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Chapter 1

Introduction

The theoretical understanding of many-body systems is one of main challenges in
quantum Physics. It is already impossible to solve a system with more than four
particles using analytic methods. Theoretical physics has made many efforts in
order to develop tools to study many-body systems. To overcome the limit of
applicability of exact analytical solution it is necessary to use some approxi-
mations. An outstanding examples is given by Mean-field theory (MFT). The
main idea of MFT is to replace all interactions to any one body with an average
or effective interaction. This reduces any multi-body problem into an effective
one-body problem. However one MFT limitation is that it is not possible to
study systems with local dis-homogeneities, like solids.

Methods trying to compute on exact solution of Schroedinger equation for
a given Hamiltonian Ĥ are much more demanding. For a limited number of
particles (N < 10), it is possible to compute eingenvalues and eigenstates of Ĥ
by computing its matrix elements on a given basis, and then diagonalizing the
matrix. For larger system the direct knowledge of the wavefunction is not pos-
sible, and stochastic techniques, known under the names of (Quantum) Monte
Carlo methods must be used.

There are many variants of QMC methods with different possible applica-
tions. In this work we focus on two types: Variational (VMC) and Diffusion
(DMC) Monte Carlo methods. VMC and DMC are very used and tested meth-
ods. The scientific community knows very well their limits and capacities. These
two methods are particularly indicated in order to study the ground state prop-
erties of a quantum system at temperature of 0K. However they can not give
information on time evolution of the system.

In this work we studied two different kinds of systems. The first is a two–
dimensional electron gas laterally confined by a harmonic potential in the ef-
fective mass–dielectric constant approximation. The second is a solid 3He in
presence of defects.

We chose these systems not only for the physics interest but also for the
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1.1. LATERALLY CONFINED 2D ELECTRON GAS

computational challenge they pose.
First of all studying Fermion system by QMC methods means to face the

notorious sign problem. In the first system, there is the classical sign problem
of the DMC method, which can be milded in our case by a well known approxi-
mation, the fixed–node approximation. The second system requires a variational
treatment in which we have a integral sign problem. Computing the mean value
of the energy, using Fermionic Shadow Wave Functions (FSWF), positive and
negative terms in the integral appear. Summing these terms, the positive con-
tributions tends to cancel the negative ones. However the noise is too large to
obtain a useful signal.

Furthermore the electrons system is confined, strongly correlated and we do
not know the equilibrium phase a priori. All these aspects make difficult the
computation. We also studied the equation state of 3He solid with a vacancy,
meaning that the system is highly dis-homogeneous making it necessary to find
a wavefunction which can describe a dis-homogeneous phase.

The effort of this work is to find a solution to some technical problem that you
have when you want to study a strongly correlated and highly inhomogeneous
many–Fermion systems with the Quantum Monte Carlo Methods. In this way
we want to try to say more about these systems.

1.1 Laterally confined 2D Electron Gas

The two dimensional (2D) electron gas laterally confined by some potential is
a fundamental model in many-body physics since the progress in nanostructure
technology has allowed the fabrication of 2D quantum stripes.

There are many different kinds of objects that go under the name of quantum
wires. Our interest is focused on semiconductor quantum wires.

It is possible to create a two-dimensional electron gas (2DEG) at junction in-
terface of two semiconductor (see fig. 1.1). In particular, a kind of quantum wires

Figure 1.1: Energy Band of basic high-electron-mobility-transistors (HEMT).

2



CHAPTER 1. INTRODUCTION

Figure 1.2: A one dimensional quantum wire realized at the edge of a two di-
mensional electron gas [1]

is obtained by etching a semiconductor quantum well, obtained at the junction
between differently doped semiconductors (e.g. GaAs/AlGaAs) (see figure 1.2).
Split-gates technique is a method for creating a smooth one-dimensional con-
striction in a 2DEG. When a negative voltage Vg is applied to a lithographically
defined pair of Schottky split-gates above a GaAs/AlxGa1−xAs heterostructure,
shown in Fig. 1.3, the 2DEG is depleted from beneath the gates and a 1D
channel is left defined between them. If the elastic mean free path le is much
greater than the width W and length L of the channel, transport through the
1D constriction is ballistic and the differential conductance, G(Vg)=N(2e2/h),
is quantized, where N is the number of transmitted 1D subbands.

Experiments in these nanostructures have pointed out the quantization of
the conductance G in units of 2e2/h, which reflects the number of active channels
in the transport measurements[4, 5, 6]. A conductance structure close to G =
0.7(2e2/h) has been observed in many cases[7, 8, 2, 3, 9, 10] (see figure 1.4).
These experiments are made on quantum point contacts (which are quantum
wires of length l = 0) or on quantum wires with length of few µm, formed
in GaAs/AlxGa1−xAs heterostructures, generally in the absence of a magnetic
field. The intensity of this structure changes from 0.5(2e2/h) to 0.7(2e2/h), that
depends on length of the quantum wire, electron density n1D and temperature.

This structure has given rise to many interpretations based on sponta-
neous spin polarization of the system mediated through the exchange-correlation
interaction[11, 12, 13, 14, 15, 16], on possible manifestation of a Kondo effect[17,
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1.1. LATERALLY CONFINED 2D ELECTRON GAS

Figure 1.3: (left) Schematic of a split-gate device, where S and D represent the
source and drain contacts [2]. (Right) Gate configuration used to define the
wire. The top gate and side gates are separately adjusted to control the electron
density and the wire confinement potential [3].

18, 19], or of Wigner crystallization of the confined electron gas at low density[20]
or of a Tomonaga-Luttinger liquid behavior[21, 22, 23, 24, 25, 26, 27, 28, 29, 30].
All these results are based on specific models or approximations like, for exam-
ple, the local spin density functional theory.

In this thesis we present a fixed node diffusion Monte Carlo calculation of
the ground state of a 2D quantum stripe of infinite length and finite width
described by the 2D Hamiltonian of N interacting electrons laterally confined
by a parabolic potential. The extension of the stripe in the third dimension
is neglected, as in most theoretical descriptions. This approximation is jus-
tified by the fact that the confinement of the electron in the quantum well
is extremely strong, and at all relevant densities only one subband is occu-
pied. We calculate the ground state energy for the unpolarized and fully spin-
polarized liquid phases and solid phase. Previous Monte Carlo calculations of
quasi-unidimensional systems have been performed by Casula, Sorella, and Sen-
atore [31]. The authors in that case considered a one dimensional system with
an interaction that effectively includes the width of the wire. However, be-
ing the Hamiltonian one-dimensional, no phase transitions can occur in the
system, according to the Lieb–Mattis theorem[32]. Our calculation being fully
two–dimensional, makes it possible to discuss relative stability of phases with
different symmetry.

We met many technical problems to implement this model.
First of all it was necessary write the Ewald summation for a confined two-

dimensional system in order to describe the Coulomb potential. We found an
expression for the Ewald sum that was not simple to implement. We had to
tabulate all the terms to minimize the computational time. In one integral term
we needed to find a specific numeric method in order to obtain a satisfactory

4



CHAPTER 1. INTRODUCTION

Figure 1.4: Experimental result[7]. Conductance of a l = 0.5µm quantum wire
as a function of side gate voltage for VT =560 mV-1500 mV (right to left). Inset:
Conductance as a function of side gate voltage for VT=1.5 V

convergence. Then many tests were necessary to optimize the Ewald break up.

We made many checks on wavefunction and also we verified the ergodicity
of the system was guaranteed.

We did not have a direct comparison with another computational model that
could verify the correctness of our work. We made all the possible tests to assert
our work could explain this confined two-dimensional electron system.

The system was studied as a function of rs (0.5 ≤ rs ≤ 7) and ~ω0 (~ω0 =2,
4, 6 meV). ω0 is the confining parameter and rs is the one–dimensional Wigner-
Seitz parameter rs = 1/2ρ1D. The values of rs correspond at values of ρ1D

in the range 104 − 106cm−1. The combination of ω0 with ρ1D reproduces the
two–dimensional density of the experiments [7, 2, 3].

The results show us how the system tends to become more localized increas-
ing the confining parameter ω0. In this range of ω0 for rs > 3 we found the
polarized phase has the lowest energy. This last observation is the most inter-
est result of our work. This result could explain the conductance anomaly in
experiments.

5



1.2. FERMIONIC SHADOW WAVE FUNCTION

1.2 Fermionic Shadow Wave Function

The Fermionic Shadow Wave Function is an extension, for Fermion system,
of Shadow Wave Functions (SWF)[33]. SWF is a particular class of many–
body wave functions employed to study bosonic systems. Its main property is
that it describes a disordered phase and/or a crystalline phase of a quantum
system within the same functional form, which is manifestly translationally
invariant. In this way, it is possible to study non–homogeneous systems and
phase transitions. Using SWF, it is possible for example to study the equilibrium
point between two different phases of the system, which naturally emerges from
the wavefunction.

SWF were largely used to study properties of liquid–solid 4He [34] and 3He
[35], system with phase coexistence [36] or presence of defects or impurities [37]
and superfluid liquids with vortex excitations [38].

As it will be explained in the following chapters, the use of SWF for Fermions
presents severe technical difficulties in some cases. In the thesis the first applica-
tion of a FSWF antisymmetrized on the auxiliary degree of freedom is presented,
in wich some relevant physical properties has been computed successfully.

The general form of FSWF would be useful to describe many–body systems
with the coexistence of different phases as well in the presence of defects or im-
purities, but it requires overcoming a significant sign problem. As an application,
we studied the energy to activate vacancies in solid 3He.

3He is a very strongly interacting quantum system. In figure 1.5 the 3He
phase diagram is represented. Experimentally one finds that for temperatures
in the mK region, two superfluid phases appear in the liquid, and a quasi-
antiferromagnetic ordered bcc phase shows up in the solid, which changes into
a normal antiferromagnetic when the magnetic field is increased.

We focus our attention on the solid phase. In VMC or DMC the solid phase is
generally described by product of Gaussian orbitals. For a Fermion system it is
necessary, in principle, to use a determinant of Gaussians in order to consider the
antisymmetry of the system. In a regime of strong localization the determinant
of Gaussians is essentially equivalent to a product of localized orbitals because
of the rare occurrence of exchange among particles on different lattice sites. For
this reason, the simulation of a homogeneous quantum crystal, even in presence
of the Pauli principle, does not represent a significant challenge.

When the lattice symmetry is locally broken by the presence of the vacancy,
exchange among the atoms in the crystal becomes much more effective. The
phenomenon can also be viewed as a “motion” of the vacancy through the crystal
itself. The effect due to the Fermion nature of 3He become then evident at the
level of wavefunction. However, even a Slater determinant of localized orbitals
would not be a satisfactory choice. In fact, the relaxation of the lattice structure
around the vacancy contributes for a large fraction to the vacancy formation
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CHAPTER 1. INTRODUCTION

Figure 1.5: Phase diagram of 3He below 3 mK. The solid phase appears only
above the pressure of 34 bar. At high temperatures the liquid is in the normal
Fermi state. There are two superfluid phases, A and B.

energy. FSWF is the only wavefunction that can account for all these characters
of the system.

Our goal was find a way to make the calculations feasible. For solid 3He
with vacancies the improvements we have developed allowed us to meet this
challenge.
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Chapter 2

Quantum Monte Carlo Methods

The Monte Carlo methods [39] are a set of algorithms, which use the random (or
pseudo–random) numbers in order to solve mathematical problems. The Monte
Carlo methods are mainly used to compute integrals. The main difficulty in
solving an integral with the standard methods is the computation effort in-
creases exponentially with dimensionality of the integration domain. MC avoids
this problem. In fact the evaluation of a multidimensional integral is made by
sampling the integrand and averaging the sampled values. The statistical error
in the value of integral decreases as the square root of the number of sampling
points used, regardless of dimensionality. This is a consequence of the central
limit theorem.

In particular we are interested to introduce the Quantum Monte Carlo
Method (QMC) for study quantistic system. We start introducing the Varia-
tional Monte Carlo (VMC) and the Diffusion Monte Carlo (DMC) method. In
chapter 5 we talk about the Fermionic Shadow wave function FSWF, which are
a special way to do VMC.

2.1 Variational Monte Carlo

The Variational Monte Carlo (VMC) method is based on variational principle.
The expectation value of Ĥ evaluated with a trial wavefunction ψT provides a
rigorous upper bound on the exact ground-state energy E0:

EV =

∫

ψ∗
T (R)ĤψT (R)dR

∫

ψ∗
T (R)ψT (R)dR

≥ E0 (2.1)

where R = (~r1, ~r2, ..., ~rN) is the 3N -dimensional vector and ~ri is the position
of the i-th particle. In a VMC simulation the energy EV is evaluated using the
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2.2. DIFFUSION MONTE CARLO

Metropolis algorithm [40] and the integral 2.1 is rewritten in this way:

EV =

∫

|ψT (R)|2
[

ψT (R)−1ĤψT (R)
]

dR
∫

|ψT (R)|2dR (2.2)

where |ψT (R)|2 becomes the probability density and ψT (R)−1ĤψT (R) is the
quantity to accumulate. In VMC the configurations R are sampled following a
distribution probability.

VMC is often used to optimize trial wavefunction.

2.1.1 The Metropolis algorithm

The Metropolis algorithm (M(RT)2) has the great advantage of allowing an
arbitrarily complex distribution to be sampled in a straightforward way, without
knowledge of its normalization.

Suppose we define a 3N− dimensional vector R, a particular value of R is
called a walker or configuration. The probability density of finding the system in
the configuration R will be denoted by P (R) (where P (R) ≥ 0 and

∫

P (R)dR =
1). The M(RT)2 generated the sequence of sampling points Rm by moving the
single walker according the following rules [41]:

1) Start the walker at a random position R.

2) Make a trial move to a new position R′ chosen from some probability
density function T (R′ ← R).

3) Accept the trial move with probability

A(R′ ← R) = Min

(

1,
T (R← R′)P (R′)

T (R′ ← R)P (R)

)

If the trial move is accepted, the point R′ becomes the next point on the
walk, otherwise the next point remains R.

4) Return to step 2 and repeat.

2.2 Diffusion Monte Carlo

A practical method of studying the properties of a many body quantum system
is the Diffusion Monte Carlo (DMC) algorithm. DMC is a stochastic algorithm
based on transforming the analytic continuation of the Schrödinger equation in
imaginary time into a diffusion equation.

In this work we studied a system which is described by a real wavefunction,
so we limit our explanation to the case of using a real wavefunction.
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CHAPTER 2. QUANTUM MONTE CARLO METHODS

2.2.1 Description of DMC method

The Schrödinger equation in imaginary time τ = it is given by

− ∂

∂τ
ψ(R, τ) = Hψ(R, τ) (2.3)

A formal solution written in integral form is

ψ(R, τ) =

∫

G(R,R′, τ)ψ(R′, 0)dR′ (2.4)

where the kernel G(R,R′, τ) is the Green’s function of the operator H+ ∂
∂τ

, and
it can be expressed as the matrix element

G(R,R′, τ) = 〈R|e−(H−E0)τ |R′〉 =
∑

e−(En−EO)τφ∗
n(R)φn(R

′) (2.5)

where φn is a complete set of eigenvectors of H .
One starts choosing a trial wavefunction ψT , which is not orthogonal to the
ground state of the system. It is possible to write ψT as a linear combination of
φn:

ψT (R) = cnφn(R) (2.6)

The evolution in imaginary time of ψT is:

ψT (R, τ) = e−(H−E0)τψ(R, 0) = e−(H−E0)τ cnφn(R) (2.7)

Considering the limit for τ →∞ you obtain the ground state.

The non-interacting Hamiltonian

Let us consider the non interacting Hamiltonian of N particles with mass m

H0 = −
∑

i

~
2

2m
∇2
i (2.8)

the corresponding kernel G0 is a Gaussian with variance proportional to
√
τ :

G0(R,R
′, τ) =

( m

2π~2τ

)
3
2
N

e−
m(R−R′)2

2~2τ (2.9)

this equation describes the Brownian diffusion of N particles.
It possible to implement this equation writing the wavefunction as a set of
discrete sampling points, the walkers :

|ψ(R)〉 =
∑

k

〈xk|ψ〉 |xk〉 (2.10)

11



2.2. DIFFUSION MONTE CARLO

where |xk〉 = δ(R− Rk) is eingenfunction of position.
The evolution in imaginary time step ∆τ is:

ψ(R, τ + ∆τ) =
∑

k

G(R,Rk, τ + ∆τ) (2.11)

This set of Gaussian functions represents a distributions of walkers. In the limit
of τ →∞ these points represent the ground state of H0.

The interacting Hamiltonian

In order to solve the equation 2.3 with the Hamiltonian:

H = −
∑

i

~
2

2m
∇2
i + V (R) (2.12)

it is necessary to use the Trotter formula in this way:

G(R,R′,∆τ) ≈ e
−

“

V (R)+V (R′)
2

−ET

”

∆τ
G0(R,R

′,∆τ) (2.13)

that introduces an error in ∆τ (O(∆τ 3)).
Now the kinetic term is separated from the potential term and the wavefunction
can be rewritten

ψ(R, τ + ∆τ) =
( m

2π~2τ

)
3
2
N
∫

e−
m(R−R′)2

2~2τ e
−

“

V (R)+V (R′)
2

−ET

”

∆τ
ψ(R′, τ)dR′

(2.14)
The kinetic part gives a diffusion term, the potential part gives a branching
term:

w = e
−

“

V (R)+V (R′)
2

−ET

”

∆τ (2.15)

w represents a weight of the Green’s function.
The integral 2.14 is solved with Monte Carlo method by propagating the parti-
cles according the diffusion term. Instead the branching term gives the proba-
bility of multiply a configuration at the next step.

2.2.2 Importance sampling

Solving equation 2.3 by a purely diffusive random-walk process with branching
is rather inefficient, because the weight term 2.15 could have large fluctuations.
For example, if V (R) is the electron-electron and electron-ion Coulomb potential
the branching term can diverge ±∞. This leads to a large fluctuations in the
number of walkers and to a slow convergence when calculating averages [42].

One can overcome these difficulties by carrying out an importance-sampling
transformations using a “trial” or “guiding” wavefunction ψT (R) (Grimm and
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CHAPTER 2. QUANTUM MONTE CARLO METHODS

Storer,1971; Ceperley and Kalos, 1979; Reynolds et al., 1982). The idea is to
multiply the both member of eq. 2.3 for a known ψT (R) and rewrite it in terms
of a new probability distribution f(R, τ) = ψT (R)ψ(R, τ). After rearranging
terms we obtain

−∂f(R, τ)

∂τ
= −D∇2f(R, τ) + (EL(R)−ET )f(R, τ) +D∇ · (f(R, τ)FQ(R))

(2.16)
where D = ~

2/2m. Here the “quantum force” FQ(R) is defined as:

FQ(R) = ∇ln|ψT (R)|2 = 2
∇ψT (R)

ψT (R)

and in the coefficient of the branching term EL is the local energy defined as:

EL =
ĤψT (R)

ψT (R)

Under the assumption that ψT is not orthogonal to the ground state φ0, in the
limit of τ →∞ the distribution f(R, τ) becomes proportional to ψT (R)ψ0(R).

The three terms on the left-hand side of equation 2.16 represent a diffusion,
drift and branching process respectively. An approximate Green’s function for
small time-step ∆τ of such equation is given by the product of the individual
diffusion, drift and branching Green’s function[42]:

G̃(R′, R,∆τ) =
( m

4Dπ∆τ

)
3N
2

∫

dR”e

»

−
(R′

−R”)2

4D∆τ

–

(2.17)

× δ(R”− R−DFQ(R)∆τ)

× exp

{

−∆τ

(

1

2
[EL(R) + EL(R

′)]− ET
)}

2.2.3 Fixed–node approximation

In the DMC algorithm the wavefunction ψ(R) is represented by a population
density, therefore the algorithm is well defined only if ψ(R) is defined positive.
ψ(R) may also be everywhere negative, since the overall phase of the wavefunc-
tion is arbitrary. This implies that a wavefunction has to be without nodes.
This is a problem if we are interested in Fermionic system. The Fixed-node ap-
proximation [42, 41] is a method for dealing with the fermion antisymmetry.
Although not exact, it gives ground-state energies that can be proved to be an
upper bound of the true ground state, which is always lower than the variational
upper bound given by the wavefunction used to impose the nodal surface.

To apply the Fixed-node method the ground-state wavefunction have to be
real and hence works only in systems with time reversal symmetry. A Fermionic
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2.2. DIFFUSION MONTE CARLO

wavefunction has a nodal structure that divides the space in many positive and
negative pockets. The Fixed-node approximation consists in keeping the walkers
in the pockets with the same sign. One scatters DMC walkers throughout the
configuration space and moves them in the usually way. After every DMC move
the sign of the trial wavefunction is checked. If the walker has crossed the trial
nodal surface it is deleted or the move is rejected if an acceptance-rejection
scheme is used.

If the nodes of the trial wavefunction are exact the result is the exact
ground-state energy, otherwise an upper bound of the ground state energy of
the Fermions is obtained. The challenge of a Fixed-node DMC calculation is
find a trial wavefunction which has a nodal structure as close as possible to the
real nodal structure. Finding a good nodal structure is necessary in order to
minimize the nodal-error.

2.2.4 Technical details

In DMC calculation many technical details have to be considered.

Time step error

Developing DMC method is necessary to separate in the propagator the kinetic
terms from potential term using Trotter formula (see Eq. 2.13). This step intro-
duce a time step error. In order to evaluate this error it is necessary repeat the
same calculation with different value of ∆τ . The best value is the extrapolation
at ∆τ = 0.

Population bias

In DMC the population is a set of walkers. The number of walkers change during
the computation due to the branching. In order to avoid wide fluctuations of
population the weight may be corrected in this way:

w =
N0

N
exp (−∆τ(EL − E0)) (2.18)

where N is the number of walker and N0 is the prefixed number of walker.
This correction allows to controll the population, but that modifies the sam-

pling so it introduces a population error. Therefore it is necessary extrapolate
the energy value in function of 1/N for high value of N .

Mixed estimator

In order to evaluate a generic operators O(R), which do not commute with the
Hamiltonian, it is necessary make a linear combination between VMC and DMC
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CHAPTER 2. QUANTUM MONTE CARLO METHODS

result. The mixed estimator consists in taking twice DMC result minus VMC
result, in this way you obtain the mean value of O(R) on the ground state:

〈O〉 = 2 〈φ0|O|ψT 〉 − 〈ψT |O|ψT 〉+ ϑ(α2) (2.19)

The bias affecting such estimate is of the second order in α, where α is defined
by φ0 = ψT + αψα.

2.2.5 Forward-walking algorithm

An other method to evaluate operators, which do not commute with the Hamil-
tonian, is the Forward-walking [43, 44] algorithm.

The pure estimator of an operator O(R) may be written as:

〈O(R)〉 =

〈

φ0

∣

∣

∣
O(R) φ0

ψT

∣

∣

∣
ψT

〉

〈

φ0

∣

∣

∣

φ0

ψT

∣

∣

∣
ψT

〉 (2.20)

φ0(R)/ψT (R) can be obtained from the asymptotic offspring of the R walker.
The idea is to assign to each walker Ri a weight W (Ri) proportional to its
number of descendants, W (Ri) = n(R, τ →∞). Eq. 2.20 becomes:

〈O(R)〉 =

∑

iO(R)W (Ri)
∑

iW (Ri)
(2.21)

where the summation runs over all walkers and all times in the asymptotic
regime.
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Chapter 3

Method details for the confined

two dimensional electron gas

3.1 Hamiltonian

In order to determine the Hamiltonian of the system we start from a two di-
mensional electron gas of density ρ2D = 1/πa2 in the effective mass-dielectric
constant approximations. In this thesis we will consider effective units, assum-
ing ǫ = 1 and m∗ = 1. The density of the gas is parametrized by the effec-
tive Wigner-Seitz radius in effective atomic units r2D

s = a/a∗0. For reasons of
convenience, in the simulations we prefer to rescale all lengths in terms of a
one-dimensional Wigner-Seitz parameter rs = L/2N where N is the number of
electrons, and L is the length of the wire, which by this scaling depends only on
the number of electrons, and not on the density. The one– and two–dimensional
densities are related to each other as ρ1D = ρ2Dw(ρ1D), where w is an esti-
mate of the width of the wire. A possible definition of w(rs) is given by twice
the distance from the center of the wire at which the transverse density decays
to one half of the value at the center. Similarly we can relate r2D

s and rs as
r2D
s ∼

√

2rsw(rs)/π. With this choice of the length units, energies are given
in effective Rydbergs. The Hamiltonian of the N electrons in the stripe is then
defined as follows:

H = − 1

r2
s

N
∑

i=1

∇2
i +

N
∑

i=1

ω̂2
0y

2
i +

2

rs

N
∑

i,j=1

VCoul(ri, rj). (3.1)

The harmonic confinement parameter ω̂0 = ω0rs is scaled consistently with the
coordinates. Note that for independent electrons this choice of the confinement
would give a width of the wire w(rs) ∝ 1/rs, therefore corresponding to main-
taining constant the two dimensional density. The infinite extension along the
x direction is accounted for by using a modified version of the Ewald summa-
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3.2. TRIAL WAVEFUNCTION

tion (see section 3.3). The assumption is that the diverging Coulomb repulsion
is compensated by the interaction with a jellium of positive charge. We then
consider a 2D array of such stripes in the limit of infinite separation.

3.2 Trial wavefunction

An important step in order to make a good DMC computation is find the a good
trial wavefunction. A good choice of ψT leads to smaller statistical error for the
same amount of sampling. For a Fixed-node DMC computation the choice of
ψT becomes important in order to minimize the node-error.

In this work we used a trial wavefunction of the following form:

ψT (r1 . . . rN) =

N
∏

i=1

u(yi)

N
∏

i<j

J(rij)Det↑φα(rβ)Det↓φα(rβ) (3.2)

The Jastrow factor (JF) J(rij) is a simplified version of the form used in ref.
[45]. The JF reduces the statistical error in both VMC and DMC for a given
number of Monte Carlo steps. Otherwise the JF leaves the fixed-node DMC
energy unchanged because the node of the trial wavefunction is not altered. In
the original form the JF contains three terms: electron-electron Jee, electron-
nuclei Jen and electron-electron-nuclei Jeen. We only use the term Jee:

J(rij) = exp(fee) = exp

(

b1R(rij)

1 + b2R(rij)
+

Nord
∑

p=2

bp+1R
p(rij)

)

(3.3)

The scaling function R(r) is given by r/(1 + κr). Nord, the order of the poly-
nomials, is taken to be 5. The number of parameters to be optimazed is re-
duced by the imposition of the electron-electron cusp condition: b1 must be 1
for antiparallel-spin electrons and 1/3 for parallel spin electrons.

The one body factor u(y) = exp(−c1y2) is a Gaussian which is used to
fine-tune an overall correction to the lateral width of the wavefunction.

The single particle functions are solutions of the non–interacting Hamilto-
nian:

φα(r) = ψlho(y)φ(x) (3.4)

where ψlho(y) are eigenstates of the harmonic oscillator of frequency ω̂′
0. The

single particle functions φ(x) can be chosen to enforce the symmetry of the
state considered. For simulating the liquid phase we use φ(x) = exp(−ikx). The
momentum k is consistent with the periodicity of the system: k = ±n2π/L, with
n integer. Note that the energy levels of the non–interacting system show a band
structure given by ǫlk = ~ω̂0(l + 1/2) + ~

2k2/2m, where l plays the role of the
band index. The number Nb of harmonic oscillator bands filled depends on the
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density of the system, and must be determined from the Fermi energy of the N
particles. In the simulations we assumed that the filling of the bands is the same
for the interacting and non-interacting electrons. We checked this assumption by
computing the DMC energy for different fillings of the bands, always obtaining
the lowest energy for the filling predicted for independent electrons.

In order to study the occurrence of a localized phase we implemented another
set of single particle orbitals φ(x, xj) = exp[−c(x − xj)

2], where xj are the
localization centers located at y = 0 and distanced by L/N . Because we are
considering an antisymmetrized product of such orbitals, this choice does not
automatically correspond to constraining an electron around a given lattice site.
If the orbitals are overlapping with each other an exchange of electrons is always
possible.

In this thesis we used four wavefunctions (a), (b), (c) and (d). The differences
among wavefunctions are summarized in table 3.1. The polarized wavefunction
is defined as the product of two determinants, Det↑φα(rβ)Det↓φα(rβ), one con-
taining the coordinates of N/2 particles with spin up and the other containing
the coordinates of N/2 particles with spin down. The polarized wavefunction
includes a single determinant, in which there are the coordinates of all particles
(with the same spin).

(a): φα(rβ) = ψlho(yβ) exp(−ikαxβ), unpolarized liquid

(b): φα(rβ) = exp[−c(xβ − xα)2] exp[−c2(yβ)2], unpolarized solid

(c): φα(rβ) = ψlho(yβ) exp(−ikαxβ), polarized liquid

(d): φα(rβ) = exp[−c(xβ − xα)2] exp[−c2(yβ)2], polarized solid

Table 3.1: Differences among wavefunctions (a), (b), (c), (d). c2 = ω̂′ + c.

3.2.1 Optimization trial wavefunction

In this work we optimize the parameters c, c1 and ω̂′
0, appearing in the wavefunc-

tion , by directly computing the energy for different values. Instead the Jastrow
parameters are optimized using the Newton and Linear methods [46, 47] intro-
duced by C. J. Umrigar and C. Filippi.
In the minimization process the set of wavefunction parameters p0 are changed
of a quantity ∆p. Now we present two methods in order to optimize ∆p.
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Newton optimization method

The energy E(p) is expanded to second order in the parameter p and p0,

E[2](p) = E0 +

Nopt
∑

i=1

gi∆pi +
1

2

Nopt
∑

i=1

Nopt
∑

j=1

hij∆pi∆pj (3.5)

where the sums are over all the parameters to be optimized, ∆pi = pi − p0
i are

the components of the vector of parameter variations ∆p, gi are the components
of the energy gradient vector g and hij are the elements of the energy Hessian
matrix h:

gi =

(

∂E(p)

∂pi

)

hij =

(

∂2E(p)

∂pi∂pj

)

(3.6)

Imposition of the stationary condition on expanded energy expression, ∂2E(p)
∂pi∂pj

=

0, gives the following standard solution for the parameters variations:

∆p = −h−1 · g (3.7)

where h−1 is the inverse of the Hessian matrix. In practice, eq. 3.7 gives the
parameter variations ∆p that are used to update the current wavefunction,
|ψ0 >→ |ψ(p0 + ∆p) >. This procedure has to be interacted until convergence
is reached.

The Newton method is stabilized adding a positive constant adiag to the
diagonal of the Hessian matrix h

hij → hij + adiagδij

As adiag is increased the parameter variation ∆p becomes smaller and rotates
from the Newtonian direction to the steepest descent direction.

In eq. 3.7 we used as gi the components of the energy gradient vector and
hij the elements of the energy Hessian matrix. It is possible resolve the eq. 3.7
using gradient and Hessian of energy variance.

Linear optimization method

The idea is to expand a normalized wavefunction |ψ(p)〉 to first order in the
parameters p around the current parameter p0:

|ψlin(p)〉 = |ψ0〉+
Nopt
∑

i=1

∆pi|ψi〉 (3.8)

where the wavefunction at p = p0 is simply |ψ(p0)〉 = |ψ0〉 = |ψ0〉 (chosen to
be normalized to 1) and, for i ≥ 1, |ψi〉 are the derivatives of |ψ(p)〉 that are
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orthogonal to |ψ0〉.

|ψi〉 =

(

∂|ψ(p)〉
∂pi

)

p=p0

= |ψi〉 − S0i|ψ0〉 (3.9)

where S0i = 〈ψ0|ψi〉. The minimization of the energy calculated with this lin-
ear wavefunction leads to the stationary condition of the associated Lagrange
function:

∇p[〈ψlin(p)|Ĥ|ψlin(p)〉 − Elin〈ψlin(p)|ψlin(p)〉] = 0 (3.10)

The Lagrange function is quadratic in p and equation 3.10 leads to the following
generalized eigenvalue equation:

H ·∆p = ElinS ·∆p (3.11)

H is th matrix of the Hamiltonian Ĥ in the (Nopt+1)-dimensional basis consist-
ing of the current normalized wavefunction and its derivatives, S is the overlap
matrix of this (Nopt+1)-dimensional basis and ∆p is the (Nopt+1)-dimensional
vector of parameter variation with ∆p0 = 1. The linear method consists of solv-
ing equation 3.11 for the lowest eigenvalue and associated eigenvector ∆p.

The simple procedure of incrementing the set of parameters p by ∆p is
p0 = p0 + ∆p. It works for the linear parameters but it is not guaranteed
to work for nonlinear parameters if the linear approximation of eq. 3.8 is not
good. The Jastrow factor has nonlinear parameters. In this case is necessary to
modify the standard procedure. A right choice of normalization of wavefunction
can avoid the problem.

As the Newton optimization method it is possible to stabilize the minimiza-
tion by adding a positive constant adiag to the diagonal of H except for the first
element.

3.3 Ewald Summation

Long range forces are a serious problem in numerical simulations, since no ac-
curate results can obtained by using a finite box repeated periodically, unless
an infinite sum over the particle images is performed. Long range forces are
often defined as forces in which the spatial interaction falls of no faster than
r−d, where d is the dimensionality of the system. In this category are for exam-
ple the charge-charge interaction between electrons or ions, or the dipole-dipole
interaction between molecules. A useful technique to avoid the problem when it
is needed to sum the interaction between a charge and all its periodic images,
is that of the so-called Ewald Summation [Ewald 1921; Madelung 1918]. In lit-
erature it is possible to find a lot about Ewald summation for systems periodic
in 3D or 2D [48, 49, 50, 51], very little or nothing in the case of periodicity
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in one dimension. In this work we build a theoretical solution to the quasi-one
dimensional case of the Ewald summation. Our task is to solve the problem for
a 2D system of electrons with finite extent in one dimension and periodic in the
other.

3.3.1 The procedure

Consider a 2D system periodic in one dimension and of finite extent in the other
dimension, made of N electron and a uniform canceling background charge. The
charge distribution, if there were one electron at rn in the unit periodic cell is:

ρ(r− rn) =
∑

R

δ(r− rn −R)− ρbackground

where R = nL is the lattice translation vector with n = 0,±1,±2..., L is the
periodicity of the system and ρbackground is the background distribution charge
(which makes each and every cell neutral).

What we want is to write the potential generated from this charge distribu-
tion in a useful way, due to the problems mentioned in the introduction. The
Ewald Method consists in adding and subtracting to the charge distribution of
the electron an array of Gaussian function, centered in rn + R. This is just
adding something which is zero. So we have:

ρewald(r, rn) = ρ(r, rn) = ρ1(r, rn) + ρ2(r, rn)

ρ1(r, rn) =

(

1

µ
√
π

)3
∑

R

e
−

(r−rn−R)2

µ2 − ρbackground

ρ2(r, rn) =
∑

R

(

δ(r− rn −R)−
(

1

µ
√
π

)3

e
−

(r−rn−R)2

µ2

)

where µ is an arbitrary parameter that determines the width of the Gaussian
distribution.

As it is possible to see in ρ2(r, rn), the extra distribution acts like a screen-
ing positive charge. In this way, if µ is big enough, the interaction between
neighboring electrons becomes a short range interaction due to the screening.

The potential due to ρ1(r, rn) is calculated in reciprocal space and the one
due to ρ2 in the real space, both with the Poisson equation:

∇2Φewald(r, rn) = −4πρewald(r, rn)

Solution of Poisson equation for ρ2(r, rn) in real space gives:

Φ2(r, rn) =
∑

R

1− erf
(

|r−rn−R|
µ

)

|r− rn −R|
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Steps of the solution are shown in Section 3.3.2. Solution of Poisson equation
for ρ1(r, rn) in reciprocal space k = (kx, ky) (where kx = 2π

L
n, n = ±1,±2, ... is

discrete due to the periodicity along x direction) gives:

Φ1(r, rn) =
4

L

∑

kx>0

cos(kx(x− xn))
∫ +∞

0

dky
1

|k|erfc
(

µ|k|
2

)

cos(ky(y − yn))

Steps of the solution are shown in Section 3.3.3
Now we can write the Ewald potential in this way: Φewald(r, rn) = Φ1(r, rn)+

Φ2(r, rn) + A(rn) where the last term is added because the average potential
in the cell must be zero, due to the neutrality of charge in the cell (see Section
3.3.4). Considering N electrons in the cell, the potential Φ(r) generated in r

by the N charges is found by superposing all the potentials for each charge
component:

Φ(r) =

N
∑

n=1

Φewald(r, rn)

The potential acting on the charge rj is:

Φ(rj) =

N
∑

n=1

Φewald(rj, rn)− lim
r→rj

1

|r− rj|

where the second term is the divergent part of the self interaction of the electron
in rj with its own potential. It is possible to rewrite it in the following way:

Φ(rj) =
N
∑

n 6=j

Φewald(rj, rn) + ξ(rj)

where ξ(rj) is the potential acting on the electron at rj due to its own periodic
images and canceling background (see Section 3.3.5).

ξ(rj) = lim
r→rj

(

Φewald(r, rj)−
1

|r− rj|

)

(3.12)

So the full Ewald potential energy appearing in Hamiltonians is the sum of the
potential acting on all the N electron

Uewald(r1, ..., rN) =
e2

2

N
∑

j=1

Φ(rj) =
e2

2

N
∑

j=1

(

N
∑

n 6=j

Φewald(rj, rn) + ξ(rj)

)

If the screening that we force on the electrons is strong enough (i.e. µ is big
enough) in the real space summation we do not have to consider the images of
the electrons, it is just possible to consider only the term with R = 0.
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3.3.2 Solution of Poisson equation for ρ2

The equation to be solved is:

∇2Φ2(r, rn) = −4π
∑

R

(

δ(r− rn −R)−
(

1

µ
√
π

)3

e
− (r−rn−R)2

µ2

)

with the condition that Φ2 goes to zero at infinity.
The equation splits into two equations. The first is the part with the δ function.
The solution Φ2delta is:

Φ2delta(r, rn) =
∑

R

1

|r− rn −R|

The second part is with the Gaussian function with solution Φ2Gaus . Due to
symmetry reason, the solution Φ2Gauss does not depend on the angles, so the
Laplacian is:

∇2 =
1

r2

d

dr

(

r2 d

dr

)

If we look for a solution of the form:

Φ2Gauss(r) =
χ(r)

r

the equation becomes:

d2

dr2
χ(r) =

4

µ3
√
π
r
∑

R

e
−

(r−rn−R)2

µ2

A solution of this equation with the correct boundary condition is:

χ2Gauss(r) = −
∑

R

erf

( |r− rn −R|
µ

)

erf(x) =
2√
π

∫ x

0

dte−t
2

therefore the solution for ρ2 is:

Φ2(r, rn) =
∑

R

1− erf
(

|r−rn−R|
µ

)

|r− rn −R|
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3.3.3 Solution of Poisson equation for ρ1

It is possible to calculate this solution starting from the 2D result:

2π

A

∑

k

1

|k|erfc
(

µ|k|
2

)

e−ik·(r−rn)

where A is the area of the 2D plane.
We proceed therefore by considering a set of parallel quasi one-dimensional
wires, distributed over the 2D layer. The distance between the wires is c.
In order to obtain the result of quasi one-dimensional case it needs to consider
a unit cell of area cL in which there is a single wire. Then you evaluate the limit
c→∞ of the previous equation:

Φ1(r, rn) = lim
c→∞

2π

cL

∑

kx

1

|k|erfc
(

µ|k|
2

)

e−ik·(r−rn) =

=
1

L

∑

kx

∫ +∞

−∞

dky
1

|k|erfc
(

µ|k|
2

)

e−ik·(r−rn) =

=
4

L

∑

kx>0

cos(kx(x− xn))
∫ +∞

0

dky
1

|k|erfc
(

µ|k|
2

)

cos(ky(y − yn))

3.3.4 Average potential in the cell equal to zero

We have to calculate the average potential in the cell and add a function A to
make it zero:

〈Φewald(x, y) + A〉ϕ(x,y) = 0

where ϕ(x, y) is the wavefunction of the positive background in the cell, i.e. the
ground state of an harmonic oscillator along y direction (since the binding on
the y direction is considered harmonic) times a plane wave along x direction
(since along x direction the system is homogeneous):

ϕ(x, y) =
1√
L

(α

π

)
1
4
e−

α
2
y2eikxx α =

mω

~

So you obtain the follow expression for A:

A = A(rn) = − 1

L

(α

π

)
1
2

∫ + L
2

−L
2

dx

∫ +∞

−∞

dy
∑

R

1− erf
(

|r−rn−R|
µ

)

|r− rn −R| e−αy
2

The function A(rn) must be calculated numerically.
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3.3.5 Computation of ξ

ξ(rj) is the potential acting on the electron at rj due to its own periodic images
and canceling background:

ξ(rj) = lim
r→rj

(

Φewald(r, rj)−
1

|r− rj|

)

=

=
∑

R 6=0

1− erf
(

|R|
µ

)

|R| − lim
t→0

erf
(

t
µ

)

t
+ A(rj) +

+
4

L

∑

kx>0

∫ +∞

0

dky
1

|k|erfc
(

µ|k|
2

)

=

=
∑

R 6=0

1− erf
(

|R|
µ

)

|R| − 2

µ
√
π

+ A(rj) +
4

L

∑

kx>0

∫ +∞

0

dky
1

|k|erfc
(

µ|k|
2

)

3.3.6 Implementation of Ewald Summation

The implementation of Ewald Summation was very difficult. First of all it is
necessary to tabulate all the contributions in order to minimize the computing
time machine, in particular the integral terms.

The calculation of A(rn) is very heavy, because wide oscillation in the inte-
grand make difficult to reach a convergence. After many attempts the problem
was resolved using the Gauss-Laguerre Quadrature method. The idea of Gaus-
sian Quadratures [52] is rewrite the a defined integral in the following way:

∫ b

a

W (x)f(x)dx ≈
N−1
∑

j=0

wjf(xj) (3.13)

We can arrange the choice of weights wj and abscissas xj to make the integral
exact for a class of integrands. In numerical analysis Gauss-Laguerre quadrature
is an extension of Gaussian quadrature method for approximating the value of
integrals of the following kind:

∫ ∞

0

e−xf(x)dx (3.14)

In this case
∫ ∞

0

e−xf(x)dx ≈
n
∑

i1

wif(xi) (3.15)

where xi is the i-th root of Laguerre polynomial Ln(x).
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The second important step is to choose the optimal value for µ. That is a
parameter modulating the screening effect of Gaussians. We chose the value of
µ that minimizes the dependence of energy on the number of electron N .

We found that a good value of µ is L/5, where L is the side of the simulation
cell. This value does not differ from the heuristically determined value that is
commonly presented for 2D and 3D simulations.

We chose to perform the simulations using different numbers of electrons in
order to have a direct controll on how much the potential contribution depend
on N . In the table 4.1 there is the value of energy at rs=5 for different numbers
of electron, N=50, 75, 98. This example shows the energy depends on N and it
involves a change in energy of order 10−4. The important aspect is the difference
in energy if you make a computation with N =73 or 75 is smaller then error.

3.4 CHAMP

The program used to study the ground-state properties of the two-dimensional
electron gas laterally confined was based on CHAMP1. CHAMP is a Quantum
Monte Carlo suite of programs for electronic structure calculations on a variety
of systems (atoms, molecules, clusters, solids and nanostructures) written by
Cyrus Umrigar, Claudia Filippi and, with smaller contributions, by a few others.
CHAMP is presently a suite of 11 programs that have the following 3 basic
capabilities:

1. Optimization of many-body wave functions by variance minimization
(FIT)

2. Metropolis or Variational Monte Carlo (VMC)

3. Diffusion Monte Carlo (DMC).

In order to use Champ for compute the laterally confined 2D electron gas
it was necessary to make substantial changes in the code. The bigger change
was the introduction of Ewald summation (see section 3.3) for the potential
computation. Then we fixed the periodicity only in one dimension using the
periodic boundary condition. We wrote the wavefunction (see section 3.2), except
the Jastrow factor.

3.4.1 Particularly noteworthy features of CHAMP

Efficient wavefunction optimization by the variance-minimization method. For
finite systems the capability exists to optimize not only the Jastrow part of the

1http://www.ccmr.cornell.edu/ cyrus/champ.html
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wavefunction but the determinantal part (CI coefficients, orbital coefficients and
orbital exponents) as well.

a) Optimized Trial Wave Functions for QMC calculation [53].

b) A Method for Determining Many-Body Wavefunctions[54],

A variety of forms of the Jastrow factor that introduce e-n, e-e and e-e-n
correlations (e=electron, n=nucleus), including forms that are systematically
improvable (within the constraint due to using no more than e-e-n correlations)
and that obey all three types of cusp conditions exactly. For large systems the
option exists to use Jastrow functions that go exactly to a constant beyond
some distance, thereby improving the scaling of the computer time with system
size[53, 54, 55]

An accelerated Metropolis method that allows one to make very large moves
and still have a high acceptance, resulting in very short autocorrelation times.
The gain, compared to other Metropolis methods is particularly large when
pseudo potentials are not used[56, 57].

A very efficient diffusion Monte Carlo algorithm that takes into account the
singularities in the local energy and velocity at nodes of the wavefunction and
at particle coincidences. The gain, compared to other Metropolis methods is
particularly large when pseudo potentials are not used[58].
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Chapter 4

Ground state properties of the

laterally confined 2D electron gas

Simulations have been performed using different numbers of electrons, at dif-
ferent values of the density, parametrized by the Wigner-Seitz radius rs, and
at different value of confinement parameter ω0. The confinement parameter has
been chosen to be ~ω0 = 2, 4, 6 meV (= 0.338, 0.674, 1 Ry∗).

As previously exposed in the chapter 3, in a QMC simulation it is neces-
sary to choose a good trial wavefunction, to be used as importance function
and starting point for the projection. For the confined 2D electron gas, we use
the combination of plane wave, Gaussian orbitals and Jastrow correlations de-
scribed in chapter 3. The structure of the wavefunction is the same both for the
antiferromagnetic and for ferromagnetic state considered. For the case in which
electrons are localized (Wigner crystal states) the plane waves are replaced by
Gaussians in the longitudinal direction.

When the lateral confinement is strong it is possible to identify a single
relevant parameter determining the properties of the wire, i.e. is the ratio
between the gap in the single particle levels in the harmonic confining po-
tential, and the Fermi energy of the electrons in the longitudinal direction
CF = 2m~ω0/~

2k2
F [59], which in effective atomic units reduces to 32r2

sω0/π
2.

Therefore, at least in the strongly one-dimensional regime CF >> 1, the results
should approximately be independent of the specific value of ω0 and scale as a
function of CF . However, this is not true at high densities, where more than one
harmonic oscillator band is occupied.

We thoroughly studied the dependence of the results of the finite size, that
might come from the use of Ewald sums for the potential energy. At the end of
this analysis we concluded that for N ≥ 74 such effects are already well reduced.
N = 74 and N = 98 are the sizes employed in must of the simulation performed.

We also chose τ = 0.001, where τ is the diffusion step, in order to minimize
the time step error.
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4.0.2 Results at ~ω0 = 4meV

In Tab. 4.1 we report the energy per electron computed with N = 74 and 98
electrons at different values of rs.

For the unpolarized liquid phase the number of harmonic oscillator bands
used in the wavefunctions is 3 for rs = 0.5, and 1 for rs > 1, while for the
polarized liquid phase we fill 5 bands for rs = 0.5, 2 for rs = 1, and one for
rs > 1. In the localized phase we consider localized orbitals, and we assume that
the correct density is reached by varying the parameters of the Gaussians.

As it can be seen, at high densities (rs < 3) the ground state is an unpolarized
liquid. In particular for rs ≤ 1 the CF parameter is rather small, and the system
has a two–dimensional character.

For rs ≥ 5 the ground state is found to be the spin–polarized, with an
energy gap of the order 1mRy∗. However, for a given polarization, the liquid
and crystal phases have extremely close energies. This very small difference
(<0.1mRy∗) might be taken as a conservative estimate of the fixed node error,
suggesting that the energy gap between the polarized and unpolarized phases
is robust. However, it is not possible within our current numerical accuracy to
draw a definite conclusion about the occurrence of Wigner crystallization.

In Fig. 4.1 we report the computed energies, together with the fit of the
total energy according to the Tanatar-Ceperley[60] functional in the range of
2D densities corresponding to an estimate of the electron density of the wire.
As it can be seen, at low values of rs, the energy of the electrons in the wire
becomes closer and closer to that of the equivalent homogeneous 2D system.
The discrepancies are due to the approximate way in which the width of the
wire is determined. On the other hand, the figure clearly displays that in the
high rs regime the energies of the four phases considered strongly deviates from
the 2D value, and tend to collapse on a single value, consistently with the fact
that we are approaching an effective 1D regime (CF →∞).

A problem occurring in QMC simulations of quasi 1D systems is the lack
of ergodicity due to the extremely low exchange rate between electrons[31]. We
tried to assess the existence of this drawback in our 2D simulations. This was
achieved both by direct inspection, i.e. by checking the diffusion of close pairs of
electrons, and looking at the Monte Carlo mean square diffusion of the electrons
along the wire, estimated by:

〈(x− x0)
2〉 =

1

NM

M
∑

j=1

N
∑

i=1

[xj,i(τ)− x0,i]
2 (4.1)

where x0,i and xj,i(τ) (with τ = M∆τ , ∆τ is the time step used in the DMC
simulation, ∆τ = 0.001 and M = 175000) are the x coordinate of the initial
and final positions of the electron i after j DMC steps.
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CHAPTER 4. GROUND STATE PROPERTIES OF THE

LATERALLY CONFINED 2D ELECTRON GAS

N,rs 0.5 1 2 3 5 7
50 (a) -0.095596(6)
74 (a) -0.5288(4) -0.36810(5) -0.26760(3) -0.19458(3) -0.09549(1) -0.026681(7)
98 (a) -0.5513(4) -0.36800(8) -0.26750(3) -0.19453(2) -0.09544(1) -0.026791(7)
50 (b) -0.09647(1)
74 (b) -0.4163(6) -0.26527(3) -0.19465(1) -0.096476(8) -0.027629(5)
98 (b) -0.3979(8) -0.26518(3) -0.19460(1) -0.096491(7) -0.027634(5)
49 (c) -0.09787(1)
73 (c) -0.0424(4) -0.20522(5)∗ -0.21482(1) -0.19067(1) -0.097797(6) -0.028524(4)
97 (c) -0.0443(4) -0.20697(8) -0.21524(1) -0.19077(1) -0.097695(6) -0.028500(4)
49 (d) -0.09772(1)
73 (d) -0.18999(1) -0.097671(6) -0.028423(6)
97 (d) -0.19000(1) -0.097673(5) -0.028405(4)

Table 4.1: Total energy per electron (in effective Rydberg) for a laterally confined
two dimensional electron gas with ~ω0=4meV. (a): unpolarized liquid wavefunc-
tion. (b): localized wavefunction. (c): polarized liquid wavefunction. (d): polar-
ized solid wavefunction. (∗): N=74.
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Figure 4.1: Total energy per electron (in effective Rydberg) for a laterally con-
fined two dimensional electron gas. Dots: unpolarized fluid; triangles: unpolar-
ized crystal; squares: polarized fluid; diamonds: polarized crystal. The full line
is the energy of the 2D system at a value of r2D

s estimated from the width of the
lateral density of electrons. We report also an estimation of energy at rs = 0.25.
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Figure 4.2: QMC diffusion of the electrons in the wire (in units of a∗0) as a
function of rs at ~ω0 = 4meV. The points display the computed diffusion for
the unpolarized liquid (dots), polarized liquid (squares), localized (triangles)
and polarized solid (diamonds) phases.

In Fig. 4.2 we report the evaluation of this quantity as a function of rs for
the four phases considered. In this picture the x coordinates are in units of a∗0 in
order to avoid the rescaling effect of box size. For rs ≤ 2 the diffusion of electrons
is very active. The dependence on rs (almost linear for the unpolarized liquid
phase) is given by the increased size of the wire in the longitudinal direction.
This is a clear sign of the fact that electrons are allowed to almost freely diffuse
for the whole length of the wire. For rs ≥ 3 the diffusion ceases to increase. When
using localized orbitals, it is clear how the diffusion converges to a constant value
much lower than the values seen in the liquid phase, indicating that electrons
remain strongly localized around lattice sites.

In figure 4.3 there are two examples of the random walks described by two
neighboring electrons during the simulation. Both figures represent the liquid
phase at low density (rs = 5) for pairs of electrons with opposite spin (fig. 4.3,
top) and same spin (fig. 4.3, bottom). The reciprocal crossing is evident in both
cases.
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Figure 4.3: Electron displacements in liquid phase at low density (rs = 5) for
pair of electrons with opposite spin (top) and with same spin (bottom)
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In Fig. 4.4 we report the transverse electron density for two different values of
rs and the transverse jellium density. The picture shows how the system becomes
effectively narrower with increasing rs. For rs = 0.5 the system is almost two
dimensional, in agreement with the fact that the energy of the confined system
approaches the energy of the 2D system. For lower densities, the effect of the
confinement on the energy becomes stronger and stronger.
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Figure 4.4: Transverse density in the confined 2D electrons gas. The density
computed by DMC is compared with the "jellium" density, i.e. from the density
given by the ground state solution of the confining harmonic potential. Curves
are given for rs = 1 (dotted and dashed-dotted line), and rs = 5 (full and dashed
lines). y is given in units of a∗0

In figure 4.5 the pair correlation function, g(x), for rs = 1 and rs = 5 is dis-
played. g(x) is computed along the longitudinal coordinate x and integrated in
the transverse coordinate y. Decreasing the density, g(x) shows wide oscillations.

In figure 4.6 we show the electron spin density r(x), computed in the longi-
tudinal direction, for two different densities (rs = 1 and rs = 5), and computed
using localized wavefunction. r(x) is the probability that an electron with a
fixed spin is at position x. We find that by increasing the electron density, the
number of exchanges increases. At high density (rs = 1) the electron density
displays a modulation, but electrons are spread all over the wire. At low density
(rs = 5) electrons are clearly localized around lattice sites.

In order to better understand the scaling of the system with density and
confinement about this system we decided to study it with ~ω0=2 meV and 6
meV.
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Figure 4.5: Pair correlation function for rs = 1 and rs = 5.
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Figure 4.6: Spin density function for rs = 1 and rs = 5.
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4.0.3 Results at ~ω0 = 2meV and ~ω0 = 6meV

We studied the equation of state for two other values of confining parameter ω0.
In order to understand how our model behaves changing the lateral confinement.
We proceeded to study the system for ~ω0 = 2, 6 meV in the same way we did
for ~ω0 = 4 meV.

The same algorithm to fill up the orbitals of wavefunction was employed. At
~ω0 = 2meV for the unpolarized liquid phase the number of harmonic oscillator
bands used in the wavefunctions is 4 for rs = 0.5, 2 for rs = 1, and one for
rs ≥ 2, while for the polarized liquid phase we fill 7 bands for rs = 0.5, 3 for
rs = 1, and one for rs > 1. At ~ω0 = 6meV, for the unpolarized liquid phase the
number of harmonic oscillator bands used in the wavefunctions is 3 for rs = 0.5,
and one for rs ≥ 1, while for the polarized liquid phase we fill 5 bands for
rs = 0.5, 2 for rs = 1, and one for rs > 1.

We report in table 4.2 the equation of state for ~ω0=2meV and in table 4.3
the equation of state for ~ω0=6meV. Comparing tables 4.2, 4.1 ,4.3 it is possible
to observe that increasing ω0 the density at which the liquid phase ceases to
exist shifts to higher density and at rs ≥ 3 the system is always polarized.

A deeper analysis shows that at ~ω0 = 6meV for rs < 3 the system is still
liquid. It is possible to understand this observation by looking at the figures 4.7,
4.8 and 4.9.

Fig. 4.7 shows the QMC diffusion of the electrons in the wire as a function
of rs at ~ω0 = 6meV. The black dots and the green triangles are very close
for rs < 3, meaning that the system behaves in a similar way either using the
unpolarized liquid wavefunction or solid wavefunction. The wavefunction for a
solid is built starting from orbitals localized on given lattice sites. However, the
Pauli principle (implemented in the construction of a Slater determinant) yields
the electron exchange, that is frequent at high densities.

N,rs 0.5 1 2 3 5 7
72 (a) -0.7687(4) -0.4636(1)
73 (a) -0.33693(2) -0.27728(1) -0.20086(1) -0.148749(6)
96 (a) -0.7449(4) -0.4605(3)
98 (a) -0.33705(2) -0.27726(2) -0.20080(1) -0.14871(1)
74 (b) -0.4679(7)* -0.33125(2) -0.27458(1) -0.203092(7) -0.149657(4)
98 (b) -0.33136(2) -0.27460(2) -0.203087(7) -0.149658(5)
73 (c) -0.4181(4) -0.3737(2) -0.25989(1) -0.26576(1) -0.203839(7) -0.150329(4)
97 (c) -0.3720(3) -0.25876(1) -0.26574(1) -0.203812(7) -0.150316(4)
73 (d) -0.26494(1) -0.202332(7) -0.147502(7)
97 (d) -0.26496(1) -0.202330(7) -0.147564(7)

Table 4.2: Total energy per electron (in effective Rydberg) for a laterally confined
two dimensional electron gas with ~ω0=2meV. (a): unpolarized liquid wavefunc-
tion. (b): localized wavefunction. (c): polarized liquid wavefunction. (d): polar-
ized solid wavefunction. (*): N = 72.
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N,rs 0.5 1 2 3 5 7
74 (a) -0.3040(4) -0.28103(5) -0.16975(4) -0.08584(3) 0.03041(1) 0.108615(6)
98 (a) -0.3042(4) -0.28217(5) -0.16974(4) -0.08564(3) 0.03052(1) 0.108659(6)
74 (b) -0.3951(6) -0.2960(3) -0.16970(4) -0.08619(2) 0.029973(8) 0.108301(5)
98 (b) -0.3816(6) -0.2922(2) -0.08627(2) 0.029964(9) 0.108300(4)
73 (c) 0.3158(4) -0.12901(2) -0.08457(1) 0.028429(7) 0.107428(5)
74 (c) -0.02518(5)
97 (c) 0.3346(5) -0.12951(2) -0.08452(1) 0.028459(7) 0.107441(4)
98 (c) -0.02575(6)
73 (d) -0.08385(1) 0.028588(4) 0.107971(4)
97 (d) -0.08382(1) 0.028608(7) 0.107958(4)

Table 4.3: Total energy per electron (in effective Rydberg) for a laterally confined
two dimensional electron gas with ~ω0=6meV. (a): unpolarized liquid wavefunc-
tion. (b): localized wavefunction. (c): polarized liquid wavefunction. (d): polar-
ized solid wavefunction.
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Figure 4.7: QMC diffusion of the electrons in the wire (in units of a∗0) as a
function of rs at ~ω0 = 6meV. The points display the computed diffusion for
the unpolarized liquid (dots), polarized liquid (squares), localized (triangles)
and polarized solid (diamonds) phases.
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Figure 4.8: Pair correlation function for rs = 1 at ~ω0 = 6meV. The points
display the g(x) computed with the unpolarized liquid (a) and solid (b) wave-
function.

In Fig. 4.8 and 4.9 the pair correlation function g(x) for rs = 1 and rs = 3
at ~ω0 = 6meV are shown. In both figures there are the g(x) computed using
unpolarized liquid and localized wavefunction. At rs = 1 a different choice of
wavefunction along x (plane wave or Gaussians) leads to a pair distribution
function g(x) that it always displays the typical features of a liquid. For rs = 3
(Fig. 4.9) the difference between the pair functions computed starting from
different wavefunctions is evident and then the solid structure of g(x) computed
with unpolarized solid wavefunction becomes clear.

In figure 4.10 we also report the QMC diffusion of the electrons at ~ω0 =
2meV. This picture confirms the liquid–like behavior of the system for rs ≤ 3.
For the unpolarized liquid phase the diffusion linearly increases with rs indi-
cating that on average the exchange of electrons is very active. For rs > 3 the
diffusion ceases to increase. In the solid phase it is clear how for rs > 2 the
diffusion ceases to increase and converges to constant values much lower (about
one order of magnitude) than the values seen in the liquid phase, indicating
that electrons are strongly localized around lattice sites. The polarized liquid
phase shows a strange behavior as a function of rs. There is a strong connection
between the wavefunction parameters and the QMC diffusion. For example the
low value of QMC diffusion at rs = 2 for polarized liquid phase is due to the
choice of parameter c1 (u(y) = exp(−c1y2), see Eq. 3.2). The parameter c1 can
be used to give an overall correction to the lateral width of the wave function.
Generally this parameter is useful at high density. It is necessary to choose a

38



CHAPTER 4. GROUND STATE PROPERTIES OF THE

LATERALLY CONFINED 2D ELECTRON GAS

0 20 40 60
x

0

0.5

1

1.5
g(

x)
(a)
(b)

h- ω
0
=6meV, r

s
=3

Figure 4.9: Pair correlation function for rs = 3 at ~ω0 = 6meV. The points
display the g(x) computed with the unpolarized liquid (a) and solid (b) wave-
function.
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Figure 4.10: QMC diffusion of the electrons in the wire (in units of a∗0) as a
function of rs at ~ω0 = 2meV. The points display the computed diffusion for
the unpolarized liquid (dots), polarized liquid (squares), localized (triangles)
and polarized solid (diamonds) phases.
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low value of c1. However, a small variation in c1 implies an high variation in
the walker’s capacity to diffuse. So this parameter is useful, but very difficult
to use.

At ~ω0 = 2 meV, as at ~ω0 = 4 meV, we do not report the unpolarized
solid value at rs = 1, due to unresolved computational difficulties. At rs = 1
the system is a unpolarized liquid. Using a solid wavefunction we are not able
to obtain a stable value for the energy.

Another previous feature is the energy value at ~ω0 = 2 meV and rs = 0.5,
E/N = −0.7687(4) Ry∗. This value looks unexpected because it is lowest of
every energy value of equation of state of the two–dimensional homogeneous
electron gas. By confining the two-dimensional electron gas one might expect to
obtain an energy higher than the 2D equation of state. This result can be justi-
fied by the use of Ewald Summation. In Ewald Summation the positive charge
background is chosen arbitrarily, with the only condition of charge neutrality.
This fact can introduce an overall shift of the energies with respect to the case
of the homogeneous system.

The following figures (4.11 - 4.14) show selected pair correlation functions
as function of rs and ω0, computed using different trial wavefunctions. In Fig.
4.11 pair correlation function for rs = 3, 5, 7 at ~ω0 = 6meV for the polarized
liquid phase is shown. In the Fig. 4.12 we display the pair correlation function
for rs = 3, 5, 7 at ~ω0 = 6meV for the localized phase. Comparing the two pic-
tures it comes clear how the two type of wave functions work in our model.
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Figure 4.11: Pair correlation function for rs = 3, 5, 7 at ~ω0 = 6meV. The points
display the g(x) computed with the polarized liquid wavefunction.
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Figure 4.12: Pair correlation function for rs = 3, 5, 7 at ~ω0 = 6meV. The points
display the g(x) computed with the unpolarized solid wavefunction.
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Figure 4.13: Pair correlation function for rs = 5 at ~ω0 = 6meV. The points
display the g(x) computed with the polarized liquid (c) and unpolarized solid
(b) wavefunction.
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4.1. OVERVIEW

The unpolarized solid wavefunction shows a g(x) typical of a strong localized
electron system. Increasing rs the system becomes more localized, as expected
in a Wigner crystal. The polarized liquid wavefunction shows a g(x) with oscil-
lations, which are wide for small value of x. The shape of these g(x) indicates
that the system tends to reproduce a solid structure.

A direct comparison between the solid and the polarized phase is show in
Fig. 4.13 and 4.14. Both figures represent the pair correlation function g(x),
computed for the polarized liquid and for the localized phase, at rs = 5. The
difference between the two figures is the value of ω0. The two figures are very
similar. It is possible to observe that the peaks in g(x) are at the same values
of x for the polarized and solid wavefunction. Increasing x the only observable
difference is the damping of the oscillations of g(x) computed with polarized
wavefunction.

Fig. 4.15 represents the transverse density for rs = 5 and ~ω0 = 2, 4, 6
meV. This picture shows in a clear way the effect of changing the confinement
parameter ω0 in our model. Increasing ω0 we force the electrons to stay more
close to the longitudinal axis of the wire.

4.1 Overview

Comparing the results at ~ω0 =2, 4, 6 meV, we can say the system is a polarized
and localized at rs > 3 and unpolarized liquid at rs < 3. Increasing ω0 the sys-
tem tends to become more localized, but at high density the electron exchange
persists.

Our results strongly support the onset of a polarized phase. More checks at
high values of ~ω0 (as 40-80 meV) are performed. Preliminary results show that
polarization does not vanish. However the current version of the code does not
permit us to do rigorous calculation at high values of ω0.

At high density the system is not crystallized due to electron exchange. How-
ever, the density modulations displayed in Fig. 4.6 may suggest the occurrence
of a spin–wave ground state.
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Figure 4.14: Pair correlation function for rs = 5 at ~ω0 = 2meV. The points
display the g(x) computed with the polarized liquid (c) and unpolarized solid
(b) wavefunction.
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Figure 4.15: Transverse density in the confined 2D electrons gas for rs = 5.
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Chapter 5

Fermionic Shadow Wave Function

The Shadow Wave Function is a wavefunction used in variational calculations.
Its main feature is the capability of describing a quantum system in which inho-
mogeneities are present (such as a solid perfect of defective, a cluster, a surface)
though being written as manifestly translationally invariant function. The sys-
tem breaking is obtained by the variational minimization of the wavefunction
parameters. In the following sections we will give a short overview of the SWF,
and develop its application to a many-fermion system.

5.1 Shadow Wave Function

The general form of the SWF for symmetric systems is the following:

ψSWF (R) = φp(R)

∫

Ξ(R,S)φs(S)dS , (5.1)

where R = {r1...rN} are the coordinates of the particles and S = {s1...sN} are
the coordinates of auxiliary degree of freedom, shadows. φp and φs are Jastrow
factors for particles and shadows, respectively,

φp(R) = exp

[

−
∑

i<j

upp(rij)

]

(5.2)

φs(S) = exp

[

−
∑

i<j

uss(sij)

]

(5.3)

and Ξ(R,S) is a kernel describing the correlations between particles and shad-
ows

Ξ(R,S) = exp

[

−
N
∑

i=1

ups(|ri − si|)
]

(5.4)
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Figure 5.1: Diagram illustrating interaction between trimers: the quantum sys-
tem is formally equivalent to a classical system of triatomic molecules interacting
according this schema

Generally the kernel is formed by a product of Gaussian centered on the shadow
positions:

Ξ(R,S) = exp

[

−
N
∑

i=1

c(ri − si)
2

]

. (5.5)

The Jastrow factors introduce explicit particle–particle and shadow–shadow
correlations. The kernel connects particles and shadows.

The estimation of the mean value of operator Ô using SWF in VMC calcu-
lation is defined in the following way

〈Ô〉ψ =

∫

ψ∗(R)Ôψ(R)dR
∫

|ψ2(R)|dR =

∫

ψ∗(R)ψ(R)
[

Ôψ(R)
ψ(R)

]

dR
∫

|ψ2(R)|dR . (5.6)

where
∫

ψ∗(R)ψ(R)

[

Ôψ(R)

ψ(R)

]

dR = (5.7)

1

2

∫ ∫ ∫

dRdSdS′
[

Ôloc(R,S) + Ôloc(R,S
′)
]

φ2
p(R)Ξ(R,S)Ξ(R,S’)φs(S)φs(S’)

In this equation each particle ri is linked to two shadows, si and s′i, making
a trimer (see figure 5.1). The trimers are correlated by Jastrow factors. The
integration over the shadow variables introduces then higher-order correlations
between particles (see figure 5.1).
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Figure 5.2: Many-body correlation in SWF

In dealing with fermionic systems, one can consider antisymmetric gener-
alizations of the SWF. This can be done in two distinct ways, as described
below.

5.2 Antisymmetric Shadow Wave Function

The easiest way in order to antisymmetrize SWF is to write a SWF which is
antisymmetric with respect to the exchange of the real degrees of freedom. This
can be obtained by multiplying the SWF by a product of two determinants, one
including the particles with spin up and the other the particles with spin down.
The antisymmetric shadow wave function (ASWF) is defined in the following
way:

ψASWF (R) =
∏

l=↑,↓

Dl[φk(ri)]φp(R)

×
∫

exp(−c(R− S)2)φs(S)dS , (5.8)

where Dl are the determinants, l is the spin, and the {φk(ri)} are the single par-
ticle basis functions, usually taken as plane waves satisfying Born–von Karman
periodic boundary conditions, possibly including backflow correlations.

Using ψASWF (R) it is possible to obtain good results. In fact, ψASWF (R)
was successfully applied to study the ground state properties of liquid and solid
3He [35] and two–dimensional electron gas [61].

The strong limit of ASWF is that the auxiliary degrees of freedom are not
antisymmetrized. In the next section we display the advantage of imposing the
antisymmetry on the auxiliary degrees of freedom.
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5.3 Fermionic Shadow Wave Function

There is another way of antisymmetrizing a SWF. This method is computation-
ally more expensive but it presents some advantages. This form, called Fermionic
Shadow Wave Function (FSWF) is built by imposing the antisymmetry on the
auxiliary degrees of freedom rather than on the real ones:

ψFSWF (R) =

φp(R)

∫

exp(−c(R− S)2)
∏

l=↑,↓

Dl[φk(si)]φs(S)dS . (5.9)

It is possible to show that ψFSWF is antisymmetric under the exchange of two
particles of like spin [62]. Let P be a permutation. Defining:

S∗ = P
−1S; D(S) = D↑[φk(si)]D↓[φk(si)],

one can show that the following tree properties hold:

(PR − PS∗)2 = (R− S)2; D(PS∗) = (−1)PD(S∗);

d(PS∗) = dS∗; φx(PX) = φx(X)

where φx are the Jastrow factors, from which follows:

ψFSWF (PR) = φp(PR)

∫

e−c(PR−S)2D(S)φs(S)dS (5.10)

= φp(PR)

∫

e−c(PR−PS∗)2D(PS∗)φs(PS
∗)dS∗

= (−1)Pφp(R)

∫

e−c(R−S
∗)2D(S∗)φs(S

∗)dS∗

= (−1)PψFSWF (R)

Equation 5.9 is just the simplest version of FSWF. It will become evident
later it is convenient to sum over all the possible permutations of shadows. This
is easily obtained. In fact using the fact that S are integration variables, it is
possible permute their indices and obtain a new form of FSWF:

ψFSWF (R) = (5.11)

φp(R)

∫

∏

l=↑,↓

Dl

[

exp(−c|rα − sβ|2)
]

∏

l=↑,↓

Dl[φk(si)]φs(S)dS

This is the form that will be used in the following.
Observing the equation 5.11 it is clear the nodal structure is described by a

product of two determinants, both defined over the auxiliary degrees of freedom.
In this way the nodal surface is not defined a priori.
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Further, in the strong localization regime this function 5.11 becomes very
close to an antisymmetrized Nosanow-Jastrow wavefunction. Instead at low den-
sities the nodal structure is comparable to that of a determinant of plane waves,
but with the inclusion of correlations at any order due to the integration on the
shadow variable.

Now it is clear how in ψFSWF (R) the thermodynamic phase emerges implic-
itly in the variational optimization and how it is possible to reproduce a good
nodal surface.

5.3.1 FSWF problems

The evaluation of the integral 5.7 present a serious sign problem that plagues the
implementation when FSWF is used. In VMC the square of the wavefunction is
used as a probability density, P (R), and the local energy is averaged over the
sampled configurations. Thus

E =

∫

dRψ∗(R)ψ(R)EL
∫

dRψ∗(R)ψ(R)
=

∫

dRP (R)EL
∫

dRP (R)
, (5.12)

where EL = ψ−1Hψ is the local energy of the system. The integral is evaluated
by generating configurations according to P = |ψ|2 that are sampled using the
Metropolis algorithm.

When using SWF, one constructs ψ∗(R)ψ(R) by integrating over two sets of
shadow variables, S, S′. Choosing some probability density function, P (R,S,S′),
and sampling it in the usual way, a generic operator can be computed as

〈O〉 =
∫

dRdSdS′P̃ (R,S,S′)w(R,S,S′)O(R)
∫

dRdSdS′P̃ (R,S,S′)w(R,S,S′)
. (5.13)

A reasonable choice for ordinary SWF is simply the integrand:

P (R,S,S′) = φ2
p(R)

× exp(−c(R− S)2 − c(R− S′)2)φs(S)φs(S
′) , (5.14)

with w = 1. Similarly in ψASWF the integrand is positive definite, and can be
used for P (R,S,S′).

When one uses ψFSWF , the integrand is not everywhere positive. In this
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case, a practical sampling function is the absolute value of the integrand. Let

Q(R,S,S′) = φ2
p(R)

∏

l=↑,↓

Dl

[

exp(−c|rα − sβ|2)
]

∏

l=↑,↓

Dl

[

exp(−c|rα − s′β|2)
]

×
∏

l=↑,↓

Dl[φk(si)]
∏

l′=↑,↓

Dl′[φk(s
′
i)]φs(S)φs(S

′) , (5.15)

P̃ (R,S,S′) = |Q(R,S,S′)| , (5.16)

w(R,S,S′) =
Q(R,S,S′)

|Q(R,S,S′)| ≡ ±1 . (5.17)

Averaging over estimates of different signs presents a challenge. Numerical ex-
periment shows that for large systems, convergence to acceptable statistical
errors is very slow. This is particularly true for disordered systems. Of course,
the average of |ψFSWF |2 is positive, and the variance exists, so that the sign
problem is not intractable.

5.3.2 Proposed solution to FSWF sign problem

A simple reorganization of the calculation, however, produced a dramatic im-
provement in the Monte Carlo efficiency. In applying the Metropolis method to
shadow wavefunction, including the ASWF variant, the usual procedure is to
sample new values of R, S, and S′ in turn. It is always true that the integrals
in Eq. (5.13) over S and S′ for fixed R are positive. This suggests that a change
in the order of summation might be useful for the FSWF class of functions, es-
pecially with disorder, by propagating the shadows S and S’ for M steps (with
M big enough) for fixed R. That is, we expect that the sum of the ±1–weight
of M steps

[

∑

wi

]

S
×
[

∑

wi

]

S′

= WSWS′ , (5.18)

will be usually positive. In fact, increasing M in the more difficult cases where
exchanges of sign often appear, gives weights WSWS′ positive and significantly
different from zero. The algorithm becomes: i) sample a configuration R of
particles, ii) sample M configurations of S, iii) sample M configurations of
S′, iv) combine all the weight factors and accumulate the local energy for the
average and variance, iterate from i) to iv) until the convergence is reached and
the variance is low as desired.

M is the number of steps to be used in order to compute the integral over
the shadow variables. It is very important to choose carefully the value of M . M
has to be large enough to guarantee that the integral reach convergence. But if
M is too large the computational time increases too much. So it is necessary to
find a good compromise in the value of M . This observation clarifies the limits
of this method. The efficiency will be largely improved for systems in which the
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sign is not so severe (as solid 3He), while the improvement is not definitive for
low-density disordered systems (liquid 3He, electron gas).

In a perfect 3He crystal it is possible to perform the calculations usingM = 1.
Instead when a vacancy is added it is necessary to use M as larger as 1.5× 103.
In liquid the value of M should be further increased.

5.4 Ground state properties of 3He vacancies

As an illustration of the power of FSWF, we studied the ground state of the solid
3He in the range of molar volumes between 20 and 24 cc/mol and we compare
the results with to the previous variational estimates based on antisymmetric
functions. As a next step, we studied the vacancy formation energy by comput-
ing the energy in the presence of an empty site. We stress the fact that it is not
possible to study an antisymmetric system with disorder using DMC or GFMC
methods due to the limits imposed by a preventive choice of the single particle
functions used to build the Slater determinant of the importance function.

5.4.1 Technical details

In the Hamiltonian of the system

H = − ~
2

2m

∑

i

∇2
i +

∑

i<j

V (rij) (5.19)

the He–He interaction is the Hartree-Fock dispersion HFDHE2 potential by Aziz
et al. [63]:

V (r) = ǫV ∗(x) (5.20)

V ∗(x) = Ae−αx −
{

C6

x6
+
C8

x8
+
C10

x10

}

F (x)

where x = r/rm and F (x) is defined in the following way

F (x) = exp

{

−
[

D

x
− 1

]2
}

for x < D

= 1 for x ≥ D

In table 5.1 there are the potential coefficients.
In the FSWF the particle Jastrow factor φp(R) is

φp(R) =
∏

i<j

e−
1
2
u(rij) (5.21)
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C6 1.3732412
C8 0.4253785
C10 0.178100
A 0.5448504
α 13.353384
D 1.241314
rm 2.9673 (Å)
ǫ 10.8 (K)

Table 5.1: Reduced parameters for the HFDHE2 potential.

where as pseudo-potential u(rjl) we used a McMillan form[35] combined with a
summation over a basis as in Ref. [64]:

u(rij) = u0(rij) +
∑

m

amχm(rij) (5.22)

the terms are explicitly

u0(r) =

(

b

r

)5

χm(r) =

[

1− cos
(

2πm

L− 2rc
(r − L/2)

)]

rn (r > rc)

= rn (r < rc)

where L is side of the simulation box.
In the Jastrow factor φs the pseudo-potential is defined as the rescaled in-

teraction us(rij) = c1V (c2rij) (c1 and c2 are additional variational parameters).
All the variational parameters entering in the wavefunction were optimized

at each density using an energy–variance minimization technique due to C.J.
Umrigar and M.P Nightingale applied to the system with no defects.

Vacancy formation energy

The vacancy formation energy at constant pressure for a system withN particles
at a fixed density ρ can be estimated as

∆Ev = E(N − 1, Nl = N)− N − 1

N
E(N,Nl = N) , (5.23)

where the number of lattice sites Nl is conserved and the density of the two
systems is the same. The vacancy formation energy includes contributions from
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lattice relaxation and tunneling that cannot be accounted for by a wavefunction
with an underlying lattice structure (such as a Nosanow–like wavefunction). The
computation of the energy for the system with N − 1 particles is performed by
removing one particle and one shadow from the trial wavefunction. It has to be
noted that by dropping one shadow from the shadow determinant means having
a hole–state in one of the determinants of Eq. 5.9. In the case of open–shell
configuration where one or more single particle states are not filled one needs
to perform the calculation using twist average boundary conditions [65], so that
the total wavefunction has zero total momentum. In the case of FSWF, we
conjecture that it is not important which particular shadow orbital is omitted,
because the total momentum of the system is always conserved.

We tested our conjecture by repeating the same calculation removing differ-
ent single shadow states from the kernel. In particular the energy of the system
where orbitals with different vector number n were removed is the same within
statistical error. We stress that by contrast, in using a normal many–body wave-
function with no shadows or using ASWF the energy would depend upon the
unfilled single–particle orbital.

5.4.2 Results

We report the energy of 54 atoms in table 5.2. The energy per particle is also
displayed in Fig. 5.3 where we compared our results (circles) with those found
in Ref. [35] computed using ASWF starting from a normal antiferromagnetic
order NAF (diamonds), and including exchanges (triangles), and with the more
accurate DMC of Ref. [66] (squares). As can be seen FSWF provides lower
variational estimates of the energy. The DMC energies are lower at each density
by a constant value of about 1K.

ρσ3 E/N(54) T/N(54)
0.419 0.422(1) 23.947(1)
0.427 0.548(2) 24.608(1)
0.438 0.955(1) 26.005(2)
0.457 1.556(1) 27.986(2)
0.479 2.455(1) 30.482(2)
0.503 3.481(1) 32.487(2)

Table 5.2: Total and kinetic energy per particle at different densities in the solid
b.c.c. phase for the crystal with no defects (54 atoms). All energies are expressed
in K.

The energies of the system with a vacancy are reported in table 5.3. The
vacancy formation energy obtained by Eq. 5.23 as a function of the density
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Figure 5.3: The FSWF energy per particle (black circles) as a function of the
density. The result is compared with the two results provided by ASWF of Ref.
[35] (blue triangles and red diamonds) and with the DMC results of Ref. [66].

is given in Fig. 5.4, where we included the same calculation using the static
shadows (red points).

We assume that the system containing one empty site is well described by
the same wavefunction of the perfect crystal. The modified structure of the
system with a vacancy is modeled by the shadow variables. Therefore for 53
atoms we used the same parametrization of φp, φs and the coupling constant c
entering in Gaussians of the system with 54 atoms.

In the static shadow case the shadow degrees of freedom are kept fixed
on the lattice sites so their effect is switched off. This corresponds to using a
variational wavefunction of the antisymmetric Jastrow–Nosanow type. FSWF
is more effective clearly shown in the figure. The vacancy formation energy
computed by means of FSWF is larger than the experimental data (blue points)
taken from Ref. [67] (see also Ref. [68] and references therein). The discrepancy
can be attribute to several reasons. First of all the calculation might be affected
by strong finite size effects. In fact the effective concentration of vacancies in
the system is rather high (i.e. 1/N), and this might imply a contribution to the
vacancy formation energy coming from a vacancy-vacancy interaction. There
is also additional room for improvement in the overall variational description.
For example, the parameters could be re-optimized in presence of the vacancy,
or a more sophisticated version of the wavefunction including a local–density
dependence of the two–body correlations might be used[36].
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ρσ3 E/N(53) T/N(53)
0.419 0.69(1) 23.71(3)
0.427 0.78(8) 24.6(2)
0.438 1.26(1) 25.76(3)
0.457 1.844(8) 28.05(2)
0.479 2.801(7) 30.60(2)
0.503 4.127(7) 32.35(2)

Table 5.3: Total and kinetic energy per particle at different densities in the solid
b.c.c. phase for the crystal with the presence of an empty site (53 atoms). All
energies are expressed in K.

0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5 0.51
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Exp, Heald et al.

Figure 5.4: The vacancy formation energy ∆Ev as a function of the density using
the FSWF (black points) and by keeping the shadows fixed. Some experimental
data from Ref. [67] is also reported for comparison. See the text for details.
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In figure 5.5 we show the cumulative normalization factor of the probability
density function ΞFSWF . This quantity tends to have wide oscillation due to the
contribution of positive and negative terms. With the new method this quantity
tends to converges to a small but positive costant value.
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Figure 5.5: Normalization factor of the FSWF (Denominator of equation 5.13),
for different values of density. Note the exponential decay and the asymptotic
limit that is always greater than zero.

We also computed the particle–particle and shadow–shadow pair distribu-
tion functions for pairs with parallel and opposite spin at different densities.
Results are reported in Fig. [5.6-5.9]. It is possible to note a typical feature of
SWF calculations in crystal, i.e. the shadows are more localized than particles.
Further increasing the density, the system results more localized. The vacancy
introduces disorder. In the pair distribution functions with parallel spins the
system displays a tendency of organizing itself in a hybrid spin ordering, pos-
sibly suggesting the formation of the experimentally observed u2d2 magnetic
ordering. This would be a sign that magnetic ordering in 3He crystals strongly
depends on the detailed character of the interaction.
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Figure 5.6: Pair distribution functions for two 3He atoms with parallel spins for
N=54 and N=53 at 20 cc/mol. Distance is given in units of σ = 2.556Å.
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Figure 5.7: Pair distribution functions for two 3He atoms with opposite spins
for N=54 and N=53 at 20 cc/mol. Distance is given in units of σ = 2.556Å.
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Figure 5.8: Pair distribution functions for two 3He atoms with parallel spins for
N=54 and N=53 at 24 cc/mol. Distance is given in units of σ = 2.556Å.

0 0.5 1 1.5 2 2.5 3
r/σ

0

1

2

3

4

5

g ud
(r

/σ
)

particles
shadows

0 0.5 1 1.5 2 2.5 3
r/σ

0

0.5

1

1.5

2

2.5

3

g ud
(r

/σ
)

particles
shadows

Figure 5.9: Pair distribution functions for two 3He atoms with opposite spins
for N=54 and N=53 at 24 cc/mol. Distance is given in units of σ = 2.556Å.
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Chapter 6

Conclusions and perspectives

This thesis work was concerned in the attempt of improving two Quantum
Monte Carlo methods, VMC and DMC, in order to extend the technical ca-
pabilities to the treatment of strongly inhomogeneous and strongly correlated
Fermions. Such system have been posing a technical challenge for many years,
and a general method that includes a correct treatment of the symmetry prop-
erties and guarantees a satisfactory computational efficiency is still lacking. We
focused our attention on two particular cases.

In the first project we performed a Diffusion Monte Carlo simulation of a
2D electron gas laterally confined by harmonic potential. This model is of great
interest because contrarily to quasi 1D models we can study the occurrence
of phase transitions relevant for understanding the anomalies observed in the
conductance of quantum nano-wires.

We studied in detail the cases with ~ω0 =2,4,6 meV, where ω0 is the pa-
rameter of the confinement. Comparing the results we can say the system is a
polarized and localized at rs > 3 and unpolarized liquid at rs < 3. Increasing
ω0 the system tends to become more localized, but at high density it is difficult
to turn off the electron exchange.

It is necessary to have a complete overview of all results on this system in
order to be able to give an interpretation. The computational difficulties are
not negligible. The presence of the lateral confinement induces correlations that
may give rise to unconventional structures for the ground state. In particular,
using a wavefunction built starting from localized orbitals gives in some case
the lowest energy, despite high mobility due to the exchange among electrons
does not allow to speak about a crystal phase. This behavior might suggest the
presence of a spin-wave ground state. On the other hand the lateral confinement
tends to induce a localization (visible on the two body density) also when plane
waves are used to build the wavefunction.

It is clear for rs ≥ 5 the polarized liquid wavefunction reproduce in a better
way the nodal structure giving the smallest energy. But at rs ≥ 5 is the system
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still liquid or not? A better energy can be obtained by using a polarized liquid
wavefunction instead of a polarized solid wavefunction, but the pseudo-solid
structure of g(x) computed using the polarized liquid wavefunction indicates us
the existence of a localization. We think that for rs ≥ 5 the system is polarized
and weak localized.

For rs < 3 the system is always liquid. As ~ω0 = 6 meV the unpolarized
solid wavefunction can give a lower energy than unpolarized liquid wave, but
the electron exchange guarantees the liquid behavior of the system. There are
some indications concerning the formation of a spin wave at rs = 1.

In conclusion the study of the laterally confined electron gas would require an
even more detailed analysis in order to completely determine the phase diagram.

The next step will be the study of system at even higher values of ω0. In the
limit of very strong confinement the system should become effectively 1D. It
is known that in this regime a transition to a Luttinger liquid is possible. One
interesting signature of this transition would be the equivalence of the energy
of the Fermion and Boson systems. We expect the system tends to a localized
configuration in which the Fermionic contribution to energy is negligible. To
realized that is necessary to make some small changes in the current version of
the code.

Other important developments concern to reproduce more accurately the ex-
perimental setup, for example, introducing a spin-orbit term (that comes from
the presence of an electronic field transverse to the quantum well), and a mag-
netic field.

In the second project we present a novel variational wavefunction to study
Fermionic systems with the presence of defects and in general in a inhomo-
geneous phase. As an application we described the Fermionic Shadow wave
function that we used to compute the equation of state of solid 3He in the b.c.c.
phase as a function of the density, and the vacancy formation energy.

We stress the fact that using the standard QMC machineries it is not possible
to correctly study systems with the presence of defects or impurities like a
vacancy. In particular the theoretical study of 3He with vacancies is a problem
that has not been well solved yet, and no other convincing ab-initio theories are
present.

Using FSWF it is possible to study the 3He with the presence of impurities
of 4He as well as the mixture of the two gases, and to move near the region
where the solid and liquid phases start to coexist. Work in these directions is in
progress.

FSWF would find an interesting application to other systems, for example
the electron gas. The extension to other systems might not be simple. In fact,
some checks on two-dimensional electron gas showed us our model does not
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always work so good. The electron system is more difficult than 3He because of
the lighter mass and higher delocalisation. However, the goal of using FSWF in
this case might be a breakthrough in the theoretical description of the properties
of the quantum wells in presence of charge impurities, that would be of great
interest for experiments and applications.
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