reference |7| —40.44 —27.29 —36.68 6.05
Q=3 —33.82 —16.48 —26.74 14.26
Q=14 —37.32 —15.68 —31.56 15.11
Q=6 —36.67 —17.47 —31.25 26.30
Q=10 —38.72 —23.75 —34.77 11.46

Table 4.1: Pattern Matching (N = 316, d = 4, r = 5)) - Statistics of the SLR
values in Fig. 3.
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Figure 4.6: Pattern Matching (N = 316, d = %, r = 5\) - Plots of the SLR
values of the Bayliss pattern (SLL = —40dB, m = 5) [7| and of the compromise
H — mode difference patterns when @ = 3, 4, 6, 10 (¢ € [—80°, 80°]).
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Figure 4.7: Pattern Matching (N = 316, d = 4, r = 5)) - Azimuthal (¢ = 0°)
plots of the relative power of the Bayliss pattern (SLL = —40dB, 7 = 5) |7] and

of the compromise H — mode patterns when @) = 3, 4, 6, 10.
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[dB] H min{SLR} ‘ mazx {SLR} ‘ av{SLR} ‘ var {SLR} ‘
SA [10] —27.70 —18.93 —22.52 6.41
CPM : SLLLY) = —25d8 —23.30 —14.58 —21.48 3.93
OPM: SLLIY) = —30dB || 2878 ~16.95 ~24.08 14.15
CPM: SLLIY = —35dB —29.43 —18.94 —25.87 5.74
Table 4.2: Comparative Assessment (N = 300, d = 5, r = 4.85), Q = 3) -

Statistics of the SLR values of the H —mode difference pattern synthesized with
the SA approach [10] and with the iterative PCPM (Reference Bayliss pattern

=67 SLL..\ = ~25dB, SLL.Y = ~30dB, and SLL/{) = —35dB).

Annealing (SA) procedure has been used to determine the sub-array weights
for a pre-fired sub-array configuration by minimizing a suitable cost function
aimed at penalizing the distance of the SLL of the compromise pattern from a
prescribed value.

For comparison purposes, let us consider the same array geometry of [10].
More in detail, the elements are placed on a 20 x 20 regular grid (d, = d, = %)
lying on the xy-plane. The radius of the circular aperture of the antenna is equal
to r = 4.85\. The sum excitations have been fixed to those values affording
a circular Taylor pattern |6] with SLL = —35dB and 7 = 6. Concerning the
compromise solution, () = 3 sub-arrays have been considered.

As far as the comparative study is concerned the final solution of the C'P M-
based algorithm (i.e., definition of ¢ ot and g ) has been required to present

SLR values smaller than those from the SA approach [10]. Since the PCPM is
an excitation matching method, it has been iteratively applied by updating the
reference difference pattern until the constraints on the compromise solution were
satisfied. Accordingly, a succession of reference excitations ¢#® k =1, K
have been selected. In particular, they have been fixed to those of a Bayhss
difference pattern [7| with @ = 6 and SLLZSIIC) = —25dB (k = 1), rSYLLT}iS[]c =
—30dB (k = 2), and SLLfegck) = —35dB (k = 3). The aggregations obtained
at the end of each k-th iteration by the PC'PM have cost function values equal

m@(Hm)_O%x1olw(H@)_OmXIOEMMW( ”)ZOWX

Copt Copt Copt
1071, respectively. Although the application of the PCPM could be further
iterated by defining others reference targets, the process has been stopped at
k = ko = 3 since the requirement [SLRFPCPM (¢) < SLR4 ((b) 0° < ¢ <
80°| has been fulfilled by the compromise solution (¢, = cfp?), gopt = ggjf’)).
The corresponding relative power distributions are shown in Fig. 4.8 where the
solution obtained by Ares et. al [10] is reported [Fig. 4.8(a)]|, as well. To better
point out the capabilities of the iterative PC PM, also the plots of the S RL values
(Fig. 4.9) and the corresponding statistics (Tab. 4.2) are given. Moreover, in

order to make the PCPM results reproducible, the sub-array configurations and
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Radiation Pattern Radiation Pattem

Relative Power [dB]
Relative Power [dB]

Relative Power [dB]

Figure 4.8: Comparative Assessment (N = 300, d = %, r =485\, Q = 3) -
Relative power distribution of the H — mode compromise pattern synthesized
with (a) the SA approach [10] and the PCPM when the Reference Bayliss

pattern 7 = 6 |7] presents a sidelobe level equal to (b) SLLfig}) = —25dB, (c)

SLLIY = ~30dB, and (d) SLLIY = —35dB.
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Figure 4.9: Comparative Assessment (N = 300, d = %, r =4.85)\, Q = 3) - Plots
of the SLR values of the compromise H —mode difference patterns synthesized by
the SA approach [10] and the PC' PM when the Reference Bayliss pattern 7 = 6

[7] presents a sidelobe level equal to SLLTI,JGSII) = —25dB, SLLZ?) = —30dB,
and (d) SLL'Y = —35dB (¢ € [-80°, 807)).
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H(T) _ H(2) _ (Fopt) _

SLL,.;" = —25dB SLL,.;” = —30dB SLLref —35dB
11 11 11
11122 11112 11111
111222 111222 111112
1112223 1122222 1112222

c 11122233 11222333 11222222

= 111222333 112233333 112233322
111222333 112233333 112233332
111222333 112233333 112233333
1112233333 1122333333 11233333332
1112233333 1122333333 1123333332

g1 0.4668 0.3337 0.3355

92 1.3435 0.9763 0.9381

g3 2.1736 1.6091 1.4469

Table 4.3: Comparative Assessment (N = 300, d = 5, r = 4.85\, Q) = 3) - Sub-
array configurations and weights obtained with ‘rhe PC’PM (Reference Bayliss
pattern @ = 6 [7]: SLLLY = —25dB, SLL.Y = —30dB, and SLL,.
—35dB).

weights are given in Tab. 4.3. The lists of digits of Tab. 4.3 (second row)
indicate the sub-array memberships of the N = 75 array elements belonging to
a quadrant of the antenna aperture.

Finally, let us analyze the computational issues. The total amount of C'PU-
time to get the ﬁnal solution (on a 3.4GHz PC with 2GB of RAM) was Ty, =
2.6361 [sec] (i.e., T = 0.8148 [sec], T = 0.8302 [sec], and T®) = 0.9911 [sec]).
Moreover, the number of iterations required at each step to synthesize an inter-
mediate compromise solution is equal to Képz = 14, Képi = 14, and Kopt =17,
respectively.
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Chapter 5

The Ant Colony Optimizer for
Graph Searching

Dealing with the proposed excitation matching method, this chapter presents a
global optimization strategy for the optimal clustering in sum-difference com-
promise linear arrays. Starting from a combinatorial formulation of the problem
at hand as shown in the previous part of this thesis, the proposed technique
is aimed at determining the sub-array configuration expressed as the optimal
path inside a directed acyclic graph structure modelling the solution space. To-
wards this end, an ant colony metaheuristic is used to benefit of its hill-climbing
properties in dealing with the non-convexity of the sub-arraying as well as in
managing graph searches. A selected set of numerical experiments are reported
to assess the efficiency and current limitations of the ant-based strategy also in
comparison with the local combinatorial search method previously presented.
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5.1. INTRODUCTION

5.1 Introduction

In the framework of the optimal matching techniques for the solution of the opti-
mal compromise between sum and difference patterns, besides the methodological
and algorithmic novelties introduced in this work, the main result yielded is the
proof that the compromise synthesis problem can be formulated as a combinato-
rial one where the dimension of the solution space grows as a binomial function of
the number of array elements (and not exponentially as in classical optimization
formulations). Moreover, only the sub-array aggregations are looked for, while
the sub-array weights are obtained as a “free by-product”. In order to solve the
problem at hand, the solution space has been represented through a tree struc-
ture where the best compromise solution corresponds to the minimum cost path.
Moreover, an ad-hoc local search strategy (called BEM) has been implemented
to effectively sample the solution space. In spite of the good results obtained in
pattern matching (Chapter 2), and SLL control (Chapter 3), the whole proce-
dure could suffer from a misleading clustering of the array elements that would
deeply influence the second step (i.e., the weight computation) since the func-
tional to be optimized is non-convex with respect to the sub-array memberships
of the array elements. To avoid this drawback, global optimization is required
for solving the clustering step since local searches could get stuck into local min-
ima. However, “standard” evolutionary techniques or general purpose optimizers
cannot be adopted because of their computational costs especially when dealing
with high-dimension problems and ad-hoc algorithms must be used. Accordingly,
this paper describes and analyzes the performance of a suitable state-of-the-art
evolutionary strategy, namely the Ant Colony Optimizer (ACO) [24], whose in-
trinsic structure seems to be very appropriate to fully exploit a suitable defined
graph-like model of the solution space. As a matter of fact, such an approach
should in principle avoid the local minima of the cost function because of its hill
climbing behavior as a global optimizer. On the other hand, it should perform
better than other 'physically inspired’ optimization algorithms because its intrin-
sic combinatorial nature able to fully adapt to the description of the solutions as
an ensemble of contiguous partitions.

The outline of the chapter is as follows. After a short review of the BEM
(Sect. 5.2), the ACO for graph-searching is carefully described (Sect. 5.3). In
Section 5.4, the results of a selected set of numerical experiments are reported in
order to firstly describe the AC'O behavior and then to point out its advantages
and best features compared to the BEM. Finally, some conclusions are drawn
(Sect. 5.5).

5.2 BEM for Graph-Searching

Concerning the notation adopted in the following, it is the same of Chapter (2).
There, it has been shown how the solution space of the contiguous partitions
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Figure 5.1: Evolution of the BEM solution within the DAG.

can be represented in an effective fashion through a non-complete binary tree of
depth M — 1, wherein each level of the tree from the root to the leaves defines
the sub-array membership for an element of the array. A more compact and
non-redundant structure able to give a complete representation of the whole
set of admissible sub-array configurations is based on a Directed Acyclic Graph
(DAG) (Chapter 4). As a matter of fact, the non-complete binary tree can
be reduced to an equivalent DAG by simply noticing that some parts of the
tree recursively repeat themselves. Generally speaking, the DAG is a graph
G = (V, E) composed by a set of V vertexes and E edges indicated in Fig. 5.1
by circles and arrows, respectively. As regards to the compromise problem, the
DAG is made of @) rows (i.e., the number of sub-arrays) and M — @ + 1 vertexes
within each row (i.e., the maximum number of elements that can be assigned to
a single sub-array by considering non-null clusters). Moreover, the paths inside
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5.2. BEM FOR GRAPH-SEARCHING

the solution graph have the same length! equal to M — 1 and each path codes a
trial sub-array configuration C.

In order to explore the solution graph looking for the path minimizing (2.2),
the Border Element Method (BEM) dealing with a tree architecture is adapted
here to work with the DAG, as well. Accordingly, the so-called border elements
are now those elements of the actual configuration/path whereof at least one
closest element of the path belongs to a different row of the DAG (i.e., it is
assigned to a different sub-array). For sake of clarity and with reference to Fig.
5.1, the cluster configurations are indicated by the red edges and the border
elements are denoted by the blue vertexes. It is worth notice that it is possible
to obtain a new admissible trial aggregation C’ just changing the membership
of a border element as schematically described in the following pseudo-code that
summarizes the BEM for the sampling of the DAG structure:

Compute vy, : m=1,..., M
Sort vm : m=1,...,M to obtain L: l1 = min{vm}, lpr = maz {vm}
Initialize C(® = {c,(ﬁ) sm=1,...,M : c,(,g) (L) =1, c,(,g) (Iar) = Q}
for each iteration k:k=1,... K

o) = ¢k=1)

e () = e (1), et (tar) = e (L)

for each element Il : h=2,... M —1

if (cg,lf) (In) is a border element) AND (is not a single element sub-array) then

Assign cﬁ,’i) the membership of the closer/different sub-array to obtain C’

End if
Calculate Fitness of ('

it (W{C'}<v{c®}) then
New solution found: o) = ¢
End if

End for
if (\I/{Q(k)} stationary) then

QBEM = Q(k)§ kena =k
Stop

End if

End for
QBEM = Q(K)x kena = K
Stop

More in detail, the BEM is first aimed at looking for the border elements of
the current path C* belonging to the DAG and successively at changing their
memberships (once a time), until a termination criterion based on a maximum
number of iterations K (k = 0, ..., K; k being the iteration index) or on a sta-
tionary condition of the cost function value ¥ {Q(k)} is reached. For illustrative

purposes, a pictorial representation of the BE M-based searching is given in Fig.
5.1. It is concerned with the test case characterized by M = 10 and Q = 3.

!The length of a DAG is equal to the number of edges of the longest directed path.
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Starting from the guess solution C”) displayed in Fig. 5.1(a), the iterative pro-
cess stops after two iterations determining the final aggregation CP*M = ¢
shown in Fig. 5.1(c¢).

5.3 ACQO for Graph-Searching

From the BEM pseudo-code, it is simple to recognize that such a method, for
both tree and graph-like architectures, is a deterministic technique that suffers
of the usually standard drawbacks of local search algorithms. In particular, the
BEM solution might be trapped in a local minimum and strongly influenced
by the starting guess aggregation C'”) chosen at the initialization because of the
non-convexity of the problem at hand.

In order to overcome the problems related to the presence of local minima
in the cost function (2.3), the Ant Colony Optimizer (ACO) is adopted here to
search for the optimal path C°" within the solution graph that minimizes (2.3).
The ACO is a global optimization algorithm inspired by the foraging behavior
of ant colonies looking for food sources [24]. The ants look for the shortest
path between the food sources and the nest. Towards this end, each ant leaves
a chemical substance, called pheromone, while moving in the space surrounding
the nest. The amount of pheromone on a path quantifies its degree of optimality,
but it decays with time (evaporation mechanism). These mechanisms allow one
to avoid poor food sources on one hand (pheromone release) and on the other,
to efficiently sample the whole solution space (pheromone evaporation).

The ACO developed by Dorigo |25] has been widely applied especially in
distributed and discrete problems such as routing [26][27|, assignment [28][29],
scheduling [30][31], subset |32], but it is relatively infrequent in electromagnet-
ics. To the best of authors’ knowledge, it has been recently applied to few
electromagnetic problems (e.g., antenna synthesis considering binary [33| or real
implementations [34][35][36] and microwave imaging [37]). However, because of
its effectiveness in facing hard combinatorial problems and since the combinato-
rial formulation of the optimal compromise between sum and difference patterns
requires the searching of the best path within a graph, the ACO seems to be
a suitable metaheuristic for the problem at hand. Towards this aim, the sim-
plest version of the ACO, namely Ant System |24], is used. The proposed ACO
implementation is customized to the graph architecture to properly address the
synthesis of small as well as large arrays. As a matter of fact, due to the high
number of vertexes needed for the storage of the solution, applying the ACO
to the search within the solution-graph presents some memory limitations when
dealing with very large dimensional spaces. On the other hand, it must be
pointed out that the ACO performances in terms of solution accuracy do not
depend on the representation of the solution space, but only the feasibility and
the computational indexes (i.e., the storage resources and the rate of sampling
the solution space) are affected by the architecture at hand.
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Figure 5.2: Evolution of the AC'O solution within the DAG.

The proposed implementation of the ACO-based approach can be summa-
rized as follows. Each i-th (i = 1, ..., I) ant codes a vector a; of M integer values
that models a trial sub-array configuration C; (i.e., a = a{C,}). Every vector
is initialized to the null one at each iteration (i.e., a ={0, .., 0} k=1 .. K
and ¢ = 1,...,1) and it is filled step-by-step Whlle the ants are moving through
each level of the graph as shown in Fig. 5.2 . At the initialization (k = 0), the
quantity of pheromone on each edge 7% (e7), €7 = 1,..., E is the same and each
edge of the graph can be explored with a uniform probability p(® (e7) = 0.5. As
regards to the apex r, it is equal to ¢ — ¢ if the edge €] connects two vertexes
belonging to the same sub-array (i.e., the same row of the DAG) and to ¢ — ¢+1
if it connects two vertexes assigned to different sub-arrays (i.e., different rows of
the DAG). Moreover, the pedex z, z = zi, ..., 271, identifies the level of the
edge within the graph. Concerning the iterative loop (k > 0), the probability of
choosing one of the two subsequent edges (if present) at each vertex is given by
7®) (en)

z

- 7.(k)( q—>q) 4 7(k) ( q—>q+1)’

Z2=21,.2-1; T=q— q+[0,1].

(5.1)
When the whole ant colony has completed a path within the D AG, the pheromone
level 7%) (eI} of each edge is updated as follows

P () +Z<L;agk> (C 2% vr® () (5.2)

where ¢ w = = 1 when €] € a [a = Q{ng)}] and 0 . & = 0 otherwise, H

being a pOSlflVP constant. Successively, the evaporation procedure takes place in
order to reduce and at most delete worse paths from the graph
7_(k—i—l) (er) - (1 . ,0) 7_(lc-i-l) (€T

z z

), wrttD (en) (5.3)
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p € (0, 1] being a parameter aimed at controlling the evaporation rate. Finally,
the same stopping criterion (k = ke,q) used for the BEM is adopted here for the
ACO-based method to allow fair comparisons.

5.4 Numerical Simulations and Results

Because of the novelty of the proposed approach, the first part of this section
(Sect. 5.4.1) is devoted to the calibration of the AC'O algorithm |38] when dealing
with the searching of the “best compromise” solution among those admissible
within the solution graph. Successively, the use of the ACO is motivated (Sect.
5.4.2) showing how the BEM solution suffers from the non-convexity of the
aggregation problem because of the local nature of the algorithm. Finally, a set
of comparative results concerned with a wide number of compromise problems
are reported (Sect. 5.4.3) to point out potentialities and current limitations of
the ACO-based approach.

5.4.1 ACO Calibration

A key feature of the ACO algorithm is the simple implementation. As a matter
fact, besides the number I of ants in the colony, it only requires the definition
of two parameters to work, namely the pheromone update coefficient H and the
pheromone evaporation coefficient p. In order to determine their optimal values
for the problem at hand, an extensive set of numerical experiments has been
carried out by considering an array of N = 40 elements and () = 6 sub-arrays as
reference benchmark. In this case, the number of contiguous partitions is equal

ess) __ 19
to Uess) — ( :
those affording a Dolph-Chebyshev sum pattern with SLL = —25dB [19] and
a Zolotarev difference pattern with SLL = —30dB |9| have been chosen. Con-
cerning the calibration study, the values of the AC'O control coefficients have
been varied in the range H € [0: 5] and p € (0 : 1] [24], respectively. Moreover,
because of the stochastic nature of the ACO algorithm, 100 different simulations
have been performed for each setting of the calibration parameters. Each simu-
lation has been run with a number of ants equal to I = [3, 5, 8, 10, 100, 1000]
for a maximum number of K = 1000 iterations.

= 11628. As far as the reference excitations are concerned,

As a representative result, the average performances for each parameter con-
figuration when I = 3 are reported in Fig. 5.3 . As it can be observed, the
convergence cost function value is more sensitive to the evaporation coefficient p
and less to the value of the parameter H that controls the pheromone update.
A similar conclusion holds true whatever the value of /. Concerning the optimal
setup, the configuration H = 1 and p = 0.05 has been selected since the corre-
sponding representative point in Fig. 5.3 lies in the lowest region and the value
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Figure 5.3: ACO Calibration (N = 40, () = 6) - Behavior of the average con-
vergence cost function value versus the pheromone update constant, H, and the
pheromone evaporation parameter, p.

64



CHAPTER 5. THE ANT COLONY OPTIMIZER FOR GRAPH
SEARCHING

55 . .

Global Best -+
50 r |

45 F -
5T
\
\
\
\
\
\
\
\
40 b -
\
: \
\
\
\
\
\
35 ‘
: \
\
\
\
\

30 r

o + R 1

20 [ - ;

Fitness Value, W [Xx 103]

1.5 : '
1 10 100 1000

Number of Ants, C

Figure 5.4: ACO Calibration (N = 40, Q = 6; H = 1, p = 0.05) - Behaviors of
the statistic values of the average convergence cost function value versus the ant
colony dimension, C.

H =1 has already been identified as an optimal choice in other graph searching
problems (e.g., T'SP [26]).

As regards to the dimension of the ant colony, the analysis has been devoted
to define the optimal value of I in relationship to the dimension of the solution
space U9 Towards this end, I has been varied between 1 and 1—10U(658). Figure
5.4 shows the results of the statistical study, each cross being the average W
among the values reached at the end of each group of 100 simulations. For
completeness, the standard deviation is shown, as well. From these results, it
can be inferred that the choice I ~ [%U(ess) : WloU(ess)] defines a good rule
of thumb to reach the global solution with a percentage above 90% 2. On the
other hand, the minimum value of I;;, = 5 ants has been set as lower bound in
order to exploit the cooperative behavior of the ACO in those problems where
the previous criterion would give too small values (i.e., I < ).

21t is worth noting that the results here reported have been obtained under the assumption
of a maximum number of iterations equal to K = 1000. Probably, increasing the number of
iterations would allow a reduction of the number of ants for obtaining the same conclusions.
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Figure 5.5: ACO’s Hill Climbing Behavior (N = 20, Q) = 3) - Iterative BEM
procedure.

5.4.2 ACO’s Hill-Climbing Behavior

In order to show how the performance of the BEM are influenced from the choice
of the initial solution, while the AC'O is not dependent on the starting guess and
therefore more robust to the local minima problem thanks to its hill-climbing
properties, three samples of compromise syntheses concerned with small as well
as larger arrays for different number of sub-arrays are discussed in the following.

The first experiment deals with a 20-elements array (M = 10) with inter-
element spacing d = % The optimal sum and difference coefficients have been
chosen to afford a Dolph-Chebyshev sum pattern with SLL = —25dB [19] and
a Zolotarev difference pattern with SLL = —30dB |9], respectively. As regards
to the compromise feed network, () = 3 sub-arrays have been used.

Concerning the Contiguous Partition Method (C'PM) customized in the present
work to the searching within the solution graph, the optimal gains v,,, m =
1,..., M, are first computed as described in Chapter (2) and then sorted on
a line in order to obtain the list L = {l,: I, <lp11, h=1,..., M — 1}, where
Iy = min{vy,} and Iy = maz {v,, }. Each element of the sorted list L is assigned
to a level of the solution graph as shown in Fig. 5.1. Starting from a uniform sub-
arraying (i.e., a sub-array configuration wherein the number of elements within
each sub-array differs at most of one element when M is or not a multiple of
@), the initial sub-array vector turns out to be C© = {1112233321} (Fig.
5.5) . Then, the iterative loop of the BEM takes place according to the pseudo-
code of Sect. (5.2) and as detailed in Fig. 5.5. For completeness, Figure 5.1
shows the corresponding evolution of the BEM trial solution in the solution
graph. As it can be noticed, the BEM gets stuck only after k5EM = 2 iter-
ations. The final grouping is CPPM = ¢ = {1122333321} [Fig. 5.1(¢)]
with a convergence fitness value of ¥ (QBEM) = 1.08 x 1072, while the inter-
mediate solution CY = {1122233321} |Fig. 5.1(b)| has a fitness equal to

v (Q(l)) = 1.48 x 1072. The radiation patterns generated at the various itera-

tions and the reference pattern are reported in Fig. 5.6, as well.
Successively, the ACO has been applied to the same test case. Since the
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Figure 5.6: ACO’s Hill Climbing Behavior (N = 20, Q = 3) - BEM power
pattern at different iterations of the iterative optimization (k = 1, ..., kena)-

number of trial solutions within the graph is equal to U(¢®) = g = 36 and

I, according to the criterion previously defined, would result lower than one, the
ACO population has been set to I = I;;, = 5. Moreover, the pheromone update H
and the evaporation p have been fixed to their optimal values. As expected, the
ACO outperforms the BEM since the fitness value of the synthesized solution
C4°? ={1223333332} is equal to ¥ (C*°Y) = 8.26 x 1073 [vs. ¥ (CPFM) =
1.08 x 1072|. To further confirm the ACO effectiveness, it is worth noting that
the clustering determined by the AC'O is the one having the minimum fitness
among the U(¢**) = 36 admissible different clustering. On the contrary, the BEM
has been able to retrieve the second best solution coded into the solution graph
as shown in Fig. 5.7 (red line) where each cross denotes the ¥ value among
the U(*) = 36 contiguous partitions ranked according to their cost function
values. More specifically, the BEM solution is evidenced with a circle, while
the minimum fitness value or global minimum of the excitation matching cost
function coincides with the ACO clustering [i.e., UP* = ¥ (C*“?)|. On the other
hand, it is also interesting to point out that, even though the BEM solution is
the second best compromise, it has three elements over ten whose sub-array

memberships are different from those of the global optimum C%" recognized by
the ACO-based algorithm, CA°9 = CP'.
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Figure 5.7: ACO’s Hill Climbing Behavior - Cost function values of the solutions
coded in the solution DAG.
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M =10 [ aBFM {1122333321}
ac0 {1223333332}
Q=3 || wPFM0.3827 | 0.9736 | 1.3363

q

ACO 101798 | 0.6602 | 1.2549

S

Table 5.1: ACO’s Hill Climbing Behavior (N = 20, ) = 3) - Sub-array configu-
rations and weights determined by the BEM and the ACO.

‘ Approach H Wopt ‘ A H SLL[dB] ‘ BW [deg] H kend ‘ Fong ‘ t[sec] ‘ T(ess) ‘

‘ N=2M=20,Q=3 ‘

BEM 1.08 x 10~2 | 0.3199 —18.25 5.28 2 3 <10-8 36
ACO 8.26 x 1073 | 0.2689 —18.75 5.12 2 10 <10~8 36

‘ N=2M=20,Q=28 ‘

BEM 2.49 x 1074 | 0.0545 —35.20 5.74 2 3 <108 36
ACO 1.13 x 1075 | 0.0145 —37.50 5.68 2 10 <10~8 36

N=2M=40,Q=14
BEM 5.60 x 1073 | 0.2886 —20.10 2.50 21 22 <1077 969
ACO 4.99 x 1073 | 0.2609 —22.85 2.50 34 340 | 4.5x 1073 969

Table 5.2: ACO’s Hill Climbing Behavior - Pattern performances and computa-
tional indexes.

For completeness, Table 5.1 details the results obtained with the BEM and
the ACO by reporting the final sub-array configurations and the gain values.
Moreover, the synthesized difference compromises are shown in Fig. 5.8(a) . Be-
cause of the excitation-matching nature of the proposed technique, let us quantify
the closeness of the arising patterns with respect to the optimal/reference one
by computing the pattern matching A (2.6). As expected and indicated by the
corresponding lower fitness value, the ACO pattern is closer to the reference
one. As a matter of fact, it is A4 = 0.2689 vs. ABEFM = (.3199 (Tab. 5.2)
. Table 5.2 also reports the values of other indexes in order to give a complete
overview of the features of the obtained patterns (i.e., sidelobe level, SLL, and
main lobe width, Bw). Moreover, the computational issues are pointed out by
the following indexes: the number of convergence iterations, k.,q, the number
of function evaluations, F,,4, and the C'PU-time t necessary to find Q(kend) on a
3.4GHz PC with 2GB of RAM. As it can be noticed, both BEM and ACO are
able to find a convergence solution almost in real time since t+ < 1078, Such an
event points out once again the computational efficiency of the C'PM approach,
but also the usefulness of the graph representation that enables the use of an
evolutionary algorithm without excessively increasing the computational costs
and memory resources.
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Figure 5.8: ACO’s Hill Climbing Behavior - Compromise difference power pat-
terns obtained with the BEM and the ACO when (a) N = 20, Q = 3 (Zolotarev
9], SLL = —=30dB) and (b) N =20, @ = 8 (Zolotarev [9], SLL = —40dB).
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SEARCHING
M =10 || oBEM {1235786421}
aACo {1357887642}

Q=28 BEM | (2146 | 0.6107 | 0.9221 | 0.9825 | 1.1582 | 1.1797 | 1.2818 | 1.2864
ACO | 0.2049 | 0.2432 | 0.5937 | 0.7250 | 0.9221 | 0.9825 | 1.1650 | 1.2838

g

g

Table 5.3: ACO’s Hill Climbing Behavior (N = 20, ) = 8) - Sub-array configu-
rations and weights computed with the BEM and the ACO.

In the second experiment, the same array geometry of the previous ex-
ample has been considered, but the array has been partitioned into Q = 8
sub-arrays. Moreover, a Zolotarev difference pattern with SLL = —40dB 9|
has been adopted as reference target. It is worth observing that despite the
higher number of sub-arrays, the dimension of the solution space is still equal
to U(**) = 36 thanks to the symmetric nature of the binomial distribution [i.e.,
Uless) = ( 2 ) = < g ) = 36]. Analogously to the previous example, the BEM
stops after kBEM = 2 iterations synthesizing the solution in Tab. 5.3 , but in this
case other 8 solutions with lower fitness values are present in the solution graph
(Fig. 5.7 - green line). On the other hand, the ACO has been able to reach the
global optimum in Tab. 5.3 after £19° = 2 iterations with a total number of

end

fitness evaluation equal to FACC = 10 since I = I, = 5. In particular, the ACO

end
solution presents a fitness value of more than one order in magnitude below the

one of the BEM [i.e., ¥ (C*°) = 1.13 x 107> vs. W (CPPM) = 2.49 x 1074]
and % ~ 3.76 as it can be qualitatively observed by comparing the patterns

in Fig. 5.8(b). For the sake of completeness, Table 5.2 compares the retrieved
solutions in terms of performance indexes.

The last experiment of this section is concerned with a larger uniform array
of 40 %—spaeed elements. A Dolph-Chebyshev sum pattern with SLL = —25dB
[19] and a Zolotarev difference pattern with SLL = —30dB [9] have been chosen
as reference patterns and the number of sub-arrays has been set to Q = 4. In
such a case, the number of possible sub-array configuration within the solution
space is equal to U = 969. As far as the ACO is concerned, I = 10 ants have
been used. The two approaches have found the corresponding solutions after
EBEM — 21 and kASC = 34 as shown in Fig. 5.9 where the behavior of the cost
function during the iterative searching process for both the BEM and the ACO
is described. The synthesized sub-array configurations and weights are given in
Tab. 5.4 , whereas the corresponding patterns are displayed in Fig. 5.10 . As
expected and likewise to the previous experiments, the BE M is still trapped into
a local minimum and the retrieved solution turns out to be sub-optimal. However,
it should be observed (Fig. 5.7 - blue line) that the BEM configuration is the
third best contiguous partition among U(**) = 969 different solutions and the

. BEM . .
value of the ratio iACO ~ 1.11 assesses its closeness to the optimal one. As
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Figure 5.9: ACO’s Hill Climbing Behavior (N = 40, @ = 4) - Behavior of the
cost function value W*) during the iterative optimization process when applying

the BEM and the ACO.

M =20 aBEM [ {11222333444444444332}
af€O 1{11223334444444444432}
Q=4 [[wlF" 101779 ] 0.5658 | 1.0257 | 1.3288
w9 [ 0.1779 | 0.5055 | 0.8989 | 1.2923

Table 5.4: ACO’s Hill Climbing Behavior (N = 40, ) = 4) - Sub-array configu-

rations and weights synthesized by means of the BEM and the ACO.
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Figure 5.10: ACO’s Hill Climbing Behavior (N = 40, Q = 4) - Reference
(Zolotarev [9], SLL = —30dB) and compromise difference power patterns syn-
thesized with the BEM and the ACO.
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regards to the computational issues, such a test further confirms the efficiency of
the BEM (in terms of speed) in exploring the solution space being tBEM < 10~7
while 40 = 4.5 x 1073, As a matter of fact, although the C'PU-time required
by the ACO-based approach is certainly smaller than that of standard global
optimizers, it cannot be omitted that from a computational point of view the
BEM results more competitive than the ACO when the ratio % gets larger and
larger. Such a statement will be further analyzed in the following section.

5.4.3 ACQO’s Performances and Problem Dimensions

In dealing with the optimal compromise between sum and difference patterns,
different global optimization techniques have been applied to determine the most
suitable partition of the array elements into sub-arrays that minimizes a suitable
cost function related to some pattern features. Among them, it is worth men-
tioning the Genetic Algorithm [12|, the Differential Evolution Algorithm |11| and
its enhanced version [15]|, and the Simulated Annealing |14]. Despite the differ-
ent way of tackling the problem at hand (i.e., direct optimization of element
memberships and weights [12][11][15] or two-step nested approach [14] exploit-
ing functional convexity), the dimension of the solution space to be explored for
retrieving the elements aggregation is equal to U®) = QM since each clustered
configuration can be expressed as a string of M digits in a ()-based notation sys-
tem. Let us now suppose to use in a standard fashion (i.e., without reformulating
the problem at hand as a combinatorial one) a global optimizer and to apply the
rule deduced in Sect. (5.4.1) for the population size [i.e., [t ~ 1072 x T
for running a simulation in a fixed number of iterations K looking for the opti-
mal aggregation within the set of 1) possible solutions. The total CPU time
necessary to complete such a simulation turns out be At = §¢ x K x [(toD)
0t being the C'PU-time for one evaluation of the cost function. Moreover, it
should be pointed out that there is not guarantee that the synthesized aggrega-
tion is the global optimum of the functional at hand. Then, let us refer to the
combinatorial formulation of the compromise problem and map the reduced so-
lution space of dimension I(***) into the graph representation described in Sect.
5.3. By exploiting such a structure and accordingly using the proposed im-
plementation of the AC'O, the number of ants of the colony turns out to be
1659 ~ 1072 x T(°*3) much smaller than (") since U®**) grows at most polyno-
mially [i.e., U = ( g_ll )] and not exponentially as U®") [0 = QM].
Therefore, the iterative optimization runs for a time A#(e9) = §t x K x [(es9)
which satisfies the following condition At(¢*8) < At°'3 since I(¢5%) < (") Such

3For the sake of simplicity, 6t has been assumed to be equivalent for both standard and
combinatorial optimizations. However, please also consider that 6¢(¢5%) < §t(*°*) since usually
5t requires the computation of a pattern feature, while §¢(¢**) is related to a matching
operation.
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Figure 5.11: Comparative Assessment (Zolotarev |9], SLL = —25dB, ) = 8)
- Behavior of the average convergence cost function value versus the number of
array elements, N.

a conclusion clearly evidences the significant reduction of the computational bur-
den as well as the more profitable and proper use of a suitable global optimization
technique within the combinatorial framework. As a matter of fact, although also
in this case the convergence to the global optimum solution is not guaranteed,
the probability of reaching it significantly grows compared to the standard use
of global optimizers. In order to detail such an argumentation, let us assume one
has at disposal a limited amount of time At(*) for defining the best aggregation
for the compromise problem at hand. On one hand, the ACO-based approach
would have AK = K’ — K more iterations for exploring the solution space, being

K = 65}%. On the other hand, it would be possible to use a larger colony
of 1) = %}f:;? ants for the same number of iterations K and the following

conditions would hold true: 1% > 135 and (") ~ [7(es5)_ In this latter case,
the convergence of the AC'O-based procedure to the optimum clustering would
be assured since each ant could be assigned to explore a single and different path
of the solution graph thus covering/sampling the whole solution space.
In order to assess and confirm these indications, Figures 5.11 and 5.12 summarize

the performance achieved with the BEM and ACO methods. The plots refer to
a representative set of simulations performed by varying the number of elements
of the array aperture between N = 20 and N = 500, but maintaining a uniform
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Figure 5.12: Comparative Assessment (Zolotarev |9], SLL = —25dB, @ = 8) -
Behaviors of (a) the SLL and (b) the BW values of the synthesized compromise

patterns versus the number of array elements, N.
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inter-element distance (d = %) In all the experiments, the sets of reference

excitations have been chosen to generate a Dolph-Chebyshev sum pattern with
SLL = —25dB [19] and a Zolotarev difference pattern with SLL = —25dB [9].
Moreover, the number of sub-arrays has been fixed to () = 8. As regards to the
ACO values, they are related to the average performance over a statistical set
of 50 independent executions of the same simulation (i.e., with the same para-
metric configuration, but varying the randomness in the ACQO). In particular,
the plots denoted by ACO and ACO* indicate the values obtained when the
ACO algorithm has been run for K = 1000 iterations with a colony of I*) and
]1(688) ants, respectively. As expected, the ACO-based approach with Il(ess) trial
solutions for each iteration always outperforms the BEM. Unfortunately, when
U9 turns out to be too large, both the computational load and the storage re-
quirements of the AC'O result quite cumbersome and once again, although with
larger dimensions, verify the same drawbacks usually encountered by standard
global optimizers when dealing with non-small array geometries. In such a sit-
uation, the BEM seems to be more attractive even though less robust against
local minima problems.

5.5 Conclusions

In Chapter 2, it has been shown how the excitation matching formulation of the
optimal compromise problem can be recast as a combinatorial one by exploiting
the knowledge of independently optimal sum and difference modes. Thanks to
a tree representation of the set of admissible solutions, a local search strategy,
called border element method (BEM), has been implemented to efficiently ex-
plore the reduced solution space with a large saving of computational resources.
Instead, an ACO-based technique has been here considered in order to avoid the
occurrence of sub-optimal aggregations caused by the presence of local minima
in the non-convex excitation matching functional where the solution space has
been described through a directed acyclic graph.

From the analysis carried out within this research work and summarized in
this chapter, the following conclusions can be drawn:

e unlike ACO-based approach, both the dimension of the solution space and
computational burden rise much more rapidly when standard global op-
timizers are used. In practice, these standard stochastic algorithms work
effectively only with small arrays thus synthesizing array solutions having
a limited angular resolution;

e being a local search technique, the BEM depends on the initial solution,
but it is an excellent computational saving technique suitable for synthesiz-
ing very large arrays (N > 200) although without any guarantee of avoiding
local minima solutions;

7



5.5. CONCLUSIONS

e the ACO takes on one side the advantages of global optimization ap-
proaches in facing non-convexity, while on the other and to the best of
the authors’ knowledge, it is the most suitable algorithm among state-of-
the-art metaheuristics for path-searching in a graph-represented solution
space.
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Chapter 6

The Hybrid Approach

A hybrid approach for the synthesis of the “optimal” compromise between sum
and difference patterns for sub-arrayed monopulse antennas is presented. Firstly,
the sub-array configuration is determined by exploiting the knowledge of the
optimum difference mode coefficients to reduce the dimension of the searching
space. In the second step, the sub-array weights are computed by means of a
convex programming procedure, which takes advantages from the convexity, for
a fixed clustering, of the problem at hand. A set of representative results are
reported to assess the effectiveness of the proposed approach. Comparisons with
state-of-the-art techniques are also presented.
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6.1. INTRODUCTION

6.1 Introduction

In the recent literature, the use of a hybrid approach, namely, the Simulated
Annealing Convex Programming (Hybrid — SA) method [13|, for the synthe-
sis of sub-arrayed monopulse linear antennas has improved the performances in
shaping compromise patterns with respect to reference approaches [10]-[11]. By
considering a sub-arraying strategy [8], the procedure proposed in [13] is aimed at
finding “the sub-array configuration and the coefficients of the sub-array sum sig-
nals such that the corresponding radiation pattern has a null with the maximum
possible slope in a given direction, while being bounded by an arbitrary function
elsewhere.” Such a solution allows one the use of simpler feeding networks that
guarantee both a reduced circuit complexity and low electromagnetic interfer-
ences as well as to obtain patterns with user-defined characteristics. It is based
on the exploitation of the convexity of the functional with respect to a subset of
the unknowns (i.e., the sub-array gains) and it is carried out by means of a Con-
vex Programming (C'P) method [13]. However, since the sub-array memberships
of the array elements are determined by means of a Simulated Annealing (SA)
algorithm, the procedure involves non-negligible computational costs to achieve
the global minimum or there is the possibility that the solution is trapped in
a local minimum (whether the criterion for the SA convergence has not been
verified [39]). In order to save computational resources, the Contiguous Parti-
tion Method (C'PM) is used. The C' PM takes advantage from the knowledge of
the optimal excitations of the difference pattern [7][9][40] and from the concept
of contiguous partitions |18] to reduce the searching space and, thus, effectively
handling the problem of the optimal clustering. As a matter of fact, the arising
computational burden turns out to be significantly reduced compared to that of
previous optimization schemes.

In the following, a hybrid approach (called Hybrid—C P M method), which in-
tegrates the C PM with a gradient-based C'P procedure [13] to profitably benefit
of the positive features of both C PM and C'P approach is carefully described and
validated. At the first step, the “optimal” sub-array configuration is computed
according to the procedure described in Chapter 2 by exploiting the relationship
between the excitation coefficients of the optimal sum [19]|5][17][41] and differ-
ence [7][9][40] modes. Once the clustering has been determined, the sub-array
gains are computed as in [13].

6.2 Synthesis of Linear Arrays

Let us consider a linear array of N = 2M equally-spaced isotropic elements
whose generic excitation coefficients are a,, n = —M,...,—1,1,..., M and the
corresponding space factor given by:
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M
f (9) _ Z anej(n—sgn(n)/2)kdcos(0) (61)

n=—M

where k£ and d = % are the wavenumber of the background medium and the
inter-element spacing, respectively. Moreover, ¢ indicates the angular rotation
with respect to the direction orthogonal to the array.

The Hybrid — CPM approach belongs to sub-arraying techniques, but un-
like the Hybrid — S A, it considers a two-stage-iterative procedure instead of an
iterative one step process wherein each step involves in turn the solution of a
convex optimization problem. The first step is based on the CPM, just pre-
sented in Chapter 2. As already pointed out, the solution of such a problem is “a
contiguous partition of M completely ordered elements into (Q subsets that may
be represented by QQ — 1 points of division lying in any of the M — 1 intervals
between adjacent elements” [18]. This solution represents the best step-wise ap-
proximation of the considered partition and “the number of possible contiguous
partitions is equal to the number of ways of choosing the division points, which is
the number of combinations of M — 1 different things taken QQ — 1 at a time |i.e.,

M—1 . . .
UerM — 0-1 ) UCPM heing the number of contiguous partition|”. Ac-
cordingly, C“"™ is determined by generating a sequence of contiguous partitions

{Q(k); k=0,.., K} starting from a guess aggregation C'” and updating the so-

lution [Q(k) — Q(k+1)] just modifying the membership of the “border elements”
of the array.

The second step exploits the following property [13|: “the optimal compro-
mise between sum and difference patterns is a convexr problem with respect to
the sub-array weights for a fized sub-array configuration C”. Accordingly, once
the element membership has been determined |i.e., Q(Opt) = QCPM], the optimal
weight vector WPt is computed by minimizing the following cost function

dR{f%(0
wer y) - B0 (6:2)
do
6=t
subject to w = 0 and ’fd (9)}2 < R (6), where 6y indicates the

6=0,
boresight direction and X () is a non-negative function that defines the upper

bounds for the sidelobes. Moreover, W = {w,; ¢ =1,...,Q} is the sub-array
weight vector and R and & denote the real part and the imaginary one, re-
spectively. Towards this end, a standard gradient-based optimization is per-

formed by generating a succession of trial solutions {w(h); h=0,..., H} start-

ing from the initial guess given by W©® = {wfPM g =1,...,Q} being w§" =

[Zy‘M—l Oqc; (“?“Zi)}
i Oqc; (“5)2 '
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Figure 6.1: Uniform Sub-arraying (M = 10, Q@ = 5) - Normalized compromise
difference patterns obtained by means of the Hybrid—C P M method, the CPM,
and the EMM [8].

6.2.1 Numerical Assessment

In this section, the effectiveness and potentialities of the proposed hybrid method
will be assessed dealing with three benchmarks of the related literature. As a
matter of fact, the test cases under analysis are concerned with linear arrays
and, for the sake of completeness, with both a small (M = 10) and a large
(M = 100) number of elements. Whatever the experiment, the synthesis is
aimed at minimizing the SLL of the compromise difference pattern for a fixed
beamwidth or, analogously, at maximizing the slope along the boresight direction
[13] fixed at 6y = 0°.

The first test case deals with a linear array of N = 20 elements. As far as the
sum mode is concerned, it has been fixed to a Villeneuve sum pattern [17], with
n =4 and SLL = —25dB, in the first experiment, whereas a Dolph-Chebyshev
[19] pattern with SLL = —20dB has been chosen for the second one. In the first
experiment, a configuration with () = 5 sub-arrays and uniform clustering is con-
sidered. Moreover, as regards the optimal /reference difference pattern of the ap-
proaches that exploit the concept of contiguous partitions, the optimal difference
excitations have been fixed to a modified Zolotarev distribution (7w = 4, ¢ = 3)
whose pattern is characterized by SLL,.; = —25dB. Figure 6.1 pictorially com-
pares the patterns obtained with the EM M 8], the CM P, and the Hybrid —
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[dB] H Reference H Hybrid — CPM ‘ CPM ‘ EMM ‘ Hybrid — SA ‘ DE ‘
M=10 | Q=5 —25.0 —22.4 —21.0 —17.0 — -
M=10 | Q=38 —-39.0 —37.5 —35.2 - —36.5 —21.6
M=10 | Q=38 —41.0 —38.0 —32.7 — —36.5 —21.6
M =100 ‘ Q=6 H -30.0 H —28.3 ‘ —25.7 ‘ - — ‘ - ‘

Table 6.1: Values of the SLL of the array factors in Figs. 6.1-6.3.

C'PM approach, whose final sub-array configuration and weights are C(P%) =

{1123355442} and W lort) — {0.3352, 1.1299, 1.3708, 1.8309, 1.8699}, respec-
tively. It is worth noting that the Hybrid — C PM approach outperforms other
methods with a reduction of over 5dB and more than 1dB of the the SLL with
respect to the EM M and the CPM, respectively (Tab. 6.1) .

The second experiment is devoted to complete the comparison by consider-
ing the state-of-the-art methods based on stochastic optimizations. In particular,
the results from the Hybrid — SA [13| and the Differential Evolution (DE) opti-
mization algorithm [11] have been taken into account. The array configuration is
that with () = 8. The array patterns obtained from the application of the C'PM-
based methods and by assuming a reference Zolotarev pattern 9| with SLL,.; =
—39dB are shown in Fig. 6.2(a) together with those from the other approaches.
With reference to Fig. 6.2(a) and as quantitatively estimated in Tab. 6.1, the
Hybrid — CPM plot presents a SLL of —37.5dB (i.e., almost 1dB below the
SLL of the Hybrid— S A [13| and more than 15 dB when compared to the pattern
in [11] with the same number of sub-arrays), with C("Y = {2357886431} and
wiert) — {1.1836, 1.8818, 4.9795, 6.9286, 7.3462, 8.5109, 9.1480, 9.7003}. Fur-
thermore, it is worth analyzing the beamwidths (BWs) (or, similarly, the first
null positions) of the results in Fig. 6.2(a). As a matter of fact, the Hybrid —
C P M solution presents not only the lowest SLL value, but also the narrower BW
(i.e., BWHybrid—CPM = 0.097 vs. BWHybm’d—SA = (0.102 and BWDE = 0113)
Such a result further confirms the effectiveness of the Hybrid — C' PM in dealing
with the non-convex part of the problem at hand, thus allowing the synthesis
of compromise patterns with better characteristics. As expected, the improve-
ments in terms of SLL are even larger by setting the same BW constraint used
with Hybrid — SA [13|. Towards this aim, the reference excitations have been
chosen to afford a Zolotarev difference pattern |9] with SLL,.; = —41dB. In
such a case, the achieved solution has a SLL = —38.0 dB with an improvement
of about 0.5dB [Tab. 6.1] compared to that in Fig. 6.2(a). For completeness,
the values of the obtained clustering and sub-array weights are equal to C'°PY) =
{2468887531}and Wt — {0.7461, 2.0518, 4.0934, 5.4616, 6.5563, 8.2545, 8.5060, 10.0768},
respectively.

As far as the computational costs are concerned, the number of iterations,
K, required to get the final clustering starting from a uniform one at the initial-
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Figure 6.2: Non-Uniform Sub-arraying (M = 10, @ = 8) - Normalized compro-
mise difference patterns obtained by means of the Hybrid — C PM method, the
CPM , the SA — CP approach [13], and the DE optimization |11].
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Figure 6.3: Large Arrays (M = 100, Q = 6) - Normalized compromise difference
patterns obtained with the Hybrid — C PM method and the C'PM.

ization, is Kopyr = 4 and Kepyy = 3, for the two C'PM-based syntheses, respec-
tively, and the total C'PU-time is shorter than 10 [usec| in both cases. More-
over, the whole synthesis time of the Hybrid — C' PM amounts to 3.078 [sec| and
3.781 [sec], respectively. As regards to the higher burden of the Hybrid — C PM
compared to the C'PM, this is due to the solution of the C'P problem, which ends
in Kop = 18 iterations. For comparative purposes, let us notice that a greater
computational burden affects the Hybrid—SA |13] method since Kpyprig—sa = 25
have been chosen and C'P problem is solved at each iteration. Similar conclu-
sions hold true also for the DE approach [11] where the number of iterations has
been set to Kpr = 10.

The last comparative example deals with the synthesis of a large array (N =
200). Thanks to the computational saving, the C'PM-based procedures are able
to effectively face with such a problem dimensionality. The sum coefficients have
been chosen to generate a Dolph-Chebyshev [19] pattern with SLL = —25dB,
while the values of the reference difference excitations have been fixed to those
of the Zolotarev difference pattern with SLL,.; = —30dB. The behaviors of the
patterns in Fig. 6.3 clearly point out that the integration of the C'P optimization
with the C'PM allows a non-negligible enhancement of the SLL performances.
As a matter of fact, the SLL computed in correspondence with the clustering
determined by the Hybrid — C PM method (Tab. 6.2) is of about 3dB lower
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M — 100 ¢ | IIIIIIIIIIII11222222223333333344444444555555555660
- =l 66666666666666666666666666666555555555444444433331
Q=6 | W [0.2133]0.7235 | 0.9417 | 1.0909 | 1.2752 | 1.4294

Table 6.2: Large Arrays (M = 100, @ = 6) - Sub-array configuration and weights
determined by the Hybrid — C PM method (see Fig. 6.3 for the corresponding
pattern).

array factor
dipoles ---------

S dipoles with MC [18] - g

dipoles with MC [19] -

215 H -
20 -

25 -\

Relative Power Pattern [dB]

30 F

Figure 6.4: Large Arrays (M = 100, ) = 6) - Normalized compromise difference
patterns obtained with the Hybrid — C'PM method and the CPM.

than that of the standard version of the CPM (see Tab. 6.1).

Finally, in order to assess the reliability of the synthesized solutions, let us
evaluate the radiated power patterns when mutual coupling (MC) effects are
included into the array model. Towards this purpose, the M C models proposed
in 42| and |43] have been taken into account and compared as in [44]. The
case-of-study example deals with a 20-element uniform linear array of thin \/2
dipoles oriented along the z axis |45|. As a representative example, the effects
of the MC' on the solution obtained with the Hybrid — CPM approach and
shown in Fig. 6.1 are analyzed. Figure 6.4 shows the pictorial representations
of the relative power patterns for different situations. As it can be observed, the
radiation pattern obtained by including the M C effects is similar to the ideal case
whatever the considered MC model. More in detail, the null positions are equal
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to those of the ideal pattern, while some perturbations only affect the behavior
of the secondary lobes without compromising the performance of the difference
beam.

6.3 Synthesis of Linear Arrays

A hybrid version of the ICPM (i.e., the Hybrid — IC' PM) presented in Chapter
3 is customized to the synthesis of planar arrays in order to extend the range of
applicability of the planar C PM from excitation matching to pattern optimiza-
tion allowing, unlike the IC'PM, a direct control of the pattern features (i.e.,
SLL, BW, etc...).

Similarly to linear array case, the hybrid approach consists of a two-step
procedure where at the first step the sub-array configuration is computed ac-
cording to the IBEM (i.e., Qﬁybﬂd_lcpM = QOApt). Successively, the weights
Eﬁymd_lcpM, A = FE, H, of the sub-arrayed difference network are computed
by means of a standard C'P procedure minimizing the following cost function
(where the notation is the same of Chapter 4)

o 1) - (S S50 [8 ()T 003 (o) s 0.0
-/ {qu;;r:?,m,Q} Ox 0=0
$=0
(6.3)
X being either 6 or ¢ and Y (0, ¢) = k2., + kyyy, subject to
O{ LSR5 g0 [R(12) sin Y (0,0) + 9 (1) cos T (0,)] } ;
Ix 6=0
$=0
(6.4)
and
R S(r)
AF(7 GO—Z Zf}/rs— (65)
$=0 r=—R s=-S5(r)

and to |AF (6,¢)]> < M (8, ) where M (6, $) is a function descriptive of a
user-defined mask on the synthesized difference power pattern. In Eq. (6.3), R (+)
and §(+) denote the real and imaginary part, respectively. At the initialization
of the C'P procedure, the guess solution is set to the values of the sub-array

weights obtained at the end of the ICPM, W =W

~~ opt*
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-15
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Figure 6.5: Hybrid Formulation (N = 300, d = 3, r = 4.85)) - Behavior of the

(a) SLL and of the (b) BW for the compromise patterns synthesized by means
of the ICPM and the Hybrid — ICPM when Q € [2,8§].
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CPU — Time [sec] Tep
Q 2 ‘ 3 ‘ 5 ‘ 8 2 ‘ 3 ‘ 5 ‘ 8
ICPM 2.30 2.64 3.12 7.23 37 45 57 120
Hybrid — ICPM 7554.68 8678.15 9623.57 7314.06 2114 2415 2675 2113

Table 6.3: Hybrid Formulation (N = 300, d = 2, r = 4.85)) - Computational

2

indexes for the solution obtained with the ICPM and the Hybrid — [CPM.

In order to show the SLL/BW control allowed by the hybrid approach, Figure
6.5 summarizes the results from a comparative study between the IC'PM and its
hybrid version in terms of maximum SLL |Fig. 6.5(a)| and corresponding BW
computed on the principal plane [i.e., the ¢ = 0°] |Fig. 6.5(b)| dealing with the
same array configuration of Sect. 4.3.2. To better and more exhaustively analyze
the potentialities of the proposed hybrid approach, the number of sub-arrays has
been varied in the range @) € [2, 8] and the synthesized sub-arrays configurations
and weights are shown in Fig. 6.6 . For completeness, the corresponding patterns
are also given |Fig. 6.7] . As it can be observed (Figs. 6.7-6.5), the solutions from
the Hybrid— IC PM outperform those of the IC' PM in terms of pattern indexes
even though with heavier computational costs. As far as the computational
issues are concerned, the dimension of the solution space UP4%) and the storage
resources MP4%) are given in Fig. 6.8 , whereas the CPU-time and number of
iterations Top required to get the final solution for the Hybrid — ICPM and
ICPM are reported in Tab. 6.3 to point out the trade-off between pattern
efficiency and computational burden.

6.4 Discussions

Concerning the optimization problem at hand, the proposed C'PM-based pro-
cedure does not guarantee that the retrieved sub-array configuration is the best
choice for optimizing the SLL. As a matter of fact, such a configuration can be
(theoretically) obtained only by means of global optimization procedures. How-
ever, the proposed procedure has shown to outperform state-of-the-art global
optimization strategies. Furthermore, starting from the assumption that C'PM-
based strategies are matching techniques, the proposed approach can be easily
extended to arbitrary sidelobe masks or pattern shapes (for both sum and differ-
ence patterns) by profitably using the state-of-the-art approaches (e.g., [40][41])
to set the reference patterns.
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Figure 6.6: Hybrid Formulation (N = 300, d = %, r = 4.85\, Q = 3) - Sub-array
configurations (left column) and array element weights (right column) synthe-
sized with the IC'PM and the Hybrid — IC'PM for different values of Q |Q = 2
(first row), Q = 3 (second row), Q =5 (third row), and Q = 8 (fourth row)|.
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Figure 6.7: Hybrid Formulation (N = 300, d = 3, r = 4.85\, Q = 3) - Beam
patterns synthesized with the ICPM (left column) and the Hybrid — ICPM
(right column) for different values of Q |Q = 2 (first row), Q = 3 (second row),
Q =5 (third row), and Q = 8 (fourth row)].
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Figure 6.8: Sub-Arrayed Planar Array Synthesis (d = %, r = 4.85)\). Com-
putational Analysis - (a) Dimension of the solution space U and (b) memory
resources, M, and number of vertexes, V', for the storage of the representa-
tions of the solution space versus () in correspondence with N = 300 and
N = 40 (CBT —Complete Binary Tree, IBT —Non-Complete Binary Tree,

and DAG —Direct Acyclic Graph).
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Chapter 7

Conclusions and Future
Developments

In this last section, some conclusions are drawn and further advances are envis-
aged in order to address the possible developments of the proposed technique.
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In this thesis, an approach for the synthesis of monopulse array antennas has
been presented and validated. The method is based on an excitation matching
procedure to design sub-arrayed antennas generating an optimal sum and com-
promise difference patterns. Thanks to the knowledge of the reference excitation
set, the synthesis problem has been reformulated as a combinatorial one to allow
a considerable saving of computational resources. Thanks to a graph-based rep-
resentation of the solution space, the use of an efficient path-searching algorithm
to speed-up the convergence of the procedure for the synthesis of large array
antennas as well as the use of the Ant Colony Optimizer (ACO) to benefit of
its hill-climbing properties in dealing with the non-convexity of the sub-arraying
problem have been considered. Moreover, a hybrid approach has been developed
to individually control the level of the secondary lobes. A set of representative
examples concerned with both pattern matching problems and pattern-feature
optimization have been reported in order to assess the effectiveness and flexibility
of the proposed approach. Comparisons with previously published results have
been shown and discussed, as well.

Concerning the methodological novelties of this work, the main contribution
is concerned with the following issues:

e an appropriate definition of the solution space by means of a graph struc-
ture;

e an original and innovative formulation of the sum-difference problem in
terms of a search in a graph;

e a simple and fast solution procedure based on swapping operations among
border elements and cost function evaluations.

Moreover, the main features of the proposed graph-based techniques are the
following:

e a reduction of the dimensionality of the solution space for the synthesis
problem at hand, by exploiting the information content of independently
optimal sum and difference excitations;

e a significant reduction of the computational burden, by applying a fast so-
lution algorithm for exploring the solution graph (i.e., sampling the solution
space);

e the capability to deal with the synthesis of large linear and planar arrays
in an effective and reliable way.

As far as future developments are concerned, this approach promises to show

its flexibility and capability also with time-varying scenarios and not only with
the “static” array synthesis. In such a framework, techniques for the control and
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CHAPTER 7. CONCLUSIONS AND FUTURE DEVELOPMENTS

synthesis of adaptive phase-array are of interest since they allow to shape in real
time the radiation pattern and in particular the secondary lobes for noise and
interference rejection.

Moreover, the possibility of integrating the time modulating strategy for the
synthesis of patterns with low and ultra-low sidelobes can be investigated where
a set of RF switches are used to commute between the open and short circuit
state in order to enforce a time modulation on the element /sub-array excitations.
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Appendix A

Contiguous Partition

This appendix is aimed at proving that, given () sub-arrays, the value of the cost
function (3.5) is minimum provided that the elements belonging to each sub-array
are consecutive elements of the ordered list L = {l,,,; m=1,...,M; L, <lps1}
With reference to a set of elements V. = {v,,; m =1,..., M} be to be divided
in () sub-sets, the thesis to be proved is that the partition minimizing the cost
function (3.5) is a contiguous partition (i.e., if two elements v; and v,, belong to
the same class and v; < v; < v, then element v; is assigned to the same subset
of elements). Towards this end, the proof follows the guidelines reported in [18].
Let us consider a non-contiguous partition Py = {Vy; ¢=1,...,Q} of the set
V and three elements v;, v;, v, such that v; < v; < v,. Let elements v; and
v, belong to a subset with mean value d, and let v; belong to a different subset
having mean value d,. Whatever the values of d, and d,, at least one the following
statements holds true

|Uj — ds| Z |’Uj — d,«| > O,
|UZ' — drl > |UZ' — d5| > O, (Al)
|vy — d| > v, — ds| > 0.

Let us denote with v, the element satisfying (A.1) and its own subset as V, =

{vk; k=1, ..., Ny }. Moreover, let us refer to the other subset as V., = {v; h =1, ...

Accordingly, the cost function (3.5) associated to the partition P, may be writ-
ten as:

M Q
U=> v~ Ne-di = Ny-dj— > N,-d (A.2)
m=1 q=1;q#h,k
N, and d,; being the number of elements and the mean value of the g-th sub-array,
respectively.
Now, let us consider a new partition P
the subset V. to the subset V,. We obtain two new subsets K,(:) =V, \{v} and

Kg) =V, U{v,} W' with mean values equal to d,(gl) = % and dﬁll) = %,

8) obtained by moving the element v; from

1(4) We explicitly note that the new partition B(Ql) has the same number of subsets as P,.
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respectively. Accordingly, the cost function associated to the partition B(Ql) can
be written as:

M 2 2 Q
dek — Ut) (thh — Ut)

g =32 — — Nyd?. A3
Z Um Nk -1 Nh -1 Z qq ( )
m=1 q=1;q#h,k

Now, by subtracting (A.3) from (A.2), after some manipulations, it turns out

that
Ny, 2 Ny,

vy —dg)” —
Nk—l( e = di) Ny +1
According to (A.1), ¥ > WM and it can be concluded that for every non-
contiguous partition we can find another one with the same number of subsets,
but with a smaller cost. Hence, the partition minimizing the cost function (3.5)
is a contiguous partition.

v — gl = (v — dp)* . (A.4)

As a matter of fact, according to (A.1), the element v; cannot be equal to the mean value dj

)

and thus, V, has cardinality greater than one. It follows that the sub-set K,(gl has at least one

element.
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Appendix B

Dimension of the Essential Space

This section is devoted at quantifying the dimension 7(**) of the essential so-
lution space R(¢s%) = {QEGSS); t=1,..., T(ess)}, thus pointing out the computa-

tional saving allowed by the proposed approach compared to exhaustive or global
sampling solution procedures. More in detail, the aim is that of determining the
number 7% of candidate solutions or, in an equivalent fashion, the number of
allowed paths in the solution tree.

Generally speaking, since a sub-array configuration C' can be mathematically
described by a sequence of M digits of a ()-symbols alphabet, the whole number of
aggregations is equal to T = Q™. Thanks to the equivalence relationship, the set
of candidate solutions can be limited to the number of paths in a complete binary
tree of depth M, thus the number of non-redundant solutions results 7' = 2M~1,
Moreover, by taking into account only admissible (i.e., grouping where there is
at least one element in each sub-array) and allowed (i.e., sorted aggregations)
complete sequences, the set of solution can be further reduced. With reference
to the ordered list L = {l,,; m=1,..., M; I, <lni1}, the allowed paths are
mathematically described as

i = [

Cgiis) < Cgifv:)—la Cg’elss) = 1’ C]E/’e]‘\}s) — Q} , t = ]_’ s T(ess)’

(B.1)
where &*¥ denotes the sub-array number to which the m-th element [, of the
ordered list L belongs.

In order to determine the essential dimension 7(**) = T(©5)(Q, M) of the solution
space, let us consider the “recursive” nature of the binary solution tree and, as
a reference example, the case () = 2. In such a situation, the grouping vector

C'***) is a sequence of M symbols from the set {1,2} that satisfies the following
constraints: (a) cffs) =1, (b) cﬁfjj) = 2, and (c¢) if cﬁf’;s’ = 2 then cﬁfﬁl =
cﬁf]fj) = 2. Thus, each possible solution Qgess) is made up of a sub-sequence of

consecutive symbols 1 followed by a sub-sequence of symbols 2. Accordingly, the

trial solutions QEGSS), t =1,...,7)  are obtained by moving the starting point
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of the sub-sequence of symbols 2 from m = 2 (being ¢; = 1) up to m = M,

T (Q, M), = ( M1_ ! ) — M1 (B.2)

As far as the case () = 3 is concerned, similar considerations hold true. In par-
ticular, each allowed trial solution QEGSS) ends with a sub-sequence of successive
symbols 3. The number of elements of such a sub-sequence ranges from 1 to
M — 2, leading to a complementary sub-sequence of symbols 1 and 2 of length
M —i. Accordingly,

M—-2
T(ess) (Q’ M)J 0=3 — Z T(GSS) (Q7 M — Z)J Q=2 (BS)

i=1
Generalizing, since the smallest and largest number of occurrences of the symbol
@ in a sequence is 1 and M — (Q — 1), respectively, the essential dimension of

the solution space when a M elements array is partitioned into () sub-arrays is
equal to

M-(Q-1) . M—1
T (ess) (Q,M) _ ; T (ess) (Q —1,M — Z) = ( 0-—1 ) . (B4)
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