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ABSTRACT 

Post-transcriptional regulation of gene expression (PTR) is the process responsible for modulating 

mRNA levels and the related amount of protein. Initially thought to have a limited impact on cell 

phenotype, it has become increasingly recognized as a strong determinant of the quantitative 

changes in proteomes, and therefore a driving force for cell phenotypes. Untranslated regions of 

mRNAs (UTRs) are the core mediator of this process, containing sequence and structural elements 

bound by various kind of regulators, which influence nuclear export, localization, stability of mRNAs 

and their translation rates, as well as capping, alternative splicing and polyadenylation of the 

transcribed pre-mRNA.  

One of the most important classes of PTR factors are the RNA-binding proteins (RBPs), whose human 

genome complement is at least 800 genes, characterized by the presence of different functional 

domains. RBPs bind to the 5’UTR of a transcript often to modulate translation initiation, and to the 

3’UTR usually to influence its stability or translatability. Another major group of actors in PTR are non-

coding RNAs (ncRNAs). Among them are various classes of long ncRNAs (lncRNAs), the intensively 

studied microRNAs (miRNAs), siRNAs (small-interfering RNAs) and several other RNA types. miRNAs 

bind to 3’UTRs by means of short regions of perfect sequence complementation or with some 

mismatches. Both RBPs and ncRNAs bind mRNAs to the so-called cis-elements, found primarily in 5’ 

and 3’ UTRs. These elements can be represented as recurring RNA sequences or secondary structures 

to which the trans factors bind to exert a control over the mRNA.  

In order to integrate the available experimental data, we have developed AURA, a database offering a 

comprehensive view of the phenomena through regulatory data including RBP and miRNA binding 

sites, cis-element annotations, secondary structures, phylogenetic conservation, SNPs, RNA-editing 

data, gene expression profiles and more. A dynamic graphical interface allows the user to browse 

through the UTRs in an easy and seamless way. To further enrich this body of data, we also 

implemented a pipeline for the identification of hyperconserved elements in human UTRs, which we 

applied to both 5’ and 3’UTRs. We were thus able to recover known and novel PTR mechanisms 

involving RBPs, including an RBP network controlled by HuR. We are eventually applying the results of 

these works to infer altered, and thus potentially disease-related, PTR mechanisms in an high-

throughput neuroblastoma dataset. 
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1. INTRODUCTION 

Post-transcriptional regulation of gene expression (PTR) is the process responsible for modulating 

mRNA levels and the consequent amount of protein products. Initially thought to have a limited 

impact on cell phenotype, it has become increasingly recognized as a strong determinant of the 

quantitative changes in proteomes [1], and therefore a driving force for cell phenotypes. As shown by 

Figure 1, untranslated regions of mRNAs (UTRs) [2] are the two non-coding regions upstream (5’UTR) 

and downstream (3’UTR) of the coding sequence in the mRNA. They are the core mediator of this 

process, containing sequence and structural elements, called cis-elements, which are bound by 

various kind of regulators to influence nuclear export, localization, stability of mRNAs and their 

translation rates, as well as capping, alternative splicing and polyadenylation of the transcribed pre-

mRNA. 

  

 

Figure 1: Structure of the human messenger RNA. The human messenger RNA (mRNA) is composed by an 

upstream cap, which protects it from RNases and allows the recognition by the ribosome, the 5’ untranslated 

region (important for modulation of translation initiation), the coding sequence which contains the protein 

sequence to be translated, the 3’ untranslated region (which mediates stability and translatability of the 

messenger) and the Poly(A) tail, which protects the mRNA from degradation and promotes its export from the 

nucleus into the cytoplasm. 

 

1.1 RNA-binding proteins 

The main role-players at this level of gene expression regulation are RNA-binding proteins (RBPs), 

non-coding RNAs (of which miRNAs are the most known and studied) and cis-elements. The human 

genome complement of RBPs is composed at least by 800 genes[3, 4, 5] which are characterized by 

the presence of different functional domains[6] among which the most represented are, according to 

the latest release of Ensembl (Ensembl 68), the zinc-finger C2H2 domain (787 genes), the RNA-

recognition motif (RRM, 233 genes), the sterile alpha motif (SAM, 93 genes) and the K-homology 

domain (KH, 38 genes). The top ten RNA-binding domains, sorted according to the number of genes in 

which they are contained, are listed in Table 1. The most common domain, RRM, is about 90 amino 

acids long and contains a consensus sequence called RNP-1, which is eight amino acids long. The 
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typical RRM domain is composed by two alpha-helices with side chains stacking with RNA bases and 

by four anti-parallel beta-strands.  

RBPs bind to the 5’UTR of a transcript often to modulate translation initiation, and to its 3’UTR often 

to influence its stability or translatability[3]; but they have also been well characterized for 

modulating splicing of the pre-mRNA, mRNA nuclear alternative polyadenylation, mRNA export, 

mRNA localization in the cytoplasm and mRNA cytoplasmic polyadenylation[7]. Target transcripts, 

sequence and secondary structure specificity are currently known just for a very small subset of this 

class of proteins. Experimental techniques such as SELEX[8], RIP-chip[9] and RNAcompete[10] were 

first developed in order to tackle this problem; nowadays, thanks to the advent of next-generation 

sequencing, we can exploit methods such as CLIP[11], PAR-CLIP[12] and iCLIP[13] to probe for all 

targets identities and binding sites of a specific RBP at once. Still, the fraction of RBPs for which these 

data are available is rather limited. 

Domain Description Number of 

genes 

ZNF C2H2 Zinc-finger C2H2 787 

RRM RNA-recognition motif 233 

DEAD DNA/RNA helicase 108 

SAM sterile alpha motif 93 

KH K-homology domain 38 

G-patch G-patch domain 30 

DS_RBD Double-stranded RNA binding 22 

PAZ Argonaute/Dicer protein domain 10 

PIWI Piwi proteins domain 8 

PUM Pumilio RNA-binding repeat 4 

 

Table 1: Most frequent RNA-binding domains. The table lists the ten more frequent RNA-binding domains in 

human genome proteins. Domain name, short description and number of genes in which it occurs are shown. 

 

1.2 Non-coding RNAs 

MicroRNAs (miRNAs) are short single-stranded RNAs (around 21-23 nucleotides) which bind usually to 

the 3’UTR of a transcript (even though there is now some evidence indicating binding in the 5’UTR, 

see for instance [14]) by means of short regions of either perfect sequence complementation (which 

leads to increased transcript degradation) or with some mismatches (which promotes instead 

translational repression and increased degradation)[15]. Currently, around 1500 miRNAs are 

annotated in the human genome, a number being continuously refined by next-generation 



5 
 

sequencing experiments, which are uncovering new members of this class. As shown by Figure 2, pri-

miRNA are transcribed in the nucleus as hairpins, which are then exported into the cytoplasm and 

processed to mature single-strand RNAs by Drosha, Pasha and Dicer proteins; mature miRNAs can 

then exert their repressive function by associating with Argonaute to form the RISC (RNA-Induced 

Silencing Complex). A lot of work has been devoted to miRNAs since their discovery in 1993: software 

tools able to predict miRNA-target interactions are many and employing the most different 

approaches. Among these, the most used are TargetScan[16], PITA[17] and miRanda[18]. 

Experimentally validated miRNA binding sites are less numerous, but still significant: sites for several 

hundreds of miRNAs are available through databases such as miRTarBase[19] and miRecords[20]. 

Several other types of non-coding RNAs exist, including various classes of long ncRNAs (lncRNAs, 

which involvement in PTR starts to be supported by several evidences), siRNAs (small-interfering 

RNAs) and then piRNAs (piwi-interacting RNAs), snoRNAs (small nucleolar RNAs), snRNAs (small 

nuclear RNAs) and more. 

 

Figure 2: miRNA processing. Pri-miRNA is transcribed in the nucleus, processed by Drosha and Pasha, exported 

in the cytoplasm and finally processed into single stranded miRNA by Dicer. At this point, the miRNA complexes 

into the RISC and can repress translation by hybridizing to the 3’UTR of the target transcript. If perfectly 

complementary binding occurs, the miRNA targets the mRNA for degradation [21]. 
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1.3 Cis-elements 

 

Both RBPs and ncRNAs bind to mRNAs in the so-called cis-elements, found primarily in 5’ and 3’ UTRs. 

These elements can be represented as recurring RNA sequences or secondary structures shared by a 

number of transcripts and defined by a pattern, to which the trans factors bind to exert a control over 

the mRNA. A well-known example of cis-regulatory elements are the AU-Rich Elements (AREs)[29], 

motifs rich in Us with some interspersed As or Gs shared by several thousand 3’UTRs and bound by a 

large number of RBPs (the so-called ARE binding proteins, ARE-BP) of which at least 23 are known[29]. 

A number of tools are available to predict ARE presence in a transcript, exploiting the various 

identified patterns of ARE occurrence. Another well characterized class of UTR cis-elements are the 

Iron Response Elements (IREs), which help in coordinating cellular iron homeostasis at the 

translational level[30] by means of the Iron Response Proteins (IRP). Figure 3 details the IRP-mediated 

mechanism of translation inhibition by IREs. Various other classes of cis-elements have been 

characterized and experimentally validated in one or more transcripts: identification of all their 

occurrences throughout the genome is still for the most part achieved by the application of pattern-

based predictive tools such as Transterm[31]. 

 

Figure 3: IRE-mediated translation inhibition. Binding to the IRE in the transcript 5’UTR, IRP1 and IRP2 proteins 

prevents translation pre-initiation complex formation[32]. 
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1.4 The landscape of PTR data 

The last years have seen a rapid increase in publications and resources dedicated to the analysis of 

PTR determinants, aimed at trying to unravel associated mechanisms of gene expression regulation. 

Of the more than twenty functioning and updated resources we identified, many are dedicated to 

non-coding RNAs [16,17,18,19,20,21,22,23,24,25,26,27] (to microRNAs in particular, with several 

prediction tools, but also to lncRNAs), only a couple databases focus on UTR annotations, and a 

comparable number deals with RBP, RBP-target interactions [33,34,35,36] and cis-elements 

[31,37,38,39,40,41,42]. Most of these resource do not proceed to the integration of the different 

types of determinants involved in PTR, thus providing only a very partial picture of the phenomena we 

are studying. Furthermore, while the limited number of high-throughput datasets is more visible (and 

most of the times inserted in a database as soon as it is generated), many mechanistic results still lie 

in the literature without being added to any database, thus loosing valuable pieces of information for 

a field in which the available data is quite limited. Our ability of tracing comprehensive networks of 

PTR, involving the different factors at play, and to precisely reconstruct the regulatory mechanisms 

acting on mRNAs is thus hampered by this lack of integration and scarcity of data. Fragmentation is 

therefore the dominant word in this field at present: this leads to a difficulty in handling the available 

information, both in terms of quickly finding data and actually being able to find it, preventing the PTR 

community to build on the amount of facts already established in the last years. 

 

1.5 Our approach 

In order to tackle this issue, we settled on implementing an integrative meta-database of post-

transcriptional regulation: the Atlas of UTR Regulatory Activity (AURA). AURA is a manually curated 

and comprehensive catalog of human mRNA untranslated regions (UTRs) and UTR regulatory 

annotations; it records non-redundant, direct and experimentally assessed interactions of RNA 

binding proteins and microRNAs with human UTRs, along with cis-elements and several other types of 

annotations: among these are as SNPs, phylogenetic conservation, RNA secondary structure, gene 

expression profiles and RNA editing data. We focused on providing a dynamic and user-friendly 

graphical interface, accessible also to command-line averse biologists, which allows to perform 

complex queries and looking at the data both from an UTR-based or a trans factor-based point of 

view. Through the realization of a semi-automatic update pipeline and the availability of several ways 

to access the data, even in a programmatic fashion, we aim at providing a complete and effective tool 

which will allow and empower the discovery of novel PTR networks and mechanisms. 

 

Another direction of our work is focused on discovering new cis-elements in UTRs and map the 

networks in which they are involved. In order to do so, we decided to focus on phylogenetic 

conservation: sequence evolutionary conservation in UTRs is indeed an aspect neglected by most 

works devoted to the identification of PTR-related cis-elements. Precedent works trying to identify 
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functional regions through phylogenetic conservation do exist but, excluding few works, none has 

focused on UTRs as interesting regions. Still, as no selective pressure on protein functionality applies 

to UTRs, these are unconstrained to change their sequence or structure just to fulfill their regulatory 

purpose: accordingly, highly conserved sequences or structures in orthologous genes would likely 

point to elements potentially endowed with regulatory activity. It is thus of remarkable interest to 

identify evolutionary highly conserved sequences in UTRs, which we called HCE (Hyper Conserved 

Elements). We therefore decided to implement a software pipeline allowing for such a search, both 

for 5’ and 3’UTR, in a large set of vertebrate species on a wide phylogenetic distance. Once these 

regions were obtained, we proceeded to identify groups of related motifs, looked for a benchmark of 

correctness for our algorithm and a cluster of HCE-bearing mRNAs whose encoded proteins carry the 

same motif, so defining a translational network of RBPs controlled by HuR, another RBP. 

Finally, we proceeded to apply the results of the previous work, AURA in particular, to discover 

altered, and thus potentially disease-related, PTR mechanisms in an high-throughput neuroblastoma 

dataset. Neuroblastoma is the most common extra-cranial solid cancer in childhood and the most 

common cancer in infancy, and arises from the neural crest of the sympathetic nervous system. It 

most frequently originates in adrenal glands. Its most aggressive form (high-risk) bear the genomic 

amplification of the MYCN gene locus, and its prognosis is extremely poor; low-risk neuroblastoma 

presents instead fewer genomic alterations and often has a good prognosis. Our dataset is composed 

by total and polysomal RNA profiling of thirteen neuroblastoma cell lines. We intersected factor-

target relationships contained in AURA with the differentially expressed genes (DEGs) of this datasets 

composed by matched total and polysomal microarray samples. The histone genes theme emerged as 

the most enriched and the composing mRNAs were up-regulated. We believe that such an example 

clearly stands for the usefulness and power of an integrated data approach for the analysis of PTR, 

even in complex diseases such as cancer. 
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2. RESULTS 

This section will present the results obtained in the three main works on which I focused during my 

doctoral period, linking them to the attached papers and highlighting my specific contributions to 

each of them. We will start by describing AURA, its implementation details, the different kind of data 

it contains and the features its interface offers to its users. We will then proceed to portray the HCEs 

(Hyper Conserved Elements) identified by our pipeline in the UTRs, detailing the various emerging 

functional themes and, in particular, a fully post-transcriptional network of mRNAs coding for RRM-

type proteins we uncovered. Next, the first results of a total versus polysomal gene expression 

profiles comparison over a neuroblastoma dataset will be described, introducing an histones-related 

network resulting from the application of AURA capabilities to differentially expressed genes 

produced by this analysis. Eventually, we will briefly describe a review about tools and databases 

dedicated to PTR which I also wrote during my doctoral period. 

 

2.1 The Atlas of UTR Regulatory Activity (AURA) 

The Atlas of UTR Regulatory Activity (AURA, available at http://aura.science.unitn.it) is a database 

aiming at providing a comprehensive overview of currently available data on post-transcriptional 

regulation of gene expression. It is built in such a way to allow the simultaneous display of all 

annotations and regulatory events concerning an UTR, thus making possible to infer significant 

combination of events for the phenomena under study. We decided to consider and use only 

experimentally verified data (the only exception being the AREs); consequently, ten different 

databases have been integrated, partially or completely, into AURA: UCSC (UTR annotations, 

phastCons phylogenetic conservation and secondary structure folding only), AREsite, DARNED, dbSNP, 

miRTarBase, miRecords, RBPDB, starBase, UniprotKB (detailed genes description only) and 

ArrayExpress (gene expression profiles in various tissues and diseases are obtained in real-time 

through the GXA web programming interface). In addition to this amount of data, a thorough 

literature search returned 1200 more binding sites, which we also added to the database. Table 2 

illustrates the most relevant figures for AURA at its current release, highlighting the fact that only a 

limited fraction of RBPs and miRNAs have been object of experiments aimed at discovering their 

targets and related binding sites. 

 

 

 

 

 

 

 

http://aura.science.unitn.it/
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Feature Data quantity 

5'UTRs 64550 

3'UTRs 62973 

UTR secondary structures 117119 

Transcripts 63138 

Genes 29345 

Binding sites 406174 

RBPs 100 

miRNAs 311 

Cis elements instances 19681 

SNPs 775488 

Transcripts halve-lives 31550 

References 2171 

Referenced databases 10 

 

Table 2: Most relevant AURA figures. The table lists the figures summarizing the data contained in AURA: in 

particular the number of binding sites, of RBP, miRNAs and cis-elements involved. Auxiliary annotations figures 

are also included. The references item represents the number of papers relating to data contained in the 

database. 

A great deal of attention has been placed into realizing a dynamic and user-friendly graphical 
interface. The website was implemented with the Django Python platform and is all AJAX-based, 
meaning it updates just the part of the pages which need to be, avoiding whole-page reload times and 
hassle. Two search modalities are available: the user can query a “target locus” or a “trans factor”, 
respectively. The former query returns a list of genes whose HGNC gene symbol or synonyms contain 
the search term; each gene in the list is annotated with its functional description, synonyms and UTRs. 
Furthermore, an exon-intron map of the UTRs is provided in order to allow proper discrimination 
between the different transcripts of a gene. Figure 4 illustrates an example search results page for this 
modality, highlighting the intuitive interface and its various options. On the other hand, the latter 
query results in a disambiguation list where all the trans-factors, whose names or synonyms contain 
the search term, are shown; once the user selects the intended trans-factor, AURA returns the list of 
its target UTRs. These UTRs can be grouped by GO slim categories1 or by chromosome mapping. 
Furthermore, before launching the search, the user can select to filter the results by a combination of 
supporting experimental evidences. Figure 5 shows the results page of this search type, with trans-
factor details and target UTRs grouped by GO terms in this case. This kind of visualization allows a first 
inference on the role of the trans-factor by just considering the functional grouping of its target, thus 
empowering the selection of UTRs to be analyzed in detail.  

Both search modes result, for the selected UTRs, in a page composed by a genome-browser like view 
for each of the UTRs: this type of display, highly dynamic, allows the user to explore the whole range 

                                                           
1 http://www.geneontology.org/GO.slims.shtml 

http://www.geneontology.org/GO.slims.shtml
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of interactions, or focus on a specific part of the sequence, or a kind of factor (data can even be 
hidden from the visualization) concerning the analyzed UTR. Selected UTRs are shown in an “UTR 
view”, illustrated by Figure 6, consisting of two elements:  

 The textual header containing: the chromosomal position and length of the spliced UTR, the 
HGNC name and UniProt description of the gene the UTR belongs to, and the link to the 
Human Protein Atlas (HPA) database. Also shown are the overall conservation, which is the 
mean PhastCons single nucleotide conservation score for the UTR, and the corresponding 
transcript half-life according to a transcriptome-wide mRNA stability measurement assay. 

 The AURA sequence browser, based on the JBrowse platform, contains all the annotations 
related to a specific UTR, i.e., multiple tracks annotating the UTR by evolutionary conservation, 
single nucleotide variation and cis regulatory binding sites. The “Conservation” track displays 
the score calculated for each nucleotide in the UCSC 46 species alignment. In the “SNP” track, 
AURA integrates the single nucleotide polymorphisms (SNPs) recorded in the dbSNP database 
allowing the user to combine with the other annotation tracks to look for variations of 
potential impact in PTR. The “RBP” track contains the RBP binding sites, while the “miR” track 
contains the microRNAs binding sites. The “RNA editing” track contains data about the UTR 
bases which have been found to be edited (mostly A>I conversions) after transcription. Two 
further tracks are provided to show the trans factors for which only partial information is 
available. The “unknown mRNA location” track denotes the trans-factors known to bind a 
transcript without any further mapping information. Instead, the “unknown UTR location” 
track indicates the trans factors whose UTR binding site is unknown. All the annotations in the 
tracks are clickable: whenever the user clicks on an annotation, a description page containing 
binding sites and cross-references is shown. In this view, the minimal energy predicted 
secondary structure together with the color-coded nucleotide phylogenetic conservation, SNP 
locations and trans-factor binding sites of the selected UTR can be optionally drawn through 
VARNA. All annotations are linked to their source, either a PMID indicating the publication or 
an ID relating to the original database (as in the case of dbSNP). 

Furthermore, the predicted secondary structure of the UTR can be visualized through a button over 
the UTR view. An interactive viewer allows the user to zoom, tilt and move the secondary structure, in 
order to allow focusing on relevant details. Binding sites, SNPs and evolutionary conservation 
annotation are laid on top of the structure by means of a color scale (conservation) and color-coded 
highlighting. This particular view can immediately reveal if a binding site or a SNP is associated to a 
particular structure such as an hairpin or a bulge, and can help in guiding the investigation for further 
evidence. Eventually, AURA provides the user with multiple ways of grouping gene expression results, 
retrieved from the Gene Expression Atlas, and related to the gene locus of the selected UTR. Results 
are reported in tables where a row corresponds to a condition, while the columns, in order, show the 
number of times the gene was observed to be up- or down-regulated with respect to its mean 
expression value and the significance of the measure (log10 P-values). In case of a trans factor search, 
whenever data are available, a joint table containing gene expression experiments for both the gene 
coding for the trans factor and the gene bearing the bound UTR is shown. Moreover, significant 
differences in common between regulator and target are highlighted to emphasize possible 
correlations or anti-correlations between them.  
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Figure 4: Gene-based search in AURA. The figure displays the interface presented to the user when searching 

for the UTRs of a specific gene. On the left one can see the panel describing the gene (name, synonyms and 

function) and depicting all its different UTRs along with the exon-intron structure of the related transcripts. 

UTRs can then be dragged onto the right panel which, as a cart-like feature, allows to include UTRs from 

different transcripts and genes at once. Selected UTRs can then be explored in detail through a genome-browser 

like view. 

 UTRs relative to all TP53 

splice variants are shown, 

as they are present in the 

UCSC annotation 

database 

 UTRs marked by gold 

stars belong to protein-

coding transcripts 

agreed on by EBI, NCBI, 

WTSI and UCSC 

 5’ and 3’ UTRs are listed 

and sorted by UCSC 

transcript identifier 

Composite view of the exon / 

intron structures for the 5’ and 

3’ UTRs, arranged by UCSC 

transcript id.  

Exon  

Intron 
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Figure 5: Trans factor-based search in AURA. The figure displays the interface presented to the user when 

searching for targets of a trans-factor (either an RBP or a miRNA). Top panel gives the basic annotation for the 

trans-factor of interest, including the binding motif weblogo (computed from positional frequency matrixes) 

when available. The lower left part contains the list of target UTRs, grouped by Gene Ontology term, providing 

an indication of targets function. By clicking on each term, the list of belonging UTRs appear, allowing to select 

them. As previously stated, UTRs can be selected by dragging them onto the right-side panel: the selected ones 

will then be explored in detail. 
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Figure 6: UTR exploration interface in AURA. The figure shows the genome browser-like interface which the 

user can take advantage of to explore all data concerning an UTR at once. Top panel gives the basic annotation 

for the currently displayed UTR, including overall phylogenetic conservation and transcript half-life. The lower 

left part contains several track displaying RBP and miRNA binding sites, cis-elements, SNPs and evolutionary 

conservation tracks. The UTR can be zoomed and sequence can be scrolled to focus on the precise region of 

interest. Gene expression profiles and secondary structure of the UTR can be accessed via the buttons on top of 

these tracks. 
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Aside from accessing and searching the database through its web interface, a more experienced or 

bioinformatics-oriented user can take advantage of the other options we provide to mine the data 

contained in AURA: first of all, the complete set of annotation of a single UTR, which we call UTRcard 

(including secondary structure, conservation, binding sites, and more), is downloadable from the UTR 

view, by composing the URL of the UTR in the browser or through a script; the whole MySQL database 

can also be downloaded and replicated on a local machine (schema description is provided); 

eventually, a BioMart, called AuraMart, is available and let users query the data in a simple and 

standard way through the BioMart platform (the same as used by Ensembl BioMart and many other 

major websites): having already used a Mart, an user will just need to know which data he or she 

wants to extract from the database, being able to exploit the query knowledge he or she has already 

acquired. Batch search and analysis tools are currently being developed and will soon be integrated in 

AURA. 

 

My contribution in the realization of AURA started with the implementation of the underlying 

database schema, including the design of entities and relationships to accommodate all data now 

present in the database and the server setup. I then realized a significant part of the graphical 

interface and of the underlying features, setting up and maintaining the website server. Eventually, I 

collected data from some of the ten integrated databases (all basic annotation from UCSC including 

conservation, SNPs) and performed a literature search for binding sites which was split in equal parts 

between all authors. I am currently managing and keeping AURA updated with new data. 
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2.2 Hyper Conserved Elements (HCE) identification 

We firstly aimed at identifying HCEs in the 3’ UTRs of the human exome by a seed extension strategy: 

these were derived from the human genome, by a custom pipeline (Figure 7A). We took advantage of 

the 44-way vertebrate UCSC alignment, from which we derived the phastCons sequence conservation 

score ([43], which we call SCS) for each base of the exon sequences annotated as 3’UTRs. We also 

computed, for each base, the Branch Length Score (BLS), defining the degree of sharing of 

conservation among the vertebrate species considered [44]. We firstly obtained short footprints of 

very high phylogenetic invariance represented by fully conserved 5-bases seeds (SCS >= 0.95 and BLS 

>= 0.85); we then extended these seeds upstream and downstream until they reached a preset 

threshold on our conservation score, which we called HCS (Hyper Conservation Score, computed for 

each base of the UTRs as the weighted average of SCS and BLS). The 3’UTR-HCE identification 

algorithm produced 3149 HCEs, belonging to 1010 3’UTRs, which corresponded to 877 genes. At least 

one 3’UTR HCE is thus present in only 1,8% of the total human 3’UTRs, and collectively HCEs cover 

only 0.47% of the 3’UTR space, making them extremely rare. They have an average length of 100 

bases, but their length distribution (Figure 7B) is such that more than 77% of their total number is 

shorter, being only 4.5% of them over 500 bases. Their UTR coverage (Figure 7C) is instead prevalently 

low (25% or less of the 3’UTR) or high (75% or more of the 3’UTR). Together, these distributions show 

that 3’UTR-HCEs are relatively short and that they either occupy a small portion of a 3’UTR or the 

most of it. When multiple HCEs are present on an UTR, these have a clear tendency to localize in 

clusters, as indicated by the very small inter-HCE distance, 25 bases or less (Figure 7D), and to be 

spread along the 3’UTR, with 25% of the HCEs start nucleotides concentrated on the first 10% of the 

3’UTR (Figure 7E). These elements are much richer in AU than in GC bases (Figure 7F, p-value 2.2E-16), 

and are by far more highly structured than random 3’UTR sequences of the same length, being 

structural density defined by the fraction of unpaired bases in the HCEs secondary structure(Figure 

7G, p-value 1.2E-13). To provide a snapshot on HCE architecture diversity, we distributed HCE-bearing 

3’UTRs into four classes, depending on their number and coverage. These classes, reported in Figure 

7H, efficiently represent this diversity. 

 

We then sought to understand what types of potentially functional cis-acting elements are found in 

3’UTR-HCEs. To test for ncRNAs, we compared HCEs sites on 3’UTRs with a set of 15560 

experimentally validated microRNAs binding sites extracted from AURA [34] and concerning 88 

miRNAs. Only 51 HCEs (1.6%) were found to contain one or more microRNA binding sites, which are 

60 in total and involve 33 different microRNAs. We also intersected 3’UTR-HCEs with lncRNAdb [25], a 

catalog of eukaryotic long non-coding RNAs. Performing a BLAST search yielded 151 statistically 

significant putative binding sites, at least 12 nucleotides long, involving 132 unique HCEs (4.2%) and 

32 different lncRNAs. We performed the same procedure on a set of randomly derived 3’UTR 

sequences (random HCEs) with the same length distribution as our HCEs and being the set the same 

size as the total number of HCEs: only 19 (0.6%) random HCEs were found to contain one or more 

microRNA. Concerning lncRNAs, the blast search yielded 207 statistically significant putative binding 
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sites, at least 12 nucleotides long, involving 169 unique random HCEs (5.37%) and 39 different 

lncRNAs. We eventually scanned HCEs and random HCEs for matches with the position-frequency 

matrixes extracted from RBPDB [35]. Considering only matches with a minimum score of 80% and a 

matrix length greater than 4, we obtained 1.8 times more matches in the HCEs than in random HCEs 

(17173 matches for HCEs versus 9443 matches for random HCEs). 
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Figure 7: HCEs in 3’UTRs of the human exome are short, scattered and highly structured. The overall HCE 

identification pipeline is shown in a), with the lower part detailing the algorithm searching for seeds and 

extending them to lead to the final HCEs. b-g) highlights the most relevant features of the HCEs: b) shows the 

length distribution of HCEs and c) the percent coverage of 3’UTRs by these d) displays the AU predominance 

over CG in HCE base composition and e) the prevalence of highly-structured HCEs; f) displays the distribution of 

distances between HCEs on the same UTRs and g) the HCEs distance distribution from UTR start, indicated in 

percent over the UTR length. h) shows the classification of 3’UTRs in four classes according to their HCE content 

on the right. Numbers below each class box indicates the number of HCE-containing 3’UTRs belonging to the 

class. On the right, a sample of six HCE-containing 3’UTRs: HCEs are mapped onto their UTR and represented as 

yellow areas in a grey rectangle representing the full-length 3’UTR. Arrows from class boxes to UTRs indicates 

which UTR belongs to which class. 

 

 

In order to appreciate the whole spectrum of biological functions expressed by 3’UTR-HCE containing 

genes, we performed an ontological enrichment by means of DAVID[50] (using Gene Ontology, 

InterPro, Smart, PFAM and KEGG ontologies) on the 877 genes bearing at least one HCE in their 

3’UTR. We identified three gene groups endowed with high significance (Figure 8). 

The first group is composed by 78 genes involved in chromatin structure (terms “nucleosome”, 

“chromatin assembly”, “DNA packaging”), including 51 (53.6%) of the 95 histone genes present in the 

human genome. It is well known that histone gene mRNAs all have a short 3’UTR, lacking a poly(A) 

tail, which is bound by the stem-loop binding protein (SLBP) in the cytoplasm to stabilize histone 

mRNAs and mediate their translation [45]. Alternative to polyadenylation, this mechanism is very 

ancient and is conserved over a wide evolutionary distance. We therefore hypothesized that the HCEs 

in the histone 3’UTRs were SLBP binding sites. In order to verify this, we aligned the SLBP binding 

motif to these HCEs and found a considerable fraction of these to contain a close, where not perfect, 

match to the known SLBP motif. Therefore, the algorithm we derived to select for HCEs is able to 

precisely identify cis-elements involved in a conserved and well demonstrated post-transcriptional 

 H 
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regulatory process: we therefore assumed this finding as an effective benchmark for the ability of 

3’UTR HCEs to point to circuitries of phylogenetically old post-transcriptional control. 

The second highly significant gene set is about the broad activity of transcription and mainly 

composed by genes involved in its repression. The 137 identified genes suggest that transcription 

factors like EPC1, TFAP2D and YY1 and cotranscriptional repressors such as FOXP2, MEIS2 and EZH2 

can be heavily controlled at the post-transcriptional level, being their 3’UTR almost entirely highly 

conserved. 

 

Figure 8: HCEs clusters in genes belonging to three different biological functions. Ontology enrichment 

analysis of HCEs-containing genes highlights three groups of genes corresponding to three different biological 

functions. Multiple ontologies were used to infer possible functional groupings: the results exposed a most 

significant group composed of genes involved in chromosome assembly, a significant set consisting of 23 genes 

coding for RRM-containing proteins and a third, less significant group of genes playing a role in transcription. 

Here are shown the ontology terms clusters giving rise to these groups, along with their enrichment p-value and 

the final list of involved genes. 

 

When protein domains enrichment was computed over the 3’UTR-HCE containing genes, the most 

significant outcome resulted to be the RNA Recognition Motif, the RRM. Of the 23 enriched genes 

whose protein product contains RRM domains, 17 are experimentally verified RBPs and 14 have an 

RRM-only architecture, and their mRNA is characterized by 3’UTRs of all four classes, with a 

prevalence of full (66.7%) and dense frequent (19%). We therefore focused on this protein group to 

predict a possible RBP regulating some of them, through analysis of their 3’UTR-HCEs. We scanned 

the HCEs for hidden common elements by the Weeder algorithm, searching for six to twelve bases 
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long motifs, allowing one to four mutations and observed in at least 25% of the HCEs [46]. The scan 

produced two reliable 12-bases motifs that can be considered variants of the same motif, as they 

differ only in two positions. We speculated that this motif could represent an RBP binding site, since a 

number of these proteins are known to have a preference for 7-8 bases stem-loops [10] We then 

searched for secondary structure motifs in the same 3’UTR-HCEs by means of the RNAfold [47] and 

RNAforester [48] algorithms. This analysis resulted in a 17-bases structural motif in the form of a 

hairpin, whose core loop had a good correspondence (7/12 bases with both sequence motifs; 9 bases 

out of 12 for sequence motif 2) with the previously identified sequence motifs. Combining the results 

of both sequence and structure motif searches produced a remarkable concordance, as shown by 

motifs alignment in Figure 9A, leading us to a hairpin motif shared by 18 out of the 23 RRM genes 

reported in Figure 9B. Instances of the hairpin motifs in the mapped 3’UTRs are shown in Figure 9C. 

After having identified this motif, we noticed its sequence was quite similar to an already known 

binding sequence for HuR (ELAVL1) protein [10]. In order to verify that our motif was effectively 

interacting with HuR, we performed a protein pulldown assay, followed by a western blot with anti-

HuR antibody. Along with the putative HuR motif, we employed two positive controls for the 

technique (YB1 and PTB), two mutated and one degenerate loop probes, which design is shown in 

Figure 10A. As shown in Figure 10B, HuR indeed binds to the probe corresponding to our shared 

motif. Mutated and degenerated probes show very little recovery of HuR, suggesting that the 

interaction is specific and depending on the loop sequence and size. Positive controls western blots 

are shown in Figure 10C and 10D. 

 



21 
 

Figure 9: HCE-containing 3’UTRs of the RRM genes subset share a sequence and secondary structure motif. 

HCEs contained in the group of RRM genes 3’UTRs were scanned for both sequence and secondary structure 

motifs. The first search returned two, almost identical, 12-bases motifs; the second one produced a 17 bases 

hairpin which, after examination by means of a multiple alignment, emerged to contain a 12-bases core 

markedly similar to previously identified sequence motifs. This core represents the loop part of the hairpin 

which, as the two searches are quite concordant on it, may indeed represent a binding motif for the key actor of 

the regulatory network we are trying to uncover. a) shows the alignment between sequence and secondary 

structure motifs b) shows the secondary structure motif and its sequence/structure motif. c) motif instances 

(yellow areas) mapped on their respective full length UTR (grey rectangle). 

 

Figure 10: A protein pulldown experiments indicates HuR as the trans-factor binding to the shared motif. The 

various RNA probes employed for the protein pulldown experiment are shown in a). HuR pulldown probe: this 

probe was designed by using the secondary structure motif shown in Figure 9, slightly modifying the lowest part 



22 
 

of the hairpin so as to make it fold correctly when not in context. The loop part was designed by employing the 

most probable nucleotides of sequence and structure motifs. Positive controls pulldown probes are YB1 and 

PTB: their known binding motifs where obtained from the RNAcompete paper [10]. Again, the lowest part of the 

stem was slightly modified so as to make it fold as desired. Negative controls HuR probes are Dbl-Mut1, Dbl-

Mut2 and Degenerate. The Degenerate probe was synthesized by allowing all four nucleotides to be present at 

each loop position, so to obtain a mixture of probes bearing all the possible 5-mers loops. The Dbl-Mut1 and 

Dbl-Mut2 probes were obtained by mutating two nucleotides of the original probe loop, in a way to preserve it 

in the first case and to obtain a 3-mer loop instead of a 5-mer in the second one. b) shows the HuR pulldown 

western blots. From the leftmost to the rightmost band: input, HuR probe, Dbl-Mut1,Dbl-Mut2, Degenerate 

probe and denaturized beads bands. As can be readily seen, the hairpin probes bind to HuR with a marked 

specificity for the correct probe with respect to degenerate and mutated probes. c) - d)PTB and YB1 pulldown. 

From the leftmost band to the rightmost: input, YB1/PTB probe, and denaturized beads. As shown by Western 

Blot images, the hairpin probes bind to PTB and YB1 respectively, thus confirming that the pulldown protocol 

works as expected. 

With the motif confirmed to be recognized by HuR, we next sought to understand whether HuR had a 

marked preference for RRM-containing genes with respect to RNA-binding domains and the most 

frequent domains in the genome. To compute this enrichment, we took advantage of a HuR PAR-CLIP 

dataset published by Lebedeva et al. [49]. We extracted all HuR 3’UTR binding sites from this dataset 

and obtained the genes to which these UTRs belonged. We then computed, by means of the Fisher 

test, the enrichment of genes containing the most common RNA binding domains (Zinc Finger, RRM, 

KH,SAM) with respect to the most frequent domains in the genome (IG-like, GPCR superfamily, Serine 

Threonine kinase and Olfactory Receptor) and to the complete set of RBPs. Results are shown in 

Figure 11a): RRM domain resulted to be significantly enriched with respect to all these domains and 

RBPs, being the only RNA-binding domain having a significant enrichment in all cases. This suggests, as 

was our hypothesis, that HuR has a marked preference for RRM-bearing genes regulation. We then 

plotted all 3’UTR HuR targets identified by Lebedeva along with our group of RRMs, to highlight 

overlapping and unique genes of the two sets. The resulting intersection counts are shown in figure 

11b, while the network is shown in Figure 11c) and discriminates between genes categories by means 

of shapes and colors, as shown in the bottom part legend. Nine out of the 23 HCE-containing RRMs 

are not identified by Lebedeva as being bound by HuR and in particular, 4 of them are among the 

ones we validated by RT-PCRs. Figure 12a) shows the results of the RIP validation of interaction 

between HuR and four HCE-containing target mRNAs; Figure 12b) displays the western blot 

confirming HuR silencing in the cell line we used for the last step, the RT-PCR polysomal validation we 

performed on four of the 23 genes (shown in Figure 12c)): all of them show a translational repression 

effect, suggesting a stabilizing effect for HuR when bound to these mRNAs. 

 

My contribution to this work consisted in the realization of the pipeline for the identification of the 

HCEs: in particular, retrieving the conservation data, writing the source code which computes 

conservation scores and output these regions, functional analysis of the results and identification of 

interesting groups of HCEs. I then identified the relevant sequence motif for the RRM group of 
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proteins and isolated the secondary structure used for the pulldown experiment. After the 

experimental part verifying HuR binding and the specificity of these interactions, I crossed the group 

of RRM genes with data in AURA and the other high-throughput works on HuR. Once completely 

mined, I will insert HCEs into AURA as additional cis-elements, able to provide even more clues on the 

post-transcriptional regulatory events involving a given UTR under study. 

 

Figure 11: HuR has a preference for binding to the 3’UTR of RRM-type RBPs.  

a) shows the enrichment of HuR 3’UTR binding sites for several RNA-binding domains with respect to the most 

frequent human protein domains and to RBPs as a whole. Data is extracted by the PAR-CLIP experiment 

published in (44). b) shows a Venn diagram indicating the overlap between our HuR RRM-type mRNA targets 

and the experimentally identified HuR PAR-CLIP RRM-type mRNA targets. c) displays HuR 3’UTR RRM-type 

mRNA targets, highlighted in different colors and shapes according to their belonging to our set of 23 mRNAs, 

to mRNAs we validated by RIP-qPCR and their intersection with the RRM-type mRNA targets from the PAR-CLIP 

dataset.  
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Figure 12: HuR and RRM 3’UTRs interaction properties. The network of HuR binding to mRNAs for RRM-type 

RBPs is a functional translational network. 

a) shows the fold enrichment results (with respect to control) for four predicted RBP mRNAs (plus the CCNA2 

mRNA as control) subjected to ribonucleoprotein immunoprecipitation (RIP) from lysates of HuR overexpressing 

MCF-7 cells and quantitative RT-PCR, demonstrating interaction of HuR with these mRNAs. b) reports the 

western blot confirming HuR silencing in MCF-7 cell line. Beta-tubulin is used as housekeeping gene. c) shows 

the statistically significant decrease of mRNA levels for the same four RRM-type RBP mRNAs, indicating a 

translational enhancing effect of HuR on these mRNAs. Increasing level of significance (* <= 0.05, ** <= 0.01) is 

indicated by one or two stars. 
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2.3 PTR networks in neuroblastoma 

We eventually proceeded to analyze a set of microarrays performed on neuroblastoma cell lines. Our 

dataset was composed by 13 samples, profiled at both the total and the polysomal RNA levels by 

means of Agilent Human 44k microarrays. All samples bear the MYCN gene locus amplification, 

marker of the most aggressive form of the disease; other genomic alterations are also present but not 

uniformly across the cell lines. We started by quality filtering and quantile normalizing the 26 arrays: 

this was done by means of the R software and the Bioconductor package. We then proceeded by 

employing four algorithms to compute the differentially expressed genes (DEGs), namely PCA, 

RankProd, SAM and the T-test (again by means of R and by selecting a p-value threshold of 0.01 for all 

four algorithms). The resulting proportion of DEGs (illustrated by Figure 13) varies widely between the 

methods, with PCA producing just 118 genes as differentially expressed and SAM returning as much 

as 2743 genes. We thus selected RankProd-derived DEGs as our reference list of up- and down-

regulated genes (1335 genes). 

 

 
Figure 13: Different methods identify 

largely varying degrees of DEGs in the 

comparison in polysomal versus total 

mRNAs. We performed DEGs selection with 

four different methods, perceived as 

progressively more stringent. Indeed, while 

the t-test and SAM identify around 24% of 

the genes as significant DEGs, RankProd falls 

down to 12% and the PCA calls little more 

than 1% of the genes as differentially 

expressed. We selected RankProd DEGs as 

our reference genes for subsequent analysis. 

 

 

 

 

In order to understand which processes 

and functions were represented in the 

DEGs groups, we subjected the up- and down-regulated lists to functional enrichment analysis by 

means of DAVID [50], employing the Gene Ontology, InterPro, Smart, PFAM and KEGG ontologies. 

Enrichment p-value were corrected for multiple testing by the Benjamini-Hochberg correction. This 

analysis highlighted several themes (coherent grouping of terms) as significant: in particular, a theme 

we called Histone, composed by terms such as “Histone”, “nucleosome”, “chromatin assembly”, 

“Histone-fold” and many others, was found to be highlighted by most of the employed ontologies 

with a consistently low p-value (lowest is 5.5E-28) and including 64 genes. The other themes, as 
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shown by Table 3, were either composed by a low number of genes or supported by just one 

ontology, making them less interesting to focus on. We thus decided to pursue the histone theme and 

perform further analysis on it. 

 

 

Functional theme Status Ontologies # of 

genes 

Average theme p-value 

(-log10) 

Histone Up-regulated GO, Smart, Interpro, 

PFAM 

64 15.659 

Mitochondrion Up-regulated GO 31 2.537 

ATP-binding Down-regulated GO 88 13.661 

mRNA processing Down-regulated GO, KEGG 29 5.674 

 

Table 3: Significant up- and down-regulated functional themes in neuroblastoma polysomal versus total 

comparison. The table shows the significant functional themes (grouping of ontology terms with coherent 

functional meaning) emerging from DEGs lists in our neuroblastoma dataset. The status column indicates 

whether genes composing the theme were up- or down-regulated, while average theme p-value was computed 

as the –log10 geometric mean of the single terms p-values. While all four themes are statistically significant, it 

is immediately clear that the histones theme is stronger both in terms of significance and of being highlighted 

by both gene-based and protein-based ontologies. 

 

In order to highlight the possible post-transcriptional interactions mediating this up-regulation of 

histone-related genes at the translational level (with the respect to the transcriptional level) we 

proceeded by intersecting this genes with the data contained in AURA, by means of a script able to 

produce the list of regulators and target of a given gene, outputting its binding sites and the eventual 

co-localized SNPs or RNA editing events. This feature will soon be made available as a batch search 

modality in AURA. Then, by means of another script exploiting the Cytoscape [51] programming 

interface, we generated a network based on this list, in which directional edges indicates a post-

transcriptional regulator role for a source node with respect to the target node. In the network, 

shown in Figure 14, DEGs are highlighted with different color and shape in order to distinguish them 

from the other involved genes returned by AURA. Also this network-building capability, with export to 

a graphical format, will be soon made available on the website, coupled to the feature described 

above. By detailed examination of the network, shown in Figure 14, we can obtain some evidence to 

guide further analysis and experiments: aside from SLBP regulation of a number of histones (fact 

already known and described in the HCE results section above) we notice the involvement of several 

microRNAs and of various genes of interest, such as the two ARE binding-proteins AUF1 and HuR and 
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the two TNRC (6B and 6C), known to have a role in miRNA-mediated mRNA repression. On the same 

line, various AGO family proteins have been found to bind different histone genes. Eventually, ARE 

cis-elements are shared by many histones, fact that can be crossed with the binding of AUF1 and HuR 

that we discussed above. No data is contained in AURA for 12 histones UTRs, suggesting the need to 

study the post-transcriptional interaction of these genes in a more complete way, possibly by applying 

techniques such as protein pulldown (to understand regulators of a given mRNA) or PAR-CLIP (to 

discover all target genes of a possible histone regulator protein). 

 

 

My contribution in this work consisted in the analysis of the microarrays data produced out of our 

samples, the identification of differentially expressed genes and the consequent functional analysis of 

these gene lists; then I performed the intersection with AURA of the functionally coherent groups of 

DEGs and the construction of the PTR network shown in Figure 14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Histones PTR network. The figure displays the histone-centered post-transcriptional regulatory 

network emerged as up-regulated at the polysomal level in our neuroblastoma microarray analysis. DEGs 

correspond to square-shaped yellow nodes, while other interacting factors are represented by blue, circle-

shaped nodes. An edge between two nodes indicates a verified post-transcriptional interaction extracted from 

AURA. 
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2.4 PTR tools and database review 

In the frame of my doctoral work, identifying and characterizing the available resources on PTR has 

been a necessary task. Obtaining an overview of data types, amounts and the way in which these 

were accessible has been a prerequisite to develop AURA and to proceed with the other parts of my 

work. Thus, writing a review that would serve both as a catalog and as an initial “PTR toolbox” fitted 

naturally in the context of my activities. The review, recently published by RNA Biology starts by 

classifying the resources (both databases and software tools) according to their biological focus (RBPs, 

ncRNAs, cis-elements): on top of these foundations, we propose a PTR analysis pipeline which we 

eventually apply to a breast cancer microarray dataset in order to exemplify its operation and 

usefulness. 

My contribution to this work consisted in collecting data about the resources, defining the pipeline, 

applying it to the example dataset and eventually writing the manuscript. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



30 
 

3. DISCUSSION 

The post-transcriptional regulation of gene expression field has witnessed a lot of developments in 

the last few years. Still, the amount of work dedicated to it lies far behind that devoted to, for 

instance, transcriptional regulation. Aside from the lack of mechanistic studies, which can be 

compensated only by laboratory activity, the main issue we see in the field lies in the fragmentation 

and dispersion of currently available data: this makes even more difficult obtaining a global and 

comprehensive picture of this layer of gene expression regulation, let alone identifying new 

regulatory mechanisms by leveraging on the existing amount of data. Indeed, only three tools among 

the available ones attempt to integrate different component of PTR networks, such as RBP, miRNA or 

cis-elements.  

AURA can be considered as a “meta-database” integrating for the first time several useful and reliable 

sources. Differently from all the other available resources (UTRdb/site, RBPdb, doRiNA), AURA 

integrates the most informative UTR annotations generated by other databases and genome 

browsers with sequence-based general information (exon-intron structure, evolutionary conservation, 

intraspecies variation) and with gene- and transcript-centered annotations, such as ontological 

hierarchies, variability of protein levels in different tissues and transcript stability.  

UTRdb[33] is the only other resource to be UTR-centered as AURA. Along with the basic annotations it 

offers a good amount of data, providing cis-elements prediction through the cognate site (UTRsite). 

The UTR annotation by phylogenetic conservation is available by both AURA and the last release of 

UTRdb; however AURA relies on a broader and more updated set of multiple species alignments 

(phastCons46way, Fujita et al., 2011), as compared to UTRdb (phastCons17way, Fujita et al., 2011). 

Both RBP and miRNA binding sites datasets are more complete and obtained through more sources in 

AURA than in UTRdb. Furthermore, whereas the latter provides only conserved elements, the former 

displays the direct base-wise conservation scores in order to allow a more flexible reuse of this 

information. On the other side, UTRdb provides structural conservation scores absent in AURA. 

Furthermore, AURA uniquely collects experimental estimations of transcript stability and of transcript 

abundances, and the levels of proteins in different tissues. These indicators may result essential when 

needing to embed the regulatory interactions stored in AURA in a meaningful biological context.  

A query to RBPDB[35] on any RBP of interest returns the list of sequences which have been 

experimentally determined to bind that RBP, together with the RNA-binding specificity consensus 

(where experimentally obtained). However, it does not directly link the RBP to the targeted 

transcripts. Thanks to the manual refinement we carried out on the experimental data collected by 

RBPDB, a similar query to AURA directly shows the target transcripts, the positional information 

within each transcript UTR as well as the RNA binding specificity logo, with a net gain in terms of 

completeness of information for the “wet biology oriented” user.  
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With respect to AURA, doRiNA[36] contains just RBP and miRNA binding sites information: the former 

are collected only from high-throughput experiments such as PAR-CLIP for RBP and the latter 

originate from a set of predictions. AURA is more complete in including also experimentally validated 

miRNA binding sites and mechanistic assays-derived sites for RBP. As a consequence, while providing 

this data is useful and interesting, also doRiNA lacks the integrative approach necessary to provide a 

global overview of PTR. 

AURA does not yet offer analytical tools (although some are in preparation); this is in contrast with 

the other databases which offer them to various extents. However, AURA is the only resource of the 

lot to provide a BioMart query system. BioMart is a standard platform allowing to query various 

databases from the same interface and in the same way: this is a very powerful feature, as anyone 

used to query through BioMart will be able to extract any data from AURA in a matter of minutes, 

without having to learn a new system from scratch. 

Nevertheless, In order for AURA to be complete, a thorough literature search would be necessary to 

retrieve and insert all past PTR data available, resulting from mechanistic experiments: however, 

while text mining tools may help in reducing complexity and the number of articles to be examined, 

this task is extremely time-consuming and would need the dedicated effort of more than one 

individual to be accomplished. Moreover, in order to be even more effective, AURA needs to offer 

batch analysis tools to its users. Some of these are already being developed and will be ready for 

AURA 2.0. In particular, these will include the network-generating scripts presented in the results 

section, a regulator enrichment computation (through Fisher tests and similar) tool and more. 

Eventually, there are now a number of additional UTRs extracted from next-generation sequencing 

experiments: adding these isoforms to the standard set of UTR annotation would enrich the database 

and its completeness (even though these UTRs are currently annotated in a very limited way). NGS-

derived tissue-specific expression profiles are also available now: additional mRNA and possibly 

protein expression profiling dataset would further facilitate the integrated inference of regulatory 

mechanisms. Eventually, perfecting an automated data update pipeline and continuing to add new 

data types will be essential for keeping the usefulness of AURA at its top. 

More in general, future tool developments should point towards providing a one-stop, truly 

integrated, comprehensive and multi-faceted PTR analysis toolset. Availability of such a tool will 

consistently empower the mapping of post-transcriptional and specifically translational networks, 

reaching the level of service already offered by resources focusing on the analysis of transcriptional 

regulation. The consequent implementation and update effort could be eased by coordination with 

major genome databases such as the UCSC Genome Browser and Ensembl. Furthermore, two 

additional features are currently missing: first of all, a systematic literature-derived annotation of the 

molecular downstream and phenotypic effects of a given interaction would provide more grounded 

clues, orienting the experimental validation; then, tailored statistical methods for enrichment of cis-

elements or trans-factor, as those for ontology terms enrichment, would be beneficial to avoid 
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generation of a large number of false positives as an effect of the high multiplicity of action of several 

studied trans-factors. 

Concerning the second part of my work, we have demonstrated the HCE identification algorithm to be 

sensitive and specific enough to retrieve both already known (histones – SLBP) and novel post-

transcriptional regulatory mechanisms (RRM – HuR). In order to extract as much information as 

possible from these HCEs we will need to analyze them one by one (excluding the ones included in the 

above groups): a possible way would be to setup an high-throughput luciferase screening to 

understand the role of these region in modulating protein levels (and the responsible of this 

modulation). That amounts to testing around 3000 regions, which could be long and time consuming: 

to focus on the most interesting candidates we will need to devise a prioritization strategy that could 

be based on the pathway or processes in which HCE-containing genes are involved. This needs to 

consider the fact that, as shown in the results section, a number of HCEs corresponds to the entire 

3’UTR: in these cases we can affirm that conservation concerns the whole regulatory factors for that 

transcript, and not single binding sites. These HCEs will thus need to be treated in a separate way to 

isolate relevant subparts of the sequence. Another aspect currently not taken into account by our 

algorithm is secondary structure conservation: sequence with an higher degree of variation may lead 

to the same structural element (for instance an hairpin, or a bulge), and in a number of cases the 

conformation may be more important than the sequence for protein recognition of the binding site. 

We would thus need to define a structural conservation measure and identify these elements to 

complete our picture of conservation-based post-transcriptional functional elements in UTRs. 

Eventually, we will then proceed to the analysis of 5’UTRs HCEs, identified by our pipeline but not 

studied in this work: more than mRNA stability or localization or polyadenylation, as in the 3’UTR, 

translation initiation regulation will most probably be the process influenced by these regions in 

5’UTRs. 

Application of AURA to our neuroblastoma list of differentially expressed genes resulted in a post-

transcriptional network of factor-target interactions which lends further evidence to the usefulness of 

such an integrated database. It is known that histone mRNAs are heavily controlled at the post-

transcriptional level, mainly through the SLBP protein and many components of the polyadenylation 

machinery. The analysis will proceed by first determining the expression patterns of histone genes 

across the 13 employed cell lines: as the nucleosome composition is stoichiometric, the protein levels 

of the five histone types (H1, H2a, H2b, H3, H4) must be tightly regulated to guarantee proper 

assembly of this complex. We may thus devise a mechanism by which one or more genomic 

alterations acting on histone transcription are subsequently compensated by a post-transcriptional 

mechanism re-coupling and enhancing protein translation to yield precise quantities of these 

proteins. Efficiently proliferating tumor cells would thus have evolved or enhanced a way of 

compensating an unfavorable (from the tumor point of view) alteration. Other tumor datasets 

(containing both total and polysomal profiling) will be investigated in order to understand whether 

this finding is neuroblastoma-specific or rather could be shared by various tumor types. To further 



33 
 

complement this data, a sequence and structure motif search could be executed: even though, given 

the number of genes involved, it is likely that multiple mechanisms are at play, which will make it 

difficult to identify one or even a few shared motifs on which to focus our subsequent analysis. Aside 

from validating, via RT-PCR, the fold change values of these genes obtained by microarray, we could 

also direct our attention towards the phenotype resulting by reversing this up-regulation: targeting 

the SLBP, which stabilizes histone genes, could allow us to reduce levels of histone mRNAs and 

observe whether the produced phenotype significantly impacts tumor properties. Further work would 

then be needed to identify the factors responsible for this effect, both among the interactions found 

in AURA and other likely regulators of these histone genes. 
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1 INTRODUCTION
The 5′ and 3′ untranslated regions (UTRs) are the portions of an
mRNA located at each side of the coding sequence. UTRs contain
information for post-transcriptional regulation of mRNA, including
transport, stability, localization and access to translation, and hence
they largely determine the fate of mature mRNAs in the cell (Keene,
2007). Such events are mediated by hundreds of trans-acting factors:
primarily RNA binding proteins (RBPs), associated with all cellular
mRNAs to form ribonucleoprotein complexes (RNPs), but also non-
coding RNAs, of which the microRNA (miRNA) class has a clear
functional role.

The experimentally determined sequence and structure binding
constraints of UTRs vary widely between and within RBPs and
non-coding RNAs, and the regulatory interactions are globally
characterized by extreme complexity, since a regulator can bind to
multiple UTRs in multiple sites and vice versa. Moreover, the mRNA
trans–cis interaction network undergoes remarkable plasticity, since
the fate of an mRNA is determined by its temporally and spatially
dependent association to several regulators (Anderson et al., 2009).
Unraveling the molecular code behind this sophisticated process
is the key for: (i) understanding to what extent cell programs
are regulated by the degree of mRNA abundance, localization
and translation; (ii) deciphering how malfunction of trans-acting
factors or mutation of target sites is at the root of some severely
altered cellular phenotypes; (iii) identifying novel therapeutics
aimed at modulating mRNA dynamics in the window between
transport and translation. With this aim, a growing number of

∗To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first three authors
should be regarded as joint First Authors.

studies, both mechanistic and systems-based, provide information on
factors binding to UTRs. Nevertheless, integration of these data and
annotation of UTRs in genome browsers are lacking or insufficient.

The Atlas of UTR Regulatory Activity (AURA) fills this gap with
unprecedented richness and coverage, by collecting and combining
human UTR annotation and binding data from several sources.

2 DESCRIPTION AND USAGE
The increasing centrality of post-transcriptional regulation among
gene expression studies is witnessed by the recent release of
several specialized databases. RBPDB focuses on trans-acting
proteins by collecting semi-manually curated literature data about
RBPs and their demonstrated or predicted binding motifs (Cook
et al., 2011); Transterm is a regulatory sequence database that
aggregates heterogeneous lists of cis-acting motifs relevant for
post-transcriptional regulation (Jacobs et al., 2009); starBase and
CLIPZ store primary data of trans–cis interactions obtained by next-
generation high-throughput technologies (Khorshid et al., 2011).
In addition, more specialized resources allow the user to search
and analyze a limited number of particularly well-known regulatory
elements in greater detail (e.g. AREsite, Gruber et al., 2010, UTRdb
and UTRsite, Grillo et al., 2010).

Unlike these catalogs, AURA is designed to be a comprehensive
and centralized warehouse of human UTR mapped annotations,
both in terms of regulatory macromolecules and their site of
binding. AURA records non-redundant, direct and experimentally
assessed interactions of RNA binding proteins and microRNAs
with human UTRs. It contains an updated set of annotated
human UTRs (except those <5 bases) from the UCSC Genome
Browser (GRCh37/hg19 assembly), experimental literature data
(1041 publications) and consolidated information from several
specialized databases, including miRTarBase (Hsu et al., 2011),
miRecords (Xiao et al., 2009) and the aforementioned AREsite
and RBPDB resources. Currently, it covers 127 523 human UTRs,
corresponding to 63 138 transcripts encoded by 19 364 protein
coding genes. An extensive comparison between AURA and related
resources can be found in File S2 in Supplementary Material.

AURA is developed according to the convention that an RBP is a
protein showing a reviewed RNA binding domain, and according to
the rule that whenever positional data on mRNA regulatory binding
sites are made available, the coordinates of each binding site are
evaluated against the current genome annotation to verify the site
lies within or overlaps the spliced UTR of a transcript.

The current AURA release provides a checked evidence of
299 393 interactions between 100 RBPs and 33 836 UTRs, of 28 351
interactions between 303 miRNAs and 5885 UTRs and collectively
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of 56 910 cis-sites over 11 559 UTRs. Additional major attributes
enabling the characterization and/or assessment of the interactions
between UTRs and trans-acting factors include synteny information
and joint visualization of gene expression profiles for the interacting
partners. Furthermore, the assessment of an interaction between an
RBP and an UTR is improved by the cross-reference to the Protein
Human Atlas database (Berglund et al., 2008). A high-level schema
of the database can be found in Supplementary Figure S1.

2.1 Search
To account for the observation that a transcript can interact with
multiple RBPs as well as an RBP can interact with multiple
transcripts, AURA exhibits an intuitive interface through which the
user can query a ‘target locus’ or a ‘trans factor’, respectively. The
former query returns a list of genes whose HGNC gene symbol
or synonyms contain the searched term; each gene in the list is
annotated with its functional description, synonyms and UTRs.
Furthermore, an exon–intron map of the UTRs is provided in order
to allow proper discrimination between the different transcripts of a
gene. On the other hand, the latter query results in a disambiguation
list where all the trans-factors, whose names or synonyms contain
the searching term, are shown. To select the trans-factor of interest,
the user might benefit from genes’ short descriptions and functional
summaries. Upon selection,AURAreturns the list of its target UTRs.
These UTRs can be grouped by gene ontology (GO) slim categories
(http://www.geneontology.org/GO.slims.shtml) or by chromosome
mapping. Furthermore, the user can filter the results by selecting a
combination of supporting experimental evidences.

2.2 UTR view
Selected UTRs are shown in an ‘UTR view’, consisting of two
standard elements:

• The textual header containing: the chromosomal position and
length of the spliced UTR, the HGNC name and UniProt
description of the gene the UTR belongs to, and the link to
the HPA database. Also shown are the overall conservation,
which is the mean PhastCons single nucleotide conservation
score for the UTR (Fujita et al., 2011), and the corresponding
transcript half-life according to a transcriptome-wide stability
measurement (Friedel et al., 2009).

• The AURA sequence browser, based on the JBrowse
architecture (Skinner et al., 2009), contains all the annotations
related to a specific UTR, i.e. multiple tracks annotating the
UTR by evolutionary conservation, single nucleotide variation
and cis-regulatory binding sites. The ‘Conservation’ track
displays the score calculated for each nucleotide in the UCSC
46 species alignment (Fujita et al., 2011). In the ‘SNP’ track,
AURA integrates the single nucleotide polymorphisms (SNPs)
recorded in the dbSNP database (Sherry et al., 2001), allowing
the user to combine with the other annotation tracks to look for
variations of potential impact in post-transcriptional regulation.
The ‘RBP’ track contains the RBP binding sites, whereas
the ‘miR’ track contains the microRNAs binding sites. Two
further tracks are provided to show the trans-factors for which
only partial information is available. The ‘unknown mRNA
location’ track denotes the trans-factors known to bind a
transcript without any further mapping information. Instead,

the ‘unknown UTR location’ track indicates the trans-factors
whose UTR binding site is unknown. All the annotations in the
tracks are clickable: whenever the user clicks on an annotation,
a description page containing binding sites and cross-references
is shown. In this view, the minimal energy predicted secondary
structure (Fujita et al., 2011) together with the color-coded
nucleotide phylogenetic conservation, SNP locations and trans-
factor binding sites of the selected UTR can be optionally drawn
through VARNA (Darty et al., 2009).

Furthermore, AURA provides the user with multiple ways of
grouping gene expression results retrieved from the Gene Expression
Atlas (http://www.ebi.ac.uk/gxa/) and related to the gene locus of
the selected UTR. Results are reported in tables where a row
corresponds to a condition, whereas the columns, in order, show the
number of times the gene was observed to be up- or downregulated
with respect to its mean expression value and the significance of the
measure (log10 P-values). In case of trans-factor search, a joint table
containing gene expression experiments for both the gene coding for
the trans-factor and the gene bearing the bound UTR is shown.
Moreover, significant differences in common between regulator
and target are highlighted to emphasize possible correlations or
anti-correlations between them. Annotations concerning an UTR
can be extracted in textual format through the UTRCard feature;
furthermore, the whole MySQL database can be downloaded from
a dedicated page. A last way of mining the data contained in
AURA is through the AURA Mart, which is available at the website
and provides all query functionalities offered by the well-known
BioMart platform (http://www.biomart.org).

3 FUTURE DEVELOPMENT
AURA gathers data by aggregation, integration and summarization
of knowledge from scientific literature and specialized databases.
Future developments include (i) the integration of the UTR mapping
catalog according to RNA-Seq data; (ii) the enrichment of the trans-
factor catalog with long non-coding RNAs; (iii) the expansion of
the UTR regulatory annotations to include internal ribosomal entry
sites and upstream open reading frame (ORFs); (iv) the inclusion of
annotations coming from genome-wide RNAi-based gene silencing
phenotypic screens; and (v) the improvement of the search engine
as well as of the visualization and retrieval systems.

Funding: This work is supported by the University and Scientific
Research Services of the Autonomous Province of Trento.

Conflict of Interest: none declared.

REFERENCES
Anderson,P. et al. (2009) RNA granules: post-transcriptional and epigenetic modulators

of gene expression. Nat. Rev. Mol. Cell Biol., 10, 430–436.
Berglund,L. et al. (2008) A gene-centric human protein atlas for expression profiles

based on antibodies. Mol. Cell Proteomics, 10, 2019–2027.
Cook,K.B. et al. (2011) RBPDB: a database of RNA-binding specificities. Nucleic Acids

Res., 39 (Suppl. 1), D301–D308.
Darty,K. et al. (2009) VARNA: interactive drawing and editing of the RNA secondary

structure. Bioinformatics, 25, 1974–1975.
Friedel,C.C. et al. (2009) Conserved principles of mammalian transcriptional regulation

revealed by RNA half-life. Nucleic Acids Res., 37, e115.
Fujita,P.A. et al. (2011) The UCSC Genome Browser database: update 2011. Nucleic

Acids Res., 39 (Suppl. 1), D876–D882.

143

 at U
niversita degli Studi di T

rento on June 28, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


[16:33 8/12/2011 Bioinformatics-btr608.tex] Page: 144 142–144

E.Dassi et al.

Grillo,G. et al. (2010) UTRdb and UTRsite (RELEASE 2010): a collection of sequences
and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucleic
Acids Res., 38, D75–D80.

Gruber,A.R. et al. (2011) AREsite: a database for the comprehensive investigation of
AU-rich elements. Nucleic Acids Res., 39, D66–D69.

Hsu,S.D. et al. (2011) miRTarBase: a database curates experimentally validated
microRNA-target interactions. Nucleic Acids Res., 39, D163–D169.

Jacobs,G.H. et al. (2009) Transterm: a database to aid the analysis of regulatory
sequences in mRNAs. Nucleic Acids Res., 37, D72–D76.

Keene,J.D. (2007) RNA regulons: coordination of post-transcriptional events. Nat. Rev.
Genet., 8, 533–543.

Khorshid,M. et al. (2011) CLIPZ: a database and analysis environment for
experimentally determined binding sites of RNA-binding proteins. Nucleic Acids
Res., 39 (Suppl. 1), D245–D252.

Sherry,S.T. et al. (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids
Res., 29, 308–311.

Skinner,M.E. et al. (2009) JBrowse: a next-generation genome browser. Genome Res.,
19, 1630–1638.

Xiao,F. et al. (2009) miRecords: an integrated resource for microRNA-target
interactions. Nucleic Acids Res., 37 (Suppl. 1), D105–D110.

144

 at U
niversita degli Studi di T

rento on June 28, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


HYPER CONSERVED ELEMENTS IN VERTEBRATE mRNA 3’-UTRs REVEAL A 

TRANSLATIONAL NETWORK OF RNA BINDING PROTEINS CONTROLLED BY 

HUR 

 

Erik Dassi1, Paola Zuccotti2, Sara Leo1, Alessandro Provenzani3, Paola Riva2 and 

Alessandro Quattrone1,* 

 

 

1Laboratory of Translational Genomics, Centre for Integrative Biology, University of 

Trento 

 

2 Department of Medical Biotechnology and Translational Medicine, University of Milan 

 

3Laboratory of Genomic Screening, Centre for Integrative Biology, University of Trento 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* To whom correspondence should be addressed. 



ABSTRACT 

 
 

Almost unknown is the map of the posttranscriptional networks controlling gene 

expression in eukaryotes, and unclear is its evolution and the relative role in it of 

RNA-based and protein-based regulative factors. Here we introduce a simple 

approach relying on both phylogenetic sequence sharing and conservation in the 

whole mapped 3’UTRs of vertebrate species to gain knowledge on core 

posttranscriptional networks. The identified human Hyper Conserved Elements 

(HCEs) were predicted to be preferred binding sites for RNA binding proteins 

(RBPs) and not for non coding RNAs (ncRNAs), namely microRNAs and long 

ncRNAs. To test for exploitation of the HCE map, we found that it identified a well-

known network posttranscriptionally regulating histone mRNAs, and that 

promoted the discovery of a previously unknown translational network. We 

experimentally verified this last network, composed of RRM-type RBP mRNAs 

positively controlled by the RRM-type RBP HuR. Analysis of HCE distribution in 

the validated HCE 3’UTR map shows a profile of prevalently small clusters 

separated by unconserved intercluster RNA stretches, predicting the formation in 

3’UTRs of discrete small ribonucleoprotein complexes.  

We therefore suggest RBP-mRNA networks at the root of posttranscriptional 

control of gene expression in vertebrate cells, and provide a means to get 

insights into their structure. 

 

 

 

 

 
 
 
 

 

 

 

 



INTRODUCTION 

 

The 3’ untranslated region (3’UTR) of mRNAs is a fundamental mediator of the 

processes affecting posttranscriptional regulation of gene expression (1, 2), exerted 

through the binding of RNA binding proteins (RBPs) and non-coding RNAs (ncRNAs). 

While a subclass of ncRNAs, the microRNAs (miRNAs), bind the mRNA 3’UTR in a 

ribonucleoprotein complex with AGO proteins to always negatively control target 

mRNAs (3, 4, reviewed in 5), 3’UTR interacting RBPs can exert complex effects, 

influencing mRNA transport, localization, polyadenylation state, rate of degradation, and 

finally rate of translation through regulated assembly/disassembly of actively recycling 

polysomes (6). In this way, RBPs behave as topological controllers of gene expression 

and can influence it both negatively and positively. 

Mechanistic studies have helped to identify dozens of single cis-elements in 3’UTRs 

bound by specific RBPs and miRNAs (7, 8), sometimes with defined consequences on 

gene expression and cell phenotypes. In vitro (9, 10, 11) or in vivo (12, 13, 14) high-

throughput approaches are also starting to provide transcriptome-wide maps of RBP 

and miRNA regions of interaction with mRNAs, allowing us to trace the first mRNP 

networks in yeast (15,16,17) and in vertebrates (18,19,20). 

Trans-factors bind to mRNA UTRs in short continuous regions, often corresponding to a 

defined secondary structure and a recurrent consensus sequence. If the same among 

species, these trans-factor footprints should determine a local increase in sequence 

homology. On the assumption that in a purifying (negative) selection context highly 

conserved noncoding sequences in orthologous protein-coding genes would point to 

elements potentially endowed with regulatory activity, it would be possible to obtain 

information regarding the core networks involved in mRNA regulation by isolating the 

regions bearing an high degree of sequence evolutionary conservation in UTRs. This 

holds also because no selective pressure for protein functionality applies to UTRs, 

which are thus unconstrained to change sequence or structure just to fulfill their 

regulatory purpose.  

On a genomic scale, the identification of putative functional elements on the basis of 

evolutionary conservation has been mostly based on the comparison between human, 



rat and mouse genomes, with the definition of the so-called Ultra Conserved Regions 

(UCRs) as 200bp identical DNA stretches. This procedure selects for mostly nonexonic 

portions of the genome (21, 22, 23, 24), now collected in a database (25). Only a very 

limited number of these UCRs lies in mRNA UTRs. The same approach has been 

recently applied to the transcriptome (26) as defined by a library of expressed sequence 

tags. The identified 3096 sequences clustered in 96 segments, of which 23 were fully in 

the CDS and 80 overlapped or were entirely in UTRs. Out of UCRs, specific mining of 

UTRs for regions of high conservation has been pioneered almost ten years ago (27) by 

identifying conserved motif cores and extending them up to a defined threshold, or by 

computing a motif conservation degree based on pairwise alignment homology 

frequency (28). In each of these two studies four mammalian species were compared 

for the small number of UTRs known at that time. Genome-wide multiple alignments of 

several species has been rendered possible in recent years by the increased 

sequencing capabilities (29, 30), but they have never been applied to specifically 

address the identification of potentially functional sites in UTRs. In vertebrates, 3’UTRs 

are longer and less conserved than 5’UTRs, and surprisingly they are modestly variable 

in length between species with respect to the observed intraspecies length distribution 

(31). This could suggest the existence of unknown phylogenetic constraints acting on 

their length, like long-range interactions among functional elements. 

We introduce here an approach for identifying hyper conserved elements (HCEs) in 

3’UTRs of mRNAs, weighting sequence conservation information and phylogenetic 

distance on 44 vertebrate species, from human to lamprey. The approach does not 

require the assumption of an a priori sequence length, takes limited computation time 

and can be used for any desired reference species and species subgroup. Its 

application to human 3’UTRs led us to the mapping of more than three thousand HCEs, 

which occupy less than 0.5% of the total 3’UTR sequence space. These regions have 

peculiar properties, including a clustered pattern of recurrence, and show a potential to 

localize functional cis elements belonging to highly conserved mRNA control networks. 

To demonstrate the usefulness of HCEs in prioritizing sequences for further analysis, 

we used them to identify a network of mRNAs coding for RBPs whose 3’UTRs are 



bound by the HuR RBP, and we proved this network to be functional in translational 

regulation of gene expression. 

 

 

 

MATERIALS AND METHODS 

 

HCE identification pipeline. 

Human 3’ UTR sequences were fetched from the hg18 assembly in the UCSC database 

(32) and all UTRs shorter than 5 bases were filtered out, as they are likely to derive 

from annotation error. The Sequence Conservation Score (SCS) for each base of the 

UTRs, as computed by phastCons (33), was retrieved from the same source along with 

the 44-way Multiz alignment in MAF format for the relevant regions of the genome. We 

computed the Branch Length Score (BLS) (34) as the fraction of the length of the total 

phylogenetic tree branches covered by the alignment of each exon composing an UTR, 

employing the lowest BLS of all exons as the BLS for the whole UTR. The final 

conservation score, which we term hyper conservation score (HCS), was computed for 

each base of the UTRs as the weighted average of SCS and BLS. Weight for both 

components was set at 0.5, even though our pipeline allows changing these weights to 

obtain a different combination of the two features. A schematic view of the pipeline can 

be found in Figure 1A. 

A threshold was set on average HCSs under which sequences should not be 

considered as hyper conserved. The threshold was chosen to be 0.85 as, by weighting 

SCS and BLS equally, that would require one part of the score to be at least 0.7 when 

the other part is 1.0 and vice versa. This stringent constraint guarantees that only the 

most conserved regions of the UTRs are actually selected as Hyper Conserved 

elements (HCEs). 

HCEs were identified in 3’UTRs by means of a two-step algorithm: 

1. First, a search was run in every UTR for five-base seeds which have an almost 

complete conservation sequence-wise (SCS greater or equal than 0.95) and which 

average HCS is not less than 0.85. 



2. Then, these seeds were extended upstream and downstream into the UTR, one base 

at a time, for as long as the average HCS of the HCE did not fall below the preset 

threshold. 

Resulting HCEs were eventually merged to remove overlaps and duplicates, which 

could occur in the case of very high conservation spanning a substantial part, if not the 

whole, UTR. A schematic view of the algorithm can be found in Figure 1A. 

 

Construction of the non-HCEs datasets. 

In order to compare HCEs properties with respect to non-HCE UTR portions, we built 

1000 datasets composed by an equal number of non-HCE sequence elements. Via a 

Python script we randomly chose UTR and start position; the region length was drawn 

from the HCE length distribution, in order to mimic the HCE size ranges. 

 

HCE intersection with binding sites of ncRNAs. 

Experimentally validated binding sites of miRNAs were extracted from the SQL version 

of AURA (18), available on the download page of the website. The dataset contained 

15560 binding sites regarding a total of 88 distinct miRNAs. Coordinates of these sites 

were intersected with HCEs and only sites falling completely inside an HCE were kept. 

HCEs and non-HCEs sites were also intersected with miRNA binding sites predicted by 

three popular tools, miRanda (35), PicTar (36) and PITA (37).  The content of lncRNAdb 

(38) was downloaded from the website and filtered to keep only human lncRNAs. A 

BLAST (39) database was built with these sequences and a search was performed with 

HCEs as query, with the BLAST “task” parameter set as “blastn-short”; only matches 

with a maximum e-value of 0.05 were considered as true positives. 

 

HCE intersection with RBP Position-Frequency Matrices. 

Position-Frequency Matrices (PFMs) for 69 RBPs were extracted from the RBPDB 

database (40). HCE and non-HCE sequences were matched against these PFMs via 

the BioPython functions dedicated to this task. We retained only matrices longer than 4 

bases (for a total of 29 matrices) and filtered out all matches with score lower than 80%. 

 



HCE intersection with the mRNA-protein occupancy profile. 

T>C conversion profiles were downloaded from the GEO database (series GSE38355) 

and filtered to include only bases falling into 3’UTRs. HCEs and non-HCEs bases were 

intersected with the conversion profiles, quantiles were computed and distributions of 

scores were tested for significant differences by means of a t-test. For the non-HCE 

case, the iteration giving the best results was used to compare with HCE scores 

distribution. 

  

Overrepresentation analysis. 

All genes which UTRs contained at least one HCEs were extracted and input to the 

DAVID Functional Annotation tool (41) to identify the overrepresentation of functional 

terms contained in various ontologies (selected resources were Gene Ontology (GO) 

Molecular Function, Biological Process and Cellular Component; IPR; SMART; PFAM, 

SP_PIR_keywords, Biocarta, KEGG and OMIM disease). Estimation for the terms p-

value was Bonferroni corrected and only terms for which the p-value was under 0.05 

were included in final results; terms were grouped according to their similarity via the 

DAVID Functional Clustering tool, using high-stringency clustering criteria. 

  

Identification of the SLBP binding sites. 

Sequences of the HCEs belonging to genes annotated to be part of the chromosome 

assembly functional group were aligned by means of ClustalW2 (42) along with the 

canonical SLBP binding motif to detect if these HCEs actually contained the latter. The 

multiple alignment algorithm was run with its default set of parameters. 

 

Sequence motif search. 

Sequence motif search inside HCEs was performed by means of the Weeder algorithm 

(43). Motif length was set to be 6, 8, 10 or 12 nucleotides and the minimum occurrence 

frequency of the motif was set to 25% of the sequences composing the dataset. We 

considered as relevant all the motifs reported by Weeder as highest ranking. 

  

Secondary structure motif search. 



The secondary structure folding of the HCEs contained in the RRM-type RBP mRNA 

group were predicted via the RNAfold program of the Vienna RNA package (44). Motifs 

were searched over these structures by means of the RNAforester tool (45), run in the 

local, multiple alignment mode. 

 

HuR overexpression and silencing. 

MCF-7 cells were transiently transfected using Lipofectamine2000 (Invitrogen, 

Carlsbad, CA, USA) with a pT-REX mammalian expression vector coding fror human 

HuR (55) and with the mock empty vector as control. The same cells were infected with 

lentiviral transduction particles bearing shRNAs (Sigma Aldrich, Mission shRNA) against 

the HuR sequence, following the manifacturer protocol and testing four different shRNA 

sequences. Non-target control transduction particles were used to infect MCF-7 cells as 

negative controls. Stably silenced clones were selected with puromycin. The most 

effective pool, KD1, was derived from the TRCN0000017273 shRNA. Sequences are 

reported in supplementary material. 

  

Cell culture and treatments. 

Human breast cancer MCF-7 and MCF-7 shHuR cells were cultured in DMEM with 10% 

FBS, 100 U/ml penicillin-streptomycin and 0.01 mM L-glutamine (all media ingredients 

were obtained from Sigma-Aldrich, AS, Oslo, Norway). Cultures were maintained at 

37°C in a 5% CO2 incubator. Puromycin (final concentration 2.5µg/µl) was used for 

selection and maintenance of stable short hairpin RNA (shRNA) transfectants. All 

reagents were purchased from Sigma. 1,5 x106  MCF-7 and MCF-7 shHuR cells were 

seeded into two 10cm Petri dishes for polysomal RNA extractions and into one 10cm 

Petri dish for total RNA extractions. Total RNA and polysomal extractions were 

performed 72 hrs after seeding; all the experiments were in biological triplicate. 

  

RNA-Protein pull-down assay. 

RNA probes for HuR (AUGUAUUGUUUAUACAU), Degenerated 

(AUGUAUNNNNNAUACAU), Dblmut1 



(AUGUAUGGUUGAUACAU), Dblmut2 (AUGUAUUCUUAAUACAU),  YB1 

(AUGUAUGGUCUGCAUACAU) and PTB (AUGUAUCUUUCUUAUACAU) have been 

synthesized by Sigma using 0,05µmol Synthesis Scale and HPLC purification with a 5’ 

biotinilated DNA polyC linker.  Their predicted secondary structure folding is shown in 

Figure 3. Biotin pull-down assays were performed by incubating 40μg of MCF-7 cell 

lysates with 1µg of biotinylated probes for 1 hr at room temperature. The complexes 

were isolated using 100µl of paramagnetic streptavidin-conjugated Dynabeads (Dynal®, 

Invitrogen, Carlsbad, CA, USA), and bound proteins in the pull-down material were 

analyzed by Western blotting using antibodies recognizing HuR (Santa Cruz, CA, USA), 

YB1 (Abcam, Cambridge, UK) and PTB (Santa Cruz, CA, USA). After secondary-

antibody incubations, the signals were visualized by chemiluminescence (Amersham 

Biosciences, GE Healthcare, UK). 

  

Total RNA extraction. 

Total RNAs from treated and non-treated cells was isolated using the TRIzol reagent 

(Invitrogen, Carlsbad, CA, USA), according to the manufacturer’s instructions. Purity of 

RNAs (A260/A280 value of 1.8–2.1) and concentration were measured using the 

Nanodrop spectrophotometer. To eliminate DNA contamination, total RNA was treated 

with DNase I (RNase-Free DNase Set, Qiagen) and then purified with RNeasy kit 

(Qiagen, Hilden, Germany). 

  

Polysomal RNA extraction. 

MCF-7 cells, treated as described above, were incubated for 3 minutes with 0.01mg/ml 

cycloheximide at 37°C, then the plates were put on ice. The media was removed and 

the cells were washed twice with cold phosphate buffer saline (PBS) + cycloheximide 

0.01mg/ml. Cells were directly lysed on the plate with 300µl cold lysis buffer [10mM 

NaCl, 10mM MgCl2, 10mM Tris–HCl, pH 7.5, 1% Triton X-100, 1% sodium 

deoxycholate, 0.2U/ml RNase inhibitor (Fermentas, Burlington, CA), 1mM dithiothreitol 

and 0.01mg/ml cycloheximide], scraped and transferred to an Eppendorf tube. The 

extracts were centrifuged for 5 min at 12000g at 4°C. The supernatant was frozen in 

liquid nitrogen and stored at -80°C or loaded directly onto a 15–50% linear sucrose 



gradient containing 30mM Tris–HCl, pH 7.5, 100mM NaCl, 10mM MgCl2, and 

centrifuged in an SW41 rotor for 100 min at 180000g. Fractions (polysomal and sub-

polysomal) were collected monitoring the absorbance at 254 nm and treated directly 

with 0.1 mg/ml proteinase K for 2 hours at 37°C. After phenol–chloroform extraction and 

isopropanol precipitation, polysomal and sub-polysomal RNAs were resuspended in 

30µl of RNAse free water and then repurified with RNeasy kit (Qiagen, Hilden, 

Germany). 

  

Quantitative RT-PCRs. 

For quantification of mRNAs, a two-step Taq-Man real-time PCR analysis was 

performed, using probes obtained from Applied Biosystems (Foster, CA, USA). cDNA 

was synthesized from total and polysomal RNA (1µg) in 20 µl reactions, using the 

iScript cDNA Synthesis Kit from BioRad (cat n°#170-8891). The reverse transcriptase 

reaction was performed by incubating the samples at 25°C for 5 min, 42°C for 30 min, 

and 85°C for 5 min. The PCR reactions (10µl) were performed on 20ng of cDNA, the 

mix were prepared with 5X KAPA FAST probe (cat n° KK4702, Kapa Biosystems, 

(Boston, MA, USA) and the 20X appropriate Taq-Man probe. The PCR mixtures were 

incubated at 95°C for 3 min, followed by 39 cycles of 95°C for 30 s and 60°C for 20 s 

and 72°C for 60 s. mRNA levels were calculated based on the ∆CT method, using RPL0 

and HPRT1 as reference genes. All PCRs were performed in triplicate using an iQ5 

RealTime PCR detection system (Bio-Rad, Hercules, CA, USA). 

  

Ribonucleoprotein Immunoprecipitation. 

Ribonucleoprotein Immunoprecipitation (RIP) was performed using human HuR 

overexpressing MCF-7 cell line lysates. Cell extracts were resuspended in NT2 buffer 

(50mM Tris HCl pH=7.5, 150mM NaCl, 1mM MgCl2, 0,05% NP40, 1U/µl Ribolock 

(Fermentas, Glen Burnie, MD, USA), 2mM DTT, 30mM EDTA) supplemented with a 

protease inhibitor cocktail (P8340, Sigma), chilled at 4°C. The cell lysates were added 

to the Protein G Dynabeads (Dynal®, Invitrogen, Carlsbad, CA, USA) at 50µl 

beads/250µl lysate. Beads were previously incubated with cell extracts and then bound 

with 5µg of mouse monoclonal anti-HuR antibody (Santa Cruz, sc-71290, CA, USA) or 



mouse IgG (Millipore, NI03-100UG). Associated RNA was extracted using 

phenol:chloroform:isoamyl-alcohol (25:24:1) and precipitated with ethanol. RNA pellets 

were resuspended in 10µl RNA-grade water and, after DNAse treatment (Fermentas, 

Glen Burnie, MD, USA), cDNA was obtained from each samples as previously detailed. 

Real Time quantitative PCR was performed in duplicate using the C1000 (Bio-Rad, 

Hercules, CA, USA) thermal cycler for 40 cycles, and results were evaluated by cycle 

threshold (Ct) values. Cyclin A mRNA was quantified as positive control, being a known 

HuR target. Obtained data were the average of at least three independent experiments. 

  

Construction of the HuR / RRM-type RBP mRNA network. 

HuR binding sites as identified in HEK293 cells by a recent PAR-CLIP study (46) were 

downloaded from GEO, accession number GSE29943. Sites were intersected with 

UCSC 3’UTR coordinates (hg18 assembly) and extracted along with the genes mapping 

to these 3’UTRs. Enrichment was computed by counting the number of genes for each 

domain found in the resulting genes list and by performing a Fisher test by means of the 

R statistical environment. The HuR RRM-type RBP target mRNA network was built by 

adding all RRM-type RBP mRNAs found to be bound by HuR in the PAR-CLIP study to 

our HCE-containing 23 RRM-type RBP mRNAs. An edge was added between HuR and 

its target mRNA to indicate the regulatory relationship. Intersections between the PAR-

CLIP-derived 89, our 23 and the 6 validated by us RRM-type RBP mRNAs were 

computed and highlighted by employing different colors and shapes of the nodes, as 

shown in Figures 5B and 5C. 

 

 

 

 

 

 
 

 
 
 
 



RESULTS 
  
HCEs in the mRNA 3’UTRs are rare, short, highly structured and organized in 
clusters. 
  
We aimed at identifying regions of exceptional evolutionary conservation in the 3’ UTRs 

of the human exome by a seed extension strategy. 3’UTR HCEs (3’UTR Hyper 

Conserved Elements) were derived from the hg18 assembly of the human genome 

(hg18, The Genome Sequencing Consortium) as reported by the UCSC database (32) 

by a custom pipeline (Figure 1A). We took advantage of the 44-way vertebrate UCSC 

alignment (32), generated by first computing pairwise alignments for each species using 

BLASTZ (47) and then merging them with MULTIZ (48). From this alignment we derived 

the phastCons sequence conservation score (SCS, 33) for each base of the exome 

annotated as 3’UTR. We also calculated for each base the Branch Length Score (BLS), 

defining the degree of sharing of the conservation among the vertebrate species 

considered (34), in our case of entire 3’UTRs. We firstly restricted our analysis to short 

footprints of very high phylogenetic invariance, represented by fully conserved 5-bases 

seeds (SCS >= 0.95 and BLS >= 0.85). We then extended these seeds upstream and 

downstream until they reached a preset threshold (0.85) on the conservation measure 

we called HCS (Hyper Conservation Score, computed for each base of the 3’UTRs as 

the weighted average of SCS and BLS). Weight for both components was set at 0.5, 

which we identify as the best measure (changing these weights would change the 

relative importance of one of the two features, see Supplementary Material). After 

preliminary filtering, the dataset obtained from the UCSC database contained 55444 

3’UTRs, each one corresponding to a different transcript (including all annotated mRNA 

splicing variants). The 3’UTR HCE identification algorithm gave 3149 HCEs, belonging 

to 1010 3’UTRs, which corresponded to 877 genes. At least one 3’UTR HCE is present 

in only 1,8% of the total human 3’UTRs, and collectively HCEs cover only 0.47% of the 

3’UTR space, making them extremely rare. 3’UTR HCEs have an average length of 100 

bases, but their length distribution (Figure 1B) is such that more than 77% of their total 

number is shorter, being only 4.5% of them over 500 bases. The subset of HCEs 

shorter than 100 bases have an average length of 23 bases, with 25% of them at most 

8 bases long. Their UTR coverage (Figure 1C) is instead prevalently low (25% or less of 



each 3’UTR) or high (75% or more of the 3’UTR). Together, these distributions show 

that 3’UTR HCEs are relatively short and that they either occupy a small portion of a 

3’UTR or the most of it. These elements are much richer in AU than in GC bases 

(Figure 1D, p-value 2.2E-16), and are by far more highly structured than random 3’UTR 

sequences of the same length, being the structural density defined by the fraction of 

unpaired bases in the HCE secondary structure (Figure 1E, p-value 1.2E-13). Also their 

localization in the 3’UTRs has interesting properties: when multiple HCEs are present 

on an UTR, these have a clear tendency to localize in clusters, as indicated by the very 

small inter-HCE distance, 25 bases or less (Figure 1F), and to be distributed along the 

3’UTR with a preference for its beginning, with 25% of the HCEs starting on the 3’UTR 

10% initial bases (Figure 1G). To provide a snapshot on HCE architecture diversity, we 

distributed HCE-bearing 3’UTRs into four classes, depending on their number and 

coverage. The classes reported in Figure 2A efficiently represent this diversity. We then 

focused on the HCE clustered pattern because it could be an effect of an higher order 

structure of trans-factors. We thus computed the amount of HCEs lying in clusters with 

intracluster distances (maximum distance between two contiguous HCEs in a cluster) 

ranging from 5 to 40 bases. As shown in Figure 2B, a plateau starts at 20 bases, setting 

therefore a threshold. At this distance, 81% of the HCEs belong to clusters of 2 or more 

elements (the figure already excluded the 577 HCEs which are unique on their 3’UTR). 

We thus propose a model, reported in Figure 2C, for which 3’UTRs contain clusters of 

binding sites separated by each other, possibly delineating a scenario in which groups 

of trans-factors interact with each other in complexes spaced by unconserved regions of 

unbound 3’UTR. 

 
 
3’UTR HCEs contain putative binding sites for RBPs and not for ncRNAs. 
  

The main question now was what types of potentially functional cis-acting elements are 

found in 3’UTR HCEs. To test for miRNAs, we compared the 3’UTR HCEs with a set of 

15560 experimentally determined 3’UTR miRNA binding sites (produced by 88 miRNAs 

and involving 2232 3’UTRs) extracted from the AURA database (18). Out of the total 

3149 HCEs, only 51 (1.6%) of them was found to contain one or more miRNA binding 

sites, which were 60 in total involving 33 different miRNAs. These data resulted in whole 



3’UTRs being more enriched in miRNA binding sites than HCEs (Fisher test p-value = 

2.37E-10). To verify if this small number was close to random occurrence, we performed 

the same procedure on 1000 sets of randomly derived 3’UTR segments, which we call 

non-HCEs, with the same length distribution and of the same size as the HCEs. The 

maximum of the distribution of these iterations gave 40 unique miRNA binding sites 

involving 47 different miRNAs, which confirms our hypothesis. We eventually proceeded 

to predict miRNA binding sites in HCEs and non-HCEs by means of three popular 

prediction tools [miRanda (35), PicTar (36), PITA (37)]. Compared to the best non-HCE 

iteration, the number of miRNA binding sites in HCEs is always heavily depleted (Fisher 

test reports enrichment of non-HCEs sites with p-value lower than 2.2E-16 in all three 

cases). To check also for other ncRNAs we intersected 3’UTR HCEs with lncRNAdb 

(38), a catalog of eukaryotic long non-coding RNAs (lncRNAs). A BLAST search yielded 

151 statistically significant putative binding sites at least 12 bases long, involving 132 

unique HCEs (4.2%) and 32 different lncRNAs. Again among the 1000 non-HCEs 

iterations, the BLAST search yielded, for the iteration giving the best results, 209 

statistically significant putative lncRNAs binding sites at least 12 nucleotides long, 

involving 167 unique non-HCEs (5.30%) and 39 different lncRNAs. Therefore, HCEs are 

unlikely to be preferred sites for miRNAs and lncRNAs. 

We then scanned the HCE and the non-HCE lists for matches with the position-

frequency matrixes (PFMs) extracted from the RBPDB resource (40), which collects the 

known experimental consensi for RBP binding to mRNAs. Considering only matches 

with a minimum score of 80% and a matrix length greater than 4 (leaving us with 29 

matrices), we consistently obtained at least 1.8 times more matches in the HCE than in 

the non-HCE sets (17173 matches for HCEs vs 9443 matches for the best iteration of 

non-HCE sequences). Enrichment of RBP sites in HCEs with respect to non-HCEs is 

also suggested by the Fisher test (p-value=5.85E-11). If really 3’UTR HCEs identify 

mainly RBP binding sites, they should at least partially span an experimentally 

determined RBP mRNA occupancy profile. A recent PAR-CLIP study defines, as T>C 

conversion scores (14), contact sites for RNA-interacting proteins, including RBPs, in 

the mRNA transcriptome of proliferating HEK293 cells (49). The distributions of T>C 

conversion scores for each base falling in 3’UTR HCEs and non-HCEs were tested 



against each other for statistically significant differences. Indeed, HCEs were found to 

have a significantly higher level of T>C scores than non-HCEs, with the performed t-test 

producing a p-value lower than 2.2E-16, and with a median T>C score of HCEs of 5.5 

versus 4.5 of non-HCEs. This suggests that 3’UTR HCEs are enriched for RBP binding 

sites. 

 

 
3’UTR HCEs identify the ancient control mediating histone mRNA fate. 
  
In order to appreciate the spectrum of biological functions expressed by 3’UTR HCE 

containing genes, we performed an ontological enrichment on the 877 genes bearing at 

least one HCE in the 3’UTR. We identified three gene groups endowed with high 

significance (Supplementary Figure S1). The first group is composed by 78 genes 

involved in chromatin structure (terms “nucleosome”, “chromatin assembly”, “DNA 

packaging”), including 51 (53.6%) of the 95 histone genes present in the human 

genome. This wide histone component of the signature is that producing the strongest 

over-representation signal, because the terms remain highly significant even when 

performing the ontological enrichment after having removed the non-histone genes. It is 

well known that all histone gene mRNAs have a short 3’UTR, lacking a poly(A) tail, 

which is bound by the stem-loop binding protein (SLBP) in the cytoplasm to stabilize 

these mRNAs and mediate their nuclear processing and their translation (50). 

Alternative to polyadenylation, this mechanism is very ancient and is conserved over a 

wide evolutionary distance (51). We therefore hypothesized that the HCEs in the 

histone 3’UTRs were SLBP binding sites. In order to verify this conjecture, we aligned 

the known SLBP binding motif (52) to these HCEs and found that a considerable 

fraction of the HCEs (75 out of 127) contain a close, if not perfect, match to the SLBP 

motif (Supplementary Figure S2). Therefore, the metrics we devised to select for HCEs 

precisely identifies cis-elements involved in a conserved and well demonstrated 

posttranscriptional regulatory process. We assumed this finding as an effective 

benchmark for the ability of 3’UTR HCEs to point to circuitries of phylogenetically old 

posttranscriptional control. 

The second gene set of high statistical significances is about the broad activity of 

transcription, being prevalent in the signature its repression. The 137 identified genes 



suggest that transcription factors as EPC1, TFAP2D and YY1 and co-transcriptional 

repressors as FOXP2, MEIS2 and EZH2 can be heavily controlled post-transcriptionally, 

being their 3’UTR almost entirely highly conserved. Finally, the third emerging gene set 

came from the protein domain annotation, giving the RNA Recognition Motif, the RRM. 

We also divided the HCEs on the basis of the four classes identified, to see again if they 

had a preferential representation of themes. We found that the “chromatine structure” 

theme is enriched only in the “lone island” category (Figure 1H), further confirming that it 

emerges from the histone mRNA SLBP binding site (51). Transcriptional regulation 

terms appear instead enriched in the “sparse frequent” and “fully covered” groups, while 

both the “dense frequent” and “fully covered” 3’UTR groups, i.e. those mostly HCE-rich, 

point to a significant over-representation (p-value = 1.09E-05) for mRNA-related 

activities (GO terms: “RNA binding”, “mRNA processing”; domains: KH, RRM). 

 

A hyperconserved motif in the 3’UTR of 19 RRM-type RBP mRNAs bound by HuR. 
 

Given the recurrent tendency of the enrichment analysis to select the mRNAs of RRM-

type RBPs as preferred sites for 3’UTR HCEs, we further explored these mRNAs. The 

RRM is the evolutionarily most successful among the solutions appeared to mediate 

interaction between RNA and proteins (53). Of the 23 enriched genes whose mRNA 

bears at least one HCE and whose protein product contains RRM domains, 17 were 

experimentally verified RBPs and 16 had an RRM-only architecture (Supplementary 

Table 1). Their mRNAs are characterized by 3’UTRs of all four types, with a prevalence 

of full (66.7%) and sparse frequent (19%) types, with lone island and dense frequent 

types representing respectively just 9.5% and 4.7% of the 3’UTRs. RBPs have been 

shown in the yeast to be nodes of highly interconnected networks of posttranscriptional 

regulation (15, 17), but very few is known about vertebrate RBP networks. We therefore 

focused on the mRNA 3’UTR HCEs of this protein group, to predict RBPs coregulating 

them. We scanned the HCEs for hidden common elements by the Weeder algorithm 

(43), searching for 6-to-12 bases long motifs with the tolerance of 1-to-4 mismatches 

which are observed in at least 25% of the HCEs. The scan produced as best score two 

12 bases sequences that can be considered variants of the same sequence motif, as 



they differ only in two positions. We speculated that this sequence motif could represent 

an RBP binding site, since a number of these proteins are known to have a preference 

for short unstructured sequences or loops in stem-loop secondary structures (53). We 

then searched for secondary structure motifs in the same 3’UTR HCEs with the RNAfold 

(44) and the RNAforester (45) algorithms. This analysis resulted in a 17-bases structural 

motif in the form of a hairpin, whose core loop had a good correspondence (7 out of 12 

bases for both sequence motifs; 9 out of 12 bases for sequence motif 2) with the 

previously identified sequence motifs. Combining the results of both sequence and 

structure motif searches produced a remarkable concordance, as shown by the 

alignment in Figure 3A, eventually leading us to a hairpin motif shared by 18 out of the 

23 RRM genes reported in Figure 3B. The instances of the hairpin motifs in the mapped 

3’UTRs of the 18 genes resulted to be up to four per 3’UTR, with 13 of them harboring 

only one instance (Figure 3C). We then noticed that this motif had a sequence quite 

similar to an already known binding site for the HuR (ELAVL1) protein (11). In order to 

verify that our motif was effectively interacting with HuR, we performed a protein 

pulldown assay, followed by a western blot with an anti-HuR antibody. Along with the 

putative HuR motif, we adopted two positive controls (the YB1 and PTB known binding 

sites), and two mutated and one degenerated loop probes for assaying specificity. The 

probe design is exemplified in Figure 4A. As reported in Figure 4B, HuR indeed binds to 

the probe corresponding to our shared motif. Mutated and degenerated probes show 

very little recovery of HuR, suggesting that the interaction is specific and depending on 

the loop sequence and size. The positive controls, testifying the correctness of the 

procedure, are shown in Figures 4C and 4D. 

 

HuR controls a translational network of RRM-type RBPs. 

 

With the motif confirmed to be recognized by HuR, we next sought to understand 

whether HuR really had a preference for RRM-containing RBP mRNAs, with respect to 

mRNAs of RBPs bearing other types of RNA binding domains and to mRNAs of 

proteins bearing the most frequent domains in the genome. To calculate enrichments 

we took advantage of a recently published HuR PAR-CLIP, therefore unbiased, dataset 



(49). We extracted all HuR 3’UTR binding sites from this dataset and derived the 

corresponding genes. We then computed, by means of the Fisher test, the enrichment 

in this gene set for: (a) proteins containing the most common experimentally verified 

RNA binding domains (zinc finger C2H2, KH, SAM, RRM); (b) proteins containing the 

three absolute most frequent domains in the human genome (IG-like, GPCR 

superfamily and serine threonine kinase); (c) the complete set of RBPs irrespective of 

the RNA binding domain. Figure 5A shows that the RRM domain containing gene set 

resulted to be the only one  significantly enriched. This confirms that HuR has a marked 

preference for binding to the 3’UTR of RRM-bearing mRNAs.  We then plotted all 3’UTR 

HuR targets identified by the PAR-CLIP study along with our group of RRMs, to 

highlight overlapping and unique genes of the two sets. The resulting intersection is 

shown in the Venn diagram of Figure 5B and in the network in Figure 5C, which 

discriminates between gene categories by means of shapes and colors. Fourteen out of 

the 23 HCE-containing mRNAs for RRM-type proteins are identified as HuR binding, 

and in particular 4 of them are among the ones we checked by quantitative RIP-PCR 

(54), see Figure 6A. This last Figure reports the results of a validation sampling of the 

identified network, both in structural (Figure 6A) and in functional (Figures 6B and 6C) 

terms. We used HuR overexpressing MCF7 cells, already employed for high throughput 

studies on HuR (55, 56), firstly to perform 5 quantitative RIP-qPCR assays on the MSI2, 

RBM15, SRFS11, HNRNPA3 RBP mRNAs (predicted for being bound by HuR), and the 

CCNA2 (cyclin A) mRNA as a positive control (57). Three RBP mRNAs showed a 

strong enrichment in the immunoprecipitated pellets, ranging from 200 to 400 fold, with 

the exception of RBM15 which reported a more modest, but still significant, enrichment 

(28.3 fold). This proved that these mRNAs are indeed interacting with the HuR RBP in 

exponentially growing MCF-7 cells. We subsequently infected the same MCF-7 cells 

with a number of lentiviral silencing shRNAs, and selected those infectants with the 

strongest HuR inhibition as seen by western blotting (Figure 6B). We then measured the 

level of polysomally loaded mRNAs for the same 4 RBP genes after sucrose gradient 

centrifugation (58) and collected the polysomal fractions of both the wild type and the 

HuR silenced MCF-7 cells. For all the RBP mRNAs tested we found a statistically 

significant decrease of their localization on polysomes, which demonstrates that binding 



of HuR to these 4 RBP mRNAs has a functional effect in promoting their inclusion in 

polysomes, and therefore their translation. At least for this sample of the network, 

therefore, we were able to show that HuR acts as a translational enhancer. 

 

 

DISCUSSION 

 

Despite its widespread role in heavily reprogramming mRNA transcriptome variations 

(58,59), posttranscriptional control of gene expression has been object of few 

systematic attempts to map and study the involved circuits. A large number of prediction 

algorithms and of experimental work has focused on the identification of miRNA/mRNA 

target sites and of the corresponding inhibitory networks (reviewed respectively in 60 

and in 61), while for the RBP/mRNA networks the only available information derives 

from some high throughput yeast studies (15, 62), suggesting interesting preliminary 

principles (16, 63). We reasoned that a simple starting point to deal in an unbiased way 

with core posttranscriptional networks in human cells would be to exploit data on 

vertebrate phylogenetic conservation by genome-wide alignments, available at the 

UCSC Genome Browser (32). The original release of this dataset has been already 

employed by the authors to derive interesting information about, among several other 

things, UTR conservation for some model genomes (33). We added to the original 

phastCons (33) algorithm a stronger dependence on completeness of the species tree, 

in order to increase the sensitivity for really hyper conserved DNA regions. We also 

restricted the analysis to 3’UTRs for their known regulative power on gene expression 

(1, 2), and because in the original cited genome-wide comparative study some of the 

absolute extreme conservation in vertebrates was seen exactly in 3’UTRs of genes 

regulating other genes, already suggesting widespread posttranscriptional regulation 

(33). Interestingly, the same trend seemed not to be present in Drosophila and 

Caenorhabditis (33). Our derived HCEs were found only in less than 2% of the total 

3’UTRs and in a tiny fraction, less than 0.5%, of the total 3’UTR space, being also very 

short, since 77% of them have an average length of 23 bases. We had therefore the 

impression to have really sieved a limited number of small RNA stretches with 

exceptional integrity and permanence through the vertebrates clade, and with potential 



biological activity as cis-elements. But for what trans-factors? Using the available 

information, we showed that these trans factors most likely are not miRNAs or lncRNAs. 

Instead, several clues bring to the hypothesis that mainly RBP binding sites nest in 

HCEs. First, many of their most common HCE dimensions are compatible with RNA 

stretches necessary for interacting with RBP domains (11,53); second, known RBP 

binding sites are represented with a double density in HCEs with respect to the best 

scoring comparable random sampling of 3’UTR stretches; third, experimental mRNA-

protein interactome signals by PAR-CLIP data (49) are also enriched in HCEs; fourth, 

HCEs allowed to identify by a simple ontological over-representation analysis the SLBP 

binding site on histone 3’UTRs, possibly the most unconventional cis-element bound by 

an RBP identified to date (64), confined to a specific gene class. That the more ancient 

posttranscriptional networks in vertebrates could involve the action of RBPs on mRNAs 

is of great interest. We know that RBPs can act both negatively and positively on gene 

expression, and therefore their combination can build different types of circuits in 

posttranscriptional networks (16). The yeast genome, devoid of miRNAs (65), contain 

about 561 RBPs (15), which are presumably the primary actors of the 

posttranscriptional controls exerted in a concerted way to coordinate topological 

localization and translation of mRNAs (17). Two recent studies (49, 66) experimentally 

identify, with comparable methods, the RBP complement of human cells, which appear 

to consist in about 800 genes whose biological activity is largely still unexplored. We 

predict from our study that a fraction of these RBPs could be involved in gene 

expression regulative circuitries appeared at the root of the phylogenesis of vertebrate 

genomes, and preserved till now in an evolutionary history of more than 500 million 

years. Given their complete or almost complete sharing in the tested 44 species 

analyzed, these RBP-based networks are possibly essential in the cell architecture of 

the bearing organisms, being each of them endowed with unknown but possibly 

essential biological activities. It would be interesting to assay the degree of persistence 

of vertebrate HCEs in several invertebrate model genomes, to confirm or deny the 

suggested lack of conservation (33). 

A simple way of getting some information on the possible function of the networks of 

which HCEs were cis components was to observe the functional polarization, when 



gene function was known, of the genes bearing them. This immediately provided us a 

proof of the good sensitivity of the approach, since the strongest signal detected was 

the well-known and highly conserved network between the SLBP RBP and the histone 

gene mRNAs (51). The other most interesting signal found was the tendency of HCEs 

to be enriched in the 3’UTR of mRNAs of RBPs, especially of those RBPs bearing the 

RRM as interface with the bound RNAs. Therefore, HCEs not only bore cis elements 

which were potentially mainly RBP binding sites, but also were enriched in the 3’UTR of 

mRNAs coding for RBPs. Given previous suggestions about the tendency of 

posttranscriptional networks to establish short regulative and autoregulative feedbacks 

both in yeast (67,15) and in mammals (68, 72,58), we were especially intrigued by this 

finding. Building on it, we thought to be in a good position to reach the main goal of the 

study, the proof-of-principle of phylogenesis-assisted identification and demonstration of 

new posttranscriptional networks in human cells, rendered possible by the current wide 

and detailed genome sequence and annotation in vertebrates. Scanning of the 23 

3’UTR HCEs of the selected mRNAs coding for RRM-type RBPs, we found a sequence 

and structure defined motif which we experimentally demonstrated to be binding site of 

the HuR RBP (Figure 6). By developing a cell-based inducible model of HuR 

overexpression, we also showed that the network HuR RBP / RRM-type RBP mRNAs 

was at least for the four assayed mRNAs, a translation enhancing network, bearing to 

HuR-induced increase in polysomal localization of the target mRNAs. This finding is 

compatible with the mRNA stabilizing and translation-promoting function already well 

documented for HuR (69). Moreover, exploiting unbiased PAR-CLIP interaction data, 

we confirmed that HuR has a clear preference, at least among vertebrates, for binding 

mRNAs of RRM-type RBPs (Figure 5). HuR is an essential (70), ubiquitous and 

intensely studied RBP (71,72), whose nuclear and cytoplasmic action seems to be 

subsequent to energy metabolism (73,74,75) and cell damage induced stresses 

(76,77,78), and which has been found to positively regulate a large number of bound 

mRNAs. Here we add that the RRM-type HuR has an evolutionarily ancient propensity 

to positively control the translatability of a set of mRNAs coding for other RBPs bearing 

RRM-type domains. Taken together with the known ability of HuR to bind and regulate 

its own mRNA (79,80,81), we predict HuR to be a posttranscriptional hub protein 



exerting wide and marked effects, both directly and indirectly, through the action of 

several RRM-type RBPs which on turn control many other mRNAs. Added to the known 

HuR capability to bind and affect the mRNAs of many transcription factors (46), this 

finding predicts its ability to heavily influence both posttranscriptional and transcriptional 

networks, as key ”regulator of regulators”, in vertebrate cells. Interestingly, a HuR 

orthologue is absent in invertebrate model genomes, and probably arose in vertebrates 

as duplication of one of the neuron-specific members of the ELAV family (HuB, HuC, 

HuD), establishing its new role that became essential in all cells (82).  

But, on a more general ground, how are these RBP-based posttranscriptional networks 

physically structured in vertebrates? While by CLIP data RBPs appear to bind, 

sometimes in a preferential fashion (14, 43), 5’ and 3’ UTRs, nothing is known about 

their supramolecular organization, if any, on the bound mRNAs. We provide here a first 

clue on this organization, which from our analysis of HCEs in vertebrate 3’UTRs could 

result in patterns of small clusters of 3-4 stretches on average (but with a variability from 

2 to 28) of continuous sequence, each of them being a potential binding site for one or 

more contiguous RBPs (Figure 2C). Increase in resolution power of the newly 

introduced mRNA transcriptome-wide clipping technique (46) could provide a detailed 

enough map of RNA-protein contact points to confirm or deny this model. It is likely that 

the HCE length and cluster organization could derive from RNA-dependent and RNA-

independent RBP interactions on the 3’UTRs. Several RBPs are known to undergo 

homo or hetero dimerization and oligomerization (83, 84, 85), which could represent the 

structural basis for the formation of complexes.  

We finally note that, being our signals coming from exceptional conservation of collinear 

RNA sequences in the vertebrate clade, it implies a strict coevolution pattern of the 

trans-factors involved. If the trans-factors result to be orthologue, this could suggest to 

attribute the essential biological activities responsible for high conservation much less to 

single trans-factors than to the supramolecular complexes they form. Which means, in 

other words, that the possible presence of small intermittent ribonucleoprotein clusters 

as preferred organization scheme along the 3’UTR length could impose the study of 

these clusters instead of the single forming RBPs to understand function.  



With this work, we provide evidence that tailored phylogenetic analyses based on 

genome sequence information can allow us to prioritize potential cis-element in 

posttranscriptional networks, providing a way for their experimental identification and 

suggesting clues for the definition of their topology. 
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FIGURE LEGENDS 

  

Figure 1. HCEs are short, scattered and highly structured. 

The overall HCE identification pipeline is shown in A., with the lower part detailing the 

algorithm used searching for seeds and extending them to lead to the final HCEs. B.-G. 

highlights the most relevant features of the HCEs. B. shows the length distribution of 

HCEs and C. their percent coverage of 3’UTRs; D. displays the predominance of AU 

base pairs content over CG base pairs in HCE bases composition and E. the 

prevalence of highly structured HCEs, as indicated by the shown distribution of 

secondary structure density in HCEs. F. displays the distribution of distances between 



HCEs on the same 3’UTRs and G. the HCE distance distribution from the 3’UTR start, 

indicated in percent over the 3’UTR length.   

 

 



Figure 2. HCEs can be classified according to their pattern of occurrence in 

3’UTRs and are organized in clusters. 

A. shows the classification of 3’UTRs in four classes, according to their HCE content 

(on the left). Numbers below each class box are the number of HCE-containing 3’UTRs 

belonging to the class. On the right, a sample of six HCE-containing 3’UTRs: HCEs are 

mapped onto their 3’UTR and represented as yellow areas, being a grey rectangle the 

full-length 3’UTR. Arrows from class boxes to UTRs indicate which UTR belongs to 

which class. B. displays the increasing percentage of clustered HCEs when increasing 

the maximum intracluster distance allowed for an HCE to be considered part of a 

cluster. We span from 5 to 40 bases, and at 20 bases we can observe the beginning of 

a plateau. We therefore chose 20 bases as the maximum intracluster distance to 

consider. The graph is drawn excluding the 577 HCEs which are unique on their 

respective 3’UTR. C. Graphical representation of the proposed model of trans-factor 

binding to 3’UTRs, assuming that HCEs are binding sites of one or more trans-factors. 

by intercluster RNA stretches of variable length (from 20 to 1419 bases), suggesting a 

coordinated action on the 3’UTR.  

 



Figure 3. HCEs in mRNAs encoding RRM-type RBPs share a sequence and 

secondary structure motif. 

HCEs contained in the group of RRM-type RBP genes 3’UTRs were scanned for both 

sequence and secondary structure motifs. The first search returned two, almost 

identical, 12-bases motifs; the second one produced a 17 bases hairpin which, after 

multiple alignment, emerged to contain a 12-bases core markedly similar to previously 

identified sequence motifs. This core represents the loop part of the hairpin which, as 

the two searches are quite concordant on it, may indeed represent a binding motif for 

the trans-factor of the regulatory network we are trying to identify. A. shows the 

alignment between sequence and secondary structure motifs. B. shows the secondary 

structure motif and its bidimensional structure. C. Motif instances (yellow areas) 

mapped on the full length 3’UTR (grey rectangle) of the 19 RRM-type RBP mRNAs. 

HGNC gene names are on the left, UCSC UTR names are on the right in parenthesis. 

  

 



 

Figure 4. HuR is a trans-factor binding in vitro to the HCE motif shared by mRNAs 

encoding RRM-type RBPs. 

The different RNA probes employed for the protein pull-down experiment are shown in 

A. HuR pulldown probe: this probe was designed by using the secondary structure motif 

reported in Figure 3, slightly modifying the lowest part of the hairpin so as to make it fold 

correctly when not in context. The loop part was designed by employing the most 

probable bases of the sequence and structure motifs. Positive controls probes are the 

known binding sites for the YB1 and PTB RBPs, experimentally obtained  (11).  Again, 

the lowest part of the stem was slightly modified so as to make it fold as desired. 

Negative controls HuR probes are Dbl-Mut1, Dbl-Mut2 and Degenerate. The 

Degenerate probe was synthesized by allowing all four nucleotides to be present at 

each loop position, so to obtain a mixture of probes bearing all the possible 5-mers 

loops. The Dbl-Mut1 and Dbl-Mut2 probes were obtained by mutating two bases of the 

original probe loop, in a way to preserve it in the first case and to obtain a 3-mer loop 

instead of a 5-mer loop in the second case. B. shows the HuR pull-down western blots. 

From the leftmost band to the rightmost: Input, HuR probe, Dbl-Mut1, Dbl-Mut2, 

Degenerate probe and denaturated beads bands. As can be readily seen, the hairpin 

probes bind to HuR with a marked specificity for the correct one. C.-D. YB1 and PTB 

RBPs pull-down. From the leftmost band to the rightmost: input, YB1/PTB probe, and 

denaturated beads. As shown by western blotting, the hairpin probes bind to PTB and 

YB1 respectively, thus confirming that the pull-down protocol works as expected. 

  



Figure 5. HuR has a preference for the binding of the 3’UTR of RRM-type RBPs. 

A.  shows the enrichment of HuR 3’UTR binding sites for several RNA-binding domains 

with respect to the most frequent human protein domains and to RBPs as a whole. Data 

is extracted by the PAR-CLIP experiment published in (44). B. shows a Venn diagram 

indicating the overlap between our HuR RRM-type mRNA targets and the 

experimentally identified HuR PAR-CLIP RRM-type mRNA targets. C. displays HuR 

3’UTR RRM-type mRNA targets, highlighted in different colors and shapes according to 

their belonging to our set of 23 mRNAs, to mRNAs we validated by RIP-qPCR and their 

intersection with the RRM-type mRNA targets from the PAR-CLIP dataset.  

 



 

Figure 6. The network of HuR binding to mRNAs for RRM-type RBPs is a 

functional translational network. 

A. shows the fold enrichment results (with respect to control) for four predicted RBP 

mRNAs (plus the CCNA2 mRNA as control) subjected to ribonucleoprotein 

immunoprecipitation (RIP) from lysates of HuR overexpressing MCF-7 cells and 

quantitative RT-PCR, demonstrating interaction of HuR with these mRNAs. B. reports 

the western blot confirming HuR silencing in MCF-7 cell line. Beta-tubulin is used as 

housekeeping gene. C. shows the statistically significant decrease of mRNA levels for 

the same four RRM-type RBP mRNAs, indicating a translational enhancing effect of 

HuR on these mRNAs. Increasing level of significance (0.05, 0.01) is indicated by one 

or two stars. 

 



 

 

Figure S1. HCEs cluster in genes belonging to three different biological functions. 

Ontology enrichment analysis of HCEs-containing genes highlights three groups of 

genes corresponding to three different biological functions. Multiple ontologies were 

used to infer possible functional groupings: the top results are a most significant group 

composed of genes involved in chromosomes assembly, a significant set consisting of 

23 genes coding for RRM-containing genes for RBPs and a third, less significant group 

of genes playing a role in transcription. Here the ontology terms clusters giving rise to 

these groups are shown, along with their enrichment p-value and the final list of 

involved genes. 

  



Figure S2. HCEs in 3’UTR of 

chromosome assembly genes identify 

SLBP binding sites. 

A significant fraction of HCEs found in the 

3’UTR of genes belonging to the 

chromosome assembly functional group 

was noticed to harbor a sequence 

corresponding to the binding motif of the 

stem-loop binding protein (SLBP), which is 

known to bind to the 3’UTR of histone 

genes and to stabilize the mRNA in order 

to compensate for the absence of a 

poly(A) tail. This stabilization mechanism is 

known to be heavily conserved and can 

thus be considered as a benchmark for our 

HCE identification method. Here the 

ClustalW2 alignment of these HCEs with 

the SLBP binding motif (the first sequence 

in the alignment) is displayed. 

 

 

 

 

 

 

 

 

 

 

 

 



1.  ON THE COMPOSITION OF HYPER-CONSERVATION SCORE (HCS) 

 

We defined the sequence conservation measure, which we call Hyper Conservation 

Score (HCS), by first selecting one of the two conservation measures defined for the 44-

way alignments available at the UCSC genome browser (1). We choose as Sequence 

Conservation Score (SCS) the phastCons-derived metric (2) instead of the phyloP one 

(3), as the former considers neighboring bases in determining a base score, being thus 

sensible to stretches of conserved bases: this fact makes it more suitable for identifying 

conserved elements than phyloP, which instead computes conservation independently 

at each position. phastCons takes into account the phylogenetic tree to estimate the 

probabilities for bases to be conserved or not in the HMM models it is based upon. 

Nevertheless, being our aim to identify exceptionally conserved sequence stretches 

because of their potential functional meaning as cis components of core 

posttranscriptional networks, we estimated as essential the requirement for sharing of 

the sequences among the different vertebrate species considered. To put more weight 

on the phylogenetic distance, we included in our metric the Branch Length Score (BLS) 

as introduced in a comparison between close Drosophila species (4). This measure is 

the proportion of the distance covered by the branches of the phylogenetic tree by the 

alignment of a particular sequence, thus giving more importance to elements conserved 

across a wide range of species than to the ones restricted to a group of closely related 

species. We argued that, while phylogenetic information are already included in SCS, 

BLS would have been not redundant. To verify this we computed the Pearson 

correlation coefficient between SCS and BLS, obtaining a value of 0.48, which indicates 

only a moderate correlation of the two components of our HCS. This result confirms that 

the BLS usefully complements the SCS. 

We further had to find a convenient measure of relative weight of SCS and BLS in HCS. 

We performed several runs of our pipeline, varying the SCS-BLS score composition 

from SCS only (100%-0%) to BLS only (0%-100%), through five intermediate 

proportions (80%-20%; 60%-40%; 50%-50%; 40%-60%; 20%-80%). What we obtain as 

result is a progressive increase in HCE sizes in parallel with a marked reduction of their 

total number. While more than 120000 HCEs are produced in the first two runs (100%-



0%, 80%-20%), only 3149 are retained in the half-half proportion (50%-50%), and this 

number goes down to just 232 HCEs for the BLS-only run. Median and average HCE 

lengths increase respectively from 62 and 17 bases to 114 and 249 bases: the 50%-

50% case has a median length of 23 bases and an average length of 100 bases. We 

selected the 50% SCS and 50% BLS composition as our final conservation measure, 

because of the number of selected HCEs identified a small percentage of the total UTR 

space (0.47%) and a corresponding small percentage of mRNAs (1.8%). With this 

choice we believed to have greatly reduced the number of false positives HCEs in our 

final dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. HuR SILENCING SEQUENCES 

 

TRCN0000017274: 

CCGGGAGAACGAATTTGATCGTCAACTCGAGTTGACGATCAAATTCGTTCTCTTTTT 

 

TRCN0000017273: 

CCGGCGTGGATCAGACTACAGGTTTCTCGAGAAACCTGTAGTCTGATCCACGTTTTT 

 

TRCN0000017277: 

CCGGGCAGCATTGGTGAAGTTGAATCTCGAGATTCAACTTCACCAATGCTGCTTTTT 

 

TRCN0000017275: 

CCGGACCATGACAAACTATGAAGAACTCGAGTTCTTCATAGTTTGTCATGGTTTTTT 
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Supplementary Table 1: List of the 23 HCE-containing RRM-type RBP identified by our 

pipeline. Listed are gene symbol, name, Uniprot gene function description and wether the 

protein contains only RRM or also other domains. 

Gene 

symbol 

Gene name Uniprot description RRM-only 

architecture 

CPEB1 Cytoplasmic polyadenylation 

element-binding protein 1 

Sequence-specific RNA-

binding protein that 

regulates mRNA 

cytoplasmic 

polyadenylation and 

translation initiation during 

oocyte maturation, early 

development and at 

postsynapse sites of 

neurons. Binds to the 

cytoplasmic 

polyadenylation element 

(CPE), an uridine-rich 

sequence element 

(consensus sequence 5'-

UUUUUAU-3') within the 

mRNA 3'-UTR. In absence 

of phosphorylation and in 

v 



association with TACC3 is 

also involved as a 

repressor of translation of 

CPE-containing mRNA; a 

repression that is relieved 

by phosphorylation or 

degradation 

CUGBP1 CUGBP Elav-like family 

member 1 

RNA-binding protein 

implicated in the regulation 

of several post-

transcriptional events. 

Involved in pre-mRNA 

alternative splicing, mRNA 

translation and stability. 

Mediates exon inclusion 

and/or exclusion in pre-

mRNA that are subject to 

tissue-specific and 

developmentally regulated 

alternative splicing.  

v 

EIF4B Eukaryotic translation 

initiation factor 4B 

Required for the binding of 

mRNA to ribosomes. 

Functions in close 

association with EIF4-F 

and EIF4-A. Binds near 

the 5'-terminal cap of 

mRNA in presence of EIF-

4F and ATP. Promotes the 

ATPase activity and the 

ATP-dependent RNA 

unwinding activity of both 

EIF4-A and EIF4-F. 

v 

ELAVL4 ELAV-like protein 4 May play a role in neuron-

specific RNA processing. 

Protects CDKN1A mRNA 

from decay by binding to 

its 3'-UTR. Binds to AU-

rich sequences (AREs) of 

target mRNAs, including 

VEGF and FOS mRNA. 

v 

EWSR1 RNA-binding protein EWS Might normally function as 

a repressor. EWS-fusion-

proteins (EFPS) may play 

a role in the tumorigenic 

x 



process. They may disturb 

gene expression by 

mimicking, or interfering 

with the normal function of 

CTD-POLII within the 

transcription initiation 

complex. They may also 

contribute to an aberrant 

activation of the fusion 

protein target genes. 

FUS RNA-binding protein FUS Binds both single-stranded 

and double-stranded DNA 

and promotes ATP-

independent annealing of 

complementary single-

stranded DNAs and D-

loop formation in 

superhelical double-

stranded DNA. May play a 

role in maintenance of 

genomic integrity. 

x 

HNRNPA1 Heterogeneous nuclear 

ribonucleoprotein A1 

Involved in the packaging 

of pre-mRNA into hnRNP 

particles, transport of 

poly(A) mRNA from the 

nucleus to the cytoplasm 

and may modulate splice 

site selection. May play a 

role in HCV RNA 

replication.  

v 

HNRNPA3 Heterogeneous nuclear 

ribonucleoprotein A3 

Plays a role in cytoplasmic 

trafficking of RNA. Binds 

to the cis-acting response 

element, A2RE. May be 

involved in pre-mRNA 

splicing.  

v 

HNRNPD Heterogeneous nuclear 

ribonucleoprotein D0 

Binds with high affinity to 

RNA molecules that 

contain AU-rich elements 

(AREs) found within the 3'-

UTR of many proto-

oncogenes and cytokine 

mRNAs. Also binds to 

double- and single-

v 



stranded DNA sequences 

in a specific manner and 

functions a transcription 

factor. Each of the RNA-

binding domains 

specifically can bind solely 

to a single-stranded non-

monotonous 5'-UUAG-3' 

sequence and also weaker 

to the single-stranded 5'-

TTAGGG-3' telomeric 

DNA repeat. Binds RNA 

oligonucleotides with 5'-

UUAGGG-3' repeats more 

tightly than the telomeric 

single-stranded DNA 5'-

TTAGGG-3' repeats. 

Binding of RRM1 to DNA 

inhibits the formation of 

DNA quadruplex structure 

which may play a role in 

telomere elongation. May 

be involved in 

translationally coupled 

mRNA turnover. 

Implicated with other RNA-

binding proteins in the 

cytoplasmic 

deadenylation/translational 

and decay interplay of the 

FOS mRNA mediated by 

the major coding-region 

determinant of instability 

(mCRD) domain. 

HNRNPM Heterogeneous nuclear 

ribonucleoprotein M 

Pre-mRNA binding protein 

in vivo, binds avidly to 

poly(G) and poly(U) RNA 

homopolymers in vitro. 

Involved in splicing. Acts 

as a receptor for 

carcinoembryonic antigen 

in Kupffer cells, may 

initiate a series of 

signaling events leading to 

v 



tyrosine phosphorylation 

of proteins and induction 

of IL-1 alpha, IL-6, IL-10 

and tumor necrosis factor 

alpha cytokines. 

MSI2 RNA-binding protein 

Musashi homolog 2 

RNA binding protein that 

regulates the expression 

of target mRNAs at the 

translation level. May play 

a role in the proliferation 

and maintenance of stem 

cells in the central nervous 

system 

v 

PABPC1 Polyadenylate-binding 

protein 1 

Binds the poly(A) tail of 

mRNA. May be involved in 

cytoplasmic regulatory 

processes of mRNA 

metabolism such as pre-

mRNA splicing. Its 

function in translational 

initiation regulation can 

either be enhanced by 

PAIP1 or repressed by 

PAIP2. Can probably bind 

to cytoplasmic RNA 

sequences other than 

poly(A) in vivo. May be 

involved in translationally 

coupled mRNA turnover. 

Implicated with other RNA-

binding proteins in the 

cytoplasmic 

deadenylation/translational 

and decay interplay of the 

FOS mRNA mediated by 

the major coding-region 

determinant of instability 

(mCRD) domain. 

x 

PPARGC1B Peroxisome proliferator-

activated receptor gamma 

coactivator 1-beta 

Plays a role of stimulator 

of transcription factors and 

nuclear receptors 

activities. Activates 

transcritional activity of 

estrogen receptor alpha, 

v 



nuclear respiratory factor 1 

(NRF1) and glucocorticoid 

receptor in the presence of 

glucocorticoids. May play 

a role in constitutive non-

adrenergic-mediated 

mitochondrial biogenesis 

as suggested by increased 

basal oxygen consumption 

and mitochondrial number 

when overexpressed. May 

be involved in fat oxidation 

and non-oxidative glucose 

metabolism and in the 

regulation of energy 

expenditure. 

PTBLP Polypyrimidine tract-binding 

protein 2 

RNA-binding protein which 

binds to intronic 

polypyrimidine tracts and 

mediates negative 

regulation of exons 

splicing. May antagonize 

in a tissue-specific manner 

the ability of NOVA1 to 

activate exon selection. 

Beside its function in pre-

mRNA splicing, plays also 

a role in the regulation of 

translation. Isoform 5 has 

a reduced affinity for RNA. 

v 

RBM15 Putative RNA-binding 

protein 15 

May be implicated in HOX 

gene regulation. 

x 

RBM16 Putative RNA-binding 

protein 16 

May play a role in mRNA 

processing. 

x 

RBM26 RNA-binding protein 26  x 

RBMS1 RNA-binding motif, single-

stranded-interacting protein 

1 

Single-stranded DNA 

binding protein that 

interacts with the region 

upstream of the MYC 

gene. Binds specifically to 

the DNA sequence motif 

5'-[AT]CT[AT][AT]T-3'. 

Probably has a role in 

DNA replication. 

v 



RBMS3 RNA-binding motif, single-

stranded-interacting protein 

3 

Binds poly(A) and poly(U) 

oligoribonucleotides. 

v 

SFRS11 Splicing factor, 

arginine/serine-rich 11 

May function in pre-mRNA 

splicing. 

v 

SFRS15 Splicing factor, 

arginine/serine-rich 15 

May act to physically and 

functionally link 

transcription and pre-

mRNA processing  

x 

SYNCRIP synaptotagmin binding, 

cytoplasmic RNA interacting 

protein, hnRNPQ 

    Heterogenous nuclear 

ribonucleoprotein (hnRNP) 

implicated in mRNA 

processing 

mechanisms.Component 

of the CRD-mediated 

complex that promotes 

MYC mRNA stability. 

v 

THOC4 THO complex subunit 4     CRD-mediated complex 

that promotes MYC mRNA 

stability. 

v 
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Introduction

Post-transcriptional regulation (PTR) of gene expression is the 
process responsible for modulating mRNA levels and the related 
amount of protein. Initially thought to have a limited impact 
on cell phenotype, it has become increasingly recognized as a 
powerful and general determinant of the quantitative changes in 
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In the last years post-transcriptional regulation (PTR) of gene 
expression has been increasingly recognized to be a powerful 
and general determinant of the quantitative changes in 
proteomes, and therefore a driving force for cell phenotypes. 
By means of networks of trans-factors on one hand, and cis-
elements found primarily in untranslated regions (UTRs) of 
mRNA on the other hand, mRNA availability to translation 
and translation rates are tightly controlled and can be rapidly 
tuned according to the changing state of the cell. A number 
of dedicated resources and tools, including databases and 
predictive algorithms, have been proposed as bioinformatics 
aids for the study of this fundamental layer of gene expression 
regulation. Their use, however, is rendered difficult by 
heterogeneity and fragmentation.

This review aims to locate these resources in their proper 
space, classifying them according to their goals, limitations 
and integration capabilities and, in the end, to provide the user 
with an initial toolbox for the bioinformatic analysis of post-
transcriptional regulation of gene expression. The accompany-
ing website, available at www.ptrguide.org, lists all resources, 
provides summary and features for each one and will be regu-
larly updated in the future.

Tuning the engine
An introduction to resources on post-transcriptional 

regulation of gene expression
Erik Dassi and Alessandro Quattrone

Laboratory of Translational Genomics; Centre for Integrative Biology; University of Trento; Trento, Italy

Keywords: post-transcriptional regulation, translation, UTR, database, tool, RBP, ncRNA, miRNA, cis-element, trans-factor

Abbreviations: PTR, post-transcriptional regulation; UTR, untranslated region of mRNA; RBP, RNA-binding protein; RRM, 
RNA-recognition motif; KH, K-homology domain; dsRBD, double strand RNA binding domain; ncRNA, non-coding RNA; 

lncRNA, long non-coding RNA; miRNA, micro-RNA; siRNA, small interfering RNA; piRNA, piwi-interacting RNA; 
snoRNA, small nucleolar RNA; snRNA, small nuclear RNA; ARE, AU-rich element; IRE, iron response element; IRES, internal 

ribosome entry site; SECIS, seleno-cysteine insertion sequence; SIRF, short interspersed repeats fragment; CLIP, cross-linking 
immunoPrecipitation; PAR-CLIP, photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation; iCLIP, 

individual-nucleotide resolution UV cross-linking and immunoprecipitation
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proteomes.1 Untranslated regions of mRNAs (UTRs) are the fun-
damental mediators of this process, because they bear sequence 
and structure patterns preferentially bound by regulators which 
influence nuclear export, localization, stability of mRNAs and 
ultimately their translation rates,2 as well as capping, alternative 
splicing and polyadenylation of the transcribed pre-mRNA. One 
of the most important classes of post-transcriptional regulatory 
factors are the RNA-binding proteins (RBPs), whose human 
genome complement is at least 800 genes3,4,5 and which are char-
acterized by the presence of different functional domains6 among 
which the most represented are, according to the latest release 
of Ensembl (Ensembl 68), the zinc-finger C2H2 domain (787 
genes), the RNA-recognition motif (RRM, 233 genes), the sterile 
α motif (SAM, 93 genes) and the K-homology domain (KH, 38 
genes). RBPs bind to the 5'UTR of a transcript often to modulate 
translation initiation, and to its 3'UTR usually to influence its 
stability or translatability;3 but they have also being well charac-
terized for modulating splicing of the pre-mRNA, mRNA export 
and mRNA localization in the cytoplasm.7 Another major group 
of actors in PTR are non-coding RNAs (ncRNAs). Among them 
are various classes of long ncRNAs (lncRNAs), the intensively 
studied micro-RNAs (miRNAs), and then siRNAs (small-
interfering RNAs), piRNAs (piwi-interacting RNAs), snoR-
NAs (small nucleolar RNAs), snRNAs (small nuclear RNAs), 
and several other types.8 miRNAs (around 1,500 are currently 
annotated in the human genome) bind to the 3'UTR of a tran-
script by means of short regions of perfect sequence complemen-
tation (which leads to increased transcript degradation) or with 
some mismatches (which promotes translational repression and 
increased degradation).9 Both RBPs and ncRNAs bind mRNAs 
in the so-called cis-elements, found primarily in 5' and 3' UTRs. 
These elements can be represented as recurring RNA sequences 
or secondary structures shared by a number of transcripts and 
defined by a pattern, to which the trans factors bind to exert a 
control over the mRNA. A well-known example of cis-regulatory 



©
 2

0
1

2
 L

a
n

d
e

s
 B

io
s
c
ie

n
c
e

. 
D

o
 n

o
t 
d

is
tr

u
b

u
te

.

2 RNA Biology Volume 9 Issue 10

We provide an accompanying web-
site to this review, available at www.
ptrguide.org. The website lists all 
the cited resources, providing a 
summary and details on features 
and availability of the resources; it 
will be regularly updated with new 
resources and updates of existing 
ones, with the aim of providing a 
one-stop catalog for available PTR 
mining tools (Table 1).

Resources

Databases and tools can be classi-
fied according to their main focus 
and purpose. They can be RBP-
oriented when they deal with 
RBPs and the effect these exert on 
mRNAs, ncRNA-oriented when 
they analyze regulation by the 
various families of these RNAs (as 
miRNAs and lncRNAs); and cis-
oriented whenever a cis element is 
annotated and characterized in its 
occurrences throughout expressed 
exons.

RBP-Oriented

Despite the increasingly recognized importance of these factors 
in PTR of gene expression, only five resources are available which 
focus on RBPs, completely or even only partially. RBPDB12 
and CLIPZ15 are built exclusively around RBPs: RBPDB offers 
a literature-curated collection of RBP binding sites and motifs, 
searchable by species or by protein domain and including logos 
or position-weight matrices where available. It allows the user to 
input sequences that can be searched for the presence of binding 
sites of the included RBPs. It also has predictive capabilities, albeit 
limited: indeed, it allows the user to match an input sequence vs. 
position weighted matrices (PWMs) contained in the database to 
identify possible RBP binding sites. CLIPZ is instead an analysis 
environment of RNA binding sequences by RBPs derived from 
the high-throughput techniques for cross-linking based mRNA 
footprinting, including CLIP,40 PAR-CLIP41 and iCLIP42 fol-
lowed by RNA-seq. It contains analytical tools to let the user 
load and analyze the own CLIP-seq data, identify binding sites 
and annotate them on the reference genome. UTRdb/UTRsite,12 
AURA13 and doRiNA31 hold RBP-related data as the two resources 
described above, but they differ in still keeping a broader perspec-
tive on post-transcriptional regulation. UTRdb/UTRsite contains 
data about UTRs in a number of species, annotating them with 
a specific subset of RBP binding sites, cis-regulatory sequence 
patterns, miRNAs and SNP data. It provides UTR sequence 
data along with conserved elements, visually arranged in a linear 
fashion. AURA annotates human UTRs with RBPs, ncRNAs, 

elements are the AU-Rich Elements (ARE),10 motifs rich in Us 
with some interspersed As or Gs shared by several thousand 
3'UTRs and bound by a large number of RBPs of which at least 
23 are known.10 Another well characterized class of UTR cis-
elements are the Iron Response Elements (IREs), which help in 
coordinating cellular iron homeostasis at the translational level.11

The last years have seen a rapid increase in resources dedicated 
to the analysis of these factors and elements to unravel associated 
mechanisms of gene expression regulation. Available databases 
are focused mainly on UTRs annotation,12,13 RBP-target inter-
actions,14,15 ncRNAs,16,17,18,19,20,21,22,23,24 of which miRNA-target 
interactions are the greater part,16,17,18,19,20 with a limited number of 
resources focusing on lncRNAs,22,23 and cis-elements.25,26,27,28,29,30 
Furthermore, a small number of resources integrating different 
data types is available.12,13,31 Predictive tools also exist, in particular 
for cis-elements pattern-based search32,33 and ncRNAs.34,35,36,37,38,39 
This review will first introduce the foremost available resources, 
excluding those related to splicing and the no longer updated ones, 
and will catalog them in three categories: RBP-oriented, ncRNA-
oriented and cis-element-oriented, with a number of resources fall-
ing in more than one category (Fig. 1). We will highlight also 
further features of these resources, as integrating different data 
types or being predictive. We will then proceed to illustrate a 
tentative pipeline combining several of these tools to enable the 
discovery of regulatory mechanisms. Eventually, we will present a 
biological use-case in which these resources are employed to iden-
tify potential regulatory circuits. We conclude with a short discus-
sion on the future directions to be pursued in order to enhance 
the usefulness and completeness of this toolbox for the analysis 
of circuits of post-transcriptional regulation of gene expression. 

Figure 1. Venn diagram showing the classification of the analyzed resources according to their biological 
focus. Symbols next to the resource name correspond to each set (triangles for RBPs, squares for ncRNAs 
and circles for cis-elements) and further highlight the presence of a limited number of integrative tools, 
with most of the resources being confined to only one kind of regulatory element.
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also aid inference of regulatory events. doRiNA31 integrates RBP 
and miRNA binding sites, by including only high-throughput 
assays-derived data sets for RBPs and a set of predictions for miR-
NAs. It exploits the UCSC database genome viewer annotated 
with binding sites, offering various query possibilities: by speci-
fying a specific list of RBPs and miRNA one can obtain subsets 
of UTRs regulated by common groups of RBPs and miRNAs, 

cis-elements, phylogenetic conservation and sequence variation 
obtained from 10 different databases, and includes literature cura-
tion. This database has its strength in committing to experimen-
tally inferred interactions; it allows displaying UTRs in a genome 
browser like view, with calculated UTR secondary structures, 
and experimental mRNA and protein levels; visualization of 
joint gene expression data of targets and associated regulators can 

Table 1. PTR resources presented in the review

Name Ref
Last 

update
Batch 
mode

Data 
download

Organisms Link

ARED 25 Mar 2011 v x HSA, MMU http://brp.kfshrc.edu.sa/ARED/

AREsite 26 Nov 2010 x v HSA, MMU http://rna.tbi.univie.ac.at/AREsite

AURA 13 Nov 2011 x v HSA http://aura.science.unitn.it/

CLIPZ 15 Jan 2011 v v HSA, MMU, CEL http://www.clipz.unibas.ch/

DIANA-miRPath 38 Mar 2012 v x HSA, MMU http://www.microrna.gr/miRPathv2

doRiNa 31 May 2012 v v HSA, MMU, DME, CEL http://dorina.mdc-berlin.de

IRESite 27 Apr 2011 x x
HSA, MMU, RNO, DME, SCE  

and 4 more
http://iresite.org/

lncRNAdb 22 Jul 2011 x v
HSA, MMU, DME, CEL, ATH, 

XLA, SCE and 53 more
http://lncrnadb.com/

miRanda 36 Nov 2010 v V HSA, MMU, RNO, DME, CEL http://www.microrna.org/microrna/home.do

MAGIA2 24 Apr 2012 v X HSA, MMU, RNO, DME http://gencomp.bio.unipd.it/magia2

miRConnX 39 Jul 2011 v v HSA, MMU http://mirconnx.csb.pitt.edu/

miRecords 18 Nov 2010 x v
HSA, MMU, RNO, DME, CEL, 

GGA, DRE, OAR, CFA
http://mirecords.biolead.org/

miRGator 23 Jan 2011 v x HSA http://mirgator.kobic.re.kr

miRNAMap 19 Jul 2007 x v
HSA, MMU, RNO, DME, CEL, 

XTR and 4 more
http://mirnamap.mbc.nctu.edu.tw/

miRTarBase 17 Oct 2011 x v
HSA, MMU, RNO, DME, CEL, 

ATH, XLA and 7 more
http://mirtarbase.mbc.nctu.edu.tw/

NONCODE 21 Jan 2012 x v
HSA, MMU, DME, CEL, ATH, XLA 

and 1233 more
http://www.noncode.org

NRED 24 Sep 2008 x v HSA, MMU http://jsm-research.imb.uq.edu.au/nred

PicTar 35 Mar 2007 x v HSA, MMU, DME, CEL http://pictar.mdc-berlin.de/

PITA 37 Aug 2008 v v HSA, MMU, DME, CEL
http://genie.weizmann.ac.il/pubs/mir07/mir07_

data.html
RBPDB 14 Jan 2011 x v HSA, MMU, DME, CEL http://rbpdb.ccbr.utoronto.ca/

Rfam 30 Jun 2011 x v
HSA, MMU, DME, CEL, ATH, SCE 

and 3104 more
http://rfam.sanger.ac.uk/

SelenoDB 28 Sep 2007 x v
HSA, MMU, DME, CEL, SCE and 

3 more
http://www.selenodb.org/

SIREs 33 Jan 2010 v x any http://ccbg.imppc.org/sires/

starBase 16 Sep 2011 x v HSA, MMU, CEL, ATH, OSA, VME http://starbase.sysu.edu.cn/

TargetScan 34 Mar 2012 x v HSA, MMU, CEL, DRE http://www.targetscan.org/

Transterm 32 Oct 2011 v x any http://mrna.otago.ac.nz/

UTRdb/UTRsite 12 Oct 2009 v v
HSA, MMU, DME, CEL, ATH, XLA 

and 73 more
http://utrdb.ba.itb.cnr.it/

The table shows the list of databases and tools presented in the review: for each of them we report the last update (or publication date when the for-
mer is not available) along with the reference number in the manuscript, the resource website address, the organisms for which the resource provides 
data (listed by their three-letters code), the possibility to do a batch analysis (searching for more than one gene/element at a time) and to download 
the whole database.
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and by using a combination of scores to evaluate match goodness; 
miRanda also employs hybrid free energy but also phylogenetic 
conservation and seed matching, complemented with non-uni-
form distribution of target sites and 5'–3' asymmetry constraints. 
PITA is the last of the tools keeping secondary structure free 
energy into account: it scores the sequence seed matches accord-
ing to the gain in free energy obtained when the miRNA binds to 
the target, compared with the energy needed to open the structure 
of the target in that portion and thus promoting binding. miR-
ConnX takes advantage of a pre-computed network of predicted 
mRNA-miRNA, transcription factor-gene and transcription 
factor-miRNA relationships, supplemented with literature data, 
combined with a dynamic networks based on user-provided gene 
expression data (both mRNA and miRNA). The user data net-
work is built by various correlation measures (following the guilt-
by-association principle) and integrated with the pre-computed 
one through a weighted sum integration function. The resulting 
integrated network can then be browsed, exported or analyzed in 
several ways, such as searching for network motifs. Users need to 
keep in mind that the data set size required for such an approach 
to produce meaningful results is quite high (in the order of tens, 
if not hundreds, of samples). NONCODE,21 lncRNAdb22 and 
NRED23 are reference databases for ncRNAs and related expres-
sion information. Long-noncoding RNAs have been mostly 
regarded as chromatin-associated, and thus transcription-related, 
factors. However, some evidence of their involvement in PTR of 
gene expression is emerging (for examples, see refs. 46 and 47), 
and we therefore include them in our review. NONCODE offers 
a wealth of expression and functional data concerning all kinds 
of ncRNAs: data are predominantly experimental, and the data-
base includes a novel classification system based on cellular func-
tion. lncRNAdb and NRED are connected and aim, on one side to 
comprehensively list experimentally inferred lncRNAs described 
to have biological function in eukaryotes, and on the other side 
to provide gene expression information for thousands of these 
lncRNAs in human and mouse. lncRNAdb includes sequence 
and structure information along with links to the UCSC genome 
browser,44 literature sources and data from the NRED database: 
these are obtained primarily by microarray or in situ hybridization 
analysis and are complemented by auxiliary annotations, such as 
phylogenetic conservation and secondary structure evidence.

Cis-Oriented

Most of the resources in this category are focused on one spe-
cific type of cis-elements; still, among them four databases are 
more general and aim at considering or predicting a great deal 
of these: Transterm32 containing various patterns of cis-regula-
tory elements in mRNA UTRs: input sequences can be selected 
among the sets provided on the website or provided by the 
user: all instances matching the patterns or just the ones of the 
user-selected pattern will be reported. The UTRscan feature of 
UTRdb/UTRsite12 works in the same way, predicting instances 
of cis-elements. AURA13 contains instead annotated instances of 
elements like AREs (predicted) and mRNA-editing data (experi-
mentally validated). The last general resource, Rfam,30 annotates 

thus guiding the discovery of novel PTR networks. By including 
high-throughput techniques-derived data, AURA and doRiNA 
provide a great wealth of information on RBP binding sites: the 
user need however to be aware that, as these data are available 
for only a limited number of RBPs, the resulting network will be 
biased toward these factors, providing a potentially incomplete or 
misleading picture of the PTR phenomena at study.

ncRNA-Oriented

A wealth of resources focused on noncoding RNAs are available: 
these can be differentiated by the data they hold, either experi-
mentally validated or predicted. miRecords,17 mirTarBase18 and 
miRNAMap19 aim to collect miRNAs annotations and miRNA-
target interactions. miRecords and miRNAMap contain both 
experimentally validated and predicted data (which are obtained 
by merging the output of 11 prediction algorithms for miRe-
cords and 3 for miRNAmap), while miRTarBase includes only 
experimentally validated data. All three databases link out to 
various miRNA reference annotation sources such as miRBase, 
with mirTarBase and miRNAMap also displaying pre-miR sec-
ondary structure and miRNA expression levels in various nor-
mal and diseased tissues. miRGator20 also focuses on this class of 
ncRNAs, trying to give a broader overlook on the miRNA func-
tional role by means of several auxiliary annotations: it integrates 
predicted miRNA-mRNA interactions, paired miRNA-mRNA 
expression profiles and miRNA disease signatures. Through their 
association analysis feature, exploiting the various expression 
profiles contained in the database, a miRNA can be associated 
to a particular tissue, a disease state or to anti-coexpressed genes. 
User expression profiles cannot be uploaded, although miRNA 
sets can be tested for enrichments through the miR set analysis 
tool. starBase16 is quite unique in its kind as it is dedicated to the 
annotation of experimentally validated Argonaute binding sites, 
derived from CLIP-seq and Degradome-seq43 assays: these sites, 
hallmark of miRNA-mediated regulation, are then merged with 
the output of various miRNA-target prediction tools in order to 
infer several thousands of miRNA-mRNA relationships. The 
experimental data-based tool is MAGIA2,24 an analysis platform 
allowing to upload your own miRNA and mRNA expression 
data sets, combine them with transcription factor binding sites 
and miRNA target predictions, and eventually infer regulatory 
networks from the integrated data. A wealth of tools is instead 
available to computationally predict miRNA targets: among 
these we consider TargetScan,34 PicTar,35 miRanda,36 PITA,37 
DIANA-mirPath38 and miRConnX.39 TargetScan predicts interac-
tion by requiring seed match conservation in five species and by 
filtering false positives through comparable abundance hexam-
ers control; along the same line, based on sequence information, 
DIANA-mirPath combines predictions with experimentally veri-
fied targets, employing artificial neural networks or sequence-
based 38-bases sliding windows to identify true positive miRNA 
binding sites in human and model organisms 3'UTRs. Users can 
also exploit data on SNPs in miRNA binding sites and related 
pathways information. PicTar instead identifies seed matches by 
keeping into account free energy of the miRNA-mRNA hybrid 
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therein. Again, we employ both experimentally validated data 
(A), coming from IRESite27 and possibly other sources, and com-
putationally predicted annotations, obtained through UTRsite,12 
AREsite,26 SIREs33 and others. Once data collection is completed, 
we can move to the next step (4): building a network including 
our initial genes and all the factors identified until this point as 
regulators. Such construction can be done by means of software 
like Cytoscape48 and can be automated through a scripting lan-
guage such as Python. Visual inspection of the resulting network 
will highlight hub nodes, that is, highly controlled mRNAs or 
widespread regulators of the mRNAs of interest. More rigorous 
statistical analysis can be performed on the network nodes. As 
regulatory factors like RBPs may post-transcriptionally control 
hundreds of different mRNAs, it is worth looking for enrichment 
of a potential regulator in the set of mRNAs under analysis: this 
may be done by applying a Fisher test, as it is commonly done 
for the over-representation of ontology terms in gene lists.49 This 
test will be associated to a p-value testifying for the hypothesized 
enrichment. In order to discriminate between general factors and 
potential aspecific interactions, it can be useful to also generate a 

and lists, organizing them in clans and families, currently known 
cis-elements found in 5'UTRs and 3'UTRs. On a wider perspec-
tive, this database also aims at cataloging all ncRNAs by means 
of sequence alignment and statistical profile models. ARED24 and 
AREsite25 are two databases devoted to AU-rich elements (AREs), 
a widely studied cis-element type found in 3' UTRs. ARED is 
built by searching in GenBank mRNA and EST records for a 
single 13-base pairs pattern, and the results are then classified 
according to ARE classes.10 Every ARE-containing mRNA is 
then linked to the related UniGene and Gene Ontology annota-
tion. AREsite works along the same line, but allows the user to 
screen UTRs for eight different ARE patterns, corresponding to 
types extracted from the literature. Along with ARE localization 
on the UTR, it displays information about the structural context 
of the motif and its level of phylogenetic conservation. IRESite27 
contains experimentally validated Internal Ribosome Entry Sites 
(IRESs) found in 5'UTRs. These are listed with related gene and 
mRNA details; furthermore, the user can input its own sequence 
or secondary structure to search for matches with all IRESs con-
tained in the database. SIREs33 is instead a web server for the 
prediction of IREs:11 it takes into account both sequence and 
secondary structure constraints known to characterize this kind 
of elements. Structure analysis, folding data and quality indica-
tions are provided for each prediction output. SelenoDB28 aims 
at annotating all selenoproteins and SECIS (SEleno Cysteine 
Insertion Sequence) elements45 found in the 3'UTRs of the 
mRNAs coding for these proteins. These cis-elements are pre-
dicted in selenoprotein 3'UTRs by means of a computational 
tool, and annotated with sequence, position and related gene 
data. Finally, 3'-UTR SIRF,29 lists all computationally predicted 
short-interspersed repeats in 3'UTRs. Motifs can be searched 
alone or in combination to identify genes whose 3'UTRs bear 
these putatively co-occurring repeats.

Designing a Discovery Pipeline

Choosing which resources to use among the ones presented 
here may be far from trivial, especially for non-computational 
biologists. We thus propose a pipeline to empower the discov-
ery of potential post-transcriptional regulatory mechanisms by 
exploiting some of the available tools. This is, of course, just one 
of the many possible combinations of instruments that can be 
used to reach this goal, and is offered as an example to illustrate 
the concepts behind an effective discovery workflow. Figure 2 
reports the steps composing our pipeline. It starts with the iden-
tification of a set of interesting genes or mRNAs (1) and related 
UTRs: in a common setting these may represent differentially 
expressed genes obtained through a case-control microarray or 
RNA-seq experiment, although the UTR list can come in what-
ever other way. In the next step the workflow splits in two parallel 
branches: on one side, UTRs are searched for known binding 
sites of trans-factors (2). These are both experimentally validated 
(A) for RBPs and miRNAs coming from AURA13 and miRecords18 
respectively, and computationally predicted (B) by applying 
RBPDB12 and TargetScan.34 In the other branch (3) we scan our 
UTRs in order to identify cis-elements that may be contained 

Figure 2. A possible discovery pipeline for post-transcriptional regula-
tory mechanisms. The workflow starts by the selection of interesting 
UTRs: these may, for instance, come from high-throughput experiments 
done by the microarrays or next generation sequencing technolo-
gies. The pipeline then proceeds by searching for both experimentally 
validated and computationally predicted trans-factors binding sites 
and cis-elements over these UTRs. The resulting interactions are then 
collected into a network: important nodes are identified by enrichment 
tests such as the Fisher test. Interesting leads are eventually subjected 
to experimental validation by various methods of targeted gene ex-
pression perturbation, as RNA interference.
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many UTRs (90% and 75% respectively), leading us to consider 
them non-relevant findings, ARE and PUM2 sites are found in 
lower proportions (54% and 28% of the UTRs); predicted IRES 
involve only 26% of the randomly selected mRNA, while MBEs 
are found in the same proportion as in the top DEGs (67%). 
Among microRNAs, mir-15 and mir-16 are not predicted to con-
trol many of our mRNAs: miR-590 and miR-30 seem to con-
trol instead 15 or more genes of our random set, with miR-23 
predicted for 13 genes. Other elements are found with low fre-
quencies (less than 10% of the mRNAs) and are thus not con-
sidered as relevant. We can thus confirm some of the involved 
factors as specific for our DEGs network, avoiding to focus on 
possibly general regulatory mechanisms. These findings are 
obviously biased by the still low number of available transcrip-
tome-wide CLIP experiments, which provide much more data 
than literature annotations, and therefore emerge in the results. 
Enrichment p-values are computed for experimentally validated 
data by means of a Fisher test, as previously stated. The resulting 
post-transcriptional network of RBP, miRNAs and cis-elements, 
shown in (c) and built via a Python script into the Cytoscape48 
platform, offers a complex landscape for further validation.

Future Directions

This review has highlighted the main tools of the steadily 
increasing number of resources available on networks of regu-
lation at the post-transcriptional level, as one of the indicators 
of the growing interest in the topic. In particular, a wealth of 
databases and algorithms is offered focusing on miRNA-mRNA 
interactions, both for experimentally validated data and com-
putational prediction, mirroring the exceptional interest raised 
by these controllers of gene expression in the research commu-
nity. A more limited variety of resources dedicated to RBPs, 
cis-elements and others ncRNAs is also available. Only three 
tools, among the ones we analyzed, attempt to integrate differ-
ent component of these networks: RBPs and miRNA binding 
sites only,31 or including also predicted RNA secondary struc-
tures and cis-elements.12,13 While these resources considerably 
ease the task of hypothesizing the existence of new networks, 
they still contain just a fraction of the data really available in 
the literature, and obviously are affected by the small number 
of trans-factor experimentally tested in a high throughput way 
with respect to the annotated ones. Moreover, the majority 
of the tools still does not allow online batch or programmatic 
analysis, forcing the user willing to work on a medium-to-big 
sized data set to download and replicate the database locally, 
and write ad hoc scripts. Integrating these tools into an auto-
matic or semi-automatic pipeline is thus time consuming, if not 
impossible. Future developments should go toward this direc-
tion, providing a one-stop, truly integrated, comprehensive and 
multi-faceted PTR analysis toolset. Availability of such a tool 
will consistently empower the mapping of post-transcriptional 
and specifically translational networks, reaching the level of 
service already offered by resources focusing on the analysis 
of transcriptional regulation. Nevertheless, this will require a 
substantial effort of implementation and update, which could 

control network to compare with the one under study: to do so, 
one can select a comparable number of UTRs at random (from 
the data produced by the same experiment) and reapply the pipe-
line to this new data set. The two resulting networks can then 
be compared, and factors present or enriched in both of these be 
excluded from further analysis: these may indeed represent wide-
spread regulatory mechanisms, most probably not responsible for 
the differential expression of this group of genes and difficult to 
target. The last step of our pipeline leaves the in silico world and 
goes back to the bench: in order to understand and validate the 
regulatory mechanism we have hypothesized and prioritized, a 
classical array of methods are available. In case of cell studies, 
gene silencing through RNA interference, gene overexpression 
through transfection or viral infection, and target gene expres-
sion probing through real-time PCR or high throughput mRNA 
quantification methods are the most common choices. This will 
eventually provide data concerning the effect of the depletion or 
enrichment of our potential regulator(s) over target genes, and, 
on a wider perspective, over the network we are characterizing.

A Case

We now proceed to apply the proposed pipeline to a set of differ-
entially expressed genes, in order to provide a practical example 
of how it could work. We downloaded the GSE11324 data set51 
from GEO52: in this data set, the transcriptome of MCF7 cells 
is profiled under estrogen stimulation at several time points (0 
to 12hrs). By means of GEO2R,52 we computed differentially 
expressed genes between 0hr and 12hr of estrogen stimulation. 
We then selected the 50 mRNAs with the highest absolute fold 
change, corresponding to 43 genes (obviously this is an arbitrary 
choice, we presume that the highest fold changes indicate the 
most relevant biological changes, even this cannot be necessarily 
the case, and there are other ways of prioritizing the genes). The 
gene list (a) and a summary of the most prominent findings (b-c) 
are shown in Figure 3. From (b), reporting only trans-factors and 
cis-elements shared by at least 10% of the mRNAs (in which the 
size of the circle is proportional to the percentage of controlled 
mRNAs), it is evident that the relevant genes share AU-rich ele-
ments and AGO binding sites: in particular, AREs are predicted 
to be present in the 3'UTR of 86% of the mRNAs (enrich-
ment p-value = 1.3E-10), while AGO binding sites in 83% of 
these(enrichment p-value = 4.9E-10). Other potentially involved 
factors are the IGF-binding proteins IGFBP1/2/3, having 
experimentally determined binding sites in 80% of the mRNAs 
(enrichment p-value = 0.48); PUM2, whose binding elements are 
found for 44% of the mRNAs (enrichment p-value = 1.37E-08); 
along with predicted IRES (Internal Ribosome Entry Site, 88% 
of the mRNAs), MBEs (Musashi binding elements, 67% of the 
mRNAs) and K-Boxes, GY-Box and PAS (Poly-adenylation sig-
nal) at a lower frequency. Two families of miRNAs (mir-15 and 
mir-16) are predicted by Targetscan34 to control at least ten genes 
of our set. In order to understand if these factors are specific to 
our DEGs network, we randomly selected another 50 mRNAs 
from the data set and reapplied the pipeline to these (network not 
shown): while AGO and IGFBP1/2/3 sites are again found in 
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interaction would provide more grounded clues, orienting the 
experimental validation. Second, more tailored statistical meth-
ods for enrichment of cis-elements or trans-factor, as those for 
ontology terms enrichment,49 would be beneficial to avoid gen-
eration of a large number of false positives as an effect of the high 
multiplicity of action of several studied trans-factors.

be eased by coordination between the available resources and 
integration with major genome databases such as the UCSC 
Genome Browser44 and Ensembl.50 Furthermore, we think that 
at least two additional features are currently missing but defi-
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Figure 3. Selected genes and results obtained by the application of the proposed pipeline. (A) Is the list of genes selected for the case example. (B) 
Shows the post-transcriptional interactions prioritized through the pipeline: orange circles represent experimentally validated interactions while cyan 
circles represent predicted interactions. Size of the circles is proportional to the fraction of genes controlled by the element which name labels the 
circle (RBP, ncRNA or cis-element). Percentage of controlled genes is shown under the factor name. (C) Displays the post-transcriptional regulatory 
network composed of RBPs, miRNAs and cis-elements obtained by the application of the pipeline. Yellow squares represent our genes of interest, 
while light blue circles are the different factors controlling these genes. Oriented arrows pointing toward a gene represent an observed regulatory 
event (binding site or cis-element).
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