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SUMMARY 

The masonry still one of the widespread construction system for low-rise residential 

buildings even for countries prone to seismic risk. Despite seismic design methods 

yet in use are force-based, in the last decades was highlighted as the differences in 

strength between two levels of damage is low, and therefore as the damage is 

better correlated to the displacement. Also, in recent years, has arose a widespread 

expectation for being able to control the damage based on the probability of 

occurrence of an earthquake or being able to base the design on different 

performance levels ("performance-based design"). 

In this context, considerable interest is growing regarding the application of these 

methods to the design of masonry structures. Many questions are still open and 

need to be studied more in detail. From the experimental results obtained by cyclic 

shear-compression tests on different types of masonry panels, an analytical model 

has been developed, that allows to reproduce the in-plane behavior of both the 

tested types: one is modern reinforced masonry and the other is traditional multi-

leaf stone masonry. The developed model has been used to perform a wide number 

of dynamic analysis with the aim of studying the inelastic characteristics of the 

described types of masonry. The results of the analysis made it possible to define 

simple and reliable formulations for the application of displacement-based method 

to masonry structures. Finally, we studied the dynamic behavior of a large structure, 

through the finite element analysis, using a damage model that has been shown to 

be able to reproduce the response obtained from shaking table tests. This phase 

has the aims of validate the results obtained for stone masonry walls, and giving 

useful indication for the application of displacement-based method on multi-degree 

of freedom structures. 
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SOMMARIO  

La muratura rimane uno dei sistemi costruttivi più diffusi per edifici di modesta 

elevazione anche nei paesi inclini al rischio sismico. Sebbene i metodi di 

progettazione anti-sismica finora in uso siano basati sulle forze, negli ultimi decenni 

è stato tuttavia evidenziato come la differenza in termini di forze fra due livelli di 

danno sia minima e come dunque il danno sia meglio correlato allo spostamento. 

Inoltre, negli ultimi anni, si è venuta a creare una diffusa aspettativa di poter riuscire 

a controllare il danno in funzione della probabilità di accadimento di un terremoto; 

ovvero riuscire a basare la progettazione su diversi livelli prestazionali 

(“performance-based design”).  

In questo contesto, sta crescendo un notevole interesse riguardo all’applicazione di 

tali metodi di progetto alle strutture in muratura. Molte sono le questioni ancora 

aperte e che necessitano di essere studiate più approfonditamente. A partire dai 

risultati sperimentali ottenuti da prove cicliche di compressione e taglio su tipologie 

diverse di pannelli in muratura, è stato sviluppato un modello analitico che permette 

di riprodurre il comportamento nel piano di entrambe le tipologie testate. Sono stati 

considerati due sistemi di muratura, uno moderno e armato e l’altro di tipo 

tradizionale, a più paramenti di pietra. 

Il modello sviluppato è stato usato per eseguire analisi dinamiche, considerando 

diversi suoli, con lo scopo di studiare le caratteristiche inelastiche delle tipologie di 

muratura descritte. I risultati delle analisi hanno permesso di definire formulazioni 

semplici ed allo stesso tempo affidabili per l’applicazione del metodo agli 

spostamenti a strutture in muratura. 

Infine è stato studiato il comportamento dinamico di una struttura di grandi 

dimensioni, attraverso l’analisi agli elementi finiti, utilizzando un modello di danno 

che ha dimostrato di essere in grado di riprodurre la risposta ottenuta da prove su 

tavola vibrante. Questa fase ha il duplice obiettivo di validare i risultati ottenuti per la 

muratura in pietra e fornire utili indicazioni per l’applicazione del metodo agli 

spostamenti per strutture a più gradi di libertà. 
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1 INTRODUCTION 

1.1 Background 

In Italy, as in the rest of Europe, masonry constructions constitute a great portion 

of the existing buildings stock. In addition, they represent a non-negligible quota of 

the new constructions. The success of this building material is related to its good 

characteristics of durability, thermal and acoustic insulation, fire resistance, 

sustainability, and the relative simplicity of realization and cost. On the other hand, 

due to the long history of this structural system, for a long time masonry structures 

have been built without actual design and verification, but simply by adopting a 

number of requirements. For countries not prone to seismic risk, masonry may 

continue to be conceived without the need for effective design and verification. 

Conversely, in other countries, including Italy and almost all the countries facing the 

Mediterranean basin, there is a need to assess the safety of structures, including 

masonry structures, against of seismic action. 

Despite the widespread opinion, among non-professionals, that masonry 

structures are not capable of resisting seismic actions, it is evident that many 

structures of this kind have survived to earthquakes, very often without suffering 

serious damage. Experience teaches that masonry structures, when built in 

compliance with the rules of art, can withstand earthquakes also of a certain 

intensity. Of course, it is necessary that the safety of buildings is assessed 

objectively and according to specific structural standards. 

Modern regulations are based on the concept of limit states, which allow to 

connect the structural performance to the probability of occurrence of a seismic 

event, through design spectra. Each spectrum is obtained starting from the elastic 

one, scaling it appropriately with the behaviour factor q, which allows to perform 

simple linear analyses and, at the same time, to take into account, in a simplified 

way, the capacity of inelastic deformation and energy dissipation of the structure. In 

fact, the concept of behaviour factor is implicitly linked to that of ductility. 

Values of q-factor to be used in linear analysis are provided by the code. In 

general, these values are conservative, as they have to ensure a sufficient safety 

margin for different situations (Magenes, 2010). Therefore, it may occur that safety 

verifications required for buildings designed according to the rules of the art are not 

satisfied. The reason of inconsistency between calculation and experimental 
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evidence mainly lies in the linear model of computation that fails to recognize the 

inelastic properties of the structure. 

The limits of elastic analysis, at the ultimate limit state, are highlighted by 

comparison with the results of non-linear analysis. For this reason, masonry 

buildings were the firsts for which, at a code level, a simplified non-linear approach 

has been felt necessary in real applications (Tomaževič, 1978). In the last decades 

the non-linear modelling has made large advances, especially in the field of finite 

element method (Calderini & Lagomarsino, 2008; Lourenço et al., 2007). The non-

linear models, especially as regards the dynamic analysis, are not yet suitable 

instruments for the practical application, due to their complexity and the difficulty to 

extend their validity in general cases (Magenes, 2006; Magenes, 2010). 

The basic requirements that are required for a method of calculation and 

verification in order to be implemented in the code are reliability and relative 

simplicity. For this reason, design method based on simplified non-linear procedure 

have been developed. These methods assume deformation as the input parameter, 

and not as final parameter to be checked at the end of the process, recognizing that 

damage is directly connected to deformation, rather than to strength. Hence, those 

methods are called Performance-Based Design, among which we can mention the 

Capacity Spectrum Method by (Freeman, 1998), N2 Method by (Fajfar, 2000), Yield 

Point Spectra by (Aschheim & Black, 2000), the Direct Displacement Based Design 

(DDBD) by (Priestley & Kowalsky, 2000), DDBD with inelastic displacement spectra 

(Chopra & Goel, 2001) and the method proposed by (Panagiotakos & Fardis, 2001). 

Among these methods, the DDBD certainly represents a good compromise 

between reliability of results and ease of application (Sullivan et al., 2003). Indeed, 

provided that we are able to estimate with sufficient accuracy some characteristics 

of the non-linear structure, such as displacements shape and energy dissipation 

capacity, DDBD allows designing in function of a given level of damage, to be 

considered acceptable for a given seismic event, without resorting to complex 

analysis. Initially developed for reinforced concrete frames and bridges, in recent 

years it has found application also for other structural types, such as RC walls, 

steel, timber and masonry buildings. 

For what concern masonry buildings, DDBD method still suffers from 

shortcomings (Calvi & Sullivan, 2009a), mainly because of the wide heterogeneity 

of existing typologies. In particular, a method for defining yielding has not yet been 

clarified, hence the concept of ductility is difficult to be applied. So, there is still no 

formulation for estimating the ability to dissipate energy, as in DDBD method this is 

directly related to ductility, through the definition of equivalent viscous damping. 

Furthermore, the latter parameter is used to estimate the capacity of inelastic 

deformation. The aim of the study described in this thesis is therefore to provide 
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new information for estimating damping and inelastic capacity for masonry 

structures in seismic area. Two masonry typologies are taken into account, one is 

modern reinforced masonry, and the other one is historical stone masonry 

strengthened by hydraulic lime-based grout injections. Both of them have been 

subjected to experimental tests at the University of Padova, in the framework of two 

European Research Projects, DISWall (2006-2008) and Niker (2010-2012). 

1.2 Aim and Methods 

The main aim of this thesis is that of contributing to the knowledge of parameters 

typical of non-linear cyclic behaviour of masonry systems subjected to combined 

vertical and horizontal loads. In particular, energy dissipation is considered through 

the definition of equivalent viscous damping, in the perspective of displacement-

based design. 

To this aim, recent results of experimental tests performed at the University of 

Padova on different masonry systems, have been analysed. These include an 

innovative type of reinforced masonry construction system, characterized by the 

use of both horizontal and vertical perforated units and bars or prefabricated truss 

as horizontal reinforcement, and a multi-leaf stone masonry, strengthened by 

hydraulic lime-based grout injections. 

Experimental results were used to develop and calibrate a new hysteretic model, 

starting from that proposed by (Tomaževič & Lutman, 1996). The model has proven 

the capability of reproducing the in-plane behaviour of both the studied masonry 

types. Hence, it has been implemented in Matlab environment, in order to carry out 

dynamic analyses. These analyses have been used within a procedure with the aim 

of evaluating the equivalent hysteretic damping in function of the deformation level 

of the walls. On the basis of the results, simple formulation for evaluating damping, 

related to different soil types and failure modes, has been calibrated. The results of 

dynamic analyses allowed evaluating the ratio between elastic and inelastic 

displacements, and also the relationship between this ratio and equivalent damping. 

Lastly, using a finite element model, that has been calibrated on the basis of 

experimental results of shear-compression tests as a part of other thesis, the 

procedure has been applied on multi-degree of freedom (MDOF) structure, in order 

to validate the results obtained for single-degree of freedom (SDOF) systems. 
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1.3 Thesis Organization 

The thesis is divided into 8 chapters. The characteristics of seismic behaviour of 

masonry buildings are briefly presented in Chapter 2. The motivations of 

performance-based approaches and the basics of Displacement-Based Design are 

also summarized, together with a short description of existing models for modelling 

of cyclic behaviour of masonry walls. Chapter 3 presents the experimental 

programs, the main data and results of the in-plane tests carried out on systems 

object of the research, i.e. reinforced masonry and historical stone masonry. The 

tests were carried out as part of other thesis, and the author took part in both test 

execution and data analysis. 

Chapter 4 present the development of an hysteretic model, starting from one 

already available in literature and described in Chapter 2. The model is thus applied 

to both the studied masonry types, and a simulation of in-plane shear tests is 

performed. In addition, the model is implemented in a numerical code, in order to 

carry out dynamic analyses of SDOF systems. 

A procedure for the determination of equivalent viscous damping is presented in 

Chapter 5, together with the obtained results. The complete analysis and discussion 

of results is described in Chapter 6, also in relation with practical design procedure. 

In Chapter 7 the proposed procedure is applied to a MDOF structure, using a finite 

element model, to complement the analyses on SDOF system described so far, and 

the results are presented and discussed. Lastly, Chapter 8 gives the main 

conclusion of the work. 
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2 LITERATURE REVIEW 

2.1 Introduction 

The purpose of this chapter is to give a critical overview of the topics that are 

object of study in this work. First, a brief description of the state of art for what 

concern the in-plane behaviour of masonry walls is given. Then it will be described 

the basics of Displacement Based Design. It is briefly described the application of 

this method both to single and multi-degree of freedom structures, with particular 

attention to previous research on the evaluation of equivalent damping and 

application of the method to masonry structures. 

To estimate equivalent damping for masonry structure, it is necessary to use 

hysteretic models to carry out dynamic analyses. So the models available in 

literature are discussed and compared. 

2.2 Structural Behaviour of Masonry Wall Under Seismic Actions 

Modern buildings are designed for earthquake resistance following the basic 

principles of box-type of behaviour. This assumption implies the presence of rigid 

diaphragms, in their own plane, able to distribute the horizontal loads to the shear 

walls (Shing et al., 1990). As a consequence, the main seismic resistance 

mechanism of the building is related to the in-plane behaviour of the walls (shear 

walls), whereas the out-of-plane behaviour represents a local mechanism. In fact, 

the walls perpendicular to the horizontal actions are supported by floors and roofs, 

which transfer also these horizontal loads to the shear walls. The connections 

between the walls and with the floors are fundamental to guarantee the 

development of the box-type behaviour (Fig. 2.1). 

Masonry shear walls, according to the type of construction and their 

configuration, solid or pierced by windows and doors openings, lead to various 

seismic behaviour and failure mechanism. Three main categories of shear walls are 

classified (Paulay & Priestley, 1992; Tomaževič, 1999): cantilever walls linked by 

flexible floor slabs, coupled shear walls with weak piers and coupled shear walls 



Equivalent Viscous Damping and Inelastic Displacement for Strengthened and Reinforced Masonry Walls 

6 

with weak spandrels (Fig. 2.2). The former resistant model (Fig. 2.2 left) is 

characterized by floor slabs rigid in their plane, but flexible in the orthogonal 

direction, therefore they do not transfer any moment between the shear walls. The 

shear walls are in this case cantilevers fixed on the bottom and free at the top of the 

building. The critical condition is at the base storey, where large bending moment is 

developed. In terms of seismic response, the cantilever walls represent a suitable 

structural behaviour, since it is dominated by flexure, and it guarantees high ductility 

and energy dissipation, if carefully detailing is provided. 

Usually, masonry buildings are made by shear walls (so called since they resist 

to the lateral shear loads with their in-plane shear capacity (Drysdale & Hamid, 

2008)) pierced by window and door openings, in which the spandrels connect the 

shear walls and transfer the horizontal loads and also bending moments. In this 

case two main resistant elements are identified: the spandrels, which are the 

portion of masonry between two overlying openings, and the piers between two 

next openings. Depending on the proportion of the openings, the weakest elements 

are the piers (Fig. 2.2 middle) or the spandrels (Fig. 2.2 right). 

 

 

Fig. 2.1 Response of simple masonry building to horizontal actions: building with deformable 

floors without ties (left), building with deformable floors and tied walls (middle) and building 

with rigid floors and tie-beams (right) (from Macchi and Magenes, 2002). 

 

 

Fig. 2.2 Cantilever walls linked by flexible floor slabs (left), coupled shear walls with weak 

piers (middle) and coupled shear walls with weak spandrels (right) (from Tomaževič, 1999). 
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In the case of spandrels reaching failure, they keep transferring the horizontal 

loads but they transfer only residual part of bending moments. Hence, the global 

behaviour leads towards to the structural response of cantilever walls linked by 

flexible floor slabs. 

When piers are weaker than spandrels, which is usually the case of traditional 

unreinforced masonry (URM) construction (Tomaževič, 1999), damage will first 

involves the piers (Fig. 2.3). Piers will fail in shear or with rocking mechanism 

according to geometry, materials and vertical loads. 

The last failure mechanism is the most sensitive one, because piers withstand 

vertical loads and shear failure is characterized by low energy dissipation capacity 

and ductility. Improvement can be provided with adequately distributed 

reinforcement. 

In the case of reinforced masonry (RM) buildings, spandrels and piers can be 

provided with adequate vertical and horizontal reinforcement, qualitatively showed 

in Fig. 2.4, in order to obtain predominant flexural behaviour. As a results of 

capacity design, the lateral resistance, energy dissipation capacity and ductility of 

the structure are increased. Moreover the hinging of the spandrels, which couple 

the shear walls, leads to a reduction of bending moment at the base, and energy 

dissipation capacity is distributed over the entire height of the shear walls. 

Therefore this mechanism is the most desirable among the three identified 

mechanisms (Tomaževič, 1999). 

 

 

Fig. 2.3 Typical shear cracks in window piers of brick masonry building, Budva, Montenegro, 

1979 (from Tomaževič, 1999). 
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Fig. 2.4 Reinforcement of the spandrel between two overlying openings (left) and 

reinforcement or window pier (right); 1. Tie-beams, 2. Reinforcement of threshold, 3. Vertical 

reinforcement, 4. Lintel reinforcement (from Giuffrè, 1980). 

 

In any case, there are some reasons to considerate the cantilever walls system 

as the best, rather than coupled walls with spandrels hinging, since high ductility 

demand is concentrated in the coupling spandrels, and they suffer rapid strength 

and stiffness degradation. This leads to an uncoupling of the shear walls and results 

in an increase in bending moments for shear walls, which are not able to resist, if 

they are designed as coupled walls (Paulay & Priestley, 1992). 

In most cases, load bearing masonry walls are used for residential buildings, 

whose configuration varies from single occupancy house, one or two storey high, to 

the multiple-occupancy residential buildings, which are commonly constituted by 

two or three-storey when they are built of URM, but can reach relevant height (five-

storey or more) when they are built with RM. Intermediate types of buildings include 

two-storey, semi-detached two-family houses or attached row houses. In these 

buildings, the masonry walls carry the gravity loads and they usually support 

concrete floor slabs and roofs, which are characterized by adequate in-plane 

stiffness. The inter-storey height is generally low, around 3 m. 

In these structures, the seismic resistance mechanism, and in general the 

resistance to horizontal actions, is provided by coupled shear walls, as above 

discussed. It must be also reminded that, in certain cases, in particular for low-rise 

residential buildings such as single occupancy houses or two-family houses, the 

roof structures can be made of wooden beams and can be deformable, even in new 

buildings. In these cases, or in the upper storey of multi-storey (multiple-occupancy) 

residential buildings and for one-storey industrial or commercial buildings with 

deformable roofs and no bracing walls, wall designs can be governed by resistance 

to out-of-plane forces (Mosele, 2009). 
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2.2.1 Failure modes of masonry walls 

Some systematic studies aimed at the definition of the complete failure envelope 

of masonry, were developed for the entire range of combinations of ideal biaxial 

stress state. The first investigations were experimentally carried out with the test on 

square masonry panels tested under different combination of tension and 

compression and different orientation of loading with respect to the head and bed 

joints. They allowed defining the experimental failure criteria for brick masonry 

(Page, 1980; Page, 1981; Page, 1983; Samarasinghe & Hendry, 1980), for 

concrete block masonry (Hamid & Drysdale, 1980; Hamid & Drysdale, 1981; 

Hegermeir et al., 1978) and for masonry made of perforated clay blocks (Ganz & 

Thürlimann, 1984). Fig. 2.5 left shows the failure envelope found for brick masonry 

by (Page, 1982), where the anisotropic behaviour of masonry is evidenced by the 

different shapes obtaining varying the loading angle and by the corresponding 

observed failure modes, Fig. 2.5 right. 

 

 

Fig. 2.5 Experimental failure criteria for brick masonry walls under biaxial compression (left) 

and failure modes (right) for brick masonry walls under uniaxial and biaxial stress state (from 

Page, 1982). 

 

A typical case of biaxial stress state is masonry pier under combined vertical and 

horizontal load (Fig. 2.6). The homogeneous stress states found e.g. by (Page, 
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1982) interest only a part of shear walls which are rather subjected to 

homogeneous stress states. Considering that the appearance of one failure 

mechanism depends on parameters such as the geometry of the masonry walls and 

the ratio of vertical to horizontal load (Tomaževič, 1999), that failure characterizes 

the behaviour of a masonry wall in a structure, rather than the simple material 

behaviour. 

First appearance of failure usually involves the centre of shear wall or stretched 

corner (A and B zones in Fig. 2.6) or in the more compressed corner of pier (C zone 

in Fig. 2.6). It was experimentally verified from above mentioned researchers that 

the main failure modes relevant for masonry walls are: 

 Flexural failure; 

 Diagonal shear cracking; 

 Sliding on bed joints; 

These failure modes are schematically represented in Fig. 2.7. The first 

mechanism is ruled by compressive strength of masonry, and is characterized by 

the early appearance of crack in joint under tension stress state (B zone in Fig. 2.6), 

followed by a second limit state characterized by crushing of compressed toe of pier 

(C zone in Fig. 2.6). 

Shear failure, on the contrary, can involve different failure mechanisms, in 

particular: failure can involve the horizontal and vertical joints causing a stepped-

crack; or failure can involve also the blocks (or bricks) giving a diagonal cracking 

which pass throughout masonry units and joints. The third shear failure mechanism 

is the sliding along bed joints with an almost horizontal crack progress. This 

mechanism is less frequent an can be mainly imputed to poor quality of mortar 

and/or low vertical stress. In general, this failure mechanism do not appear for both 

new URM and RM made with perforated clay units (da Porto et al., 2005; Mosele, 

2009). 

 

Fig. 2.6 Failure mechanisms of wall portion subjected to vertical and horizontal actions (from 

Andreaus, 1996). 



2. Literature Review 

11 

 

 

Fig. 2.7 Main failure modes of masonry walls, subjected to in-plane seismic load (from 

Tomaževič, 1999). 

2.2.2 Flexural failure 

In the case of URM pier under combined vertical and horizontal loads, the 

maximum horizontal load, associated to flexural failure, may be approximated 

introducing a proper stress distribution for the masonry in compression and 

neglecting the tensile stress of bed joints. Simple equilibrium equations lead to the 

following expression: 

    
   

  

 

 
 (  

 

    
) (Eq. 2.1) 

where D is the pier length, H0 is the effective pier height, t is the pier thickness, p 

is the mean vertical stress, fu is the compressive strength of masonry and k is a 

coefficient which takes into account the vertical stress distribution at the 

compressed toe (Fig. 2.8). This is the approach adopted in the Italian Technical 

Code, NTC 2008 (DM 14/01/2008, 2008), taking k = 0.85. The effective height is 

defined as the height of zero moment from the bottom, so it is determined by the 

boundary conditions of the wall and is related to shear ratio αv, which is expressed 

by  

   
 

  
 

  

 
 (Eq. 2.2) 

It can be seen that (Eq. 2.1) has a low sensitivity to the parameters k and fu, in 

the range of low mean vertical stresses, while is strongly affected by the parameter 

αv. 
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Fig. 2.8 Assumption for flexural strength evaluation of a wall failing with crushing at the base 

corner (from Magenes & Calvi, 1997). 

 

In the case of RM, the flexural failure mode is related to yielding of vertical 

reinforcement at the tensioned side of the base, and crushing of masonry at 

compressed toe side. Furthermore, buckling of compression reinforcement 

accompanies crushing of masonry units. Under the usual hypothesis for flexure 

theory, such as plain sections remain plain and linear strain distribution, and 

assuming yielding of tension and compression vertical reinforcements, which allow 

to direct calculation of the depth of stress block (a), the flexural capacity of the 

reinforced masonry wall’s section can be evaluated by adding to (Eq. 2.1) the 

contribution of reinforcement. In the case of symmetrical vertical reinforcement at 

the ends of the wall, the following equation is thus obtained: 

              
    

 
 (  

 

    
)         (Eq. 2.3) 

Where Mu,w is the contribute of masonry and Mu,rv is contribute of vertical 

reinforcement to the flexural capacity, z is the lever arm of the torque force moment 

of vertical reinforcement. This is the approach adopted both in NTC 2008 and 

Eurocode 6, EC6 (EN 1996-1-1, 2005), with the difference that in the latter the 

stress-strain relationship can be taken also to be linear, parabolic, or parabolic 

rectangular. In both the codes limits for compressive strain of masonry and tensile 

strain of reinforcement are provided. 
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2.2.3 Shear failure 

The shear failure is, due to typical mechanical properties of masonry materials 

and the geometry of structural walls, the most common type of failure of a masonry 

wall subjected to seismic loads (Tomaževič, 1999). The two most common 

approaches developed and adopted by codes for the determination of shear 

strength are based on the Mohr-Coulomb formulation or by the definition of a 

reference tensile strength which is reached at the centre of the panel. The first, 

which is adopted in several codes (i.e. NTC 2008 and EC6) is expressed by (Eq. 

2.4): 

         (Eq. 2.4) 

where c is the material shear strength and μ is the friction coefficient. This 

coefficient have the meaning of global strength parameters and cannot be related to 

local material properties, since the real stress distribution is not uniform (Magenes & 

Calvi, 1997). σv is the mean vertical stress calculated on the effective resisting 

section, which is defined by the effective uncracked length lc. If the tensile strength 

of bed joints is neglected and assuming a linear distribution of compressive 

stresses, the following expression (Eq. 2.5) for the determination of lc is obtained: 

    (
 

 
 

   

 
) (Eq. 2.5) 

The second criterion was proposed by (Turnšek & Čačovič, 1971), and assumes 

that diagonal cracks at shear failure are caused by the principal tensile stresses 

which develop in the wall when subjected to a combination of vertical and lateral 

load. By considering the masonry wall as an elastic, homogeneous and isotropic 

material, the principal tensile stresses develop in the middle section of the panel is 

expressed by (Eq. 2.6): 

   √(
  

 
)
 

       
  

 
 (Eq. 2.6) 

where τ is the average shear stress and b is the shear distribution factor, which 

takes into account the distribution of shear stress. For a parabolic distribution, 

reasonable for high aspect ratios, b is equal to 1.5, whereas a constant distribution, 

more realistic for aspect ratio close to one, involves b equal to 1. (Benedetti & 

Tomaževič, 1984) proposed the consider b = 1 for H/D ≤ 1, b = H/D for 
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1 < H/D < 1.5 and b = 1.5 for H/D ≥ 1.5. The shear strength of masonry can be 

taken as the average shear stress τ at the attainment of the referential tensile 

stress, i.e. σt = ft, which leads to (Eq. 2.7), that is adopted in NTC 2008 in the case 

of existing buildings with irregular masonry or for units with quite low compressive 

strength (Circolare 2/02/2009 n. 617 C.S.LL.PP., 2009). 

    
    

 
√  

  

  
 (Eq. 2.7) 

In the case of RM, normally the code considered the shear strength by adding to 

the computed masonry strength (Vsh,M) a term that takes into account the horizontal 

reinforcement contribution (Vsh,S). The latter is generally estimated as for stirrups for 

reinforced concrete members, giving (Eq. 2.8): 

                         

 

 
      (Eq. 2.8) 

Where Arh is the area of horizontal reinforcement, s is the spacing of shear 

reinforcement and Ceff is the effectiveness of reinforcement factor, which takes into 

account the reduced effectiveness of shear reinforcement due to bond failure 

between mortar and steel. In NTC 2008 the value of Ceff is 0.6, this value has been 

experimentally confirmed by (Mosele, 2009), and d is the distance between 

compressed edge and the barycentre of tensioned reinforcement. (Tomaževič, 

1999) considered Ceff = 0.9, but proposed to reduce the contribution of 

reinforcement by means a horizontal reinforcement reduction factor Crh, that he 

suggested to consider equal to 0.3. Furthermore he proposed to consider the 

contribution due to dowel action of vertical reinforcement. 

In NTC 2008 is also prescribed to verify the following condition: 

            (Eq. 2.9) 

This can be seen as a verification of compressed strut, that is not considered in  

EC6, where, furthermore, the contribution Vsh,S is computed taking into account the 

total area of horizontal reinforcement (ASW) and Ceff = 0.9, giving: 

               (Eq. 2.10) 
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2.3 Modelling of the In-plane Behaviour of Masonry Walls 

2.3.1 Construction of Idealized Envelope 

The experimental results of tests carried out under combined vertical and 

horizontal in-plane cyclic loading on both URM and RM are generally approximated 

by means of envelope curves defined by the maximum load-displacement values 

reached in any cycle by the specimen. On the basis of the experimental envelopes, 

idealized bilinear force displacement relationships can be defined (Tomaževič, 

1999), taking into account the equal energy dissipation capacity of the actual and 

the idealized masonry wall (Fig. 2.9). Also tri-linear shapes were proposed for the 

idealization of the resistance envelope curve of confined and reinforced masonry 

(Modena, 1992; Tomaževič, 1999), Fig. 2.10. 

 

 

Fig. 2.9 Actual (left) and idealized elastic-perfectly plastic force-displacement relationship 

(right) for an URM specimen (from Tomaževič, 1999). 

 

 

Fig. 2.10 Actual (left) and idealized tri-linear force-displacement relationship (right) for a RM 

specimen (from Tomaževič, 1999). 

 

The construction of the idealized envelope curves can be also based on the 

observation, during the experimental testing, of three limit states (LSs) reached by 
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the masonry specimens. They are the shear cracking limit, characterized by the 

opening of the first significant shear crack in the specimen, the maximum 

resistance, characterized by the attainment of the maximum lateral strength, and 

the ultimate state, characterized by the attainment of the maximum displacement, 

before the specimen collapse. Also a fourth limit state, which occurs before the 

other three, can be observed. It consists in the opening of mortar joints in the lower 

part of the specimens, due to flexural effects. (Abrams, 2001) has proposed to 

systematically use these four limit states to idealize the masonry wall behaviour, 

relating them to performance levels of actual buildings. In these terms, the flexural 

limit can be designated as a “First Crack” level, and represent a damage limit state, 

whereas the appearance of the first diagonal crack is associated with the first signs 

of structural damage typically observed during the earthquakes, and can be related 

to the “Immediate Occupancy”. The attainment of the maximum resistance can be 

considered, in terms of performance level, as a “Life Safety” state and, finally, the 

ultimate state determined by the attainment of the maximum displacement can be 

designated as a “Collapse Prevention” state (Bosiljkov et al., 2003). Fig. 2.11 shows 

a schematization of the four limit states during the in-plane cyclic tests. 

This type of simplified models is very useful to compare the performances of 

different types of masonry, in terms of initial stiffness, maximum resistance and 

ultimate ductility reached by the walls. The bilinear idealized force displacement 

relationships can be, furthermore, used for non-linear static (push-over) analysis 

procedure also adopted by the codes, (EN 1998-1, 2004) and (DM 14/01/2008, 

2008). 

 

 

Fig. 2.11 Schematization of the four limit states. 

 

However, these models are not able to represent the actual hysteretic behaviour 

of masonry walls, which gives information also on the energy dissipation capacity 
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and the stiffness and strength degradation of a wall subjected to sequence of lateral 

load reversal. With more sophisticated procedures, it is also possible to model the 

hysteretic behaviour of plain URM and RM walls. 

Indeed, data on the hysteretic behaviour of the walls, such as strength and 

stiffness degradation and energy dissipation capacity, can be obtained only by 

experimental simulation of seismic behaviour of masonry walls as a whole 

(Tomaževič, 1999). Starting from experimental results, several researchers have 

proposed analytical models, able to reproduce the hysteretic behaviour of varies 

types of masonry walls. 

Non-linear finite element modelling has been recognized as a general and 

efficient method for analysis of the load-bearing and displacement capacity of 

masonry systems, and can accurately describe the pre-peak and post-peak 

behaviour of masonry under different monotonic load combinations by adopting 

inelastic constitutive material models (Gambarotta & Lagomarsino, 1997a; 

Gambarotta & Lagomarsino, 1997b; Lourenço, 1996; Rots, 1997). Conversely, 

cyclic behaviour can better be described by damage-based material models 

(Calderini & Lagomarsino, 2008; Gambarotta & Lagomarsino, 1997a; Gambarotta & 

Lagomarsino, 1997b) than by those implementing plasticity concepts (Lourenço, 

1996; Rots, 1997). 

2.3.2 Analytical Modelling 

(Modena, 1982) proposed, for URM, a model based on the experimental results 

of cyclic tests, in the non-dimensional variables H/Hmax and δ/δs, defined by a 

symmetrical envelope curve on which the construction of the hysteresis loops is 

based Fig. 2.12. Each portion of the envelope curve is constituted by an initial linear 

branch, until the attainment of the displacement level λ equal to δ/δs, and by a 

subsequent non-linear branch, defined by (Eq. 2.11): 

 

     
       [

 
  

  

   
]

   
   

 
 

  
 (Eq. 2.11) 

Where δp is the displacement at the end of the linear branch, δs is the 

displacement at the idealized elastic limit, λ= δp/δs and μ= δHmax/δs is a ductility ratio 

at the attainment of the maximum resistance of the wall. 

 



Equivalent Viscous Damping and Inelastic Displacement for Strengthened and Reinforced Masonry Walls 

18 

 

Fig. 2.12 Characteristic parameters of the load-displacement envelope curve (left) and 

hysteretic behaviour model of URM walls (from Modena, 1982). 

 

This model is basically able to reproduce the small area of each cycle, related to 

the low dissipation capacity of URM, and the strength and stiffness sudden 

decrease after the maximum strength limit state. This was later on used by (da 

Porto et al., 2009) for estimating the load reduction factors of modern types of 

unreinforced clay masonry. 

Later on, (Bernardini et al., 1984) and (Modena, 1992) modelled the behaviour 

of RM on the basis of a tri-linear envelope model, introducing five non-dimensional 

parameters, four describing the shape of the experimental envelope curve of cyclic 

tests and the major cycles and one, μa, defining the available ductility. Three out of 

the four shape parameters were based on the ratio between the horizontal loads 

and the displacements at relevant states, whereas the fourth (P4) was able to 

describe the stiffness degradation. Fig. 2.13 left shows the described model. 

Following, a procedure based on the use of the dissipated energy to lower the load-

displacement curve obtained during a monotonic test and fit it to the envelope curve 

of the cyclic tests was developed (Modena, 1992). A similar procedure was also 

adopted to introduce another parameter that allows adapting an envelope curve 

obtained by means of a static test to the envelope curve of a test carried out with 

dynamic loading, Fig. 2.13 right (Modena & Barel, 1987). Based on these models, 

he carried out non-linear dynamic analyses for the definition of behaviour factors q. 
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Fig. 2.13 Non-dimensional analytical model of the cyclic behaviour of RM walls, left (from 

Bernardini et al., 1984) and its development, right (from Modena and Barel, 1987). 

 

Tomaževič (Tomaževič & Lutman, 1996) defined the envelope curve of cyclic 

tests starting from the experimental results of monotonic tests. To find this 

correlation, he introduced the parameter of fictitious input energy, where the value 

of lateral resisting force for the calculation of the input energy, corresponding to any 

given displacement of a cyclic time history, is taken from the equivalent monotonic 

curve. To model the hysteretic behaviour, he takes into account three parameters, 

two depending on the experimental stiffness degradation, which influences the 

slope and shape of hysteresis loops at unloading. The other one is the strength 

degradation, based on the amount of dissipated hysteretic energy during one cycle 

of loading. Furthermore, the model was further developed by (Bernardini et al., 

1997), by relating the strength degradation on the amount of absorbed, instead of 

dissipated, energy. On these models was based the development of another model, 

which was used to estimate load reduction factors for reinforced masonry (da Porto 

et al., 2008; Mosele, 2009; Nicolini, 2008). 

(Wakabayashi & Nakamura, 1984) combined arch and truss mechanisms in 

order to predict horizontal load-displacement monotonic curve in the case of shear 

failure of RM walls. For each mechanism, they considered four equations: two are 

compatibility conditions and two equilibrium equations. It is assumed that the total 

response of the wall is the sum of the behaviour of the two mechanisms. 

Furthermore, on the basis of the monotonic envelope abovementioned, the authors 

proposed a formulation of hysteresis loops as a sum of three basic loops: a 

degrading model, a slip model and a bi-linear-model. This sum is ruled by means 

three parameters, which have to be determined on the basis of experimental 

investigations. The model was compared with static cyclic tests and shaking table 

tests, giving very good results in the former case and reasonable accuracy in the 

latter. 

Other models that can be quoted are those from (Tassios, 1988). Tassios 

developed a semi-empirical criteria, called “stereo-static model”, based on both 

experimental and of numerical results, where the envelope curve and the hysteretic 
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rules of RM are modelled by taking into account the local resisting mechanisms, 

such as dowel action and pull-out of reinforcement and friction mechanisms within 

the cracks. 

(Kamil Tanrikulu et al., 1992) modelled the skeleton curves for the shear 

modulus G and its viscous counterpart G’ by means of bilinear and tri-linear curves 

based on five experimentally determined parameters that he gave for masonry 

made of burned-clay bricks, stone units and adobe masonry walls. On the basis of 

the same parameters, he also explained the loading and unloading characteristics 

during an earthquake excitation, in order to model the hysteretic behaviour of 

studied plain masonry walls. 

(Magenes et al., 1997) proposed again a hysteretic non-linear law, developed on 

the basis of previous models studied at the University of Pavia, calibrated on the 

basis of experiments on RM shear walls. This law was used to model the global 

inter-storey shear-displacement behaviour of a building by means of non-linear 

dynamic analyses. The model is based on five empirical relationships, which are 

used to linearize significant portion of the experimental hysteretic loops, where the 

strength and stiffness degradation and the other energetic and displacement 

parameters are mainly based on the cumulative input and dissipated energy. 
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2.3.2.1 Tomaževič Model 

In this section, a more detailed description of the Tomaževič model is given. 

Indeed, this model can be considered as a good compromise between simplicity of 

modelling and accuracy of predicted response. The model is based on that 

proposed by (Park et al., 1987), and taking into account some experimental 

observations on actual non-linear behaviour of tested RM walls. The tests were 

performed on 32 equal RM walls subjected to different imposed lateral 

displacement patterns: monotonic and cyclic, static and dynamic, at two level of 

vertical load. A summary of experimental results can be found in (Tomaževič et al., 

1996). 

The skeleton curve is the symmetric, tri-linear idealized envelope defined by the 

observed three limit states, i.e. cracking point, maximum resistance and ultimate 

limit state. The general scheme of the model is shown in Fig. 2.14 left, and is based 

on the following rules: 

 Loading path 0-1-A-2-B is following the hysteresis envelope until the change 

in sign of direction of loading. 

 Unloading path B-3-C: stiffness degradation takes place immediately after the 

attainment of lateral displacement at cracking of the wall dcr. 

 Unloading path C-4-D is aimed at point D, defining the negative cracking LS. 

 Negative loading path D-5-E-6-F is following the negative branch of 

hysteresis envelope until the change of sign of the direction of loading. 

 Negative unloading path F-7-G: stiffness degradation parameter CK defines 

the unloading stiffness of line F-7-G. Unloading stiffness shape parameter CF 

defines point G: HG=CF∙HF. 

The stiffness degradation is modelled by the two scalar parameters CK and CF. 

The former defines the slope of the first unloading branch (B-3-C and F-7-G), and is 

calculated by (Eq. 2.12), where Ke is the elastic stiffness and Ku is the ultimate 

stiffness, i.e. secant stiffness’s related to cracking and ultimate LS respectively. The 

model assumes that the degradation of unloading stiffness, K(R), begins after the 

attainment of maximum resistance LS. K(R) is defined by (Eq. 2.13). 

Shape parameter CF defines the width of the cycle, it is evaluated by making 

equal the area below the unloading branch of hysteresis loop. Applying this method 

to each cycle, several values of CF are obtained, i.e. one value for each 

experimental cycle. Since the authors affirm to have obtained the value of 0.7, it is 

inferred that it represents the averaged value. 
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Fig. 2.14 General scheme of model, left, and definition of strength degradation parameter β, 

right (from Tomaževič et al., 1996). 

 

   
        ⁄

         ⁄
 (Eq. 2.12) 

         [    (
  

     
  )]   (Eq. 2.13) 

 

Another scalar parameter, β, is used to model the strength degradation at 

repeated load reversals. This parameter allows to calculate the incremental 

increase in target displacement on the hysteresis envelope due to dissipated 

energy, distinguishing between the loading in both positive (δd
+
) and negative (δd

-
) 

directions, Fig. 2.14 right. Although the calculated values of parameter β are quite 

scattered, the authors have noted that the averaged values are close to 0.06 in all 

the cases considered. As for the shape parameter, the model considers the 

averaged value of parameter β. 

2.3.3 Finite Element Modelling 

The finite element method offers a widespread variety of possibility concerning 

the description of masonry structures within the frame of detailed non-linear 

analysis. Numeric representation of masonry can be achieved by modelling 

masonry constituents separately (units and mortar joints, micro-modelling approach, 

Fig. 2.15b,c), or by following a global approach in which the whole structure is 

schematized as a continuum without any distinction between masonry constituents 

(macro-modelling, Fig. 2.15d). The first approach can again be subdivided into 

detailed micro-modelling (Fig. 2.15b) in which units and mortar joints are 
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represented by continuum elements and contact surfaces between units and mortar 

by interface elements, and simplified micro-modelling (Fig. 2.15c), in which 

expanded units are represented by continuum elements and non-linear behaviour of 

mortar joints and contact surfaces is collapsed into interface elements. 

The micro-modelling strategy for masonry has mainly focused on the 

development of reliable interface models, since the first introduced by (Page, 1978). 

Several constitutive laws were defined, incorporating damage and plasticity 

concepts (Gambarotta & Lagomarsino, 1997a; Rots, 1997) or plasticity theory only 

(Giambanco et al., 2001; Lotfi & Shing, 1994; Lourenço & Rots, 1997). (Lourenço, 

1996) developed an interesting interface model under multi-surface plasticity theory, 

in which not only shear and tensile but also compressive behaviour can be taken 

into account through a cap model (Fig. 2.16). This interface model was further 

developed with a refined description of the dilatancy phenomenon by (van Zijl, 

2004) 

 

 

Fig. 2.15 Different modelling strategies for masonry structures: (a) real masonry specimen, 

(b) detailed micro-modelling, (c) simplified micro-modelling, (d) macro modelling (Lourenço, 

1996). 

 

Appropriate modelling of cracks through units is of basic importance, to avoid an 

over-stiff response and a considerable higher failure load of the numerical models 

than those experimentally determined (Chaimoon & Attard, 2007; Lourenço, 1996). 

Within micro-modelling, cracks through masonry units can be accommodated by 

employing two main strategies. In the case of bricks, the insertion of a central 

potential vertical crack by means of interface elements suffices to simulate global 

behaviour correctly (Lourenço, 1996; Rots, 1997). The use of smeared crack 

models is more appropriate for blocks that may undergo distributed cracking 

(Giambanco et al., 2001; Lotfi & Shing, 1994; Rots, 1997). It is worth mentioning 
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that the first approach turned out to be very robust, whereas the second may 

present some convergence problems due to bifurcation (Lourenço, 1996; Rots, 

1997). 

 

 

Fig. 2.16 Limit failure surfaces for interface model (Lourenço, 1996). 

 

Macro-modelling commonly uses non-linear anisotropic constitutive material 

models. In some simplified cases, non-linear isotropic models are also employed. 

Several materials models are available for masonry, incorporating either damage 

(Calderini & Lagomarsino, 2008; de Borst, 2002; Gambarotta & Lagomarsino, 

1997b) or multi-surface plasticity theory (Lourenço et al., 1997; Rots, 1997). 

Mechanical parameters may be derived from experimental data or deduced from 

homogenization techniques (Calderini & Lagomarsino, 2008; Pegon & Anthoine, 

1997). This approach becomes effective when units and mortar joints can be taken 

into account on average; when this is not provided, possible discrepancies between 

real and numerical behaviour may arise (Lourenço, 1996; Lourenço et al., 1997). 

The smeared-crack scalar damage models or other similar models, such as that 

presented in (Faria et al., 1998) for massive concrete structures, are also used in 

macro-modelling of masonry. In this type of models, the damage is defined in a 

given point by a scalar value which defines the level of degradation, that ranges 

from the elastic state until collapse, and the cracking is considered as distributed 

along the structure. 

Micro-modelling strategy is more detailed and is a valuable tool to reproduce 

masonry assemblages tested during experimental research. It requires a large 

number of parameters, but facilitates understanding of the local behaviour of 

masonry and parameterizing the results of experimental trials. Conversely, it is not 

suitable for simulating the global behaviour of buildings, since the computational 

burden is usually excessive. The macro-modelling approach is less detailed, but 

depends on a limited number of parameters. It is suitable for large structures, thus 

becoming more attractive for practice-oriented analyses. 
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2.4 Basics of Displacement-Based Design 

Force-based seismic design remains nowadays the more widespread design 

method. In spite of this, in the last decades, the awareness of how the deformation, 

and not force, is the more meaningful parameter in order to quantify the expected 

damage from an earthquake has arisen (Moehle, 1992; Priestley, 1993). For elastic 

systems, forces and displacements are directly connected through the system 

stiffness. But real structures behave inelastically, and so the relationship is more 

complex. 

In the current seismic codes, the capacity of inelastic systems is evaluated by 

means of concepts of load-reduction factor and ductility. In order to explain the 

limitations of this approach, in the following section a brief summary of force-based 

design is reported. 

2.4.1 Brief Review of Force-Based Design 

The first step is to estimate the fundamental period of vibration of the structure. 

In the case of linear static analyses, building codes often propose a simplified 

formula for estimating the period. Such an approach is independent of member 

stiffness and mass distribution. Instead, in the case of multi-modal analysis, these 

characteristics are taken into account. The seismic action is defined by means of 

the elastic acceleration spectrum. This spectrum is defined on the basis of the site 

of construction, soil type, and the return period. The elastic response corresponding 

to natural period(s) is then scaled by load-reduction factor R. This factor is given by 

the design code on the basis of structural system and material. 

At this point it is possible to calculate the base shear force VB. VB can be 

distributed to the structure proportionally to the product of height and mass at 

different levels. Another possibility is to distribute VB proportionally to mode(s) 

shape(s). In the case of multi-modal analysis, the seismic effects have to be 

combined, and this is possible only using statistical methods. In any case, seismic 

force is distributed between structural elements in proportion to their elastic 

stiffness. 

Finally, structural elements can be checked, by means of strength verification at 

member sections level. If an element is not verified, it must be redesigned. This 

means changing the distribution of stiffness, and so a new analysis is required. 

When all the structure is verified, the displacements under seismic action can be 

estimated. Especially for damage limit states, additional verifications in terms of 

displacement capacity and interstorey drift are required. 
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The traditional force-based approach has the following limitations (Priestley, 

2000): 

 An estimate of the fundamental period is required to start the design process, 

as the period of the structure to be designed is not known. The empirical 

formulations provided by codes introduce necessarily an error, so generally 

tend to be conservative. But the displacement demand obtained at low 

periods is lesser than the actual, hence non-conservative. 

 The load reduction factor R is given by code depending of the material of 

construction and the type of structural system used. This factor takes into 

account both the stiffness degradation and the dissipation of energy (Borzi et 

al., 2001). As for fundamental period, the assumption of code-prescribed 

values for factor R introduces an error. 

 For the structures characterized by two or more load paths, the distribution of 

seismic forces on the basis of initial stiffness is not rational. Indeed, it is not 

probable that yielding occurs simultaneously in different elements. 

 

In order to overcome the limitations of traditional force-based design methods, in 

the last decades several alternative approaches have been developed. These 

approaches are called “Performance Based Design”, since their aim is to achieve a 

specified performance level. An exhaustive overview of these methods can be 

found in (Sullivan et al., 2003). Among the several proposed methods, the Direct 

Displacement-Based Design (DDBD) can be regarded as a good compromise 

among simplicity of application, set of recommendations and quality of results. 

However, this method is still under development. For example, in Italy, a research 

line (linea 4) of the last RELUIS project had the aim to study the application of 

DDBD method for several structural type. The main result of this work is 

represented by Model Code for DDBD (Calvi & Sullivan, 2009b). The new RELUIS 

project intends to take into account the application of DDBD method also for the 

assessment of capacity of existing structures. 

2.4.2 Fundamentals of Displacement-Based Design 

The DDBD method has been developed by (Kowalsky et al., 1995) and (Calvi & 

Kingsley, 1996). The fundamental difference from force-based design is that DDBD 

characterizes the structure to be designed by a single-degree-of-freedom (SDOF) 

representation of performance at peak displacement response, rather than by its 

initial elastic characteristics. 



2. Literature Review 

27 

It is based on the identification, in the initial phase of design process, of a design 

displacement (Δd) that ensures an acceptable damage level for the considered 

seismic intensity. The method assumes that this displacement can be determined 

without knowing the strength of structure. More precisely, the assumption is that 

damage is strain-related for structural elements, and drift-related for non-structural 

elements. 

The equivalent structure is other important concept of the procedure, and was 

introduced by (Gulkan & Sozen, 1974) and (Shibata & Sozen, 1976). This concept 

enables to represent the inelastic behaviour of a complex structure through a single 

degree of freedom equivalent system. In such a way it is possible to use elastic 

displacement spectra, given by the code, while taking into account the deformation 

capacity of the real system. It has to pointed out that generally code displacement 

spectra are obtained from the acceleration spectra assuming the peak response as 

steady-state harmonic response. Such an approximation leads to not so reliable 

results, in particular for long periods (Bommer & Elnashai, 1999). So the definition 

of more reliable displacement spectra is still under investigation (Bommer & Pinho, 

2006; Faccioli et al., 2004; Paolucci et al., 2008). 

DDBD method also needs the definition of equivalent viscous damping (ξeq). 

This parameter depends on the system capacity, when it undergoes seismic action, 

to dissipate energy and it varies in function of structural typology. Once defined both 

design displacement and ξeq, it is possible to determine the effective period Teff of 

equivalent SDOF system by applying a reduction factor to the elastic displacement 

spectrum. This reduction factor is normally defined, as in the case of (EN 1998-1, 

2004) and (DM 14/01/2008, 2008), using the equivalent viscous damping. 

Starting from effective period it is simple to compute the effective stiffness of 

equivalent SDOF system. Hence, the design base shear is obtained by multiplying 

this stiffness for design displacement. The use of effective stiffness enables the 

evolving of inelastic forces related to given stiffness at each structural element. 

2.4.2.1 DDBD method for a SDOF system 

In the following, the principal steps of the procedure for a SDOF structure are 

reported. 

1. Selection of design displacement. 

From experimental and analytical results (Priestley, 1993), it has been 

demonstrated that the yield curvature, for reinforced concrete and masonry 

elements, is essentially independent of percentage of reinforcement and axial load 

level, whereas it is more directly related to yield strain and section depth. For 
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example, the equation for estimating the yield curvature for a rectangular concrete 

wall is: 

                (Eq. 2.14) 

Where εy is the yield strain of vertical reinforcement and lw is the wall depth. 

Starting from yield curvature, it is possible to compute the yield displacement Δy. At 

this point, by introducing the design ductility μd, it is easy to obtain Δd: 

   
  

  
⁄  

(Eq. 2.15) 

Obviously, Δd has to respect eventual code drift limits, and so a correction of μd 

could be needed. 

2. Estimation of equivalent viscous damping. 

With the correct value of μd it is possible to estimate the value of the equivalent 

viscous damping ξeq. A more detailed discussion on how this parameter could be 

evaluated will follow in §2.4.3. In (Priestley et al., 2007) the proposed equations is in 

the form: 

           (
   

  
) (Eq. 2.16) 

C is a factor that was calibrated by means of a large number of non-linear time-

history analyses, and is related to the structural typology and material (hysteretic 

behaviour). The constant 0.05 represent elastic damping (ξel), expressed as 

damping ratio related to the critical damping, according to the value that normally is 

taken into account in the codes for elastic response spectra. Fig. 2.17 shows the 

relationship between damping and ductility expressed by (Eq. 2.16) for several 

hysteretic behaviour. 

It is important to point out that factor C is valid only for ξel = 0.05, so if another 

value of ξel is assumed, a more complex equation has to be used (Eq. 2.33). This 

equation takes into account four coefficients, instead of one, and in addition to 

ductility, also the effective period (Te) of the structure is considered, which is not 

appealing for design (Dwairi et al., 2007). 
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Fig. 2.17 Hysteretic damping versus ductility for several hysteretic behaviour (from Dwairi et 

al 2007) 

 

3. Determination of equivalent period. 

The value of ξeq is used to estimate the damping correction factor (η). This factor 

is defined as the ratio between actual inelastic displacement and elastic 

displacement spectra 5% damped. So it is used to scale displacement spectra, in 

order to obtain the effective period Te corresponding to the design displacement Δd. 

The typical expression for η is given by (Eq. 2.17), that was proposed by (Bommer 

et al., 2000) and has be taken both in the current version of EC8 (EN 1998-1, 2004) 

and in Italian Technical Code (DM 14/01/2008, 2008). A similar equation (Eq. 2.18), 

included in the previous version of EC8, is suggested by (Priestley et al., 2007), the 

origin of which has not been documented (Bommer & Mendis, 2005). In both the 

equations, ξ is expressed as percentage. 

  √
  

   
 (Eq. 2.17) 

  √
 

   
 (Eq. 2.18) 

The determination of Te is represented in Fig. 2.18. Once the corner 

displacement Δc is scaled, the effective period can be simply found through a 

proportion between periods and displacements (Eq. 2.19). 
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Fig. 2.18 Determination of effective period by means scaled elastic spectra (from Dwairi et al 

2007).  

4. Computing the design base shear force. 

From effective period, the effective stiffness and base shear force Vb are 

calculated with (Eq. 2.20) and (Eq. 2.21), respectively. The structural elements can 

be now designed to provide the base shear. 

   
  

    
    (Eq. 2.19) 

   
    

  
 

 (Eq. 2.20) 

         (Eq. 2.21) 

2.4.2.2 DDBD method for a MDOF system 

This process can be applied also to MDOF structures. For these structures, at 

the beginning of the procedure, the equivalent SDOF system has to be defined (Fig. 

2.19). This means to transform a system with n degrees of freedom in an equivalent 

SDOF system, identified by the equivalent height (He), mass (me) and design 

displacement Δd. This transformation is performed under the following assumptions 

(Medhekar & Kennedy, 2000): 

 The MDOF system respond harmonically in the assumed shape; 

 The base shear developed by the two systems is the same; 
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 The work done by the lateral inertial forces on both systems is the same; 

The first step is to evaluate the inelastic displacement shape. This shape is 

related to structural typology, and simplified methods for RC frame and structural 

wall buildings are reported in (Priestley et al., 2007). From the inelastic 

displacement profile, Δd, me and He can be computed using (Eq. 2.22), (Eq. 2.23) 

and (Eq. 2.24) respectively. Once the characteristics of equivalent SDOF system 

are determined, it is possible to calculate Δy on the basis of strain and/or drift 

considerations, and then ductility using (Eq. 2.15). At this point, the procedure for 

SDOF systems, starting from step 2, can be applied. 

 

 

Fig. 2.19 MDOF transformation in equivalent SDOF system. (From Medhekar & Kennedy, 

2000) 
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 (Eq. 2.24) 
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At the end of the procedure, the base shear force has to be distributed to the n 

DOF of the system, in order to verify each structural element. On the basis of the 

assumption of harmonic-type response, the base shear can be distributed 

proportionally to the product of the mass and displacement, using (Eq. 2.25). 

     

    

∑       
 
   

 (Eq. 2.25) 

2.4.3 Equivalent viscous damping 

The concept of viscous velocity-dependent damping is generally used in 

structural engineering to represent nonlinear energy dissipation. This dissipation is 

due to various mechanisms such as cracking, interaction between structural and 

non-structural elements, soil-structure interaction etc… There is no physical cause 

to assume a linear viscous damping, but this choice has essentially two reasons. 

The first is that it is very difficult and unpractical to estimate each mechanism 

individually, whereas elastic viscous damping represents the combined effect of all 

mentioned dissipation mechanisms. Furthermore, the use of linear viscous damping 

simplifies the solutions of the differential equation of motion represented by (Eq. 

2.26), where c is the damping coefficient. This equation can be re-written in function 

of the property of the system, obtaining (Eq. 2.27), where ωn is the natural 

frequency of the system and ξ is the ratio between viscous and the critical damping 

coefficient. 

 

  ̈    ̇       (Eq. 2.26) 

 ̈       ̇    
     (Eq. 2.27) 

 

It is common use to consider the viscous damping as a sum of two components, 

the elastic and the hysteretic damping (Eq. 2.28). The elastic component of viscous 

damping allows taking into account further dissipative contributions, that are: 

 Non-linearity in the elastic range, since the majority of hysteretic models 

consider the response as linear elastic at force levels less than yielding; 

 Foundation damping; 

 Non-structural damping; 
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The elastic damping is normally set to 5%. Despite the expression used in (Eq. 

2.28), the two components should not be simply added. Furthermore, elastic 

component should be proportional to tangent stiffness, and not to initial stiffness 

(Priestley & Grant, 2005). 

             (Eq. 2.28) 

The first attempt to make use of equivalent viscous damping in order to take into 

account the hysteretic damping was made by (Jacobsen, 1930). Jacobsen 

proposed an approximate solution of the steady-state response of a non-linear 

oscillator by defining an equivalent linear oscillator. The value of the equivalent 

viscous damping can be obtained equating the energy dissipated by the linear 

viscous system with the energy dissipated by the non-linear system, assuming that 

both of them have the same initial stiffness. This result is expressed by (Eq. 2.29), 

where Ehys is the energy dissipated in one hysteretic cycle, and Fm and um are the 

maximum force and displacement achieved. 

     
    

      
 (Eq. 2.29) 

(Rosenblueth & Herrera, 1964) proposed the first equivalent linear method in 

which the Jacobsen’s damping was combined with secant stiffness at maximum 

deformation as the basis for selecting the period shift. 

(Gulkan & Sozen, 1974) extended Jacobsen’s approach by means of a series of 

dynamic tests on one-storey, one-bay RC frames. From experimental results and 

analytical studies they proposed that the earthquake input energy into a ductile 

structure is similar to that dissipated by an associated elastic system with substitute 

viscous damping (ξsub). They assumed that relative velocity of the associated elastic 

structure is the same as the ductile structure, and so, from the equality of energy, 

(Eq. 2.30) can be obtained. Tsub is the effective period related to the secant stiffness 

to maximum response, u is the displacement of the structure, üg is the ground 

acceleration, t is the duration of the excitation and τ is the time variable. 

They also computed the same factor using the approximation by Jacobsen and 

found that results were not significantly different.  

     
    ∫  ̈      ̇     

 

 

  ∫  ̇    
 

 
  

 (Eq. 2.30) 
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Later on, (Iwan & Gates, 1979) used results from time histories analyses of 12 

recorded earthquake ground motions in order to calibrate empirical formula for 

period shift and equivalent damping of the equivalent linear system, expressed by 

(Eq. 2.31) and (Eq. 2.32) respectively. The hysteretic model used in the analyses is 

derived from a combination of elastic and Coulomb slip elements. 

     [                 ] (Eq. 2.31) 

                        (Eq. 2.32) 

The Takeda hysteretic model was used by (Kowalsky et al., 1995) together with 

the secant stiffness at maximum deformation, for defining the period shift to derive 

an equation for equivalent viscous damping. 

A comparison among those four approaches to estimate the maximum inelastic 

displacement demand of SDOF systems, when subjected to earthquake ground 

motion, can be found in (Miranda & Ruiz-García, 2002). They used elasto-plastic 

and stiffness-degrading models with periods between 0.5 and 3.0 s subjected to 

264 ground motions recordered on a firm site in California. Miranda and García 

concluded that (Rosenblueth & Herrera, 1964) method (R&H) gives the highest 

damping values, and so it underestimates displacements. (Gulkan & Sozen, 1974), 

G&S, Iwan, and Kowalsky methods consider damping significantly smaller than 

those of R&H, and so they produce much better results. The mean relative errors 

increase with increasing displacement ductilities and with decreasing periods of 

vibration. In the short period range, G&S and Kowalsky methods tend to 

significantly overestimate maximum displacements, while Iwan’s method 

underestimates maximum displacements. 

(Kwan & Billington, 2003) proposed empirical relations for equivalent damping 

and period shift. These relations are based on optimal values obtained from the 

minimization of errors between the displacements of non-linear and equivalent 

linear systems. They considered six types of hysteretic behaviour within the period 

range from 0.1 to 1.5 s (each 0.1 s) and four ductility ratios (from 2 to 8). 

In (Blandon & Priestley, 2005) equivalent viscous damping estimated by 

Jacobsen’s approach was compared with effective damping factors obtained from 

an iterative procedure using time-history analyses of SDOF systems. They used six 

hysteretic models, with periods range from 0.5 to 4.0 s each 0.5 s and five ductility 

ratios (from 2 to 6), and six artificial records. The elastic viscous damping was set to 

zero, in order to directly determine the contribution of hysteretic damping. Blandon 

and Priestley found that, in general, Jacobsen’s approach overestimates the value 
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of equivalent viscous damping. Based on analytical results, a series of design 

equations as a function of hysteresis rule, displacement ductility and period were 

developed (Eq. 2.33). 

    
 

 
(  
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)  

 

 
 (Eq. 2.33) 

More recently, (Dwairi et al., 2007) performed an extensive evaluation of 

Jacobsen’s equivalent damping approach combined with the secant stiffness 

method. Four hysteretic models were evaluated, with effective period range 

between 0.1 and 5.0 s each 0.1 s and five ductility ratios (from 1.5 to 6). The 

analyses were carried out using a catalogue of 100 ground motions records and 

tangent stiffness proportional elastic viscous damping set to 2%. The results 

confirmed an overestimation of the equivalent damping and consequently an 

underestimation of displacements for intermediate to long periods. The 

overestimation of damping is proportional to the amount of energy dissipated and 

ductility level. A large underestimation of the equivalent damping is evident for short 

effective periods, in particular less than 0.4 sec. New empirical equivalent damping 

equations as a function of hysteretic model, displacement ductility and effective 

period were proposed: 

        (
   

  
) 

C=A+B(1-Teff)    Teff < 1 s 

C=A                   Teff ≥ 1 s 
(Eq. 2.34) 

This equation can be simplified considering that it is conservative to use low 

estimates of damping, and also that very often regular structures such as frame and 

wall buildings and bridges have effective periods greater than 1.0 s. Furthermore, 

for all the hysteretic behaviours, excluding the elasto-plastic model, the period 

dependency was found insignificant. Hence it can be considered adequate, and 

also conservative, to ignore the period dependency in design (Priestley et al., 

2007). In such a way, the simplified formula express by (Eq. 2.16) is obtained. 

2.5 DDBD Method for Masonry Buildings 

This section is mainly derived from (Priestley et al., 2007). Masonry structures 

are often considered to be inadequate to resist seismic action. Considering the 

problem from a displacement capacity point of view, it is true that masonry elements 
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attain specific performances levels in terms of sustained damage at lower 

interstorey drifts when compared with other construction type. On the other hand, it 

has been noted that fundamentals periods of masonry buildings are also naturally 

lower than those of other structural types, and consequently the displacement 

demand is also comparatively smaller (Priestley et al., 2007). 

Masonry structures have particular characteristics that allow to make some 

considerations: 

 Very often, in seismic regions, masonry buildings are regular in their 

configuration plan. This, together with high redundant restrain system typical 

for this structural type, implies a rather low sensitivity to torsional problems; 

 Due to the limited displacement capacity, second order effects are also 

scarcely relevant. 

 Masonry buildings are in general simple, small structures and it is reasonable 

to consider simplified approaches. 

It is assumed that displacement profile can be considered linear with height. 

Hence, assuming that floor masses and storey height are the same at each storey, 

the ratio of effective height to total height can be expressed by (Eq. 2.35), and so 

the effective height can be calculated from the number of storeys. Since the typical 

limited number of storeys, it can be considered the effective height as 0.8 times the 

total height. The equivalent mass can be taken as 0.9 times the total mass. 
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 (Eq. 2.35) 

The definition of design displacement Δd, and so equivalent damping through 

ductility, is usually related to the assumption of drift limits. For what concern URM, 

in (Magenes & Calvi, 1997) these quantities are indicated in function of the failure 

mode, from an experimental and analytical study. The authors suggest an ultimate 

drift of 0.5% and 1.0%, and an equivalent damping equal to 10% and 15%, for 

shear and flexural failure respectively. In (Priestley et al., 2007) these drift limits are 

reduced of 20%, i.e. 0.4% for shear and 0.8% for flexural failure. These are also the 

limit imposed by Italian Technical Code. The equivalent viscous damping instead is 

assumed to be 15% for shear and 10% for flexural failure behaviour. Further 

indications can be found in (Calvi & Sullivan, 2009b), where bi-linear function 

related to ductility are proposed (Eq. 2.36) (Eq. 2.37) (Eq. 2.38) (Eq. 2.39). The first 

two are related to shear sliding failure, whereas the third and the fourth are related 

to diagonal cracking shear failure, ξ0 can be taken as 0.02. 

 



2. Literature Review 

37 

                     for 1.0 ≤ μ < 2.5 (Eq. 2.36) 

                 for μ ≥ 2.5 (Eq. 2.37) 

                     for 1.0 ≤ μ < 4.0 (Eq. 2.38) 

                for μ ≥ 4.0 (Eq. 2.39) 

More recently, (Ahmad et al., 2010), on the basis of experimental data, have 

calibrated the coefficient C of equation (Eq. 2.16) for masonry walls. The definition 

of yield displacement used, based on idealized bi-linearization, implies ductility 

values less than one at lower displacements. These values are not been taken into 

account. By means a regression analysis the value of 0.32 for C has been obtained. 

For RM, instead, there are not many references. The greater difference 

compared to URM is the possibility to apply capacity design principles. Indeed, it is 

possible to vary flexural and shear strength by changing vertical and horizontal 

reinforcement ratio. So shear failure has to be avoided, preferring flexural failure. 

Following a methodology similar to that proposed for RC walls, it is possible to 

compute the yield and ultimate drifts, and so ductility. In NTC 2008 it is proposed to 

consider 1.5 times the limits for URM, i.e. 0.6% for shear and 1.2% for flexural 

failure. Another possibility is to use analytical non-linear methods, even if simplified, 

as proposed by (Guidi, 2011; Guidi & da Porto, 2011). 

The equivalent viscous damping can be computed using (Eq. 2.16), with the 

value of constant C=0.444. It should be pointed out that this coefficient C has been 

obtained using “small Takeda” model, which is mainly used for concrete wall 

buildings and bridges. Since typical values of ductility obtained with the 

methodology proposed in (Priestley et al., 2007) are around 2, an equivalent 

viscous damping of 10% is suggested. The design drift can be taken equal to that 

for flexure in URM, i.e. 0.8%. For RM structures it is also possible to design the 

coupling degree (βCB) between structural walls and RC slabs in analogy with RC 

coupled walls structures. βCB is defined by (Eq. 2.40). 

               (Eq. 2.40) 
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MCB is the total moment resulting at the base due to the presence of coupling 

beams, MOTM is the total overturning moment, i.e. the sum between MCB and the 

moment capacity of the walls. In this context, it is unfeasible treating such issue in a 

comprehensive manner, but a detailed description can be found in (Paulay & 

Priestley, 1992) and (Priestley et al., 2007). It should be considered that considering 

a coupling action, allows estimating the global system equivalent damping by 

means (Eq. 2.41). ξw and ξCB are the damping associated with wall and coupling 

beam action. 

                        (Eq. 2.41) 

From this brief review it is easy to noticed that there are no many contributions 

on DDBD method for masonry structures. Despite it is reasonable to consider 

simplified procedure for this type of constructions, the number of approximations, 

such as the identification of equivalent SDOF system, drift limits at ULS, equivalent 

damping, make the application of DDBD principles very difficult. 

2.6 Conclusions 

As can be seen from the literature survey presented in this chapter, many issues 

regarding the seismic behaviour of masonry structures are still open. In particular 

the application of DDBD method suffers from same shortcomings. These are 

related to: 

 Drift limits proposed in the codes, and also in Priestley, are usually derived 

from experimental results, and are related to the observed failure mode. 

Since the great variety of masonry types, it is unreliable to consider drift limits 

related only to failure mode. Furthermore, as showed in (Guidi, 2011; Guidi & 

da Porto, 2011), these limits seem to be too conservative. Guidi has 

demonstrated that the displacement capacity, not only related to ultimate 

capacity but also to evolution of damage, is strongly affected by the 

characteristics of masonry wall (mainly compressive strength and aspect 

ratio) and vertical load. 

 For URM, the equivalent viscous damping can be derived from experimental 

results. In this case it is related to failure mode and considered constant and 

independent from displacement demand. The formulations provided in (Calvi 

& Sullivan, 2009b) are instead linear with displacement ductility. It is evident 

that this incoherency has to be further studied. Furthermore, in (Calvi & 
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Sullivan, 2009b) there is not a clear explanation of how the yielding of 

masonry can be computed. This lack, together with the absence of 

indications on ductility level associated to specific damage levels, i.e. limit 

states, makes impossible to apply the proposed damping relations. 

 For what concern RM, Priestley consider the same ultimate drift and 

equivalent damping of those considered for URM failing in flexure. This 

strong approximation is not demonstrated by specific studies. Furthermore 

the suggested methodology for defining the yielding and ultimate 

displacements leads to results not so consistent with those derived from 

experimentations, such as (DISWall, 2008). 

 Regarding the application of method to MDOF systems, the assumption of 

linear displacement profile has not been demonstrated in a rigorous manner. 

Furthermore, considering a schematization of real structure with one degree 

of freedom for each storey, the lumped mass at each degree of freedom 

should take into account of both the floor and walls. This means that masses 

of first and last degree of freedom could be differ from those of others 

degrees of freedom. Since the limited total number of storeys, the hypothesis 

of that floor masses are the same at each storey is unrealistic. 

 From the previous observation, it arises that the simplified procedure 

described in §2.5, more precisely, the assumption that equivalent height and 

mass can be taken respectively 0.8 times the total height and 0.9 times the 

total mass, can leads to significant errors in determination of equivalent 

SDOF system. 
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3 EXPERIMENTAL DATA AND RESULTS 

3.1 Introduction 

The main aim of this chapter is to present the results of several experimental 

campaigns carried out at University of Padova in the last years. Tests were 

performed to determine the behaviour under in-plane combined vertical and 

horizontal actions, hence the seismic performance, of different masonry walls types. 

In this work, the relevant masonry types are a new system of reinforced masonry 

and historical stone masonry strengthened with hydraulic lime based grout injection. 

3.2 Reinforced Masonry: Experimental Work and Results 

The studied reinforced masonry system is based on the use of concentrated 

vertical reinforcement, similar to confined masonry. It is an innovative system, 

recently developed in the framework of European Project (DISWall, 2008), that 

utilized special clay units (Fig. 3.1). Horizontally perforated units with frogs for laying 

horizontal reinforcement and vertical perforated units for confining columns are 

used. 

 

(a) (b) 

Fig. 3.1 Details of (a) horizontally perforated unit (b) vertically perforated unit 

 

Vertical reinforcement in the columns is composed of steel bars, whereas 

horizontal reinforcement may be made of either steel bars or prefabricated steel 

trusses (Fig. 3.2). A special mortar was developed for this reinforced masonry 
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system, especially for what concern the properties of consistence, plasticity, and 

workability, to allow for a proper bed joint and recess filling and also for a proper 

filling of the reinforced vertical cavities. 

The main advantages of this system are related to durability and construction 

issues: placing the horizontal reinforcement into recesses filled with mortar 

improves reinforcement durability, makes the reinforcement positioning more 

precise and easier, allows producing good bond between mortar and units, and 

mortar and reinforcement. In addition, using units with horizontal holes helps 

fulfilling internal environment comfort conditions: this technique is traditionally 

adopted in the Mediterranean countries to improve thermal insulation. Units with 

horizontal holes could also benefit acoustic insulation, provided that head joints are 

covered with mortar, as it actually is. 

 

 
(a) 

  

  
(b) 

Fig. 3.2 (a) Reinforced masonry system and (b) construction phases. 

 

As regards mechanical behaviour, this system is conceived to perform as 

reinforced masonry, provided that units with horizontal holes are effective in 

transferring horizontal loads to the lateral confining columns and they do not 

present fragile behaviour. The main aim of the experimental program was to assess 

the system behaviour under seismic actions, by means of shear-compression cyclic 

tests. Instead, the effectiveness of horizontally perforated units in transferring 

horizontal loads to lateral confining columns may be reduced by unit brittleness 

and/or malfunctioning of the composite system at the interface between central 

masonry panels and confining columns. Hence, the basic properties of the 

constitutive materials (units, mortar and reinforcement) and the behaviour of the 

reinforced masonry system in compression have been extensively investigated 

(Mosele, 2009). 
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Cyclic shear compression tests were carried out on fourteen full-scale 

specimens, differentiated by: presence or absence of vertical reinforced confining 

columns, use of steel bars or prefabricated trusses as horizontal reinforcement, 

aspect ratio (height to length ratio) of tested specimens, and value of applied axial 

compression loads. The tests characterized the mechanical behaviour of the 

proposed construction system and allowed evaluation of the influence of these 

aspects on the main parameters (strength, ductility, energy dissipation, viscous 

damping, stiffness degradation) influencing the seismic behaviour of reinforced 

masonry walls. 

3.2.1 Basic Material Characterization 

The geometry of units, physical properties of mortar, and composition of both 

units and mortar were especially developed for the new reinforced masonry system. 

The horizontally perforated units were developed to optimize the behaviour under 

in-plane actions, following the concept of robustness mentioned in (EN 1998-1, 

2004) and in (Tomaževič et al., 2006) and (da Porto et al., 2010a). The unit webs 

and shells were rectilinear and continuous, and the hole percentage was less than 

45%, according to Italian seismic requirements (DM 14/01/2008, 2008). The 

horizontally perforated units contained 20% of tuff. Their mean compressive 

strength in the direction of vertical loads (fbm) was 9.26 N/mm
2
 and in the orthogonal 

direction to vertical loads, in the plane of the wall (fbhm), it was 13.24 N/mm
2
. 

The main objective of mortar development was to use a single product, suitable 

for laying the horizontally perforated units and filling the vertical reinforced cavities. 

Mortar requirements were: compressive strength higher than 10 N/mm
2
, as 

recommended by (EN 1998-1, 2004) and (DM 14/01/2008, 2008); balanced 

consistence, plasticity, and workability for bed and head joints and vertical cavities; 

good adhesion to units and reinforcement. The mean flexural (fm,t) and compressive 

(fm) strengths of the final product after 28 days' curing were 4.27 N/mm
2
 and 14.07 

N/mm
2
. 

The horizontal reinforcement was made of B450C hot-rolled steel with yielding 

stress (fy) of 500 N/mm
2
 and elastic modulus of 204.4 kN/mm

2
; the truss 

reinforcement had yielding stress of 486 N/mm
2
 and elastic modulus of 203.7 

kN/mm
2
. The vertical reinforcement was made of B450 cold-drawn steel, with 

yielding stress of 501 N/mm
2
 and elastic modulus of 189 kN/mm

2
. 

The detailed description of the basic mechanical tests is reported elsewhere ((da 

Porto et al., 2010b);(Mosele et al., 2008)). 
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3.2.2 Uniaxial Compression Tests 

To better understand the in-plane behaviour under cyclic horizontal loads, 

uniaxial compression tests on specimens of the entire system and on its single 

components (i.e., confining columns and masonry panels without confining 

columns) were carried out. The mean compressive strength (fc) of masonry panels 

without confining columns and of the whole masonry systems was 2.71 N/mm
2
 and 

3.90 N/mm
2
, respectively. Horizontally perforated units did undergo spalling, but 

they did not cause anticipated masonry failure. The frogs on the unit bed faces not 

only made reinforcement positioning faster and more precise, but also allowed very 

good bond between mortar and reinforcement to be created. The complete results 

of this preliminary characterisation, including experimental and numerical analyses, 

are reported in (Mosele, 2009) and (da Porto et al., 2010b). 

3.2.3 In Plane Cyclic Tests 

The specimens were tested with a cantilever-type boundary condition, with fixed 

base and top end free to rotate, by applying centered and constant vertical loads of 

11% and 16% of the measured maximum compressive strength of the reinforced 

masonry walls, corresponding to 15% and 22% of the measured maximum 

compressive strength of the walls without confining columns. The corresponding 

compressive stress levels (0.4 and 0.6 N/mm
2
) are adequate to represent typical 

vertical loads for buildings from two to four storeys in height. Two specimens, one 

for each pre-compression level, constitute each series listed in Table 3.1. 

 

Name 
Dimension 

(mm) 

Horizontal 

Reinf. 

ρw 

(%) 

Vertical 

Reinf. 

ρl 

(%) 

N° of 

tests 

HS 1550x300x1690 - - - - 2 

SRHS 1550x300x1690 Rebar 0.045 - - 2 

TRHS 1550x300x1690 Truss 0.040 - - 2 

SRSa 1550x300x1690 Rebar 0.045 4Ф16 0.173 2 

TRSa 1550x300x1690 Truss 0.040 4Ф16 0.173 2 

SRSb 1030x300x1690 Rebar 0.045 2Ф16 0.130 2 

TRSb 1030x300x1690 Truss 0.040 2Ф16 0.130 2 

Table 3.1 Specimens details for shear compression tests 

 

Specimens were instrumented with 24 potentiometric displacement transducers 

to measure displacements, wall flexural and shear deformations, base uplift and 
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relative sliding between wall and footing. Four strain-gauges were used to measure 

strains in both vertical and horizontal reinforcement bars at characteristic sections 

of the wall. Lateral and vertical loads were measured by means of load cells with 

the three hydraulic actuators used. The lateral displacement at the top of the wall 

was measured by a magnetostrictive displacement transducer, which was also used 

for retro-activation of the actuators. Fig. 3.3 shows the instrumental scheme. 

Horizontal cyclic displacements, of increasing amplitude and with peaks 

repeated three times for each displacement amplitude, were applied at a frequency 

of 0.004 Hz. Fig. 3.4 shows a view of the test set-up. Further details on tests setup, 

instrumentation and procedure are available in (Mosele, 2009). 

 

 

Fig. 3.3 Scheme of instruments for shear compression tests. 

 

 

Fig. 3.4 Shear compression test set-up 
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During experimental tests, the attainment of four limit states, which can be used 

to idealize the behaviour of the masonry wall, were observed. These limit states 

correspond to changes in how the specimens resist the progressive increment of 

applied lateral displacement. This idealization, purposely developed for plain 

masonry (Abrams, 2001), was adapted to our reinforced masonry wall specimens. 

 

 

(a) 

 

(b) 

 

(c) 

 

Fig. 3.5 Crack patterns at ultimate displacement in TRHS (a), TRSa (b) and TRSb (c)  

under compressive stresses of 0.6 N/mm
2
. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 3.6 Load displacement diagrams of (a) TRHS 0.6, (b) TRSa 0.6  and (c) TRSb 0.6. 
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Fig. 3.5 shows three specimens (TRHS, TRSa and TRSb) tested under 

compressive stresses of 0.6 N/mm
2
, Fig. 3.6 shows the corresponding load- 

displacement diagrams, and Fig. 3.7 shows some details at failure. Fig. 3.8 

compares limit states and the idealized envelope curves of all tested specimens. 

Lastly, Table 3.2 lists the values of lateral loads (H) and corresponding rotation 

angles (ψ = δ / H) at the four limit states, the main load and ductility ratios, and 

observed failure modes. 

The first non-linearity, due to the first cracks opening on the bottom bed-joints 

(Hf, δf), occurred at displacements of about 1 - 2 mm (mean rotation angle ψ = 

0.075%), independently of type of specimen or applied axial load. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 3.7 (a) Buckling of vertical bars in TRSa 0.4; (b) tension failure of vertical bars in SRSb  

0.4; (c) transverse deformation of truss at end of test in TRHS 0.6. 

 

 

Fig. 3.8 Limit states envelop curves of masonry specimens 



Equivalent Viscous Damping and Inelastic Displacement for Strengthened and Reinforced Masonry Walls 

48 

 

In slender specimens, which were characterized by flexural failure and damage 

concentrated at the compressed toe (Fig. 3.5c), the following crack limit state (Hcr, 

δcr) occurred when the vertical bars yielded, at displacements of 9-12 mm (ψ = 

0.50-0.70%), according to axial loads and type of horizontal reinforcement. 

In squat specimens, characterized by shear failure mode (Fig. 3.5b), the second 

non-linearity took place when the first diagonal crack opened and strains of shear 

reinforcement simultaneously increased. This occurred at displacements of 5 mm 

(ψ = 0.30%), independently of applied axial load. 

Subsequently, in slender walls, loads increased gradually until maximum load 

(Hmax) and the relevant displacement (δHmax, Fig. 3.6c and Fig. 3.8) were reached. 

This condition represents the third limit state, and is characterized by crushing of 

masonry. 

 

Specimen 
Hf ψf Hcr ψcr Hmax ψHmax Hu ψu Hcr/ 

Hmax 

Hu/ 

Hmax 

ψcr/ 

ψHmax 

ψu/ 

ψcr 

Failure 

mode kN % kN % kN % kN % 

σ0=0.6 N/mm² 

HS 06 36 0.07 66 0.31 77 0.99 48 1.99 0.86 0.63 0.31 6.42 R 

TRHS 06 60 0.09 96 0.26 106 0.70 86 0.85 0.91 0.81 0.36 3.33 R 

SRHS 06 49 0.06 91 0.26 114 1.33 102 1.71 0.80 0.89 0.20 6.58 R 

TRSa 06 104 0.09 169 0.31 207 0.73 166 0.86 0.82 0.80 0.42 2.77 S 

SRSa 06 88 0.06 159 0.31 217 0.74 182 1.04 0.73 0.84 0.41 3.41 S 

TRSb 06 40 0.09 86 0.68 93 1.28 81 2.71 0.92 0.88 0.53 4.00 F 

SRSb 06 41 0.08 80 0.53 89 1.20 70 1.81 0.90 0.79 0.44 3.42 F 

σ0=0.4 N/mm² 

HS 04 45 0.08 66 0.22 77 1.20 65 1.85 0.86 0.84 0.18 8.41 R 

TRHS 04 47 0.07 71 0.25 79 1.39 37 3.69 0.90 0.47 0.18 14.76 R 

SRHS 04 45 0.06 72 0.27 81 2.21 26 3.41 0.89 0.32 0.12 12.63 R 

TRSa 04 82 0.07 144 0.30 199 0.70 160 1.25 0.72 0.80 0.44 4.13 S/F* 

SRSa 04 81 0.09 137 0.30 200 1.04 149 1.45 0.68 0.75 0.29 4.80 S/F* 

TRSb 04 32 0.10 74 0.73 79 1.18 68 3.29 0.94 0.87 0.62 4.53 F 

SRSb 04 30 0.08 67 0.53 78 1.46 70 2.70 0.86 0.90 0.36 5.07 F 

R = rocking, F = flexure, S = shear, S/F = combined shear/flexure mechanism 

Table 3.2. Results of shear compression tests. 

 

Conversely, squat specimens reached this state with consistently increased 

loads (Fig. 3.6b and Fig. 3.8) with the formation of a diagonal strut, defined by 

cracks which crossed units and mortar joints. Spalling of units was also observed 
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(Fig. 3.5b). At the lower axial load level, damage of the compressed toes due to 

buckling of vertical bars also occurred (Fig. 3.7a). 

This phenomenon took squat specimens to the ultimate limit state with high 

strength degradation (10-15%) and low displacement capacity (12-20 mm, 

corresponding to ψ = 0.70-1.14%, according to axial compression load). This 

ultimate limit state corresponded to the values of displacements δu (and loads Hu), 

at which the specimens still showed stable behaviour, before reaching maximum 

experimental displacement and collapse. Slender walls had high displacement 

capacity (30-60 mm, ψ = 1.70-3.70%) and hence ductile behaviour, due to flexural 

failure mode, which occurred with fracture of vertical bars, according to axial load 

(Fig. 3.7b). In walls without vertical reinforcement, high values of ultimate 

displacements were due to rocking, and damage was concentrated at the bottom of 

the specimen (Fig. 3.5a and Fig. 3.7c). 

The values of rotation angles at the ultimate limit state were weighed against 

those proposed by the Italian standard (DM 14/01/2008, 2008) for non-linear static 

analysis of reinforced masonry buildings. 1.2% assumed for flexural behaviour and 

0.6% assumed for shear behaviour are moderately conservative, compared with the 

experimental values. 

Lastly, the seismic response of buildings is related not only to strength and 

displacement capacity, i.e., ductility, of the structural members, but also to typical 

parameters of cyclic behaviour, such as energy dissipation capacity, stiffness 

degradation and viscous damping coefficient, according to damage propagation. 

The energy dissipation capacity of our reinforced masonry system was lower than 

that usually reported for reinforced masonry walls ((Tomaževič et al., 1996), 

(Magenes et al., 1996), (Bernardini et al., 1997)). The ratio between dissipated and 

input energy of the complete reinforced masonry system ranges between 20% and 

40% (Fig. 3.9). In any case, these values are still higher than those generally given 

for unreinforced masonry ((da Porto et al., 2009), (Magenes & Calvi, 1997)). The 

trend of the viscous damping coefficient is generally similar to that of energy 

dissipation capacity (Fig. 3.10). The viscous damping coefficient was about 5%, and 

tended to increase in the post-peak phase in reinforced masonry walls (TRS and 

SRS), whereas it remained constant for specimens without vertical reinforcement 

(HS series). A complete summary of experimental results can be found in (da Porto 

et al., 2011) 
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 (a)  (b) 

Fig. 3.9. Ratio of dissipated/input energy vs normalized displacement.  

Specimens under (a) 0.4N/mm
2
 and (b) 0.6N/mm

2
. 

 

 (a)  (b) 

Fig. 3.10. Viscous damping coefficient vs normalized displacement.  

Specimens under (a) 0.4N/mm
2
 and (b) 0.6N/mm

2
. 

3.3 Stone Masonry: Experimental Work and Results 

The historical stone masonry type studied is multi-leaf, which was a building 

technique widely employed for common historical constructions, not only in Italy but 

also in other European countries. Over the years, the special features and failure 

mechanisms of three-leaf masonries have been examined in depth (Tomaževič & 

Apih, 1993; Toumbakari & van Gemert, 1997; Vintzileou & Miltiadou-Fezans, 2008). 

First, this structural system is mainly characterized by a wide presence of voids in 

the inner core of the wall which is constituted by stone fragments. Second, 

transversal connections between opposite external layers are normally not 

provided. These aspects make the masonry especially prone to brittle mechanisms 
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of failure, such as detachment of external layers and out-of-plane collapse. These 

mechanisms are mainly caused by both compressive stresses, due to dead-loads, 

and horizontal actions, namely in-plane and out-of-plane forces, due to seismic 

loads. 

For is type of masonry, the effects of hydraulic lime-based grout injection have 

been considered. This strengthening technique aims at limiting all the previously 

described failure mechanisms, which are typical for this type of masonry, assessing 

at the same time the compatibility among materials (Valluzzi et al., 2004). The first 

part of the whole experimental program involved shaking table tests on building 

models under different conditions. Unreinforced, strengthened and repaired 

structures were subjected to several seismic loads at the ENEA Research Centre 

(“la Casaccia”) in Rome. The second part of the experimental program focused on 

quasi-static tests on masonry panels. This experimental section was performed at 

the Laboratory of Materials and Structures of Department of the Structural and 

Transportation Engineering of the University of Padua. Several undamaged panels 

could be recovered during the dismantling of building models subjected to seismic 

actions. Part of these specimens were tested under monotonic compression, while 

shear compression tests were performed on the remaining samples. 

In the following sections a brief summary of uniaxial compression and shear 

compression tests results are presented, a complete description of work is reported 

in (Mazzon, 2010). 

3.3.1 Uniaxial Compression Tests 

Compression tests were carried out under displacement control with a Universal 

Amsler machine. This also allowed the post-peak branch of the load-displacement 

relationship to be investigated. The tested specimens can be divided in two 

typologies: “S” elements were strengthened, starting from undamaged conditions, 

whilst “R” piers were repaired by injection, being cracked and damaged. The aim of 

this experimental campaign was to investigate the variation in mechanical 

parameters, such as compressive strength, Young’s modulus and the Poisson ratio. 

Differences in the overall behaviour of the Strengthened and Repaired 

specimens, observed during the experiments, were confirmed from analyses of the 

stress-strain relationships. Both the vertical and horizontal strains are approximately 

linear up to 50% of the maximum attained vertical load on “R” samples. Over this 

stress level, horizontal deformation widely increased, due to opening of vertical 

cracks in the specimen. Strengthened specimens manifest a vertical linear 

deformation almost up to the attainment of compressive strength. Instead, 
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horizontal strains start to widely increase already at 30% of compressive strength. 

Beyond the attainment of maximum compressive strength, the samples of “S” series 

are able to sustain larger deformations. This reflect a gradual decrease in stress, 

followed by a noticeable increase in both vertical and horizontal deformations. Thus, 

differences between strengthened and repaired elements are more evident in the 

post-peak behaviour, while during the first phase, up to the compressive strength, 

they are limited. 

The tests results are reported in Table 3.3.The difference in mean strength 

between the two series is lower than 1 N/mm
2
. In fact, the maximum allowable 

stress on strengthened samples was 6.88 N/mm
2
, while repaired specimens settled 

at 7.72 N/mm
2
. However, as a general result also the mean value of 7.4 N/mm

2
 can 

be considered as representative of this kind of masonry. 

 

Specimen 
σmax (N/mm

2
) σI,cr (N/mm

2
) σI,cr (%) 

R S R S R S 

3 7.05 7.31 1.47 3.15 20.9% 43.1% 

6  7.87  2.39  30.3% 

7 8.45 9.63 2.11 2.19 25.0% 22.8% 

8  5.25  2.60  49.5% 

9 5.58 7.59 1.22 2.18 21.8% 28.7% 

10 7.29 8.14 0.90 2.71 12.4% 33.2% 

11 6.01 8.24 1.68 2.84 28.0% 34.5% 

average 6.88 7.72 1.48 2.21 21.6% 32.1% 

Table 3.3. Compression strength of specimens and stress level corresponding to the 

first crack appearance 

3.3.2 In Plane Cyclic Tests 

The test set-up and instrumentation was similar to that already described in 

§3.2.3 The specimens were positioned in the test rig and a vertical pre-load was 

initially applied. After this preliminary phase, the horizontal displacement history 

was applied. The level of vertical stress, kept constant during the whole test, may 

reasonably range between 15% and 30% of the compressive strength of 

specimens, as suggested by some authors (Bosiljkov et al., 2004; Tomaževič, 

2000). Hence, the applied stress levels were 1 N/mm
2
 and 2 N/mm

2
. These rather 

high loads are justified by the aim to investigate the influence of grout injection on 

the shear strength of multi-leaf masonries. Therefore, applying a higher stress level 



3. Experimental Data and Results 

53 

will force the shear failure mechanism also on slender specimens, in which the 

rocking or flexural behaviour is more probable if the vertical stress is low. 

Specimens are characterized by two different slenderness ratios, approximately 

equal to 1.0 and 1.5. Furthermore, during the preliminary phase of shear 

compression tests, consisting of the application of a vertical load to achieve the 

chosen precompression level, it was possible to evaluate the elastic properties of 

each panel. The results are summarized in Table 3.4. 

 

Specimen 
σ’0  Thickness Width Height Slenderness E 

(N/mm
2
) (mm) (mm) (mm) - (N/mm

2
) 

R2 1.0 320 1463 1221 0.8 4057 

S2 2.0 325 1453 1370 0.9 2738 

Specimen 
σ’0  Thickness Width Height Slenderness E 

(N/mm
2
) (mm) (mm) (mm) - (N/mm

2
) 

R4 1.0 320 913 1236 1.4 5513 

S4 1.0 331 923 1275 1.4 6708 

R5 2.0 321 930 1381 1.5 4640 

S5 2.0 328 929* 1381 1.5 4323 

Table 3.4. Pre-compression levels applied during shear compression tests, 

geometric properties and computed elastic modulus. 

 

The specimens exhibited different overall behaviours during the execution of 

tests even if, on the other hand, similarities linked all the experiments. For instance, 

specimens with the same slenderness ratio and stress level showed comparable 

overall behaviours. Four different phases could be identified for each panel, 

depending on the ratio between the height and the width of sample and the applied 

vertical load. 

The first phase was related to the opening of the first cracks. This phenomenon 

occurred on all specimens at a displacement level ranging between 1 mm and 2 

mm (ψ = 0.05–0.10%), independently of both the pre-load applied and the 

slenderness of the element. These cracks appeared horizontally on the first or 

second mortar bed joint at about 10 cm or 15 cm from the bottom of the specimen. 

After the opening of these cracks, the overall behaviour was different, according 

to the different typology of specimen. Both squat specimens and the slender 

specimens with higher vertical stress, exhibited the beginning of diagonal oriented 

cracks due to shear mechanisms. Instead, slender specimens with a lower axial 

load, S4 and R4 samples, showed a crack pattern due to a rocking mechanism (Fig. 

3.11b), highlighting sub-vertical cracks in the compressed toe because of bending. 
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The previously described mechanisms developed on specimens up to the 

attainment of maximum lateral resistance (Hmax, δHmax), when an overall degradation 

could be identified. The final phase was characterized by the achievement of 

maximum horizontal displacement at which masonry panels completely failed 

(Hδmax, δmax). The majority of specimens exhibited a brittle collapse, anticipated by 

the pulling out of central parts of lateral edges. 

Fig. 3.11 shows the three strengthened specimens at ultimate displacement, Fig. 

3.12 shows the corresponding load-displacement diagrams. Cracks in stones (Fig. 

3.13a) occurred earlier on slender specimens with a higher vertical load than on 

other samples, even if on all panels this damage was clearly evident. Moreover, 

both slender specimens tested under low vertical stress exhibited the same overall 

behaviour before failure. First, as above described, a rocking mechanism cracked 

the wall horizontally at about 15 cm from the bottom of the panel. When this crack 

involved the whole width of samples and beyond the attainment of lateral 

resistance, the part above the breaking line became squat. Immediately after this, 

due to a shear mechanism, a deep diagonal crack suddenly appeared and, shortly 

afterwards, led to its collapse. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 3.11 Crack patterns at ultimate displacement in (a) R2, (b) R4 and (c) R5. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 3.12 Load displacement diagrams of (a) R2, (b) R4 and (c) R5. 
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Furthermore, each specimen exhibited the beginning and the development of its 

characteristic failure mode but, when the damage was widely diffused and the panel 

was close to failure, sub-vertical cracks appeared (Fig. 3.13b). Therefore, over the 

attainment of lateral resistance, the effects of compression became noticeable. This 

caused the opening of cracks in transversal sides, due to the buckling of external 

layers of masonry (Fig. 3.14), as already observed during compression tests. 

 

 Cracking limit Maximum resistance Maximum displacement 

Specimen 
Hcr δcr ψcr Hmax δHmax ψHmax Hδmax δmax ψδmax 

kN mm % kN mm % kN mm % 

R2 151 1.23 0.10% 187 5.09 0.42% 147 11.76 0.96% 

S2 221 2.19 0.16% 256 5.08 0.37% 225 9.60 0.70% 

R4 71 3.73 0.30% 80 14.59 1.18% 75 24.67 2.00% 

S4 75 3.55 0.28% 88 11.33 0.89% 71 22.01 1.73% 

R5 108 3.59 0.26% 124 7.36 0.53% 97 11.09 0.80% 

S5 110 3.86 0.28% 122 7.13 0.52% 108 9.81 0.71% 

Table 3.5. Characteristic values of horizontal force, displacement and rotation angle 

at identified Limit State  

 

 
(a) 

 
(b) 

Fig. 3.13 (a) Cracks occurring in stones and (b) the formation of 

sub-vertical cracks on specimen R5. 

 

 
(a) 

 
(b) 

Fig. 3.14 Separation of outer layers on 

specimens R2 (a) and S2 (b). 
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The ratio between dissipated and input energy (Fig. 3.15) was generally high, 

but it was also characterized by a wide variation. It generally decreased during the 

first part of the test, up to the minimum values, corresponding to the attainments of 

lateral resistance. Beyond this phase, the energy ratio showed a limited increase up 

to failure. In general the ratio ranged between 30% and 60%. The trend of 

equivalent viscous damping was similar to that reported for the energy ratio, and a 

mean value of 10% can be considered (Fig. 3.16). 

 

 

Fig. 3.15. Ratio of dissipated/input energy vs normalized displacement. 

 

 

Fig. 3.16. Viscous damping coefficient vs normalized displacement. 
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4 DEVELOPMENT OF AN HYSTERETIC MODEL FOR DYNAMIC 

ANALYSES 

4.1 Introduction 

In this chapter the development of an hysteretic model is presented. Starting 

from critical analysis of existing models for in-plane loaded masonry walls and some 

observations on the experimental behaviour, a new model has been proposed. This 

model is able to reproduce the response of a masonry wall under in plane cyclic 

loads for both shear and flexural failure modes, and for a wide range of masonry 

types. Thereafter a comparison between experimental and modelled hysteretic 

behaviour is presented. 

The model has been implemented in MATLAB environment, in order to carry out 

non-linear dynamic analyses. To reach this goal, also re-loading rules needed to be 

defined. 

4.2 Application of Tomaževič model 

Initially, an attempt to use the model proposed by (Tomaževič & Lutman, 1996) 

to model the experimental load-displacement cycles has been done. Since this 

model was developed for reinforced masonry, it has been applied to the studied RM 

system. Two specimens for comparison of experimental and analytical results have 

been chosen: TRSa06 and TRSb06. The first is representative of shear failure, the 

latter of flexural failure. 

In the original model, the hysteretic loops are based on an idealized tri-linear 

envelope curve, determined by cracking point, maximum resistance and ultimate 

limit state of masonry wall. Since our masonry system is characterized by the 

attainment of four limit states, it has been chosen to use a quadri-linear curve as 

skeleton curve. Fig. 4.1 shows the comparison between the experimental data and 

the modelled hysteretic loops. It can be noticed that modelled cycles tend to be 

more similar to the experimental ones before the peak level. On the contrary, for 

amplitudes greater than maximum resistance, the model capacity to approximate 
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the real behaviour decreases. This happens because the model, with the exception 

of the first part of unloading, takes into account an unique value of stiffness. 

Conversely, in the experimental loops, instead, an increase of stiffness when 

displacements tend to zero can be observed. In addition, for this reason the model 

always overestimates the input energy. The dissipated energy, instead, is generally 

overestimated for cycles minor than dCR and greater than dHmax and underestimated 

between these two limit states. This means that the modelled values of ratio 

between dissipated and input energy have a different trend, when compared to the 

experimental ones, as shown in Fig. 4.2. It is easy to notice that experimental 

values describe a concave side up curve, whereas the modelled described a 

concave side down curve. 

In conclusion, it can be said that the different shape of hysteresis cycles, 

between model and experimental, and the not very precise modelling of the energy 

balance, which is important for our analyses, suggested to develop a new model, 

based on actual observed in plane behaviour. This model is described in the 

following paragraphs. 

 

  

Fig. 4.1 Comparison between experimental and modelled cyclic shear compression tests 

with Tomaževič model. Squat (left) and slender (right) specimens tested under 0.6 

N/mm
2
 vertical compression. 

 

  

Fig. 4.2 Ratio between dissipated and input energy. Comparison between experimental 

and modelled values. Squat (left) and slender (right) specimens tested under 0.6 N/mm
2
 

vertical compression. 
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4.3 Hysteretic Model Description 

4.3.1 General Scheme 

The idealized envelope curves on which the construction of the hysteresis loops 

was based, were taken as the quadri-linear curves defined by the four experimental 

limit states given in § 3.2.3. It has been noticed that the first two limit states 

correspond to the main variation of tangent stiffness of the envelope of hysteresis 

loops, which can be considered as a general criterion for the estimation of limit 

states starting from the cyclic shear-compression test results.  

This criterion consists on considering the envelope of hysteresis loops, that is 

the envelope of the points corresponding to maximum displacement at each cycle. 

In this way, we obtain two piecewise linear curves, one for positive displacement 

cycles and the other for negative displacement cycles. Then, for each curve, it is 

possible to compute the stiffness between two following points, that is the tangent 

stiffness to each linear branch. 

Then, for each cycle, calculating the variation of the tangent stiffness compared 

to the previous one, it is possible to noticed that this variation is characterized by 

two minimum points, before the attainment of maximum resistance. These two 

points correspond to the main sensitive stiffness variation of the envelope. The 

corresponding displacements are very close to first two experimentally observed 

limit states. 

The experimental observation on which the model is based are the follow: 

1. The loading phase can be divided in two parts: the first part, with low 

displacement and high stiffness, and a second part with lower stiffness. The 

former remains almost unchanged among different loading cycles, with only 

low decay of stiffness values; conversely, the second phase presents high 

stiffness decay. Furthermore, the transition between these two parts occurs 

when forces and displacements are close to the first limit state and 

decreases with the increase of cycle amplitudes. 

2. The un-loading phase can be subdivided in three parts: the first characterized 

by a high value of stiffness which determines the width of cycle and the 

dissipated energy, the second in which stiffness is almost the same as in the 

second loading phase. Finally, the third phase where stiffness increases 

again and remains constant in the succeeding loading phase of the following 

loading cycle. The latter increase of stiffness happens when forces are 

similar to those at the stiffness change during the loading phase, giving the 

typical S form of hysteresis cycles. 
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3. Repeated amplitude cycles shows high strength decay in the loading phase, 

whereas the unloading phase strength is almost unchanged compared to the 

first cycle of that amplitude. Hence, the following cycles with the same 

amplitude are smaller and less dissipates less energy compared to the first 

cycle. 

Starting from these observations, the construction of the hysteresis loops has 

been based on the definition of four symmetrical points (A, B, C, D). These points 

are found by means of two coefficients: C1 and C2, which are calculated by 

imposing the equality of the input energy and the dissipated energy between 

experimental and modelled loops. 

Modelling of the first cycles at each displacement level is carried out as follow. 

The system is linear elastic until the displacements are smaller than the first limit 

state. Non-linear inelastic behaviour starts beyond this level of displacement. For 

this reason, the modelling of hysteretic cycles begins at the first cycle that goes 

beyond the elastic limit. 

Point A is always placed on the first branch of the skeleton curve, namely the 

linear elastic phase. Its ordinate is expressed as a function of the maximum 

resistance (Hmax) using the coefficient C1 and the Z parameter. Point B is found on 

the skeleton curve for a displacement corresponding to the current cycle amplitude. 

The slope of branch A-B (KA-B) is stored and will be utilized for modelling both the 

negative part of the current cycle and the next cycle. 

 

 

Fig. 4.3 Idealized envelope curve (blue) and general scheme of hysteretic model. 

 

After point B, the system starts to unload. The ordinate of point C is expressed 

as a function of point B by means of C2 coefficient and Z parameter. The slope of 

the first unloading branch (KB-C) is defined by (Eq. 4.2). In such a way this stiffness 
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changes linearly from the value of the first branch of skeleton curve, i.e. the elastic 

stiffness, until the tangent stiffness at the second branch of skeleton curve, i.e. K1-2. 

Point D has the same ordinate of point A, and is found by imposing the equality of 

slope KC-D and KA-B. Beyond point D the system continues to unload, and it moves 

to the symmetrical points of A, B, C and D. Since displacements at point A remain 

almost constant, whereas displacements at point D increase along with the increase 

of the cycle amplitude, KD-A decreases at every modelled cycle (Fig. 4.4). 
 

 

Fig. 4.4 Degradation of stiffness KD-A. 
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Z parameter (Eq. 4.5) is utilized in order to obtain constant values of C1 and C2 

coefficients. Indeed, without using Z parameter, fitting of experimental tests would 

give a constant trend, for these coefficients, only for first cycles, followed by a 

decreasing trend with the increase of cycles amplitude. Hence, Z parameter can be 

seen as a corrector factor that allows to use a couple of constants for coefficients 

C1 and C2, that is appreciable from the implementation point of view, and at the 

same time to take into account their variation without introducing new independent 

parameters in the model. This parameter is a function of maximum displacement, 

and is evaluated on the basis of CZ (Eq. 4.1) and dE (Eq. 4.3), which indeed are 

evaluated on the basis of the basic model parameters. For displacements less than 

dE, Z is considered equal to one. When maximum displacement has exceeded dE, Z 

decreases linearly. This parameter has to be updated each time a new dmax is 

reached, and so for every dB since every cycle has an amplitude greater than the 

previous ones. 

4.3.2 Arrangement of Hysteretic Model for Random Input 

The model, as it has been defined, assumes to know the amplitude of each 

cycle. Furthermore, every cycle is greater than the previous one, so the 

displacement at point B (dB) is also the maximum current displacement (dmax). So it 

is possible to define for each cycle the stiffness of the branch A-B (KA-B) as the 

stiffness that brings the system to moves exactly from point A to point B. Since the 

final aim of the model is to carry out dynamic analyses, in general it is impossible 

assuming a priori the amplitude of cycles. Indeed, the earthquake induced 

displacements represent the unknown quantities. Therefore, KA-B has been re-

defined by taking into account the displacement history of the system, so as to 

ensure increasing stiffness degradation for increasing displacements. 

Referring to i-th cycle, represented in Fig. 4.5, the model initially takes dmax to be 

equal to dB-1, (maximum displacement of the previous cycle). Current stiffness KA-B 

is thus secant to Ai-1 and Bi-1. Therefore, the system moves from Ai-1 point in order 

to reach Bi-1 point, which is placed on the skeleton curve. Then it continues 

following the skeleton curve until the attainment Bi point, that represents the current 

dmax. At this point, Z is updated, so that the current Ai point, and the exact negative 

loading branch of the hysteresis loop can be calculated. This means that 

asymmetrical cycles are obtained. The unloading phase flows the rules described in 

the previous paragraph. 
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Fig. 4.5 Asymmetrical cycles. 

4.4 Experimental Shear Compression Tests and Modelling 

Calibration of the hysteretic model was carried out on the basis of cyclic shear 

compression tests. In the next paragraphs the results obtained for reinforced and 

strengthened masonry are presented, in terms of comparison between experimental 

and modelled hysteretic cycles and also ratio between dissipated and input energy. 

4.4.1 Reinforced Masonry 

Fig. 4.6 and Fig. 4.7 show the comparison between the experimental data and 

the modelled hysteretic loops. As can be seen, there is fair good agreement for both 

failure modes, namely shear or combined shear/flexural failure for specimens “a” 

and flexural failure for specimens “b”. From the comparison between experimental 

and modelled values of the ratio between dissipated and input energy (Fig. 4.8 and 

Fig. 4.9), it is possible to distinguish a difference in trend. Indeed, experimental data 

shows a “U” trend, with high values at firsts cycles, the minimum between dCR and 

dHmax and then an increasing trend until maximum displacement. On the contrary, 

the model energy ratio has an always increasing trend and, in particular, the first 

descending branch for displacements smaller than dCR is absent. However, the 

average value of several relative differences at each cycle is lower than 10 % for 

each specimen. 
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Fig. 4.6 Comparison between experimental and modelled cyclic shear compression 

tests. Squat specimens tested under 0.4 N/mm
2
 (above) and 0.6 N/mm

2
 (below) vertical 

compression. 

 

  

  

Fig. 4.7 Comparison between experimental and modelled cyclic shear compression 

tests. Slender specimens tested under 0.4 N/mm
2
 (above) and 0.6 N/mm

2
 (below) 

vertical compression. 
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Fig. 4.8 Ratio between dissipated and input energy. Comparison between experimental 

and modelled values. Squat specimens tested under 0.4 N/mm
2
 (above) and 0.6 N/mm

2
 

(below) vertical compression. 

 

  

  

Fig. 4.9 Ratio between dissipated and input energy. Comparison between experimental 

and modelled values. Slender specimens tested under 0.4 N/mm
2
 (above) and 0.6 

N/mm
2
 (below) vertical compression. 
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Squat walls C1 COV C1 C2 COV C2 

SRSa 0.4 0.402 12.5 % 0.836 8.3 % 

TRSa 0.4 0.398 14.0 % 0.904 6.7 % 

SRSa 0.6 0.424 6.0 % 0.846 4.1 % 

TRSa 0.6 0.466 7.0 % 0.892 7.5 % 

mean 0.422 9.9 % 0.869 6.6 % 

Slender walls C1 COV C1 C2 COV C2 

SRSb 0.4 0.311 20.2 % 0.852 6.6% 

TRSb 0.4 0.311 22.4 % 0.803 8.0 % 

SRSb 0.6 0.391 17.5 % 0.922 2.7 % 

TRSb 0.6 0.396 10.8 % 0.950 2.0 % 

Mean 0.352 17.7 % 0.882 4.8 % 

Table 4.1 Hysteretic model coefficients C1 and C2 for Reinforced Masonry. 

4.4.2 Strengthened Masonry 

The same calibration described in the previous paragraph was repeated for 

strengthened masonry. For this type of masonry, three limit states have been 

identified, i.e. cracking limit, maximum resistance and maximum displacement. The 

developed model takes into account also a fourth LS, i.e. flexural limit, for the 

definition of idealized envelope curve. Hence, the experimental results have been 

analysed using the criterion of variation of tangent stiffness in order to identify this 

limit. In this way, it has been possible modelling the cycles before cracking limit,  

which would been neglected using three LS, as shown in Fig. 4.10. The obtained 

LS, used in the modelling, are listed in Table 4.2. 

For this type of masonry, the equivalence of energies for determination of 

coefficients C1 and C2 led to constant values independently of amplitude of cycles. 

This can be noticed observing the low values of COV reported in Table 4.3. So the 

parameter Z was set to one for this modelling. 

 

  

Fig. 4.10 Comparison between three and four limit states idealization of hysteresis 

envelope curve. Squat specimens tested under 2.0 N/mm
2
 (left) and slender specimen 

tested under 1.0 N/mm
2
 (right) vertical compression. 
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Fig. 4.11 and Fig. 4.12 show a comparison between experimental and modelled 

cyclic tests, whereas Fig. 4.13 and Fig. 4.14 show the comparison in terms of ratio 

between dissipated and input energy. As well as for reinforced masonry, there is a 

difference in trend between experimental values and model. “U” trend, with a 

descending branch followed by an ascending one, characterizes the experimental, 

whereas the model has an always increasing trend. In any case, the differences is 

very small, generally lower than 5 %. In addition, it can be noticed that beyond dCR, 

experimental and modelled energetic ratio are almost superimposed. 

 

 Flexural limit Cracking limit Max. Resist. Max. Displ. 

Specimen 
δf Hf δcr Hcr δHmax Hmax δmax Hδmax 

mm kN mm kN mm kN mm kN 

R2 0.90 132 2.40 170 5.09 187 11.76 147 

S2 0.72 142 1.94 217 5.08 256 9.60 225 

R4 1.78 63 4.72 75 14.59 80 24.67 75 

S4 1.03 50 3.99 78 11.33 88 20.92 78 

R5 1.24 77 3.59 108 6.58 121 11.09 97 

S5 1.06 67 3.12 102 7.32 121 9.81 108 

Table 4.2 Limit states obtained with tangent stiffness criteria. 

 

Squat walls C1 COV C1 C2 COV C2 

R2 1.0 0.698 1.5 % 0.821 0.6 % 

S2 2.0 0.482 14.1 % 0.623 6.7 % 

Mean 0.590 7.8 % 0.722 3.6 % 

Slender walls C1 COV C1 C2 COV C2 

R4 1.0 0.663 15.0 % 0.879 6.2 % 

S4 1.0 0.480 11.8 % 0.816 3.2 % 

R5 2.0 0.549 11.8 % 0.695 11.3 % 

S5 2.0 0.546 1.8 % 0.696 9.0 % 

Mean 0.560 10.1 % 0.772 7.4 % 

Table 4.3 Hysteretic model coefficients C1 and C2 for Strengthened Masonry. 

 

  

Fig. 4.11 Comparison between experimental and modelled cyclic shear compression 

tests. Squat specimens tested under 1 N/mm
2
 (left) and 2 N/mm

2
 (right) vertical 

compression. 
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Fig. 4.12 Comparison between experimental and modelled cyclic shear compression 

tests. Slender specimens tested under 1 N/mm
2
 (above) and 2 N/mm

2
 (below) vertical 

compression. 

 

 

  

Fig. 4.13 Ratio between input and dissipated energy. Comparison between experimental 

and modelled values. Squat specimens tested under 1 N/mm
2
 (left) and 2 N/mm

2
 (right) 

vertical compression. 
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Fig. 4.14 Ratio between input and dissipated energy. Comparison between experimental 

and modelled values. Slender specimens tested under 1 N/mm
2
 (above) and 2 N/mm

2
 

(below) vertical compression. 

4.5 Implementation of Model 

The model was implemented in MATLAB environment, in order to carry out non-

linear time-histories (NLTH) analyses. The greater difficult in this phase was to 

predict every situation that can arise during a dynamic analysis, and provide the 

model with precise rules so that it behaves properly. 

An important feature is that regarding the stiffness of the section D-A (KD-A). This 

stiffness cannot be defined implicitly as the secant to points D and A, as above 

described. Indeed, for casual cycle amplitudes, the monotone degradation is not 

ensured. Therefore, when the slope of the section D-A is lower than the current KD-

A, the latter is updated according to the D-A secant. Thus, the system passes 

through point A. Otherwise, beyond point D, the system moves with the current 

stiffness KD-A until it reaches the strength HA, defining point E. After point E, KA-B is 

used. 
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Fig. 4.15 Stiffness of branch D-A and definition of point E.. 

 

4.5.1 Re-loading Rules 

The possibility of un-loading considered until now occurs in the section A-B, but 

this is merely one of the possible conditions. Indeed, during a dynamic analysis, the 

direction of displacement may change at any time. It is therefore possible to 

distinguish other two cases: displacement inversion in sections B-C or C-D (Fig. 

4.16 on the left) and displacement inversion in the section D-A (Fig. 4.16 on the 

right). 

 

 

Fig. 4.16 Re-loading conditions. 
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In the first case, the system simply changes its direction, and starts reloading 

with stiffness KA-B. On the contrary, in the second case, the cycle opens, according 

to parameter Z, coefficient C2 and amplitude Δ. This amplitude represent the 

difference between load levels HA and the point at which displacement inversion 

occurs (Fig. 4.16). Reloading in section D-A is characterised by a first branch, B-C, 

with stiffness KB-C, and a second branch C-E with stiffness KD-A. After point E, the 

system moves with KA-B stiffness. In this way, there are no discontinuities of 

behaviour due to the random position of reloading. Indeed, if we consider a re-

loading point in the D-A branch, the nearer the system is to point D, the more elastic 

its behaviour is, as it would occurs if re-loading point was before point D. 

Conversely, the nearer the system is to point A, the more similar its behaviour is to 

the response that it would has if it overcame point A. This means that nearer the re-

loading point is to point A, the larger cycle width is, because this is proportional to 

amplitude Δ, that is maximum when re-loading point corresponds to point A, (Δ = 

2∙HA), and minimum when re-loading point corresponds to point D, (Δ = 0). 

 

  

Fig. 4.17 Results of NLTH analyses: Force-Displacement graphs. Shear (left) and 

flexural (right) behaviour under the same Time History at 0.35 g. 

 

The last phase of the implementation was the debugging. In order to solve every 

kind of numerical instability, a large number of NLTH analyses were carried out, 

using several time histories at different levels of Peak Ground Acceleration (PGA). 

Fig. 4.17 shows the results of two analyses utilizing the same time history at the 

same PGA, for the specimens Sa06 and Sb04, representative of shear and flexural 

behaviour respectively. 
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4.6 Conclusive Remarks 

In this chapter the development of an hysteretic model has been described. This 

model is enough accurate in modelling the actual behaviour for both failure modes 

of RM and, with a little variation, also for SM. In particular it can be highlighted that:  

 The relative error between modelled and experimental input or dissipated 

energy is in average lower than 10% and 15%, respectively.  

 The model has been implemented in Matlab environment, in order to carry 

out dynamic analyses. For what concerns the integration of equation of motion, it 

was used the Newmark constant average acceleration scheme.  

 The model was then tested, performing a large number of analyses using 

several time histories, in order to highlight and debug eventual instability until it 

has proven to be robust and capable of performing non-linear analyses with very 

low computational effort. 
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5 NON-LINEAR DYNAMIC ANALYSES OF SINGLE DEGREE OF 

FREEDOM MASONRY STRUCTURES 

5.1 Introduction 

In this chapter a procedure for the determination of equivalent viscous damping 

(ξeq) is presented. This procedure can be divided in two phases: in the first phase 

nonlinear time history (NLTH) analyses are carried out using the hysteretic model 

described in previous chapter. NLTH analyses makes use of synthetic time 

histories. In the second phase, through an equivalent elastic system, ξeq is defined. 

The procedure has been applied to both modern reinforced masonry and injected 

stone masonry walls described in chapter 3. 

5.2 Procedure 

The scope of the procedure is to determine the value of viscous damping that 

has to be applied to an equivalent linear system in order to obtain the same 

response of the inelastic system. This equivalence is done in terms of peak 

displacement. For each time history considered, the following steps are performed: 

1. Definition of target displacements.  

Hysteretic model considers the system response as elastic until the 

achievement of first limit state. Hence, target displacements are placed from 

first limit state until the ultimate displacement capacity. n equal-spaced points 

subdivide the non-linear part of envelope curve (it was chosen n = 7). 

2. Search of PGA multiplier factor. 

For each target displacement, NLTH analyses using the 10 synthetic time 

histories are carried out. Elastic damping is taken close to zero. These 

analyses are repeated scaling the TH using a multiplier factor of PGA until 

the maximum displacement achieved by NLTH is equal to target 

displacement within a specified tolerance. It is a iterative procedure and at 

each iteration the PGA is updated from previous one taking into account the 

difference between the actual maximum and the target displacement. 

3. Determination of secant stiffness and effective period. 
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When target displacement is achieved, we know the multiplier factor of PGA 

to achieve it. Thus the corresponding secant stiffness can be calculated by 

the point on the envelope curve at target displacement. Knowing the secant 

stiffness, it is easy to obtain the effective period: 

        √
 

  
  (Eq. 5.1) 

 

4. Definition of Equivalent Linear System. 

The linear elastic equivalent system is defined through effective period (or the 

corresponding secant stiffness) given from previous step and from elastic 

component of damping equal to that used in point 2. On this system, a TH 

analysis is carried out using scaled PGA in point 2. Maximum displacement 

obtained from this analysis represents the linear response of equivalent 

system for the considered elastic damping. 

5. Search of Equivalent Viscous Damping. 

Equivalent viscous damping (ξeq) is the value of damping which makes equal 

the displacement of the equivalent linear system and the target displacement. 

Hence, for each iteration, linear elastic analysis is repeated varying the 

damping value on the basis of the difference between the obtained and the 

target displacements. 

 

NLTH analyses were carried out using the Newmark constant average 

acceleration integration scheme. Elastic damping coefficient used in point 2 of the 

procedure is close to zero because the aim is finding the damping component due 

to hysteretic dissipation. To avoid numerical problems, the starting value of elastic 

damping was set at a very low value, but zero. It was chosen a conventional value 

of 0.5% (one tenth of usual elastic damping component). The tolerance imposed in 

NLTH analyses to find the PGA was set to 2% of target displacement, while for 

linear elastic analyses it was set to 1%. 

5.3 Seismic Input Used in the Analyses 

Dynamic analyses were carried out on 10 synthetic time-histories composed of 

2048 points taken at a sampling frequency of 100 Hz. The time-histories were 

created in MATLAB™, and are compatible with the type 1 spectra of (EN 1998-1, 



5. Non-Linear Dynamic Analyses of SDOF Masonry Structures 

75 

2004) with a lower bound and upper bound of 10% of deviation between generated 

and code-prescribed spectra in the period range from 0.10 to 2.00 s. In Fig. 5.1 the 

elastic response spectra recommended by code are reported, their Peak Ground 

Acceleration (PGA) is normalized to ag. 

Definition of the response spectra varies according to the different types of soils. 

The main five soil categories are: A, rock or other rock-like geological formation; B, 

very dense sand, gravel, or very stiff clay; C, medium-dense sand, gravel or 

medium stiff clay; D, loose-to-medium cohesionless soil or predominantly soft-to-

firm cohesive soil; E, soil profile consisting of a surface alluvium layer. 

The analyses were repeated for the two limit soil groups, i.e. soil A and soil D. 

Despite soil E has a peak spectral acceleration higher than soil D, the latter shows 

a larger plateau, that means a bigger seismic demand at medium-high periods. 

Hence, the effective response in the non-linear range determine an increase of 

effective periods, that are often beyond the TC of soil E (i.e. 0.5 s). To characterize 

the whole response until the ultimate capacity, soil D spectra appear to be more 

severe. 

Fig. 5.2 and Fig. 5.3 show the spectrum-compatibility between mean value of 10 

time-histories normalized to ag and the corresponding code spectra for the two 

types of soil: A (rock soil) and D (soft soil), in the period range 0.10-2.0 s. Out of this 

range, time-histories spectra diverge from code spectra. This is more evident in 

displacement response spectra, as can be seen in Fig. 5.3. Anyway, this does not 

affect the analyses, as the periods range of interest, as will be show in the following 

paragraphs, is included between 0.1 and 1.0 s. 

 

  

Fig. 5.1 Eurocode 8 recommended elastic response acceleration (left) and displacement 

(right) spectra. 
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 EC8 Spectra 

Upper and lower bounds 

 Spectra i-th time-history 

Mean Spectra 10 time-history 

Fig. 5.2 Elastic response spectra of the utilized time-histories and code recommended 

acceleration spectra for soil A (left) and D (right). 

 

  
 EC8 Spectra 

Upper and lower bounds 

 Spectra i-th time-history 

Mean Spectra 10 time-history 

Fig. 5.3 Elastic response spectra of the utilized time-histories and code recommended 

displacement spectra for soil A (left) and D (right). 

 

5.4 Results of the Analyses 

In this section, results of the described procedure are presented. For each 

modelled specimen (8 for RM system and 6 for SM system), the procedure was 

repeated for each target displacement (7) and for each time history (10) generated 

for both ground type considered (A and D), giving a total number of 1960 runs. The 

obtained values of ξeq are related to drift ratio, instead of displacement, to achieve 

results that are independent from the specimens dimensions. Furthermore, other 

two important results are obtained applying this procedure: the first is the ratio 

between elastic and inelastic displacements. The second is the relationship 

between the displacements ratio and ξeq. 
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5.4.1 Reinforced Masonry (RM) 

5.4.1.1 Equivalent Viscous Damping 

In Fig. 5.4 and Fig. 5.5 the results of this procedure for reinforced masonry 

system are presented, divided for soil type. Each line in the figures represents one 

experimental wall. Each of the seven dots composing the line is the mean value of 

the results obtained using 10 time histories, at the corresponding target 

displacement. It can be seen that, obviously, damping is almost zero at the elastic 

limit (not zero because elastic component was set to 0.5%) and, in general, it shows 

a logarithmic trend with increasing target displacements. It can be noticed how, at 

the same drift level, shear behaviour of walls (red and orange curves) involves 

higher values of damping compared to flexural behaviour (blue and light blue 

curves). When shear failure occurs damping shows a sudden increase, after 

displacement at maximum strength (drift 0.7÷1.0%). It increases by about 50%, 

going from values around 10% to value around 15%. 

In Fig. 5.5 the same results are showed, but displacements are a-

dimensionalised to the second limit state (dcr). This limit was chosen as it is 

representative of damage state in relation with failure mode. Indeed, as reported in 

Table 3.5, the drift level at critical LS is around 0.30% for shear behaviour, whereas 

it is about twice this value for flexural behaviour (0.53÷0.7%). It can be noted that 

damping curves, plotted against this displacement ratio (DR), tend to be 

superimposed, for both failure modes and both soil types considered. 

Regarding period shift, as reported in Table 5.1, it can be said that, for shear 

walls, effective period ranges from 0.10 s at elastic limit until about 0.30 s at 

ultimate displacement capacity. For flexural walls, indeed, this range is between 

0.15 and 0.65 s. Taking into account the recommended spectra for ground types A 

and D, the period shift for all walls is included in the plateau (TB < Teff < TC) with the 

exception of flexural walls on soil A (TC = 0.4 s). This explains why obtained curves 

for soil A and flexural behaviour (blue and light blue), tend to stabilize around 12% 

for Displacement Ratios bigger than 2. On the contrary for soil D, whose spectrum 

is characterized by a wider plateau (TC = 0.8 s), an always increasing trend, until 

values of about 20%, can be noted. 
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Fig. 5.4 Equivalent Viscous Damping versus Drift. 

Experimental RM walls on soil type A (above)and type D (below). 

 

Squat walls TEL (s) TU (s) 

SRSa 0.4 0.11 0.29 

TRSa 0.4 0.10 0.27 

SRSa 0.6 0.12 0.29 

TRSa 0.6 0.13 0.27 

mean 0.12 0.28 

Slender walls TEL (s) TU (s) 

SRSb 0.4 0.15 0.61 

TRSb 0.4 0.16 0.68 

SRSb 0.6 0.15 0.56 

TRSb 0.6 0.17 0.66 

Mean 0.16 0.63 

Table 5.1 Period Shift for Reinforced Masonry 
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Fig. 5.5 Equivalent Viscous Damping versus Displacement Ratio. 

Experimental RM walls on soil type A (above)and type D (below). 

 

5.4.1.2 Relationship between Elastic and Inelastic displacements 

Fig. 5.6 and Fig. 5.7 show the ratio between elastic and inelastic displacements 

(dIN). The latter are the target displacements, or more precisely, the displacements 

obtained during step 2 of the procedure. Elastic displacements (dEL) were computed 

utilizing the Equivalent Linear System obtained in step 3 of procedure, and 

considering an elastic damping set to 5%. This value of damping was chosen as it 

is the value of elastic damping that normally is considered in the codes ((DM 

14/01/2008, 2008) and (EN 1998-1, 2004)) for the definition of elastic spectra. This 

means that dEL represents the actual spectra ordinate for the considered time-

history and effective period. Since the used time histories are spectrum compatible, 

as shown in Fig. 5.3, the ratio between elastic and inelastic displacement can be 
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considered as the relationship between elastic displacement spectrum and actual 

displacement response of masonry walls. 

If we do not consider the values obtained at first target displacement, elastic 

displacement is always greater than inelastic, so their ratio is bigger than 1. The 

reason of this is that elastic displacement is computed considering the damping 

constant and equal to 5%. But observing the obtained damping curves, it is possible 

to notice that damping is always greater than 5%, with the exception of the values 

obtained at the first target displacement. Hence, generally in the elastic analyses 

the value of damping is underestimated, and this is the reason why elastic 

displacement is greater than inelastic. So their ratio (dEL/dIN) is bigger than one. For 

this reason the axes scales in Fig. 5.6 and Fig. 5.7 are not the same. More 

precisely, the grid of Y axis is twice that of X axis. This means that the bisector of 

these graph represents a constant ratio between elastic and inelastic displacement, 

equal to 2. 

In the figures, the results obtained for the ground type A are pointed with a 

circular indicator, whereas the obtained results for ground type D are pointed with a 

triangular indicator. The trend of ratio between dEL and dIN is ascending, but not 

really constant. A good approximation can be obtained considering the type of 

power function expressed by (Eq. 5.2). The latter was used to determine the best 

regression functions using the least squares fitting technique. In Fig. 5.6 and Fig. 

5.7 these functions are shown, using continuous line for A soil and dashed line for D 

soil. 

          
  (Eq. 5.2) 

It can be noticed that, for shear behaviour, there are not sensitive differences 

between the results obtained for the two types of considered soil. Indeed, the 

regression curves for each panel are almost superimposed. On the contrary, for 

flexural behaviour, it can be noticed that the two curves are initially superimposed, 

but they start to diverge for increasing displacements. In this case, curves for soil D 

are above those obtained for soil A. This phenomenon is more evident for panels of 

series T (horizontal reinforcement made by prefabricated steel trusses). 
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Fig. 5.6 Elastic displacement versus Inelastic displacement. Squat specimens with pre-

load corresponding to 0.4 N/mm
2
 (above) and 0.6 N/mm

2
 (below). 

 

  

  

Fig. 5.7 Elastic displacement versus Inelastic displacement. Slender specimens with pre-

load corresponding to 0.4 N/mm
2
 (above) and 0.6 N/mm

2
 (below). 
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Squat walls β Soil A γ Soil A R
2
 β Soil D γ Soil D R

2
 

SRSa 0.4 0.835 1.203 0.974 0.864 1.176 0.975 

TRSa 0.4 0.755 1.238 0.985 0.764 1.232 0.983 

SRSa 0.6 0.809 1.226 0.975 0.802 1.212 0.975 

TRSa 0.6 0.701 1.286 0.972 0.741 1.250 0.976 

mean 0.775 1.238  0.793 1.218  

Slender walls β Soil A γ Soil A R
2
 β Soil D γ Soil D R

2
 

SRSb 0.4 0.791 1.185 0.983 0.611 1.280 0.988 

TRSb 0.4 0.945 1.127 0.975 0.451 1.337 0.991 

SRSb 0.6 0.776 1.218 0.988 0.781 1.223 0.978 

TRSb 0.6 0.814 1.153 0.973 0.545 1.315 0.977 

Mean 0.832 1.171  0.597 1.289  

Table 5.2 Regression functions for ratio between dEL and dIN: β and γ 

coefficients and coefficient of determination R
2
. 

 

Values of obtained regression functions are reported in Table 5.2. The chosen 

power function is able to approximate very well the trend of ratio between dEL and 

dIN. Indeed the values of coefficient of determination R
2
 are very high, all of them 

are greater than 0.97. A more detailed discussion and analyses of these results will 

be present in the next chapter. 

5.4.1.3 Damping Correction Factor 

Another important issue of this research is to study the relationship between 

ratio dEL/dIN and damping. Indeed, for each point of graphs in Fig. 5.6 and Fig. 5.7 it 

is possible to associate a value of damping. The ratio between dIN and dEL is usually 

defined as Damping Correction Factor (η). Many authors propose to express this 

factor as function of Equivalent Viscous Damping (ξeq), using expression like: 

  √
     

     
 (Eq. 5.3) 

where α is a coefficient, ξEL is conventional damping considered in elastic response 

spectra (i.e. 5%) and ξEQ is Equivalent Viscous Damping. In (EN 1998-1, 2004) and 

(DM 14/01/2008, 2008) the value of coefficient α is set to 5. Fig. 5.8 and Fig. 5.9 

show the obtained relationship between η factor and ξeq. It has been used the same 

convention used in the previous graphs, regarding the soil types. Furthermore, the 

function expressed by (Eq. 5.3), considering α equal to 5, is indicated in dashed 

line. 

It seems there is no significant difference between soil A and D. Indeed circular 

and triangular indicators are almost superimposed. Furthermore, as can be noticed 

in Fig. 5.8 and Fig. 5.9, there is a good correlation between the obtained results and 
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code proposed function, but probably it is possible to better calibrate coefficient α 

using the least squares method. Indeed, as reported in Table 5.3, the values of 

Coefficient of Determination obtained utilizing α equal to 5 are very low, all lower 

than 0.73. 

 

  

  

Fig. 5.8 Damping Correction Factor versus Equivalent Viscous Damping. Squat 

specimens with pre-load corresponding to 0.4 N/mm
2
 (above) and 0.6 N/mm

2
 (below). 

 

Specimen R
2
 – Soil A R

2
 – Soil D 

SRSa 0.4 0.201 0.437 

TRSa 0.4 0.566 0.676 

SRSa 0.6 0.587 0.681 

TRSa 0.6 0.716 0.726 

SRSb 0.4 0.039 0.504 

TRSb 0.4 -0.256 0.553 

SRSb 0.6 0.168 0.472 

TRSb 0.6 0.278 0.684 

Table 5.3 Coefficient of determination for 

Damping Correction Factor using α = 5. 
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Fig. 5.9 Damping Correction Factor versus Equivalent Viscous Damping. Slender 

specimens with pre-load corresponding to 0.4 N/mm
2
 (above) and 0.6 N/mm

2
 (below). 

5.4.2 Injected Stone Masonry (SM) 

5.4.2.1 Equivalent Viscous Damping 

In Fig. 5.10 and Fig. 5.11 the results of the procedure for strengthened masonry 

walls are presented, divided for soil type. Squat specimens are represented with 

continuous lines and square indicators, whereas slender specimens are 

represented with dashed lines and triangular indicators. Furthermore, panels tested 

under 2.0 N/mm
2
 are indicated in red and blue, whereas panels tested under 1.0 

N/mm
2
 are indicated in orange and light blue. It can be noticed that panels in same 

condition (pre-load and aspect ratio) give very similar results. 
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Fig. 5.10 Equivalent Viscous Damping versus Drift curves. 

Experimental SM walls under soil type A (above) type D (below). 

 

The obtained damping values are very high, probably due to high vertical pre-

load applied. Indeed, to force shear behaviour, it has been applied a vertical stress 

equal to 15% and 30% of compressive strength. However, it is possible to say that 

squat specimens show higher values, about 25% for both soil types. Slender 

specimens, instead, show similar values for soil D (about 20-25%), whereas for soil 

A lower values have been obtained (about 17%). 

The same results, but adimensioning the displacement respect to second limit 

state (dcr), are shown in Fig. 5.11. It can be noticed that in this way the curves are 

closer to each other, especially in the first phase. 
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Regarding the period shift (Table 5.4), it is possible to say that all panels remain 

in the plateau of spectra, with the exception of slender panels on soil A. These 

panels attain constant values of damping on soil A, whereas on soil D, as other 

panels on both soils, show always ascending values. 

 

 

 

Fig. 5.11 Equivalent Viscous Damping versus Displacement Ratio curves. 

Experimental SM walls under soil type A (above) type D (below). 

 

 

 

Squat walls TEL (s) TU (s) 

R2 1.0 0.11 0.39 

S2 2.0 0.14 0.40 

mean 0.13 0.40 
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Slender walls TEL (s) TU (s) 

R4 1.0 0.18 0.63 

S4 1.0 0.16 0.57 

R5 2.0 0.20 0.53 

S5 2.0 0.20 0.48 

Mean 0.18 0.55 

Table 5.4 Period Shift for Strengthened Masonry 

5.4.2.2 Relationship between Elastic and Inelastic displacement 

Fig. 5.12 and Fig. 5.13 show the ratio between elastic and inelastic 

displacement. The relationship between dEL and dIN, for this type of masonry, seems 

to be very similar to already observed for reinforced masonry. So, the 

considerations explained in § 5.4.1.2, regarding the grid’s axes, are still valid. In 

addition, it has been used again the function type expressed by (Eq. 5.2) for the 

regression analyses. 

For squat specimen tested under 1.0 N/mm
2
 of pre-load, the obtained regression 

curves are almost superimposed. For specimen tested under 2.0 N/mm
2
 of pre-

load, the curves diverge. In this case, curve for soil A is above that obtained for soil 

D. 

For slender specimens different results have been obtained. Indeed, at high 

level of pre-load, the regression curves for both soils are almost superimposed. On 

the contrary, at low level of pre-load, they diverge. In this case, as for reinforced 

masonry, curves for soil D are above the one’s obtained for soil A. 

Values of obtained regression functions are reported in Table 5.5. Also in this 

case, the chosen power function is able to approximate very well the trend of ratio 

between dEL and dIN. Indeed the values of coefficient of determination R
2
 are very 

high, all of them are greater than 0.95. 

 

  

Fig. 5.12 Elastic displacement versus Inelastic displacement. Squat specimens with pre-

load corresponding to 1.0 N/mm
2
 (left) and 2.0 N/mm

2
 (right). 
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Fig. 5.13 Elastic displacement versus Inelastic displacement. Slender specimens with 

pre-load corresponding to 1.0 N/mm
2
 (above) and 2.0 N/mm

2
 (below). 

 

Squat walls β Soil A γ Soil A R
2
 β Soil D γ Soil D R

2
 

R2 1.0 0.907 1.400 0.984 0.902 1.381 0.978 

S2 2.0 0.966 1.363 0.986 1.034 1.260 0.983 

mean 0.937 1.382  0.968 1.321  

Slender walls β Soil A γ Soil A R
2
 β Soil D γ Soil D R

2
 

R4 1.0 1.279 1.084 0.955 0.689 1.359 0.982 

S4 1.0 1.102 1.143 0.972 0.817 1.292 0.989 

R5 2.0 0.945 1.293 0.987 0.707 1.453 0.984 

S5 2.0 1.024 1.260 0.981 0.864 1.341 0.980 

Mean 1.088 1.195  0.769 1.361  

Table 5.5 Regression functions for ratio between dEL and dIN: β and γ 

coefficients and coefficient of determination R
2
. 

 

5.4.2.3 Damping Correction Factor 

In Fig. 5.14 and Fig. 5.15 the relationship between Damping Correction Factor 

and ξeq are shown. In these graphs, as already done for RM, the code 

recommended formulation for η is plotted. It can be say that there are little 

differences between effective η for soil A and soil D. More precisely, results for soil 

A (circular indicators) are lightly lower respect to those obtained for soil D (triangular 

indicators). In any case, for both soils, the majority of effective η are below code 

recommended values, that means that Damping Correction Factor is overestimated. 
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The poor ability of code recommended formulation to approximate the effective η 

can be seen also in Table 5.6. In this table the values of R
2
 obtained using α equal 

to 5 are showed. As can be seen, very low values have been obtained, all lower 

than 0.6. For soil A and slender walls, even negative values have been gained. 

Since the trend of effective η seems to be well correlated with the function 

expressed by (Eq. 5.3), a calibration of coefficient α can give a reliable estimation of 

Damping Correction Factor. 

 

  

Fig. 5.14 Damping Correction Factor versus Equivalent Viscous Damping. Squat 

specimens with pre-load corresponding to 1.0 N/mm
2
 (left) and 2.0 N/mm

2
 (right). 

 

  

  

Fig. 5.15 Damping Correction Factor versus Equivalent Viscous Damping. Slender 

specimens with pre-load corresponding to 1.0 N/mm
2
 (above) and 2.0 N/mm

2
 (below). 
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Specimen R
2
 – Soil A R

2
 – Soil D 

R2 1.0 0.201 0.591 

S2 2.0 0.008 0.318 

R4 1.0 -0.872 0.332 

S4 1.0 -0.786 0.379 

R5 2.0 -0.695 0.558 

S5 2.0 -0.292 0.587 

Table 5.6 Coefficient of determination for 

Damping Correction Factor using α = 5. 

5.5 Sensitivity Analysis 

5.5.1 Motivations of the Sensitivity Analysis 

The model used in the procedure is described in the chapter 4. The input data 

for the model are the four limit states, C1 and C2 coefficients and the equivalent 

mass m*. The latter is obtained by (Eq. 5.4), where σ0 is the vertical stress, b and t 

are the base dimensions and g is the gravity acceleration. This means that m* 

represents the mass that should be applied to a panel with the same dimensions in 

order to obtain a vertical stress equal to σ0. Several sets of these parameters are 

considered, one for each experimental test. So the procedure can be applied to 

models that represent the same conditions (geometry and pre-load) at which shear-

compression tests have been performed. 

   
  

       ⁄  (Eq. 5.4) 

 

The four LS are determined as described in §3.2.3 and m* is directly obtained 

starting from geometric dimensions of walls and pre-load level applied. So these 

values can be considered as exact, i.e., they can be exactly evaluated for a wall 

once the geometry is known and idealized envelope of its in-plane behaviour is 

given. Two coefficients C1 and C2 (C coefficients), instead, are calculated by 

imposing the equality of the input energy and the dissipated energy between 

experimental and modelled loops. This equality is imposed for each cycle, so, for 

each panel, one couple of coefficients is obtained for each cycle. As described in 

§4.3.1, the use of parameter Z enables to obtain almost constant values of 

coefficients C for the several cycles. Hence, it is reasonable to consider that the 

model could use the average of these values in the analyses, without sensitive loss 

of quality in the simulation of hysteretic behaviour. 
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It is important to point out that, given the quadri-linear envelope curve, the 

quality of modelling is strictly related to the values of these coefficients, on which 

the quantity of input and, specially, dissipated energy depends. In Table 4.1 the 

values of C coefficients and their coefficients of variation are reported. As can be 

seen, the values of COVs are generally low, but not zero. Since hysteretic damping 

depends on the energy dissipated by the structure, and energy is defined by means 

of C1 and C2, it is clear that the use of approximate values for these coefficients, 

introduces an error on the estimation of damping. From these considerations, the 

importance of performing a sensitivity analysis, in order to assess how much the 

variation of C coefficients influences the values of damping obtained from the 

procedure has arisen. 

5.5.2 Methodology and Results 

In general, COV for C1 varies between 5% and 20%, whereas for C2 this range 

is included between 2% and 10% (Table 4.1). The mean value of COV for C1 is 

14% and for C2 is 6%. Hence, it can be said that the variation of C1 is about twice 

compared to that of C2. For this reason, it has been chosen to consider the 

following ranges of variability: ±10% with step 5% and ±5% with step 2.5%, for C1 

and C2 respectively. In such a way, the total number of combinations is 25. The 

influence of the variability of C coefficients on the damping can be different when 

considering the different failure modes and soil types. So, it has been chosen to 

repeat the sensitivity analysis for two panels, one for each failure mode, and for two 

ground types. The chosen panels are Sa06 and Tb06, representative of shear and 

flexural behaviour respectively. 

The results of the analysis show that: 

 The values of damping related to first target displacement (dt, described in 

§5.2 ) are not affected by the variability of C coefficients. This is reasonable, 

since the first dt is placed just beyond elastic limit. In the elastic phase, there 

is no energy dissipation by hysteresis, so the value of damping obtained at 

the first dt is in any case close to the elastic component (set to 0.5%), 

independently by the variability of the coefficients. 

 The values of damping related to second target displacement are the most 

affected by the variability of C coefficients. It is important to point out that this 

dt is always placed between the first two LSs, i.e. flexural and critical limit 

states. The unloading phase between these LSs is characterized by a quite 

high stiffness, close to the elastic one. This means that the opening of 

hysteretic cycles is not so wide. So, the amount of dissipated energy is 

relatively small, and strongly affected by the values of C coefficients. 
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 From the third target displacement, the sensitivity of damping, related to the 

variability of C coefficients, starts decreasing with the increase of target 

displacements. So, the greater is the dt, the lower is the variability. 

 

Fig. 5.16 shows the obtained results, at the third dt, for the panels characterized 

by shear and flexural failure on A and D type soils. The results are expressed in 

terms of relative difference of damping values obtained using several variations 

of C coefficients. In general, damping decreases with the increase of C2 

coefficient, and increases with the increase of C1 coefficient. No significant 

differences can be noticed between the two soil types. The flexural failure mode 

shows greater sensitivity to variability of C coefficients, than the shear failure. 

 

  

  

Fig. 5.16 Sensitivity of damping, express as relative difference, versus coefficients C 

variability. Shear failure (above) and flexural failure (below) on soil type A (left) and D 

(right). 

 

In order to quantify the sensitivity of damping, a linearization of results has been 

performed. More precisely, for each coefficient, a linear regression of the results 

has been done, considering the other coefficient as a constant. Furthermore, the 

variability of each coefficient has been divided in two parts: from zero to negative 

limit, and from zero to positive limit. The results of this analysis are shown in Table 

5.7 and Table 5.8, for shear and flexural failure respectively. The values obtained at 

the first two target displacements for the shear panel and considering a positive 
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variation of coefficient C1 are not taken into account. Indeed, in general the value of 

coefficient C1 is less than ratio between H1 and Hmax, so point A is placed in the first 

branch of quadri-linear envelope curve (Fig. 4.3). On the contrary, for this panel, the 

value of C1 is slightly greater than ratio H1/Hmax, and this means that point A is 

initially placed in the second branch of envelope curve. In any case, during a 

dynamic analysis, the parameter Z reduces the ordinate of point A for increasing 

displacements (Eq. 4.5). However, for little displacements, parameter Z is set to 

one, that means that it does not affects the determination of point A. Considering, at 

the first target displacements, a variation of +10% for C1 coefficient, imply the 

positioning of point A in the second branch of envelope curve. This fact provides 

disagreeing results, compared with the others, and so they cannot be considered 

reliable. 

It can be noticed that, considering C1 as a constant, a variation of -5% of C2 

coefficient involves a difference of about 6% and 12% of the values of damping, for 

shear and flexural failure modes respectively. The opposite variation (+5%) of the 

same coefficient involves more or less the opposite differences in terms of damping, 

namely -7% and -20%. On the other hand, considering C2 as constant, a variation 

of -10% of C1 coefficient involves a difference of about -2.5% (shear) and -6% 

(flexural) on the values of damping. The opposite variation (+10%) of the same 

coefficient produces a difference, in terms of damping value, of about +2% (shear) 

and +7% (flexural). 

These values of relative difference can appear to be too high, but it is important 

to point out that, for each damping curve, the first and the last values of damping 

are the less affected by the variability of C coefficients. Hence, the initial value 

(close to elastic component) and the final value, can be considered reliable. 

Furthermore, the fact that similar conditions, in terms of aspect ratio and preload 

level, give similar values of damping, ensure the reliability of obtained results on the 

whole range of displacement capacity. 
 

 C1 = cost C2 = cost 

 ΔC2 = -5% ΔC2 = +5% ΔC1 = -10% ΔC1 = +10% 

dt soil A soil D soil A soil D soil A soil D soil A soil D 

1 -0.2% -2.1% -2.0% -2.6% 0.3% 0.8% - - 

2 17.8% 24.2% -16.7% -14.7% 5.8% 0.0% - - 

3 7.6% 10.1% -11.3% -7.2% -2.2% -3.3% -9.6% 0.3% 

4 3.3% 3.1% -6.7% -6.0% -4.8% 0.0% -6.6% 1.7% 

5 7.0% 4.1% -4.3% -5.9% -4.6% -4.8% 6.2% 1.3% 

6 3.4% 3.5% -6.3% -3.5% -7.1% -6.4% 5.0% 5.2% 

7 4.7% 3.2% -4.0% -3.0% -3.6% -4.5% 4.4% 9.5% 

mean 6.4% -6.7% -2.5% +1.7% 

Table 5.7 Results of regression analysis on relative difference between damping values 

obtained varying coefficients C. Panel Sa06, characterized by shear failure. 
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 C1 = cost C2 = cost 

 ΔC2 = -5% ΔC2 = +5% ΔC1 = -10% ΔC1 = +10% 

dt soil A soil D soil A soil D soil A soil D soil A soil D 

1 -0.1% -0.4% 1.4% -0.7% 0.0% 0.0% -6.1% 14.9% 

2 28.6% 16.8% -47.8% -41.6% -11.1% -4.5% 10.2% 6.7% 

3 8.7% 24.2% -33.8% -26.5% -6.0% -6.7% 7.1% 8.8% 

4 15.7% 15.9% -23.9% -14.9% -4.8% -4.6% 5.9% 8.3% 

5 14.6% 10.2% -18.7% -13.2% -6.2% -17.4% 7.0% 5.5% 

6 12.1% 5.4% -14.4% -13.9% -7.7% -10.7% 9.9% 8.3% 

7 4.9% 4.5% -18.2% -8.8% -4.0% 3.0% 6.4% 6.0% 

mean 11.5% -19.6% -5.8% 7.1% 

Table 5.8 Results of regression analysis on relative difference between damping values 

obtained varying coefficients C. Panel Tb06, characterized by flexural failure. 

5.6 Summary and Conclusions 

A procedure for determination of Equivalent Viscous Damping has been 

developed. This procedure makes use of dynamic analyses, based on an on-

purpose hysteretic model, and of equivalent linear system. Two ground types, and 

10 spectrum-compatibles synthetic time-histories for each soil type, have been 

taken into account. 

A first analysis of the results allows to gather the following conclusions: 

 Equivalent Viscous Damping shows an increasing trend that can be 

considered as logarithmic. Indeed, damping increases with increasing 

displacements, when period corresponding to secant stiffness is included in 

spectrum plateau. Otherwise damping can be considered constant. 

 At the same drift level, a shear type of behaviour involves higher values of 

damping than a flexural behaviour. Hence, in general, squat panels are 

characterized by higher values of damping than those of slender walls. When 

displacement is a-dimensionalized to dcr, it is possible to obtain damping curves 

that are closer to each other, although they are obtained for different failure 

modes. 

 Squat panels, that have a period shift included in spectra plateau of both soils 

A and D, give similar values of damping for the different ground types. On the 

contrary, slender walls show an appreciable difference related soil type, since 

the period shift of these panels is included in spectra plateau only for soil D. In 

this case, lower values are obtained with soil A compared to soil D. 

 Relationship between elastic and inelastic displacement is more than 

proportional. A good approximation of numerical results can be obtain using a 



5. Non-Linear Dynamic Analyses of SDOF Masonry Structures 

95 

power function. In such a way, very high values of R
2
 have been obtained. For 

the majority of panels of both masonry systems there are not significant 

differences between soil types. If any, soil D curves are lightly above those of 

soil A. 

 Values of effective Damping Correction Factor are well correlated with code 

proposed formulation. Furthermore, it seems that differences between various 

soil types for RM are not significant. For SM, instead, different values are 

obtained considering different soil types. Damping Correction Factor is lower for 

soil A than for soil D. In any case, for both RM and SM, code formulations 

overestimate the real ratio between inelastic and elastic displacement. For these 

reasons, a calibration of expression (Eq. 5.3) is needed. 
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6 ANALYSIS OF RESULTS 

6.1 Introduction 

This chapter presents and discusses the results of the analyses. For both types 

of masonry taken into account, and for each specimen, values of ξeq are reported 

and commented. Furthermore, a comparison between the results obtained with the 

proposed methodology and the Gulkan & Sozen approach is carried out. 

Another important result of analyses is represented by the relationship between 

inelastic and elastic displacement, i.e. the η factor. This factor is defined in function 

of ξeq in several regulations. Existing code formulations are taken into account and 

compared with obtained numerical results. 

6.2 Reinforced Masonry System 

6.2.1 Equivalent Viscous Damping 

Fig. 6.1 and Fig. 6.2 show the comparison between proposed procedure (black 

indicators) and Gulkan and Sozen (gray indicators) values of ξeq. In these graphs 

the regression functions obtained using the least square method are also shown. 

The type of function used for regression analysis is represented by: 

               (Eq. 6.1) 

where Ψ is drift expressed in percentage. The functions related to proposed 

procedure are plotted in continuous line, those related to Gulkan and Sozen (G&S) 

procedure are plotted in dashed line. As can be seen, the values obtained with 

proposed procedure are more scattered than those obtained with G&S procedure. 

This means that approximation quality of regression functions is greater for G&S 

than for our procedure. Indeed, coefficients of determination obtained for the 

procedure range between 0.74 and 0.88 (Table 6.1), whereas for G&S these 

coefficients are always greater than 0.85 (Table 6.2). In any case, the function 



Equivalent Viscous Damping and Inelastic Displacement for Strengthened and Reinforced Masonry Walls 

98 

expressed by (Eq. 6.1) is able to represent with sufficient accuracy the effective 

trend of results for both approaches. 

Furthermore, the use of analytical function to approximate numerical results, 

allows to calculate the mean integral value of damping. In general, damping values 

obtained with G&S are lower than those obtained with our procedure. For soil type 

A the difference can be considered negligible, because its mean value is about 5%. 

For soil D, instead, the difference is greater, about 15%. These differences are 

more marked for slender walls, for some of them are greater than 20%. 

 

Squat walls α Soil A β Soil A R
2
 α Soil D β Soil D R

2
 

SRSa 0.4 12.266 4.780 0.758 12.818 5.114 0.779 

TRSa 0.4 12.669 4.770 0.793 13.538 5.124 0.772 

SRSa 0.6 13.438 5.021 0.750 13.177 4.970 0.771 

TRSa 0.6 13.217 5.371 0.743 13.066 5.261 0.792 

mean 12.897 4.986  13.150 5.117  

Slender walls β Soil A γ Soil A R
2
 β Soil D γ Soil D R

2
 

SRSb 0.4 9.819 3.762 0.823 11.925 4.975 0.828 

TRSb 0.4 9.543 3.835 0.762 12.002 6.064 0.878 

SRSb 0.6 11.322 4.202 0.841 13.331 5.222 0.778 

TRSb 0.6 8.489 3.227 0.763 11.736 5.399 0.756 

Mean 9.793 3.757  12.249 5.415  

Table 6.1 Regression functions for ξeq (procedure) vs Ψ: α and β 

coefficients and coefficient of determination R
2
. 

 

Squat walls α Soil A β Soil A R
2
 α Soil D β Soil D R

2
 

SRSa 0.4 11.997 4.882 0.983 12.249 5.144 0.962 

TRSa 0.4 10.981 4.121 0.961 11.449 4.328 0.952 

SRSa 0.6 12.267 4.659 0.970 12.678 4.860 0.956 

TRSa 0.6 11.130 4.689 0.958 11.022 4.663 0.954 

mean 11.594 4.588  11.850 4.749  

Slender walls β Soil A γ Soil A R
2
 β Soil D γ Soil D R

2
 

SRSb 0.4 11.997 4.882 0.983 12.249 5.144 0.962 

TRSb 0.4 10.981 4.121 0.961 11.449 4.328 0.952 

SRSb 0.6 12.267 4.659 0.970 12.678 4.860 0.956 

TRSb 0.6 11.130 4.689 0.958 11.022 4.663 0.954 

Mean 11.594 4.588  11.850 4.749  

Table 6.2 Regression functions for ξeq (Gulkan and Sozen) vs Ψ: α and β 

coefficients and coefficient of determination R
2
. 
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Fig. 6.1 Comparison between proposed procedure and Gulkan and Sozen values of ξeq. 

Squat specimens under soil type A (on the left) and D (on the right). 
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Fig. 6.2 Comparison between proposed procedure and Gulkan and Sozen values of ξeq. 

Slender specimens under soil type A (on the left) and D (on the right). 
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Furthermore, it can be noticed that G&S approach leads to no sensitive 

difference between soil types. Indeed, the relative differences between soil D and A 

are lower that +5% for all the panels, with a mean value of about +2%. From the 

physical point of view, two approaches should lead to the same results, given the 

validity of equal velocity assumption. Indeed, whereas G&S approach computes the 

damping by imposing the equality of dissipated energy by the inelastic and 

equivalent elastic systems, through the assumption of equal relative velocity of both 

systems (§2.4.3), our procedure imposes directly the equality of displacements, 

which implies the energy equality. Since the validity of equal velocity hypothesis has 

not been proven, and also that the aim of equivalent viscous damping is to give the 

same peak displacements as the hysteretic response by an equivalent linear 

system, the results of our procedure seem to be more reliable. 

The coefficients obtained by regression analysis, and listed in Table 6.1, have 

been used to plot all the damping curves in one graph only, for each soil type. Fig. 

6.3 shows these graphs. As can be seen, for soil A all the panels reach a value of 

damping of about 13% at ultimate displacement. While shear panels have a 

maximum drift level of about 0.8-1.2%, flexural panels have greater displacement 

capacity, with an ultimate drift of about 2.0-3.0%. So flexural curves are below the 

shear ones. 

For soil D, instead, shear and flexural curves are superimposed until the 

maximum displacement for shear panels. Beyond this point, flexural curves 

continue to increase, reaching a maximum value of damping of about 17%. 

The coefficients α and β in Table 6.1 and Table 6.2 are referred to damping 

versus drift. They can be also referred in function of displacement ratio, considering 

the logarithmic properties. In other words, is possible to use (Eq. 6.2) in order to 

describe the functions shown in Fig. 6.3. 
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Fig. 6.3 Equivalent Viscous Damping versus Drift curves. 

Experimental RM walls under soil type A (above) type D (below). 

 

                    (Eq. 6.2) 

Change of variables is expressed by following expressions: 

       (Eq. 6.3) 

                   (Eq. 6.4) 

where subscript DR indicates a coefficient referred to displacement ratio, and 

subscript Ψ indicates a coefficient referred to drift. Ψcr is drift at critical limit state. 

The value of coefficient of determination remains the same. 
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Fig. 6.4 shows the same curves of Fig. 6.3, but expressed in function of 

displacement ratio (DR), that is displacement a-dimensionalised to the second limit 

state, i.e. d/dcr. It is interesting to notice that, in this case, for soil A, curves for both 

failure modes are almost superimposed, whereas for soil D, flexural curves are 

above those for soil A. The reason of this is connected to the similar values of 

ultimate DRs for the two failure modes. Indeed, ultimate drift for flexural failure is 

almost three times ultimate drift for shear failure, whereas ultimate flexural DR is 

slightly greater than that for shear failure. This means that curves of both failure 

modes are stretched in a similar range. 

Observing results obtained for two soils considered, it is possible to say that 

there are no significant differences between damping for both soils for what concern 

shear walls. Indeed, for both soil types, damping curves for these panels reach 

values of about 13%. For each panel, the relative difference between obtained 

values for different soils, is generally lower than 5%. So it can be said that 

equivalent viscous damping for shear walls is not influenced by soil type. It cannot 

be said the same for flexural walls. These panels reach the same damping values 

of shear panels, at maximum displacement, for soil A, i.e. about 13%. Nevertheless, 

damping curves for soil D increase until values of about 17%. Hence, flexural 

panels give damping curves for soil D greater by 30% compared to those obtained 

for soil A. 

It can be noticed that damping curves for the same failure mode and same soil 

are close to each other. This means that different level of pre-load do not influence 

the damping, although the studied range is quite limited: 0.4 N/mm
2
, orange (shear) 

and light blue (flexural) curves, 0.6 N/mm
2
, red (shear) and blue (flexural) curves. 

This means that the most significant parameters, for defining damping of reinforced 

masonry structures, are failure mode and soil type. For this reason, a new 

regression analysis has been performed, distinguishing the results only between the 

mentioned parameters. The points clouds and corresponding regression curves are 

shown in Fig. 6.5 and Fig. 6.6, related to drift and displacement ratio, respectively. 

Red and square indicators are related to panels that failed in shear, whereas blue 

and circular indicators are related to panels that have flexural failure. Obtained 

regression functions are also shown, in red for shear failure and in blue for flexural 

failure. 

The obtained regression functions are described by (Eq. 6.5), (Eq. 6.6), (Eq. 6.7) 

and (Eq. 6.8). These equations have a coefficient of determination R
2
 that ranges 

between 0.75 and 0.80. This means that the quality of approximation does not 

decrease if the regression analysis is performed on all the panels characterized by 

the same failure mode. Indeed, as above mentioned, the coefficient R
2 

varies 

between 0.7 and 0.9 performing the analysis separately for each panel. 
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Fig. 6.4 Equivalent Viscous Damping versus DR curves. 

Experimental RM walls under soil type A (above) type D (below). 

 

The regression functions are compared to each other in Fig. 6.7. Curves for 

shear failure are plotted in red, those for flexural failure in blue. Continuous line is 

used for soil A and dashed line for soil D. As can be seen, there are no differences 

between soil types for shear behaviour. Indeed, considering the graphs related to 

both drift and displacement ratio, red curves are almost perfectly superimposed. On 

the contrary, flexural behaviour involves rather different damping values, according 

to soil type. The curves for soil D, related to both drift and displacement ratio, are 

almost 30% greater than those related to soil A. 
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Fig. 6.5 Regression functions, related to drift, for the two failure modes. 

Soil type A (above) and type D (below). 

 

Shear – Soil A                         (Eq. 6.5) 

Flexural – Soil A                       (Eq. 6.6) 

Shear – Soil D                        (Eq. 6.7) 

Flexural – Soil D                        (Eq. 6.8) 
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Fig. 6.6 Regression functions, related to displacement ratio, for the two failure modes. 

Soil type A (above) and type D (below). 

 

Shear – Soil A                         (Eq. 6.9) 

Flexural – Soil A                        (Eq. 6.10) 

Shear – Soil D                        (Eq. 6.11) 

Flexural – Soil D                        (Eq. 6.12) 
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Considering the first graph in Fig. 6.7, i.e. damping versus drift, it can be noticed 

that the two shear curves are very close to the flexural one for soil D. The difference 

between shear curves and the flexural one is in average about 10%. Considering 

the second graph, i.e. damping versus displacement ratio, it can be easily noted 

that the two shear curves are closer to the flexural one for soil A. Indeed, despite 

shear curves are below the flexural one for soil A at low values of DR, for DR 

greater than 2 they are above. The difference is in average less than 5%, and even 

smaller considering only the range of DR included between 2 and ultimate shear 

capacity. 

 

 

 

Fig. 6.7 Comparison between regression functions, related to drift (above) and displacement 

ratio (below). 
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6.2.2 Relationship Between Elastic and Inelastic Displacement 

The relationships between elastic and inelastic displacement for each panel and 

ground type are shown in §5.4.1.2. It has been pointed out that, for shear 

behaviour, there are no sensitive differences between two ground types considered. 

Instead, for some flexural panels, regression curves for different soil types are 

rather separate. These observation are confirmed by graphs in Fig. 6.9, that show 

the comparison between curves obtained for different soil type. It has been chosen 

to represent the curves in function of drift, because the measured height of 

specimens in not exactly the same. In such a way it is possible to directly compare 

the specimens to each other. Starting from coefficient related to displacement and 

reported in Table 5.5, following equations can be used in order to obtain coefficient 

β and γ related to drift, called βψ and γΨ. 

      (    ⁄ )
      

 (Eq. 6.13) 

      (Eq. 6.14) 

Coefficient βψ and γΨ are showed in Fig. 6.8. In this graph it is easy to notice that 

coefficients for shear panels (label “a”) are very similar to each other, and specially 

the same coefficients related to different soils are very similar. The same cannot be 

said for flexural panels (label “b”), with the exception of panel Sb06. In any case, 

these observations can be confirmed by performing a regression analysis, 

distinguishing between failure modes and soil types. 

 

 

Fig. 6.8 Coefficient β and γ, related to drift, obtained for soil A (red and orange) and for soil D 

(blue and light blue). 
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Fig. 6.9 Comparison between regression functions for soil A and D, for shear behaviour 

(above) and flexural behaviour (below). 

 

Fig. 6.10 shows the points clouds related to two failure modes for both soil 

types, and the power functions obtained by regression analysis. The functions 

related to soil A are plotted in continuous line, those for soil D are plotted in dashed 

line. The coefficients βΨ and γΨ obtained from this analysis are listed in Table 6.3, 

together with the coefficient R
2
. The latter is always greater than 0.97, as for the 

analyses on each panel. This means that different level of pre-load does not affect 

the ratio ψEL/ψIN. 

The regression functions for two soil types and failure modes are plotted in Fig. 

6.11. As can be seen, the curves for shear behaviour are almost superimposed. So, 

for shear behaviour, the ratio ψEL/ψIN can be considered independent from soil type. 

On the contrary, those obtained for flexural behaviour are rather separated, with 
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curves for soil D above those for soil A. Furthermore, it can be noted that flexural 

curve for soil D is close to the shear ones. 

The fact that, for soil D, ratio ψEL/ψIN is higher than for soil A, means that, for this 

soil type, displacement demand is greater than that for soil A. This is consistent with 

the displacement spectra shown in Fig. 5.1. The reason why shear behaviour 

involves a ratio ψEL/ψIN independent from soil type is probably linked to low periods 

of these panels (0.15-0.35 s). Indeed, the ratio between displacement demand of 

two spectra is quite low at low periods, and it increases until TC, beyond that this 

ratio remains constant. 

These observations are consistent with the results shown in the previous 

paragraph. Indeed, since the ratio between inelastic and elastic displacements is 

commonly expressed in function of damping (§5.4.1.3), the independency of this 

ratio from both pre-load level and soil type, for shear behaviour, involves that, for 

the same failure mode, damping is also independent from these factors. 

Conversely, since the relationship between the ratio ψEL/ψIN, taking into account 

(Eq. 5.3), is increasing with the increase of damping, the fact that, for flexural 

behaviour, this ratio is greater for soil D compared to soil A, involves that damping 

curve for soil D is above that for soil A. 

 

  

Fig. 6.10 Regression analysis of ratio ΨEL/ ΨIN. Shear failure (left) and flexural failure 

(right) on both soil types. 

 

Failure mode β Soil A γ Soil A R
2
 β Soil D γ Soil D R

2
 

Shear 1.500 1.233 0.978 1.453 1.215 0.980 

Flexural 1.336 1.148 0.977 1.377 1.279 0.981 

Table 6.3 Regression functions for ratio between ΨEL and ΨIN: β and γ 

coefficients and coefficient of determination R
2
. 
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Fig. 6.11 Elastic drift versus Inelastic drift. Comparison between failure modes and soil types. 

6.2.3 Damping Correction Factor 

In § 5.4.1.3 it has been seen that effective Damping Correction Factor (η) can be 

correlated to formulation expressed by (Eq. 5.3). Since the quality of approximation 

is rather poor, utilizing α = 5, a calibration of coefficient α has been performed. This 

calibration has been performed with the least squares method. The comparison 

between the points cloud obtained from the analyses (η_eff) and (Eq. 5.3) with α set 

to 5 (η_code) and to value obtained from fitting (η_fit) is showed in Fig. 6.12 and 

Fig. 6.13. The code formulation with the calibrated value of coefficient α 

approximate the numerical data in a satisfactory way. Indeed, the value of 

coefficient R
2
 are generally bigger than 0.8, as can be seen in Table 6.4. 

The obtained values of coefficient α, for each panel and both soil types, are 

shown in Fig. 6.14. As can be seen, they range between 0.5 and 2.5, and in general 

they are smaller for soil A than for soil D. More precisely, the values of coefficient α 

obtained for soil D are in average twice than those obtained for soil A, with the 

exception of panel Tb04, which has given about the same value for both soils. 

Furthermore, the coefficients related to shear behaviour are in general greater than 

those related to flexural behaviour. 

The considered expression for Factor η is proportional (not directly) to coefficient 

α, so the greater is α the greater is η. Factor η decreases with the increasing of 

damping. Hence, the obtained values of coefficient α seem to be in disagreement 

with the observations which were made at the end of the previous paragraph. 

Indeed, considering the shear panels, given a displacement level, ξeq and ratio 

ψEL/ψIN, i.e. 1/η, are the same for both soil types. So it would be reasonable that 

also coefficient α is the same. Furthermore, for flexural behaviour, given a certain 
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displacement level, ξeq is bigger for soil D than for soil A, whereas η of soil D is 

lower than that of soil A. So, in this case, it would be reasonable that coefficient α is 

similar for both soils, or lower for soil D compared to that for soil A. 

 

  

  

  

  

Fig. 6.12 Comparison between η effective and code formulation with α set to 5 and fitting 

value. Squat specimens under soil type A (on the left) and D (on the right). 
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Fig. 6.13 Comparison between η effective and code formulation with α set to 5 and fitting 

value. Slender specimens under soil type A (on the left) and D (on the right). 
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Specimen αfit – Soil A R
2
 – Soil A αfit – Soil D R

2
 – Soil D 

SRSa 0.4 0.9 0.804 2.3 0.649 

TRSa 0.4 1.5 0.830 2.4 0.803 

SRSa 0.6 1.3 0.882 2.5 0.792 

TRSa 0.6 1.2 0.909 2.1 0.844 

mean 1.2  2.3  

SRSb 0.4 0.7 0.820 1.8 0.777 

TRSb 0.4 1.0 0.663 1.0 0.900 

SRSb 0.6 0.7 0.870 1.9 0.811 

TRSb 0.6 0.9 0.793 1.4 0.906 

mean 0.8  1.5  

Table 6.4 Coefficient α calibrated and related R
2
 for Damping Correction Factor. 

 

 

Fig. 6.14 Coefficient α calibrated for all specimens and both types of soils. 

 

 

Fig. 6.15 Damping Correction Factor with α calibrated for the two failure modes and soil 

types. 
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In order to investigate this inconsistency, a further regression analysis has been 

performed, distinguishing only between failure modes and soil types. The results of 

this analysis are reported in Table 6.5. As expected, these values are very similar to 

the averages calculate in Table 6.4, but they are not the same (indeed the second 

decimal numbers are different). It can be say that for the same type of soil, the 

value of α for shear panels is about 50% greater than for flexural behaviour. 

Furthermore, these analysis confirm that soil D involves double values with respect 

to soil A. 

It has been proven that the range of variability of coefficient α does not have an 

appreciable effect on the damping correction factor, as showed in Fig. 6.15. Indeed 

curves for both flexural and shear failure for soil A, that have coefficient α equal to 

0.8, 1.5 and 1.2 respectively, are almost superimposed. Only the curve for shear 

and soil D, that has a coefficient α equal to 2.3, is slightly distinct from the others. 

More precisely, this curve is above the others, with an average difference of about 

+4%. On the other hand, it is possible to notice that both the curves for soil D are 

above those for soil A. Hence, despite the flexural curve for soil D is closer to those 

for soil A and both failure modes, it is practical to consider coefficient α related only 

to soil type. The gained values of coefficient α that can be used in (Eq. 5.3), in order 

to determine the damping correction factor in function of equivalent damping, are 

1.0 and 1.9, for soils A and D respectively. These values have been obtained by 

performing regression analyses on the two points clouds which were obtained 

distinguishing only between soil type. The value of R
2
 is 0.85 in both cases. 

 

Failure mode αfit – Soil A R
2
 – Soil A αfit – Soil D R

2
 – Soil D 

Shear 1.2 0.871 2.3 0.797 

Flexural 0.8 0.807 1.5 0.861 

Table 6.5 Coefficient α calibrated and related R
2
 for the two failure modes and soil types. 

6.3 Injected Stone Masonry 

6.3.1 Equivalent Viscous Damping 

Fig. 6.16 and Fig. 6.17 show the comparison between proposed procedure 

(black indicators) and Gulkan and Sozen (gray indicators) values of ξeq. As for 

reinforced masonry, the values obtained with the proposed procedure are more 

scattered than those obtained with G&S procedure. The results of regression 

analysis is reported in Table 6.6 and Table 6.7. As can be seen, the values of 

coefficient R
2
, for the proposed procedure,

 
range between 0.63 and 0.89, whereas 
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for G&S it is always higher than 0.9. The range of variability of coefficient R
2
, for our 

procedure, is greater than that obtained for RM, i.e. 0.74 – 0.88 (§6.2.1). This 

means that the scatter of results for this type of masonry is greater compared to that 

for RM. This is evident mainly for specimens R2 and R5, on soil D, beyond 

maximum resistance, i.e. drift of 0.42% and 0.48% respectively. 

 

  

  

Fig. 6.16 Comparison between proposed procedure and Gulkan and Sozen values of ξeq. 

Squat specimens under soil type A (on the left) and D (on the right). 

 

Squat walls α Soil A β Soil A R
2
 α Soil D β Soil D R

2
 

R2 1.0 28.412 11.074 0.880 34.749 14.079 0.801 

S2 2.0 26.813 9.160 0.843 26.340 9.126 0.819 

mean 27.612 10.117  30.545 11.603  

Slender walls β Soil A γ Soil A R
2
 β Soil D γ Soil D R

2
 

R4 1.0 13.130 5.355 0.634 18.516 9.495 0.868 

S4 1.0 13.528 4.747 0.783 18.742 7.676 0.812 

R5 2.0 19.882 7.669 0.886 27.955 12.355 0.835 

S5 2.0 20.454 7.236 0.766 23.864 9.319 0.847 

Mean 16.749 6.252  22.269 9.711  

Table 6.6 Regression functions for ξeq (procedure) vs Ψ: α and β 

coefficients and coefficient of determination R
2
. 
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Fig. 6.17 Comparison between proposed procedure and Gulkan and Sozen values of ξeq. 

Slender specimens under soil type A (on the left) and D (on the right). 
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Squat walls α Soil A β Soil A R
2
 α Soil D β Soil D R

2
 

R2 1.0 19.114 7.597 0.949 19.473 7.800 0.900 

S2 2.0 22.289 7.517 0.981 24.097 8.212 0.972 

mean 20.701 7.557  21.785 8.006  

Slender walls β Soil A γ Soil A R
2
 β Soil D γ Soil D R

2
 

R4 1.0 11.131 5.469 0.972 10.899 5.505 0.966 

S4 1.0 12.438 4.741 0.974 12.477 4.790 0.981 

R5 2.0 18.575 7.669 0.973 19.799 8.347 0.971 

S5 2.0 17.835 6.995 0.975 18.501 7.342 0.964 

Mean 14.995 6.219  15.419 6.496  

Table 6.7 Regression functions for ξeq (Gulkan and Sozen) vs Ψ: α and β 

coefficients and coefficient of determination R
2
. 

 

It can be seen that there are sensitive differences between the results obtained 

with the two methodologies. The values obtained with G&S are always lower than 

those obtained with proposed procedure. The difference is in average about 17% 

and 30%, respectively for soil A and soil D, and it changes between a panel and 

another. Above all, squat specimens exhibit very different behaviour. Panel R2, 

tested under a pre-load of 1.0 N/mm
2
, gives the greater differences between the 

two methodologies, i.e. about 30% and 40% for the two ground types considered. 

Conversely, panel S2, tested under a pre-load of 2.0 N/mm
2
, gives the smallest 

differences, greater for soil A than for soil D, i.e. about 16% and 8% respectively. 

Regardless these differences, both the approaches lead to values higher than 

expected. This is mainly due to the high vertical pre-loads at which the panel were 

tested, that are about 0.15% (panels R2, R4 and S4) and 0.30% (panels S2, R5 

and S5) of the compressive strength. These rather high loads were chosen in order 

to force the shear failure mechanism, as explained in §3.3.2. Vertical load 

influences not only the failure mode, but also the amount of dissipated energy. 

Indeed, the ratio between dissipated and input energy (Ehys/Einp) ranged between 

40% and 60% for slender walls tested under a pre-load of 2.0 N/mm
2
 (slender-2.0) 

and squat walls tested under both pre-loads, and between 30% and 40% for 

slender walls tested under 1.0 N/mm
2
 (slender–1.0). These high values of ratio 

Ehys/Einp involve necessary high values of hysteretic damping. If this may influence 

the quantitative aspect of the following analysis, on the other hand the interest 

toward the qualitative aspect remains. 

As for RM, G&S approach leads to no sensitive differences between different 

soil types. Indeed, despite the obtained values for soil D are slightly higher than 

those for soil A, the average relative difference is less than 3%. The great 

differences between the curves obtained with the two methodologies, together with 

the high scattering of our procedure results, lead to consider less reliable the curves 
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of the proposed procedure. Indeed, despite the observations made in §6.2.1 

regarding the reliability of G&S approach, it would be reasonable that the 

differences between two approaches are not too high, as in this case. Furthermore, 

it has to be highlighted that, for this masonry type, the hysteretic model has been 

modified, assuming Z parameter as constant and equal to 1 (§4.4.2). This 

assumption involves that degradation of stiffness of branch D-A is small, above all if 

it is compared with that of the next branch A-B. So the loading path is characterized 

by a point at which a sudden decrease of stiffness happens, which on one hand is 

unrealistic, and on the other determines an equally sudden change of velocity, 

which is surely not compatible with G&S hypothesis. 

For these reasons, the obtained curves for panels that give large scatter of 

results and for which the two approaches lead to high differences, especially on soil 

A, are considered less reliable. These are, above all, R2 panel on both soils and R5 

on soil D. 

Fig. 6.18 shows the comparison between all the obtained regression functions, 

expressed in function of drift. It can be noticed that, for soil A, the panels tested 

under the same conditions give more or less the same values. Indeed, the three 

couples of specimens, i.e. R2 - S2 (Squat), R4 - S4 and R5 - S5, are characterized 

by three separated trends. Squat specimens reach the higher values of damping, 

about 25%, whereas slender specimens are characterized by lower values, about 

17%. However, slender-1.0 reach an ultimate drift of about 2.0%, whereas slender 

slender-2.0 have a maximum displacement capacity similar to squat specimens, i.e. 

about 0.8%. Hence, damping curves for couple R5 – S5 are between the other two 

groups of curves. 

For soil type D the three couples of panels have not a well distinct behaviour as 

for soil A. In particular, the squat panels give very different results. Indeed R2 

reaches a maximum value of damping which is higher than 30%, whereas S2 

reaches about the same maximum value that is reached for soil A, i.e. 25%. 

Instead, it can be noticed, for slender panels, an increment of about 30% of 

maximum damping values from soil A to soil D. They reach a maximum value of 

about 23%. So it can be said that for soil type D, excluding R2 panel, it is possible 

to distinguish two groups of panels, characterized by the same maximum values of 

damping, i.e. about 23-25%, but different ultimate drift. The first group is composed 

by squat panel S2 with the slender-2.0 panels (R5 and S5), the second is 

represented by slender-1.0 panels (R4 – S4). 
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Fig. 6.18 Equivalent Viscous Damping versus Drift curves. 

Experimental SM walls under soil type A (above) type D (below). 

 

Fig. 6.19 shows the same curves of Fig. 6.18, but expressed in function of DR. 

Differently from what observed for RM, damping curves seem not to be well 

correlated to DR. The above mentioned observations, regarding the reliability of 

obtained results, lead to give small reliable to R2 on both soils and R5 on soil D. 

Excluding these curves, it is possible to identify, for soil A, two well separate 

groups, whereas for soil D the curves are all superimposed to each other. For soil 

A, one group is composed by slender-1.0 panels and the other by slender-2.0 and 

S2 panels, i.e. the specimens tented under a pre-load of 2.0 N/mm
2
. 
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Fig. 6.19 Equivalent Viscous Damping versus DR curves. 

Experimental SM walls under soil type A (above) type D (below). 

 

For this type of masonry, tested under the above mentioned high levels of pre-

load, it has been shown that, with the exception slender-1.0 panels, it is not 

possible to distinguish the curves in function of both drift and DR, independently 

from soil types, as done for RM. In addition, taking into account that rarely real 

structures built with this typology are subjected to vertical stress higher than 1.0 

N/mm
2
, and also considering the observations about reliability of obtained results, it 

can be concluded that only slender-1.0 curves can be considered reliable for 

practical applications. For this reason, it has been chosen to perform a further 

regression analysis, considering only the results obtained for slender-1.0 panels. 
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Fig. 6.20 Regression functions, related to drift, for slender-1.0 panels on both soil types. 

 

Slender-1.0 – Soil A                         (Eq. 6.15) 

Slender-1.0 – Soil D                        (Eq. 6.16) 

 

Fig. 6.20 shows the obtained regression functions, which equations are 

expressed by (Eq. 6.15) and (Eq. 6.16). Black circular indicators are referred to soil 

A, grey triangular indicators are referred to soil D. The obtained regression 

functions are plotted in dashed black and grey lines, for soil A and D respectively. It 

can be noticed that logarithmic function used to approximate the numerical results, 

tends to underestimates damping values at low drift level on soil A. This is due to 

period shift, which involves effective periods beyond spectrum plateau for drift level 

greater than about 0.85%. Hence, beyond this values of drift, on soil A, more or less 

constant values of damping are obtained, with an average value of 14%. As a 

consequence, since logarithmic function is increasing with the increasing of drift, the 

approximated values in the low drift range are underestimate. This is confirmed also 

by values of obtained coefficient R
2
: 0.697 and 0.829 for soil A and D, respectively. 

In order to take into account with more accuracy the values obtained for drift 

lower than 0.85%, it would be proper to consider, in the regression analysis, only 

those values related to drifts lower than this limit. Observing the graphs in Fig. 6.20, 

it is easy to notice that in this way only few displacements target (dt) would be 

considered, and so the regression analysis would be based on a limited number of 

values. For this reason, it has been chosen to apply again the procedure described 
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in §5.2, considering dt comprised between first limit state and displacement 

corresponding to 0.85% of drift. 

Fig. 6.21 shows the obtained results. It can be easily noticed that, as expected, 

there are no sensitive differences between soil types. Indeed, for the considered 

drift levels, effective periods associated to secant stiffness are comprised in spectra 

plateau for both soils. With a regression on the whole points cloud, without 

distinguish between soil types, functions expressed by (Eq. 6.17) and (Eq. 6.18) are 

obtained, related to drift and displacement ratio, respectively. The corresponding 

values of coefficient R
2
 are 0.757 and 0.778. 

 

  

Fig. 6.21 Slender-1.0 specimens: comparison between values of ξeq obtained for soil type 

A and D, in relation of drift (left) and displacement ratio (right). 

 

Slender-1.0 - ψ                       (Eq. 6.17) 

Slender-1.0 - DR                      (Eq. 6.18) 

 

In conclusion it can be said that there is no soil dependency for drift less than 

about 0.85%. In this case, (Eq. 6.17) and (Eq. 6.18) can be considered for the 

evaluation of damping. For drift higher than 0.85%, for soil A, due to period shift, a 

constant value of damping can be considered, i.e. 14%, whereas for soil D you can 

refer to (Eq. 6.16). 
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6.3.2 Relationship Between Elastic and Inelastic Displacement 

Fig. 6.22 shows the coefficients reported in Table 5.5, referred to drift. It is 

possible to notice that panels tested in the same conditions (aspect ratio and pre-

load level) have similar coefficients. This observation is confirmed by Fig. 6.24, 

where the various functions are plotted. Furthermore, in the second graph of this 

Figure, it can be seen that for soil D the curves for squat and slender-2.0 panels are 

very close. In Fig. 6.23 all the curves for both soil types are showed and compared. 

In this graph it can be noticed that the gratest differences between soil types are 

obtain by slender-1.0 panels. 
 

 

Fig. 6.22 Coefficient β and γ, related to drift, obtained for soil A (red and orange) and for soil 

D (blue and light blue). 

 

 

Fig. 6.23 Comparison between regression functions for soil A and D, for shear behaviour 

(above) and flexural behaviour (below). 
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Fig. 6.24 Comparison among regression functions for different aspect ratios and pre-load 

level, for soil type A (above) and soil type D(below). 

 

A second regression analysis has been performed, distinguishing among the 

three couples of specimens and between soil types, Fig. 6.25 and Fig. 6.26. The 

results of this analysis are reported in Table 6.8. The values of coefficient R
2
 are all 

higher than 0.95. So the chosen power function can be considered reliable to 

approximate the relationship between elastic and inelastic drift. Fig. 6.27 shows the 

obtained regression functions. As can be seen, each couple of panels gave different 

results. Squat and slender-1.0 panels are characterized by rather distinct curves for 

the two soil types, whereas, for slender-2.0 panels, the type of soil does not have a 

sensitive effect. For squat panels, soil A curve is above that of soil D, whereas for 

slender-1.0 panels it occurs the contrary. It is interesting to notice that, for RM, in 

case of shear behaviour there is a certain independency of ratio ψEL/ψIN, and also 
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damping, from soil type, whereas, in case of flexural behaviour, the ratio ψEL/ψIN, 

and also damping, are higher for soil D than that for soil A (§6.2.2). Hence, it is 

possible to notice a similarity between the RM panels that failed in flexure and SM 

slender-1.0. 

 

  

Fig. 6.25 Regression analysis of ratio ΨEL/ ΨIN. Squat specimens (left) and slender-2.0 

specimens (right) on both soil types. 

 

 

Fig. 6.26 Regression analysis of ratio ΨEL/ ΨIN. Slender-1.0 specimens on both soil 

types. 

 

Failure mode β Soil A γ Soil A R
2
 β Soil D γ Soil D R

2
 

Squat 2.472 1.369 0.985 2.212 1.326 0.980 

Slender 1.0 1.587 1.113 0.966 1.735 1.307 0.986 

Slender 2.0 2.027 1.271 0.984 2.209 1.387 0.981 

Table 6.8 Regression functions for ratio between ΨEL and ΨIN: β and γ 

coefficients and coefficient of determination R
2
. 
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Fig. 6.27 Elastic drift versus Inelastic drift. Comparison between aspect ratio, pre-load level 

and soil types. 

6.3.3 Damping Correction Factor 

Fig. 6.28 and Fig. 6.29 show, for each panels and soil type, the comparison 

among the points cloud obtained from the numerical analyses and the damping 

correction factor, expressed by (Eq. 5.3), with α set to 5 and the value obtained 

from the regression analysis. These values are reported, together with coefficients 

R
2
, in Table 6.9. It can be said that the utilized function is generally able to reliably 

approximate the numerical data. Indeed the values of coefficient R
2
 are generally 

included between 0.70 and 0.83. The only exceptions are represented by panels 

with lower damping, i.e. slender 1.0 under soil A. Indeed these panels are 

characterized by little variation of damping values and by rather scattered 

distribution of effective η. In any case, observing the graphs it can be said that the 

quality of approximation can be considered acceptable also for these panels. 

Fig. 6.30 shows the values of calibrated coefficient α. It can be noticed that all 

panels gave very low values for soil A, without sensitive differences between 

different aspect ratios and pre-load levels. For soil type D, instead, squat panels 

gave values slightly higher than those obtained for slender panels. Instead there are 

no sensitive differences between pre-load levels. So a further regression analysis 

has been performed, distinguishing between different aspect ratios and soil types. 

The results of this analysis are shown in Table 6.10. The obtained values of 

coefficient α are equal to 0.5 and 2.7 for squat specimens, related to soil A and D 

respectively, and to 0.6 and 1.6 for slender specimens. The coefficient of 

determination is included between 0.68 and 0.83 in all the four combinations, so it 

can be said that the quality of approximation is fair. 
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Fig. 6.28 Comparison between η effective and code formulation with α set to 5 and fitting 

value. Squat specimens under soil type A (on the left) and D (on the right). 

 

The η-functions obtained using the mentioned values of coefficient α are plotted 

in Fig. 6.31. As can be seen, the curves for soil A are almost perfectly 

superimposed. Indeed, also the curves for soil D are very close one to each other, 

which means that the influence of different aspect ratios can be considered 

negligible. Hence it is reasonable to consider two values of coefficient α: 0.5 for soil 

A and 2.0 for soil D. 

 

Specimen αfit – Soil A R
2
 – Soil A αfit – Soil D R

2
 – Soil D 

R2 1.0 0.7 0.825 2.8 0.748 

S2 2.0 0.6 0.820 2.6 0.570 

mean 0.7  2.7  

R4 1.0 0.8 0.580 1.5 0.764 

S4 1.0 0.5 0.577 1.9 0.713 

R5 2.0 0.4 0.705 1.8 0.844 

S5 2.0 0.6 0.768 1.9 0.831 

Mean 0.5  1.8  

Table 6.9 Coefficient α calibrated and related R
2
 for Damping Correction Factor. 
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Fig. 6.29 Comparison between η effective and code formulation with α set to 5 and fitting 

value. Slender specimens under soil type A (on the left) and D (on the right). 
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Fig. 6.30 Coefficient α calibrated for all specimens and both types of soils. 

 

Aspect Ratio αfit – Soil A R
2
 – Soil A αfit – Soil D R

2
 – Soil D 

Squat 0.6 0.828 2.6 0.687 

Slender 0.5 0.681 1.7 0.794 

Table 6.10 Coefficient α calibrated and related R
2
 for the two aspect ratios and soil types. 

 

 

Fig. 6.31 Damping Correction Factor with α calibrated for the two aspect ratios and soil types. 
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6.4 Conclusive Remarks 

The analysis of results obtained in the previous Chapter allowed to gain the 

following conclusions: 

 The values of equivalent viscous damping obtained by proposed procedure, 

despite the greater scatter, are based on explicit equality of displacements, 

that is the aim of using equivalent damping, whereas Gulkan & Sozen 

method is based on equality of dissipated energy, even if the validity of equal 

velocity assumption has not been proven. On the other hand, the results 

obtained with our procedure are more scattered than those obtained with 

G&S method.  

 Equivalent viscous damping is increasing for increasing inelastic 

displacements, when period corresponding to secant stiffness is included in 

spectrum plateau. Otherwise damping can be considered constant. 

 The values of ξeq can be approximate using a logarithmic function. These 

functions can be related to drift or displacement ratio, using the logarithmic 

properties. 

 

For what concern RM: 

 Failure mode and type of soil are the most sensitive parameters, for the 

evaluation of damping. Although the investigated range is quite limited, it has 

been observed an independency of the pre-load level applied. 

 Flexural behaviour is characterized by damping values that are dependent 

from soil type, whereas shear behaviour is not soil dependent. Flexural 

behaviour on soil D involves damping values greater of about 30% compared 

to soil A. These observations are valid both for drift-damping and DR-

damping curves. Damping values, at maximum displacement capacity, are 

about 14% for shear behaviour, and ranging between 15 and 19% for flexural 

behaviour, according to soil type.  

 Relationship between elastic and inelastic displacements confirm both the 

soil independency linked to shear behaviour and, for flexural behaviour, the 

higher values of damping on soil D compared to those on soil A. 

 The calibration of Damping Correction Factor leads to values of coefficient α 

independent from failure mode, and slightly dependent from soil type. The 

obtained values are 1.0 and 1.9 for soil type A and D, respectively. Since the 

variability of coefficient α does not have an appreciable effect on the damping 

correction factor, it would be possible to give a unique value for both soil 

types. This value should be representative also to other soil types, which are 

not taken into account. So it is conservative to consider the value obtained for 
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soil D, that basically leads to consider the formulation included in the 

previous version of EC8, that is also suggested by (Priestley et al., 2007). 

 

For what concern SM: 

 For this type of masonry the results given by proposed procedure are more 

difficult to be interpreted. The reason of this is probably due high level of pre-

load applied during the experimental tests, and also to high non-homogeneity 

of this material, that increases the probability of local phenomena, which 

influence the global behaviour more than it occurs in modern masonry. These 

difficulties are highlighted by a greater difference between values obtained 

with our procedure and G&S method and also by a greater scatter of results 

compared to those obtained for RM. In order to obtain a more reliable result, 

the analyses should be based on a wider number of experimental tests. 

 For this type of masonry, load and soil type are the most sensitive 

parameters. Given the same conditions, soil D and high pre-load level involve 

greater values than, respectively, soil A, and low pre-load level. 

 The high level of pre-load has involved high ratio between dissipated and 

input energy, and so high level of damping. Since in real structures this level 

of compression is not realistic, only the curves obtained for slender-1.0 can 

be considered useful for practical use. For these panels, an independency 

from soil type has been observed for drift less than 0.85% (effective periods 

comprised in the spectrum plateau). For higher drift levels, a constant value 

of damping can be considered on soil A, equal to 14%. For soil D, instead, 

damping values increase until about 23% at ultimate displacement capacity. 

 The calibration of Damping Correction Factor leads to values of coefficient α 

slightly dependent from soil type. The obtained values are 0.5 and 2.0 for soil 

type A and D, respectively. Hence, as for RM, the formulation included in the 

previous version of EC8 is more reliable that the one in the current version in 

order to estimate inelastic displacement for stone masonry. 
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7 APPLICATION ON MULTI DEGREE OF FREEDOM 

STRUCTURE 

7.1 Introduction 

This chapter provides a simple application of proposed procedure on a multi 

degree of freedom masonry structure, with the aim of validating the obtained results 

for SDOF. This work is done using a finite element model calibrated on the base of 

experimental results obtained from shaking table tests on whole structures reported 

in (Mazzon, 2010). 

NLTH analyses are performed on the calibrated model, providing the actual 

displacement shape of the structure, that is needed for the determination of the 

characteristics of the equivalent SDOF substitute structure. At this point, it is 

possible to apply to the equivalent SDOF, the procedure described in chapter 5. 

7.2 Description of the Structures 

The experimental campaign consisted of shaking table test on two models, 

having the same geometry, built one in unstrengthen conditions (URM) and the 

other one strengthened (SM) with natural hydraulic lime grout injections (Mazzon, 

2010). Since the URM model was prevented from collapsing, it was possible to 

repair this structure by injection in order to test it again. The URM model repaired 

after a series of shaking table tests establishes a third model, called Repaired 

Masonry (RM) model. For what concern this study, only the strengthened model will 

be taken into account. 

The models were constructed in reduced scale (2:3) with a rectangular floor plan 

(2.40x2.80 m), with two floors and overall height equal to 3.60 m (1.80 m per floor). 

The perimeter walls (Fig. 7.2) were constructed with various openings in order to 

achieve an asymmetric behaviour with torsional effects. 

The floors are composed of timber beams with cross section 9.0x12.0 cm, used 

along with double timber planking with an overall thickness of 4.0 cm, orthogonally 

wrapped and nailed on the beams. Steel ties were used at both floor levels in order 

to avoid the out-of-plane behaviour of the walls. Three were used to fix timber beam 
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heads to the walls and three were placed in the orthogonal direction to link the 

opposite walls. Timber lintels were used over the openings, Fig. 7.1. 

Both structures consisted of three-leaf stone masonry walls with a total thickness 

of 33.0 cm. The external leaves have a thickness of 12.0 cm and they are built with 

rough limestone and natural hydraulic lime mortar, while the inner core was built 

with limestone fragments. Hydraulic lime based grout was used to strengthened the 

internal core of the considered structure. 

The whole masonry structure was built on a RC base of 40.0 cm height, which 

was doubly fixed on the shaking table. Horizontal movements were inhibited by 

means of 14 L-shaped steel plates, arranged along the perimeter of the concrete 

base and fixed to the strong steel base of the shaking table. Pre-stressed steel 

bars, binding two long HE steel beams passing horizontally through two pairs of 

holes provided in the concrete base, prevented vertical displacements. 

 

 

 

Fig. 7.1 Sections and structural components of the houses. 
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In order to simulate the effects of the live load in scaled specimens, additional 

masses have been added to both floors as proposed by (Tomaževič & 

Velechovsky, 1992). According to this method the ratio of the mass of the floors to 

the mass of the walls must be the same in the prototype and in the scaled model. In 

order to achieve this, steel plates, for an overall mass of 500 kg, were added per 

each floor, fixed using pins. 

 

    

Fig. 7.2 Different prospect of the houses. 

7.3 Finite Element Analysis 

7.3.1 Continuum Damage model 

The concept of damage can be interpreted as a measure of defects, micro-

cracks and micro-cavities of the material associated to an element of internal 

surface. The non-linearity of the material is interpreted as the results of the 

evolution of those same defects, (Faria et al., 1998). The adopted methodology 

consists on a continuum damage model based on the Continuum Damage 

mechanics, originally developed for the analysis of large dimension concrete 

structures such as dams, and capable of reproducing the dissimilar degrading 

phenomena that occurs under tension or compression. This model incorporates two 

damage variables, one for tension (d
+
) and another for compression (d

-
) and a 

plastic deformation tensor for the characterization of the non-linear concrete 

degradation mechanisms under tensile and compression conditions. 

The model constitution is capable of reproducing the material 

tension/deformation curves, including hardening and softening effects and the 

mechanisms for recovery of stiffness. In the field of Damage Mechanics, the effects 

of damage is reflected in the reduction of several of stiffness components, and the 

damaged material may remain isotropic or became anisotropic. 
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The damage variables (d
+
 and d

-
) can only assume values between 0 and 1 (Eq. 

7.1), 0 corresponds to the elastic state and it increases with the evolution of the 

damage until it reaches 1 that corresponds to the collapse state. This evolution is 

characterized by the decrease of the effective resistant area, i.e. area without 

defects. The damage variables show three types of laws, depending on whether the 

analysis of damage is in tensile, in compression or in cyclical conditions. These 

laws are obtained by experimental observations, being dependent on hardening 

variables that depend on the deformation of the element. 

                  (Eq. 7.1) 

A basic entity of such a model is the “effective stress tensor” ( ̅) which is split 

into tensile ( ̅ ) and compressive ( ̅ ) components in order to clearly distinguish 

the respective stress contributions. In what concerns the constitutive law, the model 

leads to the following intuitive format: 

         ̅         ̅  (Eq. 7.2) 

In the need to define, with precision, if the element is in “load”, “unload” or 

“reload” the model introduces the concept of equivalent tension associated to a 

positive scalar value, which is the results of the norm of tensors of effective 

tensions. The different three-dimensional states of tension can then be compared 

through a 1D analysis. Following the tensor decomposition adopted by this model, 

the equivalent tensile and compressive tensions are then considered, being 

associated with different damage criteria. 

As explained by (Faria et al., 1998) the constitutive law, (Eq. 7.2), becomes quite 

perceptible when applied to tensile or compression 1D tests in which one of the 

components is always zero, thus reducing the constitutive law to the scalar 

equations, (Eq. 7.3) and (Eq. 7.4), according to the type of test (tensile or 

compression) and to the curves in Fig. 7.3. 

Uniaxial tensile test:          ̅         ̅  (Eq. 7.3) 

Uniaxial compressive test:          ̅                (Eq. 7.4) 
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Fig. 7.3 Material behaviour: Uniaxial traction (left) and Uniaxial compression (right) (from Faria, 

1994). 

 

As it can be seen in Fig. 7.3 left, in traction the effective elastic tension (σ
+
 = E∙ε) 

is converted into real tension (σ) directly through the factor (1-d
+
) and the unloading 

is made to the origin through a secant modulus E’=(1-d
+
)∙E. In compression, Fig. 

7.3 right, the effective tension (σ
-
) in a particular point is given by the product of the 

elastic modulus E by the strain ε on that point affected by the plastic strain ε
p
∙(1-d

-
). 

The unloading is not made to the origin, creating plastic strain. 

To apply this numerical model on the simulation of a stone masonry structure it 

is assumed that initially, i.e. before the application of any load or load cycle, the 

material is isotropic and homogeneous. 

The described continuum damage model was implemented in finite element 

program Cast3M by (Costa, 2004). This software is a powerful code for solving 

partial differentials equations by the finite element method, developed by the 

Department of Systems and Structures Modelling (DM2S) of the French Atomic 

Energy Commissariat (CEA). The software, having an integrated solver with pre- 

and post-processing, becomes an independent analysis tool. The code is mainly 

focused on the solving of non-linear mechanical problems including plasticity, 

buckling, creep, seismic analysis, thermo-plasticity, post-buckling, fracture 

mechanics etc. Cast3M uses the high level macro-language GIBIANE which gives 

the user the ability to adapt or extend the GIBIANE code in order to address the 

needs of his analysis creating involving operators and new objects. Multiple and 

complex problems in 2D or 3D can be modelled with the use of a comprehensive 

library of structural finite elements (shell, beam, solid, joint elements etc.) combined 

with a wide range of constitutive models for engineering materials like masonry, 

concrete, steel etc. 
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7.3.2 Finite Element Model 

The numerical model was created and calibrated by (Quelhas da Silva, 2012) as 

a part of another thesis. The main aim of this paragraph is to give a brief description 

of the calibration phase and about the model used for the analyses in the following 

sections. 

7.3.2.1 Calibration of the Damage Model 

The model used in this study was firstly calibrated on the bases of experimental 

results obtained by monotonic and cyclic compression tests. Nevertheless, the 

simulation of shear-compression tests show that the model, with those properties, 

had very high stiffness and brittle behaviour due to which it was experiencing high 

damage level and unstable behaviour even for low imposed horizontal 

displacements. 

A re-calibration of the model behaviour was needed. This phase was achieved 

through a phenomenological fitting of the numerical curves to the experimental ones 

(horizontal force vs. displacement measured at the top of the panels) through a 

series of uni- and multi-parametric analyses, paying particular attention to the 

stiffness, strength, ductility and loading/re-loading trajectories. In the case of 

parameters directly linked to the mechanical properties, it was sought to respect the 

range of values obtained in the experimental tests, and found in the literature. The 

obtained parameters are listed in Table 7.1. 

 

Parameters  

YOUN Elastic modulus 3.7·10
9
 N/m

2
 

NU Poisson ratio 0.12 

RHO Density 2500 kg/m
3
 

GVAL Tensile fracture energy 50 Nm 

FTUL Tensile stress 0.15·10
6
 N/m

2
 

REDC Drop factor for peak tensile stress 0 

FC01 Elastic limit compressive stress -2.2·10
6
 N/m

2
 

RT45 Equi-biaxial compressive ratio 1 

FCU1 Compressive peak stress -5.0·10
6
 N/m

2
 

EXTU Ultimate limit strain -0.02 

EXTP Reference strain for plastic parameter -0.0045 

STRP Reference strain for plastic parameter -2.2·10
6
 

EXT1 Fitting point 1 - Strain -0.0045 

STR1 Fitting point 1 – Stress -4.0·10
6
 N/m

2
 

EXT2 Fitting point 2 – Strain -0.023 

STR2 Fitting point 2 – Stress -4.9·10
6
 N/m

2
 

NCRI Tensile softening criteria 1 

Table 7.1 Parameter values that resulted from calibration process based 

on shear-compression tests.  
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A good fit in terms of response envelope was obtained (initial stiffness, 

maximum resistance and post peak behaviour) and robust convergence of the 

numerical model under shear-compression cycles was achieved. A comparison 

between experimental and numerical results is summarized in Table 7.2. Only the 

dissipated energy is not well simulate by the model. This is mainly due to the 

inability of this damage model to capture effects like the joints friction, phenomena 

related to the panels local behaviour. 

 

Specimens 

Experimental Numerical Hmax,num/ dHmax,num/ du,num/ 

Hmax dHmax du Hmax dHmax du Hmax,exp dHmax,exp/ du,exp 

(kN) (mm) (mm) (kN) (mm) (mm) (-) (-) (-) 

S2 2.0 N/mm
2
 256 5.1 9.6 275 6.0 9.0 1.07 1.20 0.94 

S4 1.0 N/mm
2
 88 11.3 20.9 89 12.0 22.0 1.01 1.06 1.05 

S5 2.0 N/mm
2
 121 7.3 9.8 121 7.0 10.0 1.00 0.96 1.02 

    average 1.03 1.07 1.00 

Table 7.2 Comparison of the numerical and experimental maximum resistance, 

displacement for maximum resistance and maximum displacement. 

7.3.2.2 Numerical Model 

The numerical model (Fig. 7.4) was created based on the geometrical data 

available in the work of (Mazzon, 2010). The geometrical characteristics was 

treated through a set of steps that involved several auxiliary programs such as 

AutoCad (Autodesk, 2011) and GiD (CIMNE, 2011), until it was ready to be 

introduced in the finite element program Cast3M (CEA, 1990). 

The masonry was simulated using 8 nodes volumetric elements and the non-

linear continuum damage model previously described. The timber elements over 

the openings were also simulated using 8 nodes volumetric elements but 

considering linear elastic properties. 

The timber floors were simulated using shell elements and considering linear 

elastic properties. The additional mass of the steel plates on each floor was taken 

into account on the specific weight of the floors. The steel ties were simulated using 

2 node bar elements with a unidirectional linear elastic behaviour (null compression 

resistance). The timber beams were also simulated with 2 node bar elements. To 

the timber beams anchored to the walls a linear elastic behaviour was defined, 

while for the other beams a unidirectional behaviour (working only under 

compression) was considered. 

The reinforced concrete beam was simulated considering linear elastic and 

isotropic properties. The elastic modulus, ERC, represents the homogenized elastic 

modulus of both concrete and its reinforcement. The properties of the elements are 

reported in Table 7.3. 
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(a) (b) (c) (d) 

Fig. 7.4 Numerical model of the house. Masonry structure and RC beam (a). Previous model 

with steel ties in blue (c) or with timber beams in red (c). Complete model (d). (From Quelhas 

da Silva, 2012) 

 

For the interface between the masonry leaves was considered a linear joint 

element defined by the transversal (kt) and normal (kn) stiffness based on the 

experimental work of (Costa, 2011), considering the values based on mortar joint (kt 

= 1.17E+8 Pa/m, kn = 1.0E+11 Pa/m). 

 

  ρ S ft fc e E ν 

  (kg/m
3
) (m

2
) (N/mm

2
) (N/mm

2
) (m) (GPa) (-) 

RC beam CUB8 2500 - - - - 30.0 0.20 

Timber lintels CUB8 415 - - - - 10.5 0.37 

Timber floors COQ4 3100 - - - 0.05 10.5 0.37 

Timber beams - 
Anchored 

SEG2 415 0.108 - - - 10.5 0.37 

Timber beams – 
Not Anchored 

SEG2 415 0.108 0.0 20.0 - 10.5 0.37 

Steel SEG2 7850 7.9E-5 500.0 0.0 - 210.0 0.30 

Table 7.3 Properties of the structural elements of the house. 

7.3.3 Modal Analysis 

In this section the comparison between numerical modal analysis and dynamic 

identification on real structure is presented, in order to give an evaluation of the 

capability of the described model of reproduce the experimentally observed 

behaviour. 

The identification, based on the ambient vibration tests, on the house allowed 

the verification of the elastic masonry properties for the following boundary 

conditions: (A) placed outside the shaking table and simply support on the floor, (B) 

after being placed on the table when this is on the locked position. Afterwards, 

springs simulating the table effect were also calibrated based on the ambient 

Y 
Z 

X 
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vibration tests performed on the house placed on the shaking table, but on unlocked 

position (C). 

During the first dynamic identification test, the structure was placed on the 

laboratory floor without any further confinement (A). Assuming that the friction of the 

concrete base with the floor was high enough in order not to have sliding 

phenomena under ambient vibration, the boundary conditions of the base were 

considered to be fixed. Hence, in the numerical model, the translational degrees of 

freedom in the three directions were fixed. No calibration was required as the initial 

masonry properties, Table 7.1, verified the dynamic characteristics, in particular the 

frequencies and mode shapes of first three global vibration modes (Fig. 7.5). 

 

 

 

 

Fig. 7.5 Numerical global mode shapes of the houses. 1
st
 flexural mode - Y direction (left). 2

nd
 

flexural mode - X direction (middle). Torsional mode (right). (From Quelhas da Silva, 2012) 

 

After the transportation on the house to the shaking table (B), the measured 

frequencies for the first global mode shapes decreased. As the table was on the 

locked position this frequency variation was probably related mostly to damage 

inflicted to the house during its transportation. And so, the parameters of the 

behaviour model were re-calibrated based on the dynamic identification results 

under (B) conditions, but maintaining the resistance and deformability capacity 

already calibrated for the material.  

The fact that from the conditions (B) to (C) the frequencies decreased just by 

placing the table in the unlocked position, showed the need for taking into account 

the effect of the shaking table boundary conditions in the model, in order to fit the 

experimental seismic response of the house, in particular the possibility of the table 

to rotate along the in-plane orthogonal axis. This was done by considering vertical 

springs at the base, which stiffness resulted from fitting the numerical frequencies 

and mode shapes to the first three global mode shapes resulting from ambient 

vibration experimental tests under (C) conditions. The experimental and fitted 

numerical frequencies are presented in Table 7.4. 

 

 

 

 

X 

Y 



Equivalent Viscous Damping and Inelastic Displacement for Strengthened and Reinforced Masonry Walls 

142 

 

Frequency (Hz) 

Experimental Numerical 

(A) (B) (C) (A) (B) (C) 

1
st
 - Flexural Y-Axis 12.1 8.8 7.3 11.6 8.9 7.3 

2
nd

 - Flexural X Axis 15.5 11.5 8.6 15.2 11.7 8.6 

3
rd

 - Torsional  25.8 19.3 15.6 20.7 15.8 15.2 

Table 7.4 Comparison of the experimental and numerical frequencies. 

7.3.4 Time histories analyses 

The seismic actions (bi-directional) considered in this study were the one 

measured on the shaking table during the tests, at the base of the house. These 

results are compared to the experimental ones, namely in terms of damage 

propagation and patterns.  

The tensile damage propagation and crack patterns obtained with the numerical 

model are compared to the ones observed during the experimental tests, for the 

different PGA levels, in order to assess if this macro modelling strategy is capable 

of realistically simulate the behaviour of the house under dynamic loads. The tensile 

damage propagation and patterns for the different PGA levels are very similar to 

those observed experimentally. The model was able to capture very realistically the 

damage distribution and progression on the house during the tests, in particular the: 

 Minor cracking for a PGA level of 0.25 g; 

 Collapse mechanism that started forming in the pier in Prospect D for a PGA 

level of 0.30 g, which was aggravated during the following PGA levels and 

caused the end of the bi-directional load application on the real structure; 

 Higher damage at the first floor of the model; 

 Damage in the corners of the openings. 

 

  
 

Fig. 7.6 Tensile damage map (d+) at 0.55 g (from Quelhas da Silva, 2012). 
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Prospect A Prospect B Prospect C Prospect D 

Fig. 7.7 Damage pattern of SM at 0.55 g. (From Mazzon, 2010) 

 

The numerical model was able to simulate until a certain extent the rocking 

mechanism that affected the overall behaviour of the house, which is clear from the 

horizontal tensile damage formed at the base of the house, on the interface 

between the masonry and the RC beam. 

The numerically obtained displacements are smaller, i.e. the numerical model 

appears to be less deformable than the physical one, in particular in the X direction. 

This can be related to the rocking mechanism that influenced the overall behaviour 

of the house. Indeed, this type of behaviour allows higher displacements with lower 

damage levels (Quelhas da Silva, 2012).  

7.4 Organization of Work 

The procedure for evaluation of equivalent damping, as it was described in 

Chapter 5, cannot be applied with the above mentioned finite element model, for 

two reasons. The first is that the non-linear range, i.e. the displacements field 

between elastic and ultimate limits, is not known. So it is impossible to define a-

priori a certain number of target displacements. The second reason regards the 

unfeasibility to perform dynamic analyses in a iterative way in order to reach a pre-

determined level of displacement. This is due to the high computational effort that 

the model requires for a dynamic analysis. 

For these two reasons, the first two steps of the procedure described in Chapter 

5 cannot be followed. It was chosen to perform dynamic analyses considering 

several values of PGA, which were defined a-priori. Furthermore, due to the time 

needed to perform an analysis, it is not possible to repeat the procedure for all Time 

Histories (THs) considered in Chapter 5. Indeed, using an Intel Core 2 Duo E8400 

processor at 3.00 GHz with 4 GB of RAM DDR2 at 332 MHz, the analyses take in 

average 4 days to run, considering a time history of 10 s.  
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7.4.1 Selection of Time Histories and PGA Levels 

Ten THs for both soil A and soil D were previously considered. For each soil 

type, the minimum number that is reasonable to be considered is three, in a way 

that each one is representative of the average, the maximum or the minimum of the 

expected response. The chosen parameter for the selection of the THs was the 

Arias Intensity (Arias, 1970), as it is representative of both frequency content and 

amplitude of seismic motion. 

Arias Intensity (IA) is defined by (Eq. 7.5), whereas Fig. 7.8 shows the 

normalized Arias Intensities for time histories on both soil A and D. 

   
 

  
∫        

 

 

 (Eq. 7.5) 

 

  

Fig. 7.8 Normalized Arias Intensity for soil A (left) and soil D (right) time histories. 

 

Since the extreme values may lead to strongly under- or overestimated 

evaluations, it was chose to not consider the THs related to the effective maximum 

and minimum value of IA. So the selection was limited to the other 8 THs, 

considering those related to maximum, minimum and average value of IA. In this 

way, time histories number 3, 4 and 10 were chosen for soil A, and time histories 3, 

4 and 7 were chosen for soil D. Fig. 7.9 shows the elastic displacement spectra of 

chosen THs, using the colour light blue, orange and red for the spectra of TH 

related to, respectively, the minimum, average and maximum value of Arias 

Intensity (excluding the extreme values). The code recommended spectra are 

plotted in blue continuous line, whereas the spectra of the other THs are plotted 

using dashed grey lines. 
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Fig. 7.9 Elastic Displacement Spectra of chosen Time Histories for soil A (left) and soil D 

(right). 

 

For what concerns the choice of PGA levels, the results obtained from the tests 

on shaking table were taken into account. The experimental tests were carried out 

using a record of the earthquake that happened in Montenegro in 15/4/1979, 

considering the two main directions X and Y, with increasing levels of nominal PGA 

(each 0.05 g) by simply scaling the initial input accelerations to the desired step 

level. On the PGA levels for dynamic analyses, the PGA measured by the 

accelerometers placed in the X and Y directions attached to the RC base of the 

houses were considered. 

The results are summarized in Table 7.5 in terms of PGA, nominal and 

measured, and corresponding maximum top displacement. Assuming that the ideal 

elastic limit is related to a drift limit equal to 0.1% (top displacement equal to 

3.6 mm), it is obtained a PGA level of about 0.20 g. 

 

PGA (nominal) 
PGA (measured) Top displacement 

X Y X Y 

(g) (g) (g) (mm) (mm) 

0.10 0.078 0.101 2.02 1.73 
0.20 0.120 0.156 2.58 3.07 

0.25 0.182 0.199 3.25 3.55 

0.30 0.164 0.268 7.14 7.59 

0.35 0.180 0.315 5.05 5.26 

0.40 0.195 0.424 5.86 5.73 

0.45 0.206 0.400 8.35 9.11 

0.50 0.251 0.417 11.77 18.78 

0.55 0.280 0.447 14.47 21.31 

0.60x 0.299 0.199 15.35  

0.65x 0.317 0.277 17.95  

0.70x 0.546 0.304 28.18  

0.70x(2) 0.594 0.348 36.08  

Table 7.5 SM model: experimental PGA and maximum top displacement. 
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Each time history was applied, separately, in both principal directions, X and Y. 

Since the aim of this study is to evaluate the equivalent damping for the whole 

structure beyond the elastic phase, it was initially considered the PGA levels 

starting from 0.30 until 0.75 g, each 0.15 g. During the analyses, it was found that 

drift levels, related to the same PGA, are sensitively lower for soil A than for soil D 

and lower for analyses in X direction than those in Y direction. 

In order to obtain drift values comprised between 0.1 % and 1.0 % the PGA 

levels listed in Table 7.6 were used. The total number of performed analyses is 45, 

27 in X direction and 18 in Y direction.  

 

Direction PGA - Soil A (g) PGA - Soil D (g) 

 (g) (g) 

X 0.30, 0.45, 0.60, 0.75, 0.90 0.30, 0.45, 0.60, 0.75 

Y 0.45, 0.60, 0.75 0.30, 0.45, 0.60 

Table 7.6 PGA levels considered for the analyses. 

7.5 Methodology 

For each TH and each PGA level considered, a dynamic analyses with the 

described model was performed. The considered material properties were those 

listed in Table 7.1 for masonry and in Table 7.3 for the other materials. As boundary 

conditions, the house was considered as fixed at the base. The next step is the 

estimation of properties of equivalent SDOF system. Then, the procedure described 

in §5.2 can be applied starting from step 4. 

7.5.1 Determination of Equivalent SDOF System 

The results of the analyses allow the determination of the displacement shape, 

that is evaluated checking the displacements in the considered direction of the 

geometric barycentre of floors, at the attainment of the maximum top displacement. 

The whole structure can be schematized as a n-DOF oscillator, considering the 

mass lumped at each intermediate node. At this point, (Eq. 2.22), (Eq. 2.23) and 

(Eq. 2.24) can be used to computed the characteristics of the equivalent SDOF 

system, i.e. target displacement (Δd), effective height (He) and mass (me), 

respectively. The effective period of equivalent SDOF system is computed by 

inverting (Eq. 2.20), that is reported here for simplicity: 
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      √
  

  
    √

    

  
 (Eq. 7.6) 

where Vb is the base shear corresponding to maximum top displacement. 

Since the structure has two storey, it could be consider 2 DOF, one for each 

floor. The tributary mass for each DOF can be computed by sum of floor mass with 

the half of masses of the walls masonry of both upper and lower storeys. Naturally, 

for the top DOF, only the lower storey, i.e. the second, has to be considered. This 

approach is commonly followed with frame buildings, for which the majority of total 

mass is due to floors. For what concern masonry buildings, instead, the majority of 

total mass is due to masonry walls, hence such an approach, for a two-storey 

building, leads to neglect about ¼ of the actual mass. 

In order to evaluate the limits of this strong approximation, it was also 

considered a second method, based on that proposed by (Adhikari et al., 2008) for 

massive tall piers of long span bridges. More precisely, the whole structure was 

schematized as 4 DOF, considering 2 DOF placed at middle inter-storey level in 

addition to the 2 DOF at floors level. In such a way, for a two-storey building, only 

about 1/8 of the actual mass is neglected. In the following, the first method will be 

indicated with 2DOF, the second with 4DOF. 

7.6 Results of the Analyses 

7.6.1 Displacement Shape 

The main aim of this section is to describe the displacements shapes found by 

dynamic analyses. It is important to point out that, as reported in §2.5, in absence of 

specific indication a linear displacement shape is normally assumed, i.e. 

displacement proportional to height. Since displacements obtained from numerical 

analyses are closer to the experimental results in Y direction, § 7.3.4, in this section 

the results obtained for the analyses in Y direction are presented. However, the 

results obtained from the analyses in X direction do not sensitively differ.  

Fig. 7.10 shows the obtained displacement shapes, normalized to maximum 

displacement in order to be compared at different levels of PGA. It can be noticed 

that they are non-linear with height, with a shear-type deformed shape. 

Furthermore, the middle-storey DOFs showed displacements that can be consider 
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linear with those at storey levels. For this reason, in the following, the displacement 

shape will be identified by normalized displacement at first floor (ΔFF/Δtop). 

Given a level of PGA, top displacements (Δtop) are not the same between two 

soil types. More precisely, at the same level of PGA, Δtop is greater for soil D than 

for soil A. It has been found that for a PGA of 0.30 g on soil D, the corresponding 

total drift (Ψtot = Δtop/Htot) is about 0.25%. The same level of deformation is reached 

by analyses on soil A with a PGA of about 0.45 g (Fig. 7.11, left). Furthermore, the 

same levels of PGA, for both soils, are related to first interstorey drift (ΨFF) of about 

0.30% (Fig. 7.11, right).  

 

   

   

Fig. 7.10 Normalized displacement shapes at several level of PGA for soil A (above) and soil 

D (below). 
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Displacement shape is identified by ΔFF/Δtop equal to about 0.65÷0.70, 

independently from PGA level. This means that displacement shape remains 

constant for different levels of damage. This fact appears to be not consistent with 

experience, according to which ΔFF/Δtop should increase with the increasing of 

damage. Probably the model is not able to reproduce, with enough accuracy, the 

actual response when too large inelastic deformations are required. However, this 

limit does not influence the following observations. In addition, the interstorey drift 

can be considered as the meaningful parameter in order to describe the evolution of 

damage, so in the following sections each parameters will be referred to ΨFF.  

 

  

Fig. 7.11 PGA versus Total (left) and First Interstorey (right) Drift. 

7.6.2 Equivalent SDOF system 

The evaluation of effective displacement shape allows the definition of 

equivalent SDOF system. According to the number of DOFs chosen in the 

schematization, the characteristics of equivalent SDOF system can be different.  

The first quantity that can be calculated is target displacement Δd, which 

represent the displacement of equivalent SDOF that corresponds to Δtop. Fig. 7.12 

shows the comparison between normalized target displacement (Δd
*
 = Δd/Δtop) 

plotted against ΨFF, obtained by two methods (2DOF and 4DOF) on both soil types. 

The 2DOF method leads values of Δd
*
 that are higher than those of 4DOF, and the 

type of soil seems not have an influence on this parameter. In addition, giving the 

same method, values of Δd
*
 are constant with the increase of ΨFF. The average 

values are 0.82 and 0.77 for 2DOF and 4DOF, respectively.  

 



Equivalent Viscous Damping and Inelastic Displacement for Strengthened and Reinforced Masonry Walls 

150 

  

Fig. 7.12 Normalized Target Displacement vs First Interstorey Drift for soil A (left) and D 

(right). 

 

Fig. 7.13 shows the comparison between normalized effective heights, He
*
, 

plotted against ΨFF, obtained by two methods (2DOF and 4DOF) on both soil types. 

It is easy to notice that 2DOF method leads to higher values of He
*
 than those of 

4DOF, and furthermore that the type of soil seems not to have an influence on this 

parameter. Both methods give a constant values of He
*
 with the increase of ΨFF so it 

is reasonable to consider He
*
 independent of interstorey drift - and so from damage 

level - and from soil type. The obtained mean values are 0.73 and 0.68 for 2DOF 

and 4DOF, respectively. 

 

  

Fig. 7.13 Normalized Effective Height vs First Interstorey Drift for soil A (left) and D (right). 

 

Regarding the effective mass, it is important to point out that neither 2DOF nor 

4DOF methods take into account the total mass of the house. Indeed, the former 

neglects half of the masonry wall mass of ground floor, the latter a quarter. This 

means that, despite the total mass is 21905 kg, the masses taken into account by 

2DOF and 4DOF methods are 17406 and 19660 kg, respectively. 

Fig. 7.14 shows the comparison between normalized effective mass, 

me
* 
= me/mtot, plotted against ΨFF, obtained by the two methods on both soil types. 

The 2DOF method gives lower values than those obtained with 4DOF method, 
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whereas soil type has not an influence on this parameter. The obtained mean 

values are 0.76 and 0.81 for 2DOF and 4DOF, respectively. 

 

  

Fig. 7.14 Normalized Effective Mass vs First Interstorey Drift for soil A (left) and D (right). 

 

The characteristics of equivalent SDOF system are independent of ΨFF because 

the displacement profile is constant with the evolution of damage, as showed in the 

previous paragraph. The differences of SDOF characteristics obtained by two 

method are mainly due to different amount of total mass that is taken into account. 

Indeed, the displacement shapes can be considered the same, since displacements 

at middle-storey DOFs can be considered linear with those at storey level, as 

observed in the previous paragraph. This is confirmed by the equivalent periods 

obtained by two methods, which are showed in Fig. 7.15. It can be noticed that the 

curves related to different methods are almost perfectly superimposed, and so it 

can be concluded that, for this structure, schematization with 2DOF is enough 

accurate. 

 

  

Fig. 7.15 Effective Periods at several level of PGA for soil A (left) and D (right). 
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7.6.3 Equivalent Viscous Damping 

In the previous paragraph it has been proven that Te is independent from 

number of DOF considered in the schematization of this real structure. However, 

other characteristics of equivalent SDOF are dependent of such a choice, above all 

Δd. This means that, in order to obtain the same effective period, the values of 

equivalent viscous damping, obtained with the two methods, have to be different. 

More precisely, since Δd for 2DOF is greater than the one for 4DOF, the values of 

ξeq obtained with 2DOF will be lesser than those with 4DOF. 

Fig. 7.16 shows the comparison between obtained values of ξeq, according to 

2DOF and 4DOF, and damping curves for SDOF described in §6.3.1. Black 

indicators are referred to 2DOF schematization, the grey indicators to 4DOF, 

whereas circular indicators are referred to analyses in X direction and triangular 

indicators are referred to analyses in Y direction. As expected, damping values for 

4DOF are greater than those for 2DOF. The difference is more or less constant, 

with an average of about 20%. On the contrary there is no difference between 

results obtained from analyses in different directions, since the two point clouds are 

almost superimposed. 

The limited total number of analyses (24 on soil A and 21 on soil D) does not 

allow to identify in a reliable way the curves of MDOF using statistical method. For 

this reason, in the following, only the comparison between the obtained values and 

SDOF curves will be described. 

It can be noticed that for drift less than 0.1%, the obtained values are very small, 

generally smaller than 2%. Beyond this limit, damping values show a sudden 

increase. For soil type A, it can be said that the majority of values are comprised 

between squat curves and slender-2.0 curves. For soil D, instead, it can be noticed 

that some values, about the half, are almost superimposed to slender-1.0 curves, a 

couple (2DOF and 4DOF for the same analysis) is below and the others are above 

these curves. The couples that are above are closer to slender-2.0 and S2 curves, 

or in any case they are comprised between these and slender-1.0 curves.  

Furthermore, it seems that MDOF damping values are higher on soil A 

compared to those on soil D. In any case, due to already mentioned limited number 

of analyses, neither it is possible to investigate more in detail this issue, nor make 

further remarks. On the other hand, this comparison allows to confirm the validity of 

curves described in §6.3.1, since the great majority of damping values are 

comprised between higher and lower curve. 

 



7. Application on Multi-Degree of Freedom Structure 

153 

 

 

Fig. 7.16 Comparison between damping curves for SDOF, related to drift, and damping for 

MDOF on soil A (above) and soil D (below). 

7.6.4 Damping Correction Factor 

Fig. 7.17 shows the comparison between effective ratio dIN/dEL, η _eff, and 

damping corrector factors obtained in §0. In these graph curve related to coefficient 

α recommended by code (5) is called η_code, whereas the one related to 

coefficient α obtained by regression analysis is called η_fit. The used values of 

coefficient α are those proposed in §6.3.3, i.e. 0.5 and 2.0 for soil type A and D, 

respectively.  

It can be noticed that effective η obtained by 2DOF and 4DOF have the same 

trend, that confirm the equivalence of two schematizations for this structure. 

Furthermore, this trend seems to be well correlated with the function adopted to 
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describe η factor in function of equivalent damping. This confirms the validity of the 

function expressed by (Eq. 5.3) in order to evaluate η factor. In addition, very similar 

results were obtained by analyses in different directions, as previously noted for 

damping values. 

For what concern the capability of η factor, using α recommended by code or 

obtained by fitting, it can be noticed that the analyses on two soil types have given 

slightly different results. For soil type A, η_fit approximates η_eff in a satisfactory 

way. η_code, instead, overestimates the effective values in all the range of damping 

variability. The values of coefficient R
2
 are 0.91 and 0.35 for η_fit and η_code, 

respectively. 

 

 

 

Fig. 7.17 Comparison between effective damping correction factor and curves provided by 

code and obtained for SDOF. Results on soil A (above) and soil D (below). 
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For soil type D, instead, η_fit approximates η_eff in a satisfactory way for 

damping lesser than 15% and higher than 25%, whereas slightly underestimates 

effective values for intermediate damping values. On the contrary, η_code 

overestimates the values of η_eff related to damping lesser than 15% or higher than 

25% and approximates in a better way the other values. The values of coefficient R
2
 

are 0.91 and 0.86 for η_fit and η_code, respectively. 

7.7 Summary and Conclusions 

An application of the proposed procedure, for determination of equivalent 

viscous damping on MDOF system has been presented. The real structure has 

been modelled by finite element model with a damage model that has been 

calibrated on the bases of experimental results of shear-compression tests. With 

this model, several time-history analyses have been performed, with the aim of 

determine the peak displacement response. Equivalent SDOF has been determined 

with two methods, i.e. taking into account a schematization with 2 or 4 DOF. Then 

the procedure presented in Chapter 5 has been applied, and the obtained results 

have been compared with those related to single walls presented in Chapter 6. 

The main results gained in this phase of work are: 

 For such a simple structure, displacement shape can be considered 

independent from the number of DOF considered in the schematization of 

MDOF, since inter-storey displacements are linear with those at storey levels. 

This is confirmed by the fact that effective periods obtained considering a 

different number of DOF are the same. 

 Displacement shape can be identified by normalized displacement at first 

floor, ΔFF*. This parameter seems to be independent of increasing damage 

level, which is identified by first inter-storey drift (ΨFF). It can be considered 

constant and equal to about 0.65÷0.70.  

 Since displacement shape can be considered constant at several damage 

levels, i.e. interstorey drift, the equivalent SDOF system is identified by an 

effective height of about 0.7 times the total height and an effective mass 

around 0.8 times the total mass.  

 The obtained values of equivalent damping are very small, less than 2%, for 

drift less than 0.1%, then they sudden increase. For soil type A they are all 

comprised between the obtained curves for squat and those for slender-0.2 

panels. For soil type D, instead, they are comprised between the obtained 

curves for slender-2.0 and slender-1.0 panels. It can be concluded that this 
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application confirm in general the results gained in Chapter 6, although it is 

not yet possible to identify the most reliable curve. 

 The values of effective factor η are in good agreement with the function used 

in the codes. These values have been compared with η-function, using the 

values of α proposed by codes and those obtained by regression. The 

obtained values of α coefficient lead to estimate in a satisfactory way the 

effective η, for soil type A, whereas, for soil type D, it involve a slightly 

underestimation of effective η for damping comprised between 15% and 

25%. However, it can be said that proposed values of coefficient α give more 

reliable estimation of effective η, since the obtained values of coefficient R
2
 

are higher than those obtained with the value of α proposed by codes. 

 The observed limits are mainly due to limited number of performed analyses. 

There is the need to carry out further analyses, considering a wider number 

of time histories and structural configurations. However, the obtained results 

allow to gather these firsts considerations. 
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8 CONCLUSIONS 

8.1 Introduction 

In the present chapter, some general remarks about the research carried out 

and the main conclusions obtained by the analyses are presented.  

The main aim of this study was that of contributing to the knowledge of 

parameters typical of non-linear cyclic behaviour of masonry systems subjected to 

in-plane seismic actions. Two masonry types were taken into account: modern 

reinforced masonry and historical stone masonry strengthened by hydraulic lime-

based grout injections. 

A new hysteretic model, starting from the one proposed by (Tomaževič & 

Lutman, 1996) and based on results of shear-compression tests was developed. 

This model was used within a procedure for the determination of equivalent viscous 

damping. The results of this procedure were analysed and discussed, obtaining 

information not only about damping factor, but also on the ratio between inelastic 

and elastic displacements. In addition, the procedure was also applied to a MDOF 

structure, obtaining information on the determination of equivalent SDOF system, 

and partially confirming the results obtained on single walls.  

8.2 Analysis and Modelling of Cyclic Behaviour 

The analysis of results obtained by cyclic shear-compression tests allowed to 

identify the attainment of four limit states, for both masonry types. The second LS is 

related to the failure mode, and it is called critical limit state. For RM, it can be 

related to a flexural failure or a shear failure. In the former case, critical LS is 

identified by yielding of vertical bars (ψ = 0.50-0.70%), in the latter by the opening 

of first diagonal crack (ψ = 0.30%). For SM, critical limit is identified by opening of 

first diagonal crack for squat and slender-2.0 specimens (ψ = 0.20%), whereas for 

slender-1.0 specimens it is related to rocking mechanism (ψ = 0.35%). 

The ultimate LS, that can be identified by maximum displacement capacity, is 

characterized by a wide variability. Given the importance of this LS on the safety 

evaluation, it is reasonable to consider a conservative value. Assuming this value 
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as the lower limit of variability range, it can be said that the studied RM system is 

characterized by ultimate drift of 0.8% and 2.0% for shear and flexural behaviour, 

respectively. 

For what concern SM, it has been noted that ultimate capacity for squat 

specimens is similar to that of slender-2.0, i.e. about 0.7-0.9%, whereas slender-1.0 

are characterized by about a twice in amount displacement capacity. The collapse 

was associated to shear mechanism for all the specimens, even if initial damage 

pattern was due, in some cases, to other mechanisms (i.e. rocking). Since the 

considerable displacement capacity obtained by slender-1.0 specimens is 

influenced by rocking mechanism, and considering that also for these panels the 

failure was due to shear, it is reasonable to consider the ultimate capacity limit as 

0.7% independently from aspect ratio and vertical stress. 

The model proposed by (Tomaževič & Lutman, 1996) was used for modelling of 

experimental tests. Starting from shortcomings of this model, when applied to the 

masonry types studied in this work, a new hysteretic model was developed. The 

input parameters of the model are four limit states, which define the idealized 

envelope curve, and two coefficients, which are calibrated by imposing the equality 

of both the input and dissipated energies between experimental and modelled 

loops. The unloading rules were defined on the basis of experimental observations, 

in order to reproduce the actual shape of hysteresis loops. Reloading rules were 

established in order to ensure the degradation of stiffness with the increasing of 

maximum displacement.  

The model is capable of reproducing the actual behaviour for both failure modes 

of RM and, with a little variation, also for SM. In particular, the model was enough 

accurate in modelling of dissipated energy by hysteresis, since, for each specimen 

of both masonry types, the relative error between modelled and experimental 

dissipated energy is in average lower than 10%. Hence, the model was 

implemented in Matlab environment, in order to carry out dynamic analyses. For 

what concern the integration of equation of motion, it was used the Newmark 

constant average acceleration scheme.  

The model was then tested, performing a large number of analyses using 

several time histories, in order to highlight and debug eventual instability. Lastly, the 

model has proven to be robust and capable of performing non-linear analyses with 

very low computational effort, and it was used within an iterative procedure for the 

determination of equivalent damping. 
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8.3 Results of the Analyses 

The results of the analyses showed that equivalent viscous damping increase for 

increasing inelastic displacements, when period corresponding to secant stiffness is 

included in spectrum plateau. Otherwise damping can be considered constant.  

For reinforced masonry, failure mode is the most sensitive parameter for the 

evaluation of damping. Conversely, although the investigated range is quite limited, 

it has been observed an independency of the pre-load level applied. In addition, 

shear curves, due to low period shifts, are independent from soil type. Flexural 

curves, instead, have period shift greater than those of shear, and for this reason 

they are dependent from soil type. For this failure mode, at the same drift level, soil 

D involves damping value higher by about 30% compared to soil A. Since spectra of 

soils A and D can be considered as the limits of responses for several types of soil, 

the values of damping found for these soil types represents a reliable range of 

variability of damping. 

Assuming that critical LS can be reasonably considered as damage LS, shear 

behaviour is characterized by a damping value of 7%, independently from soil type. 

Flexural behaviour involves values that range between 8 and 10%. Since this 

difference is quite low, it can be concluded that, in the case of damage limit state, 

equivalent damping can be considered independent from soil type also for flexural 

behaviour. For practical use, it would be reasonable to use a conservative value of 

8%, that is very close to the value proposed for shear behaviour. Hence, for 

damage limit state, it is reasonable to use the unique value of 7%, independently 

from soil type and failure mode. For what concern ultimate LS, assuming the limits 

mentioned so far, shear behaviour is characterized by a damping value of 12%, 

whereas flexural behaviour involves values ranging between 12 and 16%, 

according to soil type. The former is related to soil of type A, the latter to soil of type 

D. In the case of other types of soil, intermediate values could be used. 

For what concern the strengthened stone masonry considered in this study, 

several difficulties arose in the interpretation of results. These were due, on one 

hand, by the high level of pre-load applied during the experimental tests, and on the 

other by the high non-homogeneity of this material, that increases the probability of 

local phenomena, which influence the global behaviour more than it occurs in 

modern masonry. In order to obtain more reliable results, the analyses should be 

based on a wider number of experimental tests.  

However, the obtained results for slender-1.0 panels can be considered as a first 

indication for practical use. For these panels, at lower drift levels, an independency 

from type of soil was observed. Since the suggested ultimate displacement 

capacity, i.e. drift of 0.7%, is included in this range, the same values of damping, 
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independently from soil type, can be considered. Assuming, as for RM, that critical 

LS can be reasonably considered as damage LS, the suggested values of damping 

are 9% and 14% for damage and ultimate LS, respectively.  

Relationship between elastic and inelastic displacement is more than 

proportional. A good approximation of numerical results can be obtained using a 

power function. For what concern RM, the obtained relationships are in good 

agreement with results gained for damping. Indeed, they confirm, for both failure 

modes, the independency from vertical stress level, and also, in the case of shear 

behaviour, from soil type. Furthermore, these functions, for low values of 

displacement, are very close to each other, confirming that at damage limit state the 

equivalent damping can be considered independent from type of soil for both failure 

modes. For SM, instead, this phase of work highlighted the limits due to the great 

variability of experimental results, linked to limited number of experimental tests on 

which the analyses were based.  

Values of effective ratio between inelastic and elastic displacement, i.e. 

Damping Correction Factor, are well correlated with formulation proposed by 

several codes, among which (EN 1998-1, 2004) and (DM 14/01/2008, 2008). 

Calibration of the coefficient α used in this formulation led to values independent 

from failure mode and level of vertical stress for both masonry types, and slightly 

different according to soil type. For RM, the values of 1.0 and 1.9 were obtained, 

respectively for soil A and D. For SM, similar values were obtained, that are 0.5 and 

2.0 for soil type A and D, respectively. Since the variability of coefficient α does not 

have an appreciable effect on the damping correction factor, it would be possible to 

give a unique value for both soil types. In addition, since the range of variability of 

this coefficient is similar for both the studied masonry types, it is reasonable to 

consider the same value for both the masonry types. This value should be 

representative also of other soil types, which were not taken into account in this 

study. So it is conservative to consider the value obtained for soil D, that basically 

leads to consider the formulation included in the previous version of EC8, that is 

also suggested by (Priestley et al., 2007).  

8.4 Multi-Degree of Freedom 

The structure on which DDBD method was applied, is historical stone masonry 

building, strengthened by grout injections. It is obvious that, for this type of 

masonry, the method is used as an assessment of the expected performance, 

rather than an actual design method. The studied structure is a simple two-storey 
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building. For this kind of structures, a schematization with two degree of freedom 

can be considered enough accurate.  

Displacement shape is identified by normalized displacement at first floor, ΔFF*, 

equal to 0.65÷0.70. According to this assumption, the effective height and mass can 

be considered constant, the former around 0.7 times the total height, the latter 

around 0.8 times the total mass. These results show that simplified determination of 

equivalent SDOF system, as described in §2.5, cannot be considered reliable. This 

is due to non-linearity of displacement shape.  

The obtained values of equivalent viscous damping are comprised in the 

variability range of those found by single walls, with some differences according to 

type of soil. Hence, even if this phase of work does not allow to gain reliable 

information for practical use, it has to be observed that it confirms the general 

validity of results obtained for single walls. The limits are mainly due, on one hand, 

to the limited number of analyses performed on MDOF system, i.e. three time 

histories for two soil types and one structural configuration, and on the other, on the 

limited number of experimental configurations on which analyses on SDOF systems 

are based. Notwithstanding, the validity of proposed value of coefficient α is 

confirmed for MDOF structures.  

8.5 Future Work and Developments 

Further developments of the research carried out on reinforced masonry system 

could be aimed to investigate the evaluation of equivalent damping related to 

different systems, in order to confirm the soil independency of shear type of 

behaviour and determine formulations related to flexural behaviour for several soil 

types, if necessary. In addition, there is the need to take into account a wider range 

of pre-load levels, in order to further investigate the independency of equivalent 

damping from pre-load. Another development is represented by the application of 

our method to MDOF systems, with the aim to validate the results obtained for 

single walls. In addition, such an application would be aimed also to the 

determination of equivalent SDOF system for this masonry type, considering 

several aspects, such as structural configuration, number of storey etc…  

For what concern stone masonry, since the variability of experimental results, a 

first important development could be that of taking into account a wider 

experimental data-base, in order to properly consider the variability, due to local 

phenomena, of this masonry type, and also more realistic vertical stress levels.  
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A general issue for both masonry types is represented by the use of recorded 

earthquake ground motions, in order to take into account, in addition to soil type, 

also the magnitude and distance from epicentre on the evaluation of damping.  

Finally, the calibrated damage model can be used to perform parametric 

analyses, in order to investigate the influence of several aspects, such as structural 

configuration, geometry, floor stiffness etc…, on the displacement shape and on the 

other parameters. In addition, a wider number of time histories could be used, in 

order to allow a significant averaging of results. 
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