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"The essence of science lies not in discovering facts, but in 
discovering new ways of thinking about them. “ 

W. L. Bragg 



 



 

Abstract 

 
 
Atomistic simulations based on Molecular Dynamics (MD) were used to model the 
lattice distortions in metallic nano-polycrystalline microstructures, with the purpose of 
supporting the analysis of the X-ray powder diffraction patterns with a better, atomic 
level understanding of the studied system.  

Complex microstructures were generated with a new modified Voronoi 
tessellation method which provides a direct relation between generation parameters 
and statistical properties of the resulting model. MD was used to equilibrate the 
system: the corresponding strain field was described both in the core and in surface 
regions of the different crystalline domains. New methods were developed to 
calculate the strain tensor at the atomic scale.  

Line Profile Analysis (LPA) was employed to retrieve the microstructure 
information (size and strain effects) from the powder diffraction patterns: a general 
algorithm with an atomic level resolution was developed to consider the size effects 
of crystalline domains of any arbitrary shape. The study provided a new point of view 
on the role of the grain boundary regions in nano-polycrystalline aggregates, 
exploring the interference effects between different domains and between grain 
boundary and crystalline regions. Usual concepts of solid mechanics were brought in 
the atomistic models to describe the strain effects on the powder diffraction pattern. 
To this purpose the new concept of Directional - Pair Distribution Function (D-PDF) 
was developed. D-PDFs calculated from equilibrated atomistic simulations provide a 
representation of the strain field which is directly comparable with the results of 
traditional LPA (e.g. Williamson-Hall plot and Warren-Averbach method).  

The D-PDF opens a new chapter in powder diffraction as new insights and a 
more sound interpretation of the results are made possible with this new approach to 
diffraction LPA. 
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Chapter I 
 

Introduction 

 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 

Computational Materials Science is one of the newest and most promising branches 
of science and engineering. Owing to their versatility, computational techniques can 
be employed both to assess consistency between experiments and theories, and to 
complement them. For example, predictions can be made by using different models 
or by implementing different hypothesis, so to find the best experimental conditions 
under which some known, or new and unexpected phenomena appear ( (Zheng, et 
al., 2010), (Bulatov, et al., 1998), (Greaves, et al., 2011), (Jang, et al., 2012), (Norris, 
et al., 2011)). 

The key modelling tool for nano-structured materials is atomistic simulation: 
mimicking the behaviour of each atom in a given microstructure can provide 
information ranging from spatial arrangement (atomic coordinates and displacement 
in space and time) to energetic properties (from which e.g. temperature, stress, and 
vibrational spectra can be calculated). Most models, especially the microstructural 
ones, can be reliable and rigorous even by considering atoms as classical particles 
(Molecular Dynamics (MD)). Characteristics such as the grain boundary structure 
can then be evaluated by recording the displacements between a starting ideal 
crystal and the corresponding equilibrium configuration ( (Van Swygenhoven, 2002), 
(Derlet, et al., 2005), (Frøseth, et al., 2005)). 
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The increasing power of computers is constantly pushing up the capabilities 
and limits of MD: ever larger clusters of atoms (i.e. microstructures), can be 
nowadays equilibrated under a wide variety of imposed environmental conditions. 
One million atoms can easily be handled by a desktop PC, whereas computer 
clusters are usually employed for more demanding tasks (several hundred million 
atoms). Still, transient phenomena are frequently poorly traced (Van Swygenhoven, 
2002) and thus the risk is high of a strong biasing of the result by a wrong choice of 
the starting microstructure. Hence, it is crucial that statistical and physical coherency 
is kept between simulated microstructure and (as available) experimental results       
( (Gross, et al., 2002), (Xu, et al., 2009), (Xu, et al., 2010)). 

A convenient way to link atomistic simulations and experiments is based on X-
ray powder diffraction. In fact, a diffraction pattern contains complete information on 
a nano-crystalline specimen: roughly speaking, structure (i.e. atomic positions) is 
encoded in peak position and intensity whereas microstructure dominates the peak 
breadth and shape. The ability to entangle is left to the reliability of the models 
employed in data analysis. 

The main goal of this work is to couple X-ray powder diffraction and a 
description of the local atomic arrangement for a better understanding of the nano-
polycrystalline microstructure at the atomic scale. 

Several limitations of current models need to be removed to reach this goal. 
First of all the microstructure biasing has to be reduced and in particular, the 
topological and statistical properties of the initial microstructure need to be similar to 
experimental (or realistic) ones. Several algorithms have been suggested for 
polycrystalline microstructure generation, the most common being the Poisson 
Voronoi Tessellation (PVT), which has the considerable drawback of leading to 
unrealistic topologies and grain distributions. Suitable constrains can overcome the 
assumptions of constant uniform growth rate and simultaneous nucleation implied by 
PVT ( (Gross, et al., 2002), (Suzudo, et al., 2009)). Using such evolutionary 
methods, some features of the simulated polycrystalline microstructures are forced to 
agree with experimental results (e.g. a log-normal grain size distribution). Still, the 
resulting microstructure is affected by the geometrical and topological restrictions of 
the Voronoi construction, such as sphericity, edge or triple junction length, bond and 
dihedral angles (Xu, et al., 2009). Chapter II presents a new approach to generate 
microstructures with a desired grain size distribution, which is further extended by an 
evolutional algorithm to simultaneously obtain a set of properties, like grain shape or 
volume fill density. Results of this work are then used throughout the rest of the 
Thesis work. 

Chapter III deals with the critical problem concerning the different definition 
and meaning of strain when macroscopic and atomistic descriptions are compared. 
An appropriate relation is established between strain in the microstructure (discrete) 
and the continuous microstrain (or root mean squared (r.m.s.) strain) measurable by 
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X-ray diffraction. A possible extension of the continuum theory to account for the 
atomistic nature is proposed and implemented from the available knowledge of 
atomic positions. 

X-ray diffraction can provide information on both structure and microstructure 
of materials. The latter is the focus of the so-called Line Profile Analysis (LPA), so 
much used in nearly all areas of science and technology to determine size of the 
crystalline domains and content of lattice defects. The same problem, as discussed 
in the last two chapters, can be viewed by the atomistic modelling, with the 
considerable advantage that phenomena and features not directly accessible to 
experiments can also be studied. Chapter IV, focus in particular on the role of grain 
boundaries, and their contribution to the coherent scattering which determines the 
observed features of the diffraction peak profiles. 
 

Figure I - 1. Nano-polycrystalline Cu microstructure and the corresponding X-ray powder 
diffraction pattern. 

The broadening of line profiles can be studied in terms of structural and 
microstructural properties such as domain size and distortion field. X-ray diffraction 
provides a convenient way to express the results of an MD simulation (either for 
single crystals or polycrystalline aggregates), as with the Debye Scattering Equation 
(DSE) ( (Debye, 1915), (Cervellino, et al., 2010), (Gelisio, et al., 2010)) no extra 
assumptions are required to generate the powder pattern from the atomic positions. 
However, so far DSE patterns from MD simulations have been little studied, using 
only the most simplified and less reliable tools of traditional LPA ( (Derlet, et al., 
2005), (Leonardi, et al., 2011)). The lack of appropriate and reliable LPA methods 
prevents from studying many physical phenomena that can be investigated by an 
atomistic simulation, e.g., during the MD equilibration process. Chapter VI shows 
how a new concept of Directional Pair Distribution Function (D-PDF) can be 
developed from atomistic simulations to interpret and fully understand the diffraction 
line profiles. This development, as schematically illustrated in Figure (1), allows us to 
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fully understand the line broadening effect due to the finite size and arbitrary shape 
of crystalline grains in a microstructure, while at the same time considering the effect 
of r.m.s. strain on the atomic level.  
The proposed approach can be used to validate existing methods, and in particular 
the Warren-Averbach method ( (Warren, et al., 1950), (Warren, 1959), (Warren, et 
al., 1952)), which is a standard in LPA. More generally, the D-PDF concept supports 
a better understanding and use of MD simulations, and their relation with real 
microstructures in terms of a well-known, easy to perform experimental technique 
like diffraction. 
The present Thesis is organized in chapters mapping one or more articles published 
on (or submitted to) several scientific journals. Each chapter is then presented as a 
complete research report, comprising a dedicated abstract and paragraphs of 
introduction, results and discussion, and conclusions. In this way each chapter can 
be read independently of the others, even if the order of the presentation and the 
content clearly refer, as a whole, to the same research project briefly introduced 
above. 
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Chapter II 
 

Modelling of Material Microstructures 

 
Part of this chapter has been published in: 

 
 
Alberto Leonardi, Paolo Scardi, Matteo Leoni, 

“Realistic nano-polycrystalline microstructures: beyond the classical Voronoi 
Tessellation”, 
Philosophical Magazine, 92 – 8 (2012) 986-1005. 
 
 
 
Alberto Leonardi, Matteo Leoni, Paolo Scardi, 

“Atomistic modelling of polycrystalline microstructures: an evolutional approach to 
overcome topological restrictions”, 
Computational Materials Science, 67 (2013) 238-242. 
 
 
 

2.1 Abstract 

The Modified Voronoi Tessellation (MVT) method is proposed for the computer 
simulation of realistic microstructures. Differently from standard tessellations, the 
present method provides a desired grain size distribution in a one-step non-
evolutionary procedure. This is obtained by relaxing the constraints of Voronoi 
Tessellation on position and orientation of the grain boundaries, with the only side 
effect of forming a limited amount of eliminable voids. As an example, it is shown 
how to directly obtain a size distribution of grains of given variance and with a shape 
statistically close to a lognormal. 

An evolutional algorithm is then proposed to overcome the topological 
restrictions of tessellation methods employed for polycrystalline microstructure 
generation. By suitably tuning the generator parameters, the new algorithm allows 
the generation of a microstructure simultaneously with e.g. given cell size 
distribution, cell shape isotropy and volume fill density, impossible to obtain using 
any of the existing tessellation techniques. The relationship between generation 
parameters and resulting properties of the size distribution is investigated. 
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2.2 Introduction 

Atomistic modelling is increasingly employed for the study and the prediction of the 
properties of materials at the nano scale. Starting point of all those studies is a 
realistic model for the microstructure ( (Gleiter, 2000), (Suryanarayana, et al., 2000), 
(Mahadevan, et al., 2002)) including grain shape and size distribution, chemical 
composition, atomic positions, as well as specific models of grain boundaries. The 
microstructure, in fact, plays a key role in determining the mechanical and physical 
properties of a polycrystalline aggregate ( (Zheng, et al., 2005), (Zhu, et al., 2006), 
(Fátima Vaz, et al., 1988), (Kurzydzsowski, 1990)): a poor microstructure modelling 
might lead to results that albeit correct, are not representative of a real object (Gross, 
et al., 2002). Statistical properties are especially relevant: grain arrangement, grain 
shape and size distributions, as typically observed by a Transmission Electron 
Microscope, have usually a peculiar behaviour that is far from being random (Liu, et 
al., 2010) and thus needs to be accurately reproduced. 

To simulate a microstructure, a net of connected closed cells should be 
created. The operation, also known as space tessellation, is not trivial. Several 
algorithms have been proposed for periodic (Fedorov, 1971), aperiodic ( (Mackay, 
1982), (Penrose, 1974), (Ishihara, et al., 1986)) and for stochastic tessellation: 
Delaunay Triangulation (DT - (Delaunay, 1934), (Muche, 1996)), Voronoi 
Tessellation (VT - (Sibson, 1980), (Aurenhammer, 1991), (Kumar, et al., 1992), 
(Lucarini, 2009), (Lucarini, 2008), (Thomas, 1996)), Laguerre Tessellation (LT - (Xue, 
et al., 1997), (Lautensack, et al., 2008)) and Johnson-Mehl Tessellation (JMT - 
(Farjas, et al., 2008), (Møller, 1992)) are traditionally employed to create 
interconnected cells with no gaps ( (Mahadevan, et al., 2002)). The regularity in 
periodic and aperiodic tiling seems convenient to describe the atomic arrangement 
inside grains (e.g. structure of crystals and quasicrystals (Ishihara, et al., 1986)), but 
is not appropriate to represent a realistic microstructure, as opposed to stochastic 
tessellations. 

Starting point for all stochastic tessellations is a box, in most cases with 
imposed Periodic Boundary Conditions (PBCs), in which a set of points (centres or 
generators) is laid. The point creation process and the algorithm generating the 
associated cells differentiate the various tessellation methods. A homogeneous 
Poisson point process with parameter λ is a convenient and commonly adopted 
generator, as it is compatible with the study of aggregates obtained from random 
nucleation sites ( (Lucarini, 2009) , (Lucarini, 2008) , (Meijering, 1953) ). Even if 
modelling inevitably involves the evolution of this microstructure (e.g. by an 
equilibration process), results can be influenced by the initial configuration                 
( (Zeghadi, et al., 2007(a)), (Zeghadi, et al., 2007(b))) and, in turn, by the tessellation 
method. An issue is usually to what extent simulated microstructures resemble the 
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real ones, or are at least capable to capture their main features ( (Gleiter, 2000), 
(Suryanarayana, et al., 2000)). 

Voronoi Tessellation (VT) is the most popular in several fields of research        
( (Baccelli, et al., 2001), (Gilbert, 1962), (van de Weygaert, 1994)) owing to its 
simplicity ( (Tanemura, 1988), (Ferenc, et al., 2007), (Hinde, et al., 1980), (Goldman, 
2010)), space-filling nature and to the availability of theoretical results on the 
topological properties (especially in the case of Poisson-Voronoi Tessellation (PVT)) 
( (Lucarini, 2009), (Lucarini, 2008), (Meijering, 1953), (Calka, 2003), (Goldman, et al., 
2003), (Miles, et al., 1982), (Møller, 1994), (Drouffe, et al., 1984), (Christ, et al., 
1982), (Hilhorst, 2005)). Although VT leads to microstructures closely resembling 
real ones, topological and statistical properties (e.g. dihedral angles, number of triple 
junctions, area of grain boundaries and junction lengths) are not always compatible 
with the experimental results (Xu, et al., 2009). For instance, in a PVT the cell 
volumes follow a distribution close to the gamma ( (Fátima Vaz, et al., 1988), 
(Kumar, et al., 1992)), certainly not the most common in the literature on materials 
analysis where the lognormal distribution prevails ( (Gleiter, 2000), (Suryanarayana, 
et al., 2000), (Fátima Vaz, et al., 1988), (Rhines, et al., 1982), (Wang, et al., 2007), 
(Takayama, et al., 1991)). To obtain grains with a different distribution, the available 
options are to employ a different point process (e.g. Ginibre-Voronoi (Goldman, 
2010) or Laguerre-Voronoi ( (Yang, et al., 2002), (Fan, et al., 2004), (Wu, et al., 
2010)) tessellations), or to start with a traditional VT and to modify the positions of 
the generators using an evolutionary approach (e.g. Constrained Voronoi 
Tessellation, CVT ( (Gross, et al., 2002), (Xu, et al., 2009)) or the method of Suzudo 
and Kaburaki (Suzudo, et al., 2009)). 

Neither the traditional tessellation algorithms, nor those alternative methods, 
however, are able to directly produce an ensemble of cells with a lognormal 
distribution of volumes of arbitrary variance. The CVT has in principle the flexibility to 
do that for distributions narrower than the PVT, but always with tedious extra 
computing and at the expenses of the grain shape that becomes arbitrary. 

A new method is here proposed, the Modified Voronoi Tessellation (MVT), 
which eliminates most limitations of traditional tessellations, albeit at the expenses of 
leaving some voids. To be fully correct, the result is therefore a pattern and not a 
tessellation. The MVT introduces three additional degrees of freedom (Cell Growth 
Factors (CGFs), Face Growth Factors (FGFs) and Plane Interface Orientations 
(PIOs)) to tune the topological properties of the resulting models. The topological 
properties of the obtained ensemble will be presented and compared with the 
existing literature. It will be also shown that a distribution of domains possessing a 
target variance and a shape statistically close to the lognormal can be obtained 
directly from a random distribution of centres, without the need for extra evolutionary 
steps. 



20 

Unfortunately, a deterministic solution is not yet available to build a 
microstructure with a desired set of target properties:  to this purpose, an evolutional 
method, defined as Constrained MVT (CMVT) is proposed. Starting from an arbitrary 
solution, in each iteration step a collection of models is produced by changing 
selected generator parameters of a grain subgroup. For each model a convergence 
parameter is computed by applying a penalty function and suitable weight factors. 
After each step the best model is chosen as the new solution. As shown in the 
present paper, this approach provides models with desired topological properties, 
circumventing any restrictions imposed by the method adopted for the pattern 
generation. 

2.3 Methods 

2.3.1 Traditional stochastic tessellation methods 

Four main classes of stochastic methods for space tessellation have been proposed 
in the literature to describe materials microstructure. They can be found under the 
names of Delaunay Triangulation (DT), Voronoi Tessellation (VT), Laguerre 
Tessellation (LT) and Johnson-Mehl Tessellation (JMT). All those methods comply 
with the basic requirement of metallographic theory, i.e. that the grains fill the whole 
space with no gaps (Mahadevan, et al., 2002).  

Delaunay tessellation, the most simple, constructs the cells from triangulation 
of each generator with three closest neighbours (Delaunay, 1934), resulting in 
tetrahedral domains. Only the triangulation for which the circumsphere of each cell 
do not contain any generator can be considered as Delaunay tessellation. In this 
way, for a given set of points the Delaunay tessellation is unique. Some analytical 
results for the properties of a 3D Poisson-Delaunay tessellation are available and 
can be found in (Muche, 1996). In particular, the distribution of sizes is determined 
by the point process used to define the generators: a quasi-Poisson distribution is 
obtained in the 3D case and the only possible changes to it can be obtained by 
changing the position of the points. Furthermore, cells are always tetrahedral, this 
being a large limit for a direct applicability of the method to real cases. Delaunay 
tessellation is quite rigid in that all geometrical properties for each cell are already 
decided by the positioning of the generators (Delaunay, 1934).  

Dual to the DT is Voronoi tessellation (VT). The VT considers the planes 
bisecting the segments connecting each generator with all neighbours ( (Sibson, 
1980), (Aurenhammer, 1991), (Kumar, et al., 1992), (Lucarini, 2008), (Lucarini, 
2009), (Thomas, 1996)): the cells are the set of points closest to the chosen centre. 
In the computing of the distances, the Euclidean norm is employed. The resulting 
cells are strictly convex polyhedron with a number of faces equal to the number of 
closest neighbours (Figure (1a)). It should be noted that the convexity condition is 
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strictly related to the fact that the Euclidean norm is used: the situation can be 
different if different norms are employed (see e.g. (Gravner, et al., 1997)).Among 
Voronoi tessellations, the most used is Poisson-Voronoi Tessellation (PVT) where 
the centres are generated using the Poisson point process. As noted by Lucarini 
(Lucarini, 2008), the PVT has “a great relevance at practical level because it 
corresponds, e.g., to studying crystal aggregates with random nucleation sites and 
uniform growth rates”.  

The LT and LVT (Laguerre Voronoi Tessellation) on the contrary, are not 
evolutionary: they use a non-Poissonian process to position the generators. In 
particular, the centres are chosen in such a way that spheres with a known size 
distribution centred on them do not overlap ( (Yang, et al., 2002), (Wu, et al., 2010)). 
In practice, the LT and LVT increase the degrees of freedom of the VT by placing the 
interface plane in a position shifted with respect to the midpoint of the segment 
connecting the neighbouring generators (Figure (1b)). This intersection position, 
guaranteeing neighbouring spheres not to collide, can be seen as the result of a 
pseudo growth-rate associated to each centre and expressed under the form of 
sphere radius ( (Fan, et al., 2004), (Wu, et al., 2010), (Lochmann, et al., 2006)). 
 

 
Figure II - 1. Resulting microstructures by using (a) VT, (b) LT, (c, d) JMT. The generator 
centres are marked by blue dots. The starting nuclei in (c) evolve in the microstructure shown in 
(d) by a uniform growth at constant rate. 
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With the idea of a growth rate in mind, the JMT tries to obtain a microstructure 
by defining a reference cell around each centre and simulating a constant and 
uniform growth of them. All cells are inflated till they collide and this collision is 
tracked point by point. Spherical cells are generally used as starting point, resulting 
in curved cell-cell interfaces. The final geometrical structure is completely unknown   
( (Farjas, et al., 2008), (Gilbert, 1962), (Pineda, et al., 2004), (Ferenc, et al., 2007)) 
and concave cells can be possibly obtained. The big advantage of the JMT lays in its 
physical basis, as it tries to simulate the actual process of nucleation and growth in 
order to obtain a realistic microstructure (Figures (1c), (1d)). 

2.3.2 Modified Voronoi Tessellation (MVT) 

Voronoi Tessellation enforces a dependence of the cell shape on the mutual 
positioning of the generators: this limits and constrains the possible configurations 
and topological properties that can be obtained when describing the packed 
arrangements of objects with a given distribution. To better clarify this point and its 
implications, let’s consider the simple case of a cluster of randomly arranged spheres 
(effectively mimicking an aggregate of equiaxed grains) with a lognormal distribution 
of diameters (see Figure (2a)). Clearly, the Voronoi Tessellation obtained from the 
centres of the spheres does not match the actual microstructure (see the dashed 
lines and the shaded area in Figure (2a)). Voronoi Tessellation is in fact unable to 
randomly pack a given set of unequal spheres: once a (quasi-)spherical shape of the 
cells is chosen and a given sphere is selected (grey cell in Figure (2b)), the possible 
size and position of the neighbouring cells is determined. Given a point, the direction 
where to place a neighbour determines the orientation of a face of the cell (direction 
and face are orthogonal), whereas the distance fixes the cell size along that 
direction. To avoid the unphysical resulting superposition (cf. Figure (2b)), the 
neighbouring objects should then elongate (Figure (2c)). This is an intrinsic limitation 
of Voronoi Tessellation that goes beyond the sophisticate evolutionary procedures 
employed e.g. by Gross & Li (Gross, et al., 2002) and by Suzudo and Kaburaki 
(Suzudo, et al., 2009) to build a microstructure with a given distribution. The 
impossibility of VT to pack equiaxed objects is also the main reason why any 
evolutionary method inevitably creates non-spherical cell shapes (see Figure (2c)). 

As a matter of fact, any tessellation based on the classical norm (excluding the 
JMT) would lead, in a real case, to polyhedral grains approximating the spheres and 
not to true spheres. The microstructure of Figure (2a) is actually compatible with a 
Laguerre Tessellation with generators in the centres of the spheres; to obtain a 
Laguerre Tessellation of a given sphere set, first a Random Close Packing of 
Spheres (RCPS) must be calculated (Fan, et al., 2004). This computationally-
intensive step cannot be avoided and is not easily parallelisable. 

To quickly and directly reproduce an arrangement like the one depicted in 
Figure (2a) starting from randomly positioned centres, we propose a Modified 
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Voronoi Tessellation (MVT). The main differences between PVT (but also VT in 
general) and MVT lays in the configuration of the cell-cell interface. In particular, its 
position along the distance of neighbouring centres (Plane Interface Position, PIP) 
and its orientation with respect to the plane orthogonal to that vector (Plane Interface 
Orientation, PIO) are modified. Changing those factors, i.e. going towards a more 
realistic nucleation/growth process (as in the LT and JMT methods), allows the 
simulation of realistic microstructures with various statistical distributions of 
geometrical properties and grain types. 
 

 
Figure II - 2. (a) Random packing of spheres with a lognormal distribution of diameters. The 
centres of the spheres form the dashed Voronoi net. (b) Trying to pack spherical objects around 
a given (quasi-spherical one (gray). The Voronoi points needed to create the gray object must 
be centres of intersecting spheres. (c) To avoid intersections, the neighbouring objects have to 
be deformed. 

The release of position and orientation of the plane interface is obtained by 
introducing two additional factors in the geometric procedure of the VT (cf. Figure 
(3)): a growth factor (GF) displacing each PIP from the mid-point between two 
generators and a rotation factor (RF) that changes the associated PIO. The growth 
factor is obtained as the product of a cell growth factor (CGF) isotropic for the cell, 
plus a face growth factor (FGF) taking into account a directional dependence of the 
cell expansion (or contraction). The PIP along the segment connecting two nearest 
centres A and B is obtained by equilibrating the GF of the corresponding grains, as 
in: 

 
( ) ( ) ( )
( ) ( ) ( )

( )( )
( ) ( )

GF A CGF A FGF AB
GF B CGF B FGF BA

GF APIP d AB
GF A GF B

=
=

=
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 (1) 

where d(AB) is the distance between A and B. 
To allow for PIOs not permitted by the Voronoi Tessellation, the rotation 

factors (or better the rotation angles (ψ, θ) along two normal axes centred on the 
Voronoi PIP) are introduced. Clearly, the VT is obtained from MVT assuming 
constant GF and null RFs. 
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The cells in MVT are convex polyhedra, but they are usually not space filling: 
some void regions are created at the cell junctions, as the relaxation of the Voronoi 
tessellation constraints does not guarantee the compatibility of the geometry of the 
cells. These voids can be seen as a closed porosity and can form connected 
networks so counting them has a limited meaning. The presence of the voids is not a 
serious limitation for the aim of the present work, i.e. the application of the MVT to 
build a microstructure. Independently of the porosity, the boundary microstructures 
obtained by filling the cells with atoms are non-physical and need at least a MD 
equilibration ( (Xu, et al., 2009), (Xu, et al., 2010)). Therefore, as there is no 
definitive experimental result on the boundary structure (Van Swygenhoven, 2002), 
several methods can be proposed to take the voids into account or to eliminate them 
when filling the cells with atoms: some alternatives will be proposed in next section. 
 

 
Figure II - 3. Neighbouring grains. (a) Traditional Voronoi Tessellation. Poisson-Voronoi 
generators A and B and corresponding Voronoi PIP (P). The distance between the generators 
d(AB) and the distance of the PIP from A (rA) are also shown. (b) Modified Voronoi Tessellation. 
The three possible operations introduced by the modified method, i.e. shift and two rotations of 
the plane interface. 
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The only limitations to the generality of the resulting cell shape are the number 
of faces and their flatness. The latter restriction can be removed, for example, by 
roughening the surface of the cells during the microstructure generation (more 
precisely, when filling the cells with a given crystallographic structure).Sinusoidal 
functions (Figure (4a)) or additional protruding shapes (Figure (4b)) can be used to 
roughen the grain–grain interfaces. However, exotic and, more generally unstable 
local configurations of the atomic arrangement will be relaxed by the equilibration 
process. 
 

 
Figure II - 4. Non flat grain-grain interfaces: sinusoidal shape (a), additional stand out shapes 
on the surface (b). 

2.3.2.1 Relationships between traditional tessellations and the MVT 

To frame the MVT in the existing literature, an analogy between tessellation methods 
and a nucleation/growth process can be used as shown in Figure (5). The 
combinations of growing rate and nucleation time show several behaviours respect 
which VT, LT and JMT methods are limiting cases of a more general tessellation 
procedure, whereas the MVT is the most flexible linear approximation. Moreover, in 
MVT the directional contribute introduce a third additional factor not possible to 
involve in the JMT method. 

More precisely, a classical PVT is compatible with an instantaneous 
nucleation of the generators and a uniform growth of the cells whereas the JMT 
assumes nucleation being time-dependent and growth being uniform. It can be 
readily seen, in fact, that the GF for the VT are, for instance, 

 

( ) ( )
VT

( ) ( )
( ) ( )

( ) 2

CGF A CGF B
FGF AB FGF BA

GF A GF B
PIP d AB

=
⇔  =
⇔ =
⇔ =

 (2) 



26 

The VT and JMT, however, are essentially different in the construction of the 
interfaces, planar in the one case and curved in the other. Owing to its construction, 
a VT with curved interfaces cannot be obtained, whereas a JMT with planar 
interfaces is a special case of the MVT. 
Laguerre tessellation, on the other hand, has a quite complex GF: 
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A suitable combination of nucleation times and growth rates in respect to the 
nucleation centres distance is in fact necessary as to guarantee the interfaces 
between neighbouring grains to be planar and shifted and space filling with respect 
to the VT case. 
 

 
Figure II - 5. Classification of the various tessellation methods with analogy to nucleation and 
growth with planar or curved interface. The MVT diagram approximations of non-planar 
interfaces are shown by the green lines. 

The analogous of all traditional models assuming a non-uniform growth rate 
can also be obtained as special case of the MVT. For instance a JMT with planar 
interfaces and anisotropic grain growth can be easily built. Of course, the issue still 
remain, in some cases, on space filling. As a final remark, the MVT method is able to 
approximate every configuration by an interface plane, clearly, in the special cases 
depicted by the VT or LVT it will be equivalent to them. 
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2.3.3 Constrained Modified Voronoi Tessellation (CMVT) 

The MVT allows the construction of a model with a target cell volume distribution 
simply by choosing an appropriate distribution of CGFs (Suzudo, et al., 2009). If 
necessary, some of the topological properties of the cells can be modified by suitably 
tuning the model parameters (e.g. the Cell Centre Positions (CCPs)). Unfortunately, 
a deterministic solution is not yet available to build a microstructure with a desired 
set of target properties: to this purpose, an evolutional method using Reverse Monte-
Carlo (RMC) and genetic algorithms is here presented. 

The CMVT analyzes a large collection of models made by the MVT 
method using different sets of generator parameter values and selects the one that 
best matches the target configuration. The models are produced by an iterative 
process involving a key model (i.e. the best model in a subgroup analyzed in the 
previous iteration step) as starting condition. As in CVT, we minimize here an 
objective function χ2, given by the sum of the squared distances between target and 
current M properties (respectively, Ptarget and Prefined): 
 22 argM t et refined

k kk
P P χ = − ∑  (4) 

The optimization algorithm involves the following basic scheme: 

1) Build a starting solution (Key Model, (KM)) and compute its χ2(KM). 
2) Create a set of trial solutions by changing a few generator parameters of the KM. 
3) Based on the trial solutions, generate a set of trial patterns and their 

corresponding χ2(i). 
4) Replace the KM with the best model among the current one and the new ones. 
5) If the χ2 is not minimum or is larger than a chosen threshold value, cycle again 

from step (2). 

Several statistical and topological properties, e.g. cell size distribution, cell 
shape isotropy, misorientation and volume fill density can be simultaneously 
optimized. Some of them, such as e.g. cell size distribution and cell shape isotropy, 
show little compatibility (it is difficult to create rounded cells with a given distribution, 
based on a VT) and therefore a careful convergence strategy is needed to avoid 
local minima and instability of the optimisation process. The solution envisaged here 
is to employ a modified objective function: 
 ( )22 2 argM t et refined

spread k k kk
w P P χ = χ + − ∑  (5)  

where a set of weights (wk) and an extra penalty (χ2spread) are included to take the 
relative relevance of each target property into account, and to avoid a large 
spreading in the values of the improved properties. The weights and penalty are 
compromise values chosen case by case to guarantee the mutual compatibility of 
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the target properties. The refined cell structure can be used as is, or employed to 
generate a polycrystalline cluster as assumed here. 

For fast computing, both synchronous and asynchronous multithreading were 
investigated. In the synchronous case, the Key Model is tested and possibly 
replaced at the end of each iteration step, requiring all threads to be finished and 
thus breaking the parallelism. In the asynchronous approach each thread works 
independently, comparing and possibly replacing the Key Model with its own, without 
waiting for all other threads to end. The latter approach improves the computing 
performance by eliminating the dead times, but it is usually less efficient as it 
requires more iterations (see Figure (19)). 

2.4 Results and discussion 

2.4.1 Atomic density and voids in MVT-derived 
microstructures 

To visually compare the effects induced by different point growth factors on the 
resulting microstructure, a pseudo-planar case was simulated. A set of centres was 
produced using a Poisson process with λ= 1 on a square planar region with periodic 
boundary conditions. Starting from the same set of 14 points, four different 
microstructures were generated using different MVT setups (see Figure (6)). In 
Figure (6a), the classical PV Tessellation is shown: the interfaces are halfway 
between neighbouring points and space filling is guaranteed. In Figure (6b) a 
lognormal distribution of CGF described as: 

 ( )
21 lnexp

22
xf x

x
µ

σσ π

 − = −     

 (6)  

with σ = 0.30, μ = 1.00 was chosen. The shape and size of the domains modifies 
and a fraction of empty volume is generated in the impingement points of three or 
more grains. The quantity and the extension of the void regions can be changed by 
using a more complex set of parameters: in Figure (6c) for instance three different 
FGF (100 for <1 0 0>, 75 for  <1 1 1> and 50 for <0 1 1>; directions referred to the 
orientation of the local crystallographic reference chosen for each cell) are selected, 
whereas in Figure (6d) a random perturbation of the interface angles (in the +/- 20.0° 
range) is applied. 

The incoherent positioning of the interfaces is the cause for the presence of 
voids in the MVT: this results in a larger flexibility, as a large spread in atomic density 
can be obtained by suitably choosing the modelling parameters and by careful filling 
of the voids. Coherent modifications in the position of the interfaces would have 
resulted in space filling, but at the expenses of MVT generality. 
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Figure II - 6. Changes in the microstructure caused by a different choice of model parameters. 
(a) Voronoi construction, (b) MVT with a lognormal distribution of CGF, μ = 1, σ = 0.30. (c) MVT 
with different FGF (100 for <1 0 ,0>, 75 for <1 1 1> and 50 for <0 1 1>). (d) MVT with random 
perturbation of the PIO (limited to +/- 20°).  In (e), (f), (g), (h) the detailed construction of a cell 
with the conditions (a), (b), (c) and (d), respectively. The dashed lines show the modifications 
occurring to the Voronoi cell in the various cases. 

 
Figure II - 7. Filling of the void resulting from the MVT with (a) empty space (no filling); (b) 
amorphous phase (c) crystalline phase and (d) extension of the grains. See text for details. 

Voids are filled when the atoms are placed inside the pattern of cells. Four 
alternatives are here proposed (Figure (7)): 

1) leaving voids empty (Figure (7a)): this would effectively simulate a packed 
aggregate of grains as obtained e.g. in a packed powder; 

2) filling voids with a glass phase of given density (Figure (7b)). This would allow a 
system with completely incoherent grain boundaries to be simulated; 

3) filling voids with additional grains possessing independent orientation (Figure 
(7c)). A fully crystalline structure is obtained, but a possibly unphysical large 
fraction of very small grains is introduced in the system; 

4) growing neighbouring grains into the voids (Figure (7d)). Slightly irregular grain 
shapes are obtained, but maximum density can be reached. The process is 
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similar to the Johnson-Mehl growing but here a more complex picture of CGF 
and FGF can be taken into account. 

The maximum quantity of atoms that can be placed in the box is not fixed, but 
depends on factors such as: 

• the method used to fill in the cells with the crystallographic structure (for 
example, a realistic microstructure can be obtained by deleting atoms closer 
than 85% of the first neighbours distance (Xu, et al., 2009), Figure (8a)); 

• the way the pattern of cells is built, and the statistical properties of the 
microstructure (size distribution, grains number and shape type). 

The approach used to fill the grain-grain interface regions entails a strong fluctuation 
of the quantity of atoms in space: the number is larger for overlapping grain 
boundary structures (Figure (8b)) than for separate domains (Figure (8c)). 
Furthermore, the total quantity of atoms in the system can be easily handled by 
randomly placing atoms in the gap region between separate domains, thus 
reproducing a liquid phase (Figure (8d)). 
 

 
Figure II - 8. Cross-section of a Voronoi microstructure. The cells are filled with fcc metal 
structure, whereas the grain-grain interface is handled by: eliminating atoms closer than 85% of 
the shortest neighbour distance (a), and unphysical overlapping of the grain structure for a fixed 
depth (b), removing atoms at the surface of the cells and leaving separate grains (c), removing 
atoms at the surface of the cells and filling the so-obtained voids with a liquid phase (d). 

However, independently of all other parameters, the number of grains (i.e. 
centres) is the key factor to determine the relative atomic density AD (defined as the 
ratio between the actual atomic density and the maximum one) for a cluster (cf. 
Figure (9a)). Due to the presence of voids, the atomic density obtained with the MVT 
is intrinsically lower than that given by the PVT; the difference disappears when the 
voids are filled using the 4th model (see list above, cf. Figure (9a)).  

Increasing the number of centres N causes a decreases of the atomic density 
and a corresponding increase in the surface-area-to-volume ratio (SA/V): the two 
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curves in Figure (9a) can be well reproduced by the two exponentials 
AD=0.92455+0.05106 exp(N/290.938)  and SA/V=0.14626-0.1669 exp(-N/306.434). 

Even for a single grain, full atomic density is never obtained in the general 
case unless box and lattice are suitably chosen (e.g. box scaled with respect to the 
unit cell and box corners sitting on lattice points). 
 

 

 
Figure II - 9.  (a) Relative atomic density and surface-area-to-volume ratio versus number of 
centres for four pattern methods: (i) PVT (circle), (ii) CVT with target lognormal distribution       
σ = 0.15 (square), (iii) MVT with a lognormal distribution of CGF having σ = 0.10 (diamond) and 
(iv) same as (iii) but with voids filled according to model F4 (triangle). In (b) statistical properties 
(mean and standard deviation) of the relative space filling in the model versus lognormal σ for 
the MVT as a function of the number of centres: 1000 (circle), 2000 (square), 3000 (diamond), 
4000 (down triangle) and 5000 (up triangle). 
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In any case, nanomaterials cannot be simulated with full atomic density owing 
to the presence of a large fraction of lower-density grain boundaries where empty 
volume accumulates. The situation presented in Figure (9a), however, refers only to 
the geometrical construction: changes are expected when the geometrical 
microstructure is evolved using, e.g. Molecular Statics or Molecular Dynamics. 

The actual values of the input parameters of MVT have a strong effect on the 
space filling ability. A decrease in space filling ability is usually observed when 
increasing the dispersion of growth and rotation factors: however, the trend is not 
monotonous and it is possible to find combinations of parameters which give a better 
filling of the space. The relative space filling Sf (fraction of volume occupied by the 
cells in a unity volume inside the box) is independent of the density of centres in the 
simulation box and decreases steadily for increasing breadth of the input distribution. 
As an example, Figure (9b) shows the case of a lognormal distribution of CGF with   
μ = 1. The curve can be well modelled as Sf = 1 – 0.01449 σ – 0.069477 σ2. When 
increasing the breadth of the input distribution of CGFs, the distribution of the Sf 
becomes more symmetrical (the skewness approaches zero) and its standard 
deviation becomes proportionally larger (see Figure (9b)). It is clear that the higher 
the σ (i.e. the wider the distribution of sizes), the more difficult is to get a random 
spatial arrangement of the objects, thus the higher the chances that empty regions 
(voids) remain (lower space fill). An increase in space filling with respect to Figure 
(9b) can be obtained by using the CMVT method (Leonardi, et al., 2013). 

2.4.2 Statistical properties of the MVT 

It is quite interesting to study further the microstructures obtained by MVT when 
imposing a lognormal distribution of CGF, all other modification parameters being 
zero (i.e. GF equal to CGF). Figure (10a) shows the average cell volume (V) 
distributions for the microstructures resulting from the application of the MVT method 
to the same set of 5000 centres using different lognormal distributions of CGF. The 
specimens will be identified as MVT x L y where x is the number of centres and y is 
the σ of the lognormal distribution of CGF (μ = 1.0). Lognormal curve fits are also 
provided in Figure (10a) as a guide for the eye. For a given distribution of CGF, the 
result does not modify if the CGF associated to each centre, the μ of the CGF and 
the box dimensions are changed. 

The cell volume is just a possible parameter to characterise the size of 
irregular objects such as the tessellation cells. The equivalent volume cell radius, 
total cell surface area, face surface area and number of faces per cell (NF), are also 
employed to characterise the topology of the resulting objects. It can be observed 
that the distributions of cell radius and cell surface area obtained with a lognormal 
distribution of CGF are close to lognormal too. The Cumulative Distribution Functions 
(CDFs) were compared in the case of some samples made by several number of 
centres (1000 to 5000) and lognormal variances of the CGFs (σ = 0.10 to 0.50). 
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Figure II - 10. Cell volume distribution for a few MVT 5000 samples obtained (a) with different 
CGF distributions and (b) with fixed distribution (σ = 0.1) and increasing box size expressed as 
number of unit cells along the edge: 100 (circle), 150 (square), 200 (diamond), 250 (up 
triangle), 300 (down triangle). In (c) and (d), respectively, the distributions of total cell surface 
area and number of faces per cell. The curve proposed by Tanemura (Tanemura, 2003) is 
shown in (d) as continuous line. 

The largest difference between the observed and the best fitted lognormal 
CDFs are below the 5% critical Kolmogorov-Smirnov limit. Moreover, the smaller the 
number of centres and the variance of the lognormal distribution of the CGFs, the 
higher the level of significance. For instance, significance is larger than 10% in the 
case of MVT 1000 samples. The mean of the resulting distribution depends on box 
size and number of points, i.e. on the average volume per point, whereas the 
variance depends only on the input parameters and is unaffected by the box size. 
This is clearly shown in Figure (10b) presenting the analysis of some MVT 5000 
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samples made with the same lognormal distribution of CGFs (μ = 1.0 and σ = 0.10) 
but increasing box size. The independence on box size of the statistical properties 
allows a coherent scaling of the results obtained on a sample to any other one. 

As expected (Figure (10c)) the surface area of the faces and their frequency 
are almost inversely related. Quite different is the behaviour of NF shown in Figure 
(10d): all simulated microstructures show exactly the same distribution whose mean 
(15.5352) is very close to the average facedness of the PVT (2+48π2/35 ≈ 15.53547 
( (Meijering, 1953), (Hilhorst, 2009), (Tanemura, 2003))) and whose shape is 
compatible with the slightly skewed generalised Gamma distribution proposed by 
Tanemura (Tanemura, 2003). The agreement comes from the fact that the mutual 
arrangement, of the centres and thus the average number of near neighbours, is not 
changed by the MVT. The number of faces of the polyhedral grains, on the other 
hand, is strictly connected to the geometric construction involved and it is usually 
close to the number of faces of the dual Voronoi cell construction (10d). 

The number of faces is sufficient to characterise several topological properties 
of the cell. In fact, by using Euler’s formula for convex polyhedron we can relate NF 
with the number of vertices (NV) and the number of edges (NE) of a cell as             
NV – NE + NF = 2. The NV can in turn be computed using the equation:                 
NV = 2NF – 4. The changes in NF and in the average volume of the corresponding 
cell are usually linearly correlated through Lewis’ law (Lewis, 1928):                 
<V>NF = αL (NF - NF0). In the present case, however, a parabolic trend is evident 
(cf. Figure (11a)): a parabolic violation of Lewis’ law has been already pointed out in 
both simulated and measured dispersed polycrystalline microstructures ( (Xu, et al., 
2009), (Yang, et al., 2002), (Aboav, et al., 1969), (Beck, 1954), (Rivier, 1985)). 

The nonlinear trend seems associated to the process employed to lay the 
centres in the box. In fact, limiting the minimum distance between centres eliminates 
the nonlinearity: Figure (11b), for instance, shows the modification occurring to 
Figure (11a) when rising to 20Å the minimum distance between generators. Small 
deviations from the trends occur at the edges of the NF curve owing to the limited 
statistics (number of grains) associated to those points. The parameters of the 
curves slightly change with the increase in the standard deviation of the cell volume 
distributions, but invariably intercept the axis at NF = 3 (degenerate case). This 
suggests that the deviation in the slopes of the MVT models is due to the presence 
of voids, decreasing the cell volume especially of the larger cells. The influence of 
the voids decreases with the cell size and the axis intercept agree with the 
impossibility to define a closed polyhedron with less than 4 faces. 

A final check for the properties of the cell ensemble is provided by the ratio 
between the average number of faces in all neighbouring cells to a cell of NF faces 
(m(NF)) and the number of faces per cell. The relationship is well described by the 
Aboav-Weaire law (Chiu, 1995): 
 2( )NF m NF NF NFα α µ  ⋅ = − + +     (7)  
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where α and μ are fitting parameters. Mathematically, it expresses the tendency for 
any random tessellation to have small grains surrounded by large ones and vice 
versa. 
 

 
Figure II - 11. (a) and (b) Lewis plots for the MVT 5000 samples of Figure 6a. The plot in (b) 
was obtained by limiting the minimum distance between centres to 20Å. In (c) the Aboav-
Weaire plot is shown for the MVT 5000 samples of Figure 6a. Fits are proposed for the limiting 
cases MVT5000 L 0.1 and MVT 5000 L 0.5. 

Plots for the cases analysed here are shown in Figure (11c): the MVT and 
PVT methods show exactly the same slope and the same deviation from the best 
linear fit. Different distributions, resulting from the PVT and MVT with lognormal 
CGF, lead to analogous trends: this is consistent with the fact that both algorithms 
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start with a similar random arrangement of points and that the MVT does not heavily 
modify the number of faces of Voronoi cells (cf. Figure (10)). A small downward 
curvature in Figure (11c) seems to be present, confirming the observation of Hilhorst 
(Hilhorst, 2009), thus strengthening the idea that the Aboav-Weaire law might be just 
a good local approximation for the correct trend. In the range shown, the modified 
curve proposed in (Hilhorst, 2009) i.e. NF m(NF) = 8 NF+23.15 NF5/6-15.96 NF2/3 
does not appreciably depart from Eq. (7). 

2.4.3 Relationship between input parameters and resulting 
microstructure 

A systematic relationship exists between the input CGF distribution and the resulting 
cell size distribution. It should be stressed that different choices can lead to 
completely different resulting distributions. For the sake of brevity, just the lognormal 
case is analysed in detail. Without losing in generality, a collection of samples was 
simulated with increasing number of centres and different lognormal CGF 
distributions with lognormal mean μ = 1. A cubic box with PBCs and a side of 100 
unit cells was employed. The same naming convention for the samples proposed 
before will be used here. 
 

 
Figure II - 12. Mean (a) and standard deviation (b) of the normalised cell volume distributions 
as a function of the normalised CGF (where V is the volume of the cells having a reference 
CGF). Data relative to the MVT5000 L 0.10 (circle), MVT5000 L 0.20 (square), MVT5000 L 0.3 
(diamond), MVT5000 L 0.4 (down triangle), and MVT5000 L 0.50 (up triangle). 

As an example, Figure (12) shows the relationship between the input CGF and 
the corresponding mean and standard deviation of the (lognormal) grain volume 
distribution. The direct dependence between CGF and mean cell volume (or size in 
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general) expresses the fact that if the centres would be isolated, their size at a given 
time would be proportional to their growth rate. The standard deviation for each CGF 
value, on the other hand, is related to the magnitude of the difference between 
isolated growth and actual growth (constrained by the interference with the other 
centres). Therefore, the growth rate represents somehow the probability of 
interference between neighbouring centres. In particular, centres with a small growth 
rate (small CGF) interfere with the neighbouring centres after a longer time than 
those with a higher growth rate (high CGF). 

The PVT method is the simplest case of constant-rate growth. Therefore, the 
cell size distribution of a PVT reflects exactly the distribution of the half distances of 
the neighbouring centres. In a sample created by the PVT method, the cell radius 
computed from the cell volume and from the mean plane interfaces distance show 
exactly the same distribution and almost the same values. A change in the size 
distribution is strictly connected to any change of the arrangement of the centres. For 
instance, the CVT method drives the centres towards a configuration where the 
distribution of plane interface distances is comparable with the target cell volume 
distribution. As previously noted, this leads to non spherical cells; in particular, cells 
with the largest standard deviation are more anisotropic (Xu, et al., 2009). Removing 
the constraints imposed by the Voronoi construction, allows moving the centres 
independently of the cell shape: a full control over anisotropy (and therefore 
roundness of the cells) is thus possible. 
 

 
Figure II - 13. Relationship between the σ of the input lognormal distribution of CGF and the 
parameters μ and σ ((a) and (b), respectively) of the resulting best fitted lognormal output 
distribution of V/<V> for specimens of increasing number of centres (1000: up triangle, 2000: 
down triangle, 3000: diamond, 4000: square, 5000: circle). 



38 

Figure (13) shows a clear parabolic relation between σ of the CGF (σin) and 
both μ and σ of the corresponding cell volume distribution. Independent of the 
number of centres, the two parabolas can be parameterised as                                  
μ = -0.0674 – 2.0149 σ in (13a) and σ = 0.4454 + 2.2455 σ in (13b). The result is 
compatible with the PVT where σ = 0.445 is obtained when fitting the resulting 
distribution with a lognormal (Meijering, 1953). The data spread around the best fit in 
Figure (13) can be related to the statistics of the corresponding distributions. The 
picture does not change if the size of the box, the number of centres and the μ of the 
lognormal CGF distribution are changed. The behaviour shows significant deviations 
if the homogeneous Poisson point process with parameter λ=1 is not used. A 
characteristic relation is observed when imposing a minimum distance between 
neighbouring cell generator centres: the higher the threshold value of the neighbour 
distance, the smaller the variances of the log-normal best fit cell volume distributions 
(see Figure (14)). The possibility of having the same cell statistical and topological 
properties, by varying only one or simultaneously more than one generator 
parameters, support the unconstrained nature of MVT. Actually, compared with 
homogeneous Poisson, slightly lower significance values are found for the 
agreement between cell volume and log-normal distributions. 
 

 
Figure II - 14. Relation between σ of the input lognormal distribution of CGF and the resulting σ 
of the best fit lognormal output distribution of V/<V> for specimens of increasing shortest 
distance between generator centres. Shortest distances are expressed as fraction of the 
minimum neighbour distance for the density equivalent fcc structure: 1/3 (up triangle), 1/4 
(down triangle), 1/6 (diamond), 1/12 (square), and Poisson point process (circle). 

Systematic effects related to the simulation parameters can be detected also 
for other topological properties such as the average cell surface density (CSD), i.e. 
the ratio between the cumulative cell surface and the box volume. Figure (15) shows 
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the trend of the CSD versus the σ of the input distribution of CGF. The average cell 
surface density decreases with increasing distribution width. The trend is similar 
independently of the number of centres, but the actual values steadily increase with 
the increasing quantity of generators. An increase of the standard deviations of CGF 
distribution causes a general decrease of the global surface of the cells: in fact, the 
larger the spread of the cell sizes, the smaller the volumetric contribution of smaller 
cells for a constant box volume. It is well know that in a box of constant volume a 
system of smaller spheres would have a larger surface than a system of large ones. 
For a given distribution, moreover, an increase in the number of centres causes a 
decrease of the mean cell size, and therefore a corresponding increase in the cell 
surface density, as experimentally observed. 
 

 
Figure II - 15. Dependence of the cell surface density versus the σ of the input CGF for an 
increasing number of centres (1000:  up triangle, 2000: down triangle, 3000: diamond, 4000: 
square, 5000: circle). 

2.4.4 Reliability of MVT statistics by the evolutionary CMVT 

All evolutionary processes were started here with a cubic box having Periodical 
Boundary Conditions (PBCs). A thousand centres were placed in the box by a 
homogeneous Poisson point process with λ=1 and were assigned suitable CGF 
values. The initial CGFs were chosen according to a Log-normal Probability Density 
Function (PDF) with unit mean: 
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At each iteration step, four new models are generated starting from the KM 
and varying the free generation parameters of 90% of the cells (randomly chosen). In 
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a similar way as in (Leonardi, et al., 2012(d)), samples are here named             
CMVT x L y I z, where x is the number of centres, y is the starting σinput of the       
Log-normal PDF of the input CGFs, and z is the number of iterations. It has been 
already shown in (Leonardi, et al., 2012(d)) that null FGFs and PIOs lead to a 
normalised cell volume PDF being close to the expected Log-normal. In that case, 
the standard deviation of the Log-normal frequency distributions of the target 
normalised cell volume (σexpected) and of the input CGF (σinput) are quadratically 
dependent and σexpected=0.4454+2.2455 σ2input (Leonardi, et al., 2012(d)). 

Three cases were simulated here: CMVT 1000 L 0.10, 0.20 and 0.30. 
Significant sample populations were defined for each one of those cases, repeating 
100 times the evolutionary process with different random initial configurations. The 
starting average levels of significance over the population with respect to the 
expected PDF (σ = 0.4679, 0.5352 and 0.6475) were, respectively, 23.01%, 35.34% 
and 38.74%. The levels of significance computed via Kolmogorov-Smirnov (KS) 
hypothesis test were improved by the constrained algorithm. The initial 
configurations were evolved by varying each starting CGF by a random factor      
0.10 < δ < +0.10, without changing any other generator parameter. 
 

 
Figure II - 16. (a) mean and standard deviation of the levels of significance of the CMVT 1000 L 
0.10, 0.20 and 0.30 I 1000 populations during the evolutionary processes; the results for a 
single run of CMVT 1000 L 0.10, 0.20 and 0.30 I 10000 is also provided to confirm the 
observed trend (in this case the standard deviations are not available). (b) distributions of 
significance levels of CMVT 1000 L 0.30 after 10, 100, and 1000 iteration steps. 

After an initial transitory phase (ca. 10 iterations), the evolutionary processes 
of the three cases show the same logarithmic trend and the same absolute values of 
the level of significance computed by the KS test (see Figure (16)). Moreover, the 
larger the number of iterations, the larger the average levels of significance and the 
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smaller the average variances (Figure (16a)). When increasing the number of 
iterations, the distribution of the levels of significance tends to become more left-
skewed (Figure (16b)). Hence, a target level of significance can generally be 
reached by varying just the CGF values, without changing the generators (as in the 
CVT method). 

The normalized cell volume distributions of the evolved samples (averaged 
over each of the three populations) are in good agreement with the target PDFs, as 
computed by the KS hypothesis test (cf. Figure (17a)). The evolutionary process has 
significantly changed the absolute values of the CGFs, raised from 1.0 to 2.8 in 1000 
iterations. Nevertheless, the normalized CGF distributions of the evolved samples 
are very close to the initial ones. The average frequencies over each of the three 
populations show Log-normal PDFs (see Figure (17b)). The standard deviations of 
the Log-normal best fit of the CGF distributions of CMVT 1000 L 0.10, 0.20 and 0.30 
I 1000 are close to the input values (respectively: 0.1363, 0.2165 and 0.3104). 
 

 
Figure II - 17. Normalized cell volume (a) and CGF (b) frequency distributions of CMVT 1000 L 
0.10, 0.20 and 0.30 I 1000. 

2.4.5 Multiple target properties optimization with CMVT 

Differently from the CVT, the CMVT method is able to yield several independent 
pattern configurations with similar statistical and topological properties by combining 
more than one generator parameter (e.g. CGFs and CCPs). This greater flexibility 
allows the CMVT method to optimize at the same time more than one statistical and 
topological property of the model. 

To prove this, a model of 1000 cells (CMVT 1000 L 0.10 I 100000) was 
evolved in a cubic box having Periodical Boundary Conditions (PBCs) by the CMVT 
method varying the CGFs and CCPs with three given target properties: Log-normal 
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cell size distribution, maximum volume fill density and cell shape isotropy. Since a 
generic collection of spheres cannot tessellate the space, volume fill density and 
spherical shape turn out to be incoherent. The equiaxed shape has been thus 
chosen as target property and the standard deviation of the distance between cell 
faces and generator centres was minimised. 
 

 
Figure II - 18. Improvement history of the properties for the evolutional process about CMVT 
1000 L 0.10 (a limit number of 100000 iterations was imposed). 

 
Figure II - 19. Improvement ratio for synchronous (dark continuum line) and asynchronous 
(blue dotted line) multithreading approaches vs. number of observed models (left) and number 
of iterations (right). Four threads were employed in both cases: in the synchronous case each 
thread explores one model per iteration, whereas in the asynchronous one, four models per 
thread are investigated each iteration. 
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The convergence efficiency was improved by assigning a higher weight to the 
equiaxial character (double with respect to the others). In this case, the new models 
created at each iteration step are obtained by randomly changing both the generator 
centres (two in the box and two near the corresponding positions of the KM) and the 
CGF (by a random factor  0.10 < δ < +0.10). Figure (18) shows the percent 
improvement of each property P, defined as (Pcurrent-Pinitial)/(Ptarget-Pinitial)%, during the 
evolutional process: the improvement is logarithmic, with convergence speed 
increasing stepwise with the iteration number. Synchronous and asynchronous 
multithreading approaches were employed. Despite the larger collection of models 
investigated by the second approach, the improvement ratio seems strictly 
dependent on the number of iterations (see Figure (19)). 

Once the pattern with the required properties is obtained, the atomistic 
microstructure can be built. In each cell, the generator and the centres of mass are 
more or less coincident. A planar section (Figure (20a)) shows features that cannot 
be obtained by other tessellation methods: for instance, the grain-grain interfaces are 
not placed in the middle between the generator centres as in the case of the VT 
method, and the topological properties of the cells are not directly correlated with the 
cell size distribution. This can be also appreciated in Figure (20b), presenting the 
distributions of the variances of the distances between grain centres and grain 
interface planes of both the CMVT 1000 L 0.10 I 100000 and two other models 
having the same cell size distribution, but made by CVT and MVT. 
 

 
Figure II - 20. (a) Plane section of CMVT 1000 L 0.10 I 100000 polycrystalline microstructure. 
(b) Frequency distribution of the variance of the distances between grain centres and grain 
interface planes. 

The CVT and MVT samples show very close frequency distributions (μ ≈ 375, 
σ ≈ 180), whereas the evolved CMVT has clearly smaller mean and standard 
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deviation (μ ≈ 225, σ ≈ 92). Still, an ideal value for the sphericity (Ψ) defined on the 
basis of the surface and volume of the cells (S and V, respectively) as: 

 [ ]
2
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π π

Ψ =  (9)  

cannot be achieved by any VT or MVT pattern, being each cell a convex polyhedron. 
Since a generic collection of spheres cannot tessellate the space, volume fill 

density and sphericity turn out to be incoherent. Notwithstanding, a significant 
improvement of the sphericity is still found in the CMVT simulation (see Figure (21)). 
 

 
Figure II - 21. Frequency distribution of the sphericity for CMVT 1000 L 0.10 I 100000. The two 
extreme shapes for the given cluster are shown as a reference. 

2.4.6 MVT computing performance 

We have shown that the MVT can directly provide a microstructure with a given size 
distribution variance and with a shape close to lognormal. Unlike the VT, however, 
computing time for the MVT is not linearly related to the number of centres, but it 
depends on the actual properties of the input distribution. This is a consequence of 
simultaneously dealing with all centres and corresponding growth factors to compute 
the shape of the resulting cell, while keeping full record of the voids. 

The increase in computing time is clear in Figure (22) that shows the total time 
required to build a model of 1000 grains in a box with PBCs when increasing the σ of 
the CGF distribution. Calculations were performed on an Intel Core 2 processor (4 
physical cores) at 2.8 GHz in multithread mode (4 computing threads). Clearly the 
MVT needs a longer time to deal with the cases where a centre is surrounded by 
other centres having a wide variety of CGF: a broader CGF distribution increases the 
probability of this condition to be met. Of course, as previously pointed out, the 
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broader the distribution, the larger the fraction of void space (cf. Figure (9b)), thus 
the longer time and the larger memory for recording information about intersection of 
interface planes. 
 

 
Figure II - 22. Time required by the MVT method to compute the microstructure (i.e. to identify 
the faces of all cells) for the MVT 1000 set of specimens. 

When compared with the few available literature data on advanced 
tessellation methods (cf. (Suzudo, et al., 2009)), the actual values in Figure (22) 
suggest that MVT can be orders of magnitude faster than the available algorithms to 
obtain a target distribution of cells. In fact, to obtain a target lognormal distribution of 
1000 grains on a computer with 80 cores, Suzudo and Kaburaki (Suzudo, et al., 
2009) needed at least 1150 seconds of CPU time (the actual value might be higher 
depending on the target precision). Scaled to a 4-cores machine such as the one 
employed here, this would correspond to more than 23000s, clearly out of range with 
respect to Figure (22). No data are available for the CVT proposed in (Xu, et al., 
2009): however, the authors state that at least 500 steps are needed to reach a good 
level of convergence, versus a single step required by MVT. 
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2.5 Conclusion 

A Modified Voronoi Tessellation (MVT) has been proposed to simulate a realistic 
microstructure. To obtain that, MVT starts with a random distribution of centres in a 
box (with or without periodic boundary conditions) and builds the corresponding cells 
by relaxing the Voronoi constraints on the cell-cell interfaces, i.e. by shifting and 
rotating them with respect to the midpoint between neighbouring centres. The 
resulting microstructure (pattern) is characterised by the presence of voids that can 
be easily eliminated when filling the cells with atoms. A one-to-one relationship 
between the input model parameters and the characteristics of the output distribution 
has been found, allowing a target distribution to be directly obtained. For instance a 
lognormal distribution of grain sizes can be directly simulated with a 5% level of 
significance. The statistical correlation between the Log-normal distribution of the 
Cell Growth Factors (CGFs) and the Log-normal cell sizes distribution of a pattern 
made by the MVT method was confirmed and extended by the Constrained MVT. 
 The Constrained Modified Voronoi Tessellation method (CMVT) is also 
proposed to generate polycrystalline microstructures characterized by more than one 
target statistical and topological property. Space fill density, size distribution and 
isotropic cell shape are optimized by varying the generator parameters (Cell Centre 
Positions and Cell Growth Factors): a logarithmic improvement is obtained through 
an evolutional approach. Thus, realistic microstructures can be obtained beyond the 
limits imposed by the traditional tessellation techniques. 

Computing time increases with the target distribution width, but it is highly 
competitive to literature alternatives providing similar results. 
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Chapter III 
 

Analysis of Atomistic Simulation Data 

 
Part of this chapter has been published in: 

 
 
Alberto Leonardi, Kenneth Roy Beyerline, Tao Xu, Mo Li, Matteo Leoni, Paolo Scardi 

“Microstrain in nanocrystalline samples from atomistic simulation”, 
Zeitschrift für Kristallographie Proceeding, I (2011) 37-42. 
 
 
 
 
Alberto Leonardi, Matteo Leoni, Mo Li, Paolo Scardi 

“Strain in atomistic models of nanocrystalline clusters”, 
Journal of Nanoscience and Nanotechnology, (2012) accepted. 
 
 
 
 

3.1 Abstract 

Atomistic modelling was employed to investigate the effect of microstrain on X-ray 
diffraction patterns in nano-crystal microstructures. Stress and a strain defined on 
atomic scale from atom positions were computed to represent the local deformation 
associated with the microstructure (e.g. grain boundaries).  

Strain, as an easy and clearly defined concept in continuum mechanics, has 
no direct counterpart in atomistic models. Existing methods, relying on the concept of 
atomic coordination number, do not provide a complete description of isotropic and 
anisotropic strains across metallic nano-crystalline microstructures. To overcome 
those limitations a new method is proposed: the Voronoi Cell deformation (VCD) fully 
accounts for the local geometry and provides a description of the strain field 
independent of the atomic coordination. 

Our emphasis is put on the separate contributions from dynamic and static 
atomic displacements to the corresponding powder diffraction patterns. As a typical 
case of study, a nano-polycrystalline microstructure of 50 Cu grains (ca 1.5 million 
atoms) was considered. 
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3.2 Introduction 

Atomistic simulation is recognised as a reliable tool to investigate the structure and 
properties of nano-scale materials as it can provide atomic-level picture along with 
the macroscopic collective behaviour comparable to experimental results. This is 
particularly valuable in the field of nano-structured materials where the 
microstructures can be created using space filling models ( (Gross, et al., 2002), 
(Suzudo, et al., 2009)) and then simulated by Molecular Dynamics (MD). 

Atomistic modelling is increasingly employed to study properties and 
behaviour of materials under different conditions (Derlet, et al., 2005). Although 
results do not always match those of traditional experiments, this approach is 
informative and can most frequently capture the main features of the physical 
phenomena of interest ( (Jang, et al., 2006), (Cao, 2009), (Van Swygenhoven, et al., 
2000), (Li, et al., 2006)). The limited extension of the time scale commonly 
accessible to MD simulations penalizes some applications, like those concerning 
plasticity, but is perfectly adequate to represent thermal and elastic properties. 

A major task is extracting models of behaviour compatible both with the 
macroscopic observation and with the MD scale. Most of the relevant literature in the 
field employs methods utilizing stress, pressure or level of coordination ( (Samaras, 
et al., 2003), (Zimmerman, et al., 2004), (Derlet, et al., 2005)) while strain is seldom 
used (Stukowski, et al., 2009). For certain theoretical analysis, this is sufficient since 
direct extraction of strain from the stress is not easy. However, the methods based 
on stress or pressures are not of general applicability to a given sample as they rely 
on the knowledge of atomic velocity or interatomic potential. Strain, however, is not 
properly defined at the atomic level because the traditional definition, based on 
continuum mechanics, does not apply to discrete systems on the atomic level. The 
complexity is even larger if atomic vibrations are to be considered as well. 

Among the available methods, Neighbours Analysis (NA) studies the local 
geometrical arrangement of neighbours to detect structural features at the atomic 
level ( (Ackland, et al., 2006), (Honeycutt, et al., 1987)). NA is a powerful tool to 
identify defects and phases in large systems, but is intrinsically unable to provide 
strain values. Therefore, NA is complemented by methods to calculate local pressure 
and stress ( (Samaras, et al., 2003), (Derlet, et al., 2003), (Derlet, et al., 2006)), as 
those properties are directly related to the energy of each atom, with no need to 
define or calculate strains. 

Here we will show that a direct calculation of the local strain is possible, based 
on the knowledge of the atomic positions acquired in our atomistic calculations. More 
recently, methods have been proposed to compute the local atomic strain by 
comparing the arrangement of neighbours with respect to a perfect reference 
structure ( (Stukowski, et al., 2009), (Lewis, 1928)). A major drawback is the 
impossibility to deal with strongly deformed structures, where atoms may not be fully 
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coordinated. To overcome this limitation we propose the Voronoi Cell Deformation 
(VCD) method. Based on Voronoi Tessellation, the VCD avoids the somehow 
arbitrary concept of cut-off radius, required by existing methods ( (Stukowski, et al., 
2009), (Lewis, 1928)). Moreover, as it makes no reference to the atomic 
coordination, the VCD can be used across heavily defected regions as well as in the 
core of nano-structured domains.  

Furthermore, from the dynamics, or time evolution of the atoms trajectories, 
we can compute the mean square displacements which contribute directly to the line 
broadening in the powder diffraction patterns. As a result, we are able to compare, 
on a continuum scale, the characteristics of the calculated strain distribution and the 
microstrain obtained from a traditional X-ray diffraction (XRD) Line Profile Analysis 
(LPA).The line profile broadening in an XRD pattern is affected by the distribution of 
strains at the atomic level (microstrain) inside a material. Microstrain can be 
analyzed by traditional and modern line profile analysis methods: a correct 
evaluation in nano-crystalline materials is however difficult due to the peculiar 
microstructure (e.g. large fraction of grain boundaries). An independent approach is 
therefore needed to directly link the information on the atomic scale with a simulated 
diffraction pattern. So a judicious validation can be made regarding the pros and 
cons of these line profile analysis methods. 

3.3 Methods 

3.3.1 Molecular Dynamics simulation 

A nano-polycrystalline copper microstructure was created by randomly placing 
50 centres in a box of 260.28 Å side length, using a homogeneous Poisson point 
process with parameter λ=1 ( (Kumar, et al., 1992), (Lucarini, 2008), (Lucarini, 
2009)). Cells were identified in the box using Voronoi Tessellation and considering 
Periodical Boundary Conditions. This microstructure was then evolved by an inverse 
Monte Carlo method (Constrained Voronoi Tessellation (Xu, et al., 2009)) to obtain a 
lognormal grain-size distribution of rounded grains (σ ~0.35). Each cell was filled 
with a randomly oriented (Morawiec, 1995) ideal fcc structure (Cu unit cell 
parameter, a0 = 3.615 Å); atoms closer than 85% of the minimum distance in the fcc 
structure (a0/sqrt(2)) were clipped as suggested in (Xu, et al., 2010). 

The starting crystalline microstructure was then equilibrated at 100K via the 
LAMMPS code (Plimpton, 1995) using the Embedded Atom Method (EAM) (Daw, et 
al., 1983) and the Cu potential of Foiles and Baskes (Foiles, et al., 1986).The 
temperature, pressure, volume and total energy of the microstructure are shown 
along the equilibration process in Figure (1). While, temperature and pressure 
slightly fluctuate around mean values, the volume and total energy quickly decay to a 
steady state. 
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Figure III - 1. Fluctuation of temperature, pressure, volume and total energy of the cluster 
during the equilibration process. The vertical blue bars identify the time sequences of frames 
analysed. 

Four independent analyses were done respectively at 0.5, 1.1, 1.7 and 2.3 ns 
since the beginning of the simulation (blue bar in Figure (1)). At each time, a set of 
atomic positions snapshots (Frames) was sampled with a time interval of 1 ps. This 
large interval was chosen to remove any correlation in the sampled atomic positions. 
To cancel out the dynamic effects, a mean atomic position was computed for each 
atom in the system by averaging the coordinates in a hundred of frames (other 
approaches are possible ( (Stukowski, et al., 2009), (Hasnaoui, et al., 2002))). A fifth 
set of thousand sequential snapshots was also averaged at 2.4 ns equilibration time 
(Hasnaoui, et al., 2002), observing deviations between the two average approaches. 
Hard to obtain in a real experiment, these mean positions (Averaged Frame (AF)) 
bear information just on the static distortion field; whereas the single frames (Single 
Frame (SF)) couple the dynamic too. 

Results comparable to those discussed here are also shown in (Leonardi, et 
al., 2012(c)), regarding a nano-polycrystalline aluminium microstructure of 200 grains 
equilibrated at 100K by Al potential (Jacobsen, et al., 1987). 
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3.3.2 Global mean square displacement (global MSD) 

From the averaged positions the atomic mean square displacements averaged over 
the samples (global MSD) were obtained (see Figure (2)). 
 

 
Figure III - 2. Global average of mean square displacements (global MSD) over an increasing 
number of frames for five sets of atomic position snapshots (sampled with a time interval of      
1 ps (dot line), sequential (line)). 

By taking the average over an increasing time, one can see clearly different 
profiles of the MSDs in different parts in the nano-crystalline samples. For example, 
as shown in Figure (3), the grain boundaries have higher MSD than the inside of the 
grains, characterizing the presence of a strain field in the system in a steady state 
(Frøseth, et al., 2005). 

 
Figure III - 3. Mean square displacements over an increasing number of frames resulting from 
the time average during the equilibration process (3, 12, 100 frames, respectively). 
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3.3.3 Local coordination and surface shape 

Structural defects in atomistic nano-polycrystalline models can be identified taking 
into account changes in the local atomic arrangement (Figure (4)). Ackland analysis 
consists in a  graph of ideal structures showing positions surrounded by fcc, bcc or 
hcp crystal system, as obtained by recognising the number and the relationship of 
the neighbour positions (Ackland, et al., 2006). Moreover, the mean features of the 
local distortion field can be guessed from the fluctuation of the level of coordination 
(Figure (4b)) defined as “-n” if n first neighbours are missing, and “+n” if up to the    
n-th neighbours are fully coordinated. 
 

 
Figure III - 4. Deformation field in the cross-section of the numerical model estimated by: (a) 
Ackland analysis (fcc, hcp and bcc respectively green, rose, violet), (b) local coordination order 
(colour scale from black to white, from at least 4 missing neighbours to 4thorder fully 
coordinated neighbours), (c) average neighbour distance (from 2.434 to 2.635 Å) and (d) the 
corresponding variance (from 0.000 to 0.110 Å2). 

The deformation field in the AF equilibrated Cu nano-polycrystalline 
microstructure was qualitatively pointed out by the level of coordination in Figure 
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(4b), whereas the core of the defects were emphasized by the switch in crystal 
symmetry from fcc to hcp, bcc or any other different lattice (4a). A preliminary 
estimation of the local strain magnitude was provided by the mean neighbour 
distance (4c), which implicitly accounts for local atomic volume. Actually, if atoms are 
forced to be closer or farther from the equilibrium point, thermodynamic fluctuation 
will be forced to be, respectively, smaller or larger. Hence, a fine estimation of 
compressive or tensile hydrostatic stress can be given by the variance of atom 
neighbour distance over time. Unfortunately, the available analysis methods rely on 
an arbitrary cut-off radius to choose the neighbours. 
 

 
Figure III - 5. Polar projection of the surface distance from the centre of a randomly chosen 
grain of the Cu nano-polycrystalline microstructure (north (top) and south (bottom) poles), for 
the Crystallographic and the AF equilibrated models (left and right, respectively). 

On the surface or at the grain-grain interface, the arrangement of atoms of the 
starting crystalline microstructure is adjusted by the equilibration procedure. The 
shape of each crystal domain is also remodelled, to reach a lower level of total 
energy for the system. The shape changes can single out general features of the 
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deformation field acting on the microstructure over a wide set of environmental 
conditions (e.g. varying temperature and pressure). Negligible differences are 
observed between the surface polar projections of a randomly chosen grain from the 
starting (Crystallographic) and from the equilibrated AF microstructure. Hence, in the 
studied system grain boundary structure is suggested as the only source of distortion 
of the local atomic structure. 

3.3.4 Strain at the atomic level 

In solid mechanics, the local deformation is expressed by a normalized gradient 
tensor under the continuum approximation. This assumption is not valid in MD 
simulations, as the atomistic nature of matter is intrinsically discrete. Furthermore, 
without any additional information, dynamic effects are seen as strain. 

A reference configuration is needed to define the local strain. If the whole un-
deformed microstructure is known, the local strain matrix can be directly computed 
from the minimization of the squared difference between the analyzed and the ideally 
undeformed structures (Li, et al., 2005). When the ideal reference is unknown or 
have no physical meaning (e.g. close to the interface boundary zones in a 
polycrystalline system) a local crystallographic structure can be adopted. 

Two methods have been recently introduced to compute the strain matrix by 
comparing the arrangement of the neighbours with respect to the ideal local 
configuration. Both start by finding the neighbours and assigning them a specific 
order. Then, the method of Stukowski et al. involves a linear least-square fitting of a 
strain matrix to transform the ideal structure into the observed (deformed) one 
(Stukowski, et al., 2009). As an alternative, the Crystallographic Cell Deformation 
method (CCD) (Leonardi, et al., 2011) estimates the significant geometric 
deformation of the local structure by identifying the principal crystallographic axes 
and lengths. Hence, the displacements of the deformed cell walls with respect to the 
ideal fcc structure were used to build the local strain tensor according to solid 
mechanics definitions (Spencer, 1980), computing the direct and cross deformation 
coefficients. Finally, the principal strains and directions were computed by 
diagonalizing the local strain tensor. 

Those methods are characterised by three principal features: 

i. neighbours are identified by considering an arbitrary cut-off radius; 
ii. deformation is computed by exploiting some topological properties of the 

local structure (e.g. symmetry); 
iii. deformation at the atomic level is linked to the arrangement of the whole set 

of near neighbours and so a fully coordinated structure is needed (this 
condition is easily met in the core of the grains, but is not verified at the 
grain boundaries). 
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Those assumptions, unfortunately, limit the applicability of the corresponding 
methods and in particular do not allow the evaluation of strain in the most deformed 
regions: for example, the crystal structure at the grain boundary is completely 
distorted so that it is impossible to univocally identify a local fcc lattice and calculate 
the local strain (Derlet, et al., 2003). 

3.3.4.1 The Voronoi Cell Deformation method (VCD) 

The Voronoi Tessellation (VT) method is a tool for investigating the arrangement of 
the neighbours (Mott, et al., 1992). 
 

 
Figure III - 6. Voronoi tessellations for a perfect (a) and for a distorted (b) fcc structure. 

As shown in Fig. (6), each atom is the generator of a Voronoi Cell (VC) dual to the 
neighbours’ arrangement. The geometric properties of the VC can be therefore 
analysed in place of the unit crystal structure. As a matter of fact, the strain at the 
atomic level affects the VC geometry, and thus the moments of mass. If the density 
of mass is assumed uniform in space, the moments of mass can be replaced by the 
moments of volume (see Appendix III.A). 
The strains at the atomic level along the principal directions are easily estimated by 
the ratio of the principal inertia of the deformed and reference structures. Linking the 
inertia values of the VCs to the equivalent parallelepiped solids, the three stretch 
ratios (0 < λ < ∞) can be fully defined. From them, the strain can be computed as: 

 1 ( 1)k

k
ε = λ −  (1) 

where k = 1 or k = 2 allow, respectively, the engineering and Lagrange strain to be 
obtained. In the end, the strain matrix can be written in terms of the principal strain 
associated to the principal inertia. 

The space-filling nature of the VT guarantees the congruence of the resulting 
strain values. The isotropic strain at the atomic level can be measured directly from 
the first moment of mass or it can be computed by the product of the stretch ratios. 
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In both cases the macro-scale deformation is consistent with the local deformation. 
Therefore, a discrepancy is detected between measured and real crystal 
deformation, which is due to the assumption of the equivalent inertia of a rectangular 
box involved. 

A variant of the VCD can be introduced to better take the geometric positions 
of the neighbours into account: the VT is again employed to identify the neighbours 
according to the procedure proposed by O’Keeffe (O'Keeffe, 1979). The strain at the 
atomic level is then computed from the fluctuation of the moments of mass (see 
Appendix III.B). Differently from the above discussed procedure, the atomistic nature 
is fully exploited: the mass is therefore considered as concentrated at each atom 
position (Voronoi moment of mass Cell Deformation method (VmmCD)). Without 
losing in generality, each atomic position is assigned a unitary mass: in agreement 
with the geometric nature of the deformation, each Voronoi neighbour contributes to 
the local structure with a magnitude related to the size of the linked VC face. The 
point masses need thus being weighted by the relative VC-side surface area 
(weighted VmmCD method). 

3.3.4.2 The evolutional Voronoi Cell Deformation method (eVCD) 

The VCD method solves the strain matrix by assuming a link between inertia values 
of the VCs and of the equivalent parallelepipeds. This is true only in some crystal 
structure, e.g. the simple cubic. An evolutional algorithm has to be used to avoid any 
link to a specific crystallographic VC shape. 
The principal directions, the inertia and the true isotropic deformation at the atomic 
level were computed on a given cluster by using the VCD method. Starting from 
applied deformations (λi, λj and λk), the agreement of the deformed reference 
structure with the configuration detected in the model is evaluated by a likelihood 
function χ2: 

 ( )
3 22 mod

1

el real
i i

i
I Iχ

=

= −∑  (2) 

which is equal to the sum of the squared difference between the inertia of the real 
and of the refined structure (model). The deformations that provide the best 
matching between data and model are selected as principal strains at the atomic 
level. 

The efficiency of the procedure can be optimized by suitable algorithms. For 
instance, the true isotropic deformation, computed by the VCD method, is exploited 
to decrease the number of degrees of freedom of the problem. In fact, one of the 
stretch ratios can be computed from the isotropic strain as: 
 vol

vol i j k i
j k

i j kλλ λ λ λ λ
λ λ

= ⇔ = ≠ ≠  (3) 
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Although computationally time consuming, the eVCD can be used with highly 
distorted structures or with atoms that are not fully coordinated, giving values of the 
principal strains comparable to the real ones. 

3.3.5 Isotropic and Anisotropic strains 

The deformation field in the atomistic models was characterized by the most 
significant isotropic and anisotropic tensor components. The local structure, 
surrounding each atomic position, was defined. Then, the principal strain tensor (εI, 
εII and εIII) and thus the isotropic (volumetric) and anisotropic (deviatoric) 
components were computed by the following equations ( (Godeke, et al., 2002), 
(Narasimhan, 1993), (Fung, et al., 2001), (Ting, 1996)): 
 

iso I II III I II I III II III I II IIIε ε ε ε ε ε ε ε ε ε ε ε ε= + + + + + +  (4) 

 ( ) ( ) ( )2 2 22
3aniso I II I III II IIIε ε ε ε ε ε ε= − + − + −  (5) 

The distributions of those two scalars were checked in the case of an 
elementary deformation field. A square parallelepiped cell was filled with a periodic 
fcc crystal structure; then, every atomic position was displaced according to the local 
strain components (Figure (7)). 
 

 
Figure III - 7. Strain field diagrams in the square parallelepiped cell model. 

Periodical Boundaries Conditions (PBCs) were applied, achieving fully 
coordinated structures at each atomic position. That assumption allowed the CCD 
method to estimate the strain at the atomic level everywhere in the model. At the 
same time, the local detectable structures were geometrically affine to the reference 
crystal structure. The real and estimated local isotropic and anisotropic strain fields 
obtained with different computing methods are shown in Figure (8). 

The absolute values of the isotropic strain computed by all methods are close 
to the expected (true) ones. Only the weighted VmmCD method slightly changes the 
pattern of the strain field in a non-linear way. Conversely, the values of the 
anisotropic strain have a strong dependence on the computing method. Again, the  
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Figure III - 8. Strain field computed by the applied deformation (a, g) and estimated by several 
methods: CCD (b, h), non-weighted VmmCD (c, i), weighted VmmCD (d, j), VCD (e, k), eVCD 
(f, l). The isotropic (a, b, c, d, e, f) and anisotropic (g, h, i, j, k, l) strain at the atomic level in the 
model are showed as the most significant deformation properties. 
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CCD and the non-weighted VmmCD methods gave results close to the true strain. 
The VCD and the weighted VmmCD methods are close, but the patterns are 
stretched and the absolute values are significantly different from the real ones. 
Moreover, if the local structure would be highly distorted or not fully coordinated, the 
CCD method would be unable to work. Also a non-weighted VmmCD would be 
affected by an incomplete coordination. 

The weighted VmmCD, the VCD and the eVCD methods can always be used, 
either in the core of the defects or through the grain boundaries in a polycrystalline 
microstructure. The mismatch of the anisotropic strain computed by those methods is 
due to the underlying assumptions and to their capability to assess the distortion of 
the crystallographic symmetries (Figure (9)). The assumption of the equivalent inertia 
of the parallelepiped solid in place of the real VC, which is employed in VCD method, 
could be replaced by more sophisticated functions. Further improvements are 
needed to fully solve the deformation at the atomic level through the VCD method. 
 

 
Figure III - 9. Voronoi tessellations of a deformed fcc structure made by displacing uniformly 
the positions of a wall side. 

3.3.6 Potential energy and Stress at the atomic level 

Atomistic simulations provide useful and reliable data about energetic properties, 
being based on potential functions and physical models of the material. As an 
example, the local potential energy can be directly computed from the atomic 
positions. In doing this, a specific character of the geometric interaction between 
pairs of atoms is chosen depending on the model employed. 

The direct interaction of two isolated atoms can be described by the Lennard-
Jones (LJ) potential model: 

 
12 612 6
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where ijr  is the distance between pair of atoms, ε  is the depth of the potential 
well, σ



 is the finite distance at which the potential crosses the zero abscissa,  
and rm is the distance at which the potential reaches its minimum. 

Acting as a non-linear spring between neighbour positions, LJ works well in 
the case of liquid and gases. For bulk metals, a reliable alternative is given by the 
Embedded Atom Model, coupling the pair interaction potential with a term taking the 
bulk environment into account (Daw, et al., 1983): 

 1( ) ( )
2

ij ij
ij

j i j i
U F r rα β βρ φ

≠ ≠

 
= + 

 
∑ ∑  (7) 

where φ is a pair potential function, ρ  is the contribution to the electron charge 
density, and F  is an embedding function. 

The stress at the atomic level can be directly estimated from the sum of kinetic 
and positional contributes, decomposing the Virial stress (Egami, et al., 1980): 
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  ∂
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where α  and β  identify the Cartesian components, and v  the atomic velocity. 
Actually, the positional part is computed by deriving the pair potential function, thus 
involving the nature of the atoms interaction used. Principal stress components ( Iσ ,

IIσ ,
IIIσ ) and directions can be computed by diagonalizing the stress tensor matrix. 

Moreover, the hydrostatic stress component is computed as a third of the sum of the 
principal stresses (Guo, et al., 2012). 

3.4 Results and discussion 

3.4.1 Strain at the atomic level in a nano-polycrystalline 
microstructure from MD 

The strain at the atomic level was computed in the numerical model of the Cu nano-
polycrystalline microstructure, using the discussed analysis methods and an fcc 
crystal structure as a reference (unit cell size of 3.6150Å).  

The deformation field was characterized in the microstructure equilibrated 
using the Embedded Atom Method potential, respectively after 0.5, 1.1, 1.7, 2.3 and 
2.4 ns from the start of the simulation (Figure (10)). No significant differences were 
detected in the strain fields computed at the different equilibration times (Van 
Swygenhoven, 2002), as well as for the two approaches employed in computing the 
averaged position (from a set of sampled frames, or from a set of sequential frames). 
Figure (11) shows the strain at the atomic level on a planar cross-section of the 
model at an equilibration time of 2.3 nano seconds. 

http://en.wikipedia.org/wiki/Potential_well�
http://en.wikipedia.org/wiki/Potential_well�
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Figure III - 10. Frequency distributions of the local isotropic (a) and anisotropic (b) strain in the 
numerical model computed by the VCD method applied to the averaged atomic positions stored 
at equilibration time of 0.5 (square), 1.1 (circle), 1.7 (up triangle), 2.3 (down triangle), and 2.4 ns 
(line).Difference plots (below) are referred to the 2.3 ns equilibration time. 

It is quite evident that the CCD, as well as any method based on the 
crystallographic geometry, can provide results only in regions where atoms are fully 
coordinated and the local structure is not too much distorted. This condition is 
commonly not satisfied at the grain boundary, and in the core of the defects. For this 
reason, we do not calculate the atomic strain right inside the grain boundaries. 
Hence, only a fraction of the strain field can be investigated by CCD and gaps in the 
strain maps appear (white regions in Figure (11)). The VCD method, being 
unaffected by the local crystallography, is able to provide a strain value associated to 
each and all atomic positions. A quick increase in local strain close to the boundaries 
is highlighted in Figure (12). The boundary region embodies several local distorted 
configurations, allowing the structures of neighbour grains to be joined together; here 
we can see the nearly regular alternating sequence of compressive and tensile 
strains. 

After the system reached equilibrium (2.3 ns equilibration time), the local 
atomic strain was calculated with respect to the ideal fcc structure both for a Single 
Frame (SF) and for the system Averaged over 100 Frames (AF). A semi-stochastic 
fluctuation of the strain in the model, caused by the diffuse dynamic contribution, is 
clearly evident in the SF and tend to be cancelled out in the AF over a long time 
period (see Figure (11a), (11b), (13a), and (13b)). 
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Figure III - 11. Isotropic (a, b) and anisotropic (c, d) strains at the atomic level in a cross-
section of the numerical model computed by CCD (a, c) and VCD (b, d) methods for the 
Averaged Frame (AF) case. 

 
Figure III - 12. Isotropic strain at the atomic level in a cross-section of the numerical model 
computed by VCD method for the Averaged Frame (AF) case (detail of Figure (11b)). 

Once again, one can see clearly from the comparison of the Figures ( (11) and 
(13)), that thermal vibrations are absent in the strain field obtained from the 
averaging of positions over a large set of frames. Moreover, Figure (14) shows the 
isotropic strain distributions for the whole cluster computed using the CCD and VCD 
methods on the SF and on the AF. 
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Figure III - 13. Isotropic strain at the atomic level in a cross-section of the numerical model 
computed by CCD (a) and VCD (b) methods for the Single Frame (SF) case. 

 
Figure III - 14. Frequency distributions of the local isotropic strain in the numerical model 
computed by CCD (blue dots) and VCD (red dots) methods for the Single Frame (open 
symbols) and Averaged Frame (full symbols) cases. In the case of the CCD distributions, the 
total count is lower than 1430549 because of the not available data for these positions at the 
grain boundary. 

Accounting for the intense deformation at the grain boundary has a dramatic 
effect on the distribution of the local strain over the whole cluster. The asymmetry in 
the distributions is caused by the overlapping of the contributions from core and 
boundary regions. The time average (AF) leads to sharper distributions as the 
smearing effect of the dynamic contributions is removed. Again, the semi-stochastic 
nature of the local deformation due to the thermal movement leads to more 
symmetric distribution functions. A further proof can be obtained from the analysis of 
the diffraction patterns corresponding to the two cases. 
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Figure III - 15. Frequency distributions of the local anisotropic strain in the numerical model 
computed by CCD (blue dots) and VCD (red dots) methods for the Single Frame (open 
symbols) and Averaged Frame (full symbols) cases. In the case of the CCD distributions, the 
total count is lower than 1430549 because of the not available data for these positions at the 
grain boundary. 

The anisotropic strain is more deeply affected by the dynamic contribution 
than the isotropic strain (cf. Fig. (15)). In SF, the local structure is constantly distorted 
due to the thermal movement. The time dependent distortion is removed by the 
average of a suitable sequence of frames. The more uniform behaviour of the atoms 
in the core of the grains allows the averaged local structure to be less affected by a 
spread anisotropic deformation. Hence, a strong asymmetry in the distribution of the 
anisotropic strain can be linked to a difference in behaviour of core versus boundary. 
This pronounced difference allows us to clearly identify the boundary region. 

Figure (16) shows the distribution of the isotropic and anisotropic strains at the 
atomic level associated to the local crystalline symmetry. The latter was defined as: 

i. the number of missing neighbours in the case coordination is less than 12; 
ii. the number of contiguous shells having fully coordinated neighbours in the 

case of fully coordinated position. 

An inverse correlation is found between the local crystalline symmetry and the 
variance of the distributions, for both the isotropic and anisotropic components. A 
sharp discontinuity in the trends appears when crossing the condition of full 
coordination, finding widely larger values of both isotropic and anisotropic strain 
distributions. While the position of the isotropic strain distribution is weekly 
dependent on the local crystalline symmetry, the anisotropic distribution tends to shift 
to higher strains for decreasing coordination. 
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Figure III - 16. Normalized frequency distributions of the local isotropic (a) and anisotropic (b) 
strains in the numerical model computed by VCD for the Averaged Frame (AF) referred to the 
local crystalline symmetry (see text for details). 

Such behaviour can be explained by taking into account the relation between 
distortion field and distance from the surface. Linking the distance from the grain 
surface to the atom layer indexed by progressively “peeling” each grain (removing 
layers), both strain components (isotropic and anisotropic) and their variances 
quickly decay (Figure (17)). 

The bond between misoriented domains forces the outer layers of each grain 
to change the atomic arrangement, increasing the local deformation. As a matter of 
fact, the distortion field tends to disappear far from the core of the defects, and in 
that regime the deformation can be considered as isotropic. Indeed, figure (17a) 
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shows an inverse proportionality between grain size and isotropic strain (the lower 
limit of paths), balancing the expansion and contractions of the neighbouring grains 
to an equilibrium value over the whole microstructure. 
 

 

 
Figure III - 17. Local isotropic (a) and anisotropic (b) strains in the numerical model computed 
by VCD for the Averaged Frame (AF) referred to the distance from grain surface (expressed as 
shell id starting from the surface). The average isotropic strain is also provided (blue dash line). 
Values of each grain are drawn on an independent path (see text for details). 

The three principal types of strain in the system (usually quoted when dealing 
with stress and diffraction (Withers, et al., 2001), vary continuonsly: over large 
distances (Ist type), over the grain scale (IInd type) or the atomic scale (IIIrd type)) can 
be clearly identified from the mean isotropic and anisotropic strain computed along a 
line section in the model (Figure (18)). An isotropic expansion of 0.013 and 
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anisotropic components of 0.026 are found as type I strain in AF model (computed 
as the mathematical average of the local strain in the model, as obtained with the 
reference unit cell parameter of 3.615 Å). Type II and type III of both the isotropic 
and the anisotropic strains are also visible. In the case of the SF model a 
significantly broader strain fluctuation appears. 
 

 

 
Figure III - 18. Isotropic (a) and anisotropic (b) strain at the atomic level along a line section 
through the cluster. 

This feature hides the marked changes in the strain intensity close to the 
defects, rendering more difficult to correctly identify the boundary regions. In AF, 
however, the transition from the core to the boundary zones is clear and extremely 
sharp. The increasing local strain, especially the anisotropic type, at grain 
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boundaries agree with the results of Derlet et al. obtained using the physically less 
rigorous concept of local pressure (Derlet, et al., 2005). Moreover, the anisotropic 
strain in the SF model and in the AF model showed an evident gap due to the 
dynamic component. This behaviour further confirms the intrinsic isotropic 
deformation of the Crystallographic structures in the core of the grains. Hence, when 
a time average computation is employed, the anisotropic contribution in the grain 
cores tends to disappear. 

3.4.2 Stress – Strain relation in polycrystalline microstructure 

The stress at the atomic level and the corresponding potential energy were 
computed in the numerical model of the Cu nano-polycrystalline microstructure. The 
average values over all positions within each grain were collected for the AF 
equilibrated microstructure. The atomic potential energy and unit cell dimension of 
the Cu microstructure show a direct proportionality (Figure (19)). Nevertheless, this 
trend significantly deviates from the ideally pure thermal expansion path, as a 
consequence of local structure distortions near defects. 
 

 
Figure III - 19. Pair potential energy of Cu structure vs. unit cell dimension: ideally infinite single 
crystal (black line), single grain of equilibrated microstructure (blue open dot) and 
corresponding linear fit (blue line). Equivalent temperature potential Energy is also provided for 
some temperature values. Ideal thermal expansion condition (red dot line). 

The atomic-level stress, as the hydrostatic II type component, was compared 
with the corresponding local deformation and energy. Stress, strain and pair potential 
show an inverse relation with the average grain size (see Figure (20)).The opposite 
tendency observed for larger and smaller grains (contraction vs. expansion and 
compression vs. tension, respectively) is due to the equilibrium condition that must 
be verified by the microstructure as a whole. The topological properties of the 
tessellation (large grains are surrounded by smaller ones), coupled with this 
stress/strain trend, results in a steady state at the local level. 
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Figure III - 20. Average unit cell (void square), atomic potential Energy (open up-triangle), and 
hydrostatic stress (full square) vs. grain size as diameter of the equivalent volume sphere. Best 
fit (red line) and average values of those properties (blue dash line), and weighted average 
grain size (black dash line) are reported. Equivalent cell dimensions computed from atom 
density (green dash dot line, ( )3 4boxside atomsB N ) and from the average volume of the 

Voronoi Cell (green short dash, ( )0
0

I
cell celluc V V ) are also shown. 

 
Figure III - 21. Stress - strain relation calculated from all positions (full circle) and from atoms 
that have fully coordinated neighbours up to the fourth (void circle).The bulk modulus B is the 
slope of the linear fit passing through the origin. 

The bulk modulus was estimated as the slope of the linear fit of hydrostatic 
stress (pressure) vs. isotropic strain (expansion in volume), crossing the origin 
(Figure (21)). The tensile stress state at the grain boundaries modifies the local 
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structure, accommodating the lower atomic density of the misoriented crystal 
domains. The higher the neighbours distance and the dynamic fluctuation in space 
(Figures (4c), and (4d)), the higher the potential and the kinetic energy. Thus, 
computing the average value over each grain, a little variation of the average atom-
level stress of each grain is given by the opposite sign of kinetic and positional stress 
components (see eq. 8). A bulk modulus of 137 GPa (close to the experimental 
value of 140 GPa) was estimated by including only those positions having fully 
coordinated neighbours up to the fourth (i.e. excluding grain boundaries). The same 
calculation made with all atomic positions gives a much lower bulk modulus of        
50 GPa. 

3.4.3 Preliminary X-ray Diffraction Line Profile analysis 

X-ray powder diffraction patterns of the atom ensembles were simulated by the 
Debye scattering equation (the atomic scale factor from the international tables was 
employed (Ibers, et al., 1974)) via a fast and accurate code running on Graphic 
Processing Units (Gelisio, et al., 2010). Several configurations of the same nono-
polycristalline microstructure were taken into account. A real X-ray diffraction 
measurement was simulated by summing a set of patterns simulated for a sequence 
of SFs (Time Average - TA). Negligible differences are found between the TA and 
the pattern of a randomly chosen SF (see Figure (22)). Due to this, the SF ensemble 
fully exploited both static and dynamic (time dependent) features of the atom 
arrangement in space from a XRD point of view. 
 

Figure III - 22. X-ray powder diffraction pattern simulated from the atomic positions taken at a 
single randomly chosen frame (Single Frame, SF) compared with the average of the patterns 
simulated from a set of randomly  chosen frames (Time Average, TA). The Debye scattering 
equation with MoKα radiation (wavelength 0.7107 Å) was used. 
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Differences in the patterns of Single Frame and Averaged Frame are mostly 
limited to the intensity of peaks and diffuse background: thermal effects are known to 
decrease the Bragg scattering contribution and to increase the diffuse scattering 
background, as clear in Figure (23). Moreover, the equivalence between the two 
Averaged Frame (AF) models (computed by using a set sampled at 1 ps, or a set of 
sequential snapshots) is supported by the negligible differences of the corresponding 
XRD patterns. 
 

 
Figure III - 23. X-ray powder diffraction patterns simulated for the Crystallographic model 
(green line), from the atomic positions taken at a single randomly chosen frame (SF, blue 
dashed line)and from the time averaged coordinates of sampled and sequential 
frames(respectively: AF sampled, black line, and AF sequential, red dot line). Differences 
between the patterns are provided below (see text for details). 

A preliminary line profile analysis, made by the Williamson-Hall (WH) method 
(Williamson, et al., 1953) on unique reflections (Figure (24)), further confirms that 
strain effects are similar in the single frame and in the averaged ensemble. 

The slope in the WH plot is related to the so-called microstrain or root-mean-
strain, a quantity that cannot be directly related to an average pressure or an 
average strain. The standard deviation of the volumetric strain distribution is a more 
realistic quantity to be compared with the slope (equal to 2<ε2>1/2 according to the 
WH formulation), and comparable values are indeed obtained (0.0288 / 0.0261 
Figure (14) vs. 0.0080 / 0.0074 as slope in Figure (24) – for SF and AF respectively). 
However, no exact match is to be expected because (i) peak profiles were analysed 
with empirical line profile functions and (ii) hypotheses underlying the WH method 
are far from being fulfilled in this case (see discussion in (Scardi, et al., 2004(b))). 

The use of the WH method in this case is limited to a qualitative assessment 
of the line broadening effects and order-of-magnitude estimates. The little difference 
in the slopes of the two fits in Figure (24) is likely due to the presence of a thermal 
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dynamic strain in the nano-crystalline sample at a short time (a single frame). The 
anisotropic broadening observed in the WH plot is not fully compatible with the 
elastic tensor, thus anisotropic strain broadening effects, if present at all, are not 
dominant. Last, relating the intercept of the WH plot with an average domain size, as 
commonly done in traditional Line Profile Analysis, can lead in this case to large 
errors due to the limited number of grains employed in the analysis and their non-
ideal shape. The order of magnitude (linear fit: 11.2 nm for Crystallographic and  
13.3 nm for the equilibrated models; parabolic fit: 10.8 nm for Crystallographic and 
10.1 nm for the equilibrated models) is however compatible with the average size of 
the grains (9.6 nm for Crystallographic and 9.9 for the equilibrated models). 
 

 

 
Figure III - 24. (24)Line Profile Analysis of the simulated pattern for SF, AF, and 
Crystallographic models done using the MarqX software (Dong, et al., 2000). Best patterns fit 
(a) and Williamson-Hall analysis (b) are provided. 
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3.5 Conclusion 

A new method has been presented for computing the strain at the atomic level. 
Grouped under the name of Voronoi Cell Deformation (VCD), the different forms of 
the proposed algorithm are all based on a Voronoi Tessellation to identify the local 
atomic arrangement. The principal stretch ratios are computed from the differences 
of the inertia between the real and a reference configuration, also considering a 
uniform or a concentrated distribution of mass. The use of tessellation allows strains 
to be computed also in the grain boundary regions where traditional methods based 
on the local crystallography cannot be used.  

VCD was compared with the known CCD method for the analysis of a 
simulated Cu nano-polycrystalline microstructure. Contrary to the CCD, which does 
not allow highly distorted regions to be considered, the VCD is able to provide 
information in any point in the cluster. A marked difference in behaviour is detected 
in the grains between core and boundary. A distribution of the strain with large 
changes at the interface between grains is shown by studying the strain along linear 
sections in the cluster. Differences between the results of CCD and VCD are as 
expected, as the latter considers all atoms, including those in highly deformed 
positions, as in the grain boundary regions. 

The atom-level stress was computed on the base of EAM potential energy, 
involving the Voronoi cells associated to each atomic position. A linearly proportional 
relation between grain size and stress-strain components is found, agreeing with the 
same trend for potential energy. Moreover, the bulk modulus of the equilibrated 
microstructure computed from stress and strain at the atomic level (137 GPa) results 
almost the same to the experimental value (140 GPa). 

Finally, a preliminary discussion about X-ray powder diffraction Line Profile 
Analysis from simulated nano-polycrystalline microstructure is provided, showing 
differences between patterns simulated via the Debye scattering equation for the 
same microstructure under several conditions. A qualitative estimation of microstrian 
in the Cu microstructure was evaluated by the Williamson-Hall analysis, finding 
discrepancy from values directly measured from the numerical model. 
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3.6 Appendix III.A: Deformation of convex polyhedron 
from volume properties 

The deformation of a convex polyhedron is proportional to the change in the 
geometric properties such as the moments of volume. The latter are easily computed 
e.g. by the equations proposed by A. V. Tuzikov et al. (Tuzikov, et al., 2003). In 
particular, as the VCs are convex polyhedron (bound by polygonal faces), they can 
be decomposed into tetrahedron that divide the faces into triangles (Figure (25)). 
 

 
Figure III - 25. Geometric description of a tetrahedron in space. 

If we define the matrix: 

 
1 1 1

2 2 2

3 3 3

a b c
a b c
a b c

 
 =  
 
 

A  (9) 

we can calculate the moment of mass of the whole polyhedron P: 
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Just three moments of mass for each tetrahedron:  
 ( )1
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suffice to calculate the whole moment of inertia tensor IP: 
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The principal moments and directions of inertia can be then computed as the 
eigenvalues and eigenvectors of IP: 
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Linking the inertia values of the VCs to the equivalent parallelepiped solids, the three 
positive stretch ratios are fully defined by the equations: 
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where LF and L0 are the final (F) and initial (0) lengths, respectively. 
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3.7 Appendix III.B: Deformation of convex polyhedron 
from mass properties 

When concentrated masses are considered, equation (10) is replaced by: 
 

,
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P st r T i j kT
m w x x x= ∑  (21) 

where 
T T Pw S S=  or 1Tw =  for the weighted and non-weighted VmmCD, 

respectively. The term ST is the surface area of the face of tetrahedron T shared with 
the polyhedron P, whereas SP is the total surface area of the polyhedron. 

The stretch ratios along the principal directions can be directly computed 
without any additional assumption from the principal inertia of the deformed and 
reference structures: 
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Chapter IV 
 

Interference Effects in Nano-crystalline Systems 

 
Part of this chapter has been published in: 

 
 
Alberto Leonardi, Matteo Leoni, Paolo Scardi, 

“Interference Effects in Nanocrystalline Systems”, 
Metallurgical and MaterialsTransactions_A,(2012) in press. 
 
 
 
 
 
 
 
 
 
 
 
 

4.1 Abstract 

Interference (inter-grain cross-correlation) effects can be present in the X-ray powder 
diffraction pattern of a polycrystalline aggregate. In an experimental diffraction 
pattern, however, the information is highly overlapped and can be confused with 
other effects. It is here shown that the analysis of the patterns calculated from a 
cluster equilibrated via molecular dynamics simulation allows those effects to be 
separated. Extra intensity is observed due to the presence of the grain boundaries 
whose contribution is unexpectedly not that of an amorphous phase. 
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4.2 Introduction 

Recent work has shown how inter-grain interference effects can be observed in the 
diffraction from polycrystalline systems when scattering domains are sufficiently 
small and textured ( (Rafaja, et al., 2000), (Rafaja, et al., 2004), (Rafaja, et al., 
2006), (Rafaja, et al., 2007), and (Förster, et al., 2007)). Besides loose nano-
crystalline powders, where the above conditions can arise from special growth or 
coalescence phenomena ( (Link, et al., 1999), (Scardi, et al., 2010)), these effects 
are important also in polycrystalline aggregates as they can influence the overall 
properties of the system (Rafaja, et al., 2006). 

Models have been proposed to describe the special condition when the 
diffracted intensity distributions from small and closely oriented domains overlap in 
Reciprocal Space (RS), thus affecting the observed powder patterns in different 
ways ( (Rafaja, et al., 2000), (Rafaja, et al., 2004), (Rafaja, et al., 2006), (Rafaja, et 
al., 2007), and (Förster, et al., 2007)). This is especially visible for low Miller indices 
peak profiles, whose corresponding RS points are closer to the origin. Further 
insights have been provided by a recent work, where interference effects among 
man-sized metallic domains where simulated using atomistic models and the Debye 
scattering equation (DSE) ( (Debye, 1915), (Gelisio, et al., 2012)) to generate the 
corresponding powder patterns ( (Beyerlein, et al., 2010), (Gelisio, et al., 2012)).  

In all of these cases, however, interference was related to the size and 
orientation of the domains with no consideration of the role of grain boundaries, 
which indeed contribute a considerable fraction to nano-scale materials (see e.g. 
(Krivoglaz, 1996), (Barabash, et al., 1999), (Levine, et al., 2011)). Models and 
simulations so far have treated nano-crystals as small (perfect) single crystals, 
without accounting for the boundary region and of the natural tendency of the system 
to achieve a minimum of energy. Here we provide a preliminary understanding of the 
possible effects of the grain boundary (GB) on the diffraction patterns from systems 
made of small crystalline domains. In particular it is shown that the signal from the 
GB region can be partly coherent with the bulk of the neighbouring crystalline 
domains. 

4.3 Generation of the nano-polycrystalline model 

A nano-polycrystalline cluster made of 50 grains of Cu was built via Constrained 
Voronoi Tessellation (CVT (Gross, et al., 2002)) in a cubic box of 260.28 Å with 
PBCs (1). Using this technique, the size and shape of the grains was tuned to obtain 
a lognormal dispersion of normalised volumes (mean volume 352657 Å3, standard 
deviation = 0.35; the diameter of a sphere having the mean volume is ca. 70 Å). The 
distribution character was confirmed by the Kolmogorov-Smirnov test at 5% 
significance level. An fcc copper structure (cell parameter a = 3.615 Å) was placed in 
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the grains, eliminating those atoms on the boundary whose distances are below 85% 
of the minimum ideal value (3.615 / 8 ) (Xu, et al., 2010). The distribution of 
misorientation angles agrees with the MacKenzie result (Mackenzie, 1958) 
associated to a randomly textured material. 
 

 
Figure IV - 1. Cluster employed for the MD simulation (Copper nano-polycrystalline 
microstructure of 50 grains). 

The system was equilibrated at 100 K under NPT conditions using molecular 
dynamics and the Embedded Atom Method potential for Cu ( (Daw, et al., 1983), 
(Foiles, et al., 1986)). The LAMMPS code (Plimpton, 1995) was employed. 

Once stationary conditions were reached, a sequence of 100 independent 
frames was collected each 1 ps. The position of each atom (labelled with the grain 
ID) was averaged over the collected dataset in order to remove any dynamic 
(thermal) component (Leonardi, et al., 2011). A powder diffraction pattern was 
computed via DSE for each of those averaged datasets; the PowDOG (Gelisio, et 
al., 2010) code running on a cluster of NVIDIA GPUs was employed. Because of the 
averaging, these diffraction patterns contain only information on size and static 
displacements: local distortion, non crystalline features and defects contributions to 
line profile broadening can therefore be more easily separated. 

4.4 Results and Discussion 

When the DSE is used for the cluster as a whole, the resulting powder pattern 
includes correlation effects between all atoms, whether they belong to same or 
different grains, to the core or to GB regions. The range of the powder pattern 
comprising the (111) and (200) copper peaks is shown in Figure (2) for the 
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equilibrated cluster, together with the corresponding pattern obtained by summing up 
all DSE patterns for each separate grain. A detail of the process is shown in the 
inset. 
 

 
Figure IV - 2. Portion of the X-ray powder diffraction pattern of the cluster (black, up triangles) 
compared with the corresponding sum of the patterns from the component grains (red, down 
triangles): the difference coming from the grain-grain interference is evidenced (IEP - blue, 
circles). As an example, the inset shows the (111) peaks from the various grains (black lines) 
and their sum (red, down triangles). 

To study the interference effects we can use a plot of the difference between 
those contributions i.e. between the pattern of the cluster and the sum of the patterns 
of the contributing grains (Interference Effects Plot, IEP).The IEP can is directly 
provided by the DSE using the cross-corelation pairs of atoms owned by different 
grains of the polycrystalline microstructure (see eq. (1)). 

 
1 1 1 1

sin( )
( ) ( ) ( )

p tn nM M
ij

i j
p t i j ij

t p

IEP q f f
= = = =

≠

 ⋅ ∝  ⋅  
∑∑ ∑∑

r q
q q

r q
 (1) 

where M is the number of grains, np and nt are the number of atoms within the 
grains p and t respectively, rij is the pair vector, and q is the scattering vector. As 
shown in this and in the following figures, the effect is clearly visible and is peaked 
around the Bragg positions.To further understand the origin of the interference 
component it is useful to compare the DSE pattern for whole cluster and sum of 
separate grains in three distinct cases (cf. Figure (3)): (i) for the starting 
microstructure, just after the atom filling step, which is then made of “perfect” 
crystals; (ii) after the energy minimization step and (iii) after a MD trajectory 
sufficiently long to equilibrate the microstructure (same as in Figure (2)). The main 
effect of the energy minimization is a shift of Bragg peaks with respect to case (i), 
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caused by the expansion of the cells that better fill the intergranular regions. The MD 
equilibration has a more complex effect (still driven by energy minimization), leading 
to a reorganization of the atoms in the GB region. A diffuse scattering component – 
especially visible in the region between the Bragg peaks – arises at the expenses of 
the Bragg component, as an effect of the disordered structure of the GB region in the 
equilibrated model (iii). 
 

 
Figure IV - 3. In the upper plot (a), X-ray powder diffraction pattern for the cluster calculated for 
the starting microstructure (black squares), after energy minimization (green upper triangles) 
and after a long equilibration (blue, circles). The rectangle indicates the portion of the pattern 
considered in Figure (2). In the lower plot (b), IEPs corresponding to the three cases presented 
in the upper part. See text for details. 

The IEPs in the lower part of Figure (3) show that interference effects are quite 
small for (i), in agreement with the recent study by Gelisio and Scardi (Gelisio, et al., 
2012). Quite surprising the interference component increases with energy 
minimization (ii) and even further after MD equilibration (iii). As already pointed out, 
the latter step mostly rearranges atoms in the GB region, with negligible grain 
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rotations; it is therefore clear that the main contribution to interference comes from 
the grain boundary. 
 

 
Figure IV - 4. Grain boundary contribution. In the upper part (a), the pattern of the “perfect” 
cluster (black squares) together with those obtained by removing 1 layer (CL1 - blue upper 
triangles), 2 layers (CL2 - green, down triangles) and 3 layers (CL3 - red, circles). The rectangle 
indicates the portion of the pattern considered in Figure (2). In the lower plot (b), IEPs 
corresponding to the three cases presented in the upper part. See text for details. 

The contribution of the GB is made evident by the following analysis. The 
powder pattern of the “perfect” crystalline cluster (case (i) above) can be compared 
with that of the same cluster after removing all atoms with a coordination lower than 
12 (CL1), or after removing all atoms whose first (CL2) or second (CL3) neighbours 
have coordination lower than 12. This corresponds to progressively remove (peel off) 
the atoms from each grain layer-by-layer, thus removing the grain boundary region. 
This is shown in Figure (4) for the starting perfect crystal microstructure (i). In this 
case, as already discussed, the interference effect is small; the further decrease 
observed in CL1, CL2, CL3 is mostly due to the volume decrease, which is also the 
reason for the broadening of the Bragg peaks (easily visible in the top right inset). 
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The same analysis is shown in Figure (5) for the MD equilibrated cluster (iii). 
In this case we can see that the first removal step (CL1), contrary to what just 
observed for (i), gives a sharpening of the Bragg peaks, as a consequence of the 
removal of the diffuse scattering component caused by the GB. It is also apparent 
(bottom right inset) that interference effects are strongly reduced in CL1 and 
comparable to (i) for CL2 and CL3. This further validates the results on the role of 
the GB in the interference phenomenon. Finally, Figure (6) shows the DSE 
calculation obtained by considering just: (a) CORE-CORE: correlations between 
atoms in the core of the grains only (i.e. all GB atoms are excluded); (b) 
BOUNDARY-BOUNDARY: correlations between GB atoms only; (c) CORE-
BOUNDARY: correlations between GB atoms and atoms of the grains. The analysis 
is then repeated for the CL1, CL2 and CL3 clusters, so that the sum of (a), (b) and 
(c) gives the corresponding CL1, CL2 and CL3 patterns in Figure (5). 
 

 
Figure IV - 5. Grain boundary contribution. In the upper part (a), the pattern of the equilibrated 
cluster (black squares) together with those obtained by removing 1 layer (CL1 - blue upper 
triangles), 2 layers (CL2 - green, down triangles) and 3 layers (CL3 - red, circles). The rectangle 
indicates the portion of the pattern considered in Figure (2). In the lower plot (b), IEPs 
corresponding to the three cases presented in the upper part. See text for details. 



84 

The first group (a) gives powder patterns typical of fcc structures, with a progressive 
broadening of the Bragg peaks caused by the decrease in grain size, from CL1 to 
CL3. The pattern produced by GB atoms (b) gives a main diffuse scattering 
component with a Bragg component which is only visible for low Miller indices; the 
latter effect is due to the high disorder in the GB that enhances line broadening with 
the scattering vector until it cannot be distinguished from the diffuse scattering 
component anymore. For increasing layer removal, the Bragg component sharpens 
as it includes more correlations between distant atom couples. The last group (c) 
shows that the correlation between GB atoms and grain cores also consists of a 
diffuse scattering component, but the Bragg signal is stronger than in (b). 
 

 
Figure IV - 6. DSE calculations obtained by considering just: (a) CORE-CORE, correlations 
between atoms in the core of the grains, (b) BOUNDARY-BOUNDARY, correlations between 
GB atoms only; (c) CORE-BOUNDARY, correlations between GB atoms and atoms of the 
grains. In the three cases, plots represent the CL1 (blue upper triangles), CL2 (green, lower 
triangles) and CL3 (red circles) clusters. 

An experimental validation of the arguments presented here is difficult in 
practice, as it is impossible to separate in this easy way the constituents of an 
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experimental diffraction pattern. The results are therefore tightly bound to the 
performance of the MD (thus to the choice of microstructure and potentials) and to its 
appropriateness in representing the microstructure of the cluster analysed here. MD 
is known to provide a realistic representation of a material when limited to 
equilibration effects like those shown here. Moreover, the use of a particular MD 
model does not change the fact that GB is clearly different from the core: it is 
therefore likely that interference effects due to the presence of the GB are present in 
a real microstructure as well.  
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4.5 Conclusions 

Molecular dynamics applied to a nano-polycrystalline cluster allowed the various 
contributions to the diffraction pattern (static, thermal, defects, grain boundaries) to 
be singled out. In particular, it was here shown that the diffraction pattern of a cluster 
is not the mere sum of the contributions from all grains, but additional diffuse and 
broadening effects are present. These effects are due to the interference of the 
grains in the cluster, and in particular they are mainly caused by the particular 
structure of grain boundaries. 
  



87 

Chapter V 
 

Common Volume Function & 
Diffraction Line Profiles 

 
Part of this chapter has been published in: 

 
 
Alberto Leonardi, Matteo Leoni, Stefano Siboni, Paolo Scardi, 

“Common Volume Function and diffraction line profiles from polyhedral domains”, 
Journal of Applied Crystallography,45-6 (2012) 1162-1172. 
 

 

 
 

 

 

5.1 Abstract 

A general numerical algorithm is proposed for the fast computing of the Common 
Volume Function (CVF) of any polyhedral object, from which the diffraction pattern of 
a corresponding powder can be obtained. The theoretical description of the algorithm 
is supported by examples ranging from simple equilibrium shapes in cubic materials 
(Wulff polyhedra) to more exotic non-convex shapes such as e.g. tripods or hollow 
cubes. An excellent agreement is shown between the patterns simulated using the 
CVF and the corresponding ones calculated from the atomic positions via the Debye 
scattering equation. 
  



88 

5.2 Introduction 

The inverse proportionality between peak width and size of crystalline domains is 
one of the best-known and exploited properties of X-ray diffraction: first formalized in 
1918 by P. Scherrer (Scherrer, 1918) for a powder of small crystals, it has since 
been discussed within more complex and general theories on peak profiles in 
diffraction (see, e.g., (Wilson, 1962), (James, 1962), (Guinier, 1963), (Warren, 
1969)). 

The finite size and the shape of coherently scattering domains (or crystallites) 
– typically in a range from a few to several hundreds of nanometres – is just one of 
the possible imperfections affecting the diffraction peaks. Besides domain size 
effects, detailed models exist to study e.g., several lattice defects, inhomogeneous 
strains and compositional variations, forming a large body of knowledge and 
methods usually referred to as (diffraction) Line Profile Analysis (LPA). 

Despite the popularity of LPA, whether using the simple Scherrer formula or 
more advanced full pattern modelling methods, few domain shapes have been 
considered so far. Models providing the powder diffraction line profile and related 
properties like the Scherrer constant (Langford, et al., 1978) are available for just a 
few regular shapes, including sphere, cube, tetrahedron, octahedron, cylinder, 
hexagonal prism, and some derived shapes, like ellipsoids and parallelepipeds          
( (Langford, et al., 1978), (Allegra, et al., 1983), (Scardi, et al., 2004(a)), (Ungàr, et 
al., 2005)). 

The basic property to study domain size and shape effects in powder 
diffraction is the Common Volume Function (CVF). Following Stokes and Wilson       
( (Stokes, et al., 1942), (Wilson, 1962)), the CVF is the intersection volume 

( ),hklV LΩ
 between a crystalline domain Ω of volume 

grainV  and its “ghost” (T(Ω)), 

i.e., the same domain shifted by L along the scattering vector direction 
[ ]

ˆ
hkld (Figure 

1). As shown in textbooks ( (Wilson, 1962), (Guinier, 1963), (Warren, 1969)), the line 
profile ( ),hklI qΩ

of the hkl reflection, can be obtained as the cosine Fourier 

Transform (FT) of the normalised CVF ( ) ( ) ( ), , , 0S
hkl hkl hklA L V L VΩ Ω Ω=  where 

( ), 0hklVΩ
 is the volume of the grain: 

 ( ) ( ) ( ), ,
0

cosS
hkl hklI q A L qL dL

∞

Ω Ω∝ ∫  (1) 

where 2 4 sinq sπ π θ λ= =  (where θ is half of the scattering angle, and λ is the 
wavelength of the incident radiation beam). Terms adsorbed in the proportionality 
symbol include several constants, known trigonometric functions, the square 
modulus of the structure factor and the multiplicity of the hkl reflection (Warren, 
1969). It can be noted that eq. (1) does not contain the sine FT term, as the CVF is 
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always a real and even function in L (i.e. ( ) ( ), ,
S S

hkl hklA L A LΩ Ω= − ). The integration 

is extended to infinity, but is actually limited by the longest dimension along [hkl], 
beyond which the CVF is null: the upper limit is therefore a direction-dependent 
quantity. Furthermore, eq. (1) is valid within the limit of the so-called Tangent Plane 
Approximation (TPA), which is usually appropriate for not too small crystallites. The 
CVF concept, however, can be equally used in more rigorous expressions of the line 
profile (Beyerlein, et al., 2011). 

Besides line profiles, the CVF provides direct information on the average 
thickness of the crystallite along [hkl] ( (Wilson, 1962), (Scardi, et al., 2004(a))). In 
fact, we can define: 
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as, respectively, volume and surface weighted sizes of the crystallite Ω along [hkl] 
(also known as apparent or effective crystallite sizes, or as mean column length; see 
(Scardi, et al., 2004(a)) and references therein). Equation (2) also provides the 
integral breadth βhkl (peak area over peak maximum), and can be considered as a 
generalization of the Scherrer equation.  

When applied to simple domain shapes with just one length parameter D (e.g., 
diameter for the sphere, edge for the cube, etc.), eq. (2) gives: 
 

( ) ( ),
1

cos 2V hkl
hkl hkl

DL
s Kβ

λ
β θ β θ

< > = = =
⋅

 (4) 

where the Scherrer constant Kβ
 in the denominator (of the order of magnitude of 

unity) generally depends on the shape of Ω and on [hkl] ( ( )K hklβ
), except for 

spherical crystallites where 4 3Kβ =  for any [hkl] ( (Langford, et al., 1978), 

(Scardi, et al., 2004(a))).  
Equation (4) is probably the most popular form of Scherrer equation, written 

for the integral breadth in the usual (2θ) measurement space. However, as shown 
e.g. in (Scardi, et al., 2004(b)) and (Scardi, et al., 2006), the practical use of Scherrer 
equation is quite limited, as the formula does not include all possible sources of 
broadening and does not consider e.g. the size polydispersity typical of real systems. 
The CVF can however be used beyond Scherrer equation e.g. within the frame of 
the Whole Powder Pattern Modelling (WPPM, (Scardi, et al., 2002)), the state-of-art 
convolutive method for microstructure analysis based on powder diffraction. In 
particular, as the size distribution and shape effects can be separated (as shown in 
(Scardi, et al., 2004(a))), the knowledge of the CVF allows the analysis of 
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polydispersed powders. From the above it is quite evident that the CVF is the most 
relevant information needed for application of LPA to powders or polycrystalline 
materials with crystallites of any desired shapes. The present chapter shows how the 
CVF can be easily calculated and used to generate the diffraction line profiles for any 
polyhedral shape. This choice seems sufficiently general and flexible, as nearly any 
possible domain shape can be at least approximated by a polyhedron with an 
appropriate number of faces. The new algorithm is briefly described and its 
application illustrated by several examples. 

5.3 Common Volume Function of polyhedral crystallites 

A notable property of polyhedra is convexity: in a convex polyhedron, the faces do 
not intersect and any segment joining two points is entirely contained within the 
body. As shown in the following, this property plays a key role in the calculation of 
the CVF, which is first discussed for domains of convex shape. 

5.3.1 Convex polyhedra 

Choosing an orthogonal reference system with origin O anywhere in the space, a 
generic convex polyhedron Ω with N faces (see Figure (1)) can be mathematically 
described by the set of all points kP  satisfying the following system of N inequalities 

(half-space representation): 
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 (5) 

where ˆ ia  is unit normal from inside to the outside to the i-th face, 
, , ˆa i a i ir = ⋅R a  

and 
,a iR  is the distance vector of the i-th face. It must be noted that following this 

convention, the values of 
,a ir  are not necessarily positive. 

To translate the polyhedron by a quantity L along the direction
[ ]

ˆ
hkld , we can 

apply the transformation: 
 ( ) ( ), , [ ] , [ ]

ˆ ˆ ˆ ˆb i a i hkl i a i hkl ir r L r L= + ⋅ ⋅ = + ⋅ ⋅d b d a  (6) 

with ˆ ˆ≡b a . 
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Figure V - 1. Generic polyhedral crystal (left) and its “ghost”, i.e., the same crystal shifted by a 
quantity L along

[ ]
ˆ

hkld . The intersection volume (CVF) is highlighted (right). 

The translated polyhedral (aka “ghost” (Wilson, 1962)) (cf. Figure (1)) obtained by 
this translation can be described as: 
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The intersection polyhedron Ψ between Ω and T(Ω) satisfies both systems of 
inequalities (eq. (5) and (7)): 
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The number of inequalities in eq. (8) can be reduced by excluding those planes 
parallel or equivalent to each other (redundant inequalities), i.e. by eliminating a 
plane i if it exists already a plane j for which ( ) ( ), ,ˆ ˆ ,i j c i c jr r i j≡ ∧ ≥ ≠c c . This 

results in the reduced set of 2M N≤ inequalities: 

 1 ,1

,

ˆ

...
ˆ

k f

M k f M

r

r

 ⋅ ≤
Ψ = 
 ⋅ ≤

f P

f P

  (9) 

with M being the number of faces of the solid of intersection and 
if being the normal 

to the i-th face relative to the chosen origin of the reference system. The set of 
vertices 

ΨW  of this solid is obtained by solving a system of equations for each 

triplet of planes α, β, γ, 
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and by excluding those solutions that do not simultaneously satisfy eq. (8), as they 
represent points laying outside the common volume. Each triplet of adjacent planes 
is associated with a corresponding solution of eq. (10): while solving the equations, 
all planes are recognized and labelled as sides of the intersection polyhedron. 

Each face π of Ψ is completely defined by its Nπ vertices
πΨW . Each of 

those vertices can be conveniently referred either to the centroid of the solid G or to 
the centroid of the face πG  leading, respectively, to the two representations 

, ,k kπ πΨ Ψ= −W W G  and
, ,k kπ π πΨ Ψ= −w W G

 (cf. Figure (1)). The use of 

those two references allows for a unique ordering of the vertices (e.g. clockwise) with 
respect to two orthogonal unit vectors ˆ ˆ,i j  in the face π selected as 
ˆ ˆ ˆ ˆ ˆ ˆ, ,π π⊥ ⊥ ⊥i j i f j f . In doing that, a factor ϑ  is employed to describe the angular 

position as: 
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in terms of the components 
,

ˆ
kπϕ Ψ= ⋅i w  and 

,
ˆ

kπψ Ψ= ⋅j w . 

The intersection solid Ψ is finally described as the sum of the tetrahedra 
,kπΘ : 
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from which the common volume (volume moment 
000m , (Tuzikov, et al., 2003)) can 

be obtained as: 
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5.3.2 Non-convex polyhedra 

Non-convex polyhedra can be suitably represented as the union of convex polyhedra 
(Ci). The corresponding CVF is obtained by considering all possible intersection 
volumes between pairs. 

The volume of the intersection between Ci and the translated Cj will be 
identified as ( ); ,hkl i jV C C L ; in this way, ( ) ( ), ; ,hkl i hkl i iV C L V C C L=  For i≠j, 

two intersections need to be calculated, as either Ci or Cj can be translated by the 
given quantity L along 

[ ]
ˆ

hkld while the other one remain fixed (see Figure 2). 

A special class of non-convex polyhedra are those presenting internal holes. 
Hollow shapes are described as the union of full regions (given a weight +1) with 
empty ones (given a weight -1). When computing the intersection volumes as 
described before, weights are arithmetically multiplied, so that the intersection 
between two empty regions gives a positive contribution to the overall CVF. Formal 
definitions are reported in Appendix V.A, whereas Figure (2) illustrates the concept 
with an example. 
 

 
Figure V - 2. CVF for non-convex hollow shapes. The same object can be imagined as either 
the sum of convex objects (A) or as the difference between convex objects and convex holes 
(B). See text and Appendix V.A for details. 

5.4 Examples of application 

The proposed algorithm is completely general and can be used to calculate the CVF 
and the corresponding peak profile for materials of any crystal symmetry and for 
domains of any shape, irrespective of geometrical complexity and number of faces. 
In the following, the application to some significant cases of study is illustrated, 
considering the two broad categories of convex and non-convex bodies. For 
simplicity, all examples will refer to the ideal face-centred cubic (fcc) structure of 
gold, so that the CVF and the corresponding powder pattern peak profiles are the 
sum of the CVFs for all crystallographically-equivalent directions. 



94 

5.4.1 Convex shapes 

5.4.1.1 Truncated and bitruncated cube 

Cube and octahedron, for which an analytical expression of the CVF is available       
( (Stokes, et al., 1942), (Scardi, et al., 2004(a))), are end members of a family of 
polyhedra that can be obtained by applying the truncation and bitruncation 
operations to the cube. The family includes the cuboctahedron as rectified 
intermediate (when truncation is such that the edges of the cube collapse into 
points). 
 

 
Figure V - 3. Examples of CVF for cube (a), cuboctahedron (b), octahedron (c). The 
corresponding powder patterns obtained from eq. (1) are shown (c). 

Beyond the mathematical description, those polyhedra are similar to particular 
cases of the Equilibrium Crystal Shape (ECS) obtained with the Wulff construction 
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(Groth, 1901), frequently observed e.g. in cubic-lattice nano-crystals grown under 
thermodynamic control (see e.g. (Vitos, et al., 1998), (Xia, et al., 2008), (Wang, et 
al., 2003) and references therein). For this reason, in the literature they are 
frequently called Wulff polyhedral (Baletto, et al., 2000). 

From a crystallographic point of view, the actual polyhedra can be obtained by 
progressively cutting the corners of a cube (bounded by {100} faces) with {111} 
planes that ultimately become the faces of the octahedra. 

The normalized CVF (i.e. ( )S
hklA L ) for three crystallographic directions of 

cube, octahedron and cuboctahedron are shown as an example in Figure (3) 
together with a set of corresponding powder diffraction peak profiles. For a more 
convenient comparison, nano-crystals of equal volume were chosen. 

The peak profiles show quite distinctive differences. Most notably, interference 
fringes appear on the {200} peak for cubic crystallites and on the {111} peak for 
octahedral ones, as a result of the different sets of parallel planes bounding the 
crystalline domains. The results for cube and octahedron are identical (within the 
limits of numerical precision) with those obtained from the corresponding analytical 
CVF expressions provided by (Stokes, et al., 1942). 

5.4.1.2 Irregular domain shapes: 3D Voronoi cell 

The proposed algorithm is particularly useful to calculate CVF and peak profiles for 
crystals with irregular shapes, like the crystalline domains usually observed in 
polycrystalline aggregates. One such crystallite can be obtained e.g. by filling with 
atoms a 3D Voronoi cell (Figure (4)). In this case the orientation of the crystal lattice 
with respect to the nano-crystal must be specified, and crystallographically 
equivalent [hkl]s do not generally give the same CVF. This is shown in Figure (4) for 
the [h00] directions, whose normalized CVFs are compared with that for the 
equivalent-volume sphere, to emphasize the effect of an irregular shape (sphericity 
(Wadell, 1935) 0.87Ψ = ). 

In this case, as there is no analytical expression for the CVF to compare with, 
it is interesting to study the difference between the pattern obtained with the 
proposed Fourier method and that obtained using the Debye scattering equation       
( (Debye, 1915), (Warren, 1969), (Gelisio, et al., 2010)): 

 ( ) ( )sinN N
ij

i j ij

I q
⋅

∝
⋅∑∑

r q
r q

 (14) 

where rij is the distance between the pair of atoms i and j.  
The small but visible differences are due to two basic reasons: the first one is 

that the Debye scattering equation refers to an atomistic model of the nano-crystal, 
which is different from a purely geometrical polyhedron. As shown by Ino and Minami 
(Ino, et al., 1979), eq. (1) provides an average peak profile obtained from all possible 
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ways to fill the same volume with the lattice, whereas the Debye scattering equation 
is obtained for just one of such atomistic models. The second difference is to be 
attributed to the use in eq. (1) of the already mentioned TPA. The smaller the 
crystallite size, the more the TPA approach becomes an approximation for the real 
case; here (diameter of the equivalent-volume sphere of 13.2 nm) the introduction of 
the TPA should give just a minor discrepancy. As already pointed out, if a higher 
precision is necessary, the approximation can be avoided by replacing eq. (1) with a 
more rigorous expression (see e.g. (Ino, et al., 1979), (Beyerlein, et al., 2011) for 
details). 
 

 
Figure V - 4. Irregular nano-crystal shape from a 3D Voronoi cell (a). The CVF is shown for the 
[h00] directions and for the equivalent-volume sphere (b). The powder pattern obtained from 
eq. (1) (dot) is compared with that calculated by the Debye equation (line) (c, d). The difference 
is shown below (e). 



97 

5.4.1.3 Polycrystalline microstructure: 3D Poisson-Voronoi 
microstructure 

It is interesting to extend the previous analysis to a polycrystalline microstructure, 
e.g., to a cluster of irregularly-shaped crystallites made by Poisson-Voronoi space 
tessellation, from which the grain of the previous example was taken. The powder 
pattern is obtained by adding up the peak profiles corresponding to each and all 
grains in the cluster, as schematically shown for two reflections in Figure (5). 
 

 
Figure V - 5. Nano-polycrystalline microstructure obtained by 3D Poisson-Voronoi tessellation 
(a), with detail of the (311) and (222) line profiles: thick line refers to the grain of Figure (4), thin 
lines to all other grains and dots to the whole cluster (b). A comparison between the powder 
pattern from the CVF approach (dot) and from the Debye scattering equation (line) is proposed 
in (c, d); the difference is shown below (e). 

Also in this case, it is possible to compare the resulting powder pattern with 
the corresponding one obtained by means of Debye scattering equation (cf. Figure 
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(5c)). Differences are much smaller (by about one order of magnitude) than those 
observed for the single grain of Figure (4). This is not so obvious as the differences 
discussed before are also present here, and even more so considering that the 
Debye equation, when applied to the entire cluster, includes interference effects 
between all different grains, an effect clearly not considered by the CVF approach. 
However, this “cross-correltion” contribution is negligible as the crystalline domains 
are randomly oriented and spaced. Reason for the better match between the 
Fourier-based CVF approach (eq. (1)) and the Debye scattering equation (eq. (14)) 
is the Ino-Minami average (Ino, et al., 1979). Even if the grains in the cluster have 
different shapes, adding up all patterns has a similar effect as considering different 
space fillings with atoms. This feature should be more and more evident the larger 
the cluster size, so we can safely conclude that the CVF approach is appropriate to 
describe real materials even if made of relatively small domains. Further differences 
between an atomistic description of crystalline domains and the CVF approach are 
discussed by (Beyerlein, et al., 2011). 

Modelling of the pattern using spheres, albeit being clearly incompatible with 
the a priori information, does not lead to a satisfactory fit. Computational materials 
science is a field where the accurate knowledge of the microstructure and the 
possibility of performing virtual experiments is the key for a real scientific 
advancement. The possibility of calculating the diffraction pattern for a given domain 
in a cluster, following a Bragg-type approach (peak by peak), paves the way to 
testing microstructural models and analysing the microstructure evolution. To 
understand e.g. the strain broadening contribution (which is the key to several of the 
enhanced properties of a nano-structured material), we can equilibrate the cluster 
proposed here at a given temperature and simulate the corresponding pattern using 
the Debye scattering equation. The analysis of the corresponding pattern can be 
easily done using the WPPM; considering an average shape, we can easily miss the 
subtle differences in the strain broadening contribution. 

5.4.2 Non-convex shapes 

5.4.2.1 Planar tripods and tetrapods 

A remarkable example of non-convex shapes is provided by branched metallic nano-
crystals (Chen, et al., 2003). Single-crystal planar tripod- and tetrapod-shaped Au 
nano-crystals with specific directions for the protruding “legs” (pods) can be 
synthesised via soft chemistry (Chen, et al., 2003): tripods lie flat on a (111) plane 
with three pods along [110] , [101]and [011] , whereas tetrapods show four pods 

extending along the[110] , [110] , [110] , [110]  directions from a [001] oriented 
body. CVFs and powder patterns were produced according to the procedure 
described above for non-convex shapes: the results are shown in Figure (6). The 
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differences between the powder patterns of tripods and tetrapods (i.e., between 
three and four legs), are not as large as those given by a different length of the legs. 
Especially for the tripods, longer pods give increasingly sharper {110} peak profiles. 
 

 
Figure V - 6. Normalized CVF (a, b, c) and powder diffraction patterns for gold tripod (d) and 
tetrapods (e) along three crystallographic directions. Both short and long legged nano-particles 
are considered. 

As a general consideration, particularly appropriate in the context of the 
present example, it is worth considering that powder diffraction’s forte is not so much 
in the predictive power (e.g., guessing the shape of nano-particles) but in the 
statistical reliability of the result, guaranteed by the large number of scattering 
domains in a typical specimen. Only a combination of independent information can 
give qualitatively and quantitatively reliable results. Therefore LPA performs at his 
best when complemented with additional independent information gathered by other 
techniques (for instance electron microscopy), providing e.g. evidence on the most 
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frequent shape and thus supporting the modelling and interpretation of the powder 
patterns. 

5.4.2.2 Hollow cubes 

Hollow crystallites are a further example of non-convex shapes: hollow nano-spheres 
and “nano-boxes” (i.e., hollow cubes) are rather common, but many other shapes 
broadly termed “nano-cages” are nowadays produced (Lou, et al., 2008).  As an 
example (see Figure (7)), we consider here the effect of creating, respectively, a 
cubic, a cuboctahedral and an octahedral void of the same volume inside a cubic 
crystallite. In Figure (7), normalized CVFs are shown for the same three 
crystallographic directions as in Figure (3) together with the corresponding powder 
diffraction peak profiles. 
 

 
Figure V - 7. Normalized CVF (a, b, c) and selected peak profiles (d) for cubic crystals with 
voids of equal volume but different shape. See text for details. 
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As the crystalline part is relatively thick, differences are not so remarkable. A 
much more visible effect is produced by changing the size of the void. This is shown 
in Figure (8), where a cube-shaped void of increasing size is produced inside the 
same cube-shaped nano-crystal. The normalized CVF for the three directions 
(<h00>, <hh0>, <hhh>) is now clearly different, and depends on the wall thickness of 
the hollow shape. The effect is so remarkable that the CVF along <h00> has a non-
monotonous decay for a thickness 

2 2 2
cube cubeD Dτ > −  . The corresponding powder 

diffraction peak profiles (Figure (8)) show quite visible differences, thus confirming 
that the line profile is rather sensitive to the thickness of the walls (i.e., the size of the 
void region) more than to the shape of the empty volume. 
 

 
Figure V - 8. Normalized CVF for a hollow cube with a cube-shape void of increasing size (a, b, 
c). Data and corresponding profiles are presented for three crystallographic directions (<h00>, 
<hh0>, <hhh>). The profiles are proposed for cubes with increasingly large size of the void (d). 
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5.4.3 Non-polyhedral shapes 

Non-polyhedral shapes (e.g. shapes presenting curved surfaces) can be 
approximated by polyhedra with a suitably large number of (planar) faces. The 
sphere, showing no planar faces, represents perhaps a limiting case here. Moreover, 
the effects of the non-planarity are enhanced in the case of hollow nano-particles. 
From a physical point of view, this polyhedral description can appear more suitable 
than the continuous one for the description of a real object, as it better deals with the 
atomistic nature of the domains. 
 

 
Figure V - 9. The X-ray powder diffraction patterns of a set of hollow spheres (b) from 
approximated CVF (dot) and from the Debye scattering equation (line) are compared (a); the 
solid wide angle patterns (c) and the corresponding differences (d) are provided below. 

To compute the CVFs for a hollow spherical domain, the shape of the particles 
was approximated by a polyhedron with 74 faces, uniformly oriented in space. The 
CVF along the [100] direction was employed to model the pattern via FT. In Figure 
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(9), the X-ray powder diffraction patterns of a set of hollow spheres simulated by the 
Debye scattering equation and modelled by the cosine FT are compared. The 
goodness of the suggested approximation is supported by the agreement of the 
pattern modelled by FT with the “true” pattern simulated via Debye scattering 
equation. Finally, the evolution of the powder patterns from solid sphere to hollow 
sphere with thin wall confirms the results of hollow cubic particles. 
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5.5 Conclusions 

A new numerical algorithm has been presented for the fast computing of the 
Common Volume Function of any given convex or non-convex polyhedron. This 
allows the calculation and/or interpretation of the diffraction pattern for the 
corresponding powder both directly or within the wider frame of the Whole Powder 
Pattern Modelling. The patterns agree with those obtained by means of the Debye 
scattering equation.  

It might be underlined that non-crystallographic shapes such as, e.g. 
decahedra or icosahedra, were not considered here: in fact, beyond the geometric 
description (in principle always possible), non-crystallographic nano-particles violate 
the translational symmetry. Moreover, those particles are usually affected by strong 
strains like the ones due to twins in decahedra/icosahedra. These specific conditions 
limit the applicability of the CVF concept, unless due consideration is given to the 
real equilibrium shape and atomic positions. 
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5.6 Appendix V.A: Common Volume Function in the 
frame of set theory 

Any portion of space Ω in n


can be described by set theory using the Dirac 
measure (cf. Figure (1) for an example in 3


): 
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where T(Ω) is the portion of space equivalent to Ω after a finite translation along the 
direction

[ ]
ˆ

hkld . 

The portion of space common to Ω and T(Ω) (intersection polytope) is then described 
by the following relation: 
 

( ) ( )( ) ( ) ( )T k k T kδ δ δΩ∩ Ω Ω Ω= ⋅P P P  (16) 

Beyond convex geometry, any set Ω can be described as the union of one or more 
subsets (cf. Figure (2), upper part, for an example in 3


): 

 
0 1 0 1

( ) ( ) ( ) ( )k C C k C k C kδ δ δ δΩ ∪= = +P P P P  (17) 

Without losing in generality, we can consider the case where the subsets composing 
Ω are non intersecting (i.e. 0 1C C∩ = ∅ ). Under those hypotheses, the intersection 

between object and ghost (eq. (A2)) can be calculated as: 
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Hollow shapes are better described using a difference of subsets (cf. Figure (2), 
lower part, for an example in 3


): 

 
0 1 0 1\( ) ( ) ( ) ( )k C C k C k C kδ δ δ δΩ = = −P P P P   where  0 1C C⊇  (19) 

Once again, eq. (16) can be expanded as follows: 
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The CVF is the volume of the intersection.  Due to the convention introduced in 
section 5.3.2 that assigns a negative weight to the voids, eq. (18) and (19) assume 
the same functional form and the CVF can be always calculated as: 
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  (21) 
where ( ); ,hkl i jV C C L  is the volume of the intersection between Ci and T(Cj).  From 

this definition, it follows e.g. that ( ) ( ), ; ,hkl hklV L V LΩ = Ω Ω . 
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Chapter VI 
 

Directional - Pair Distribution Function 

 
Part of this chapter has been published in: 

 
 
Alberto Leonardi, Matteo Leoni, Paolo Scardi, 

“Atomistic interpretation of microstrain in diffraction line profile analysis”, 
Thin Solid Films,(2012) in press. 
 
 
 
 
Alberto Leonardi, Matteo Leoni, Paolo Scardi, 

“Directional Pair Distribution Function for diffraction Line Profile Analysis of atomistic 
models”, 
Journal of applied Crystallography, (2012) submitted. 
 
 
 

6.1 Abstract 

The concept of Directional - Pair Distribution Function is proposed to describe line 
broadening effects in powder patterns from atomistic models of nano-polycrystalline 
microstructures. The approach provides at the same time a description of the size 
effect for domains of any shape, and a detailed explanation of the strain effect 
caused by the local atomic displacements. The latter is discussed in terms of 
different strain types, also accounting for the anisotropy of the strain field and the 
effects of the grain boundary. Results can also be directly read in terms of traditional 
Line Profile Analysis, like that based on the Warren-Averbach method. 
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6.2 Introduction 

Considerable efforts in the study of nano-materials focus on the visualization of 
strain at the atomic level, but even the most advanced experimental methods based 
on coherent diffraction confine to single, isolated nanoparticles and relatively weak 
strain fields ((Thomas, 2008), (Robinson, et al., 2009), (Watari, et al., 2011)). Strains 
in nano-polycrystalline microstructures are still a challenge to direct visualization 
techniques, for the variety of strain sources, level and complexity of their distribution. 
In this context diffraction Line Profile Analysis (LPA), although indirect and much less 
detailed than coherent diffraction and other microscopies, is still one of the most 
convenient and used experimental techniques. Further insights in the mechanisms 
and distribution of strains can be produced by atomistic models, in particular by 
Molecular Dynamics (MD) simulations ((Van Swygenhoven, et al., 2000), (Van 
Swygenhoven, 2002), (Derlet, et al., 2005), (Derlet, et al., 2006), (Cao, et al., 2008), 
(Stukowski, et al., 2009)). This has been shown by a number of recent papers, but 
so far the connection with diffraction LPA was discussed in terms of simplified 
integral breadth methods only ( (Derlet, et al., 2005), (Leonardi, et al., 2011)): the 
potential of joining MD simulations and state of the art LPA is still largely unexplored. 

In the past decade LPA evolved in the direction of Fourier methods based on 
physical models of the microstructure (Mittemeijer, et al., 2004). Despite the success 
in many applications, even the most advanced methods of Whole Powder Pattern 
Modelling (WPPM) ( (Scardi, et al., 2004(a)), (Scardi, et al., 2002)) still rely on 
simplified descriptions of the lattice defects, and cannot be proved to be univocal in 
the identification and quantification of the different effects contributing to the line 
profiles. For example, the uniqueness of the anisotropic line broadening caused by 
the strain field of dislocations is an open question, as well as the effects of grain to 
grain deformation fields and the role of grain boundaries. It is not clear to what extent 
these different sources of lattice deformation can be distinguished by even the most 
advanced LPA methods.  

MD simulations of nano-polycrystalline microstructures can give useful 
insights in these problems, provided that the usual concept of strain is reconsidered, 
to be related in a more direct way to diffraction LPA. Inhomogeneous strains have a 
peculiar effect on diffraction, which is sensitive to the distribution of the strain 
component projected along the scattering vector direction; such strain component 
needs then to be considered as a function of the separation distance between all 
possible couples of atoms (or unit cells, on a coarser size scale) in each given 
crystalline domain (Warren, 1990). 

As shown by several MD works, the Debye Scattering Equation (DSE) is the 
most direct way to simulate the powder diffraction pattern from a given atomistic 
model of  nano-polycrystalline microstructure ( (Derlet, et al., 2005), (Cervellino, et 
al., 2003), (Cervellino, et al., 2010), (Gelisio, et al., 2010), (Gelisio, et al., 2011)), as 



109 

it just requires atomic positions (strictly speaking, distances between all possible 
couples of atoms), with no assumption on the crystal structure or on the presence of 
lattice defects. While the DSE is so rigorous and appealing for simulating the powder 
pattern, it is not so useful to analyse the effects of atomic level strain, to separate 
different sources of line broadening and to study anisotropy effects which make line 
broadening different for line profiles with different Miller indices (hkl).      

In the present work we introduce the concept of Directional - Pair Distribution 
Function (D-PDF) to represent the finite size and shape of coherently scattering 
domains (crystallites) and the local atomic displacement in a way directly readable in 
terms of diffraction effects. The D-PDF allows a separation of all contributing (hkl) 
line profiles in the powder diffraction pattern from an atomistic simulation of single 
crystals as well as of nano-polycrystalline microstructures. Each line profile can be 
described in terms of the crystallite size and strain contributions, in a quite similar 
way as traditional LPA based on Fourier analysis (e.g., the Warren-Averbach (WA) 
method ( (Warren, et al., 1950), (Warren, et al., 1952), (Warren, 1990))). The 
proposed approach has at least two valuable applications: (i) to validate different 
LPA methods and better understand their results; (ii) to study MD simulations and 
their relation with real microstructures in terms of a well-known, easy to perform 
experimental technique like diffraction. 

The case of study presented in this work concerns a metallic nano-
polycrystalline system made of randomly oriented grains with irregular, though not far 
from equiaxed, shapes. The system was equilibrated (energy minimized and 
thermalized) by conventional MD based on the Embedded Atom Method (EAM) 
(Daw, et al., 1983), so that no lattice defects other than the grain boundaries are 
present. Under these conditions, besides the effect of the finite size (and shape) of 
the grains, inter-granular strains due to the equilibration process should be the only 
microstructural effects affecting the line profiles. Detailed information on the 
direction-dependent strain field and its effect on the simulated powder diffraction 
pattern can be obtained by means of the D-PDF concept. The role of the grain 
boundaries is also discussed. 

6.3 Copper nano-polycrystalline microstructure: 
generation and strain distribution 

A cubic box (side length 260.28 Å) was divided into 50 cells by a recently developed 
algorithm of Constrained Modified Voronoi Tessellation (CMVT) ( (Gross, et al., 
2002), (Xu, et al., 2009), (Suzudo, et al., 2009), (Leonardi, et al., 2012(d)), (Leonardi, 
et al., 2013)). The CMVT allows control of different properties during the generation 
of the cells. In the present case, CMVT parameters were set to produce high 
sphericity (arithmetic mean ψ = 0.800122) and a lognormal distribution of grain sizes 
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(arithmetic mean 82.6 Å, standard deviation 21.4 Å); grains were then filled with 
about 1.5 million Cu atoms, using a unit cell parameter of 3.615 Å (Figure (1)). 

Equilibration of the starting (“crystallographic”) system was made by EAM, 
using the Cu potential by Foiles, Baskes and Daw (Foiles, et al., 1986). After the 
energy minimization, an isothermal-isobaric time integration process (NPT) at 100K 
was performed by the LAMMPS software (Plimpton, 1995), reaching equilibrium 
conditions. The latter were assessed by comparing the deformation field after 1.2 
and 2.4 ns of equilibration times, in terms of both isotropic (volumetric) and 
anisotropic (deviatoric) strain components (Figure (2)). The zero strain is referred to 
an equivalent unit cell of ( )33 4boxside atomsB N  , where 

boxsideB  is the equilibrated 

box side length. 
 

 
Figure VI - 1. Copper nano-polycrystalline microstructure after reconstruction of grains cut 
across by the PBCs (a). Example of volumetric strain along the <h00> directions in a grain (b). 

While the Molecular Dynamics was made on a box with Periodic Boundary 
Conditions (PBCs), grains cut across by the cube faces were joined, so to create a 
more plausible system (Figure (1a)) for the simulation of the powder diffraction 
pattern by the DSE. 

As shown schematically in Figure (1b), strain is not constant across the grains: 
a steep gradient is observed in the outer layers, extending from the grain boundary 
region inward for about 10 Å. This trend, qualitatively the same for all grains in the 
cluster, is shown in Figure (2): here the mean isotropic strain in each grain is plotted 
against the distance from the grain boundary. 

While the strain decreases to a small constant value in the core region, the 
value reached by the isotropic component inside grains depends on the grain size. 
This feature is visible in Figure (2), but it can more clearly be seen in the inset, where 
the average of the type II strain of each grain is plotted as a function of the diameter 
of the equivalent-volume sphere. Larger grains put in tension the smaller ones, with 
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an apparently non-linear trend. A wider discussion on such features is provided in 
chapter III (Leonardi, et al., 2012(c)). In Figure (3) it is also possible to see the 
anisotropy of this deformation, which is higher along [h00] than along [hhh], 
respectively corresponding to the elastically softer and stiffer directions in copper. 
 

 
Figure VI - 2. Average isotropic strain as a function of the position from the grain surface for the 
different grains in the cluster. The inset shows the II type isotropic strain as a function of the 
diameter of the equivalent volume sphere (see text for details). 
 

 
Figure VI - 3. Unit cell parameter as a function of the largest thickness along the direction 
considered. See text for details. Dash lines represent the average values. 
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6.3.1 Directional - Pair Distribution Function (D-PDF) 

The D-PDF is a convenient concept to represent strain effects on the diffraction line 
profiles. It is obtained by counting the number of atom pairs for each distance L 
along the [hkl] direction of the scattering vector in a given grain of the cluster. As 
shown in Figure (4), it is the projection along [hkl] of the atom-atom displacement 

L∆  which is considered: the D-PDF in then made of a series of histogram 
distributions, centred on the mean distance between n-th neighbour atoms, ranging 
from the closest neighbour to the longest distance in the grain along [hkl]. Each 
distribution ( )L hklp L∆  can be calculated as said above, along [hkl] of a given grain, 

or be averaged over all crystallographically equivalent <hkl> directions in the grain, 
or be averaged over all equivalent directions of all grains in the cluster (so called 
Super D-PDF). 

It is important to note that the D-PDF along [hkl] directions belonging to the 
same <hkl> family, even if crystallographically equivalent, are in general different, 
because the strain field caused by the neighbouring grains is not subject to any 
symmetry restrictions. These differences, however, tend to disappear in the average 
for a given grain or for the entire cluster. 

As an example, Figure (4a) shows the D-PDF along the [h00] direction of grain 
#33 in the cluster, with one such distribution shown in detail in Figure (4b). The trend 
of the normalised area of the ( )00L hp L∆  as a function of the pair distance is 

shown in Figure (4c). This quantity is equivalent to the Common Volume Function 
(CVF), as introduced by Stokes and Wilson (Stokes, et al., 1944), representing the 
intersection volume between a crystalline domain and its “ghost”, i.e., the same 
domain shifted a distance L along [hkl] (inset of Figure (4c)). As shown by several 
authors ( (Warren, 1990), (Wilson, 1962), (Guinier, 1963)), within reasonable 
approximations the Fourier Transform (FT) of the CVF gives the so-called size 
component of the diffraction line profile, due to the finite size of the crystalline 
domain along the given [hkl]. As the D-PDF is not normalized, the corresponding 
diffraction line profile obtained by FT includes the appropriate weight (volume or 
number of atoms) for the given grain. 

The D-PDF concept allows for a simple and reliable way to separate the 
effects of domain size/shape from those due to lattice defects and microstructural 
features in general. While the ( )L hklp L∆  area is related to the domain size/shape 

component of the line profile, width and shape of the D-PDF provide a detailed 
description of the atomic displacement over different distances. 

As shown below, this is the same representation of strain effects on line 
profiles as that used by traditional LPA based on Fourier analysis, like the WA 
method ( (Warren, et al., 1950), (Warren, et al., 1952), (Warren, 1955), (Warren, 
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1959)) and methods proposed by Stokes and Wilson ( (Stokes, et al., 1944), 
(Eastabrook, et al., 1952)). 
 

 

 
Figure VI - 4. Directional - Pair Distribution Function for grain #33 in the cluster along the [h00] 
direction (a); example of distribution for L=14.485 Å(b), whose area corresponds to the circled 
value of normalized Common Volume Function (CVF) in (c). The inset in (c) illustrates the 
concept of “ghost” (see text for details). 

It is convenient to introduce the strain over a distance L along the [hkl] 
direction, ( )hkl hklL L Lε ≡ ∆ , and the wavevector transfer modulus, 

4 sinq π θ λ= . As originally shown by Stokes and Wilson under quite reasonable 
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approximations ( (Stokes, et al., 1944), (Wilson, 1962)), the FT of the peak profile 
component due to the local atomic strain, ( )D

hklY L , can be written as: 

 
( ) ( )

( ) ( )

exp

( ) ( )

exp

D
hkl hkl

D D
hkl hkl

hkl L hkl hkl

Y L iqL L

A L iB L

iqL L p d

ε

ε ε ε

=   

= +

=    ∫

 (1) 

where a 2F  term (related to the structure factor, F) was omitted for simplicity.  As 

shown by the right side of eq. (1), ( )D
hklY L  is the Fourier transform of the D-PDF, 

which is a complex quantity unless the D-PDF is symmetrical. In eq. (1) the D-PDF 
was written for strain, which is straightforward considering that 

( ) ( ) 1
L Lp d p L L d Lε ε −= ∆ ∆ . 

The normalization used in eq. (1) is such that ( )0 1D
hklY = , so it is convenient 

to represent the CVF in normalized form too: 
 ( ) ( ) ( )( ) 0S

hkl hkl hkl grainA L N L N V L V= =  (2) 

where ( )hklN L  is the number of atom couples at distance L along [hkl], and 

( )0N  is the total  number of atoms in a given grain; correspondingly, ( )hklV L  is 

the CVF along [hkl], and 
grainV  the volume of the given grain. It is worth noting here 

that the present description in terms of D-PDF is on a finer and generally more 
precise atomic scale, whereas traditional LPA usually considers unit cells as smallest 
units ( (Wilson, 1962), (Warren, 1990)). 

Within the limit of the Stokes & Wilson’s ( (Stokes, et al., 1944), (Eastabrook, 
et al., 1952)), the FT of the overall line profile for the [hkl] direction in a given grain of 
the cluster is: 
 ( ) ( )( ) ( ) ( ) ( ) ( )S D D

hkl hkl hkl grain hkl hkl hklY L A L iB L V A L A L iB L= + = +  (3) 

A special and frequently considered assumption is that ( )L hklp L∆  be symmetrical 

( 0D
hklB = ), and Gaussian in particular, so that: 

 ( ) ( ) ( )2 2 2exp / 2D D
hkl hkl hklY L A L q L Lε = − 

 (4) 

This is the underlying hypotheses of the WA method ( (Warren, et al., 1950), 
(Warren, et al., 1952), (Warren, 1955), (Warren, 1959), (Warren, 1990)), which can 
be shown to be still approximately valid even if the distribution is not exactly 
Gaussian, provided it is a bell-shaped,  symmetrical distribution function (Warren, 
1959). As further discussed below, the D-PDFs for the studied cluster are neither 
Gaussian nor symmetrical. 
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The powder diffraction pattern for a cluster of grains can be obtained by 
adding all contributions as: 
 

( ) ( ) ( )( ) ( ) co s ( )sinS D D
grain hkl hkl hkl

grain hkl
I q V A L A L qL B L qL dL

∞

−∞

 ∝ + ∑ ∑ ∫  (5) 

where the proportionality factor includes 2F , several constants and known 

trigonometric terms, whereas the actual integration limits are determined by the 
longest atom-atom distance along [hkl] of the given grain. The two sums extend to all 
grains and to all crystallographically equivalent directions, respectively. 
 

 

 
Figure VI - 5. Real (a) and imaginary (b) part of the Fourier Transform of the peak profile; the 
example refers to the h00 family of diffraction peaks (see text for details). 
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As an example of application of the D-PDF, Figure (5a) and (5b) show, 
respectively, real and imaginary parts of the FT for several orders of reflections 
belonging to the {h00} family, ( ) ( ) ( )00 00 00

D D D
h h hY L A L iB L= + . The real part 

decays increasingly faster for higher orders of reflections, whereas the imaginary 
part sensibly deviates from zero, as an effect of the asymmetry of D-PDFs. It is 
possible to see the combined effect of domain size and strain effects, with the trends 
of 

00 00 00
S D

h h hA A A=  and 
00 00 00

S D
h h hB A B=  (assuming 1grainV =  for simplicity). 

The decay of the real part is smooth and demonstrates that the integration 
limits in eq. (5) do not need to extend beyond ca 120 Å, in this specific case, as an 
effect of the finite size of the domain. The fact that different orders of reflections 
belonging to the same family have different trends, with a faster decay for the higher 
orders (i.e., larger q values), clearly demonstrates the presence of a strain 
broadening component. 

6.3.2 Powder pattern from a nano-polycrystalline 
microstructure 

As already pointed out in the Introduction, the most straightforward and correct way 
to calculate the powder diffraction pattern for an atomistic model is by the Debye 
Scattering Equation ( (Derlet, et al., 2005), (Cervellino, et al., 2010), (Cervellino, et 
al., 2003)). The DSE makes no assumptions on crystalline structure and lattice 
defects, as it is based only on correlations between all possible couples of atoms. As 
such it can be computationally demanding (although nowadays entirely viable 
(Gelisio, et al., 2010)) but quite rigorous, so that we can consider the DSE result as 
an “experimental” pattern, to which the D-PDF analysis discussed above can be 
compared.  

As remarked in the introduction, the purpose is to test the D-PDF approach, to 
better understand and validate the traditional LPA methods and their results, but also 
to study the features of a nano-polycrystalline microstructure obtained by MD in 
terms of a well-known, easy to perform experimental technique like diffraction. 

As a first test we considered the starting cluster, just after the atom filling 
procedure, but before any energy minimization and thermalization steps. This 
corresponds to a system of perfect crystalline grains, where the only effect on line 
profiles is that of the finite domain size. As shown in Figure (6), the match between 
the DSE pattern and that generated by using eq. (5) is remarkably good ( (Leonardi, 
et al., 2012(a)), (Leonardi, et al., 2012(c))). This result is somehow expected, as no 
strain and no deviation from a perfect crystalline order is present, but is important to 
assess the quality of the hypotheses underlying eq. (5), among which the Tangent 
Plane Approximation (Beyerlein, et al., 2011), and the lack in eq. (5) of grain-grain 
correlations, which are instead considered by the DSE. 
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Figure VI - 6. Powder diffraction pattern of the cluster of Figure (1) as obtained by DSE (circle) 
and the D-PDF approach (eq. (5), line). Difference is shown below. Inset highlights details in 
the peak tail region. 

The MD equilibration procedure introduces strains in the system, leading to a 
static component of the atomic displacement, which adds up to the dynamical 
component due to the thermal vibrations. At any given instant (frame) of the MD 
trajectory, the atom-atom displacement can be written as 

( ) ( )stat dynL t L L t∆ = ∆ + ∆ . Thermal effects, at least in an approximate way, 

might be added to the simulation of the powder pattern (e.g., by introducing a Debye-
Waller factor and a Temperature Diffuse Scattering ( (Beyerlein, et al., 2012), 
(Warren, 1990)). However, to the purpose of studying the static component it is more 
convenient to introduce the concept of Time-averaged Atomic Coordinates (TACs): 
the atomic coordinates of all atoms in the studied system are averaged over a 
suitably large number of time frames of the MD trajectory, so that ( ) statL t L∆ = ∆ . 

In this way we can get rid of the dynamical component of atomic displacement and 
refer the diffraction LPA to the static component only. Once the TACs are known, the 
DSE pattern is easily obtained as explained before. The D-PDF pattern is then built 
according to eqs. (1) and (5). 

If we now consider the system after MD, Figure (7a) shows the detail for the 
(200) peak, as obtained by adding all {200} reflections in the cluster. While the inset 
points out the <h00> directions in different grains, the plot below shows an 
interesting feature of the position (qB) of the (h00) peaks in the cluster, which 
changes as a function of the size of the corresponding grain, as an effect of the 
strain dependence on the grain size (cf. Figure (3)). 
 



118 

 

 
Figure VI - 7. Powder pattern of the system of Figure (1) after MD: detail of (200) peak as built 
from the D-PDF method of eq.(5) (a); comparison between DSE (circle) and D-PDF patterns 
(line), with difference plot below (b).   

Figure (7b) shows a comparison between the patterns for the equilibrated system, as 
obtained by DSE and D-PDF.  Differences, which are small but visible, are expected 
and suggest interesting features of the strain field. While the DSE includes all 
regions of the cluster independently of their order, whether they are crystalline or 
amorphous, the D-PDF refers by definition to an underlying crystalline lattice: local 
atomic displacement is allowed (D-PDF position, width and shape) but in any case 
within the limits of an average crystalline framework. The residual in Figure (7b) is 
therefore related to a high strain region, somehow in between a highly distorted 
crystalline lattice and an amorphous phase, which is very likely the grain boundary 
area. Moreover, while the DSE is sensitive to all possible correlations within the 
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cluster, i.e., between atoms inside each grain as well as between atoms of different 
grains (Leonardi, et al., 2012(b)), the D-PDF approach only considers the former 
correlations. 

To test this hypothesis the DSE and the D-PDF patterns where calculated 
again, on the same equilibrated cluster but after removing respectively one, two or 
three external atomic layers from all grains. In this way the grain boundary region is 
progressively eliminated (Figure (8)). 
 

 

 
Figure VI - 8. MD equilibrated cluster of Figure (1) after removal of one atomic layer from each 
grain (a). DSE pattern for the equilibrated cluster (open circle) and after removal of 1 (upward 
triangle), 2 (downward triangle) and 3 (square) layers. Line refers to the corresponding patterns 
calculated from the D-PDF approach of eq. (5) (b); difference between DSE and D-PDF 
patterns is shown below. A detail for (531) and (442)/(600) peaks is shown in (c). 
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As shown in Figure (8c) for restricted angular region at relatively high q, the 
match between the DSE and the D-PDF patterns markedly improves by removing 
surface layers. As soon as the first layer is removed then only fully coordinated 
atoms are considered and most of the discrepancy disappears (Figure (8c)). Besides 
zeroing the peaks in the low-q region of the residual, this step also eliminates nearly 
completely the diffuse scattering at higher q values. This last detail is visible by 
comparing the insets of Figures (7b) and (8b). 

These results show how studying clusters with progressive layer removal can 
help investigating the degree of disorder in the grain boundary region, the 
contribution of this region to the strain field in the grains, and corresponding line 
broadening and diffuse scattering. Results suggest that the grain boundary region – 
as obtained from the adopted MD equilibration procedure – is highly distorted: it 
cannot be said truly crystalline but it is not even a completely amorphous phase 
(Leonardi, et al., 2012(b)). Effects on line profiles are clearly visible, even more so 
the smaller the crystalline domains. 

6.3.3 D-PDF and r.m.s strain 

It is interesting to consider again the DSE pattern as an “experimental” pattern from 
a nano-polycrystalline system, and make a traditional line profile analysis. As a first 
step, which is ordinary practice in real cases of study, profile fitting is used to 
separate contributions from the different, strongly overlapping peaks (Dong, et al., 
2000). Fitting results shown in Figure (9) are reasonably good, although less 
satisfactory for the peaks at lower q, which are more affected by the grain boundary 
and the grain-grain correlations discussed in the previous paragraph. From this 
analysis (Dong, et al., 2000) it is straightforward to obtain the plot of Figure (10), i.e., 
the logarithm of the Fourier Transform of the line profiles as a function of q2 ((q/2π)2 
for historical reasons), for different pair distances L.  

According to Warren and Averbach, the observed data can be described as    
( (Warren, et al., 1950), (Warren, et al., 1952), (Warren, 1955), (Warren, 1959), 
(Warren, 1990)): 

 
( ) ( ) ( )

( ) ( ) ( )22 2 2

ln ln ,

ln 2 2

S D
hkl hkl hkl

S
hkl hkl

Y L A L A L q

A L L L qπ ε π

      

 = − 



 (6)
 

so that information on the domain size and variance of the strain distribution 
( )2

hkl Lε  (or of the displacement distribution, ( )2 2 2( )hkl hklL L Lε∆ = ) can be 

obtained, respectively, from intercept and slope of the trends in Figure (10) for 
different pair distance values. To properly account for a possible dependence on the 
crystallographic direction, the procedure is performed separately for peak profiles 
belonging to different {hkl} families (Warren, 1959), although an analysis involving all 
observed peaks can also be informative. 
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Figure VI - 9. Result of profile fitting of the pattern given by the Debye scattering Function for 
the studied metallic cluster: DSE data (circle), best fit with pseudoVoigt functions (line) and 
difference between the two (residual, line below). Corresponding Miller indices are shown in the 
log-scale plot in the inset. 
 

 
Figure VI - 10. Warren-Averbach plot: logarithm of the Fourier Transform of the peak profiles 
(from profile fitting in Figure (9)) as a function of the square of the scattering vector, (q/2π), for a 
selection of pair distances, L (5, 10, 20, 50, 100 Å). Points with the same (q/2π)2 correspond to 
a given set of Miller indices, shown on top for the {hhh} and {h00} families ((333) and (600) are 
not considered as they overlap with other reflections). 
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Figure (11) shows the standard deviation 2( )hklL∆  as a function of L for 

(111)/(222)/(444) and (200)/(400)/(800) ((333) and (600) were excluded as they 
overlap, respectively, with (531) and (442)). As shown in the original paper by 
Warren and Averbach (Warren, et al., 1950), all trends should start from the origin: 
while this happens for the {h00} family, it is not the case for the {hhh} family, which 
gives a trend crossing the abscissa just above L=20 Å. This is an artefact at least 
partly caused by systematic errors in the profile fitting (e.g. of the (111) peak, see 
Figure (9)) and by the severe overlapping of the peak profiles (especially relevant for 
the weak (444) peak), which are typical problems also in real cases of study. 
However, as expected for the elastic anisotropy of copper, the r.m.s. displacement is 
higher for {h00} than for {hhh}, while results from other {hkl} families fall between 
these two limits. 

In Figure (11) it is also shown the result from all observed peak profiles: this 
procedure disregards the elastic anisotropy, but helps averaging the effects of a not 
perfect fitting of the peak profiles. Several studies have proposed an interpretation of 
the trends in Figure (11). According to Adler and Houska (Adler, et al., 1979), the 
data of Figure (11) should obey a simple power law, 2 1( ) r

hklL k L +< ∆ > = ⋅ , with 

1 0r− ≤ ≤ . The value found for {h00} is 0.44(2)r = − , whereas the fit to the data 
from all peak profiles gives 0.47(1)r = − . A value around 0.5r = −  is considered 
as typical of cold-worked metals, and would be due to the non-uniform strain field of 
dislocations (Adler, et al., 1979). 
 

 
Figure VI - 11. Warren’s plot: standard deviation of the ( )L hklp L∆  distribution as a function of 

the atomic pair distance along <h00> (square), <hhh> (circle), and average over all <hkl>; best 
fit (dash-dot) refers to a power law (see text for details).  
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Before considering the correct trend of 2( )hklL∆  from the D-PDF 

analysis, it is worth analysing the results on the domain size obtained from the 
intercepts in Figure (10). For simplicity we consider the {h00} family, which gave a 
plausible trend in Figure (11). It can be shown that in a plot of the size coefficients 

( )S
hklA L  as a function of L, the intercept with the abscissa of the tangent to the 

curve in 0L =  is a surface-weighted mean domain size, 
SD< > ; the second 

derivative of ( )S
hklA L , instead, is proportional to the domain’s length distribution 

along the scattering vector direction (so-called column length), from which it can be 
calculated a volume-weighted mean domain size, 

VD< >  ( (Warren, 1990), 

(Bertaut, 1950), (Bertaut, 1952)). Figure (12) shows the column length distribution 
along [h00]; mean sizes are 48SD< > =  Å  and 62VD< > =  Å . 

 

 
Figure VI - 12. Column length distributions along [h00], as obtained from the Warren-Averbach 
analysis of profile data from the DSE pattern (circle) and directly from the D-PDF analysis 
(square). 

These results can be compared with the values provided by the D-PDF analysis, 
which can be considered “exact”, in that directly obtained from the known 
parameters of the cluster. The CVF is obtained from the area of D-PDF curves (e.g., 
those in Figure (4)), and after normalization to the grain volume it provides the size 
coefficients for the given grain and [hkl] direction. The ( )S

hklA L  are then calculated 

by averaging the coefficients over all grains in the cluster, and the second derivative 
provides the column length distribution. This procedure, applied to the [h00] 
direction, gives 40SD< > =  Å  and 59VD< > =  Å , and the column length 
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distribution shown in Figure (12). Despite the quite different procedures involved, the 
column length distributions are remarkably similar. The Warren-Averbach method 
based on the profile fitting tends to overestimate the size, the discrepancy being 
larger for 

SD< >  than for 
VD< > , as the former is more influenced by the shorter 

lengths, which in turn depend more directly on the peak profile tail region less 
accurately described by the profile fitting. 
 

 
Figure VI - 13. Warren’s plot comparing results of Figure (11), obtained from the Warren-
Averbach analysis of profile data from the DSE pattern (full symbol), with the standard deviation 
of the strain distribution directly calculated from the D-PDFs. Results refer to the microstructure 
of Figure (1) after MD equilibration (a) and after removal of one atomic layer from the surface of 
all grains in the cluster (b). Full line in (a) indicates the equivalent thermal strain at melting 
temperature. 
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Standard deviations of the strain distribution are easily calculated numerically 
for each D-PDF curve, and averaging this result over equivalent directions of all 

grains provides 2( )hklL∆  for the cluster. Trends for the [h00] and [hhh] 

directions are shown in Figure (13), together with the corresponding results from the 
Warren-Averbach method. 
 

 

 
Figure VI - 14. Example of a ( )L hklp L∆  distribution for L=14.485 Å (average over the whole 

cluster for the [h00] direction ) with best fit of a Gaussian and of a Lorentzian function (a); 
corresponding strain distributions ( )L hklp ε  for different L values (b). 
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While the agreement between results on domain size was good, the standard 
deviations of the displacement distribution look completely different. Reasons for this 
discrepancy can be found in the fine features of the D-PDF curves, and in the 
simplifying assumptions underlying the Warren-Averbach method. 

As shown in Figure (14), the assumption of a Gaussian and symmetrical 
( )L hklp L∆  is far from being correct; moreover, the shape of the strain distribution 

changes for different pair distances (Figure (14b)). However, the non-Gaussian (and 
asymmetrical) nature of the ( )L hklp L∆  alone cannot explain the large discrepancy 

in the results of Figure (13). An interesting feature, visible in the log scale plot of 
Figure (14a), is the constant “background”, i.e., the fact that the distributions do not 
fall to zero with increasing distance from the expected (perfect crystal) value of 
atomic pair distance L. This constant component is due to the highly disordered grain 
boundary region, which contributes to the peak profiles with an atomic displacement 
effect independent of L. This is similar to the effect explained by Warren and 
Averbach for the thermal vibrations, with the important difference that the strain 
component involved here is static, as the dynamic component was removed before 
producing the DSE pattern. 
 

 
Figure VI - 15. Standard deviation of a strain distribution simulated by adding increasing levels 
of random static disorder, with indication of the corresponding equivalent temperature. Type II 
strain effect is also shown (see text for details). 

To test this hypothesis, starting from the “crystallographic” system (i.e., before 
any energy minimization and thermalisation procedure), we added increasing levels 
of random static disorder (as in a “frozen” thermal effect). The D-PDF analysis gives 

the 2( )hklL∆  trends in Figure (15), showing a constant value increasing with the 
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equivalent temperature, up to 2( ) 0.23hklL∆ ≈  for an effect equivalent to the 

melting point of copper (ca 1358K). As shown by the dash line in Figure (13a), this 

value agrees quite well with the sharp step in the 2( )hklL∆  trend. 

A further contribution to the observed strain is of course given by the non-
uniform strain across grains, and from grain to grain, shown in Figures (2) and (3). 
These are responsible for the L-dependent component of the trend in Figure (13), 
and could be schematically labelled as strains of II (inter-granular) and III (intra-
granular) type ( (Van Houtte, 1993), (Hutchings, et al., 2005)). For a simplified 
estimate of this complex effect, we added to the crystallographic cluster a pure type 
II strain. This was made by changing the mean unit cell parameter of each grain 
according to values of Figure (3), resulting in a nearly linear increase of the standard 
deviation with the pair distance (Figure (15)). A combination of the two effects, II type 
and random static disorder equivalent to 1358K, explains at least qualitatively the 
trend observed in Figure (13). Differences are due to the simplification of considering 
a type II strain only, whereas the strain also changes inside each grain with a type III 
component. Moreover, elastic anisotropy should also be taken into account. 

Indeed, as shown in Figure (13) for the two extreme directions <h00> and 
<hhh>, the standard deviation of the atomic displacement distribution depends on 
the crystallographic direction. Further evidence is provided by Figure (3), where the 
trend of the unit cell parameter as a function of the largest thickness in a grain 
depends on the crystallographic direction considered. This anisotropic behaviour can 
be investigated following the idea originally proposed by Stokes and Wilson (Stokes, 
et al., 1944). 

In Figure (16) the average variance 2( )hklL∆  for different L values is plotted 

as a function of the invariant for the (cubic) Laue group of copper, 

( ) ( )22 2 2 2 2 2 2 2 2H h k k l l h h k l= + + + + . Apart from the very low L values 

(up to about 20 Å), the trend is reasonably linear.  It should be considered that the 
first step in the D-PDF is of different length for the different hkls (high indices can 
have rather long distances between neighbours). This can explain the scatter 
observed for low L values, where the highly disordered grain boundary contribution 
also plays the main role. 

It is also possible to plot the standard deviation 2( )hklL∆  as a function of H 

(Figure (16)). The fit is also acceptably linear, but the best regression is obtained for 
the 2( )hklL∆  vs. H plot. We could further speculate on this result, to find the best 

functional dependence of 2( )hklL∆  on H, but the main conclusion is that this 

correlation is a consequence of the elastic anisotropy of the metal. A similar effect is 
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also observed when dislocations are responsible for line broadening, and can be 
expressed via the Contrast Factor concept ( (Wilkens, 1970), (Wilkens, 1969), 
(Martinez-Garcia, et al., 2009)), but in our case, quite evidently, no dislocations are 
present. This suggests great caution in univocally attributing line profile broadening 
anisotropy to dislocations, which, quite evidently, are just one possible source for this 
directional effect. 
 

 
 

Figure VI - 16. Standard deviation (a,c) and variance (b,d) of the strain distribution as a 
function of the invariant form H, for different values of the pair distance, L. Results refer to the 
MD equilibrated system before (a, b) and after removal of one atomic layer from all grains (c,d). 

The analysis presented in this paragraph can be repeated on the DSE 
patterns of Figure (8). After removal of one surface layer from each grain 
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(corresponding to remove all atoms with coordination lower than 12), all D-PDFs are 
in general much narrower than those of the complete MD equilibrated cluster. In 
addition to that, as shown in Figure (17), the removal of a surface layer drastically 
reduces the extension of the distribution tails and of the constant component, which 
was interpreted as “frozen” thermal-like effect of the disordered grain boundary 
region. An additional layer removal further extends this effect. 
 

 
Figure VI - 17. Example of a ( )L hklp L∆  distribution from Figure (14a) for the MD equilibrated 

system (full circle) and after removal of one atomic layer from all grains (open circle). 

The standard deviation of the atomic displacement is consequently smaller 
than in the starting cluster. The observed trend in Warren’s plot (Figure (13b)) is 
much more “regular”, i.e., as expected from the Warren-Averbach model (Warren, et 
al., 1950), as a consequence of the much reduced (nearly eliminated) constant 
contribution of the grain boundary. This further confirms the role of the grain 
boundary as a region with high disorder but still contributing to the coherent 
scattering of the crystalline grains: not all scattering from the grain boundary is 
diffuse scattering. As a further support to this interpretation,  Figure (13b) shows that 
the WA analysis on the DSE pattern after removal of one surface layer from each 
grain leads to results much closer to those from the D-PDF analysis than for the 
starting cluster (cfr Figure (13a)). Finally, it is also worth noting that after one layer 
removal the anisotropy of line broadening is more evident, even if the total strain is 
lower than in the original cluster. As shown in Figure (16d), the plot of the variance 
as a function of H gives linear correlations for any L value with a lower data scatter 
than in Figure (16b). 
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6.4 Conclusions 

The concept of Directional - Pair Distribution Function has been introduced to 
support a better understanding of the line broadening effects of diffraction peak 
profiles from nano-polycrystalline microstructures. The new concept, illustrated for a 
simple system made of (nearly equiaxed) nanocrystalline Cu grains equilibrated by 
MD, can easily be applied to any simulated microstructure, also including lattice 
defects and crystalline domains of any shape. 

The D-PDF analysis shows in detail how the local atomic displacement 
influences line profiles, also taking into account the anisotropy of the strain 
distribution. Most importantly, the D-PDF approach leads to results equivalent to a 
traditional Line Profile Analysis based on a Fourier analysis, like the method of 
Warren and Averbach, thus providing a direct possibility to understand the meaning 
of LPA results in terms of an atomistic model of the microstructure. This possibility 
can be especially useful for a correct interpretation experimental LPA results, and 
can provide further insights into the analysis of diffraction phenomena.  
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Chapter VII 
 

Conclusion and Future Perspectives 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

This Thesis work focused on sample microstructures of metallic nano-polycrystalline 
materials, trying to combine the language of continuum mechanics with the 
specificity of the powder diffraction theory. As already pointed out in the Introduction, 
the main goal was to couple X-ray powder diffraction with a description of the local 
atomic environment, to better understand those fine effects of diffraction which can 
disclose important information on the properties of materials at the nano scale. 

First part of the work concerned the generation of model microstructures. A 
modification of the existing algorithms was necessary to remove some of the 
geometrical constraints of existing space tessellation methods and to simultaneously 
take several statistical and geometrical properties into account. Realistic 
microstructures can now be generated e.g. with any assigned size distribution, 
shape of the grains (cells). Stress-strain relationships in a model nano-polycrystalline 
system were described in terms of CCD, VCD and eVCD, to determine in a 
consistent way strain and stress tensors on a local (i.e., atomic) scale. 

Based on the results of the first part, the research addressed the main theme 
of the Thesis, i.e. establishing a direct connection between parameters typical of 
powder diffraction and the strain field, as described by continuum mechanics. 
Different contributions to the diffraction signal, such as size and shape of the 
coherently scattering domains (by means of the Common Volume Function concept), 
and distortion field of the crystalline lattice, were singled out and described. The 
contribution to diffraction arising from the interference between domains was studied 
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as well. The result is that domains in a cluster can show some degree of coherence 
and the contribution from the grain boundary region can be peaked in Bragg position 
and not being just diffuse (as e.g. in an amorphous case). 

The relationship between lattice distortion and diffraction line profile was 
described in terms of Directional - Pair Distribution Functions (D-PDF). By means of 
this new approach, the concept of deformation expressed by continuum mechanics 
could be applied to the study and modelling of the powder diffraction line profiles.  

Besides providing a clear understanding of the hybrid nature of the grain 
boundary region in nano-polycrystalline aggregates (which is neither crystalline nor 
completely amorphous), the D-PDF approach provides a better description for the 
traditional Line Profile Analysis methods like the Williamson-Hall plot and the 
Warren-Averbach method. In this context, it was shown how using those LPA 
methods without the support of suitable atomistic models can lead to erroneous 
results. 

Even if the study was made on a cluster of grains with no defects other than 
the grain boundary, and with strains due to the equilibration process (energy 
minimization and thermalisation by Molecular Dynamics) only, the methods 
developed during this work can be considered of general applicability. It is envisaged 
the use on more complex systems, also including other lattice defects. 

Properties like grain orientation (as of interest in textured materials) and other 
geometrical-topological features of the microstructure can be discussed in terms of 
their contribution to the macroscopic properties as well as the local atomic 
arrangement. In addition to the role of the grain boundary, different sources of lattice 
distortion can be investigated, also under the effect of external stresses applied to 
the studied cluster. Then it should be possible to study, in addition to the strain and 
stress of equilibrated nano-polycrystalline systems, also important transient 
phenomena like the slip of dislocations and the formation of planar defects (e.g. 
twins and stacking faults in general). The study of lattice defects can be made while 
external loads are applied to the system, or by following the evolution of the system 
from a starting non-equilibrium configuration. 

In all of these studies, the relations between lattice defects and crystalline 
domains could be studied by powder diffraction, also including possible interference 
effects. Line Profile Analysis can benefit of the D-PDF concept to provide a much 
deeper understanding at the atomic level and improved stability for any of the 
existing or new profile fitting and modelling methods. 
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List of abbreviation and acronyms 

 
 
AD……….. Atomic Density 
AF……….. Averaged Frame 
CCD……… Crystallographic Cell Deformation 
CCP……… Cell Centre Position 
CDF……... Cumulative Distribution Function 
CGF……… Cell Growth Factor 
CL……….. Coordination Level 
CMVT…… Constrained Modified Voronoi Tessellation 
CPU……… Central Processing Unit 
CSD……… Cell Surface Density 
CVF……… Common Volume Function 
CVT……… Constrained Voronoi Tessellation 
D-PDF…… Directional - Pair Distribution Function 
DSE……… Debye Scattering Equation 
DT……….. Delaunay Triangulation 
EAM……… Embedded Atom Method 
ECS……… Equilibrium Crystal Shape 
eVCD……. evolutional Voronoi Cell Deformation 
FGF……… Face Growth Factor 
FT………… Fourier Transform 
GB……….. Grain Boundary 
GF……….. Growth Factor 
GPU……… Graphics Processing Unit 
IEP………. Interference Effects Plot 
JMT……… Johnson-Mehl Tessellation 
KM………. Key Model 
KS……….. Kolmogorov-Smirnov 
LAMMPS.. Large-scale Atomic/Molecular Massively Parallel Simulator 
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LJ………… Lennard-Jones 
LPA……… Line Profile Analysis 
LT………… Laguerre Tessellation 
LVT……… Laguerre Voronoi Tessellation 
m(NF)…… average number of faces in all neighbouring cells to a cell of NF faces 
MD………. Molecular Dynamics 
MSD……… Mean Square Displacement 
MVT……… Modified Voronoi Tessellation 
NA……….. Neighbours Analysis  
NE……….. Number of Edges 
NF……….. Number of Faces 
NPT……… isothermal-isobaric time integration on Nose-Hoover style non-

Hamiltonian equations 
NV……….. Number of Vertices 
NVT……… canonical time integration on Nose-Hoover style non-Hamiltonian 

equations 
PBC……… Periodic Boundary Condition 
PDF……… Probability Density Function 
PIO………. Plane Interface Orientation 
PIP………. Plane Interface Position 
PVT……...  Poisson Voronoi Tessellation 
r.m.s…….  root mean square 
RCPS……. Random Close Packing of Spheres 
RF……….. Rotation Factor 
RMC…….. Reverse Monte-Carlo 
RS……….. Reciprocal Space 
S…………. Surface 
SA/V…….. Surface-Area-to-Volume ratio 
Sf………… Space filling 
SF……….. Single Frame 
TA……….. Time Average 
TAC……… Time-averaged Atomic Coordinates 



135 

TPA……… Tangent Plane Approximation 
V…………. Volume 
VC……….. Voronoi Cell 
VCD……… Voronoi Cell deformation 
VmmCD.... Voronoi moment of mass Cell Deformation 
VT……….. Voronoi Tessellation 
WA………. Warren-Averbach 
WH………. Williamson-Hall 
WPPM…… Whole Powder Pattern Modelling 
XRD……… X-Ray Diffraction 
Ψ………… Sphericity 
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13. DIRECTIONAL PAIR DISTANCE ANALYSIS 

 

Common Volume Function Computation 
 

1. SINGLE POLYHEDRAL SHAPES 
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