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Abstract 

 

Acquired Immunodeficiency Syndrome (AIDS) is a disease caused by the Human 

Immunodeficiency Virus (HIV). Since its discovery in 1981, more than 25 million people 

died due to this disease. To date, an effective HIV-1 vaccine usable in prophylaxis or in the 

therapy of humans has not yet  been identified. The failures and limited success of HIV 

vaccines have reinforced the role of chemotherapy and therefore research on the development 

of effective drugs. Non-nucleoside  reverse transcriptase inhibitors (NNRTIs) were the early 

agents introduced in the therapy and currently they are the most used, based on their 

concurrent high activity against the virus and low toxicity against human cells. In addition, 

the rapid development of virus resistance against these types of drugs, needs to find new 

molecules able to overcome this drawback.  

My thesis work  started from the design of  a small library of new molecules, with 

hybrid structures based on a template deriving from the natural product (+)-calanolide A and 

the synthetic molecule α-APA, both showing a potent and selective activity against reverse 

transcriptase. Docking calculation has allowed to select molecules having  the best values of 

interaction energy with the viral enzyme. Chemical synthesis was carried out together with 

structural characterization by extensive spectroscopic  analysis including  NMR technique  

and mass spectrometry.  

In particular, the synthesis of the amide group present in the structure of some amino-

pyrone compounds using the standard method, resulted in the expected   N-acylation, but  

with a C-acyl byproduct. This result has suggested to look further into the study of N,C-

acylation selectivity for the ambidentate amino-pyrone moiety, whose reactivity is poorly  

known.   Regioselectivity was investigated under different conditions (organic bases, solvent, 

acylating agent), also for an enamino-ester taken as a model compound. Experimental 

procedures were optimized in order to synthesize selectively pure N- and C-acylated 

compounds. 

A preliminary enzymatic assay indicated a good activity in the early prepared 

compounds of the series, promising  for the following in vitro tests on HIV infected cells of  

each molecule in the whole series. In addition, these  compounds were tested against other  

common  viruses  for human infective pathologies. With the aim of identifying molecules 

with potential therapeutic applications, the antiviral activity must be related to cytostatic 

effect, in order to select the ones  with a favored  selectivity index. Unfortunately,  the 
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molecules showed paragonable  values in antiviral and cytostatic effects, the latter one  not 

easily predictable  neither by the chemical structure, nor by a computational approach.  

If the drug design by molecular docking has failed in selecting  a new scaffold for NNRTIs, 

the study has driven the interest towards new  potential antitumoral molecules showing 

activity at sub-micromolar concentration against leukemic cell lines.   

Due to the structural similarity with recently studied antibacterial natural pyrones, the 

synthetic molecules showing  the lowest  values of cytotoxicity were investigated in the 

inhibition of bacterial strains. Some tested  compounds have shown a good activity and 

selectivity against Gram(+) bacteria. 
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1. Introduction 

 

Acquired Immunodeficiency Syndrome (AIDS) is a disease caused by the Human 

Immunodeficiency Virus (HIV) (Sepkowitz, 2001; Weiss, 1993). The first cases of AIDS 

were  reported in 1981 when the Centers  for Disease Control and Prevention (CDC)   

observed a cluster of Pneumocystis carinii pneumonia in five homosexual men in Los 

Angeles. In 1982 CDC gave the name AIDS at this illness.  The major factors in the diffusion 

of  AIDS pandemic are sexual transmission and vertical transmission from mother to child at 

the birth and through breast milk (Kallings, 2008). It is estimated that  34.0 million (range 

31.6 million–35.2 million) people lived with HIV in 2010 (Figure 1.1), including 3.4 million 

(range3.0 million–3.8 million) children. An estimated 2.7 million (range 2.4 million–2.9 

million) people were newly infected in 2010, including 390,000 children. A total of 1.8 

million (range 1.6 million–1.9 million) of people  died due to AIDS in 2010 (UNAIDS, WHO 

2011). 

 

Figure 1.1. Adults and children estimated to be living with HIV in 2010 in the world (from UNAIDS, 

WHO Report)  

   

Two HIV types infect humans: HIV-1 and HIV-2, both discovered by Luc Montagnier 

and collegues in 1983 and 1986 respectively (Barre-Sinoussi,1983; Clavel, 1986). HIV-1 

virus probably came from the Congo in 1959 and 1960, although genetic studies indicate that 

http://en.wikipedia.org/wiki/HIV
http://en.wikipedia.org/wiki/HIV
http://en.wikipedia.org/wiki/Pneumocystis_pneumonia_%28PCP%29
http://en.wikipedia.org/wiki/Joint_United_Nations_Programme_on_HIV/AIDS
http://en.wikipedia.org/wiki/World_Health_Organization
http://en.wikipedia.org/wiki/HIV-1
http://en.wikipedia.org/wiki/HIV-2
http://en.wikipedia.org/wiki/Democratic_Republic_of_the_Congo
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it passed into the human population from chimpanzees around fifty years earlier (Worobey, 

2008).   A recent study  shows that a strain of HIV-1 probably moved from Africa to Haiti and 

then entered the United States around 1969 (Gilbert, 2007), whereas HIV-2 may have 

originated from the sooty mangabey (Cercocebus atys), and is largely confined to West Africa 

(Reevers, 2002).  

HIV-1 is more virulent in comparison with HIV-2,  is more easily transmitted and  is 

globally the most present in the HIV infected people (Reeves, 2002). HIV infects human host 

cells, in particular cells of immune system, as T limphocytes (CD4+ T cells), macrophages 

and dendritic cells. The result of this infection is the destruction and functional impairment of 

the immune system,  leading  a  drop of  levels in CD4 + T cells through three main 

mechanisms:  direct viral killing of infected cells, increase of the  apoptosis rates in infected 

cells and finally the  killing of infected CD4 + T cells by CD8 cytotoxic lymphocytes, that are 

able to  recognize infected cells. In the plasma of  a healthy uninfected people   are usually 

present between 800 and  1,200 CD4 + T cells/mm
3
. The progress of HIV infection decreases 

the number of CD4+ T cells and  when  it arrives to be lower than  200/mm
3
 , the patients 

become particularly susceptible to  tumors (e.g. Kaposi’s sarcoma and  lymphomas)  and to 

opportunistic infections caused by  microorganisms, that usually do not infect  people with a 

working  immune system.   

 

1.1. Structure of HIV virion 

HIV is a  member of genus lentivirus, family of Retroviriadae, which  has a relatively small 

genome  consisting of  a   single-strand positive sense ribonucleic acid (RNA).  The viral 

genome  contains three main genes (gag, pol and env), as well as regulatory (tat and rev) and 

accessory (vif, nev, vpr and vpu) genes (Figure 1.2; Montagnier, 2010). 

Human immunodeficiency virus is a spherical retrovirus with a diameter of ~100–150 

nm (Liu, 2010). The viral structure contains a bilayer lipidic membrane deriving from the host 

cell in which  two viral glycoproteins called gp120 and gp 41  are present. Both they  derive 

from the cleavage by a viral enzyme (protease) of  a  larger protein (gp160)  encoded by  env  

gene. The HIV core contains three structural proteins (p24, p16 and p9). The protein p24 

envelops two RNA single-stand chains and the viral enzymes Reverse Transcriptase  (RT) 

Integrase (IN)  and Protease (PR). The protein p16 is  a  matrix protein and it is anchored to 

http://en.wikipedia.org/wiki/Chimpanzee
http://en.wikipedia.org/wiki/Haiti
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the internal face of nucleocapside, whereas the protein p9 is non-covalently  linked to  viral 

RNA (Figure 1.3) (Chinen, 2002). The virulence and transmissibility  of  HIV depend from 

the viral subtypes, in particular they are classified in three groups: M (majority), O (outliers) 

and N (non-M/non-O). Each group can be classified in further different subtypes, which   can  

be also  associated to geographic location (Hu, 1999).  

 

 

Figure 1.2. Genome structure of HIV-1 (Montagnier 2010) 

 

 

Figure 1.3.Schematic diagram of HIV virion structure 
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1.2. HIV life cycle 

HIV begins its life cycle when the HIV surface protein  gp 120 binds to  CD4 receptor. A 

conformational change in this protein allows  to   interact  with one of two chemokine co-

receptors (CCR5 or CXCR4) present on the membrane of  CD4+ T- lymphocyte or 

macrophages. The result of this interaction gives a conformational rearrangement of the 

hydrophobic domain in gp 41, triggering  the fusion of  viral envelope with the cell membrane 

and the release of the nucleocapsid into the cytoplasm (Figure 1.4).  

 

 

Figure 1.4. HIV viral entry (Chinen, 2002) 
 

 

Reverse transcriptase (RT) converts the single-stranded HIV RNA to double stranded 

HIV cDNA throw a hybrid RNA-DNA  molecule. The newly formed HIV cDNA is 

transported into the host cell's nucleus by the  help of the two HIV proteins Vpr and Vif. The 

integrase, a HIV enzyme, "hides" as provirus the HIV cDNA within the host cell's own DNA. 

After integration, the viral gene transcription is activated by cellular transcription factors, 

producing low levels of  mRNA transcripts. They encode for the regulatory proteins Tat, Rev, 

and Nef. The effect of these regulatory proteins is the activation or inhibition in the 

replication of viral DNA.  

 The viral DNA (provirus)  may be transcribed into viral messenger RNA (mRNA), 

which is transported to the cytoplasm, where is translated into viral proteins by the cell’s 

machinery. 
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These proteins  together with copies of HIV's RNA give a new virus particle. The newly 

assembled virus pushes out ("buds") from the host cell. During budding, the new virus steals 

part of the cell's outer envelope. This envelope, which acts as a covering, is studded with HIV 

glycoproteins, which  are necessary to the virus for binding CD4 and co- receptors. The new 

copies of HIV can infect other cells (Figure 1.5). 

 

 

Figure 1.5. HIV Life Cycle (Tibotec archive) 

 

1.3. Possible targets for anti-HIV and clinically used 

therapeutic agents 

To date, an effective HIV-1 vaccine usable in prophylaxis  or in therapy of humans has not 

yet  been identified, although many HIV-1 vaccines have been developed in the last thirty 

years (Wijesundara, 2011; Estè,  2010). The failures and limited successes of HIV-1 vaccines 

have driven the research on the development of effective drugs for AIDS (Montagnier, 2010) 

and   the knowledge of replicative cycle of HIV has allowed to identify  potential targets for 

drug discovery, as reported in Table 1.1. 

Since the discovery of HIV as agent causing AIDS, many drugs have been introduced 

in clinical use (Mehellou, 2010). 
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Table 1.1. Summary of potential HIV target and potential drugs 

Stage of HIV life cycle Potential drugs 

Binding to target cell Antibodies to the virus or cell receptor 

Early entry to target cell 
Drug that block fusion or interfere with 

retroviral uncoating 

Trascription of RNA to DNA by reverse 

transcriptase 
Reverse transcriptase inhibitors 

Degradation of viral RNA in the RNA-DNA 

hybrid 
Inhibitors of RNase H activity 

Integration of viral cDNA in the host 

genoma 
Integrase inhibitors 

Expression of viral genes Inhibitors of regulatory proteins as tat or vif 

Viral component production and assembly 
Myristoylation, glycosidation and protease 

inhibitors 

Budding of virus Interferons 

 

They can be divided into seven main types of inhibitors: 

 Virus adsorption inhibitors (co-receptor inhibitors (CRIs)  

 Virus-cell fusion inhibitors  (FIs) 

 Protease inhibitors (PIs) 

 Integrase  inhibitors  (INIs) 

 Nucleoside Reverse Transcriptase inhibitors (NRTIs) 

 Nucleotide Reverse Transcriptase inhibitors (NtRTIs)   

 Non-Nucleoside Reverse Transcriptase inhibitors (NNRTIs)  

 

Currently Food and Drug Administration (FDA) has   approved only maraviroc as co-receptor 

inhibitor CCR5 (Figure 1.6) .  

 

Figure 1.6.  Molecular structure of FDA approved CCR5 inhibitor  
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It has  shown a very good activity  both in vitro and in vivo  and it is able to suppress the viral 

load at very low level  after ten days of therapy at 100 mg twice a day.  

During the study of potential immunogenic peptides, to be used as vaccine and 

deriving from gp41, it  was observed that a peptide  of 38 amino acids showed an appreciable 

antiviral activity. A little chemical modification produced a 36-amino acid peptide called 

enfuvirtide (Figure 1.7), that has become the first and the only drug approved as HIV-1 fusion 

inhibitor. It is able to reduce plasma HIV RNA of two fold in 15 days  after administration 

twice a day by subcutaneous injection. As disadvantages  it has  the formation of erythema in 

the site of injection  and the high production cost. 

 
 

Ac-Tyr-Thr-Ser-Leu-Ile-His-Ser-Leu-Ile-Glu-Glu-Ser-Gln-Asn-Gln-Gln-Glu-Lys-Asn-Glu-Gln-Glu-Leu-Leu-

Glu-Leu-Asp-Lys-Trp-Ala-Ser-Leu-Trp-Asn-Trp-Phe-NH2 

 

Figure 1.7. Molecular structure and  primary sequence of enfuvirtide. 

 

At present, ten protease inhibitors have been approved by FDA.  They  are : 

saquinavir, ritonavir, darunavir, indinavir, tipranavir, fosamprenavir, nelfinavir, atazanavir, 

http://en.wikipedia.org/wiki/Acetyl
http://en.wikipedia.org/wiki/Tyrosine
http://en.wikipedia.org/wiki/Threonine
http://en.wikipedia.org/wiki/Serine
http://en.wikipedia.org/wiki/Leucine
http://en.wikipedia.org/wiki/Isoleucine
http://en.wikipedia.org/wiki/Histidine
http://en.wikipedia.org/wiki/Glutamic_acid
http://en.wikipedia.org/wiki/Glutamine
http://en.wikipedia.org/wiki/Asparagine
http://en.wikipedia.org/wiki/Lys
http://en.wikipedia.org/wiki/Aspartic_Acid
http://en.wikipedia.org/wiki/Lysine
http://en.wikipedia.org/wiki/Tryptophan
http://en.wikipedia.org/wiki/Alanine
http://en.wikipedia.org/wiki/Asparagine
http://en.wikipedia.org/wiki/Phenylalanine
http://en.wikipedia.org/wiki/Amine


10 

 

lopinavir/ritronavir and aprenavir  (Figure 1.8). Protease inhibitors interfere with the late stage 

of virus replication, preventing the formation of infective viral particles. With exception of 

tripanavir, they act as peptidomimetic  non-hydrolysable   transition-state analogues. The 

bioavailability  is poor due to the  peptidic  feature  of these compounds; in addition, the 

problem of resistance and  the toxicity make  protease inhibitors  not useful as single drug 

therapy, but as a part of the Highly Active Anti-Retroviral Therapies (HAART). 

 

Figure 1.8. Molecular structures of FDA approved  HIV-1 protease inhibitors 

 

The integration  of viral cDNA into the host cell is a crucial step of HIV replication 

and it is done by the viral enzyme integrase. Due to the absence of integrase-like enzyme in 

humans, it was an attractive target for the  AIDS  therapy. Integrase is a highly conserved  32 

kDa protein which uses two divalent metal ions (Mg
2+

 or Mn
2+

) as cofactor for its activity. 

Recently FDA has approved  only raltegravir as integrase inhibitor (Figure 1.9). It acts as 

chelating agent of Mg
2+

 in the active site of integrase.   
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Figure 1.9. Molecular structure of the integrase inhibitor raltegravir 

 

Reverse transcriptase inhibitors have been the early drugs to be  introduced in the 

therapy.  The first anti-HIV agent was 3’-azido-2’,3’-didesoxytimidine (Zidovudine, AZT), 

which is a nucleoside analogue blocking the synthesis of viral DNA after triphosphorilation 

by cellular enzymes (kinases) (Figure 1.10).  Zidovudine interacts with the active site of 

reverse transciptase (De Clercq, 2009) . 

 

 
Figure 1.10. Mechanism of action of zidovudine (AZT). Following phosphorylation to its 

triphosphate form (AZT-TP), AZT acts as a competitive inhibitor/alternative substrate with 

respect to dTTP in the reverse transcriptase reaction (De Clercq 2009) 
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In subsequent years other nucleoside analogues have been approved  as NRTIs  (Figure 1.11).  

 

Figure 1.11. Molecular structure of  nucleoside reverse transcriptase inhibitors (NRTIs)  

 

Later,  the  nucleotide analogue tenofovir disoproxil fumarate (Figure 1.12), a prodrug 

of tenofovir  previously  reported in 1993 has been introduced in the therapeutic 

armamentarium.  

 

Figure 1.12. Molecular structure of the pro-drug tenofovir disoproxil fumarate  
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The advantage of this drug is that it does not need to be phosphorylated in three steps but only  

in two steps (Figure 1.13). Its good activity has made it one of the most frequently  prescribed 

drug in AIDS treatment (De Clercq, 2009). 

 

Figure 1.13. Mechanism of action of tenofovir. Following phosphorylation of tenofovir to its 

diphosphate, the latter  one acts as an obligate chain terminator in the reverse transcriptase reaction 

(De Clercq 2009). 

 
 

The previous types of reverse transcriptase inhibitors interact with the active site of the 

RT enzyme, whereas the non-nucleoside reverse transcriptase inhibitors  (NNRTIs) are 
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allosteric inhibitors and they bind in a non-covalent mode to a lipophilic pocket of RT 

enzyme. The first drug introduced in therapy was nevirapine followed by delavirdine and 

efavirenz (Figure 1.14). Recently  etravirine and rilpivirine (De Clercq, 2009) were 

introduced, they are able to overcome the drug resistance due to the possibility to adapt 

themselves better to the allosteric site of RT. 

 

Figure 1.14. Molecular structure of commercial non-nucleoside reverse transcriptase inhibitors. 

 

Since 1996 the introduction of  drug combinations as therapeutic  approach (HAART)  

for the control of HIV replication,  in order to avoid the progression of latent HIV infection to 

AIDS, has shown to be a pivotal protocol in HIV infected patients. The best results are 

obtained by a combination of  three  drugs, which allows to decrease the single drug dosage  

and consequently their toxicity and the side effects. Currently,  physicians  have 

approximately 30 antiretroviral products, formulated either singly or in combination, to treat 

HIV infected patients (Broder, 2010; Table 1.2). The potential number of possible drug 

combinations  is high (Figure 1.15), although some of   the 25  compounds approved and put 

on the market are no longer used due to the viral resistance or too high toxicity.  
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Table 1.2. Approved antiretroviral drugs. Adapted from: Drugs Used in the Treatment of HIV 

Infection, U.S. FDA, http://www.fda.gov/oashi/aids/virals.html 

Brand 

Name 
Generic Name 

Manufacturer 

Name 

Approval 

Date 

Time  

to 

Approval 

(months) 

Nucleoside Reverse Transcriptase Inhibitors (NRTIs) 
Combivir lamivudine and zidovudine GlaxoSmithKline 27-Sep-97 3.9  

Emtriva emtricitabine, FTC Gilead Sciences 02-Jul-03 10  

Epivir lamivudine, 3TC GlaxoSmithKline 17-Nov-95 4.4  

Epzicom abacavir and lamivudine GlaxoSmithKline 02-Aug-04 10  

Hivid 
zalcitabine, dideoxycytidine, ddC (no longer 

marketed as of December 2006) 
Hoffmann-La Roche 19-Jun-92 7.6 

Retrovir zidovudine, azidothymidine, AZT, ZDV GlaxoSmithKline 19-Mar-87 3.5  

Trizivir abacavir, zidovudine, and lamivudine GlaxoSmithKline 14-Nov-00 10.9  

Truvada 
tenofovir disoproxil fumarate and 

emtricitabine 
Gilead Sciences, Inc. 02-Aug-04 5 

Videx EC enteric coated didanosine, ddI EC Bristol Myers-Squibb 31-Oct-00 9  

Videx didanosine, dideoxyinosine, ddI Bristol Myers-Squibb 9-Oct-91 6  

Viread tenofovir disoproxil fumarate, TDF Gilead 26-Oct-01 5.9  

Zerit stavudine, d4T Bristol Myers-Squibb 24-Jun-94 5.9  

Ziagen abacavir sulfate, ABC GlaxoSmithKline 17-Dec-98 5.8  

Non-nucleoside Reverse Transcriptase Inhibitors (NNRTIs) 

Edurant rilpivirine Tibotec Therapeutics 20-May-11 10  

Intelence etravirine Tibotec Therapeutics 18-Jan-08 6  

Rescriptor delavirdine, DLV Pfizer 04-Apr-97 8.7 

Sustiva efavirenz, EFV Bristol Myers-Squibb 17-Sep-98 3.2  

Viramune  nevirapine, NVP Boehringer Ingelheim 21-Jun-96 3.9 

Viramune   

XR 
 nevirapine, NVP Boehringer Ingelheim 25-Mar-11 9.9  

Protease Inhibitors (PIs) 
Agenerase amprenavir, APV GlaxoSmithKline 15-Apr-99 6  

Aptivus tipranavir, TPV Boehringer Ingelheim 22-Jun-05 6  

Crixivan indinavir, IDV, Merck 13-Mar-96 1.4  

Fortovase saquinavir (no longer marketed) Hoffmann-La Roche 07-Nov-97 5.9  

Invirase saquinavir mesylate, SQV Hoffmann-La Roche 6-Dec-95 3.2  

Kaletra lopinavir and ritonavir, LPV/RTV Abbott Laboratories 15-Sep-00 3.5  

Lexiva Fosamprenavir Calcium, FOS-APV GlaxoSmithKline 20-Oct-03 10  

Norvir ritonavir, RTV Abbott Laboratories 01-Mar-96 2.3  

Prezista darunavir Tibotec, Inc. 23-Jun-06 6 

Reyataz atazanavir sulfate, ATV Bristol-Myers Squibb 20-Jun-03 6  

Fusion Inhibitors (FIs) 

Fuzeon enfuvirtide, T-20 
Hoffmann-La Roche 

& Trimeris 
13-Mar-03 6  

Entry Inhibitors - CCR5 co-receptor antagonist (CRIs) 
Selzentry maraviroc Pfizer 06-Aug-07 8  

HIV integrase strand transfer inhibitors (INIs) 
Isentress raltegravir Merck & Co., Inc. 12-Oct-07 6  

Multi-class Combination Products 

Atripla 
efavirenz, emtricitabine and tenofovir 

disoproxil fumarate 

Bristol-Myers Squibb 

and Gilead Sciences 
12-Jul-06 2.5  

Complera 
emtricitabine, rilpivirine, and tenofovir 

disoproxil fumarate 
Gilead Sciences 10-Aug-11 6  

 

 

http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Combivir&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Emtriva&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Epivir&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Epzicom&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Hivid&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Retrovir&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Trizivir&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Truvada&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Videx%20EC&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Videx&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Viread&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Zerit&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Ziagen&SearchType=BasicSearch
http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/202022s000lbl.pdf
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Intelence&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Rescriptor&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Sustiva&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Viramune&SearchType=BasicSearch
http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/201152s000lbl.pdf
http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/201152s000lbl.pdf
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Agenerase&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Aptivus&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Crixivan&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Fortovase&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Invirase&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Kaletra&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Lexiva&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Norvir&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Prezista&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Reyataz&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Fuzeon&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Selzentry&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Isentress&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Atripla&SearchType=BasicSearch
http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/202123s000lbl.pdf
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Figure 1.15. Theoretically possible drug combinations for the treatment of AIDS patients   (adapted 

from De Clercq, 2009)  

 

After about 30 years of research, there is not  yet an effective vaccine or a definitive cure for 

AIDS (Montagnier, 2010), so it is important to study new potential molecules with anti-HIV 

activity.  

The research activity of my thesis is inserted in this scenario. Its   purposes are: i) the 

design by a molecular docking approach of new molecules, deriving from hybridization of 

known non-nucleoside reverse transcriptase inhibitors,  ii) the selection of the  molecules 

giving the highest values in energy and  the best interactions with reverse transciptase, as 

compounds to  be synthesized, iii) the planning of the synthetic sequences, possibly by a 

convergent approach and commun precursors, iv) the production of these molecules, their 

purification and structural   characterization, v) biological evaluation, including preliminary 

test by ELISA method, before sending the compounds to be subjected to the evaluation on 

HIV infected cells.  
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1.4. Reverse transcriptase enzyme 

Reverse Transcriptase (RT) is an flexible, multifunctional essential enzyme present in all the 

members of  Retroviriadae family.  HIV-1 RT catalyses  three reactions  necessary to 

transcribe a single stranded viral RNA into a double stranded DNA. Its activities are: RNA-

dependent DNA polymerase, DNA-dependent DNA polymerase  and ribonuclease H (RNase 

H) (Goff, 1990). Although it has three enzymatic activities, the enzyme has only  two active 

sites. 

The  RT form found in the virion is a stable heterodimer composed  by two subunits, 

p66 and p51 containing 560 and 440/441  residues respectively (Figure 1.16; Di Marzo, 

1986). They are very similar, although the smaller unit p51 is lacking   of RNase H domain 

(p15), due to the cleavage of C-terminal end of p66  by HIV protease (Lowe, 1988). Despite 

the same primary amino-acidic sequence, the polymerase domains p66 and p51 have a 

different topology (Kohlstaedt, 1992). 

 

 

Figure 1.16. 3D-Structure of  HIV-1 reverse transcriptase in the complex with DNA (PDB code: 

3KJV) 
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Globally the enzyme resembles as  a  right hand, because it  has  four subdomains called 

fingers, palm, thumb and connection, and shows a classical polymerase structure. All the 

three  enzymatic activities  are  present only in the p66 subunity, whereas the role of  p51  

subdomine is a structural support and  may have a role in binding the tRNAlys3 required for 

priming the RT reaction (Mishima, 1995). The monomeric forms of p66 and p51 are 

enzymatically inactive. 

The mechanism of cDNA synthesis from the viral RNA starts when RT binds a 

specific transfer RNA (tRNA) that is used as the primer for the RNA-dependent DNA 

polymerase reaction. In both HIV-1 and HIV-2 the primer is tRNAlys3, made by 18 bases 

complementary to the primer-binding site in HIV genome. Only in this step RNA acts both as 

template and primer, giving the formation of the hybrid RNA/DNA.  RNA is degraded  

through the endonuclease activity  of  RNase H  domain of RT,  and later a new 

complementary DNA strand is synthesized. At the end of this process  the proviral double-

strand cDNA is obtained (Figure 1.17).  

The huge importance of RT for the virus replication  and its absence in the 

mammalians  have  made this enzyme  an ideal target for a therapeutic approach, as  

previously reported. 

 

 

Figure 1.17. Diagram of HIV reverse transcription mediated by the DNA polymerase, RNase H and 

strand transfer activities of RT  
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1.5. HIV-1 Non-Nucleoside Reverse Transcriptase 

Inhibitors (NNRTIs) 

NNRTI molecules bind specifically at an allosteric site (NNIBP)  situated about 10 Å far from 

the polymerase catalytic site (Figure 1.18).   

 

Figure 1.18. HIV-1 RT with binding site for NRTIs/NtRTIs  and the binding site NNRTIs            

(Sluis-Cremer, 2008) 

 

The allosteric site  is an especially flexible pocket rich in hydrophobic amino-acids and in 

some polar amino-acids. The ones present in NNIBP of  HIV-1 wild type (WT)  that can 

interact with non-nucleoside reverse transcriptase inhibitors are : P95, L100, V106, K101, 

K103, Q138, V179, Y181, Y188, F227, W229, L234 and P236. In particular P95 represents 

the ”mouth” which allows the entry of the inhibitors molecules into the pocket.  

When a NNRTI molecule binds to the allosteric pocket, it induces  several conformational 

changes in reverse transcriptase, causing in particular  a distortion of an  aspartic acid unit in 

the catalytic site. This event restricts the relative subdomain movements required to complete 

the catalytic cycle of the enzyme and it blocks the incorporation of  desoxyribonucleotides 

triphosphate (dNTP) in the growing  DNA chain (Esnouf, 1995; Hsiou, 1996). In detail, a 

NNRTI binding causes  a change in the thumb subdomain, which adopts a more open 
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conformation in comparison with the closed conformation of native reverse transcriptase 

(Kohlstaedt, 1992; Rodgers, 1995). This rearrangement, imaginatively called as ‘molecular 

arthritis’, does not allow the correct interaction between RT and template/primer. This is the 

crucial mechanism of  action of NNRTIs (Figure 1.19, step 3), but recently for efavirenz and 

etravirine it has been reported  a further inhibitory activity at the late stages of HIV-1 

replication, by interfering with HIV-1 Gag-Pol polyprotein processing (Figure 1.19, step 7). 

In the case of IQP-0410 (=1-(3-cyclopenten-1-yl)methyl-6-(3,5-dimethylbenzoyl)-5-ethyl-

2,4-pyrimidinedione)  the block of  viral entry and reverse transcriptase inhibition has been 

observed (Figure 1.19, step 2; Sluis-Cremer, 2008). 

 

 

Figure 1.19. Schematic HIV life-cycle showing  points of action of a NNRTI (in red) (Sluis-Cremer, 

2008) 

 

By  steady-state kinetic analysis it was demonstrated that NNRTIs acted as non- competitive 

or uncompetitive inhibitors of HIV-1 RT DNA polymerization reactions (De Clercq, 1998). In 

this case  the kinetic constants for inhibition (IC50 or Ki) depend on  the template/primer 

substrate lenght used in the polymerase assay. In addition,  recent studies have demonstrated 

that NNRTIs may preferentially target specific steps during reverse transcription (Quan 1998 

and 1999). The RT transcription process initially requires  the strand transfer reaction as 

essential step (Figure  1.17) and it needs  the coordination of both the DNA polymerase and 

RNaseH activities. Although the NNRTI-binding pocket in RT is around 60 Å far from the 

RNase H active site of RT (Figure 1.18), several studies have demonstrated that NNRTIs can 

either partially inhibit or accelerate this activity depending on the mode of RNase H activity 

(Shaw-Reid,2005; Hang, 2007; Radzio, 2008). 
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In addition, the power of NNRTIs in strand transfer may depend on the  efficiencies against 

DNA polymerase and RNase H inhibition.  The inhibition of plus-strand initiation has been 

studied, demonstrating  that NNRTIs potently inhibit in vitro plus-strand initiation under 

conditions in which a little or no inhibition of minus-strand DNA synthesis was observed,  

showing that NNRTIs completely abolish the dNTP binding to RT associated with RNA  

primer/DNA template substrate (Grobler, 2007). 

   Steady-state kinetic analysis is not able to resolve kinetic steps which are masked by 

the rate-limiting step of a reaction, so that  this approach does not explain in detail the  

interactions of the drug with RT in  the polymerase active site (Kati,  1992). An approach 

based on the  pre-steady-state kinetic study provides detailed mechanistic insights into the 

catalytic events that occur directly at the enzyme’s active site. These studies have shown that 

NNRTI-RT-template/primer complexes display a metal-dependent increase in dNTP binding 

affinity (Kd). An in-depth understanding of the multiple mechanisms by which NNRTIs 

inhibit reverse transcription is essential for the development of  novel drugs overcoming the 

resistance. 

 Both  HIV reverse transcriptase and host RNA-dependent DNA polymerase are not 

able to  have error correction capabilities, so the  error rate in the nucleotide  introduction  is 

in the range 10
-4

 ÷10
-5

  in a single cycle of HIV replication (Das, 2005). In this manner HIV 

combines a high rate of replication and a high mutation rate resulting in the production of a 

large pool of viral mutants, making the HIV a “quasispecies” (Coffin, 1995). Many mutant 

viruses maintain the capability to replicate in the presence of a drug, which kills the wild type, 

and so the mutants can dominate in the viral population (Ho, 1995). The most important   

mutations affecting a single amino acid in  the NNIBP are Y188C, Y181C, K103N, L100I 

and the double mutated K103N/Y181C. When one or two mutations are present in the 

enzyme a high-level resistance is involved against the clinically used drugs (Zhan, 2011).    

Initially the first generation of NNRTIs has been found accidentally. X-ray 

crystallographic study on the complex between RT  and  nevirapine (Figure 1.14)  and (S)-8-

methyl-7-(3-methylbut-2-en-1-yl)-6,7,8,9-tetrahydro-2,7,9a-triaza-benzo-[cd]azulen-1(2H)-

one (TIBO), (Figure 1.20a)  showed a closed contact between the drug (also called small 

molecule or ligand) and the amino acids present in the NNIBP, allowing    Schäfer and 

coauthors to propose  a  three-dimensional model called “butterfly-like”, in which to a central 

lipophilic domain (“body”) are linked two π-extended hydrophobic units (“wings”) (Figure 

1.18b, Schäfer 1993).  
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Figure 1.20.  (a) Chemical structure of TIBO, (b) 3D-model of the NNRTI proposed by Schäfer 

 

Currently more than 50 structurally different classes of molecules have been 

identified, showing specific inhibition of reverse transcriptase by interaction with NNIBP and  

able to suppress in vitro HIV-1 replication. It is possible to classify the compounds on the 

base of chemical structure principally into: multicyclic scaffold, benzo-fused heterocyclic 

scaffold, six-membered heterocyclic core scaffolds, five-membered heterocyclic core 

scaffolds, (thio)amide linker containing scaffolds, diphenyl scaffold. 

A better pharmocophore can be obtained  taking into account the topology of all  the 

molecules having a butterfly-like geometry  with the lower conformational  energy. The 

geometric map of this new pharmacophore is reported in Figure 1.21. 

 

 

Figure 1.21. Schematic rapresentation of  NNRTI pharmacophoric distance map (Zhan, 2011). 

 

On the contrary, in the inhibitors of  second generation, as etravirine or rilpivirine (Figure 

1.14), the conformation resembles a “U” or “horseshoe”. This model has a greater flexibility 

and the molecule can adapt better to the flexible NNIBP, increasing the therapeutic potency in 
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comparison with the drug of the first generation adopting a butterfly-like conformation with a 

lower degree of freedom and consequently a more rigid structure  (Figure 1.22; Das, 2005). In 

addition, the better adaptability of the molecules having a horseshoe structure overcomes the 

drug resistance, both in single and double mutated HIV strains (Meréndez-Arias, 2010). The 

comparison of X-ray crystallographic analysis of  different HIV reverse transcriptase and 

NNRTI complexes supported by computational calculation has shown that  the ″butterfly-

like″ or ″horseshoe″  NNRTIs share the common binding mode with NNIBP (Table 1.3 and 

Figure 1.23).  

 

 

Figure 1.22. Schematic representation showing how a flexible inhibitor can adapt to changes in the 

binding pocket of RT due to mutations. A rigid inhibitor (left panel), although binding strongly to the 

unmutated target, fails to bind strongly to the mutated pockets. A flexible inhibitor (right panel) can 

adapt to those changes in the pocket by its torsional changes and repositioning (Das, 2005) 
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Table 1.3. Interactions involved in binding of NNRTIs to HIV Reverse Transcriptase (Zhan, 2011) 

Pharmacophore 

points 
Groups Interaction 

Hydrogen bond 

donors 
O–H, S–H, N–H 

Donor to K103 (1EP4, 

1KLM) or K101 

Hydrogen bond 

acceptors 

(Thio)carbonyl, ester, sulfone O in ether, 

Pyridine N atom, N, O in aromatic, 5/6-

membered rings 

Acceptor to K103 

(1EP4, 1KLM) or K101 

Hydrophobic 

domains 

Aliphatic or aromatic rings, Double and 

triple C–C bonds, CF3, Aliphatic chains 

Hydrophobic interaction 

with Y188, Y181, 

W229, F227, L100, 

L234, V106, Y318 

  

 

Figure 1.23. Schematic 2D representation of common mode of binding  in butterfly-like (9-Cl-TIBO) 

and horseshoe -like (TMC125, etravirine) shapes in the NNIBP (Zhan, 2011) 
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1.6. Drug design of new potential NNRTI molecules 

1.6.1. General 

The past  search of new potential drugs has followed a  process of trial and error, whereas 

nowadays it has been substituted by a rational drug design, often using  sophisticated 

procedures including several computer-based approaches. 

Drug design is a long,  multidisciplinary iterative process of finding new  potential 

drugs based on the knowledge of the biological target. It involves small molecules that are 

complementary in shape and charge distribution  to the bio-molecular target (protein or DNA) 

with which they interact and therefore will bind. For this purpose, it is necessary to have the 

X-ray or NMR  three-dimensional  structure of the target molecule  in the complex with a 

known inhibitor (Figure 1.24).  

 

 

Figure 1.24. General approach for the rational design of inhibitors 

 

The three most used approaches in new lead discovery include de novo design,  fragment 

based design and virtual screening,   as summarized   in Figure 1.25. 
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Figure 1.25. Schematic outline for structure-based lead discovery (adapted from Jorgensen, 2009). 

 

In de novo design a program is used  to add various substituents by replacing hydrogen 

atoms  of a core structure placed in the binding site, in order to obtain a ″template″. The core 

structure can be a simple molecule as benzene or adamantane.  In this manner a combinatorial 

library  is obtained,  in which the user selects the templates  with the lowest energy to be 

submitted to docking calculation. An alternative to de novo design is the virtual screening 

design,  using  docking calculation on a database of chemicals (Jorgensen, 2009).  

In the fragment based design  a library of  bioactive compounds  is decomposed in 

order to furnish a pool of fragments that can be recombined to obtain a subset of new 

compounds. The molecular hybridization approach can be incorporate into fragment based 

design. The new built molecules are based on the combination of  specific pharmacophoric 

moieties present in   different bioactive substances to produce hybrid compounds (Viegas-

Junior, 2007). These compounds are submitted to flexible docking calculations  and ranked 

according to their  binding energy (Huang, 2009). 

  Another filter in the ″rational drug design″  is the prediction of drug-likes  of the 

newly designed molecules. This step is important in order to select the synthesized molecules 

having a good oral bioavailability and in general good properties in adsorption, distribution, 
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metabolism and   excretion (ADME). Predicting human intestinal absorption (HIA) of drugs 

is very important to identify potential drug candidates. A number of software is able to predict 

percent human intestinal absorption (% HIA). Human intestinal absorption data are the sum of 

bioavailability and absorption evaluated from the ratio of excretion or cumulative excretion in 

urine, bile and feces (Beresford, 2002). Compounds can be classified in poorly adsorbed (with 

HIA is between 0 and  20%), moderately adsorbed (from 20 to 70% ) and well adsorbed (from 

70 to 100%) ( Zhao, 2001; Yee, 1997).   

Another relevant calculated parameter is Plasma Protein Binding (PPB). Only the 

unbound drug is generally available for diffusion or transport across cell membranes, and also 

for interactions with a pharmacological target. As a result, a degree of plasma protein binding 

of a drug affects not only the drug’s action, but also its disposition and efficacy. A compound 

is strongly bound if the entity (expressed in percentage) is major than 90 whereas if it is lower 

than 90% the compound is regarded weakly bound.  

 Some  chemical-physical properties are also correlated to the  drug-like activity. In 

particular ″the rule of five″ proposed by Lipinski has given a good index to establish if a 

molecule is a candidate as drug. A molecule follows  this rule if Log P is lower than five, its 

molecular weight is less than 500 Da and the number of  H-bond donors is less than five, as 

well as the number of   H-bond acceptors is less than ten (Lipinsky, 2000 and 2001).  

Potency and respect of this rule are not the only parameters to be  considered  in drug 

design. In fact a general observation to be taken into account in the process of a lead 

development, is the growth of molecular weight, to which the potency is strongly correlated. 

In addition is useful  to convert the binding energy into a new parameter called ligand 

efficiency (∆g), as proposed by Kuntz and shown in Eq.1.1,  in order to compare the 

calculated values of binding energy in a chemical series (Kuntz, 1999). 

 

                                                                                                                                  Eq 1.1 

 

where ∆G=calculated binding free energy, N=number of non-hydrogen atoms (heavy atoms) 

Based on the equation 1.1,  Hoptkins and coauthors have suggested a ligand efficiency cutoff  

equal to 0.29 for a drug-like molecule with nanomolar binding affinity, Reynolds has 

concluded that the maximum of ligand efficiency  can be observed in molecules containing 

between  10 and 25 heavy atoms, whereas molecules with a number of heavy atoms  higher 

than 25 the ligand efficiency essentially plateaued (Reynolds, 2007).  
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1.6.2. Molecular docking 

The pioneering studies involving the docking of small molecules to protein binding sites 

started during the early 1980s’ (Kuntz, 1982).  The increased  availability of  three-

dimensional  structures of bio-macromolecules obtained by X-ray or NMR analyses, as well 

as  the involvement of computer programs has made   molecular docking one of the most used 

techniques  in virtual screening of potential bioactive compounds. Docking promise is that the 

structure of the target will provide a template for the discovery of novel ligands, dissimilar to 

those previously known (Shoichet, 2002).  

Molecular docking is an optimization problem in which the best orientation of a small 

molecule (ligand) binds the protein of interest. The  protein could be seen  as a ″lock″ and the 

ligand as a ″key″ searching  the right orientation after insertion in the key hole in order to 

″open″ the lock (best-fit ligand), but both the protein and the ligand are flexible so that the 

system is more similar to a″hand-in-glove″. Modeling the interaction of a ligand with a 

protein is a complex problem.   The intermolecular forces involved in the protein- ligand 

complex  include hydrophobic,  van der Waals, hydrogen bonding and electrostatic no-

covalent interactions. Although  hydrophobic interactions are much more involved in the 

binding,  hydrogen bonds  and electrostatic ones are responsible for the specificity in the 

molecular recognizing. The major problem  in handling the intermolecular interactions is the 

presence of many degrees of freedom and the lacking knowledge of the  solvation  effect 

(Gohlke, 2002).  

Currently, computation of molecular docking uses models with a flexible ligand and a 

rigid target, although it is possible the treatment of  chain flexibility in the amino acids 

involved in the binding by using some software. In the vast landscape of software for docking 

calculation (over 70 in 2010)  a comparison among them is difficult mainly due to different 

set of proteins that have been used in each software for  benchmark it (Cole, 2005).  One of 

the most used software is AutoDock  (Figure 1.26; Sousa, 2006). Recently,  a comparison of 

AutoDock  with other two molecular docking software (FlexX and Arguslab) has shown that 

it outperforms the two other programs (Chikhi, 2008). The best ranking poses, predicted by 

the three programs and their root mean square deviation (RMSD) values from the original 

crystallographic pose, are reported in Figure 1.27a, whereas figure 1.27 b shows the 

evaluation of docking algorithms for their sampling accuracy. Additional parameters to be 

taken into account in accuracy of docking calculation are given by  the degrees of freedom  in 



29 

 

the ligand (Figure 1.27c) and by the chemical nature of protein-ligand interactions that are 

correlated with binding energy (Figure 1.27d).  

  

Figure 1.26. The most used  docking software (Sousa, 2006) 

 

 

Figure 1.27. a) Best pose with reference to crystallographic pose, b) Top ten poses with reference to 

crystallographic pose, c) Ligand rotatable bonds in relation to docking accuracy, d) % of hydrogen 

bonding in terms of docking accuracy (Chikhi, 2008) 
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AutoDock uses a scoring function to rank the ligand conformations in order to 

evaluate the  binding free energy (∆G) and consequently  the binding constant (Ki) according 

to the equation 1.2:  

 

                                                                                                         Eq. 1.2 

                                            

where R is the gas constant, 1.987 cal K
-1

 mol
-1

, and T is the absolute temperature, assumed to 

be room temperature 298.15 K. It is noteworthy that a minus sign lacks in the equation,  

because the inhibition constant is defined for the dissociation reaction, EI ⇆ E+I  whereas ΔG 

refers to the opposite process of binding, E+I ⇆ EI,  where E is the enzyme and I is the 

inhibitor.  

 In the classical structure-based scoring functions, the traditional force fields are 

implemented with empirical free energy functions so that to reproduce observed binding 

constants. In order to achieve this purpose   an expanded ″master equation″  is used,  which 

allows to model the free energy of binding, adding entropic terms to the molecular mechanics 

as shown in equations 1.3:  

 

                         ∆G = ∆Gvdw + ∆Ghbond + ∆Gelec + ∆Gconform + ∆Gtor + ∆Gsol     Eq. 1.3 

 

 

where the first four terms are the typical molecular mechanics terms for dispersion/repulsion, 

hydrogen bonding, electrostatics, and deviations from covalent geometry respectively, 

whereas ∆Gtor models the restriction of internal rotors and global rotation and translation and 

∆Gsol models desolvation upon binding plus  the hydrophobic effect because the solvent 

entropy changes at solute-solvent interfaces (Morris, 1998). 

Appling Hess’ law to the change in free energy between the states in solution and in 

vacuo the equation 1.4 can be written:  

 

                        ΔGbinding,solution = ΔGbinding,vacuo + ΔGsolvation(EI) - ΔGsolvation(E+I)    Eq. 1.4 

 

After calculation of  ΔGbinding,vacuo  from docking simulation, the free energy change can be 

estimated upon solvation for the separate molecules E and I, and for the complex, EI, 

ΔGsolvation(EI) and ΔGsolvation(E+I) respectively. From these  values it is also possible to calculate 
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the free energy change upon binding of the inhibitor to the enzyme in solution, ΔGbinding,solv  

and to estimate the inhibition constant, Ki, for the inhibitor, I (Figure 1.28).    

  The current version of AutoDock uses a genetic algorithm (GA) for global searching 

and  a local search (LS) method to perform energy minimization, or a combination of both. In 

order to facilitate the torsional space search, the local search method is based on Solis and 

Wets approach (Solis, 1981), which require  no  gradient information about the local energy 

landscape and  removes any steric clashes in the crystallographic complexes. In addition, the 

local search method is adaptive, because it adjusts the step size depending upon the recent 

history of energies: a user-defined number of consecutive failures, or increases in energy, 

causes the step size to be doubled  conversely;  a user-defined number of consecutive 

successes, or decreases in energy, causes the step size to be halved. 

 

 

Figure 1.28. Thermodynamic cycle for the binding of an enzyme (E) and an inhibitor (I) in both the 

solvated phase and in vacuo. (http://www.scripps.edu/pub/olsonweb/doc/autodock/) 

 

 

 

The hybrid between  GA and  the adaptive LS methods  forms  the so-called 

Lamarckian genetic algorithm (LGA), which has enhanced performance in comparison with 

simulated annealing (a little used algorithm in AutoDock) and a classical genetic algorithm. 

The latter one follows the scheme of Darwinian evolution and it applies  Mendelian genetics 

http://www.scripps.edu/pub/olsonweb/doc/autodock/
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(Figure 1.29,  right-hand side);  this means  that the information is transferred only 

unidirectionally from the genotype to the phenotype. In agreement with Jean Batiste de 

Lamarck’s  assertion,  in which phenotypic characteristics acquired during the lifetime of an 

individual  can become heritable, in Lamarckian genetic algorithm  an inverse mapping 

function exists and one individual  yields a genotype from a given phenotype. At this point  it 

is possible to finish a local search by replacing the individual with the result of the local 

search (Figure 1.29,  left-hand side).  

 

Figure 1.29. Genotypic and phenotypic search by Darwinian (right-hand side) and Lamarckian (left-

hand side) search.  f(x) is the fitness function. With sufficient iterations, the local search arrive at a 

local minimum, and an inverse mapping function is used to convert from its phenotype to its 

corresponding genotype. In the case of molecular docking, however, local search is performed by 

continuously converting from the genotype to the phenotype, so inverse mapping is not required. The 

genotype of the parent is replaced by the resulting genotype, however, in accordance with Lamarckian 

principles. (adapted from Morris, 1998) 

 

 
 

From a  computational point of view pre-calculated grid maps  for each type of atom  

present in the ligand are  used  to speed up the docking calculation  in AutoDock. 

A grid map consists of a three dimensional lattice of regularly spaced points, surrounded and 

centered on the region of interest  of the macromolecule under study. Each point within the 
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grid map stores the potential energy of a ′probe′ atom or functional group that is due to all the 

atoms in the macromolecule (Figure 1.30). 

 

Figure 1.30. Example of the main feature of  grid map  

(http://www.scripps.edu/pub/olson-web/doc/autodock/) 
. 

The  boundaries of the interacting site must be selected  neither  too small (because the 

accuracy of docking prediction will be poor due to the limited motion of ligand into the grid 

box),  nor too large (because the success rate decreases  depending to its size). A grid map 

with 60x60x60 points and   a grid-point spacing of 0.375 Ǻ are straightforward parameters to 

be used in grid calculations.  

By AutoDock  software  the  parameters commonly used for docking calculation can be 

summarized as following  reported:  

 

 100 indipendent runs starting from a population size of random individuals of 150 

 a maximum number of 1.5x10
6
 energy evaluations with  

 a maximum number of 27,000 generations 

 a step sizes of 0.2 Ǻ for translations and 5° for orientations and torsions in the initial 

population  

http://www.scripps.edu/pub/olson-web/doc/autodock/
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 an elitism value of 1, which is  the number of top individuals that automatically surviv 

into the next generation 

 a mutation rate of 0.02, which is the probability that a gene would undergo a random 

change  

 a crossover rate of 0.80, which is the probability that two individuals would undergo 

crossover  

 in the analysis of the docked conformations, the clustering tolerance for the root-

mean-square positional deviation is imposed 2.0 Ǻ 

 

At least, but not less important, the X-ray crystallographic  resolution of the protein is a 

parameter to take into account in docking, in order to have realistic results. A threshold of 2.5 

Ǻ of nominal resolution appears to be optimal  for the representation of protein conformations 

(Bottegoni, 2011). 

Another aspect is given by the discrimination between specific and nonspecific 

interactions. Chang and coauthors have analyzed the results of binding energy obtained from 

AutoDock calculations for  a known HIV protease inhibitors series with  compounds from the 

National Cancer Institute (NCI) Diversity Set. From this analysis it is resulted  that all 

compounds  from NCI diversity set exhibit weak or moderate binding energies when 

compared with the known inhibitors. Figure 1.31 illustrates the comparison of the distribution 

of binding energies for known inhibitors and compounds  randomly selected in NCI database 

(a).  Receiver operating characteristic curve (ROC), obtained  by plotting the fraction of true 

positives out of the positives (TPR = true positive rate) versus the fraction of false positives 

out of the negatives (FPR = false positive rate) at various threshold settings, provides to select 

the optimal threshold value  in docking calculation (b). 

For quantifying the comparison of the binding energies between the compounds acting 

as specific protease inhibitors and random compounds taken from the NCI Diversity Set, a 

threshold of -7.0 kcal/mol works well to discriminate between putative specific and 

nonspecific binding with HIV protease. This cutoff is specific for AutoDock and the protease 

system, but it  is broadly applicable as a general approach to other systems   (Chang, 2007). 
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Figure 1.31. (a) Comparison of the distribution of binding energies for known inhibitors and NCI 

Diversity Set compounds.(b) ROC curve showing a sensitivity/specificity tradeoff for threshold values 

from -8 to -6 kcal/mol. (adapted from Chang, 2007) 

 

 

 

 

 

. 
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2.Material and Methods 

 

2.1.  Computational approach 

I carried out all  computational studies using a single machine running on  a 3.4 GHz on an  

Intel i7 2600  quad core processor with 8GB RAM and 1 TB hard disk with Windows  7 

Home Premium 64-bit SP1 as an operating system. I  built the  ligands using PCModel 

version 8.0 (Serena Software, Bloomington, IN 47402-3076). For geometry optimization I 

used Gaussian 03W revision E.01 program set with graphical interface Gaussview 4.0. I 

employed AutoDock Tools (ADT) package version  1.5.6rc3  to generate the docking  input 

files and to analyze docking results whereas AutoGrid 4.0 and AutoDock4.0 were taken on 

for grids and docking calculation respectively. The detailed parameters that I used in this 

thesis for the geometry calculations  and docking evaluations will be reported in Results 

(Chapter 3).    

 

ADME and drug-like properties prediction 

I calculated in silico ADME data predictions  using the freely available web-based application 

PreADMET (http://preadmet.bmdrc.org/); I calculated partition coefficient (LogP) of all 

compounds with  ALOGPS 2.1 program (http://www.vcclab.org/) that uses an average of  

nine Log P methods.  

 

2.2 Chemistry 

2.2.1 General 

All evaporations were carried out at reduced pressure at room temperature. Yields are given 

on the reacted compounds. Solvents and reagents were purchased from Sigma Aldrich Europe 

(Milan, Italy) and  from Alfa Aesar and were used without purification. Thin layer 

chromatography(TLC) was carried out on Merck Kieselgel 60 PF254 and flash 

chromatography (FC) was carried on Merck silica gel (Si-60,15 ± 25 µm). Preparative TLC 

was realized on 20 × 20 cm Merck Kieselgel 60 F254 0.5 mm  plates. All the  reaction 

http://preadmet.bmdrc.org/
http://www.vcclab.org/
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products were characterized  by 
1
H-NMR and mass spectrometry analysis  to confirm the 

structure and  the purity. Compounds used in biological assays have been fully characterized  

by extensive NMR analysis, and  high resolution electron impact mass spectrometry. 

 

2.2.2. Instruments 

Melting points were determined on Reichert Thermovapor microscope (Reichert, Austria) and 

the data are uncorrected. Ultrasound bath Badelin Sonorex RK510, 35 KHz, 160W were used 

for the synthesis of compound 45. IR spectra were acquired by FTIR Equinox 55 Bruker
®

, 

equipped with  ATR device in zinc selenide. NMR spectra were recorded by an Avance 400 

Bruker spectrometer: 
1
H at 400 MHz and 

13
C at 100 MHz in CDCl3 or CD3OD on the base of 

sample solubility. δ values are reported in ppm relative to the solvent residual signals δH = 

7.25 and δC = 77.00 ppm for CDCl3 and δH = 3.31 and δC = 49.00 for CD3OD, where the 

solvent residual signals are relative to SiMe4 (=0 ppm); J values are given in Hertz. 
13

C-NMR 

assignments come from heteronuclear single quantum correlation (HSQC) and heteronuclear 

multiple bond correlation (HMBC) experiments. For Numbering adopted for NMR 

assignments is for convenience. Electron impact (EI) mass spectra (m/z; rel.%) and high 

resolution EI data were taken by a Kratos-MS80 mass spectrometer with a home-built 

computerized acquisition software. Electrospray ionization (ESI)-MS mass spectra and 

tandem fragmentation spectra (MS/MS) were recorded  by  a Bruker Esquire-LC
®

 

spectrometer with an electrospray ion source used in positive or negative ion mode by direct 

infusion of a methanolic solution of the sample, under the following conditions: source 

temperature 300°C, drying gas N2, 4 L/min, positive ion mode, ISV 4 kV, OV 38.3 V, scan 

range m/z 100–1,000. For the determination of optical activity of compounds 3, 4, 11 and 12 I 

used a single wavelength polarimeter ADP440 (Bellingham + Stanley Ltd). 

 

2.2.3 Chemical procedures of synthesis 

The  details of chemical synthesis have been  reported in chapter 3; a detailed discussion on  

the chosen methods and their optimizations has been inserted in chapter 4.  
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2.3 Biological assays 

 

2.3.1. ELISA enzymatic assay 

I performed the HIV-RT inhibition assay by using the Roche Reverse Transcriptase Assay, 

Colorimetric kit (Mannheim, Germany: Roche Diagnostics GmbH, Roche Applied Science). 

The procedure for assaying RT inhibition was performed as described in the kit protocol and 

it is reported in detail in chapter 3. Additional reverse transcriptase was obtained from Pierce 

Biotechnology (USA) and before  using  it, I compared the activity with the original one 

present in the Roche kit. Experimental details has been described in § 3.3.1.1. 

 

2.3.2. In vitro anti-HIV activity  

Inhibition of HIV-1(IIIB) and HIV-2(ROD)-induced cytopathicity in CEM cell cultures 

performed by the Prof. Balzarini’s staff (Rega Institute, University of  Leuven Belgium), was 

measured in microtiter 96-well plates containing  ~3x10
5
 CEM cells/mL, infected with 100 

CCID50 of HIV per mL and containing appropriate dilutions of the test compounds. After 4–

5 days of incubation at 37 °C in a CO2-controlled humidified atmosphere, CEM giant 

(syncytium) cell formation was examined microscopically. The EC50 (50% effective 

concentration) was defined as the compound concentration required to inhibit HIV-induced 

giant cell formation by 50%. 

 

2.3.3. In vitro antiviral activity  

The antiviral assays, performed in the laboratory  of Prof. Snoeck  and Prof. Andrei (Rega 

Institute, University of  Leuven Belgium),  were based on the inhibition of virus-induced 

cytopathicity in HEL cell cultures for herpes simplex virus type 1 (HSV-1), HSV-2(G), 

vaccinia virus, vesicular stomatitis virus (Table 3.7) and varicella-zoster virus (VZV) (Table 

3.8); in Vero cell cultures for parainfluenza- 3, reovirus-1, Sindbis, Coxsackie B4 and Punta 

Toro virus (Table 3.10); in  HeLa cell cultures for vesicular stomatitis virus, Coxsackie virus 

B4 and respiratory syncytial virus (Table 3.9); in MDCK (Madin Darby canine kidney) cell 

cultures for influenza A (H1N1 and H3N1) and influenza B virus (Table 3.12) and in CrFK 

(Crandell-Rees Feline Kidney) cell cultures for  feline herpes virus and feline corona virus 

(FIPV) (Table 3.11). Confluent cell cultures in microtiter 96-well plates were inoculated with 
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100 cell culture inhibitory dose-50 (CCID50) of virus (1 CCID50 being the virus dose to infect 

50% of the cell cultures) in the presence of varying concentrations of the test compounds. 

Viral cytopathicity was recorded as soon as it reached completion in the control virus infected 

cell cultures that were not treated with the test compounds. 

For the anti-cytomegalovirus assay, confluent human embryonic lung (HEL) fibroblast 

cultures were grown in 96-well microtiter plates and infected with the human 

cytomegalovirus (HCMV) strains AD-169 and Davis at 100 PFU per well. After a 2-h 

incubation period, residual virus was removed and the infected cells were further incubated 

with medium containing different concentrations of the test compounds (in duplicate). After 

incubation for 7 days at 37 °C, virus-induced cytopathogenicity was monitored 

microscopically after ethanol fixation and staining with Giemsa.  Antiviral activity was 

expressed as the EC50 or compound concentration required to reduce virus-induced 

cytopathogenicity by 50%. EC50’s were calculated from graphic plots of the percentage of 

cytopathogenicity as a function of concentration of the compounds (Table  3.13). 

 

2.3.4. Antibacterial  activity  

The antibacterial tests were performed at the University A. Mira of Bejaia, Algeria, following 

the procedures reported below. 

 

Agar diffusion assay 

Well agar diffusion assays were performed to determine antibacterial activity. The pure 

compounds were dissolved in DMSO (1 mg/mL),  assay plates were prepared by inoculating 

Mueller - Hinton agar medium with 24 hours old culture containing test organisms (107 

CFU/mL). A solution of dissolved compounds (100 μl) was  added to separate wells (6 mm 

diameter).The plates were placed at 4°C for 2h; zones of inhibition were recorded after 24 

hours of incubation at 37 °C. In all cases, for the controls containing only the respective 

amount of solvent, no growth inhibition was observed. Antimicrobial activities were assayed 

in triplicate. 
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Determination of the minimum inhibitory concentrations (MIC) for 

antibacterial activity  

The isolated pure compound was dissolved in DMSO at 1 mg/mL concentration and diluted 

further to give required concentrations such as 2, 4, 8, 16 and 32 (μg/mL). The diluted 

solutions (2 mL) were added to Müller- Hinton plates (18 mL). An inoculum of 10 μL (10
7
 

CFU/mL) from culture of each test human pathogens, MRSA ATCC 43300, Staphylococcus 

aureus ATCC 25923 and P aeruginosa ATCC 27853, were inoculated in each concentration 

plate. The plate’s cultures were incubated for 24 hour at 37 °C. The MIC was defined as the 

lowest concentration of the purified compound showing no visible growth after overnight 

incubation. Vancomycin was used as positive control for MRSA and DMSO was used as 

negative control. Replicates were maintained for each test bacteria. 
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3. Results 

 

3.1 Drug design 

In medicinal chemistry the molecular simplification is a common paradigm in order to obtain 

a minimal structure with potential bioactivity. By reducing the complexity of an  active 

natural product and introducing structural modifications, it is possible to achieve a library of 

novel compounds, easier to be prepared than the natural molecule itself. The design of these 

molecules can be allowed by molecular hybridization using different  fragments present in 

known molecules interacting with the macromolecule of interest (Viegas-Junior, 2007). In 

this thesis I designed a small library of new molecules using  this approach.   

The scaffold present in the series of the new molecules derives from the disconnection of (+)-

calanolide A, a natural product isolated from  the Malaysian tree Calophyllum lanigerum, 

showing a potent anti-HIV activity (Currens, 1996; Xu, 2000)  and  from the disconnection of 

α-APA (=2-((2-acetyl-5-methylphenyl)amino)-2-(2,6-dichlorophenyl)-acetamide), a synthetic  

NNRTI (Ding, 1995, Figure 3.1). In particular (+)-calanolide A is unique among NNRTIs 

because it is able to bind two distinct sites in reverse transcriptase (Currens, 1996). This 

natural product exhibits a 10-fold enhanced activity against drug-resistant viruses, which 

show the most prevalent NNRTI resistance mutations such as the Y181C mutation (Auverx, 

2005), probable due to the particular feature of binding of this molecule. Potent antiviral 

agents as etravirine or rilpivirine (Figure 1.14.) have been obtained by extensive 

modifications introduced in α-APA structure, so it represents a good starting molecule to be 

inserted in the hybridization method with the aim to find new active molecules.  

Based on  this idea, the study by docking calculation of a series of molecules has been 

planned with the aim of introducing changes in the (aryl)-alkyl unit,  in the  linking group X, 

as well as in  the substituent R on the pyranone moiety,  as reported  in the general structure 

(Figure 3.2).   
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Figure 3.1. Drug design of new potential NNRTIs  by  molecular hybridization method 

 

This is in line with a drug design using a fragment based strategy associated to 

molecular hybridization (§ 1.6.1), a more ambitious approach than the one based on  the  

introduction of  small structural modifications in known drug molecules. 

 

 

Figure 3.2. General structure of designed new molecules as potential NNRTIs 

In fact the latter methodology  can  give easier successes, as reported in the case of nevirapine 

modification by adding a short chain on the aromatic ring present in dipyridodiazepinone 

(Nisachon, 2009), or in the case of the drug rilpivirine, where a small modification on the 

atom linker between the pyrimidine unit and the aromatic ring bearing the acrylonitrile moiety 

gave new compounds showing the same activity as the starting drug (Mordant, 2007). In 
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literatureother examples  are also reported where small structural modifications decrase the 

bioactivity: for the drug efavirenz, the replacing of the clorine atom on the aromatic ring  

(with NO2, NH2 or  F),  (Patel, 1999)  or changing the side chain (Cocuzza, 2001),  drastically 

reduce the antiviral activity.   Anyway, it is the way to be followed up in order to find novel 

compounds overcoming the problem of resitance.  

 

 

3.1.1. Docking  calculation 

3.1.1.1. Protein preparation 

The X-ray crystallographic structure (resolution  = 2.5 Å, R-factor
1
 0.214 space group 

P21P21P21 , PDB accession code 1FK9) of RT in the complex with the clinically used 

efavirenz  as ligand, was downloaded from PDB Database (http://www.rcsb.org/pdb/home/ 

home.do). The PDB structure of RT presents a good resolution, although a residue of S-

sulfinocysteine was present instead of  C279 residue  in the chain A. It was manually 

substituted with a cysteine. All the water molecules of crystallization were removed,  as well 

as the ligand and the cleaned protein structure was saved  with pdb extension.  In order to 

validate the docking method, other RT protein structures complexed with known allosteric 

inhibitors were  downloaded from PDB Database, as reported in table 3.1 and submitted at the 

same procedure adopted  for the protein 1FK9. 

 

Figure 3.3. Structure of inhibitors present in a complex with  downloaded RT 

                                                      
1
 R-factor :In crystallography, the R-factor  is a measure of the agreement between the crystallographic model and the experimental X-ray 

diffraction data and it describes the quality of a model. It is defined by the following equation:  

 

where F is the so called structure factor and the sum extends over all the reflections measured and their calculated counterparts respectively. 

The structure factor F is closely related to the intensity of the reflection it describes: . For large molecules, R-factor 
usually ranges between 0.6 (when comparing a random set of reflections with a given model) and 0.2 (for example for a well refined macro-

molecular model at a resolution of 2.5 Ångström.  

 

http://www.rcsb.org/pdb/home/%20home.do
http://www.rcsb.org/pdb/home/%20home.do
http://en.wikipedia.org/wiki/Crystallography
http://en.wikipedia.org/wiki/X-ray_diffraction
http://en.wikipedia.org/wiki/X-ray_diffraction
http://en.wikipedia.org/wiki/Structure_factor
http://en.wikipedia.org/wiki/Structure_factor
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Table 3.1. Details  of  RT  X-Ray crystal structure. 

PDB Code Inhibitor 
Resolution 

(Å) 
R-Factor

 
Space group 

1FK9 efavirenz 2.50 0.214 P21P21P21 

2ZD1 rilpivirine 1.80 0.220 C2 

3BGR (K103N/Y181C 

mutant) 
rilpivirine 2.10 0.228 C2 

2IC3 (K103N/Y181C 

mutant) 
HBY 3.00 0.257 C2 

2RF2 MRX 2.40 0.189 C2221 

3E01 PZ2 2.95 0.235 C2221 

1VRT nevirapine 2.20 0.186 P21P21P21 

1KLM delavirdine 2.65 0.237 P21P21P21 

1MU2 (HIV-2 RT) - 2.35 0.192 P21P21P21 

 

 

3.1.1.2. Preparation of ligands 

All the new molecules were built with PCModel using the default molecular mechanics force 

field MMX. The geometry of each minimized molecules was furtherly optimized using the 

quantum-chemical software Gaussian 03W (Frisch, 2004). Restricted Density Functional 

Theory (DFT)  was used invoking gradient geometry optimization. The basis set of choice 

resulted  6-31G(d,p) for all the atoms.  The gradient-corrected DFT with the three-parameter 

hybrid functional (B3) (Becke 1993) for the exchange part and the Lee–Yang–Parr (LYP) 

correlation function (Lee, 1988) were utilized. The optimized structural parameters were 

employed in the vibrational energy calculations at the DFT levels to characterize all stationary 

points as minima. No imaginary wavenumber modes were obtained for each optimized 

structure, proving that a local minimum on the potential energy surface was actually found. 

The minimized molecules were saved with pdb extension. 
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3.1.1.3. Molecular docking 

Employing AutoDock Tools (ADT), all the hydrogen atoms  were added  to reverse 

transcriptase structure  and  Gasteiger-Marsili charge   were calculated saving the file with 

extension pdbqt.   

Rotatable bonds were defined for each ligand molecule, previously minimized, after 

the addition of Gasteiger-Marsili charge, and the obtained file saved as pdbqt. For the grids 

calculation a grid box of 60x60x60 points in x,y,z directions was created, spacing of 0.375 Å  

and centered on the NNBP. Energy grid maps for all possible ligand atom types were 

generated with Autogrid 4.0 before performing docking.  

Lamarckian  genetic algorithm was used to search the conformational and 

orientational space of the ligands. A  default protocol was applied  with initial population of 

150 randomly placed individuals, a maximum number of 2.5x10
5
 energy evaluation and a 

maximum number of 2.7x10
4
 generations. A mutation rate of 0.02 and a crossover rate of 0.8 

were used. Hundred independent docking runs  were performed and then the 100 solutions 

were clustered into grups with RMS deviation lower than 0.5Å. The lowest energy 

conformation in the most populated cluster was chosen (Hu, 2009). Before starting the 

calculations with the new molecules, the method has been cross-validated using different X-

ray structures bonded with various inhibitors, which were removed from the reverse 

transcriptase and a docking calculation was carried out for each inhibitor docked with each 

RT (Table 3.2).  

Later the compounds selected to be synthesized  were also submitted to further 

docking calculations using the software Molegro  virtual docker (demo version) in order to 

compare the results obtained with Autodock. The calculations were carried out with default 

parameters: the used  scoring function  was MolDock Score with a grid resolution of 0.30Å  

centered on the original ligand position and with a radius of 12 Å.  

The  search algorithm  was MolDock Optimizer (a genetic-algorithm) using 10 

independent runs starting from a random generated population of 50 individuals with a 

maximum number of 2000 iterations, a scaling factor of 0.50 with a crossover rate of 0.90. 

The end of calculation was based on variance-based method. A post-docking energy and H-

bond optimization  were applied, whereas a clusterization  of similar poses for the generated 

structures has been performed with a RMSD threshold   of 1.00 Å. The docking calculation 
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results for the selected molecules to be  assayed in vitro are reported in table 3.3, whereas all 

the other calculated structures are reported in appendix A. 

Table 3.2. Calculated binding energy by docking  validation of different X-ray RT structures. The 

values in red are the energy corresponding to re-docked of ligand in the same original RT. 

PDB code Efavirenz
 

Rilpivirine HBY MRX PZ2 NVP Delavirdine 

1FK9 
(Efavirenz) 

-8.61 

 

-10.39 

 

-8.89 

 

-9.82 

 

-10.50 

 

-8.25 

 

-9.21 

 

2ZD1 
(Rilpivirine) 

-7.98 

 

-12.99 

 

-8.90 

 

-8.68 

 

-10.29 

 

-8.17 

 

-11.08 

 

3BGR 
(Rilpivirine) 

-6.57 

 

12.81 

 
n.c. n.c. n.c. 

-7.81 

 

-10.45 

 

2IC3 
(HBY) 

n.c. 
-9.30 

 

-7.76 

 
n.c. n.c. n.c. n.c. 

2RF2 
(MRX) 

n.c. 
-8.37 

 
n.c. 

-9.62 

 
n.c. n.c. n.c. 

3E01 
(PZ2) 

n.c. 
-11.69 

 
n.c. n.c. 

-12.58 

 
n.c. n.c. 

1VRT 
(NVP) 

-7.73 

 

-10.59 

 
n.c. n.c. n.c. 

-8.50 

 

-10.07 

 

1KLM 
(Delavirdine) 

-7.93 

 

-10.70 

 
n.c. n.c. n.c. 

-8.30 

 

-10.05 

 

1MU2 
(HIV-2 RT) 

-5.58 

 

-7.41 

 
n.c. n.c. n.c. 

-5.65 

 

-8.86 

 
n.c. = not calculated 

 

Figure 3.4. Visual inspection of  some results obtained by docking validation test. In green are 

reported the original ligand position in X-ray crystallographic structure, in red are reported the docked 

molecules. a) rilpivirine (pdb code:2ZD1), b) efavirenz (pdb code: 1FK9), c) delavirdine (pdb 

code:1KLM), d) nevirapine (pdb code:1VRT), e) compound PZ2 (pdb code:3E01), f) compound MRX 

(pdb code: 2RF2).  
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In figure 3.5 the visualization of compound 23 is reported (in red lines) surrounded by 

the amino acids present in NNIBP of RT (pdb code 1FK9). Compound 23 has been chosen 

because it resulted one of the most promising molecule. It is also reported as an example the 

cluster histogram of binding energy  clustered at rms 0.5Å, by docking calculation it is also 

reported as an example (Figure 3.6).    

 

Figure 3.5. Amino acid residues in Rasmol colours  of  NNIBP surrounding the in vitro resulted most 

active molecules 23 (in red)  

 
 

Figure 3.6. Cluster analysis of compound 23  

 

The figure 3.7  shows the overlap among compound 23, the natural product calanolide 

A and the synthetic NNRTI α-APA  in the same binding site. Although the molecules show a 

little bit different arrangement  in the pocket, all the atoms are superimposable. 
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Figure 3.7. Overlapped structures in the RT binding site (pdb code 1FK9) of compound 23 (in red), 

calanolide A ( in blue) and α-APA (in green) deriving from AutoDock calculation 

 

In order to search the best overlap among the three molecules previously docked by 

AutoDock, a superimpose procedure using the software MOE was applied. It  takes into 

account shape, electrostatic potential,  lipophilicity and molecular refractivity and the visual 

results are reported in figure 3.8. 

 

Figure 3.8. Visual inspection of overlapped molecules of compound 23 (in red), calanolide A ( in 

blue) and α-APA (in green) obtained using a superimposing genetic algorithm  that considers shape, 

electrostatic potential, lipophilicity and molecular refractivity.   

 

3.1.1.4 ADME and drug-like properties prediction  

Each pdb file of the  new molecules was subjected to  the different web-based program and 

the results are summarized in table 3.3.  
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Table 3.3. Docking and ADME parameters for the synthesized molecules 

Entry 
Chemical 

Structure 

Molecular 

Formula 

M.W. 

EDocking 

AutoDock 

(Kcal/mol) 

Ligand 

Efficiency 

 

EDocking 

Molegro 

Score 

(Rerankin) 

Calculated 

Log P 

ADME 

Prediction 

HIA 

(%) 

In vitro 

PPB 

(%) 

1 

 

C13H13NO2  

215.25 
-7.04 0.44 

-97 

(-82) 
1.8±0.6 95 100 

2 

 

C17H15NO2 

265.35 
-8.78 0.44 

-119 

(-97) 
3.0±0.6 96 100 

3 

 

C18H17NO2 

 279.33 
-9.39 0.44 

-123 

(-101) 
3.4±0.7 96 100 

4 

 

C18H17NO2 

279.33 
-9.47 0.45 

-127 

(-104) 
3.4±0.7 96 100 

5 

 

C18H17NO2 

279.33 
-9.26 0.44 

-131 

(-103) 
3.3 ±0.6 96 100 

6 

 

C16H16N2O2 

268.31 

 

-8.40 0.35 
-137 

(-108) 
2.7±0.7 91 88 

7 

 

C15H13 Cl2NO3 

326.20 
-7.47 0.36 

-119 

(-93) 

 

2.6±1.0 

 

96 94 

8a 

 

C19H15 Cl2NO3 

376.26 
-9.41 0.38 

-141 

(-117) 

 

3.7±1.0 

 

97 96 

8b 

 
 

C19H15Cl2NO3 

376.23 
-10.89 0.44 

-145 

(-97) 

3.8±0.5 

 
98 92 
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Entry 
Chemical 

Structure 

Molecular 

Formula 

M.W. 

EDocking 

AutoDock 

(Kcal/mol) 

Ligand 

Efficiency 

 

EDocking 

Molegro 

Score 

(Rerankin) 

Calculated  

Log P 

ADME 

Prediction 

HIA 

(%) 

In vitro 

PPB 

(%) 

9 

 

C19H15Cl2NO3 

376.23 
-8.27 0.33 

-145 

(-107) 

3.4±0.4 

 
97 92 

10 

 

C25H27NO3 

389.53 
-12.29 0.42 

-168 

(-100) 
5.2±0.6 97 92 

11 

 

C20H17 Cl2NO3 

390.29 
-9.20 0.35 

-140 

(-107) 

 

4.2±1.1 

 

97 93 

12 

 

C20H17 Cl2NO3 

390.29 
-9.33 0.36 

-147 

(-111) 

 

4.2±1.1 

 

97 93 

13 

 

 

C18H16 Cl2N2O3 

308.33 
-8.72 0.35 

-139 

(-115) 

 

3.0±1.0 

 

85 80 

14 

 

C17H14O2S 

282.36 
-9.37 0.47 

-124 

(-102) 
4.0±0.4 97 92 

15 

 

C17H14O4S 

314.36 
-9.91 0.45 

-133 

(-105) 
2.3±0.8 98 99 

17 

 

C18H16O4S 

328.38 
-10.12 0.44 

-145 

(-102) 
2.6±0.9 98 98 

18 

 

C17H14O3 

266.29 
-8.76 0.44 

-124 

(-102) 
3.4±0.5 99 100 
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Entry 
Chemical 

Structure 

Molecular 

Formula 

M.W. 

EDocking 

AutoDock 

(Kcal/mol) 

Ligand 

Efficiency 

 

EDocking 

Molegro 

Score 

(Rerankin) 

Calculated 

Log P 

ADME 

Prediction 

HIA 

(%) 

In vitro 

PPB 

(%) 

18a 

 

C28H22O3 

406.46 
-13.32 0.43 

-167 

 (-116) 

 

6.3±0.6 

 

99 96 

19 

 

C18H16O3 

280.32 
-9.44 0.45 

-129 

(-103) 
3.6±0.4 99 96 

20 

 

C17H13IO3 

392.19 
-9.76 0.46 

-133 

(-106) 
3.9±0.8 99 95 

21 

 

 

C18H15BrO4S 

407.28 

  

-10.92 0.46 
-143 

(-98) 
3.1±1.2 98 98 

22 

 

C19H17NO3  

307.34 
-9.75 0.42 

-130 

(-104) 
2.8±0.9 96 100 

23 

 

C19H18O3 

294.34 
-10.33 0.44 

-130 

(-109) 
4.1±0.5 99 95 

24 

 

C19H19NO2 

293.36 
-10.12 0.46 

-122 

(-102) 
3.8±0.5 97 100 

25 

 

C19H18O2S 

310.41 
-10.08 0.46 

-136 

(-110) 
4.9±0.5 97 96 
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Entry 
Chemical 

Structure 

Molecular 

Formula 

M.W. 

EDocking 

AutoDock 

(Kcal/mol) 

Ligand 

Efficciency 

 

EDocking 

Molegro 

Score 

(Rerankin) 

Calculated 

Log P 

ADME 

Prediction 

HIA 

(%) 

In vitro 

PPB 

(%) 

26 

 

C19H18O4S 

342.41 
-10.63 0.44 

-143 

(-114) 
3.1±0.7 98 96 

Reference Compounds 

α-APA 

 

C17H16Cl2N2O2 

351,23 
-8.93 0.39 

-132 

(-104) 

 

3.8±0.5 

 

95 86 

Calanolide A

 

C22H26O5 

370.48 

 

-10.29 0.38 
-121 

(-66) 

4.2±0.4 

 
98 95 

Nevirapine 

 

C15H14N4O 

266.30 
-8.25 0.41 

-104 

(-80) 
1.7±0.6 96 66 

Efavirenz

 

C14H9ClF3NO2 

315.67 
-8.61 0.41 

-139 

(-119) 
4.0±0.8 96 95 

Etravirine 

 

C22H18N6 

366.42 
-10.39 0.37 

-151 

(-74) 
4.4±1.0 95 95 
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3.2. Chemical synthesis and structural characterization of 

the new molecules 

Compounds 1-13 and 28 with general structure as in figure 3.2  were synthesized as reported  

in scheme 3.1, 14-21 according to scheme 3.2 and 22-26 as illustrated in scheme 3.3. 

 

 

Scheme 3.1. Chemical synthesis of compounds 1-13. Reagents and conditions: a)TsCl (1.1 eq)/ 

Et3N(1.5 eq)/CH2Cl2  0°C→r.t., 24h, 90% yield; b)  suitable (aryl)alkyl amine (1.1 eq), Et3N(1.5eq.) 

EtOH r.t., 60h, 50-55% yield; c) acyl chloride (1.2 eq)/ Py (2 eq)/ CH2Cl2  0°C→r.t., 24h 85-95% 

yield; d) acyl chloride (1.2 eq)/ (2 Et3N eq)/ CH2Cl2  0°C→r.t., 24h, 25-84% yield. 
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Scheme 3.2. Chemical synthesis of  compounds 14-21. Reagents and conditions: a) NaSH in EtOH 

r.t., 2h, suitable (aryl)alkyl bromide (1 eq), DBU (1.5eq.) C6H6 r.t., 18 h, 40-86% yield; b) UHP / 

HCOOH 85%  r.t., 4h, 100% yield;   c ) suitable (aryl)alkyl bromide (1.1 eq), K2CO3, KI, acetone 

reflux 20h, 40-60% yield; d) I2/AgNO3/MeOH under N2 at  r.t. in the dark for 5h, 85% yield; e) Br2 

/CH2Cl2 3h, 66% yield; f)TsCl (1.1 eq)/ Et3N(1.5 eq)/CH2Cl2  0°C→r.t. 24h,  90% yield).  
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Scheme 3.3. Chemical synthesis of compounds 22-26. Reagents and conditions: a)TsCl (1.1 eq)/ 

Et3N(1.5 eq)/CH2Cl2  0°C→r.t., 24h, 90% yield; b) naphthalen-1-ylmethanamine (1.1 eq), Et3N(1.5eq.) 

EtOH r.t. 60h, 55 % yield; c) Et3SiH/LiClO4/CF3COOH r.t. 60 h 90 % yield; d) 1-

(bromomethyl)naphthalene (1.1 eq), K2CO3, KI, acetone reflux 20h, 60% yield; e) NaSH in EtOH r.t. 

2h, 1-(bromomethyl)naphthalene (1.2 eq), DBU (1.5eq.) C6H6 r.t., 18 h, 80 % yield;  f) UHP / 

HCOOH 85% r.t. 5h, 100% yield.  
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3.2.1. Precursors 29, 30 and 35 

Compounds  29 and 30 (Scheme 3.2)  and 35 (Scheme 3.3)  were prepared and characterized 

as described below. 

Synthesis  and structural characterization of  4-hydroxy-3-iodo-6-methyl-2H-pyran-2-

one (29) 

 

A mixture of 4-hydroxy-6-methyl-2H-pyran-2-one (27, Scheme 3.1), (1.26 g, 10 mmol) silver 

nitrate (1.71 g, 10 mmol), and  iodine (2.80 g, 11 mmol) in methanol (65 mL) was stirred 

overnight at room temperature under nitrogen atmosphere. The formed yellow precipitate of 

silver iodide was filtered off and washed with methanol. The methanol was removed in 

vacuo; the solid residue was suspended in chloroform (30 mL) for several minutes to remove 

the iodine in excess and then filtered. The yellow  solid corresponds to the product 29 (2.15 g, 

85 % yield). M.p. 203-204°C. 
1
H NMR (400 MHz, CD3OD) δ(ppm): 6.04 (s, 1H, H-5), 2.25 

(s, 3H, CH3 ). EI-MS m/z (%): 252 ([M
+•

], 100),  224 (38), 168 (46); HR(EI)MS: 

251.92807±0.0030 (C6H5IO3, calcd. 251.92835). 

 

Synthesis and structural characterization of  4-hydroxy-3-bromo -6-methyl-2H-pyran-2-

one (30) 

 

To a solution of  4-hydroxy-6-methyl-2H-pyran-2-one (27), (1.26 g, 10 mmol) in CH2Cl2 (60 

mL) a solution of  bromine (600µL, 11 mmol) in CH2Cl2 (6 mL) was added slowly. The 

mixture was stirred at room temperature in the dark for 3 hours monitoring by  TLC  (ethyl 

acetate 100%).  Dichloromethane  was removed in vacuo and the residue was recrystalized  

from ethanol to give  pure 30 (1.9 g, 93%  yield) as pale yellow crystals. M.p. 214-215 (Lit. 

214-217; De March ,1985).
 1

H NMR (400 MHz, CD3OD) δ(ppm): 6.09 (s, 1H, H-5), 2.25 (s, 
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3H, CH3 ). ESI-MS (positive mode): m/z 205  ([M+ H]
+
), 229 ([M + Na]

+
).  The data are 

consistent with the ones reported  by De March, 1985. 

 

Synthesis and structural characterization of  3-ethyl-4-hydroxy-6-methyl-2H-pyran-2-

one (35) 

 

Dehydroacetic acid  (33, Scheme 3.3),  (2.0 g, 12 mmol), triethylsilane (7.6  mL, 48 mmol) 

and LiClO4 (13 mg, 0.12 mmol) were dissolved in trifluoroacetic acid (35 mL) and stirred at 

room temperature for 60 hours monitoring by  TLC (hexane/ethyl acetate= 1:1). The solvent 

was evaporated in vacuo and the two phase-residue  was put into a separating  funnel  to 

separate the lower phase, which was treated with methanol to give a white precipitate.  After 

filtration, it was dried to give 35 which was used without further purification (1.6 g, 86% 

yield). M.p. 186°C (Lit.: 187°C;  Lokot, 1999).
 1

H NMR (400 MHz, CD3OD) δ(ppm): 6.00 (s, 

1H, H-5), 2.41 (q, J=7.4 Hz, 2H, H-1’),  2.22 (s, 3H, CH3), 1.05 (t,  J=7.4 Hz, 3H, H-2’) .
 13

C 

NMR (100 MHz, CD3OD) δ (ppm): 167.24 (C-4), 165.98 (C-2), 160.26 (C-6), 103.44 (C-3), 

100.16 (C-5), 17.91 (CH3), 15.46 (C-1’), 11.19 (C-2’). EI-MS m/z (%): 154 ([M
+•

], 100); 

HR(EI)MS: 154. 06280±0.0030 (C8H10O3, calcd. 154.06299). The data are consistent with the 

ones reported  by Lokot, 1999. 

 

3.2.2. Tosylate precursors   

Compounds  28, 31 and 36, later used in the synthetic sequences reported in schemes 3.1, 3.2 

and 3.3,  were prepared and characterized as described below.  

 

3.2.2.1. General procedure of synthesis  

4-Hydroxy-6-methyl-2H-pyran-2-one(27), or 3-ethyl-4-hydroxy-6-methyl-2H-pyran-2-one 

(26), or 3-bromo-4-hydroxy-6-methyl-2H-pyran-2-one (31) (10 mmol) and tosyl chloride 

(2.10g, 11 mmol) were dissolved in CH2Cl2 (75 mL) at 0°C. Et3N (4.20  mL, 30  mmol) was 

added and the reaction mixture was left under stirring at room temperature for 24 hours 



60 

 

monitoring by TLC (hexane/ ethyl acetate = 1:1 for 28, or 6:4 for 31, or 7:3 for 36). CH2Cl2 

(125 mL) was added and the organic phase was washed with water (70 mL) and brine (70 

mL). The organic phase was dried over anhydrous Na2SO4. After concentration in vacuo, the 

crude products were purified by recrystallization or liquid chromatography on SiO2 column. 

 

3.2.2.2. Spectroscopic  and mass spectrometric data 

6-Methyl-2-oxo-2H-pyran-4-yl 4-tosylate (28) 

 

 Yield 90 %.  Pale pink crystals (from EtOH),  m.p. 101-102 °C  ( Lit.: 101.2 – 102.0 °C; 

Djakovitch, 2004).  
1
H NMR (400 MHz, CDCl3) δ (ppm): 8.04 (d, J = 8.4Hz, 2H), 7.38 (d, J 

= 8.4 Hz, 2H), 5.99 (s, 1H), 5.80 (s, 1H), 2.47 (s, 3H), 2.23 (s, 3H). 
13

C NMR (100 MHz, 

CDCl3) δ (ppm): 164.4, 163.0, 162.1, 146.8, 131.8, 130.4(2C), 128.5(2C), 100.9, 100.8, 21.9, 

20.3. EI-MS: m/z (%) 280 ([M
+•

], 6), 155 (43), 132 (23), 91(100); HR(EI)MS: 

280.0403±0.0030 (C13H12O5S, calcd. 280.0406). The data are consistent with the ones 

reported  by Djakovitch, 2004. 

 

3-Bromo-6-methyl-2-oxo-2H-pyran-4-yl 4-tosylate  (31) 

 

 

Yield 95%.  Pale yellow crystals (from EtOH), m.p. 165-166°C (Lit. 165-166°C; Lei, 2011). 

1
H NMR (400 MHz, CDCl3) δ(ppm): 7.86 (d, J = 8.0 Hz, 2H), 7.38 (d, J = 8.0 Hz, 2H), 6.43 

(s, 1H), 2.46 (s, 3H), 2.28 (s, 3H).  
13

C NMR (100 MHz, CDCl3) δ (ppm): 162.2, 161.9, 159.0, 
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147.2, 130.6, 130.4, 128.7, 101.6, 99.7, 22.3, 20.2. ESI-MS (positive mode): m/z 358  ([M+ 

H]
+
), 380 ([M + Na]

+
).   

The data are consistent with the ones reported  by Lei, 2011. 

 

 3-Ethyl-6-methyl-2-oxo -2H-pyran-4-yl-tosylate (36) 

 

Yield 92%. White solid. 
1
H NMR (400 MHz, CDCl3) δ (ppm): 7.82 (d, J = 8.3 Hz, 2H),  7.38 

(d, J = 8.3 Hz, 2H), 6.22 (s, 1H), 2.46 (s, 3H), 2.23 (s, 3H)  2.17 (q, J = 7.5 Hz, 2H), 0.89 (t, J 

= 7.5 Hz, 3H). ESI-MS (positive mode): m/z 309  ([M+ H]
+
), 331 ([M + Na]

+
); MS/MS (309): 

m/z 155 ([M + H –C8H9O3]
+
). 

 

 

3.2.3. New amino-pyrones 1-6 and 22-23 

Compounds 1-6 and  22-23 (Schemes 3.1 and 3.3 respectively) were prepared and 

characterized as described below.  

 

3.2.3.1. General procedure of synthesis   

A mixture containing 6-methyl-2-oxo-2H-pyran-4-yl 4-tosylate (28) or 3-acetyl-6-methyl-2-

oxo-2H-pyran-4-yl 4-tosylate (34), or 3-ethyl-6-methyl-2-oxo-2H-pyran-4-yl 4-tosilate (36)   

(1 mmol), the suitable (aryl)alkyl amine (1.1 mmol) and Et3N ( 210 µL, 1.5 mmol) in  

absolute ethanol (60 mL) was stirred at room temperature for 60 hours monitoring by TLC 

(hexane/ ethyl acetate/ Et3N = 20:79:1). After concentration in vacuo,  the crude residues were 

purified  by column chromatography using hexane/ethyl acetate by gradient  elution.  
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3.2.3.2. Spectroscopic and mass spectrometric data 

4-(Benzylamino)-6-methyl-2H-pyran-2-one (1) 

 

Yield 55%. Viscous  transparent oil.  
1
H NMR (400 MHz, CDCl3) δ (ppm): 7.47 – 7.14 (m, 

5H, C6H5-), 5.57 (s, 1H, H-3), 5.16 (br s, 1H, NH), 4.99 (s, 1H, H-5), 4.27 (d, J = 5.2 Hz, 2H, 

H-1’),  2.12 (s, 3H, CH3-C(6)). 
13

C NMR (100 MHz, CDCl3) δ (ppm): 165.55 (C-4), 161.31 

(C-2 and C-6), 136.72 (C-2’), 129.00 (C-4’ and C-6’), 127.92 (C-3’ and C-7’), 127.53 (C-5’), 

99.22 (C-5), 81.11 (C-3), 46.80 (C-1’), 19.91 (CH3-C(6)). EI-MS m/z (%): 215 ([M
+•

], 40), 

187 (30), 106(22); HR(EI)MS: 215.09448 ±0.0030 (C13H13NO2, calcd. 215.09463). The data 

are consistent with the ones reported  by McLaughlin, 2002. 

 

6-Methyl-4-((naphthalen-1-ylmethyl)amino)-2H-pyran-2-one (2) 

 

Yield  55%. Light yellow viscous oil. 
1
H NMR (400 MHz, CDCl3) δ(ppm): 7.84  (dd, J = 9.4, 

2.1 Hz, 2H, H-6’ and H-9’), 7.77 (t, J = 5.0 Hz, 1H, H-5’), 7.49  (d quint, J = 7.6, 1.5 Hz, 2H, 

H-7’and H-8’), 7.38 (dd, J = 7.0, 5.7 Hz, 2H, H-3’ and H-4’), 5.59 (br s, 1H, NH), 5.58 (s, 

1H, H-5), 4.96 (s, 2H, H-3), 4.60 (d, J = 4.9 Hz, 2H, H-1’), 2.04 (s, 3H, CH3-C(6)). 
13

C NMR 

(100 MHz, CDCl3) δ (ppm):  165.58 (C-4) 161.37 (C-2 and C-6), 133.64 (C-5’a and C-9’a), 

131.47 (C-2’)129.10 (C-9’), 128.55 (C-5’), 126.17 ( C-7’ and C8’),  125.67 (C-3’ and C4’), 

98.92 (C-5), 81.05 (C-3), 44.63 (C-1’), 20.03 (CH3-C(6)). EI-MS m/z (%): 265 [M
+•

] (34), 

237 (9), 141(100); HR(EI)MS: 265.11007 ±0.0030 (C17H15NO2, calcd. 265.11028). 
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 (R)-6-Methyl-4-((1-(naphthalen-1-yl)ethyl)amino)-2H-pyran-2-one (3) 

 

Yield  50%. White solid (from hexane/ ethyl acetate),  m.p. 240-241°C.  [α]D
20

= -121° (c 0.15, 

MeOH) 
1
H NMR (400 MHz, CDCl3) δ(ppm): 7.94  (dd, J = 8.3, 1.4 Hz, 1H, H-7’), 7.89 (dd, J 

= 8.3, 1.4 Hz, 1H, H-10’), 7.79 (d, J = 8.4 Hz, 1H, H-6’), 7.53  (m, = 2H, H-8’and H-9’), 7.44 

(m, 2H, H-4’ and H-5’), 5.52 (s, 1H, H-5), 5.29 (quint. J = 5.1 Hz, 1H,  H-1’) 4.87 (s, 1H, H-

3), 4.79 (br s, 1H, NH), 2.12 (s, 3H, CH3-C(6)), 1.68 ( d, J = 5.1 Hz , 3H, H-2’). 
13

C NMR 

(100 MHz, CDCl3) δ (ppm):  165.55 (C-4) 161.35 (C-6), 161.23 (C-2), 137.10 (C-3’), 133.38 

(C-10’a), 130.27 (C-6’a), 128.80 (C-10’), 128.60 (C-6’),  126.14  (C-8’ and C9’), 125.34 and 

122.07 (C4’ and C5’), 121.87 (C-7’), 98.61 (C-5), 81.92 (C-3), 48.63 (C-1’), 21.85 (C-2’), 

19.51 (CH3-C(6)).  ESI-MS (positive mode): m/z 280  ([M+ H]
+
), 302 ([M + Na]

+
); MS/MS 

(280): m/z 155 ([M + H –C6H7NO2]
+
), 126 ([M + H –C12H11]

+
.  EI-MS m/z (%): 279 ([M

+•
], 

26),  155(100);  HR(EI)MS: 279.12630 ±0.0030 (C18H17NO2, calcd. 279.12593). 

 

 (S)-6-Methyl-4-((1-(naphthalen-1-yl)ethyl)amino)-2H-pyran-2-one (4) 

 

Yield  50%. White solid (from hexane/ethyl acetate), m.p. 240-241°C.   [α]D
20

=+ 120° (c 0.14, 

MeOH),
 1

H NMR (400 MHz, CDCl3) δ(ppm): 7.94  (dd, J = 8.3, 1.4 Hz, 1H, H-7’), 7.89 (dd, 

J = 8.3, 1.4 Hz, 1H, H-10’), 7.79 (d, J = 8.4 Hz 1H, H-6’), 7.53  (m, 2H, H-8’and H-9’), 7.44 

(m, 2H, H-4’ and H-5’), 5.52 (s, 1H, H-5), 5.29 (quint. J = 5.1 Hz, 1H,  H-1’) 4.87 (s, 1H, H-

3), 4.79 (br s, 1H, NH), 2.12 (s, 3H, CH3-C(6)), 1.68 ( d, J = 5.1 Hz , 3H, H-2’). 
13

C NMR 

(100 MHz, CDCl3) δ (ppm):  165.55 (C-4) 161.35 (C-6), 161.23 (C-2), 137.10 (C-3’), 133.38 
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(C-10’a), 130.27 (C-6’a), 128.80 (C-10’), 128.60 (C-6’),  126.14  (C-8’ and C9’), 125.34 and 

122.07 (C4’ and C5’), 121.87 (C-7’), 98.61 (C-5), 81.92 (C-3), 48.63 (C-1’), 21.85 (C-2’), 

19.51 (CH3-C-6).  ESI-MS (positive mode): m/z 280  ([M+ H]
+
), 302 ([M + Na]

+
); MS/MS 

(280): m/z 155 ([M + H –C6H7NO2]
+
), 126 ([M + H –C12H11]

+
.  EI-MS m/z (%): 279 ([M

+•
], 

14),  155(59);  HR(EI)MS: 279.12623 ±0.0030 (C18H17NO2, calcd. 279.12593). 

 

 6-Methyl-4-((2-(naphthalen-1-yl)ethyl)amino)-2H-pyran-2-one (5) 

 

Yield  53 %. White solid (from hexane/ethyl acetate), m.p. 60-63°C.   
1
H NMR (400 MHz, 

CDCl3) δ(ppm): 7.97  (d, J = 7.9, 1H, H-10’), 7.87 (dd, J = 7.4 , 1.8 Hz, 1H, H-10’), 7.77 (d, J 

= 8.2 Hz, 1H, H-6’), 7.53  (d quint, J = 7.6 , 1.8 Hz , 2H, H-8’and H-9’), 7.41 (t, J = 7.1 Hz, 

1H, H-5’), 7.30 (d,  J = 7.1 Hz, 1H, H-4’) 5.40 (s, 1H, H-5), 5.05 (s, 1H, H-3), 4.64 (br s, 1H, 

NH), 3.52 (q, J = 6.8 Hz,  2H, H-2’), 3.36 (t, J = 6.8 Hz,  2H, H-1’)  2.10 (s, 3H, CH3-C(6)). 

13
C NMR (100 MHz, CDCl3) δ (ppm):  165.21 (C-4) 161.28 (C-6 and C-2), 134.22 (C-3’), 

131.74 (C-10’a) ,129.06 (C-7’),  128.96 (C-6’a), 127.58 (C-6’), 126.57 (C-4’) 126.02  (C-8’ 

and C9’), 125.48  (C5’), 122.99 (C-10’), 98.68 (C-5), 80.71 (C-3), 50.51 (C-1’), 42.36 (C-2’), 

19.81 (CH3-C(6)).  ESI-MS (positive mode): m/z 280  ([M+ H]
+
), 302 ([M + Na]

+
);  MS/MS 

(280): m/z 155 ([M + H –C6H7NO2]
+
), 126 ([M + H –C12H11]

+
.  EI-MS m/z (%): 279 ([M

+•
], 

19),  154(76);  HR(EI)MS: 279.12584 ±0.0030 (C18H17NO2, calcd. 279.12593). 

 

 4-((2-(1H-indol-3-yl)ethyl)amino)-6-methyl-2H-pyran-2-one (6) 
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Yield  52 %. White solid (from hexane/ethyl acetate), m.p. 252-153°C.   
1
H NMR (400 MHz, 

CDCl3) δ(ppm): 8.10 (br s, 1H, indole NH) 7.55  (d, J = 7.9, 1H, H-4’), 7.38 (d, J = 8.1,  1H, 

H-7’), 7.21 (t, J = 7.5 Hz, 1H, H-6’), 7.12  (t,  J = 7.3 Hz , 1H, H-5’), 7.02 (s, 1H, H-9’), 5.38 

(s, 1H, H-5), 5.02 (s, 1H, H-3), 4.64 (br s, 1H, NH), 3.43 (q, J = 6.8 Hz,  2H, H-2’), 3.05 (t, J 

= 6.8 Hz,  2H, H-1’)  2.08 (s, 3H, CH3-C(6)). 
13

C NMR (100 MHz, CDCl3) δ (ppm):  165.20 

(C-4), 161.28 (C-6 and C-2), 136.44 (C-7’a), 126.74 (C-3’a) ,122.64 (C-9’), 122.45 (C-6’),  

120.04 (C-5’), 118.35 (C-4’), 111.85 (C-7’), 111.54 (C-3’), 98.70 (C-5), 80.69 (C-3), 43.61 

(C-1’), 25.01 (C-2’), 19.90 (CH3-C(6)). EI-MS m/z (%): 279 ([M
+•

], 6),  130(43);  HR(EI)MS: 

268.12074 ±0.0030 (C16H16N2O2, calcd. 268.12118). 

 

 3-Acetyl-6-methyl-4-((naphthalen-1-ylmethyl)amino)-2H-pyran-2-one (22) 

 

Yield  50%.White solid (from hexane/ethyl acetate), m.p. 199-200°C.   
1
H NMR (400 MHz, 

CDCl3) δ(ppm): 11.96 (br s, 1H, NH), 7.90  (t, J = 8.1 Hz, 2H, H-6” and H-9”), 7.84 (d, J = 

8.2 Hz, 1H, H-5”), 7.57  (m, 2H, H-7”and H-8”), 7.44 (t, J = 7.5 Hz,  1H, H-4”), 7.35 (d, J= 

7.5 Hz, 1H, H-3”), 5.85 (s, 1H, H-5), 4.95 (d, J = 5.7 Hz, 2H, H-1”), 2.62 (s,  3H, CH3-C(6)), 

2.14 (s, 3H, H-2’). 
13

C NMR (100 MHz, CDCl3) δ (ppm):  165.49 (C-4), 162.46 (C-2 and C-

6), 133.86 (C-5”a), 131.06 (C-2”), 130.61(C-9”a),  (129.12 (C-5”), 128.82 (C-6”), 126.22 ( C-

7” and C-8”),  125.46 (C-4”), 124.90 (C-3”), 122.20 (C-9”),  94.44 (C-3 and C-5), 44.88 (C-

1”), 32.47 (C-2’),  20.90 (CH3-C(6)). EI-MS m/z (%): 307 ([M
+•

], 61), 292 (12), 264 (22), 180 

(21), 160 (20), 141 (100); HR(EI)MS: 307.12042 ±0.0030 (C19H17NO3, calcd. 307.12084). 
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3-Ethyl-6-methyl-4-((naphthalen-1-ylmethyl)amino)-2H-pyran-2-one (24) 

 

Yield  50 %.White solid (from hexane/ethyl acetate), m.p. 204-205 . 
1
H NMR (400 MHz, 

CDCl3) δ(ppm): 7.92  (br d, J = 7.0 Hz, 2H, H-6” and H-9”), 7.85 (d, J = 8.1 Hz, 1H, H-5”), 

7.56  (m, 2H, H-7”and H-8”), 7.46 (t, J = 7.2 Hz,  1H, H-4”), 7.40 (d, J= 6.8 Hz, 1H, H-3”), 

5.83 (s, 1H, H-5), 4.83 (d, J = 5.3 Hz, 2H, H-1”), 4.73 (br s, 1H, NH),  2.36 (q, J = 7.5 Hz,   

2H, H-1’), 2.15 (s, 3H, CH3-C(6)), 1.02 (t, J = 7.5 Hz, 3H, H-2’). 
13

C NMR (100 MHz, 

CDCl3) δ (ppm):  164.62 (C-4), 160.69 (C-2 and C-6), 133.85 (C-9”a) 132.27 (C-2”), 

130.77(C-5”a),  129.22 (C-6”), 128.75 (C-5”), 126.19 ( C-7” and C-8”),  125.28 (C-3” and C-

4”),  122.54 (C-9”),  96.63 (C-3), 95.06 (C-5), 44.77 (C-1”), 16.73 (C-1’),  20.21 (CH3-C(6)), 

12.39 (C-2’). EI-MS m/z (%): 293 ([M
+•

], 20), 141(100); HR(EI)MS: 293.14176±0.0030 

(C19H19NO2, calcd. 293.14158). 

 

3.2.4. New dichloroketo-amino compounds  

Compounds  7, 8a, 11-13  (Scheme 3.1) were prepared and characterized as described below.  

 

3.2.4.1. General procedure of synthesis    

To a solution of  compound 1-6 (0.2 mmol) dissolved in anhydrous CH2Cl2 (5 mL) anhydrous  

pyridine (90 µL, 1 mmol) was added and the solution cooled at 0°C for 30 minutes. 

Dichloroacetyl chloride  (30 µL, 0.3 mmol) was slowly added at this temperature. The 

mixture  was stirred at room temperature  for  24 hours monitoring by TLC (hexane / ethyl 

acetate = 6:4). After concentration in vacuo,  each crude product was purified  by preparative 

TLC (PLC) using  hexane/ethyl acetate = 6:4  as eluent. 
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3.2.4.2. Spectroscopic and mass spectrometric data  

4-(Benzylamino)-3-(2,2-dichloroacetyl)-6-methyl-2H-pyran-2-one (7) 

 

Yield  89%.White solid (from hexane/ ethyl acetate), m.p. 94-95 °C. 
1
H NMR (400 MHz, 

CDCl3) δ(ppm): 11.43 (br s, 1H, NH), 7.67 (s, 1H, H-2’), 7.38  (m, 3H, H-4”, H-5” and H-6”), 

7.26 (m, 2H, H-3” and H-7”), 5.93 (s, 1H, H-5), 4.57 (d, J = 5.6 Hz, 2H, H-1”), 2.21 (s, 3H, 

CH3-C(6)). 
13

C NMR (100 MHz, CDCl3) δ (ppm): 188.44 (C-1’), 166.86 (C-2 and C-6), 

163.25 (C-4), 135.20 (C-2”), 129.15 (C-4”, C-5” and C-6”), 126.97 ( C-3” and C-7”),  95.31 

(C-5), 90.41 (C-3) 69.81 (C-2’), 47.02 (C-1”), 20.62 (CH3-C(6)). EI-MS m/z (%): 325 ([M
+•

], 

4), 290 (16), 254 (23), 242 (86); HR(EI)MS: 325.02575 ±0.0030 (C15H13Cl2NO3, calcd. 

325.02725). 

 

3-(2,2-Dichloroacetyl)-6-methyl-4-((naphthalen-1-ylmethyl)amino)-2H-pyran-2-one (8a) 

 

Yield  92%.White solid (from  chloroform), m.p. 201-202 °C. 
1
H NMR (400 MHz, CDCl3) 

δ(ppm): 11.47 (br s, 1H, NH), 7.93 (d, J = 7.4 Hz, 1H) and 7.87 (d, J =8.1 Hz, 2H) [H-5”, H-

6” and H-9”], 7.66 (s, 1H, H-2’), 7.58 (d quint, J = 7.6 , 1.8 Hz , 2H, H-7” and H-8”), 7.46  (t, 

J = 7.4 Hz, 1H, H-4”), 7.37 (d, J =6.9 Hz,  1H, H-3”), 6.00 (s, 1H, H-5), 5.00 (d, J = 5.5 Hz, 

2H, H-1”), 2.23 (s, 3H, CH3-C(6)). 
13

C NMR (100 MHz, CDCl3) δ (ppm):  188.41 (C-1’), 

166.62 (C-6), 162.92 (C-4), 161.12 (C-2), 134.77 (C-2”), 131.00 (C-5”a), 130.23 (C-9”a), 

129.33, 121.82 (C-5”, C-6” and C-9”), 126.50 ( C-7” and C-8”), 125.46 (C-3” and C-4”), 

94.86 (C-3 and C-5), 69.59 (C-2’), 45.47 (C-1”), 20.68 (CH3-C(6)). EI-MS m/z (%): 375 

([M
+•

], 8), 264 (6), 141 (100); HR(EI)MS: 375.04267±0.0030 (C19H15Cl2NO3, calcd. 

375.04290). 
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(R)-3-(2,2-Dichloroacetyl)-6-methyl-4-((1-(68aphthalene-1-yl)ethyl)amino)-2H-pyran-2-

one (11) 

 

Yield  95%.White solid (from hexane/ ethyl acetate), m.p. 74-75°C. [α]D
20

= -376° (c 0.16, 

MeOH) 
1
H NMR (400 MHz, CDCl3) δ(ppm): 11.47 (br s, 1H, NH), 7.99 (d, J = 8.4 Hz, 1H, 

H-10”), 7.94 (d, J =7.8 Hz, 1H, H-7”), 7.82 (d, J = 8.2 Hz, 1H, H-6”), 7.71 (s, 1H, H-2’), 7.59 

(m, 2H, H-8” and H-9”), 7.46  (t, J = 7.9 Hz, 1H, H-5”), 7.37 (d, J = 6.9 Hz 1H, H-4”), 5.58 

(s, 1H, H-5), 5.51 (q, J = 6.6 Hz, 1H, H-1”), 2.01 (s, 3H, CH3-C(6)), 1.79 (d, J = 6.6 Hz, 3H, 

H-2”). 
13

C NMR (100 MHz, CDCl3) δ (ppm):  188.21 (C-1’), 166.72 (C-2 and C-6 ),  162.67 

(C-4), 137.30 (C-3”),134.10 (C-6”a and C-10”a), 129.38 (C-7”), 128.60 (C-6”), 126.49    (C-

8” and C-9”), 125.80 (C-5”), 122.37 (C-4”), 121.31 (C-10”),  95.43 (C-5), 90.53(C-3), 69.70 

(C-2’), 50.14 (C-1”), 23.01(C-2”), 20.29 (CH3-C(6)). EI-MS m/z (%): 389 ([M
+•

], 2), 318  

(68), 155 (100); HR(EI)MS: 389.05804±0.0030 (C20H17Cl2NO3, calcd. 389.05855). 

 

(S)-3-(2,2-Dichloroacetyl)-6-methyl-4-((1-(68aphthalene-1-yl)ethyl)amino)-2H-pyran-2-

one (12) 

 

Yield  93 %.White solid (from hexane/ ethyl acetate), m.p. 74-75°C.  [α]D
20

=+400° (c 0.14, 

MeOH ). 
1
H NMR (400 MHz, CDCl3) δ(ppm): 11.47 (br s, 1H, NH), 7.99 (d, J = 8.4 Hz, 1H, 

H-10”), 7.94 (d, J =7.8 Hz, 1H, H-7”), 7.82 (d, J = 8.2 Hz, 1H, H-6”), 7.71 (s, 1H, H-2’), 7.59 

(m, 2H, H-8” and H-9”), 7.46  (t, J = 7.9 Hz, 1H, H-5”), 7.37 (d, J = 6.9 Hz 1H, H-4”), 5.58 

(s, 1H, H-5), 5.51 (q , J = 6.6 Hz, 1H, H-1”), 2.01 (s, 3H, CH3-C(6)), 1.79 (d, J= 6.6 Hz, 3H, 

H-2”). 
13

C NMR (100 MHz, CDCl3) δ (ppm):  188.21 (C-1’), 166.72 (C-2 and C-6 ),  162.67 

(C-4),  137.30 (C-3”), 134.10 (C-6”a and C-10”a), 129.38 (C-7”), 128.60 (C-6”), 126.49 (C-

8” and C-9”), 125.80 (C-5”), 122.37 (C-4”), 121.31 (C-10”),  95.43 (C-5), 90.53(C-3),  69.70 
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(C-2’), 50.14 (C-1”), 23.01(C-2”),  20.29 (CH3-C(6)). EI-MS m/z (%): 389 ([M
+•

], 2), 318  

(60), 155 (100); HR(EI)MS: 389.05819±0.0030 (C20H17Cl2NO3, calcd.389.05855). 

 

4-((2-(1H-indol-3-yl)ethyl)amino)-3-(2,2-dichloroacetyl)-6-methyl-2H-pyran-2-one (13) 

 

Yield  88 %. White solid. 
1
H NMR (400 MHz, CDCl3) δ(ppm): 11.17 (br s, 1H, NH), 8.11 (br 

s, 1H, indole NH), 7.65 (s, H-2’), 7.56  (d, J = 7.7 Hz, 1H, H-4”), 7.38 (d, J = 8.1 Hz,  1H, H-

9”), 7.22 (t, J = 7.7 Hz, 1H, H-7”), 7.13  (m, 2H, H-5” and 6”), 5.62 (s, 1H, H-5), 3.66 (q, J = 

6.6 Hz,  2H, H-1”), 3.15 (t, J = 6.6 Hz,  2H, H-2”),  2.02 (s, 3H, CH3-C(6)). 
13

C NMR (100 

MHz, CDCl3) δ (ppm): 188.70 (C-1’),  165.92 (C-6 and C-2), 162.91 (C-4), 136.39 (C-7”a), 

126.67 (C-3”a) ,123.12 (C-6”), 122.49 (C-7”), 119.54 (C-5”), 117.78 (C-4”), 111.33 (C-9”), 

110.93 (C-3”),  94.95  (C-5), 90.17 (C-3), 69.30 (C-2’), 43.60 (C-1”), 25.08 (C-2”), 20.05 

(CH3-C(6)). EI-MS m/z (%): 378 ([M
+•

], 6),  265 (14);  HR(EI)MS: 378.05292 ±0.0030 

(C18H16Cl2N2O3, calcd. 378.05380). 

 

3.2.5. New amides  8b-10 

Compounds  8b, 9 and 10 (Scheme 3.1) were prepared and characterized as described below.  

3.2.5.1. General procedure of synthesis  

To a solution of  compound 1-6 (0.2 mmol) dissolved in anhydrous CH2Cl2 (5 mL) anhydrous  

DBU (1 mmol, 150 µL,) was added and the mixture was cooled at 0°C for 30 minutes. 

Dichloroacetyl chloride  (0.3 mmol, 30 µL) was slowly added at this temperature. The 

mixture  was stirred at room temperature for  24 hours monitoring by TLC (hexane / ethyl 

acetate = 6:4). After concentration in vacuo,  each crude product was purified  by PLC using  

hexane/ethyl acetate = 6:4  as eluent. 
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3.2.5.2. Spectroscopic and mass spectrometric data  

 

2,2-Dichloro-N-(6-methyl-2-oxo-2H-pyran-4-yl)-N-(naphthalene-1-ylmethyl)- acetamide 

(8b) 

 

Yield  70%. Viscous oil. 
1
H NMR (400 MHz, CDCl3) δ(ppm): 7.93 (d, J=8.2 Hz, 1H, H-9”), 

7.89 (d, J=7.7 Hz, 1H, H-6”), 7.83 (d, J= 8.3 Hz, 1H, H-5”), 7.56 (m, 2H, H-5” and H-6”), 

7.38 (t, J= 7.7 Hz, 1H, H-4”), 7.22 (d, J=7.1 Hz, H-3”), 6.17 (s, 1H, H-2’), 5.78 and 5.81 (s, 

1H respectively, H-3 and H-5), 2.19 (s, 3H, CH3-C(6)). 
13

C NMR (100 MHz, CDCl3) δ 

(ppm): 164.07 (C-2 and C-6),  163.22 (C-4), 154.33 (C-1’),  133.78 (C-2” and C-5”a), 130.35  

(C-9”a), 129.92 (C-5”), 128.85 (C-6”), 126.46 (C-7” and C-8”), 126.46  ( C-3”),  124.93 (C-

4”), 108.33 and 102.75 (C-3 and C5),  63.73 (C-2’), 50.54 (C-1”), 19.75 (CH3-C(6)). EI-MS 

m/z (%): 375 ([M
+•

], 6), 264 (5), 141(100); HR(EI)MS: 375.04189±0.0030 (C19H15Cl2NO3, 

calcd. 375.04290). 

 

N-(6-Methyl-2-oxo-2H-pyran-4-yl)-N-(naphthalene-1-yl-methyl)cyclopropane 

carboxamide (9) 

 

Yield  73%. Viscous oil. 
1
H NMR (400 MHz, CDCl3) δ(ppm): 7.94  (d, J = 7.8 Hz, 1H,  H-

9”), 7.89 (d, J = 8.3 Hz, 1H, H-6”), 7.79 (d, J =8.2 Hz, 1H, H-5”), 7.54  (m, 2H, H-7”and H-

8”), 7.40 (t, J = 7.6 Hz , 1H, H-4”), 7.23 (d, J = 7.1 Hz, 1H, H-3”), 6.16 (s, 1H, H-5),  5.85 (s, 

1H, H-3),  5.45 (s, 2H, H-1”), 2.18 (s, 3H, CH3-C(6)), 1.81 (m, 1H, H-2’), 1.19 and 0.88 ( two 

m, 4H, H-3’ and    H-4’). 
13

C NMR (100 MHz, CDCl3) δ (ppm):  173.94 (C-4) , 163.61(C-2), 

162.12 (C-6),  157.72  (C-1’),  133.80 (C-2”), 130.95 (C-5”a), 130.48  (C-9”a), 129.09, 

128.58 (C-3”, C-6”, C-5” and C-8”), 126.31,  126.07,  126.00 (C-4”, C-7” and C-9”), 104.16 
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(C-3),  102.97 (C-5), 49.58 (C-1”), 20.05 (CH3-C(6)), 14.26 (C-2’), 10.16(C-3’ and C-4’). EI-

MS m/z (%): 333 ([M
+•

], 16), 264 (26), 141(100); HR(EI)MS: 333.13627±0.0030 

(C21H19NO3, calcd. 333.13649). 

 

3-Cyclopentyl-N-(6-methyl-2-oxo-2H-pyran-4-yl)-N-(naphthalene-1-ylmethyl)propan- 

amide (10) 

 

Yield  25%. Waxy  solid. 
1
H NMR (400 MHz, CDCl3) δ(ppm): 7.93  (d, J = 7.8 Hz, 1H,  H-

9’), 7.88 (d, J = 8.1 Hz, 1H, H-6’), 7.77 (d, J =8.1 Hz, 1H, H-5’), 7.53  (m, 2H, H-8’and H-

9’), 7.35 (t, J = 7.6 , 1H, H-4’), 7.19 ( d, J = 7.6 Hz, 1H, H-3’), 6.37 (s, 1H, H-5),  5.75 (s, 1H, 

H-3),  5.40 (s, 2H, H-1’), 2.37 (m, 2H, H-2”), 2.18 (s, 3H, CH3-C(6)), 1.77 (m, 1H, H-4”), 

1.64 (m, 2H, H-3”), 1.31 (m, 4H, H-5”), 1.53 and 1.45(m, 4H, H-6”). 
13

C NMR (100 MHz, 

CDCl3) δ (ppm):  171.63 (C-1”) , 163.51 (C-2 and C-4), 161.45 (C-6),  133.72 (C-2’ and C-

5’a ), 130.34 (C-9’a), 129.00 (C-6’), 128.10 (C-5’), 126.21   (C-7’ and C-8’), 125.31 (C-4’),  

124.68 (C-3’), 122.24 (C-9’), 102.43 (C-3),  101.80 (C-5), 49.29 (C-1’), 38.72 (C-4”), 32.76 

(C-5”), 31.90 (C-3”), 30.96 (C-2”), 24.69 (C-6”), 20.05 (CH3-C(6)). EI-MS m/z (%): 389 

([M
+•

], 3), 388 ([M
+•

-H], 11), 264 (12), 141(87); HR(EI)MS on [M
+•

-H] : 388.1902±0.0030 

(C25H26NO3, calcd. 388.1913). 

 

3.2.6. New thioethers  14, 16, 25 and 32  

Compounds 14, 16 and 32 (Scheme 3.2) and  25 (Scheme 3.3) were prepared and 

characterized as described below.  

3.2.6.1.  General procedure of synthesis  

To a magnetically stirred solution of NaSH (230 mg, 4.0 mmol) in dry ethanol (5.0 mL), a 

solution of 6-methyl- 4-tosyloxypyran-2-one (28) or 3-bromo-6-methyl-2-oxo-2H-pyran-4-yl 
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4-tosylate (31) or  3-ethyl-6-methyl-2-oxo-2H-pyran-4-yl 4-tosylate  (1.0 mmol) in dry 

ethanol was added dropwise at room temperature under nitrogen atmosphere over a period of 

30 minutes. Stirring was continued for additional 2 hours after the addition, then ethanol was 

removed in vacuo at room temperature. The residue was acidified with conc. HCl (2.0 mL), 

later  extracted with benzene (4x2.5 mL, CAUTION). The organic solution was washed with 

water (2x2.0 mL) and dried (anhydrous Na2SO4). Attempts to evaporate benzene led to 

considerable decomposition of  intermediate, therefore the solution was directly used for the 

following alkylation by adding DBU  ( 224 µL, 1.5 mmol) and  the suitable (aryl)alkyl 

bromide (1.0 mmol) under nitrogen. The mixture was stirred at room temperature overnight 

(TLC: hexane/ethyl acetate= 6:4). CH2Cl2 (50 mL) was added and the organic phase was 

washed with 2M HCl  (60 mL)  and successively with brine (70 mL). The organic phase was 

dried over anhydrous Na2SO4. After concentration in vacuo each crude product was purified 

by PLC  using  hexane/ethyl acetate = 6:4  as eluent (Schemes 3.2 and 3.3). 

 

3.2.6.2. Spectroscopic and mass spectrometric data  

 6-Methyl-4-((naphthalen-1-ylmethyl)thio)-2H-pyran-2-one (14) 

 

Yield  80%. Light yellow solid (from hexane/ ethyl acetate), m.p. 103-104°C. 
1
H NMR (400 

MHz, CDCl3) δ(ppm): 8.00 (d, J = 8.3 Hz, 1H, H-9’), 7.89  (d, J = 7.7 Hz, 1H, H-6’), 7.83 (d, 

J = 8.3 Hz 1H, H-5’), 7.56  (m , 2H, H-7’and H-8’), 7.53 (d, J = 7.4 Hz, 1H, H-3’), 7.42 (t, J 

= 7.9 Hz, 1H, H-4’), 5.99 (s, 1H, H-5), 5.82 (s, 2H, H-3), 4.56 (s, 2H, H-1’), 2.04 (s, 3H, 

CH3). 
13

C NMR (100 MHz, CDCl3) δ (ppm):  161.99 (C-6), 160.38 (C-2),  159.35 (C-4),  

133.93 (C-2’), 133.89 (C-5’a), 131.57 (C-10’a), 129.13 (C-7’), 128.90 (C-6’), 128.59 (C-4’), 

126.62 (C-5’),  126.14 (C-3’),  123.17 (C-9’), 103.27 (C-3), 102.70 (C-5), 33.33   (C-1’), 

19.69 (CH3). EI-MS m/z (%): 282 ([M
+•

], 2), 141(16), 115 (3); HR(EI)MS: 282.07155±0.0030 

(C17H14O2S, calcd. 282.07145). 
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6-Methyl-4-((2-(naphthalen-1-yl)ethyl)thio)-2H-pyran-2-one (16) 

 

Yield  74 %. Ivory powder (from hexane/ethyl acetate), m.p. 68-69°C. 
1
H NMR (400 MHz, 

CDCl3) δ(ppm): 7.97 (d, J = 8.4 Hz, 1H, H-10’), 7.88  (d, J = 8.4 Hz, 1H, H-7’), 7.78 (d, J = 

8.1 Hz, 1H, H-6’), 7.53  (m , 2H, H-8’and H-9’), 7.42 (t, J = 7.1 Hz, 1H, H-5’), 7.36 (d, J = 

6.7 Hz, 1H, H-4’), 5.86 (s, 1H, H-5), 5.80 (s, 2H, H-3), 3.45 (t, J = 7.2 Hz, 2H, H-2’), 3.28 (t, 

J = 7.2 Hz, 2H, H-1’),  2.17 (s, 3H, CH3). 
13

C NMR (100 MHz, CDCl3) δ (ppm):  161.31 (C-

6), 160.01 (C-2),  159.16 (C-4),  135.02 (C-3’), 134.00 (C-6’a), 131.60 (C-10’a), 128.94 (C-

7’), 127.69 (C-6’), 126.28 (C-4’), 126.62 (C-5’),  125.91 (C-8 and C-9’),  122.76 (C-10’), 

103.41 (C-3), 102.35 (C-5), 31.20 (C-2’), 30.90 (C-1’),  19.27 (CH3). EI-MS m/z (%): 296 

([M
+•

], 3), 154(100); HR(EI)MS: 296.08698±0.0030 (C18H16O2S, calcd. 296.08710). 

   

3-Ethyl-6-methyl-4-((naphthalen-1-ylmethyl)thio)-2H-pyran-2-one (25) 

 

Yield  60%. Light yellow solid (from hexane/ ethyl acetate), m.p. 89-90°C. 
1
H NMR (400 

MHz, CDCl3) δ(ppm): 8.07 (d, J = 8.3 Hz, 1H, H-9”), 7.89  (d, J = 7.7 Hz, 1H, H-6”), 7.83 (d, 

J = 8.3 Hz 1H, H-5”), 7.56  (m , 3H,  H-3”, H-7” and H-8”), 7.43 (t, J = 7.9 Hz, 1H, H-4”), 

6.12 (s, 1H, H-5), 4.59 (s, 2H, H-1”), 2.52 (q, J = 7.5 Hz,  2H, H-1’), 2.21 (s, 3H, CH3), 1.03 

(t, J = 7.5 Hz, 3H, H-2’). 
13

C NMR (100 MHz, CDCl3): δ (ppm)  161.76 (C-2),  158.39 (C-6), 

152.54 (C-4),  133.93 (C-5"a), 131.26 (C-2”), 130.26 (C-9”a), 128.88 (C-6” and C-5”), 

128.60 (C-3”), 126.42 (C-7” and C-8”), 125.45 (C-4”) 123.30 (C-9”), 120.50     (C-3), 101.33 

(C-5), 33.65 (C-1”), 20.77 (C-1’),  19.62 (CH3), 11.21 (C-2’). EI-MS m/z (%): 310 ([M
+•

], 

22), 141(100); HR(EI)MS: 310.10294±0.0030 (C19H18O2S, calcd. 310.10275). 
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3-Bromo-6-methyl-4-((2-(naphthalen-1-yl)ethyl)thio)-2H-pyran-2-one (32) 

 

Yield  40 %. Ivory powder . 
1
H NMR (400 MHz, CDCl3) δ(ppm): 7.99 (d, J = 8.3 Hz, 1H, H-

10’), 7.89  (d, J = 7.9 Hz, 1H, H-7’), 7.77 (d, J = 7.6 Hz, 1H, H-6’), 7.55  (m , 2H, H-8’and H-

9’), 7.39 (m, 2H, H-4’ and H-5’), 5.65 (s, 1H, H-5), 3.47 (t, J = 7.2 Hz, 2H, H-2’), 3.31 (t, J = 

7.2 Hz, 2H, H-1’),  2.01 (s, 3H, CH3). 
13

C NMR (100 MHz, CDCl3) δ (ppm):  160.51 (C-2),  

159.04 (C-6), 158.07 (C-4),  134.38 (C-3’), 133.83 (C-6’a), 131.44 (C-10’a), 128.87 (C-7’), 

127.74 (C-6’), 127.02 (C-4’), 126.65 (C-5’),  126.02 (C-8’ and C-9’),  122.67 (C-10’), 101.46 

(C-3), 100.91 (C-5), 32.33 (C-2’), 32.09 (C-1’),  19.74 (CH3). EI-MS m/z (%): 374 ([M
+•

], 4), 

295 (13), 154 (100); HR(EI)MS: 373.99687±0.0030 (C18H15BrO2S, calcd. 373.99761). 

 

3.2.7. New sulfones  15, 17, 21 and 26 

Compounds 15, 17 and 21 (Scheme 3.2) and  26 (Scheme 3.3) were prepared and 

characterized as described below.  

 

3.2.7.1. General procedure of synthesis  

The suitable substrate 14, 16, 25 or 32 (0.1 mmol)  is added to the solution of hydrogen 

peroxide–urea adduct (UHP) (40 mg, 0.4 mmol) in formic acid 85% (0.5 mL) at room 

temperature  with stirring.  A white precipitate is formed during the reaction. After 4 hours  

the reaction  was complete as verified by TLC monitoring ( hexane/ethyl acetate= 6:4). The 

mixture was partitioned between CH2Cl2 (10 mL) and water. The organic phase was washed 

with saturated solution of NaHCO3 (10 mL)  and successively with brine (10 ml), then  dried 

over  anhydrous Na2SO4. After concentration in vacuo, each crude product was purified by 

PLC  using  hexane/ethyl acetate = 6:4  as eluent. 
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3.2.7.2.  Spectroscopic and mass spectrometric data  

6-Methyl-4-((naphthalen-1-ylmethyl)sulfonyl)-2H-pyran-2-one (15) 

 

Yield  100%. White powder (from hexane/ethyl acetate), 175-176°C . 
1
H NMR (400 MHz, 

CDCl3) δ(ppm): 7.90 (m, 3H, H-5’, H-6’ and H-9’), 7.53  (m , 2H, H-7’and H-8’), 7.45 (m, 

2H,  H-3’ and H-4’), 6.51 (s, 1H, H-5), 5.84 (s, 2H, H-3), 4.86 (s, 2H, H-1’), 2.08 (s, 3H, 

CH3). EI-MS m/z (%): 314 ([M
+•

], 3), 141(100); HR(EI)MS: 314.06122±0.0030 (C17H14O4S, 

calcd. 314.06128). 

 

6-Methyl-4-((2-(naphthalen-1-yl)ethyl)sulfonyl)-2H-pyran-2-one (17) 

 

Yield  100 %. White powder (from dichloromethane), m.p. >300°C (dec.) . 
1
H NMR (400 

MHz, CDCl3) δ(ppm): 7.88 (t , J = 8.2 Hz, 1H, H-7’ and H-10’), 7.76 (d, J = 8.2 Hz, 1H, H-

6’), 7.53  (m , 2H, H-8’and H-9’), 7.38 (t, J = 7.2 Hz, 1H, H-5’), 7.33 (d, J = 6.7 Hz, 1H, H-

4’), 6.63 (s, 1H, H-5), 6.12 (s, 2H, H-3),  3.58 and 3.52 (two m, 4H, 2H-1’ and 2H-2’),  2.21 

(s, 3H, CH3). EI-MS m/z (%): 328 ([M
+•

],14), 154(100); HR(EI)MS: 328.07686±0.0030 

(C18H16O4S, calcd. 328.07693). 
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3-Bromo-6-methyl-4-((2-(naphthalen-1-yl)ethyl)sulfonyl)-2H-pyran-2-one (21) 

 

Yield  100 %. White powder (from dichloromethane), m.p. >300 °C (dec.) . 
1
H NMR (400 

MHz, CDCl3) δ(ppm): 7.93 (d, J = 8.2 Hz, 1H, H-10’), 7.85  (d, J = 8.0 Hz, 1H, H-7’), 7.74 (t, 

J = 4.5 Hz, 1H, H-6’), 7.53  (m , 2H, H-8’and H-9’), 7.35 (d, J = 4.7 Hz, 2H, H-4’ and H-5’), 

6.35 (s, 1H, H-5), 3.92 (t, J = 7.3 Hz, 2H, H-1’), 3.58 (t, J = 7.3 Hz, 2H, H-2’),  2.18 (s, 3H, 

CH3). EI-MS m/z (%): 406 ([M
+•

], 1), 256 (19), 154 (48); HR(EI)MS: 405.98618±0.0030 

(C18H15BrO4S, calcd.405.98744). 

 

3-Ethyl-6-methyl-4-((naphthalen-1-ylmethyl)sulfonyl)-2H-pyran-2-one  (26) 

 

Yield  95%. Light yellow solid (from hexane/ethyl acetate), m.p. 97-98°C. 
1
H NMR (400 

MHz, CDCl3) δ(ppm): 7.94 (d, J = 7.3 Hz, 1H, H-9”), 7.87  (m, 2H, H-5” and H-6”), 7.52  (m 

, 2H, H-7” and H-8”), 7.42 (m, 2H, H-3” and H-4”), 6.06 (s, 1H, H-5), 4.86 (s, 2H, H-1”), 

2.56 (q, J = 7.3 Hz,  2H, H-1’), 2.08 (s, 3H, CH3), 1.09 (t, J = 7.3 Hz, 3H, H-2’). EI-MS m/z 

(%): 342 ([M
+•

], 5), 141(100); HR(EI)MS: 342.09282±0.0030 (C19H18O4S, calcd.342.09258). 

 

3.2.8. New ethers  18-20 and 23 

Compounds 18-20 (Scheme 3.2) and  23 (Scheme 3.3) were prepared and characterized as 

described below.  
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3.2.8.1. General procedure of synthesis  

To a solution of  4-hydroxy-6-methyl-2H-pyran-2-one (27), or 4-hydroxy-3-iodo-6-methyl-

2H-pyran-2-one (29),  or 3-ethyl-4-hydroxy-6-methyl-2H-pyran-2-one (35) (1 mmol) and  

suitable  (aryl)alkyl bromide (1.1 mmol) in anhydrous  acetone (5 mL) was added KI ( 166 

mg, 1 mmol)  and anhydrous  K2CO3 ( 345 mg, 2.5 mmol). The mixture was refluxed for 20  

hours monitoring by TLC (hexane/ethyl acetate= 6:4). The filtered solution was evaporated in 

vacuo  and each crude products was purified by PLC  using  hexane/ethyl acetate = 6:4  as 

eluent. 

 

3.2.7.2. Spectroscopic and mass spectrometric data  

6-Methyl-4-(naphthalen-1-ylmethoxy)-2H-pyran-2-one (18) 

 

Yield  60%. White solid (from hexane/ethyl acetate), m.p. 118-119 °C. 
1
H NMR (400 MHz, 

CDCl3) δ(ppm): 7.90 (m, 3H, H-5’, H-6’ and H-9’), 7.54  (m , 3H, H-3’, H-7’and H-8’), 7.47 

(t , J = 8.2 Hz, 1H, H-4’), 5.81 (s, 1H, H-5), 5.65 (s, 1H, H-3), 5.45 (s, 2H, H-1’), 2.18 (s, 3H, 

CH3). 
13

C NMR (100 MHz, CDCl3) δ (ppm): 170.29 (C-4),  164.14 (C-2),  162.28 (C-6), 

133.90 (C-5’a), 132.89 (C-2’),131.25 (C-10’a), 129.13 (C-6’), 128.02 (C-5’), 126.90 (C-3’), 

128.61 (C-4’), 125.89 (C-7’ and C-8’),  123.04 (C-9’), 100.30  (C-5), 88.20 (C-3), 64.01 (C-

1’), 20.03 (CH3). EI-MS m/z (%): 266 ([M
+•

], 2), 141 (100); HR(EI)MS: 266.09439±0.0030 

(C17H14O3, calcd. 266.09429). 

 

 

 

 

 

 



78 

 

6-Methyl-4-(naphthalen-1-ylmethoxy)-3-(naphthalen-1-ylmethyl)-2H-pyran-2-one (18a) 

 

Yield  50%. White solid (from hexane/ethyl acetate), m.p. 106-107°C. 
1
H NMR (400 MHz, 

CDCl3) δ(ppm): 8.19 (d, J = 8.6 Hz, 1H,), 7.87   (t,   J = 9.0 Hz, 2H), 7.78  (t , J =8.8 Hz, 2H), 

7.60 (d, J =8.1 Hz, 1H),  7.49 (t, J = 7.0 Hz, 1H), 7.38 (t, J =8.2 Hz, 3H), 7.29 (t, J = 6.8 Hz, 

2H), 7.20 (d, J = 7.0 Hz, 1H), 7.12 (t, J = 8.0 Hz, 1H ) 6.14 (s, 1H, H-5), 5.50 (s, 2H, H-

1’’),4.20 (s, 2H, H-1’),  2.24 (s, 3H, CH3). 
13

C NMR (100 MHz, CDCl3) δ (ppm):  166.31 (C-

4), 165.38 (C-2), 162.19 (C-6), 135.36,  133.61, 132.10,  132.05, 130.41, 129.07, 128.34, 

126.32, 126.09, 126.06, 125.83, 125.53,  125.31, 124.23 123.90  and 123.03 (naphtalene 

units)  104.38 (C-3), 95.80 (C-5), 69.16 (C-1’’), 25.98 (C-1’), 20.30 (CH3). EI-MS m/z (%): 

406 ([M
+•

], 6), 265 (30), 141 (100); HR(EI)MS: 406.15669±0.0030 (C28H22O3, calcd. 

406.15689). 

 

6-Methyl-4-(2-(naphthalen-1-yl)ethoxy)-2H-pyran-2-one (19) 

 

 

Yield  40 %. White powder (from hexane/ethyl acetate), m.p. 65-66°C . 
1
H NMR (400 MHz, 

CDCl3) δ(ppm): 8.00 (d, J = 8.2 Hz, 1H, H-10’), 7.88  (d, J = 8.1 Hz, 1H, H-7’), 7.78 (d, J = 

8.1 Hz, 1H, H-6’), 7.52  (m , 2H, H-8’and H-9’), 7.42 (t, J = 7.5 Hz, 1H, H-5’), 7.37 (d, J = 

6.8 Hz, 1H, H-4’), 5.74 (s, 1H, H-5), 5.36 (s, 2H, H-3), 4.28 (t, J = 7.0 Hz, 2H, H-1’), 3.54 (t, 

J = 7.0 Hz, 2H, H-2’),  2.17 (s, 3H, CH3). 
13

C NMR (100 MHz, CDCl3) δ (ppm) 170.28 (C-4),  

164.73 (C-2), 162.23 (C-6),  133.94 (C-6’a), 132.90 (C-3’), 131.72 (C-10’a), 129.13 (C-7’), 

127.63 (C-6’), 127.00 (C-4’), 126.42 (C-5’),  125.91 (C-8 and C-9’),  123.05 (C-10’), 100.35 
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(C-5), 88.13 (C-3), 68.03 (C-1’), 31.82 (C-2’), 19.60 (CH3). EI-MS m/z (%): 280 ([M
+•

], 20), 

155 (100); HR(EI)MS: 280.10991±0.0030 (C18H16O3, calcd. 280.10994). 

   

3-Iodo-6-methyl-4-(naphthalen-1-ylmethoxy)-2H-pyran-2-one (20) 

 

Yield  50%. Viscous oil. 
1
H NMR (400 MHz, CDCl3) δ(ppm): 8.00 (d, J = 8.6 Hz, 1H, H-9’), 

7.91  (t, J = 9.1 Hz, 2H, H-5 and H-6’), 7.57  (m , 3H, H-3’, H-7’and H-8’), 7.49 (t, J = 8.2 

Hz, 1H, H-4’), 6.06 (s, 1H, H-5), 5.71 (s, 2H, H-1’), 2.24 (s, 3H, CH3). 
13

C NMR (100 MHz, 

CDCl3) δ (ppm):  169.75 (C-4), 164.14 (C-6), 163.98 (C-2),  133.72 (C-2’ and C-5’a), 130.21  

(C-10’a), 129.83 (C-6’), 128.90 (C-5’), 128.60 (C-4’),   126.80 (C-3’), 125.90 (C-7’ and C-

8’),  123.04 (C-9’), 70.14 (C-3), 95.48 (C-5), 63.25 (C-1’), 20.05 (CH3). EI-MS m/z (%): 292 

([M
+•

], 2), 310 (7), 294 (7), 141 (100); HR(EI)MS: 391.98828±0.0030 (C17H13IO3, calcd. 

391.99095). 

 

3-Ethyl-6-methyl-4-(naphthalen-1-ylmethoxy)-2H-pyran-2-one (23) 

 

Yield  60%. White solid. 
1
H NMR (400 MHz, CDCl3) δ(ppm): 7.91 (m, 3H, H-5”, H-6” and 

H-9”), 7.56  (m , 2H, H-7” and H-8”), 7.49 (m, 2H, H-3” and H-4”), 6.12 (s, 1H, H-5), 5.56 

(s, 2H, H-1”), 2.44 (q, J = 7.5,  2H, H-1’), 2.23 (s, 3H, CH3), 1.00 (t, J = 7.5 Hz, 3H, H-2’). 

13
C NMR (100 MHz, CDCl3) δ (ppm): 165.59 (C-2), 164.73 (C-4), 160.72 (C-6), 133.78 (C-

5”a), 130.90 (C-2” and C-9”a), 129.04 (C-6”), 126.21 (C-7” and C-8”), 125.81 (C-3” and C-

4”) 122.75 (C-9”), 107.75    (C-3), 95.57 (C-5), 68.94 (C-1”), 20.25 (CH3), 16.23 (C-1’),  

11.74 (C-2’). EI-MS m/z (%): 294 ([M
+•

], 5), 141(100); HR(EI)MS: 294.12587±0.0030 

(C19H18O2S, calcd. 294.12559). 
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3.2.9. Synthesis and structural characterization of  4-bromo -6-methyl-2H-pyran-2-one 

(37) 

 

A mixture of  4-hydroxy-6-methyl-2H-pyran-2-one (27, 0.428g, 3.40 mmol), tetrabuthyl-

ammonium bromide  (1.350 mg, 4.2 mmol) and P2O5 ( 1.180 g, 8.31 mmol) in anhydrous 

toluene (8.0 mL) was heated at 100°C  for  1 hour  under stirring (TLC: hexane/ ethyl acetate 

= 1:1). After cooling,  the toluene layer was separated. The gummy residual was extracted 

with toluene (4x8 mL). The combined organic layers were washed with a saturated solution  

of NaHCO3 and brine, dried over  anhydrous sodium sulfate and then evaporated in vacuo,  

giving  pure compound 37 ( 0.54 g, 82% yield).  Light-brown crystal, m.p. 88-90 (Lit. 87-

89°C;  Fairlamb, 2004).  
1
H NMR (400 MHz, CDCl3)  δ(ppm): 6.44 (s, 1H), 6.18 (s, 1H), 2.23 

(s,3H). 
13

C NMR (100 MHz, CDCl3) δ(ppm):  162.0, 160.3, 140.9, 114.5, 108.2, 19.5.  

 

3.2.10. Study of the selectivity in N,C-acylation of 4-benzylamino-

pyrone  

For 4-benzylamino-pyrone (1) a tautomeric equilibrium between the imino  and enamino 

forms can be written (Figure 3.9). The geometry of the two forms have been optimized and 

the corresponding  energy values have been calculated using the quantum-chemical software 

Gaussian 03W (Frisch, 2004). Restricted Density Functional Theory (DFT)  using basis set 6-

311++G(d,p) for all the atoms and hybrid functional B3LYP was applied  (§ 3.1.1.2). The 

optimized structural parameters were employed in the vibrational energy calculations at the 

DFT levels to characterize all stationary points as minima. For each optimized structure, no 

imaginary wavenumber modes were obtained, proving that a local minimum on the potential 

energy surface was actually found. The computed wavenumbers were scaled by factor 0.9688, 

which is suggested for B3LYP/6-311++G(d,p) calculations (Merrick, 2007). The value of 

total energy is in the favor of enamino-form with a difference of   -99.5 KJ/mol if compared 

with the value for imino-form (Figure 3.9).  
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Figure 3.9. Imino-enamino tautomeric equilibrium for pyrone 1 

 

A selectivity has been observed in  N, C- acylation by changing the base, the solvent and 

electrophile. The results have been discussed as reported below.  

 

3.2.10.1. Synthesis and structural characterization of  compounds 

38-43  

 

General procedure of synthesis 

 

To a solution of  compound 1 or 45 (0.02 mmol) dissolved in anhydrous CH2Cl2 (0.5 mL), 

suitable amine  (0.05 mmol) was added and the solution cooled at 0°C for 30 minutes. Acyl 

chloride  (0.04 mmol) was slowly added at this temperature. The mixture  was stirred at room 

temperature for 18 hours monitoring by TLC (hexane / ethyl acetate = 6:4) (Scheme 3.4). 

After concentration in vacuo, the crude products were analyzed by 
1
H-NMR spectra. 

 

Scheme 3.4.  Base effect on the selectivity of N, C -acylation of benzylpyrone 1. Reagents and 

conditions: a) base, CH2Cl2, 0 °C →r.t., 18h, 78-90%  yield.   
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3.2.10.2. Spectroscopic and mass spectrometric data 

4-(Benzylamino)-3-(2,2-dichloroacetyl)-6-methyl-2H-pyran-2-one (7) 

 These data have been already reported in § 3.2.6. 

N-Benzyl-2,2-dichloro-N-(6-methyl-2-oxo-2H-pyran-4-yl)acetamide (38) 

 

 

Yield  82%. Oil . 
1
H NMR (400 MHz, CDCl3) δ(ppm): 7.34  (m, 3H, H-4”, H-5” and H-6”), 

7.20 (m, 2H, H-3” and H-7”), 6.19 (s, 1H, H-2’), 5.93 (s, 1H, H-3), 5.88 (s, 1H, H-5) 4.90 (s, 

2H, H-1”), 2.26 (s, 3H, CH3-C(6)). 
13

C NMR (100 MHz, CDCl3) δ (ppm): 171.53 (C-1’), 

164.91 (C-2 and C-6) 154.72 (C-4), 134.63 (C-2”), 128.77 (C-4”, C-5” and C-6”), 127.67 ( C-

3” and C-7”), 108.61 (C-5), 103.19 (C-3), 63.32 (C-2’), 51.58 (C-1”), 20.62 (CH3-C(6)). ESI-

MS (positive mode): 348 ([M + Na]
+
). EI-MS m/z (%): 325 ([M

+•
], 4), 214 (10), 91 (100); 

HR(EI)MS: 325.0267±0.0030 (C15H13Cl2NO3, calcd. 325.02725). 

 

4-(Benzylamino)-3-isobutyryl-6-methyl-2H-pyran-2-one (39) 

 

 

Yield  79%. Oil . 
1
H NMR (400 MHz, CDCl3) δ(ppm): 12.03 (br s, 1H, NH), 7.37  (m, 3H, H-

4”, H-5” and H-6”), 7.26 (m, 2H, H-3” and H-7”), 5.81 (s, 1H, H-5), 4.50 (d, J = 5.6 Hz, 2H, 

H-1”), 2.16 (s, 3H, CH3-C(6)), 1.11 (d, J= 6.7 Hz, 6H, H-3’). 
13

C NMR (100 MHz, CDCl3) δ 

(ppm):  208. 84 (C-1’), 165.53 and 165.11 (C-2 and C-6) 162.72 (C-4), 136.09 (C-2”), 128.56 

and 128.02 (C-4”, C-5” and C-6”), 127.42 (C-3” and C-7”),  94.56 (C-5), 93.20 (C-3), 46.71 

(C-1”), 37.78 (C-2’), 20.63 (CH3-C(6)), 18.58 (C-3’). ESI-MS (positive mode): m/z 286  ([M+ 

H]
+
), 308 ([M + Na]

+
);  MS/MS (286): m/z 268 ([M+H–H2O]

+
, 216 ([M+H–C4H6O]

+
. EI-MS 
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m/z (%): 285 ([M
+•

], 9), 242 (63), 194 (42), 91 (100); HR(EI)MS: 285.13652±0.0030 

(C17H19NO3, calcd. 285.13649). 

 

N-Benzyl-N-(6-methyl-2-oxo-2H-pyran-4-yl)isobutyramide (40) 

 

Yield  78 %.  Oil . 
1
H NMR (400 MHz, CDCl3) δ(ppm): 7.32  (m, 3H, H-4”, H-5” and H-6”), 

7.17 (m, 2H, H-3” and H-7”), 5.99 (s, 1H, H-3), 5.77 (s, 1H, H-5), 4.85 (s, 2H, H-1”), 2.83 

(septet, J=6.6 Hz, 1H, H-2’), 2.23 (s, 3H, CH3-C(6)), 1.15 (d, J= 6.6 Hz, 6H, H-3’). 
13

C NMR 

(100 MHz, CDCl3) δ (ppm): 177. 80 (C-1’), 162.76 (C-2 and C-6) 157.24 (C-4), 136.49 (C-

2”), 128.48 (C-4”, C-5” and C-6”), 127.07 (C-3” and C-7”),  105.52 (C-5), 103.31 (C-3), 

51.49 (C-1”), 32.08 (C-2’), 20.65 (CH3-C(6)), 19.07 (C-3’). ESI-MS (positive mode): m/z 286 

([M+ H]
+
), 308 ([M + Na]

+
), 593([2M + Na]

+
); MS/MS (286): m/z 216 ([M + H –C4H6O]

+
. 

EI-MS m/z (%): 285 ([M
+•

], 17), 214 (47), 91 (75), 43 (100); HR(EI)MS: 285.13607±0.0030 

(C17H19NO3, calcd. 285.13649). 

 

4-(Benzylamino)-6-methyl-3-propionyl-2H-pyran-2-one (41) 

 

Yield  75%. Oil . 
1
H NMR (400 MHz, CDCl3) δ(ppm): 11.97 (br s, 1H, NH), 7.36  (m, 3H, H-

4”, H-5” and H-6”), 7.26 (m, 2H, H-3” and H-7”), 5.81 (s, 1H, H-5), 4.51 (d, J = 5.8 Hz, 2H, 

H-1”), 3.07 (q, J=7.2 Hz, 2H, H-2’),  2.16 (s, 3H, CH3-C(6)), 1.10 (t, J=6.7 Hz, 3H, H-3’). 
13

C 

NMR (100 MHz, CDCl3) δ (ppm):  204.70 (C-1’), 165.56 (C-2 and C-6) 161.58 (C-4), 136.31 

(C-2”), 128.51 (C-4”, C-5” and C-6”), 127.11 (C-3” and C-7”),  94.71 (C-5 and C-3), 45.22 

(C-1”), 37.31 (C-2’), 20.70 (CH3-C(6)) 8.34 (C-3’). ESI-MS (positive mode): m/z 272  ([M+ 

H]
+
), 294 ([M + Na]

+
). 564([2M + Na]

+
); MS/MS (272): m/z 216 ([M + H–C3H4O]

+
;  MS

3
 

(216): m/z 138 ([M+H –C6H6]
+
. EI-MS m/z (%): 271 ([M

+•
], 33), 242 (71), 180 (21), 91 (100); 

HR(EI)MS: 271.12072±0.0030 (C16H17NO3, calcd. 271.12084). 
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N-Benzyl-N-(6-methyl-2-oxo-2H-pyran-4-yl)propionamide (42) 

 

Yield  73%. Colorless oil. 
1
H NMR (400 MHz, CDCl3) δ(ppm): 7.32 (m, 3H, H-4”, H-5” and 

H-6”), 7.16 (m, 2H, H-3” and H-7”), 6.13 (s, 1H, H-3), 5.77 (s, 1H, H-5), 4.88 (s, 2H, H-1”), 

2.43 (q, J=7.4 Hz, 2H, H-2’),  2.23 (s, 3H, CH3-C(6)), 1.16 (t, J= 7.4 Hz, 3H, H-3’). 
13

C NMR 

(100 MHz, CDCl3) δ (ppm):  174.11 (C-1’), 162.42 (C-2 and C-6) 157.21 (C-4), 136.16 (C-

2”), 127.89 (C-4”, C-5” and C-6”), 126.80 (C-3” and C-7”),  103.28 (C-5), 58.32 (C-2’), 

51.50 (C-1”), 20.61 (CH3-C(6)), 18.14 (C-3’). ESI-MS (positive mode): m/z 272  ([M+ H]
+
), 

294 ([M + Na]
+
); MS/MS (272): m/z 216 ([M + H–C3H4O]

+
. EI-MS m/z (%): 271 ([M

+•
], 33), 

242 (66), 180 (20), 91 (100); HR(EI)MS: 271.12064±0.0030 (C16H17NO3, calcd. 271.12084). 

 

4-(Benzylamino)-3-(2-bromopropanoyl)-6-methyl-2H-pyran-2-one (43) 

 

 

Yield  85%. Pale yellow oil . 
1
H NMR (400 MHz, CDCl3) δ(ppm): 11.69 (br s, 1H, NH), 7.38  

(m, 3H, H-4”, H-5” and H-6”), 7.27 (m, 2H, H-3” and H-7”), 6.13 (q, J=6.7 Hz, 1H, H-2’), 

5.87 (s, 1H, H-5), 4.53 (d, J=5.7 Hz, 2H, H-1”), 2.19 (s, 3H, CH3-C(6)), 1.79 (d, J=6.7 Hz, 

3H, H-3’). 
13

C NMR (100 MHz, CDCl3) δ (ppm): 197. 25 (C-1’), 166.23 (C-2 and C-6) 

162.92 (C-4), 135.61 (C-2”), 128.78 (C-4”, C-5” and C-6”), 127.06 (C-3” and C-7”), 94.97 

(C-5), 91.81 (C-3), 47.75 (C-2’), 46.98 (C-1”), 20.87 (CH3-C(6)), 20.49 (C-3’). ESI-MS 

(positive mode): m/z 350/352  ([M+ H]
+
), 372/374 ([M + Na]

+
), 388/390 ([M + K]

+
);  MS/MS 

(252): m/z 270 ([M+H–H
81

Br]
+
, 180 ([M+H–H

81
Br–C7H6]

+
. EI-MS m/z (%): 349 ([M

+•
], 1.5), 

270 (51), 242 (27), 91 (100); HR(EI)MS: 349.02959±0.0030  (C16H16 
79

BrNO3, 

calcd.349.03136). 
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3.2.10.3. Study of selectivity in enamino-ester 45 as a model compound  

The enaminoester 45  has been selected as  model compound. It was prepared  according to 

the procedure reported (Brandt, 2004), and later subjected to reaction with suitable bases and 

dichloroacetyl chloride (Scheme 3.5).  

 
Scheme 3.5.  Acylation of enaminoester 45. Reagents and conditions:  a) different base (2.5 eq.) 

dichloroacetyl chloride (2.0 eq.), CH2Cl2, 0°C →r.t., 18h, 78-90%  yield.   

 

 

 

Synthesis and structural characterization of precursor 45  

A mixture of ethyl acetoacetate (0.5 mL, 3.9 mmol), benzylamine (0.43 mL, 3.9 mmol) and 

acetic acid (25 µL, 0.44 mmol) was placed in an ultrasound bath at a temperature never 

exceeding 30°C, for 1 hour. Later ethanol (10 mL) was added, the resulting solution was dried 

on anhydrous Na2SO4, filtered and concentrated in vacuo to give pure product (850 mg, 

quantitative yield). Yellow oil.  
1
H NMR (400 MHz, CDCl3)  δ(ppm): 8.94 (br s, 1H), 7.31-

7.20 (m, 5H), 4.52 (s, 1H), 4.42 (d, J=6.4 Hz, 2H), 4.09 (q, J=7.0 Hz, 2H), 1.9 (s, 3H), 1.25 (t, 

J=7.0 Hz, 3H). The data are consistent with the ones reported  by Brandt, 2004. 

 

Synthesis and structural characterization of compound 46 

The adopted synthetic procedure was the same as reported for the preparation of  compounds 

38-43 (§ 3.2.19.1). 

 

(Z)-Ethyl 3-(benzylamino)-2-(2,2-dichloroacetyl)but-2-enoate (46) 
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Yield  82%. Yellow oil . 
1
H NMR (400 MHz, CDCl3) δ(ppm): 12.65 (br s, 1H, NH), 7.40  (m, 

3H, H-4”, H-5” and H-6”), 7.27 (m, 2H, H-3” and H-7”), 6.92 (s, 1H, H-2’), 4.57 (d,  

J = 5.6 Hz, 2H,   H-1”), 4.25 (q, J=7.1 Hz, 2H, -OCH2-), 2.29 (s, 3H, C-4), 1.34 (t, J=7.1 Hz, 

3H, CH3CH2). 
13

C NMR (100 MHz, CDCl3) δ (ppm): 173.79 (C-1’), 171.37 (C-3), 168.26 (C-

1), 135.32 (C-2”), 128.15 (C-4”, C-5” and C-6”), 127.66 (C-3” and C-7”), 98.89 (C-2), 71.75 

(C-2’), 60.97 (-OCH2-), 47.80 (C-1”), 17.95 (C-4), 13.89 (CH3-). ESI-MS (positive mode): 

m/z 330  ([M+ H]
+
), 352 ([M + Na]

+
);  MS/MS (330): m/z 284 ([M + H–C2H6O]

+
. EI-MS m/z 

(%): 329 ([M
+•

], 2), 246 (55), 91 (100); HR(EI)MS: 329.05801±0.0030 (C15H17 
35

Cl2NO3, 

calcd. 329.05855). 

 

 

3.2.11. Purification and structural characterization of  drug 

nevirapine isolated from Viramune
®
  in tablets 

 

One tablet of  viramune
®
 containing 200 mg of nevirapine (NVP), was grinded finely in a 

mortar. The powder was extracted  repeatedly with CH2Cl2. The extracts were evaporated in 

vacuo and the residue was passed through a pad of silica gel and eluted with CH2Cl2 / EtOH/ 

acetone= 1:1:1. The white residue (180 mg, 90 % recovery) obtained after in vacuo 

evaporation of the solvent was  pure NVP. M.p. 243-245°C ( Lit. 242-246°C;  Hargrave 1991) 

1
H NMR (400 MHz, CDCl3) δ(ppm): 8.51 (d, J = 3.2 Hz, 2H), 8.14 (d, J = 4.8 Hz, 1H), 8.09 

(d, J = 7.5 Hz, 1H), 7.04 (dd, J = 7.4, 4.9 Hz, 1H), 6.92 (d, J = 4.8 Hz, 1H), 3.74 (s, 1H), 2.37 

(s, 3H), 0.97 (br s, 1H), 0.49 (dd, J = 21.5, 10.5 Hz, 1H).
13

C NMR (100 MHz, CDCl3 ) δ 

(ppm): 168.81, 160.47, 153.97, 152.08, 143.96, 140.34, 139.37, 124.86, 121.93, 118.78, 

29.35, 17.11, 8.62.  EI-MS m/z (%): 265 ([M
+•

], 94), 251 (100), 237 (34), 183 (12), 133(58) ; 

HR(EI)MS: 265.10802±0.0030 (C15H13N4O , calcd. 265.10894).  

NMR data (Figure 3.10, 3.11 and 3.12) are consistent with the ones reported  by Hannongbua, 

2001. 
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Figure 3.10. 

1
H-NMR (400MHz) spectrum in CDCl3 of nevirapine isolated from the drug 

 

 
Figure 3.11. 

1
H,

13
C NMR ( HSQC)  spectrum of nevirapine in CDCl3 
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Figure 3.12. Long range 
1
H, 

13
C NMR (HMBC) spectrum of nevirapine in CDCl3 
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3.3. Biological evaluation 

3.3.1. ELISA enzymatic assay 

A stock solution in DMSO of compounds 1-2 and 7-10a was prepared by dissolving  0.5-1.5 

mg of each compound in DMSO (0.5 mL) obtaining a concentration in the range 3.0 ÷ 6.0 

mM and stored at -20°C until the use. 

The HIV-RT inhibition assay was performed by using a RT assay kit (Roche), 

according to the procedure for assaying RT inhibition performed as described in the kit 

protocol (Figure 3.13).  

 

 

Figure 3.13. Schematic representation  of working method for RT ELISA. 

 

 

Briefly, the reaction mixture consists of template ⁄ primer complex, 2’-deoxy-

nucleotide-5’-triphosphates (dNTP's) and reverse transcriptase (RT) enzyme in the lysis 

buffer without  or with inhibitors at final concentration of 200 µM. After 1 hour  incubation at 

37°C, the reaction mixture was transferred to streptavidine-coated microtitre plate (MTP). 

The biotin-labeled dNTPs that are incorporated in the template because of the activity of RT 

were bound to streptavidine. The unbound dNTPs were washed using wash buffer and anti-

digoxigenin-peroxidase (DIG-POD) was added in MTP. The DIG-labeled dNTPs 

incorporated in the template was bound to anti-DIG-POD Antibody. The unbound anti-DIG-
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POD was washed and the peroxide substrate (ABST) was added to the MTP. A colored 

reaction product was produced during the cleavage of the substrate catalyses by a peroxide 

enzyme. The absorbance (O.D.) of the samples were determined at λ 405 nm using microtiter 

plate ELISA reader. The resulting color intensity is directly proportional to the actual RT 

activity. The percentage inhibitory activity of RT inhibitors was calculated by comparing to a 

sample that does not contain an inhibitor. The percentage inhibition was calculated by the 

formula as given: 

 

                 [
                        

                           
     ] 

  

3.3.1.1. Validation of ELISA assay  

The kit was validated using different concentration of nevirapine (NVP) and reading the 

absorbance  of colored reaction product at different time. The results are summarized in table 

3.4. 

Table 3.4. Validation of ELISA enzymatic test  (Roche)..  

Concentration of 

nevirapine 

(μM) 

Reading time (minutes) 

10 15 20 30 40 

% RT 

inhibition±SD 

% RT 

inhibition±SD 

% RT 

inhibition± SD 

% RT 

inhibition ± SD 

% RT 

inhibition± SD 

1.0 32.1±1.1 -1.5±2.0 -6.5±5.9 -6.9±4.8 -11.4±4.9 

2.5 29.9±4.8 10.2±0.5 10.1±0.1 2.47±1.2 -8.61±1.3 

25 70.1±0.5 69.2±0.9 64.8±0.5 50.5±0.8 39.2±1.1 
 

 

The kit contained  only a small amount of reverse transcriptase, not enough to be used 

in all the microtiter plate and the other reagents contained in it, so that the inhibitory activity 

of nevirapine was studied on a different  recombinant reverse transcriptase (Pierce 

Biotechnology) using all the other reagents present in the kit. Figure 3.14 reports the effect of 

nevirapine at 200µM of concentration on Pierce reverse transcriptase  in pure water and in  

buffer phosphate  at pH 7.4   added of  0.2% of BSA,  in comparison with  the original RT 

present in the kit. 
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Figure 3.14. Comparison of percentage inhibition with  different RT enzymes  in the presence of  

nevirapine (200µM) 
 

In order to test the stability of Pierce reverse transcriptase, using the same conditions 

adopted in the Roche kit, a cycle of freezing  at -80°C and thawing at 0°C was applied on both 

reverse transcriptase samples. The results are  shown in figure 3.15. 

 

 

 

Figure 3.15. Comparison between  Roche and Pierce RT inhibition after a cycle of freezing/thawing. 
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From these preliminary validation tests it was possible to establish that Pierce reverse 

transcriptase is not useful with the Roche kit and that the  best time to read the plate at the 

microplate reader is  10 minutes after the addition of ABTS reagent. 

 3.3.1.2. Results of the assay 

Stock solutions of compounds   1-2 and 7-10a were diluted with lysis buffer at a final 

concentration of 200µM. Each compound was assayed  three times and nevirapine was used 

as positive control test. The results are summarized in the table 3.5. 

 

 

 

   Table 3.5. Results of HIV-RT Kit Assay  

Compound % of  RT inhibition
b)

±SD 

Inhibition  (200µM) 1 4.92±0.07 

2 66.5±0.8 

8a 77.3±0.5 

8b 30±7 

9 20±1 

10 32±2 

NVP
a) 58.5±0.6 

a) NVP = nevirapine 

b) Results from three independent experiments 

 

3.3.2.  Anti-HIV activity assay 

Inhibition of HIV-1(IIIB) and HIV-2(ROD)-induced cytopathicity in CEM cell cultures was 

measured in microtiter 96-well plates containing  ~3x10
5
 CEM cells/mL, infected with 100 

CCID50 of HIV per mL and containing appropriate dilutions of the test compounds. After 4–

5 days of incubation at 37 °C in a CO2-controlled humidified atmosphere, CEM giant 

(syncytium) cell formation was examined microscopically. The EC50 (50% effective 

concentration) was defined as the compound concentration required to inhibit HIV-induced 

giant cell formation by 50% (Table 3.6). 
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  Table 3.6. Anti-HIV  activity and cytotoxicity in CEM  

 cells by testing the synthesized molecules  

 

EC50
a)

  

(µM) 

CC50
b)

 ±SD 

(µM) 

Compound HIV-1 HIV-2 CEM 

1 >250 >250 148 ± 11 

2 >10 >10 175 ± 106 

3 >10 >10 83 ± 12 

4 >10 >10 182 ± 27 

5 >10 >10 76 ± 7 

6 25 ± 3.5 ≥50 121 ± 10 

7 >2 >2 4.9 ± 1.5 

8a >2 >2 5.4 ± 3.6 

8b ≥10 ≥10 50 ± 18 

9 >50 >50 93 ± 16 

11 >10 >10 6.5 ± 4.0 

12 >2 >2 4.2 ± 2.5 

13 ≥2 ≥2 4.0 ± 1.6 

14 >10 >10 16 ± 0 

15 >10 >10 5.4 ± 2.0 

17 >2 >2 83 ± 34 

18 ≥50 ≥50 150 ± 25 

18a >50 >50 25 ± 4 

19 >10 >10 214 ± 52 

20 >10 >10 ≥ 250 

21 >10 >10 2.2 ± 1.6 

22 >10
c 

>10
c 

> 250 

23 >0.4 >0.4 4.4 ± 2.3 

24 >10 >10 41 ± 18 

25 >10 >10 77 ± 9 

26 >2 >2 68± 21 

NVP
 0.11

d 
10

d 
>200

d 

a) EC50=effective concentration or concentration required to protect CEM  

 cells against   the cytopathogenicity of HIV  by 50 % 
b) Concentration required to reduce CEM cell viability by 50%.  

c) Compound precipitation was detected at higher compound concentration. 

d) Values obtained from:  http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?cid=4463 
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3.3.3. Antiviral  activity 
 

The antiviral assays were based on inhibition of virus-induced cytopathicity in HEL cell 

cultures for herpes simplex virus type 1 (HSV-1), HSV-2(G), vaccinia virus, vesicular 

stomatitis virus (Table 3.7) and varicella-zoster virus (VZV) (Table 3.8); in Vero cell cultures 

for parainfluenza- 3, reovirus-1, Sindbis, Coxsackie B4 and Punta Toro virus (Table 3.10); in  

HeLa cell cultures for vesicular stomatitis virus, Coxsackie virus B4 and respiratory syncytial 

virus (Table 3.9); in MDCK (Madin Darby canine kidney) cell cultures for influenza A 

(H1N1 and H3N1) and influenza B virus (Table 3.12) and in CrFK (Crandell-Rees Feline 

Kidney) cell cultures for  feline herpes virus and feline corona virus (FIPV) (Table 3.11).  

Confluent cell cultures in microtiter 96-well plates were inoculated with 100 cell 

culture inhibitory dose-50 (CCID50) of virus (1 CCID50 being the virus dose to infect 50% of 

the cell cultures) in the presence of varying concentrations of the test compounds. Viral 

cytopathicity was recorded as soon as it reached completion in the control virus infected cell 

cultures that were not treated with the test compounds. 

For the anti-cytomegalovirus assay, confluent human embryonic lung (HEL) fibroblast 

cultures were grown in 96-well microtiter plates and infected with the human 

cytomegalovirus (HCMV) strains AD-169 and Davis at 100 PFU per well. After a 2 hour-

incubation period, residual virus was removed and the infected cells were further incubated 

with medium containing different concentrations of the test compounds (in duplicate). After 

incubation for 7 days at 37 °C, virus-induced cytopathogenicity was monitored 

microscopically after ethanol fixation and staining with Giemsa.   

Antiviral activity was expressed as the EC50 or compound concentration required to 

reduce virus-induced cytopathogenicity by 50%. EC50’s were calculated from graphic plots of 

the percentage of cytopathogenicity as a function of concentration of the tested compounds 

(Table  3.13) 
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Table 3.7. Anti-herpes simplex, vaccinia and  vesicular stomatitis virus activity in HEL cell line 

cultures by testing the new synthetic molecules 1-26 

Compound 

Minimum 

cytotoxic 

concentration
a)

 

(µM) 

EC50
b)

 (µM) 

Herpes 

simplex 

virus-1 

(KOS) 

Herpes 

simplex 

virus-2 

(G) 

Vaccinia 

virus 

Vesicular 

stomatitis 

virus 

Herpes 

simplex 

virus-1   

TK
-
 KOS 

ACV
r
 

1 >100 >100 >100 >100 >100 >100 

2 >100 >100 >100 >100 >100 >100 

3 >100 >100 >100 >100 >100 >100 

4 >100 >100 >100 >100 >100 >100 

5 >100 >100 >100 >100 >100 >100 

6 >100 >100 >100 >100 >100 >100 

7 20 >4 >4 >4 >4 >4 

8a >100 >100 >100 >100 >100 >100 

8b >100 >100 >100 >100 >100 >100 

9 >100 >100 >100 >100 >100 >100 

11 ≥4 >4 >4 >4 >4 >4 

12 20 >4 >4 >4 >4 >4 

13 >100 >100 >100 >100 >100 >100 

14 >100 >100 >100 >100 >100 >100 

15 20 >4 >4 >4 >4 >4 

17 ≥20 >20 >20 >20 >20 >20 

18 >100 >100 >100 >100 >100 >100 

18a ≥20 >20 >20 >20 >20 >20 

19 >100 >100 >100 >100 >100 >100 

20 >100 >100 >100 >100 >100 >100 

21 20 >4 >4 >4 >4 >4 

22 >100 >100 >100 >100 >100 >100 

23 >100 >100 >100 >100 >100 >100 

24 >100 >100 >100 >100 >100 >100 

25 >100 >100 >100 >100 >100 >100 

26 >100 >100 >100 >100 >100 >100 

Reference compounds 

Brivudin >250 0.04 250 10 >250 250 

Cidofovir >250 1 0.4 17 >250 0.4 

Acyclovir >250 0.2 0.1 >250 >250 50 

Ganciclovir >100 0.03 0.02 >100 >100 12 

a)Required to cause a microscopically detectable alteration of normal cell morphology. 

b) Required to reduce virus-induced cytopathogenicity by 50 %. 
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Table 3.8. Anti-varicella-zoster virus activity in HEL cell line cultures for the synthetic 

compounds 1-26 

Compound Antiviral activity EC50 (µM)
a)

 Cytotoxicity (µM) 

 

TK
+
 VZV 

strain OKA 

TK
-
 VZV 

strain 07-1. 

Cell morphology 

(MCC)
b)

 

Cell growth 

(CC50)
c)

 

1 >100 >100 >100 
 

2 62 89 >100 100 

3 >100 >100 >100 
 

4 100 >20 100 
 

5 >20 >20 100  

6 >100 >100 >100  

7 >20 >20 100  

8a >4 >4 20  

8b 47 41 >100 39 

9 >100 >100 >100  

11 >4 >4 20  

12 >4 >4 20  

13 8 9 100 2 

14 >20 >20 100  

15 >20 >20 100  

17 13 >4 20  

18 >100 >100 >100  

18a >20 9.6 100 >100 

19 >20 >20 100  

20 >20 >20 100  

21 >100 >100 >100  

22 >20 >20 100  

23 >0.16 >0.16 0,8  

24 >4 >4 20  

25 >20 >20 100  

26 >20 20 100  

Reference compounds 

Acyclovir 3.5 131 >440 440 

Brivudin 0,050 95 >300 260 
a) Effective concentration required to reduce virus plaque formation by 50%. Virus input was 20 plaque forming units (PFU).  

b) Minimum cytotoxic concentration that causes a microscopically detectable alteration of cell morphology. 

c) Cytotoxic concentration  required to reduce cell growth by 50%. 
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Table 3.9. Anti-vesicular stomatitis, Coxackie and respiratory syncytial viruses  

activities in HeLa cell line cultures for the synthetic compounds 1-26 

Compound 

Minimum 

cytotoxic 

concentration
a)

 

(µM) 

EC50
b)

 (µM) 

Vesicular 

stomatitis 

virus 

Coxsackie 

virus B4 

Respiratory 

syncytial 

virus 

1 >100 >100 >100 >100 

2 >100 >100 >100 >100 

3 >100 >100 >100 >100 

4 >100 >100 >100 >100 

5 >100 >100 >100 >100 

6 >100 >100 >100 >100 

7 20 >4 >4 >4 

8a 20 >4 >4 >4 

8b 100 >20 >20 >20 

9 >100 >100 >100 >100 

11 20 >4 >4 >4 

12 20 >4 >4 >4 

13 >100 >100 >100 >100 

14 >100 >100 >100 >100 

15 ≥20 >20 >20 >20 

17 100 >20 >20 >20 

18 >100 >100 >100 >100 

18a >100 >100 >100 >100 

19 >100 >100 >100 >100 

20 >100 >100 >100 >100 

21 100 >20 >20 >20 

22 >100 >100 >100 >100 

23 4 >0.8 >0.8 >0.8 

24 >100 >100 >100 >100 

25 100 >20 >20 >20 

26 100 >20 >20 >20 

Reference compounds 

DS-5000 

(µg/ml) 
>100 20 >100 0.6 

(S)-DHPA >250 >250 >250 >250 

Ribavirin >250 10 112 2 
a) Required to cause a microscopically detectable alteration of normal cell morphology. 

b) Required to reduce virus-induced cytopathogenicity by 50 %. 
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Table 3.10. Anti-parainfluenza, reovirus-1, Sindbis, Coxsackie and Punta Toro viruses activities in 

VERO cell line cultures for the synthetic compounds 1-26 

Compound 

Minimum 

cytotoxic 

concentration
a)

 

(µM) 

EC50
b)

 (µM) 

Para-

influenza-3 

virus 

Reovirus-1 
Sindbis 

virus 

Coxsackie 

virus  

B4 

Punta  

Toro 

virus 

1 >100 >100 >100 >100 >100 >100 

2 >100 >100 >100 >100 >100 >100 

3 >100 >100 >100 >100 >100 >100 

4 >100 >100 >100 >100 >100 >100 

5 >100 >100 >100 >100 >100 >100 

6 >100 >100 >100 >100 >100 >100 

7 ≥20 >20 >20 >20 >20 >20 

8a 100 >20 >20 >20 >20 >20 

8b 100 >20 >20 >20 >20 >20 

9 >100 >100 >100 >100 >100 >100 

11 ≥4 >4 >4 >4 >4 >4 

12 ≥4 >4 >4 >4 >4 >4 

13 >100 >100 >100 >100 >100 >100 

14 ≥100 >100 >100 >100 >100 >100 

15 20 >4 >4 >4 >4 >4 

17 ≥20 >20 >20 >20 >20 >20 

18 >100 >100 >100 >100 >100 >100 

18a ≥20 >20 >20 >20 >20 >20 

19 >100 >100 >100 >100 >100 >100 

20 >100 >100 >100 >100 >100 >100 

21 20 >4 >4 >4 >4 >4 

22 >100 >100 >100 >100 >100 >100 

23 ≥100 >100 >100 >100 >100 >100 

24 >100 >100 >100 >100 >100 >100 

25 100 >20 >20 >20 >20 >20 

26 ≥20 >20 >20 >20 >20 >20 

Reference compounds 

DS-5000 

(µg/ml) 
>100 >100 100 >100 100 >100 

(S)-DHPA  >250 250 >250 >250 >250 >250 

Ribavirin >250 22 148 >250 >250 50 
a) Required to cause a microscopically detectable alteration of normal cell morphology. 

b) Required to reduce virus-induced cytopathogenicity by 50 %. 
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 Table 3.11. Anti-feline  corona virus and  feline herpes virus   

 activities in CRFK cell cultures for the synthetic compounds 1-26 

Compound 
CC50

a)
 

(µM) 

EC50
b)

 (µM) 

Feline Corona 

Virus 

(FIPV) 

Feline 

Herpes 

Virus 

1 >100 >100 >100 

2 >100 >100 >100 

3 >100 >100 >100 

4 >100 >100 >100 

5 >100 >100 >100 

6 >100 >100 >100 

7 6.5 >4 >4 

8a 12.7 >4 >4 

8b 84.9 >20 >20 

9 >100 >100 >100 

11 5.4 >4 >4 

12 6.5 >4 >4 

13 48.3 >20 >20 

14 >100 >100 >100 

15 5.4 >4 >4 

17 9.5 >4 >4 

18 >100 >100 >100 

18a >100 >100 >100 

19 >100 >100 >100 

20 >100 >100 >100 

21 10.7 >4 >4 

22 >100 >100 >100 

23 13.2 >4 >4 

24 >100 >100 >100 

25 38.7 >20 >20 

26 13.8 >4 >4 

Reference compounds 

HHA 

(µg/ml) 
>100 30.9 44.3 

UDA 

(µg/ml) 
46.3 9.3 3.1 

Ganciclovir >100 >100 2.2 
a) 50% Cytotoxic concentration, as determined by measuring the cell viability with 

 the colorimetric formazan- based MTS assay. 

b) 50% Effective concentration, or concentration producing 50% inhibition of virus- 

 induced cytopathic effect, as determined by measuring the cell viability with the  

colorimetric formazan-based MTS assay. 
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Table 3.12. Anti-influenza A and B activities in MDCK cell cultures by testing the synthetic 

compounds 1-26 

Compound 

Cytotoxicity Antiviral EC50
c) 

(µM)
 

 

 

CC50
a) 

(µM)
 

 

 

Minimum 

cytotoxic 

conc.
b) 

(µM)
 

Influenza A 

H1N1 subtype 

Influenza A 

H3N2 subtype 
Influenza B 

visual 

CPE 

score 

MTS 

visual 

CPE 

score 

MTS 

visual 

CPE 

score 

MTS 

1 >100 >100 >100 >100 >100 >100 >100 >100 

2 >100 ≥100 >100 >100 >100 >100 >100 >100 

3 47.0 100 >20 >20 >20 >20 >20 >20 

4 41.2 ≥20 >20 >20 >20 >20 >20 >20 

5 33.1 ≥20 >20 >20 >20 >20 >20 >20 

6 33.5 ≥20 >20 >20 >20 >20 >20 >20 

7 9.6 20 >4 >4 >4 >4 >4 >4 

8a >100 4 >0.8 >0.8 >0.8 >0.8 >0.8 >0.8 

8b 43.0 20 >4 >4 >4 >4 >4 >4 

9 >100 ≥100 >100 >100 >100 >100 >100 >100 

11 1.8 4 >0.8 >0.8 >0.8 >0.8 >0.8 >0.8 

12 2.0 4 >0.8 >0.8 >0.8 >0.8 >0.8 >0.8 

13 2.3 4 >0.8 >0.8 >0.8 >0.8 >0.8 >0.8 

14 >100 >100 >100 >100 >100 >100 >100 >100 

15 1.9 4 >0.8 >0.8 >0.8 >0.8 >0.8 >0.8 

17 8.9 20 >4 >4 >4 >4 >4 >4 

18 >100 ≥20 >20 >20 >20 >20 >20 >20 

18a >100 100 >20 >20 >20 >20 >20 >20 

19 >100 >100 >100 >100 >100 >100 >100 >100 

20 >100 >100 >100 >100 >100 >100 >100 >100 

21 9.1 20 >4 >4 >4 >4 >4 >4 

22 >100 >100 >100 >100 >100 >100 >100 >100 

23 5.4 0.8 >0.16 >0.16 >0.16 >0.16 >0.16 >0.16 

24 17.4 ≥20 >20 >20 >20 >20 >20 >20 

25 10.2 20 >4 >4 >4 >4 >4 >4 

26 10.4 20 >4 >4 >4 >4 >4 >4 

Reference compounds 

Oseltamivir 

carboxylate 
>100 >100 3 8.2 0.8 0.6 100 >100 

Ribavirin  >100 >100 7 11.3 4 3.3 2 1.0 

Amantadine >200 >200 89 51.8 0.7 0.6 >200 >200 

Rimantadine >200 >200 14 9.8 0.7 0.6 >200 >200 
   a) 50% Cytotoxic concentration, as determined by measuring the cell viability with the colorimetric formazan- based MTS 

assay. 

  b) Minimum compound concentration that causes a microscopically detectable alteration of normal cell  morphology. 

  c) 50% Effective concentration, or concentration producing 50% inhibition of virus-induced cytopathic effect, as determined 

by visual scoring of the CPE, or by measuring the cell viability with the colorimetric formazan-based MTS assay. 
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Table 3.13. Anti- Cytomegalovirus activity in HEL cell cultures by testing for the  

synthetic compounds 1-26 

Compound 

Antiviral activity EC50
a)

 

(µM) 
Cytotoxicity (µM) 

AD-169 strain 
Davis 

strain 

Cell morphology
 b)

 

(MCC) 

Cell 

growth
 c)

 

( CC50) 

1 >100 >100 >100 
 

2 54 66 >100 100 

3 82 78 >100 >100 

4 78 78 >100 >100 

5 33 38 100 >100 

6 >100 >100 >100  

7 >20 >20 100  

8a >4 >4 20  

8b 38 33 >100 27 

9 >100 >100 >100  

11 >4 >4 20  

12 >4 >4 20  

13 >20 >20 100  

14 >20 >20 100  

15 >20 >20 100  

17 >20 >4 20  

18 100 >100 >100  

18a >100 >100 >100  

19 >20 >20 100  

20 >20 >20 100  

21 >20 >20 100  

22 >100 >100 >100  

23 >20 >20 100  

24 >20 >20 100  

25 20 20 100  

26 >20 >20 100  

Reference compounds 

Ganciclovir 9 9 >350 140 

Cidofovir 0.9 1.6 >300 63 
a) Effective concentration required to reduce virus plaque formation by 50%. Virus input was 100 plaque  

forming units (PFU). 

b) Minimum cytotoxic concentration that causes a microscopically detectable alteration of cell  morphology. 

c) Cytotoxic concentration required to reduce cell growth by 50%. 
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3.3.4. Cytostatic activity 
 

Murine leukaemia L1210, human T-lymphocyte CEM, human cervix carcinoma (HeLa) and 

human lung fibroblast (HEL) cells were suspended at 300,000-500,000 cells/mL of culture 

medium, and 100 µL of a cell suspension was added to 100 µL of an appropriate dilution of 

the test compounds in wells of 96-well microtiter plates. After incubation at 37°C for two 

(L1210) or three (CEM,  HeLa, HEL) days, the cell number was determined using a Coulter 

counter. The IC50 was defined as the compound concentration required to inhibit cell 

proliferation by 50% (Table 3.14). 

 

Table 3.14. Cytostatic activity on murine leukemia, human T-lymphocyte                                                              

and human cervix carcinoma activity by testing compounds 1-26 

Compound 

IC50
a) 

± SD  

(µM) 

L1210 CEM HeLa 

1 135 ± 1 148 ± 11 108 ± 1 

2 98 ± 25 175 ± 106 105 ± 1 

3 89 ± 19 83 ± 12 96 ± 10 

4 125 ± 41 182 ± 27 167 ± 83 

5 42 ± 0 76 ± 7 30 ± 3 

6 106 ± 5 121 ± 10 23 ± 2 

7 2.5 ± 0.4 4.9 ± 1.5 3.1 ± 0.2 

8a 3.3 ± 0.9 5.4 ± 3.6 1.4 ± 0.6 

8b 32 ± 4 50± 18 28± 3 

9 93 ± 9 93 ± 16 92 ± 19 

11 2.3 ± 0.2 6.5 ± 4.0 1.4 ± 0.4 

12 3.0 ± 0.2 4.2 ± 2.5 1.6 ± 0.4 

13 2.9 ± 0.9 4.0 ± 1.6 2.8 ± 0.4 

14 122 ± 13 214 ± 52 89 ± 27 

15 21 ± 14 77 ± 9 14 ± 10 

17 0.95 ± 0.07 2.2 ± 1.6 2.9 ± 0.6 

18 141 ± 6 150 ± 25 173 ± 81 

18a 38 ± 10 25 ± 4 88 ± 56 

19 67 ± 43 68 ± 21 67 ± 15 

20 183 ± 11 ≥ 250 136 ± 20 

21 71 ± 15 83 ± 34 60 ± 39 

22 160 ± 11 > 250 191 ± 10 

23 4.9 ± 3.5 4.4 ± 2.3 4.5 ± 0.3 

24 94 ± 21 41 ± 18 30 ± 12 

25 32 ± 16 16 ± 0 20 ± 1 

26 3.6 ± 0.1 5.4 ± 2.0 4.6 ± 0.2 
a) 50% inhibitory concentration. 
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3.3.5. Antibacterial  activity 

Agar diffusion assay 

Compounds were tested for biological activities against several target organisms including 

Gram-negative bacteria Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 

27853 as well as Gram-positive bacteria Staphylococcus aureus ATCC 25923, Methicillin-

resistant Staphylococcus aureus (MRSA) ATCC 43300. Amoxicillin,  penicillin, gentamycin, 

erythromycin and vancomycin were used as positive control tests.  

 

 

                            

Figure 3.16. Antibacterial activity of compounds 1-4 (on the left) and  14, 18,  

20, 22 (on the right) against S aureus ATCC 29523 

 

 

 

 

                              

Figure 3.17. Antibacterial activity of  9, 18a and 19 (on the left) and 14, 18, 20  

and 22 (on the right) against MRSA  ATCC 43300 
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Table 3.15. Antibacterial activity on E. coli (ATCC  25922), P. aeruginosa (ATCC 27853), S. aureus (ATCC   

25923) and MRSA (ATCC 43300)  strains. 100 µg   of each  new  compound has been used. The strength of 

activity is presented as resistant (R, Ø < 13mm), intermediate (I, Ø =14÷16 mm) and susceptible (S, Ø > 17mm)  

Compound  
(µmol) 

Inhibition zone diameter ± SD  

(mm) 

Gram (-)  Gram (+) 

E. coli 

ATCC  

 25922 A
ct

iv
it

y
 

st
re

n
g
h

t P. 

aeruginosa 

ATCC 

27853 A
ct

iv
it

y
 

st
re

n
g
h

t 

S. aureus 

ATCC  

25923 A
ct

iv
it

y
 

st
re

n
g
h

t 

MRSA 

ATCC 

43300 A
ct

iv
it

y
 

st
re

n
g
h

t 

1 

(0.46) 
8.42±0.16 R 8.33±0.2 R 0 R 0 R 

2 

(0.38) 
7.83±0.25 R 0 R 21.34±0.39 S 19.42±0.26 S 

3 

(0.36) 
8.60±0.14 R 9.87±0.22 R 18.16±0.1 S 0 R 

4 

(0.36) 
7.34±0.22 R 7.42±0.19 R 17.77±0.18 S 0 R 

9 

(0.30) 
11.73±0.28 R 13.05±0.14 R 10.81±0.12 R 10.66±0.21 R 

14 

(0.35) 
0 R 0 R 20.18±0.38 S 19.45±0.14 S 

18 

(0.38) 
8.35±0.12 R 0 R 12.82±0.19 R 17.92±0.13 S 

18a 

(0.25) 
13.88±0.03 R 0 R 0 R 15.27±0.35 I 

19 

(0.36) 
0 R 0 R 11.07±0.36 R 20.19±0.21 S 

20 

(0.25) 
9.79±0.57 R 0 R 0 R 16.52±0.6 I 

Reference antibiotics 

Penicillin G  

(6 µg, 0.017 ) 
- - - - 27.84±0.26 S - - 

Erythromycin 

 (15 µg, 0.02) 
- - - - 25.03±0.24 S 14.63±0.27 I 

Vancomycin  

(30 µg, 0.02) 
- - - - 18.65±0.19 S - - 

Gentamicin 

 (10 µg, 0.02) 
23.37±0.5 S 18.11±0.61 S 22.02±0.45 S - - 
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Determination of the minimum inhibitory concentrations (MIC) for antibacterial activity 

MIC values have been determinated for some selected compounds. The data are reported in 

table 3.16. 

 

Table 3.16. Minimum Inhibitory Concentration on S. aureus (ATCC 25923), MRSA (ATCC 

43300)  and  P. aeruginosa (ATCC 27853) strains. 

MIC
a)

 (µM) 

Compound 
S. aureus 

ATCC 

25923 

SI
b) 

MRSA 

ATCC 

43300 

SI
b) 

P. 

aeruginosa 

ATCC  

27853 

SI
b) 

2 120 1 120 1 - - 

3 29 3 - - 58 2 

4 < 7.2 >17 - - < 7.2 >17 

14 <7.1 >16 <7.1 >16 - - 

18 - - < 7.5 >19 - - 

19 <7.1 >9 <7.1 >9 - - 

20 - - <5 >27 - - 

Reference antibiotic 

Vancomycin - - < 1.4 - - - 
a) MIC is the minimal inhibitory concentration 
b) Selectivity Index, SI = IC50/EC50 
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4. Discussion 

 

4.1. Drug design 

In order to find novel molecules able to overcome the resistance of the clinically used non-

nucleoside reverse transcriptase inhibitors (§ 1.5), this thesis has the aim to use a fragment 

based design of new potential anti-HIV agents, based on hybrid structures deriving from 

active molecules, both of synthetic and natural origin. Otherwise, natural products have 

always played a relevant role in medicine. The major advantage offered by using secondary 

metabolites as useful templates, is that they are per se highly bioactive and selective. Because 

they are produced by Nature to protect a particular organism, they have been subjected to  

evolutive pressure  for several hundreds of millions of years and have been selected  to reach 

optimal activity and to perform specialized functions, e.g. of defence or sexual mechanisms 

(Mancini, 2007). 

  (+)-Calanolide A is the most active anti-HIV-1 compound isolated from the rainforest 

tree Calophyllum lanigerum (Kashman, 1992). It  inhibits laboratory strains of  HIV-1 (EC50 

0.10–0.17 µM) and  HIV-1 reverse transcriptase,  but it is inactive on HIV-2 reverse 

transcriptase or cell DNA polymerase (Currens, 1996). Synthetic molecules with unnatural 

structures have been also  produced with the aim to be used as anti-HIV drugs. In this contest 

α-anilino-phenylacetamide (α-APA) has shown to inhibit reverse transcriptase by interaction 

with  the allosteric pocket with IC50  14 nM  in CEM cells (Pauwels, 1993).  

 In details, the series of  hybrid molecules under investigation derives from the benzyl-amino 

moiety, present in α-APA structure and the simplified pyranone unit, present in the structure 

of the natural product  (+)-calanolide A  (Figure 4.1). The chice is reinforced  by the fact  that 

the 2-pyrone fragment, present  in many natural products, is associated to the exhibition of   

analgesic, fungicide and  antibacterial activities (Novikov, 2002). 

The R group in the pyranone moiety reported in the structures of figure 4.1 has been 

modified in order to modulate both steric and electronic effects by substitution of H-3 (in the 

subunit deriving from calanolide A structure)  with halogen, nitro,  alkyl or acyl groups. The 

lengthening of the  chain between the X group and the aryl unit allows to increase the number 

of  rotatable bonds,  with the possibility to adapt better the ligand into the binding pocket of 

the enzyme.  
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Figure 4.1. Drug design process to select the series of new molecules 
 

 

Isosterism  is a strategy used in medicinal chemistry for the rational design of new 

molecules able to  modify the interactions with the binding pocket,  both for the steric (size 

and shape)  and  electro-topological character (Kier, 2004), transferring the effect on the 

whole molecule. It is known that  ether or thioether units are often present  in NNRT 

molecules, as observed in the structures of  (S)-4-isopropoxycarbonyl-6-methoxy-3-

methylthiomethyl-3,4-dihydroquinoxalin-2(1H)-thione (HBY) and 3-[2-bromo-4-(1H-

pyrazolo[3,4-c]pyridazin-3-ylmethyl)phenoxy]-5-methylbenzonitrile (PZ2) compounds 

(Figure 3.3). They have inspired  a replacement of NH group with oxygen or sulfur atoms in 

the scaffold of the hybrid molecules under investigation in this thesis (Figure 4.1). The 

oxidation of thioether group yields the formation of sulfone unit, in which the S atom has a 

tetrahedral geometry able to induce a butterfly-like geometry of the molecules, as observed  in 

many NNRTIs (e.g. 5-bromo-3-(pyrrolidin-1-ylsulfonyl)-1H-indole- 2-carboxamide (MRX), 

Figure 3.3). This knowledge has suggested the substitution of NH group with –O– or –S– or –

SO2 –units. 

 It has been  reported that the introduction of a methyl group in a small molecule can 

boost 10-fold or greater its activity (Leung, 2012); for this reason and with the aim to increase 

the hydrophobic interaction in the RT pocket (rich in non-polar amino acids), a methyl group 

has been introduced at the benzylic carbon. Its presence allowed to create a stereogenic 
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center, producing enantiomeric molecules expected to give different diasteromeric  

interactions responsible for potential different inhibitor activity against reverse transcriptase.   

From all the possible combinations, only the molecules following the Lipinsky  rule, 

which is a useful  guide to discriminate a priori structures with drug-like chemical-physical 

properties  (§1.6.1; Lipinsky, 2000 and 2001) have been subjected  to  docking calculation. 

They are about 100 and the relative data are reported in Table 3.3 and Appendix A. 

 

4.1.1. Docking validation 

Molecular docking can help to select the molecules which are potential candidates  to be 

synthesized and furtherly assayed for their biological activities.  Recently, a study of docking 

validation on 780 ligand-receptor complexes, both with rigid and flexible treatment of ligands 

during the docking calculation, has shown that taking into account the ligand flexibility the 

binding energy increases, in contrast to rigid treatment in which the binding energy  remains 

constant (Figure 4.2; Mukherjee, 2010). In particular the success of docking (average 75%) is 

obtained with fewer than seven rotatable bonds and it decreases at  55% for 8-15 rotatable 

bonds, down to 39% if the rotatable bonds are greater than 15. 

In order to have trusted results, the docking process has been validated before to be 

used with the new designed  molecules. For this purpose different X-ray crystal structures of 

reverse transcriptase, complexed with clinically used NNRTI ligands or promising NNRTIs, 

were downloaded from RCSB Protein Data Bank and the ligand  of each structure has been 

docked both in the same original structure and in other structures for a process of  cross-

validation. The results of these calculations have shown that the molecules with a higher 

number of rotatable bonds have a better interaction energy (Table 3.2). 
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Figure 4.2. Success and failures of docking calculation on rigid and flexible ligands in  different 

family of enzymes. Red arrow indicates the HIV-RT family; (a) rigid ligand (RGD),  (b) flexible 

ligand (FLX). The left y-axis shows protein family and size and the right y-axis shows average 

number of ligand rotatable bonds (#RB). (c) (orange bars) shows difference in scoring - sampling 

failures for FLX (adapted from Mukherjee, 2010). 

 

 
 

In details, rilpivirine, delavirdine, PZ2,  MRX and HBY with a number of rotatable bonds 

of 5, 7, 4, 4 and 6 respectively show a binding energy of -12.99, -10.05, -12.58,-9.62 and -

7.76 Kcal/mol, respectively. The lower value of the latter one is probably caused by a low 

resolution (3.00Å)  of X-ray protein structure. Efavirenz and nevirapine have 3 and 0 rotatable 

bonds and their  calculated  binding energy is -8.68 and -8.50 Kcal/mol respectively. The 

visual inspection of the calculated and experimental X-ray structures of the different reverse 

transcriptase (Figure 3.4) shows that rilpivirine, efavirenz, nevirapine, PZ2 and MRX are well 

overlapped,  whereas delavirdine is not well overlapped,  likely due to the higher number of 

rotatable bonds. The cross-validation data are in agreement with the results obtained 

previously with ″the bests″ docking position in the same X-ray crystallographic structure. 

From the validation results  a compromise has been here  chosen for the docking calculation 

of the new molecules among the X-ray structure resolution,  the   R-factor, the number of 

rotatable bonds, the calculated  binding energy and the position of ligand after docking 
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calculation in comparison with the original structure. 1FK9 resulted the appropriate structure 

to subject the new molecules at docking calculation. 

 

4.1.2. Docking evaluation 

Docking calculations have been carried out on a first series of molecules having as aryl (Ar)  

unit a substituted phenyl (C1-C6 compounds in Appendix A). The corresponding calculated 

binding energy values were between -9.04 and -9.56 Kcal/mol. A substitution of phenyl ring 

with a 2-benzimidazole moiety increased the binding energy at -10.51 Kcal/mol (compound 

C8).  The same effect was observed changing the 2-benzimidazole  with a naphtyl  group, 

increasing the energy  until a  maximum of  -13.14 Kcal/mol in the compound C28. This 

series of molecules could be obtained only by a long sequence of reaction because of the 

lacking of  commercial  synthetic precursors or starting materials. All the compounds reported 

in Appendix A are amides, therefore for extending the calculation at other  isosters,  the acyl 

group in tertiary amide was simplified by transferring it  in position 3 of the pyranones ring 

and limiting it to acetyl (-COCH3) or dichloroacetyl (-COCHCl2) groups. 

A substitution of amine with an oxygen or sulfur atom gave an ether or a thioether, 

respectively; the latter one  is able to be easly oxidated to sulfone, in order to achieve  a  new 

series of compounds to be submitted to docking calculation. The results are summarized in 

table 3.3 showing, in some cases, lower binding energy in comparison with the amides 

reported in table I. However compounds 1-26 have a higher molecular diversity giving the 

possibility to obtain a potential structure-activity relationship after the biological assays.  

As previously reported, a threshold of -7.00 Kcal /mol of binding energy is a 

straightforward value to distinguish potential active from inactive compounds (Chang, 2007). 

All the molecules reported in table 3.3 show comparable binding energy to drugs taken as 

reference compounds and have a value greater than -7.00 Kcal/mol. The higher value of 

energy for the new compounds is -13.32 kcal/mol calculated for the compound 18a, although 

it is penalized by its too high  partition coefficient (Log P). In order to obtain results closer to 

the biological environment, the flexibility of  amino acid residues present in the NNBP have 

been taken into account  during the process of docking calculation for reference compounds 

(efavirenz, nevirapine, rilpivirine, α-APA and (+)-calanolide A) and for the new compounds 

1-26. However the obtained data resulted to be not consistent,  both for the too low interaction 

energy and for the right position in the pocket (data not reported). A further docking 
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calculation, using Molegro Virtual Docker software, has given results in agreement with 

AutoDock calculation, although Molegro uses a different ranking score and the direct 

comparison is not possible. 

 

4.1.3. ADME and drug-like properties prediction 

The drug-like properties and the calculations of Absorption, Distribution, Metabolism, and 

Excretion  (ADME)  on the new molecular structures, are important to select potential  lead 

candidates during the process of drug design. In particular, the partition coefficient must be 

lower than 5 and all the molecules under investigation, with two exceptions (10 and 18a), 

have showed a Log P between 1.8 and 4.2. ADME calculations for the intestinal absorption 

carried out for all the designed compounds gave a good intestinal absorption (97-99%) 

whereas the binding plasma protein has resulted  between 80  and 99%,  in agreement with the 

potential drug-like values. 

In summary, the results from docking calculations and ADME predictions have allowed to 

select compounds  1-26 as interesting molecules to be later synthesized and subjected to 

biological assays. 

 

4.2. Chemical synthesis and structural characterization of 

the selected molecules 

The production of compounds 1-21 was obtained through a convergent synthesis starting from 

the same commercial compound 4-hydroxy-6-methyl-2-pyrone (27). It was converted into 

tosylate 28 by the treatment with tosyl chloride in the presence of pyridine (Fairlamb, 2005)  

or triethylamine (Hansen, 2005). The latter base gave higher yields (90%) in comparison with 

the use of  pyridine (68% yield). Similarly, tosylates 31, 34 and 36 were synthesized . 

Tosylate 28, or 34 or 36,  has  been put to react  with the  suitable amine in a polar 

solvent (e.g. ethanol) at room temperature for 60 hours in the presence of trietylamine as base 

(Scheme 3.1). The yields were not higher than 55 %,  even if by using  2 molar equivalents of 

(aryl)alkyl amine. Amines  acted both as nucleophiles  and  bases,  giving the desired 

(aryl)alkyl-aminopyrone (1-6, 22 and 23) and also the (aryl)alkyl-tosylamide, as resulted by: 
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i) molecular composition deduced by high resolution experiment in EI-MS spectrum (m/z = 

311.09795±0.0030, calcd. 311.09800 for C18H17NO2S),  ESI(-)-MS/MS (Figure 4.3) and ii) 

1
H-NMR spectra (Figure 4.4), in the specific example of the by-product obtained in the 

reaction between tosylate 28 and 1-naphthylmethanamine. 

 

 

Figure 4.3.  ESI(−)-MS/MS spectrum of  [M−H]
−
 ion at m/z 310 of the by-product from  

aminolyses of tosylate 28. M is the by-product of aminolysis 

 

 

In particular, 
1
H-NMR spectrum reported in Figure 4.3 shows the assignment for the 

protons present in the molecule and the most intense peak at m/z 155 in MS spectrum is more 

probably attributable to the negative C11H9N ion.  
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Figure 4.4. 
1
H-NMR spectrum (400 MHz, in CDCl3) and chemical structure of the by-

product deriving from aminolysis  of  tosylate 28 with 1-naphthylmethanamine 

 

Attemps to improve the yields have been carried out by replacing tosylate 28 with 4-

bromo-6-methyl-2-pyrone (37),  (prepared by heating 27 with  tetra-n-butylammonium 

bromide and P2O5 in toluene at 100°C for 1 hour (Kato, 2001)), in the reaction with the 

amines in absolute ethanol at reflux for 20 hours (McLaughlin, 2002), also by microwave 

irradiation at the place of conventional heating (Scheme 4.1), but without finding positive 

effects. 

 

 

Scheme 4.1. Synthesis of 4-bromo-6-methyl-2H-pyran-2-one. Reagents and conditions: a) 

nBu4N
+
Br

−
/P2O5/ toluene, 100°C 1h, 82% yield; b) 1-naphthylmethanamine (1.5 eq)/ EtOH/ reflux 

20h, 50% yield or c) 1-naphthylmethanamine (1.5 eq), MW, 100°C, 2h,  55% yield. 
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In order to obtain amides 8b, 9 and 10, amines 1-4  have been acylated  by 

dichloroacetyl chloride and amine 2 with a series of acyl chlorides. The reaction carried out  

in the presence of Et3N at room temperature  gave the expected  N-acyl products in mixture 

with  the C(3)-acyl compounds. These results have allowed to obtain new molecules of 

interest  for biological evaluation (7, 8a and 11-13).  In addition they have suggested the 

opportunity to go insights into the study of N, C-acylation selectivity. 

 Nucleophilic substitution of tosylate 28 with sodium hydrosulfide hydrate  in absolute 

ethanol  has provided  the unstable 4-mercapto-6-methyl-2H-pyran-2-one,  which was directly 

alkylated with 1-(bromomethyl)naphthalene in chloroform / 1% NaOH aqueous solution 

under  phase transfer catalysis (PTC) conditions (Majumdar, 2002), to produce compound 14  

in 84% of yields. Otherwise,  attempts to use the same experimental conditions to prepare 

compounds 16, 25 and 32, gave yields very low (< 10%). In order to have a higher product 

amount,  PTC has been replaced by a system using an apolar solvent  in homogeneous phase 

with 1,8-diazabiciclo[5.4.0]undec-7-ene (DBU) as base (Ono, 1980): in this case 40÷86% 

yields were obtained (Scheme 3.2 and 3.3).  

 The convergent synthesis has allowed to  prepare  the sulphones 15, 17, 21 and 26 in 

quantitative yields  by  a ″green″ oxidation of the corresponding thioethers with urea-

hydrogen peroxide complex (UHP) in a THF/85% formic acid  solution at room temperature 

(Schemes 3.2 and 3.3; Balicki, 1999). 

 Ethers 18-20 and 23 have been obtained in 40÷60%  yields  by refluxing the suitable 

4-hydroxy-pyran-2one (27, 29 and 35) with  an equimolar amount of 1-

(bromomethyl)naphthalene or 1-(2-bromoethyl)naphthalene in acetone, in the presence of 

solid potassium carbonate and potassium iodide (Rabnawaz, 2010). In the case of  ether 18, 

the  by-product 18a was produced by a double  O- and C(3)- alkylation of pyrone unit. 

 The precursor  of sulfide 32, 3-bromo-4-hydroxy-6-methyl-2H-pyran-2-one (30), has 

been obtained in 66% of yield by direct bromination of compound  27 with  bromine in 

dichloromethane at room temperature in the darkness (Scheme 3.2;  de March, 1985).  

 Attempts to synthesize 3-iodo-4-hydroxy-6-methyl-2H-pyran-2-one (29) using iodine 

in the presence of an oxidant as cerium(IV) ammonium nitrate (CAN) (Asakura, 1990; Das, 

2007) or  bis(tetra-n-butilammonium) peroxydisulfate  in acetonitrile (Whang, 1997),  both at 

room temperature or 80°C, gave a complex mixture difficult to be separated. Nevertheless, the  

iodination procedure  used for methoxy-benzaldehydes  (Hathaway, 2007)  employing  iodine  

and  an equimolar amount of  silver nitrare in methanol  at room temperature in the darkness, 

has allowed to obtain the pure  desired product in 85%  yield (Scheme 3.2). 
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 By reduction of  3-acetyl group of the  commercial dehydroacetic acid (33) it was 

possible to synthesize  3-ethyl-4-hydroxy-6-methyl-2H-piran-2-one (35). For this purpose a  

simple and eco-friendly reaction has been carried out using zinc powder in acetic acid as 

solvent, in the presence of  hydrochloric acid as catalyst (Kappe, 1995). However the reaction 

did not  work effectively and the yields did not go beyond 5%. On the contrary, under  the  

ionic reduction  by using  triethylsilane in trifluoroacetic acid in the presence of Lewis acid 

(Scheme 3.3), the reaction proceeded smoothly and in excellent yields (90%) (Lokot, 1999). 

 All the  synthesized new compounds have been fully characterized by extensive NMR 

analysis including 
1
H,

13
C- bidimensional experiments (HMBC, HSQC) which also allowed to 

deduce 
13

C values. Their chemical composition  has been obtained by high resolution 

experiments in electronic impact mass spectrometry (EI-MS), whereas fragmentation 

experiments gave additional structural indications. As an example, the characterization  of the 

compound  23 is here reported. The 
1
H-NMR spectrum  shows a triplet at δ 1.00 ppm with  a 

coupling constants J =7.5 Hz corresponding to three protons on carbon C-2’, a singlet at 2.23 

ppm attributable to the  methyl group at C-6, a quartet centered at 2.44 ppm with  J =7.5 Hz 

for the  two protons on  C-1’. The singlets at 5.56  and 6.13 ppm can be assigned to the two 

magnetically equivalent protons on C-1” and one proton on the pyrone unit in C-5 position, 

respectively. The multiplet centered at 7.59 ppm corresponds to  the two protons on the 

carbons C-3” and C-4” of the naphtyl moiety, whereas the multiplet centered at 7.56 ppm  

ppm is attributable to the two protons in C-7” and C-8”; finally the multiplet at 7.91 ppm 

corresponds to the  three  protons in C-5”, C-6” and C-9” (Figure 4.5). 
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Figure 4.5. 
1
H-NMR of  compound 23 (400MHz, in CDCl3) 

 

 

 From the bidimensional, Heteronuclear Single Quantum Coherence (HSQC) 

experiment, the chemical shifts of the carbons bearing at least one proton have been deduced 

(Figure 4.6). In particular, C-2’ is at 11.74 and C-1’ is at 16.23 ppm; the chemical shift  of 

methyl group in 6-position of the pyrone  is at δ(C) 20.25 ppm and the methylene group 

attached to oxygen corresponds to δ(C)  68.94 ppm, and the signal at  95.57 ppm  corresponds 

to C-5 in the pyrone unit. The carbon atoms of the fused rings in naphthalene show the 

following chemical shifts: 129.04 ppm for C-6”, 126.21 ppm for C-7” and C-8”, 125.81 ppm 

for C-3” and C-4” and 122.75 ppm for  C-9”.  For the quaternary carbon atoms with no  

attached protons, the chemical shifts were defined by long-range 
1
H, 

13
C hetero-correlation 

experiment (HMBC) (Figure 4.7 and Figure 4.8). 
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Figure 4.6. HSQC spectrum of compound 23 (400MHz, in CDCl3) 

 

 

 

 

Figure 4.7. Relevant  
1
H/ 

13
C long-range correlations deduced by HMBC experiment  in CDCl3 for the 

compound  23 
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Figure 4.8. Long-range 
1
H,

13
C NMR spectrum by HMBC experiment in CDCl3for compound 23  

 

 From high resolution experiments in EI-MS analysis the molecular composition 

C19H18O3 has been deduced, and the fragmentation   at m/z 141 gave indication on the loss of 

the pyrone unit (Figure 4.9). 

 

 

Figure 4.9. EI-MS spectrum of compound 23 with indication of the fragmentation pattern 
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4.3. Study of the selectivity in N, C-acylation of 4-

benzylamino-pyrone 
 

 

The designed compounds to be subjected to biological assays  have  been planned as deriving 

from acylation of aminopyrone 1, for which the enamino form resulted the most stable 

tautomer by DFT calculation (Figure 3.9).  

With the aim to obtain  compound 38, compound  1 has been  treated with the suitable 

acyl chloride  in the presence of triethylamine, the latter one  working as a base for trapping  

HCl, as usually reported, in the reaction with amines to give amides (Montalbetti, 2005). It 

was reported that the reaction  of primary or secondary amines with dichloroacetyl chloride in 

the presence of Et3N gave dichloroacetamido derivatives in high yields, supposedly via 

dichloroketene Cl2C=C=O,  which reacts with the more nucleophilic nitrogen centre (Hazara, 

1989). In addition it was known that the reaction between dichloroacetyl chloride and 

trietylamine gave dehydroalogenation of acyl chloride, producing in situ  the instable 

dichloroketene, whose formation was verified  by trapping  with  cyclopentadiene 

(Ghosez,1966).  More recently, ketenes were studied in reactions   with amines to give amides 

(Allen, 1999), and  a mechanism involving enols of  amides as intermediate has been 

proposed (Raspoet, 1998). 

 Unexpectedly, in our hands a mixture of products containing the desired amide 38 and 

7 in 60:40 ratio was obtained.  The products derived from both  N- and C- acylations of 

aminopyrone 1 acting as a bidentate electrophile in the reaction with dichloroacetyl chloride 

are reported in Scheme 4.2.  

 

 

Scheme 4.2.  N, C -acylation of benzylpyrone 1. Reagents and conditions: a) Et3N (2.5 eq.) 

dichloroacetyl chloride (2.0 eq.), CH2Cl2, 0 °C →r.t., 18h, 88 %  yield.   

 

  

The structure of regioisomers 7 and  38 has been assigned by extensive NMR analysis (§ 

3.2.3.2 and § 3.2.12.2, respectively). In addition  infrared spectroscopy gives useful structural 
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informations,  especially when the comparison with DFT calculated spectra  can allow the 

assignments of the signals. In this studies,  a good  agreement  between experimental and 

calculated  IR spectra  were observed for compounds 7 and 38 (Figures 4.10 and 4.11).  

 

 

 

Figure 4.10. Energy minimized structure of compound 7  by DFT calculation (top); experimental 

(centre) and calculated (bottom)  infrared spectra of compound  7 
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In particular, for compound 7 the peak at 1704 cm
-1 

corresponds  to C(1)=O(7) stretching, the 

signal at 1659 cm
-1 

 is attributable to the stretching of  the double bond C(3)=C(4), and the 

peaks at 1616 and 1568 cm
-1 

 have been assigned to the vibrations of  C(17)=O(18) and C(5)-

N(9) respectively. In addition the signals with lower intensities  in the region between 1230-

1498 cm
-1

 are vibrations of the whole molecule, whereas  intramolecular hydrogen bond 

between H(20)---O(18) can be attributed to the broad band at 3232 cm
-1

 (Figure 4.10).
 
   

 

 

Figure 4.11. Energy minimized structure of compound 38  by DFT calculation (top); experimental 

(centre) and calculated (bottom)  infrared spectra of compound  38 
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Similarly, the comparison of experimental and simulated IR spectra for amide 38 has 

allowed to attribute the following vibrations: the peak at 1737 cm
-1

 to the stretching of  

C(3)=O(8), the most intense signal at 1693 cm
-1

 to C(10)=O(19) in the amide unit, the 

vibrations at 1641 and 1562 cm
-1

  to C(5)=C(6) and C(1)=C(2) stretchings in the pyrone ring, 

respectively (Figure 4.11). 

Despite a recent  growing interest in amino-pyrone chemistry as precursors in the 

synthesis of natural products (Wang, 2006; Sklenicka, 2002; McLaughlin, 2002; Hsung, 

1999), to the best of our knowledge, only an old theoretical study on the N-basicity  of these 

molecules has been reported (Menghezzi, 1983). It was a further reason in the investigation of  

the selectivity for the reaction involving amino-pyrone 1. The same reaction has been carried 

out without any bases (entry 15 in table 4.1) obtaining a complete regioselectivity in favour of 

C-acyl  product. A plausible explanation for this reactivity can be find in the particular 

structure of the aminopyrone 1 for which the involvement of a zwitterionic resonance form is 

possible (Figure 4.12), where the charged C-nucleophile reacts with C-electrophile of the 

acylating agent.  This is in line with the Klopman-Salem concept that hard-hard interactions 

are charge controlled (and soft-soft interactions ar orbital controlled) (Mayr, 2011). In 

particular the presence of two electronegative atoms in dichloroacetyl chloride is able to 

increase the positive charge on the C=O group.  

 

 

 

Figure 4.12. Two resonance forms of aminopyrone 1 

 

Later, aminopyrone 1  has been subjected to the same reaction conditions reported in 

scheme 4.2, in the presence of pyridine as base. The reaction gave again pure compound 7 as 

C-acylated  product. 

Further investigation with a series of organic base has given the  results reported in table 4.1.  

 

 

 

 



124 

 

Table 4.1. Selectivity in N, C- dichloroacetylation of aminopyrone 1  by changing the base (in 

CH2Cl2 at 0°C for 18 hours, yield 89%), see scheme 3.4 

Entry
a) 

Base 
Chemical 

structure 

of  base 

pKa 

% 

C-acylated 

product 7
b)

 

 

% 

N-acylated 

product  38
b)

 

 

1 pyridine 
 

5.37 100 0 

2 4-methylpyridine 
 

6.02 100 0 

3 1-methylimidazole 
 

6.95 100 0 

4 
2,4,6-trimethyl-

pyridine 
 

7.43 52 48 

5 
1,2-dimethyl-

imidazole 
 

7.64 100 0 

6 TMDM 

 

 
 

7.67 
c) c) 

7 triethanolamine (HOCH2CH2)3N 7.80 
c) c) 

8 tributhylphosphine (n-C4H9)3P 8.30 100 0 

9 DABCO 
 

8.82 0 100 

10 TMED 

 

9.42 34 66 

11 DMAP 

 

9.87 100 0 

12 triethylamine Et3N 10.8

0 

40 60 

13 DIPEA (i-C3H7)2NEt 11.2

6 

10 90 

14 DBU 
 

11.6

0 
0 100 

15 - - - 100 0 

  a) In sequence according to increasing pKa of the base 

  b)The ratio of N- and C- acylations has been evaluated in the crude reaction mixture by the integrals of signals  

in 
1
H-NMR spectrum recorded in CDCl3, at δ=4.55 ppm (d, PhCH2)  in product 7 and δ=4.90 ppm (s, PhCH2)  

in product 38. 

  c)No products were obtained; starting aminopyrone 1 was practically recovered in quantitative amount. 

 

In details, by replacing  pyridine, with the aromatic bases 4-methylpyridine, 4-

dimethylaminopyridine (DMAP), 1-methylimidazole and 1,2-dimethylimidazole, and 

tributhylphosphine the reaction always gave pure 7. An interesting completely reversed 

selectivity has been obtained by using DBU, DABCO and diisopropylethylamine (DIPEA), 

whereas a lack of selectivity was given by 2,4,6-trimethylpyridine, TMED and triethylamine. 
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In order to find a correlation in the selectivity, the acid-base property  has been taken into 

account. For this reason the pKa values of  conjugated acid forms have been reported in table 

4.1, but no correlation with the selectivity was observed. 

In addition  proton  affinity, defined as the tendency of a base  to accept a proton in 

gas phase and reported as the difference between the energy values  for protonated (BH
+
) 

form and free base (B:) (Jaramillo, 2007)  has been regarded. The calculated results of some 

used amines are reported in table 4.2, from where no correlations are evident with the results 

of selectivity. It is noteworthy that carrying out the reaction reported in scheme 4.2 without  

triethyl amine  and any other bases pure C-acylated compound 7 was produced.   

 

Table 4.2. Calculated values for proton affinity of  some bases  

used in the acylation reaction 

Entry Base pKa 
Calculated proton 

affinity
a) 

in vacuo (KJ/mol)
a) 

1 pyridine 5.37 -965.08 

2 4-methylpyridine 6.02 -984.50 

3 1-methylimidazole 6.95 -995.58 

4 2,4,6-trimethylpyridine 7.43 -1016.30 

5 DABCO 8.82 -1000.21 

6 TMED 9.42 -992.28 

7 DMAP 9.87 -924.00 

8 triethylamine 10.8 -1012.44 

9 DBU 11.6 -1091.48 

a)  Calculations were  performed at DFT B3LYP/ aug-ccpVDZ  level of theory   

 

 

The changing of base in dichloromethane  has given  the access to the pure expected 

product  38, but also to the regioisomeric compound 7.  The evaluation of solvent effect has 

been also investigated in two cases of highly selective acylation: by using pyridine giving 

pure C-acyl product 7 and DBU giving N-acyl compound 38. The change to solvents with a 

different polarity has not affected the selectivity. In particular, with  DBU as the base the 

selectivity in N, C- acylation was lost in toluene  or acetonitrile, whereas it was fully reversed 

in acetone (Table 4.3). 

The opportunity of obtaining the C-acyl  product 7 as pure regioselective compound,  

has been taken into account to expand the library  of molecules accessible for biological 

evaluation. In details, compounds 8a, 11, 12 and 13 were obtained as pure C-acylated 

products by using pyridine, and 8b, 9 and 10 as pure N-acyl  products by DBU (Scheme 3.1).  



126 

 

Table 4.3. Selectivity in N, C- dichloroacetylation of aminopyrone 

 1 using pyridine or DBU by changing the solvent (at 0°C for 18  

 hours, yield 89% ) 

Entry Solvent % C-acyl 

product 7
a) 

% N-acyl 

product 38
a) 

pyridine 

1 dichloromethane 100 0 

2 toluene 100 0 

3 acetonitrile 100 0 

4 acetone 100 0 

DBU 

5 dichloromethane 0 100 

6 toluene 40 60 

7 acetonitrile 36 64 

8 acetone 100 0 

    a)The ratio of N- and C- acylations has been evaluated in the crude reaction 

        mixture by the integrals of signals  in 
1
H-NMR spectrum recorded in  

CDCl3,at δ=4.55 ppm (d, PhCH2)  in product 7 and δ=4.90 ppm  

(s, PhCH2) in product 38. 

 

 

For studying in depth, other acylating  agents have been used in the reactions carried out in 

dichloromethane  with pyridine or DBU,  previously selected as the base giving fully reversed 

selectivity (Table 4.4).  

 
 Table 4.4. Selectivity in N, C- acylation of aminopyrone 1 using  

  pyridine or DBU by changing the acyl halide (in CH2Cl2 at 0°C for  

  18 hours, yields 78-90%) 

Entry Acyl halide % C-acyl 

product
a)

 

% N-acyl 

product
a) 

pyridine 

1 dichloracetyl chloride 100
 

0
 

2 propionyl chloride 93 7 

3 isobutirryl chloride 100 0 

4 2-bromopropionyl bromide 100 0 

DBU 

6 dichloracetyl chloride 0 100 

7 propionyl chloride 12 88 

8 isobutirryl chloride 0 100 

9 2-bromopropionyl bromide 
b) b) 

      a)The ratio of N- and C- acylation has been evaluated in the crude reaction 

   mixture by the integrals of signals of benzylic protons in ketones and amides  

   in 
1
H-NMR spectrum recorded in CDCl3 

     b) No products were obtained, tars were recovered. 
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The results indicate that selectivity is not affected by the structure of electrophiles. It is 

noteworthy  that 2-bromopropionyl bromide did not work with DBU, probably due to the 

formation of the highly instable bromoketene, which is reported to give  polymerization  in 

few minutes at -80°C (Staudinger, 1923). 

 

4.3.1. Regioselectivity in a model enamino-ester 

In order to expand the study reported above, (Z)-ethyl 3-(benzylamino)but-2-enoate (45, 

Scheme 4.4)  has been treated with dichloroacetyl chloride in the same conditions used to 

obtain pure N- or C- acyl  products starting from  compound 1 (Scheme 4.3). The reaction 

gave only the C-acyl product in the presence of different bases (pyridine, DBU and 

triethylamine), (Table 4.5). This selectivity is imputable to: i)  the Z configuration of 

enamino-ester 45, secured by a stable six membered ring intramolecular hydrogen bond, as 

established by the presence of a broad singlet at 8.94 ppm in 
1
H-NMR spectrum recorded for 

45 in CDCl3 (§ 3.2.10.3), ii)  the presence of the benzyl moiety which does not allow N-

acylation for steric hindrance (Eberlin, 1990). The same selectivity producing pure C-

acylation has been observed also without using any base (Table 4.5). 

 

Scheme 4.3.  Base effect on the selectivity of N, C -acylation of enaminoester 45. Reagents and 

conditions: a) different base (2.5 eq.) dichloroacetyl chloride (2.0 eq.), CH2Cl2, 0°C →r.t., 18h, 78-

90%  yield.   

 

Table 4.5. Selectivity in N, C- dichloroacetylation of enaminoester   

45  by changing the base (in CH2Cl2 at 0°C for 18 hours, yield 85%),  

see scheme 3.5 

Entry Base pKa 
% C-acyl 

product 46
a) 

% N-acyl 

product 47
b) 

1 pyridine 5.37 100 0 

2 DBU 11.6 100 0 

3 Et3N 10.8 100 0 

4 - - 100 0 

a) The ratio of N- and C- acylations has been evaluated in the crude reaction 

mixture by the integrals of signals of benzylic protons in ketones in  
1
H-NMR spectrum recorded in CDCl3 

b) No signals of N-acylated product were detected in 
1
H-NMR spectrum 
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4.4. Biological evaluation 

4.4.1. ELISA enzymatic assay 

Drug discovery is an iterative process in which drug design and chemical organic synthesis 

are driven  from bioassays. Therefore, a first small series of new molecules, designed in silico 

from the fragments belonging to (+)-calanolide A and α-APA molecules (Figure 4.1),  and 

synthesized in laboratory,  has been subjected to a preliminary enzymatic ELISA test. These 

compounds have shown a reverse transcriptase  inhibition range from 5% to 77% at 

concentration of 200 µM.  In particular,  compounds 2 and 8a  have shown comparable 

inhibition values (77% and 66% respectively) with  the clinically used drug nevirapine (59%) 

(Table 3.5). It is evident that the acylation of nitrogen is detrimental for the inhibition activity 

as shown for compounds 8b, 9 and 10, which have shown a RT inhibition of 30%, 20% and 

32% respectivelly. Also the aromatic unit seems to play a relevant role in the interaction with 

the reverse transcriptase allosteric pocket as observed in compound 2, bearing  a naphtyl ring, 

in comparison with compound 1, where the presence of the phenyl ring  having a smaller  

surface,  can be responsible of the not significant enzyme inhibition (5%). The results 

obtained in this assay has encouraged to   synthesize a series of isosters and analogues to be 

furtherly assayed in enzymatic in vitro tests. 

 In order to optimize the time for reading the colorimetric results,  the effect of the 

known reverse transcriptase inhibitor nevirapine has been tested at three different 

concentrations and at a different time of absorbance reading. The best result has been obtained 

using a concentration of 200 µM of nevirapine and a time of 10 minutes after the addition of 

ABTS colorimetric reagent. Because of the small amounts of reverse transcriptase present in 

the enzymatic kit, not enough to allow the use of all  the microplates present in the kit and due 

to the commercially unaivability of the only enzyme, we have bought a new sample of HIV-1 

recombinant reverse transcriptase from Pierce Biotechnology (USA). Before using  it with the  

Roche kit,  the efficiency of the new reverse transcriptase has been tested  in water solution 

and in phosphate buffer at pH 7.4  added of 0.2% of BSA, as reported in the composition of 

the reverse transcriptase present in the Roche kit. The results have shown that the reverse 

transcriptase by Pierce does not work properly in water (Figure 3.11), whereas in the presence 

of  pH 7.4 buffer and bovine serum albumin  the enzyme works only slightly less than  the 

original  one present in the Roche kit. A further investigation on the Pierce RT  has been 

carried out analyzing the effect of   one cycle of  freezing and thawing. The result has 
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indicated that the activity of Pierce reverse transcriptase drastically decreases in comparison 

with the original Roche reverse transcriptase (Figure 3.12). From this data it is evident that it 

is not possible to use the Pierce RT in the enzymatic assay. 

 

4.4.2. Anti-HIV activity 

The series including  26 new molecules have been exposed to CEM cell cultures infected with 

wild-type HIV-1(IIIB) and HIV-2(ROD) strain. The compounds have shown no inhibitory 

activities against HIV-infected CEM cell cultures, except compound 6 which was endowed 

with a modest anti-HIV activity (EC50: 25-50 µM). Its cytostatic activity (CC50) was 121 µM 

resulting in an anti-HIV selectivity of  2.5 to 5. Some of the compounds have proved to be 

rather cytostatic against CEM cells (CC50 between 2 and 10 µM for compounds 7, 8a, 11, 12, 

13, 15, 21 and 23). 

 For the development of  a new potential therapeutical agent, cytotoxicity has to be 

evaluated, in order to establish the selectivity index (SI), defined as the ratio between 

cytotoxicity (CC50) and EC50.  For anti-infective agents,  it must reach values preferably as 

high as possible. In table 4.6 the cytostatic activity values for the molecules under 

investigation are reported. The only member of the series which has inhibited the virus 

replication at a no cytotoxic concentration was compound 6. Anyway, it  has shown a modest 

anti-HIV activity  (EC50 = 25 µM), associated to a low selectivity index: 5 for HIV-1 and 3 

for HIV-2 . 
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Table 4.6. Anti-HIV  activity, cytotoxicity and selectivity index in CEM cells 

 for the synthetic compounds 1-26 

Compound 

EC50
a)

 

(µM) 

IC50
b)

± SD 

(µM) 

Selectivity Index 

(SI)
c) 

HIV-1 HIV-2 CEM HIV-1 HIV-2 

1 >250 >250 148 ± 11 - - 

2 >10 >10 175 ± 106 <18 <18 

3 >10 >10 83 ± 12 <8 <8 

4 >10 >10 182 ± 27 <18 <18 

5 >10 >10 76 ± 7 <8 <8 

6 25 ± 3.5 ≥50 121 ± 10 5 3 

7 >2 >2 4.9 ± 1.5 <3 <3 

8a >2 >2 5.4 ± 3.6 <3 <3 

8b ≥10 ≥10 50 ± 18 <5 <5 

9 >50 >50 93 ± 16 <18 <18 

11 >10 >10 6.5 ± 4.0 <1 <1 

12 >2 >2 4.2 ± 2.5 <2 <2 

13 ≥2 ≥2 4.0 ± 1.6 <2 <2 

14 >10 >10 16 ± 0 <2 <2 

15 >10 >10 5.4 ± 2.0 - - 

17 >2 >2 83 ± 34 <42 <42 

18 ≥50 ≥50 150 ± 25 <3 <3 

18a >50 >50 25 ± 4 - - 

19 >10 >10 214 ± 52 <22 <22 

20 >10 >10 ≥ 250 <25 <25 

21 >10 >10 2.2 ± 1.6 - - 

22 >10
d 

>10
 

> 250 <25
 

<25
 

23 >0.4 >0.4 4.4 ± 2.3 <10 <10 

24 >10 >10 41 ± 18 <4 <4 

25 >10 >10 77 ± 9 <8 <8 

26 >2 >2 68± 21 <34 <34 

NVP
 0.11

e 
10

e 
>200

e 
>1820

 
>20

 

a) EC50=effective concentration or concentration required to protect CEM cells against the cytopathogenicity of  
HIV  by 50 % 

b) Concentration required to reduce CEM cell viability by 50%. 

c) SI= IC50/EC50 
d) Compound precipitation was detected at higher compound concentration. 

e) Values obtained from:  http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?cid=4463 

 

The strength of molecular docking is in the prevision of molecules as potential bioactive 

agents, so that this approach addresses  in the choice of the molecules to be produced for the 

biological evaluation. It is difficult to find the reason for the discrepancy between the 

promising docking studies and the disappointing biological results. Otherwise, the weakness 

http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?cid=4463
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of this study can be attributed to the  antiviral activity which  is relevant if related to a low 

cytotoxicity, the  latter one  unpredictable  by the computational approach.   

The aims of this research activity have been obtained  and  the study on these molecules as 

potential anti-HIV agents can be considered over,  however the results  are not so good as 

expected.   In addition, the biological evaluation has been expanded in order to including  

tests against other pathogenic viruses and  bacterial strains, the latter ones for the molecules 

showing the lower cytotoxic effect.  

 

4.4.3. Antiviral activity 

The study of potential antiviral activity on the new molecules  has been expanded to different 

types of viruses. In particular  in herpes simplex virus 1 and 2, vaccinia and vesicular 

stomatitis virus  all compounds are inactive at subtoxic concentrations (Table 3.7). 

 In the evaluation of inhibition on varicella zoster virus,  EC50 values show a similar 

trend;   only  for  compounds 2, 8b, 13 and 17 some activities were observed. Compound 13 

has given a selectivity index of 10 against VZV when toxicity is considered, but its 

cytotoxicity  is higher than its antiviral activity. Compound 8b has shown anti-CMV activity 

at cytostatic concentrations. Therefore, it is most likely that 13 and 8b indirectly inhibit virus 

replication due to toxicity. No appreciable activities  have been detected against any of the 

other viruses at subtoxic concentrations. 

 

4.4.4. Cytostatic activity of some molecules 

An issue in  the development of new antiviral molecules is the study of cytotoxic effect in 

non- infected cells, in order to avoid that the drug  interferes with the normal cell cycle. The 

cytostatic activity is not easily predictable,  so it is important to evaluate their  values for the 

concentration of 50% growth inhibition (IC50) (Lemke, 2008). For this purpose an evaluation 

has been carried out by using a murine (L1210) and  acute lymphoblastic (CEM)  leukemia 

cell lines, and the cell line deriving from solid human  cervical cancer (HeLa). The sensitivity 

resulted very similar with IC50 values in the range 0.9÷200 µM. Compounds 7, 8a, 11-13, 17, 

23 and 26 (whose structures are reported in table 3.3) showed the higher cytotoxicity at 

micromolar concentration as observed for clinically used drugs, here selected in order to have 

molecules acting with different mechanism of action: 5-fluorouracil known to be a pyrimidine 
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analogue with an antimetabolite activity, nimustine and melphalan as alkylating agents and 

irinotecan  as  inhibitor of topoisomerase-I (Topo-I),  (Table 4.7).  

In detail, compounds 8a, 11 and 12, bearing the dichloroacetyl unit in the pyrone ring, 

showed  activity paragonable to irinotecan in inhibiting HeLa cell line, in which this drug is 

the most active among the ones taken as references. In the case of leukemic CEM cell line, all 

the molecules under investigation have an activity like  the alkylating drug melphalan but 

with a lower  effect than Topo-I inhibitor irinotecan. Against murine leukemia  L1210 cells 

sulfone  17 (Table 4.7) emerged as the compound with the highest activity, better than the one 

of  the drugs selected as reference. 

It is noteworthy that cytostatic activity was mainly observed for molecules bearing a 

dichloroacetyl group which may be regarded a masked α-ketoaldehyde,  probably responsible 

of the reactivity as alkylating agent.  The structures of these molecules showing cytotoxicity 

at micromolar concentration are worthy of attention for a future study as antitumoral agents.  

 

 Table 4.7. Cytostatic activity on murine leukemia, human T-lymphocyte 

 and human cervix carcinoma activity for the compounds 1-26 

Compound 

IC50
a)

 ± SD 

(µM) 

HeLa CEM L1210 

7 3.1 ± 0.2 4.9 ± 1.5 2.5 ± 0.4 

8a 1.4 ± 0.6 5.4 ± 3.6 3.3 ± 0.9 

11 1.4 ± 0.4 6.5 ± 4.0 2.3 ± 0.2 

12 1.6 ± 0.4 4.2 ± 2.5 3.0 ± 0.2 

13 2.8 ± 0.4 4.0 ± 1.6 2.9 ± 0.9 

17 2.9 ± 0.6 2.2 ± 1.6 0.95 ± 0.07 

23 4.5 ± 0.3 4.4 ± 2.3 4.9 ± 3.5 

26 4.6 ± 0.2 5.4 ± 2.0 3.6 ± 0.1 

Clinically used drugs 

5-Fluorouracil 2.85±0.75
b) 

14.9±0.46
c) 

4
g) 

Nimustine 6.07±2.85
b)

   8
d) 

27
g) 

Melphalan 2.69±0.323
b) 

2.5 ± 0.2
e) 

2.1 ± 0.02
e) 

Irinotecan 1.82±1.02
b) 

0.01
f) 

1200
h) 

a)IC50= 50 % inhibitory concentration (µmol L–1) required to inhibit tumor cell                                           

proliferation by 50 %. 

b)Takara, 2002; c) Abdelwahab, 2011; d) Yamauchi, 2008; e) Karki, 2009;                                                          

f) http://dtp.nci.nih.gov/dtpstandard/dwindex/index.jsp; g) Yokoyama, 1988;                                                             

h) Srivastava, 2005 

 

 

 

 

 

 

http://dtp.nci.nih.gov/dtpstandard/dwindex/index.jsp
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4.4.5. Antibacterial activity of some molecules 

 
The compounds showing an IC50 value  greater than 100 µM in cytotoxic assays (1-4, 9, 14, 

18-20) can be investigated for other bioactivity. The emergence of multiple-drug-resistant 

strains of bacteria due to the indiscriminate use of antibiotics and the increasing susceptibility 

in people with acquired immunodeficiency syndrome (AIDS) induce an urgent need for the  

development of new strategies to treat bacterial infections (Mancini, 2007). 

Therefore, due to the structural similarity of these synthetic compounds with natural 

antibacterial products (Liu, 2011) and also recently isolated  in our laboratory (I. Djinni, 

unpublished results), some  of them have been investigated as inhibitors of  pathogenic 

bacteria. The effects have been evaluated against Gram(+) and Gram(-) ATCC bacterial 

strains. In detail, a preliminary assay using agar diffusion method has allowed to select: i) 2-4 

and 14 as  compounds able to inhibit selectively Gram(+) S. aureus, ii) 2, 14 and 19 as 

compounds inhibiting selectively MRSA (Table 3.15). The compounds  resulting more 

promising have been furtherly investigated in order to  define their MIC values. Taking into 

account their cytotoxicity (Table 3.14), the corresponding selectivity index (SI) has been 

calculated. Compound 20 has emerged as the most interesting, with a MIC value  < 5µM 

associated to a SI > 27 on MRSA strain (Table 3.16).  
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5. Conclusion 

 

This study has focused on the design and chemical  synthesis of new pyrone  derivatives  with 

potential anti-HIV activity. The strategy adopted in the design of these molecules has taken 

into account the fragment based approach, regarding structural peculiarities  of the natural 

product (+)-calanolide A and the synthetic compound α-APA, both showing  a potent and 

specific reverse transcripase inhibitory activity.  The hybrid structures were subjected to 

docking calculations (both by AutoDock and Molegro software), in order to select the 

molecules  displaying  a better interaction with the viral enzyme. With the aim of expanding 

the chemical space, the nitrogen atom  present between  the alkyl-aromatic and  pyrone 

moieties  was replaced by isosteric atoms  as oxygen and  sulfur, or  by a sulfone group. A 

library containing more than 100 molecules was built, for which  an ADME filter was 

applied, in order to only select  the compounds having drug-like properties. A number of 

these  compounds (26) was chosen to be synthesized based on a convergent synthetic strategy.  

Therefore, adopting common precursors, these new compounds  were obtained starting 

from the commercial available 4-hydroxy-6-methyl-2H-pyran-2-one (27) and dehydroacetic 

acid (33). Each product, purified by liquid chromatography or crystallization, was structurally 

characterized by extensive NMR analysis and mass spectrometry before being subjected to 

biological assays.  

Attempts to obtain suitable amides (8b, 9 and 10)  by usual acylation employing  acyl 

chloride in the presence of triethylamine, resulted in the expected   products by N-acylation, 

but  in mixture with C(3)-acyl compounds. These results have suggested that we should look 

further into the study of N,C-acylation selectivity for the ambidentate amino-pyrone, whose 

reactivity is poorly  known.  Regioselectivity was investigated by replacing trietylamine with 

other organic bases, changing the solvent and the acylating agents also for an enamino-ester 

taken as a model compound. 

Based on the usually iterative process adopted in drug discovery,  the first  compounds 

(six) to be synthesized were subjected to enzymatic assay using an ELISA kit. Two of them (2 

and 8a) showed significant  reverse transcriptase inhibitory effects, with values  comparable  

to the activity of nevirapine  taken as a reference drug. The whole library of molecules was 

later synthesized and subjected to assays  against HIV-1 and  
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HIV-2 virus strains.  No activities against HIV-infected CEM cell cultures were observed, 

except for compound 6 which showed  a modest  but promising value (EC50: 25-50 µM). In 

order to be a potential candidate for therapeutic applications, its antiviral activity must be 

related to a low cytotoxic effect, which cannot be easily predicted neither by the chemical 

structure, nor by a computational approach. Unfortunately,  high cytostatic activities  were 

obtained for the compounds showing promising NNRTI effect. No antiviral activities at 

subtoxic concentrations were also observed against  herpes simplex virus 1 and 2, vaccinia, 

vesicular stomatitis virus, varicella zoster virus, cytomegalovirus and other viruses. For these 

reasons  the  study on these molecules as potential  antiviral agents can be considered over. 

It is noteworthy that molecules  bearing the dichloroacetyl unit in the pyrone ring (8a, 

11 and 12)  showed the highest cytostatic activity, comparable to irinotecan in inhibiting 

HeLa cell line, whereas the compound containing sulfone group gave  an activity at sub-

micromolar  concentration against murine leukemia  L1210 cells.  These molecular structures 

are worthy of future study with the aim of developing new antitumor agents. It could be a 

further example of  serendipity,  which in several cases has worked in scientific research, and 

specifically in medicinal chemistry. 

In addition, for  compounds showing low cytostatic activity ( >100 µM) the 

investigation was expanded to the study of antibacterial activity, due to the similarity of these 

compounds  with antibacterial natural pyrones. A selectivity has been observed for some 

compounds against Gram(+) bacteria, and one of them (compound 20) has resulted interesting 

for its activity against MRSA, associated to a favourable selectivity index. 

In conclusion,  the results deriving from this multidisciplinary study show that new 

molecular structures selected by docking calculations according to favourable enzyme-ligand 

interactions are not an obvious requirement for good experimental bioactivies. In addition, in 

the case of antiviral agents which were the topic of this research, detailed NNRTI activity  

must be associated to a low cytotoxicity which is hardly predictable.
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Appendix A  

 
Table. Results from docking calculations  on  a theoretical library of  molecules 

Compound Ar n R 
Calculated

Log P 
M.W.

a EDock 

(Kcal/mol) 

C1 

 

1 

 

2.81±0.4 317.79 -9.04 

C2 

 

1 

 

2.98±0.3 362.24 -9.56 

C3 

 

1 

 

2.98±0.3 362.24 -9.52 

C4 

 

1 

 

2.69±0.3 297.38 -9.34 

C5 

 
 

1 

 

2.29±0.4 313.38 -9.12 

C6 

 
 

1 

 

2.15±0.4 328.35 -9.27 

C7 

 

 

1 

 

2.31±0.6 357.82 -9.71 



II 

 

Compound Ar n R 
Calculated 

Log P 
M.W.

a EDock 

(Kcal/mol) 

C9 

 

1 

 

2.10±0.6 456.88 -10.15 

C8 

 

2 

 

2.42±0.8 371.85 -10.51 

C10 

 

1 

 

3.42±0.3 333.41 -10.31 

C11 

 

1 

 

3.58±0.3 355.84 -10.66 

C12 

 

1 

 

3.58±0.3 355.84 -10.34 

C13 

 

1 

 

3.76±0.5 400.29 -10.70 

C14 

 

1 

 

3.76±0.5 400.29 -11.12 

C15 

 
 

1 

 

3.26±0.4 321.40 -10.59 

C16 

 

 
 

1 

 

3.57±0.43 333.41 -10.69 

C17 

 
 

 

1 

 

3.28±0.5 353.47 -10.46 

C18 

 

1 

 

2.94±0.5 432.42 -12.12 



III 

 

Compound Ar n R 
Calculated 

Log P 
M.W.

a EDock 

(Kcal/mol) 

C19 

 

 

1 

 

3.12±0.5 432.47 -12.85 

C20 

 

1 

 

3.15±0.5 424.49 -13.14 

C21 

 
 

1 

 

2.87±0.3 424.49 -12.80 

C22 

 
 

1 

 

3.14±0.5 424.49 -12.89 

C23 

 

1 

 

2.86±0.9 430.49 -11.59 

C24 

 
 

1 

 

3.96±0.4 347.44 -10.74 

C25 

 
 

1 

 

4.41±0.5 363 .49 -11.24 

C26 

 
 

1 

 

4.01±0.4 349.46 -10.88 

C27 

 
 

1 

 

3.83±0.3 346.44 -10.94 

C28 

 
 

1 

 

2.76±0.4 431.48 -13.20 



IV 

 

Compound Ar n R 
Calculated 

Log P 
M.W.

a EDock 

(Kcal/mol) 

C29 

 

1 CH3SO2 2.37±1.0 343.43 -10.04 

C31 

 

1 

 

3.57±0.4 333.41 -10.88 

C32 

 

1 
 

3.18±0.4 319.38 -10.54 

C33 

 

1 

 

2.52±0.4 337.40 -10.01 

C34 

 

1 

 

3.54±0.4 433.26 -10.55 

C35 

 
 

1 

 

3.30±0.5 384.46 -11.37 

C36 

 

1 

 

4.08±0.4 389.50 -11.71 

C37 

 

1 

 

3.74±0.5 364.50 -10.27 

C38 

 
 

1 C2H5SO2 2.77±0.9 357.46 -10.47 

C39 

 
 

1 

 

3.97±0.6 442.33 -12.59 

C40 

 

 

1 

 

3.47±0.4 464.54 -11.14 



V 

 

Compound Ar n R 
Calculated 

Log P 
M.W.

a EDock 

(Kcal/mol) 

C41 

 

1 

 

3.23±0.5 433.45 -11.62 

C42 

 

1 

 

3.37±0.4 459.54 -7.66 

C43 

 

1 

 

2.84±0.5 378.41 -9.00 

C44 

 

1 

 

3.24±0.4 348.43 -10.57 

C45 

 

1 

 

4.46±0.3 367.50 -10.87 

C46 

 

1 

 

3.02±0.6 446.50 -11.29 

C47 

 
 

1 

 

3.44±0.5 386.26 -10.99 

C48 

 
 

 

1 

 

3.07±0.45 450.51 -12.49 

C49 

 
 

 

1 

 

3.49±0.4 446.50 -11.70 

C50 

 
 

1 

 

4.23±0.4 428.47 -10.20 

C51 

 

1 

 

2.24±0.7 389.45 -9.52 



VI 

 

Compound Ar n R 
Calculated 

Log P 
M.W.

a EDock 

(Kcal/mol) 

C52 

 

1 

 

3.86±0.4 347.44 -10.53 

C53 

 
 

 

 

 

1 

 

5.46±0.6 403.56 -7.59 

C54 

 

1 

 

2.30±0.3 402.43 -11.51 

C55 

 

1 

 

2.25±0.5 416.46 -11.12 

C56 

 

1 

 

3.25±0.4 390.52 -10.74 

C57 

 

1 

 

2.86±0.3 424.49 -11.34 

C58 

 

1 

 

3.07±0.4 405.51 -11.22 

C59 

 

1 

 

4.42±0.5 363.49 -9.08 

C60 

 

1 

 

4.03±0.5 390.52 -9.68 

C61 

 

1 

 

3.72±0.4 364.51 -10.39 

C62 

 
 

2 

 

4.06±0.4 378.53 -10.24 



VII 

 

Compound Ar n R 
Calculated 

Log P 
M.W.

a EDock 

(Kcal/mol) 

C63 

 
 

2 

 

2.94±0.9 362.42 -8.62 

C64 

 

1 

 

3.44±0.4 404.27 -10.34 

C65 

 

2 

 

4.09±0.4 390.29 -10.85 

C66 

 

2 

 

3.77±0.3 347.44 -10.65 

C67 

 

2 

 

3.92±0.3 369.87 -10.86 

C68 

 

2 

 

 

3.40±0.4 446.50 -11.87 

Reference compounds 

UC781  

 

4.77±0.8 
355.8

8 
-10.11 

TIBO-Br  

 

3.86±0.8 
366.3

6 
-8.75 

TBZ  

 

3.83±0.7 
288.3

4 
-8.16 

TMC125  

 

4.22±0.8 
435.3

1 
-10.28 

a) M.W. = molecular weight 
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Appendix B 

Presentation of preliminary  results at XIII International Workshop on 

Complex Systems. Andalo (Trento-Italy), 18-22 March 2012  

http://ds.science.unitn.it/wiki/index.php?n=Main.Andalo 

Abstract of the poster contribution 

Numeric simulation on biological macromolecules applied to drug design: 

molecular docking in the study of new potential anti-HIV agents  

Andrea Defant and Ines Mancini 

Laboratorio di Chimica Bioorganica, Dipartimento di Fisica, Università di Trento,  

via Sommarive 14, I-38123 Povo Trento, Italy. 

 

Computational approach is widely recognized as the starting phase in recent drug 

development, in order to predict biological properties of a series of molecules, from which  

selecting the best candidates to be synthesized and later tested in bioassays. Many 

computational tools have been developed for studying the interactions involved between a 

ligand (drug) and enzymes or DNA. One of most used approaches is  molecular docking, 

which allows to find favorable orientations of potential ligands into the active or allosteric site 

of the macromolecules and evaluates the interaction energy score derived from empirical 

force field.  

 In our recent activity on drug design of potential anti-HIV agents solving the problem 

of resistance observed with the known therapeutic molecules, we have focused our attention 

on non-nucleoside inhibitors of reverse transcriptase. It is a crucial enzyme for the virus 

replication and represents an optimal candidate to fight the viral infection.  Based on X-ray 

crystallographic structures of reverse transcriptase interacting with clinical drugs, AutoDock 

and Molegro softwares have been applied for the docking calculations on a wide series of new 

molecules in comparison with clinical agents. This approach provides a selection of novel 

molecules showing a more favorable interaction energy than the one observed with 

commercial drugs. This study has indicated a reduced number of molecules, to be synthesized 

and further subjected to bioassays. 

 

http://ds.science.unitn.it/wiki/index.php?n=Main.Andalo
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Appendix C 

 

Contribution at the 16
th

 International Electronic Conference on 

Synthetic Organic Chemistry. 1-30 November  2012 

Abstract of the E-conference contribution 

 

A study on the regioselectivity in N, C-acylation of β-enamino esters. 

 
Andrea Defant

1
 and Ines Mancini

1 

 
1)

 Università di Trento, Dipartimento di Fisica, Laboratorio di Chimica Bioorganica,  

via Sommarive 14, I-38123 Povo Trento, Italy. 

 

 

In our recent synthesis of potential antiviral agents, we have been interested in the acylation 

products from 4-(benzylamino)-6-methyl-2H-pyran-2-one (1). With the aim to obtain  amides  

2a-2d,  1 has been  treated with the suitable acyl chloride  in the presence of triethylamine.  

An unexpected mixture of N- and C-acyl  products, 2a-2d and 3a-3d respectively were 

obtained (Scheme). It was observed that the selectivity was not affected by the structure of  

acyl chlorides. All the products were fully characterized by extensive NMR and mass 

spectrometric analyses, as well as by comparison of experimental IR spectra with the 

simulated ones by density functional theory (DFT) calculations for the regioisomeric 

products. 

Despite a recent  growing interest in amino-pyrone chemistry as precursors in the 

synthesis of natural products,  only few  studies have been reported. That was a further reason 

in the investigation of  the selectivity for the reaction involving amino-pyrone 1. The same 

reaction was carried out without any bases, obtaining a complete regioselectivity in favour of 

C-acyl product (3a-3d), or replacing  triethylamine with a series including 13 organic bases. 

In particular a fully reversed selectivity was observed, in favour of  N-acyl  product (2a-2d). 

These data  have been supported by a plausible explanation in terms of the molecular 

structure of amino-pyrone. The evaluation of solvent effect was also investigated in two cases 

of highly selective acylation, observing that the presence of  solvents with a different polarity 

did not affected the selectivity. Finally the investigation included the reactivity of  a (Z)-

acyclic  β-enamino-ester [(Z)-ethyl 3-(benzylamino)but-2-enoate], selected as a model 



XI 

 

compound: only C-acyl products were obtained  under the same conditions previously 

adopted for amino-pyrone 1.  An explanation will be furnished for this high regioselectivity. 

 

Scheme.  N,C-acylation of amino-pyrone 1. 
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Appendix D 

 

Additional research activity  

In addition to the study regarding  this thesis, other  activities  were carried out  on  some 

topics investigated in the Bioorganic Chemistry Laboratory. In particular,  the results of these  

studies have produced the following  papers:   

1) V. F. Tamboli, N. Re, C. Coletti, A. Defant, I. Mancini, P. Tosi, ″A joint experimental and 

theoretical investigation on the oxidative coupling of resveratrol induced by copper and iron 

ions″, International Journal of Mass Spectrometry, 2012, 319-320, 55-63  

 

Abstract 

Currently, a mounting interest exists on the biological activity of polyphenolic 

compounds, which have been suggested to exert positive effects on the human 

health. In this paper we report the first electrospray ionization mass spectrometry 

(ESI-MS) study on the gas-phase production of isomeric δ-viniferin and ε-viniferin 

dimers in racemic form, starting from acetonitrile/water solutions containing 

resveratrol and CuSO4 or FeCl3, respectively. Interestingly, the formation of racemic 

δ-viniferin dehydrodimer is observed in ESI-MS experiments carried out on 

resveratrol-copper mixtures, while the analogous resveratrol-iron reaction affords the 

racemic ε-viniferin dehydrodimer. The use of gas-phase techniques and of ab initio 

calculations, at BHandHLYP/LACV3P + +** level of theory, allowed us to elucidate 

some important aspects of these reaction mechanisms. In particular, a different 

stability for the resveratrol radicals involved in the oxidative coupling has been 

obtained in the presence of copper ion, favoring the formation of δ-viniferin, as 

proposed for the in vivo mechanism where copper is able to switch the resveratrol 

from an antioxidant to a prooxidant agent. Finally, the structure-reactivity 

relationship has been investigated for synthetic analogues of resveratrol, showing the 

crucial role of the OH group in para position. 

 

 

2) G. Cazzolli, S. Caponi, A. Defant,  C. M. C. Gambi, S. Marchetti, M. Mattarelli, M. 

Montagna,  B. Rossi,  F. Rossia and G. Viliani, ″Aggregation processes in micellar solutions: 

a Raman study″, Journal of  Raman Spectroscopy,  DOI 10.1002/jrs.4120 

 

Abstract 

Ionic surfactants such as sodium dodecyl sulfate (SDS) belong to the amphiphile 

family: they possess a long hydrophobic hydrocarbon chain and a polar hydrophilic 

headgroup. In a polar solvent and over the critical micellar concentration these 

molecules join to form micelles. The micellar solutions, in turn, if doped with 

various ligands tend to aggregate. 
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Solid SDS, micelles of SDS in water and micelles of SDS doped with two types of 

macrocyclic ligands, Kryptofix 2.2.2 (K222) and crown ether 18-Crown-6 (18C6), at 

different concentrations are studied by Raman scattering, that represents a new 

approach to such systems. The experimental Raman spectrum, obtained on 

crystalline powders of SDS, is compared with the ab initio computed spectrum in 

order to assign the vibrational bands. After discriminating sensitive peaks by 

comparing the crystalline powders of the single 

components and their water solutions, the aggregation process and the action of the 

ligands are analyzed following the evolution of the intensity and wavenumber of 

these characteristic Raman peaks. This shows that Raman spectroscopy is sensitive 

to the aggregation dynamics and to the effects induced by the hydration layer on the 

molecules in solutions. A saturation effect in the aggregation process with the 

increase of the ligand concentration is observed. 

 

 

3) L. Chiari, A. Zecca, S. Girardi, A. Defant, F. Wang, X. G. Ma, M. V. Perkins, and M. J. 

Brunger, ″Positron scattering from chiral enantiomers″, Physical Review A,  2012, 85, 052711  
 

Abstract 

We report on total cross section measurements for positron scattering from the chiral 

enantiomers (+)-methyl (R)-2-chloropropionate and (–)-methyl (S)-2-

chloropropionate. The energy range of the present study was 0.1–50 eV, while the 

energy resolution of our incident positron beam was ∼0.25 eV (FWHM). As 

positrons emanating from β decay in radioactive nuclei have a high degree of spin 

polarization, which persists after moderation, we were particularly interested in 

probing whether the positron helicity differentiates between the measured total cross 

sections of the two enantiomers. No major differences were, however, observed. 

Finally, quantum chemical calculations, using the density functional theory based 

B3LYP-DGTZVP model within the GAUSSIAN 09 package, were performed as a 

part of this work in order to assist us in interpreting some aspects of our data. 

 

 

4) A. Zovko , M. Vaukner Gabric , K. Sepcic , F. Pohleven , D. Jaklic, N. Gunde-Cimerman , 

Z. Lu , R.A. Edrada-Ebel , W. E. Houssen , I. Mancini, A. Defant , M. Jaspars, T. Turk, 

″Antifungal and antibacterial activity of 3-alkylpyridinium polymeric analogs of marine 

toxins″, International Biodeterioration & Biodegradation, 2012, 68, 71-77 
 

Abstract 

Analogs of marine sponge-derived 3-alkylpyridinium compounds (3-APS) were 

synthesized and screened for possible antibacterial and antifungal activities. They 

were found to exhibit moderate antibacterial activity. Antifungal potential was tested 

on pathogenic fungus Candida albicans, baker’s yeast Saccharomyces cerevisiae and 

hypersaline species Wallemia sebi. S. cerevisiae was the most susceptible to the 

action of selected 3-APS. Inhibitory effects on fungal growth were also studied on 

two wood-rotting fungi, brown-rot fungus Gloeophyllum trabeum and a white-rot 

fungus Trametes versicolor. The former showed a higher susceptibility to the action 
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of 3-APS. The highest antifungal potential was observed with the poly-1,3-dodecyl 

pyridinium chloride (APS12-3, 7), while a complete loss of activity was noticed with 

the poly-1,3-butyl pyridinium chloride (APS3, 1), suggesting that this activity may 

closely correlate to the length of their alkyl chains. Based on our results, synthetic 

APS12-3 is a good candidate to be used as biocide or wood preservative against 

wood-rotting fungi. 

 

5) A. Defant, I. Mancini, L.Raspor, G. Guella, T. Tom. K.Sepcic, ″New Structural Insights 

into Saraines A, B, and C, Macrocyclic Alkaloids from the Mediterranean Sponge Reniera 

(Haliclona) sarai″,  European Journal of Organic Chemistry, 2011, 2011, 3761-3767 

Abstract 

The structural peculiarity of saraines A, B and C, wherein a zwitterionic-like form is 

present due to the coordination of a nitrogen atom to the C-2 aldehyde by a strong 

proximity effect, has been further extended by experimental and theoretical 

evidences. They include the detection of [2M + H]
+
 clusters in electrospray 

ionization mass spectrometry in the positive ion mode of a water/acetonitrile 

solution, whereas only signals corresponding to [M + H]
+
 ions are detectable after 

addition of trifluoroacetic acid to the same solution. The zwitterionic form can be 

trapped to give O-methyl derivatives only by reaction with a strong alkylating agent 

such as Meerwein’s reagent. DFT calculations carried out on the core structural 

model suggest that the nucleophilic N-1 atom in the minimized conformation is at a 

suitable distance from the carbonyl group and also defines an approach angle in good 

agreement with the Bürgi–Dunitz model. Antibacterial and hemolytic activities and 

inhibition of acetylcholinesterase (AChE) assays have been evaluated for saraines 

A–C in comparison to those of saraines 1–3 and isosaraine 1, all the metabolites 

isolated from the sponge Reniera (Haliclona) sarai collected in the Northern Adriatic 

sea. 

 

6) I.Mancini, A.Defant, T.Mesaric, F. Potocnik, U.Batista, G.Guella, T.Turk, K.Sepcic, 

″Fatty acid composition of common barbel (Barbus barbus) roe and evaluation of its 

haemolytic and cytotoxic activities″, Toxicon, 2011, 57(7-8), 1017-1022 

Abstract 

Eggs of the common barbel (Barbus barbus) cause intoxication in humans after 

ingestion. In this work, the chemical composition of the haemolytically active 

fraction from methanolic barbel roe extract was analyzed. Compounds showing 

haemolytic activity and cytotoxicity towards normal and transformed cell lines were 

isolated and identified as polyunsaturated fatty acids, using online liquid 

chromatography–electrospray ionization mass spectrometry through tandem 

fragmentation experiments (HPLC–MS/MS). Arachidonic acid (C20:4), 

docosahexaenoic acid (C22:6) and eicosapentaenoic acid (C20:5) proved to be the 

three most abundant members of a complex series of free fatty acids ranging from 

C14:0 to C24:5. 
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7) V. Tamboli, A. Defant, I. Mancini, P. Tosi, ″A study of resveratrol-copper complexes by 

electrospray ionization mass spectrometry and density functional theory calculations ″, Rapid 

Communications in  Mass Spectrometry, 2011, 25(4), 526-532 

Abstract 

Resveratrol is a polyphenolic compound found in plants and human foods which has 

shown biological activities including chemoprevention, acting through a mechanism 

which involves the reduction of Cu(II) species. By electrospray ionization (ESI) 

mass spectrometry we have produced and detected the resveratrol-copper complexes 

[Resv+Cu]
+
, [Resv+CuRH2O]

+
 and [2Resv+Cu]

+
 by using a resveratrol/CuSO4 

solution in CH3CN/H2O. The most stable structures of the detected complexes have 

been calculated at the B3LYP/6-311G(d) level of theory. Resveratrol interacts with 

the copper ion through nucleophilic carbon atoms on the aromatic ring and the 

alkenyl group. The fact that only singly charged ions were observed implies that 

Cu(II) is reduced to Cu(I) in the ESI process. For investigating the structure-

reactivity correlation, we have carried out a similar study on the synthetic analogue 

dihydroresveratrol (DHResv). For the latter only the [DHResv+Cu]
+
 complex has 

been detected. 

  

 

8) A. Defant, I. Mancini,  C. Torri, D. Malferrari,  D. Fabbri, ″An efficient route towards a 

new branched tetrahydrofurane δ-sugar amino acid from a pyrolysis product of cellulose″,  

Amino Acids, 2011, 40(2), 633-640. 

Abstract 

(1R,5S)-1-Hydroxy-3,6-dioxa-bicyclo[3.2.1]octan-2-one, is a bicyclic lactone 

obtained in gram-scale by catalytic pyrolysis of the renewable source cellulose. Now 

it has been used as a chiral building block in the preparation of the new δ-sugar 

amino acid, (3R,5S)-5-(aminoethyl)- 3-hydroxytetrahydrofurane-3-carboxylic acid, 

by an efficient synthesis in five steps with a 67% overall yield. The structure of this 

tetrahydrofurane amino acid, isolated in protonated form, was assigned by extensive 

mono- and bidimensional 
1
H- and 

13
C-NMR analysis and mass spectrometry, 

including measurements by electrospray and matrix-assisted laser desorption 

ionization techniques, the latter one for high-resolution experiments. This amino acid 

is an isoster of dipeptide glycine-alanine (H-Gly-Ala-OH), with a potential use in the 

access of new peptidomimetics with conformationally restricted structures due to the 

presence of tetrahydrofurane ring. As a preliminary study in order to disclose this 

effect, density functional theory calculation performed in water using polar 

continuum model was applied to the new amino acid and H-Gly-Ala-OH dipeptide, 

so that to evaluate and compare the relative torsional angles for the energy-

minimized structures. 
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Abstract 

A series of complexes(Fe
II
,Cu

II
 andNi

II
)of the N,O bidentate ligand 6,7-

dichloroquinoline-5,8-dione in water was investigated by using  Raman 

spectroscopy, and the experimental peaks were assigned with the help of computed 

spectra by density functional theory (DFT) calculations. A strong shift to lower 

wavenumbers was observed for the vibration of the CO group involved in chelation, 

depending on the type of metal ion. When each complex was used in the substitution 

reaction by the nucleophilic reagent piperidine, two products having the same 

molecular composition but showing the substituent in different regions of the 

molecule were obtained, and moreover their regioselective formation was in 

agreement with the size of the Raman shifts previously observed for the complexes. 

This example confirms the potential of the approach involving Raman spectroscopy 

combined with DFT calculations in the characterization of metal complexes as key 

intermediates in organic reactions, with the possibility of predicting themetal 

systemcapable to achieve the highest selectivity. 
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