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Abstract

In recent years, service-oriented architecture (SOA) has become one of

the leading paradigms in software design. Among the key advantages behind

SOA is service composition, the ability to create new services by reusing

the functionality of pre-existing ones. Despite the availability of standard

languages and related design and development tools, “manual” service com-

position remains to be an extremely error-prone and time-consuming task.

No surprise, the automation of service composition process has been and

still is a hot topic in the area of service computing.

In addition to high complexity, modern service-based systems tend to be

dynamic. The most common examples of dynamic factors are constantly

evolving set of available services, volatile execution context, frequent revi-

sion of business policies, regulations and goals, etc. Since dynamic changes

of the execution environment can invalidate service compositions predefined

within a service-based system, the cost of software maintenance in this case

may increase dramatically. Unfortunately, the existing automated service

composition approaches are not of much help here. Being design-time by

their nature, they intensively involve IT experts, especially for analysing

the changes and respecifying formal composition requirements in new con-

ditions, which is still a considerable effort. To make service-based systems

more agile, a new composition approach is needed that could automatically

perform all composition-related tasks at run time, from deriving composi-

tion requirements to generating new compositions to deploying them.



In this dissertation, we propose a novel service composition framework

that (i) handles stateful and nondeterministic services that interact asyn-

chronously, (ii) allows for rich control- and data-flow composition require-

ments that are independent from the details of service implementations (iii)

exploits advanced planning techniques for automated reasoning and (iv) ex-

ploits modeling methodology that is applicable in dynamic environment.

The corner stone of the framework is the explicit context model that ab-

stracts composition requirements and constraints away from the details of

service implementations. By linking services to the context model on the

one side, and by expressing composition requirements and constraints in

terms of the context model on the other side, we create a formal setting in

which abstract requirements and constraints, though being implementation-

independent, can always be grounded to available service implementations.

Consequently, we show that in such framework it is possible to move most

human activities to design time so that the run-time management of the

composition life cycle is completely automated. To the best of our knowl-

edge, it is the first composition approach to achieve this goal.

A significant contribution of the dissertation is the investigation of the

problem of dynamic adaptation of service-based business processes. Here,

our solution is based on the composition approach proposed. Within the

thesis, the problem of process adaptation plays the role of the key motivator

and evaluation use case for our composition-related research.

The most part of the ideas discussed in the thesis are implemented and

evaluated to prove their practical applicability.

Keywords

service composition, planning, dynamic environment, process adaptation
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Chapter 1

Introduction

Service composition is one of the cornerstone technologies within service-

oriented architecture. It consists in reusing the existing services as building

blocks for new services (applications) with higher-level functionality. Due

to the fact that, according to the main SOA principles, services are designed

to be platform-independent, loosely-coupled, abstract, autonomous and

self-describing, service composition is an extremely powerful technique in

hands of software engineers. First of all, it allows for rapid development of

new applications, especially when all the necessary components are already

available. Second, it promotes high reusability of the development results:

composite services can further be used as building blocks for even more

high-level services. Finally, service-based applications obtained as a result

of service composition are very and can be quickly tuned and adjusted to

new business requirements and changes in the service infrastructure.

Despite all the advantages service composition brings to software engi-

neers, when performed manually it is still a very complex, time-consuming

and error-prone task. Such complexity mostly comes from the fact that

in order to build a composition, the developer has to know very well both

composition requirements and numerous technical details of each service to

be composed (efficient service discovery and selection is another dimension
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CHAPTER 1. INTRODUCTION

of this complexity). Moreover, while developing the composition, a lot of

easy-to-miss but critical technical aspects have to be reflected. Finally,

languages used for describing both services and their composition, though

standardized, are not at all easy to read and write (the XML-languages

used here are rather machine-readable than human-readable). All this re-

quires profound technical skills and knowledge, and takes a lot of effort

and time to produce a composition; but even in this case the probability

of errors is still quite high.

Such complexity becomes a real problem when we start to use SOA in

dynamic application domains. For example, if we do business that requires

frequent revision of partners (service providers) and constant correction of

business policies and goals (composition requirements), it is very likely we

would have to change/adapt our composition-based applications again and

again. That would result in a higher cost of software maintenance and this

is what we, as a business owner, would prefer to avoid. The solution lies

in creating automated service composition techniques.

From the very origin of service composition, it was recognised as a

good candidate for automation. First, services are self-descriptive and are

supposed to provide complete information about themselves in machine-

readable standard format (e. g., WSDL [120] and WS-BPEL [91]). Second,

the behaviour of services and their composition can be described using the

well-established mathematical models, such as state transition systems,

Petri nets, etc. As a result, a lot of interest has been recently demon-

strated in the field of automated service composition. Unfortunately, we

have to admit that many approaches suffer from oversimplification and

can only be applied to a very restricted set of composition problems. At

the same time, some approaches have gained enough maturity to be used

with a wide range of service composition problems of real-world complex-

ity. For example, the approach developed in the context of the ASTRO

2



CHAPTER 1. INTRODUCTION

project [4] and published in [103, 79, 18] performs service composition of

stateful, nondeterministic and asynchronous services using planning tech-

niques. The approach elaborates both control- and data-flow requirements

and can work with standard service specifications: the input is provided

in form of WSDL and Abstract WS-BPEL service descriptions and the

output is an executable orchestration expressed in WS-BPEL. To give an

idea about to what extent automated tools may speed up the composition

process, in [77] the authors tried to solve a real composition problem both

manually and using the ASTRO technique. It turned out that the manual

composition took around 20 hours, while using the automated approach the

result was produced in around 1 hour. It was a strong evidence automated

service composition really makes difference. However, what was impor-

tant for us about this experiment is that in case of automated composition

three quarters of time were spent on human operations such as analysing

service description and formalizing composition requirements. Although

such overhead was not a problem for the case study examined, in modern

applications featuring unprecedented level of dynamicity, even the fact of

human involvement may become a hurdle on the way to success.

While surveying application domains where modern SOA is used, we

can notice that it often operates in so extremely dynamic setting, that

service composition is considered to be a kind of “every-minute” routine

activity. We can mention at least two examples of such systems that be-

come extremely important in modern information technology. The first

one is pervasive systems ([57]), which are mobile systems operating in close

connection with the information about their surrounding (context). Once

service composition is exploited in such a system, it has to be flexibly and

quickly adapted to the rapidly changing environment. For instance, let

us imagine there is a car that has to regularly perform some activity im-

plemented through composition of surrounding near-field communication

3



CHAPTER 1. INTRODUCTION

services (e.g., car parking assisted by various parking services). Depending

on the current surrounding (i.e., on the set of available services and on the

context) the solution composition, though targeting conceptually the same

objective, will always have different implementation. If a car has to repeat

this activity once an hour under different conditions, it would really be

unaffordable to involve a human to compose services, even if assisted by

conventional composition tools. Another example is user-centric systems

([59]), whose operation evolves around the needs and constraints of a spe-

cific user. For instance, it could be a mobile application that allows the

user to integrate (compose) multiple mobile services (local phone services,

Internet services, near-field communication services etc.) and execute them

consistently. In this case, the choice of services and the composition objec-

tives are determined by user’s surrounding and personal preferences/con-

straints/goals. Moreover, the need for such composition may arise at any

point in time. Obviously enough, it is not feasible to involve an IT expert

to produce this kind of composition. Unfortunately, predefined solutions

are not of much help here either, since each user has her own idea about

how the composition has to accomplish her tasks.

In this dissertation, we come up with a novel approach to automated

service composition that is specifically designed to be used in dynamic exe-

cution environments (like the ones discussed above). In very general terms,

the idea of the approach consists in organizing the composition life cycle

is such a way that the most part of human activities can be accomplished

at design time. As a consequence, the run-time composition management,

from the derivation of composition requirements to the composition syn-

thesis to the deployment of executable processes, requires no (or minimal

indeed) human involvement. The approach works with a realistic service

model and allows for rich control- and data-flow requirements. This makes

it powerful enough to deal with composition problems of real complexity.
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Along with the problem of service composition, we also investigate the

problem of dynamic adaptation of service-based business processes and pro-

pose a solution based on our composition technique. Within this part of

our research, not only do we show how to exploit service composition for

the purposes of process adaptation, but also 1) propose an adaptable pro-

cess model, 2) identify various adaptation strategies and 3) consider the

problem of automated selection and enactment of adaptation strategies at

run time. Being an important research problem per se, dynamic process

adaptation is also a strong motivating case study and a realistic testing

platform for our service composition approach.

As such our approaches to service composition and process adaptation

make up the two major contributions of the thesis. In the following two

sections we discuss them in more detail. After that, we outline the dis-

sertation structure and briefly overview the publications and collaboration

related to this PhD activity.

1.1 Context-Aware Service Composition

To gain some background for our composition approach we carefully ex-

amined the aforementioned ASTRO approach. In particular, we adopted

with some changes the service model where services were modeled as state

transition systems with different types of actions (in our case, control-

lable and uncontrollable). We found this model successful since it allowed

us to work with stateful, nondeterministic services with asynchronous be-

haviour. We also generally took over some of the composition-as-planning

principles proposed in ASTRO. At the same time, ASTRO was extremely

useful to understand the limitations of conventional composition techniques

in dynamic setting. While analyzing it, we realized that the most critical

drawback of ASTRO from the perspective of dynamic environment lay in
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the strong dependency between composition requirements and details of

service implementation. It became the starting point in our research.

The central idea of our composition approach consists in detaching com-

position requirements from service implementations so that the former does

not include any details about the latter. At the same time, we provide

a mechanism for run-time linkage of such conceptual requirements with

particular service implementations. As a result, the same group of re-

quirements can be used with various sets of service implementations. We

show that in this case a bigger part of the composition modeling effort

can be shifted to design time so that composition life cycle is managed at

run time automatically. In our approach, in addition to other technical

details, we specifically elaborate control-flow and data-flow requirements.

For control-flow requirements, we propose our own simple yet expressive

abstract language that is able to express goals with preferences, proce-

dural goals and reactive goals. For data-flow requirements, we adopt the

approach of [79] and deeply modify it in order to make it compliant with

our modeling methodology.

Services and Fragments

Through the dissertation we use two different types of reusable compo-

nents: services and process fragments (or simply fragments). Services are

conventional web services described by their interface (WSDL) and pro-

tocol (WS-BPEL). Process fragments ([39]) is a way to represent reusable

process knowledge in process composition. To keep it simple, process frag-

ments can be considered as an analogue of services in the world of business

processes. In fact, process fragments encode elementary subprocesses that

can be used as constructing blocks for more complex processes. To model

service-based process fragments, we adopt a language specifically designed

for that (APFL [23]).
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The difference between a service protocol and a service-based process

fragment can be described as follows. First, service protocols describe

communication between the service and the client from the perspective

of the service, while process fragments use the perspective of the client.

This makes process fragments suitable not only for specifying the com-

munication model but also for indicating internal operations (e.g., human

operations, data manipulations) to be performed on the client side (which

may sometimes be a big advantage). Second, process fragments may ad-

ditionally include activities that are not directly related to services: for

example, APFL fragments may include concrete activities (to model any

custom activity, e.g., human operation) and abstract activities (to model

complex activities whose implementation is to be refined at run time). This

makes process fragments much more expressive and much more suitable for

the purposes of process adaptation (this is essentially why we consider pro-

cess fragments along with conventional service protocols). Finally, service

protocol is associated with a single service, while a single process fragment

may describe interaction with a group of services, which generally also

makes fragments more flexible.

In the thesis, we first present the composition of fragments. Later, while

considering service composition, we show that fragments can be effectively

exploited to deal with partial observability of service behaviour. In brief,

for each service protocol we define an APFL-like fragment (we call it com-

plementary fragment) that contains only service communication activities

and that reflects the acceptable behaviour of the client while communicat-

ing to this service. As such, service composition can be essentially reduced

to the composition of respective complementary fragments and so the same

composition technique can be used for both fragments and services.

In the rest of this chapter we predominantly use term “service” while

meaning that it is valid for both services and fragments.
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Context as Abstraction Layer

We indicated that the central idea of our approach consists in abstract-

ing composition requirements from details of service implementations. We

use explicit context model as such abstraction layer. The context is mod-

eled using special state transition systems (context properties). They re-

flect possible context situations (states) and context events (transitions

between states). Composition requirements are specified in terms of con-

text model (for example, to reach some context state or to trigger some

context event), which makes them service-independent. In turn, service

specifications are equipped with special annotations connecting them to

context model. Consequently, through service annotations context-based

requirements can always be grounded on specific service implementations

and, as such, can be combined with them into a composition problem.

Control Flow

To manage control flow of the composition, we introduce 1) a context-

based (abstract) language for control-flow requirements and 2) control-flow

annotations in service specifications. Our control-flow language allows for

reachability goals (context states to be reached), procedural goals (context

events to be triggered) and the mixture of them. In addition to that, it

is possible to define a number of alternative goals ordered according to

their preferences (goals with preferences). Finally, we introduce a way

to specify reactive requirements, e.g., to achieve some goal in reaction to

some context situation (e.g., context event). A lot of attention is paid to

formally defining the semantics of this language.

The control flow of services is connected to the control flow of context

through annotations. In particular, activity effects are used to indicate

that activity execution triggers certain context events. Similarly, activity

8



CHAPTER 1. INTRODUCTION

preconditions are used to indicate that an activity can be executed only in

certain context situations (states). In fragments, abstract activities are ad-

ditionally annotated with contextual goals indicating their abstract objec-

tives. Annotations are used to ground abstract control-flow requirements

on service implementations.

Data Flow

Although in this work data flow receives less attention than control flow,

realizing its importance we develop a prototype solution for managing data

flow. It relies on the Datanet technique presented in ([79]), which is signif-

icantly modified in order to be compliant with our modeling methodology.

The idea of the Datanet technique is very intuitive: it explicitly links

various data parts of service ports in order to show how the composition

can calculate the data of outgoing messages from the data of incoming

messages. However, the Datanet is implementation-dependent (it depends

on concrete service ports). To tackle this problem, we modify the Datanet

approach so that it conceptually follows th modeling methodology used

for control-flow requirements: an implementation-independent (abstract)

part of requirements is specified at design time while services are provided

with annotations linking them to the abstract requirements. Our data-

flow requirements can generally be handled in planning using the same

principles as in [79].

Composition as Planning

A significant amount of this dissertation is devoted to the problem of trans-

forming a formal composition problem comprising services, context and

composition requirements, into a planning problem. In brief, the plan-

ning domain is obtained by fusing service STSs, context properties and

requirements STSs. The requirements STSs are derived from composition

9



CHAPTER 1. INTRODUCTION

requirements in such a way that in the resulting planning domain for each

state it is possible to say if requirements are satisfied in it (and with which

preference) or not. Consequently, the states where requirements are satis-

fied become goal states of a planning problem.

Implementation and Evaluation

As a planning technique, our approach uses planning via model checking.

We show that even in the presence of context, for simple cases of control-

flow composition requirements (reachability of context states) it is possible

to reuse the existing algorithm introduced in ASTRO ([18]). However,

when we express control-flow requirements using our new language, it is

necessary to build a conceptually new type of plans, so called continuous

plans. Differently from a conventional plan, a continuous plan not only

indicates how to reach goal states from the initial state, but also shows

how to bring the system back to goal states ones it is forced to leave the

goal state already reached. Moreover, our new algorithm is implemented

in the presence of goals with preferences. The correctness of the new plan-

ning algorithm is evaluated on the complex Virtual Travel AGency case

study. Moreover, we evaluate the performance scalability using a number

of artificial scalable scenarios.

1.2 Dynamic Process Adaptation

Although our adaptation framework relies on the aforementioned compo-

sition approach, there are some important adaptation-related issues that

have to be addressed to make our solution possible.

10
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Adaptation Strategies

Adaptation strategy indicates how the original process has to be changed

in order to adapt to certain situations. We show that many adaptation

strategies for process adaptation can be defined. For example, one strategy

may consist in trying to solve a problem without “touching” the original

process so that the execution of the latter can be resumed as if nothing

happened (local adaptation). Another strategy may imply process rollback

with compensation of the effects of the activities already executed.

We demonstrate that having APFL processes and process fragments

with context annotations, it is possible to define a compact set of adapta-

tion strategies that can effectively cover a large portion of problems that

may happen during the execution. We also show that our context-based

formal framework allows for efficient mechanisms for problem detection. A

special discussion is devoted to the problem of proper selection of adapta-

tion strategies to be used in certain situations.

Adaptation as Composition

Despite the diversity of the adaptation strategies used in our approach, all

of them are realized through context-aware composition of fragments. In

this regard, the difference between the strategies consists in 1) how many

compositions a strategy requires to be implemented, 2) how the compo-

sition goal is derived from the specification of the process to be adapted

and from the current status of the execution environment and 3) how the

targeted process is changed as a result of adaptation and how the results

of composition are embedded into it. We also pay attention to the issue of

executing “statically” designed composition in dynamic environment.

11
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Implementation and Evaluation

In order to demonstrate our adaptations ideas in action, we implement the

demo platform ASTRO-CAptEvo based on the car logistics scenario. In

fact, the platform realizes a very simple custom SOA infrastructure that is

additionally equipped with facilities for dynamic adaptation. The platform

is organized as a set of entities operating within the scenario and collabo-

rating with each other in order to achieve their business objectives. Each

entity follows its own business process, which can be adapted in case of

problems. Moreover, an entity exposes process fragments that can be used

by other entities in order to collaborate with it. We can say that ASTRO-

CAptEvo models a pervasive environment. It allows us to demonstrate the

possibilities of APFL language with context annotations, the effectiveness

of adaptation strategies and mechanisms introduced, the applicability of

our composition techniques to the problem of process adaptation and the

flexibility of our modelling methodology. We use the platform to evaluate

most of the ideas presented in the thesis, both qualitatively and quantita-

tively.

1.3 Structure of the Thesis

In the context of the thesis, the two main topics (automated service com-

position and process adaptation) are very much connected to each other

and interweave a lot. As a result, it was not always easy to decide on the

order in which different elements of the thesis should be presented. We

hope that the final structure we came up with makes the dissertation a

single story that is easy to follow.

The work consists of nine chapters. Chapter 2 provides background

information on the main topics of the thesis. This includes some basic

information on SOA and related standards and more profound description

12
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of the state of the art in the areas of automated service composition and

process adaptation. The chapter also identifies some important open issues

in the respective areas. These issues make up the problem statement of the

dissertation. Chapter 3 provides an overview of our approach to dynamic

adaptation of service-based business processes. We cover this topic first

because 1) it is the key motivator for our research on run-time automated

service composition, 2) it gives a nice example of what we mean by dy-

namic execution environment and 3) it introduces some concepts that are

important to understand the chapters to come (e.g., APFL fragments). In

Chapter 4 we introduce our approach to the composition of process frag-

ments. In Chapter 5 we show how the fragment composition approach of

Chapter 4 can be integrated into the adaptation framework of Chapter 3.

Here, we also consider the issues related to the execution of compositions

in dynamic environment. In Chapter 6 we discuss the relation between

process fragments and services. We show that the partial observability of

services can be successfully treated by replacing services with fragments. In

this case, the approach of Chapter 4 can be applied to services practically

unchanged. Chapter 7 explains how the service composition approach of

Chapter 6 can be extended with advanced control- and data-flow compo-

sition requirements. Here we also present the modified planning algorithm

that supports these requirements. Chapter 8 is devoted to the implemen-

tation and evaluation of the ideas proposed in the thesis. Finally, Chapter

9 contains concluding remarks and ideas for future work.

We would like to mention, that many concepts presented in the the-

sis are demonstrated in action in our platform ASTRO-CAptEvo, that is

described in Chapter 8 and that is freely available on the Web1.

1http://www.astroproject.org/captevo.php
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1.4 Thesis Context

In this section, we briefly describe research activities and publications re-

lated to this dissertation.

Most of the ideas presented in Chapter 4, 6 and 7 were originally de-

veloped in the scope of the YourWay! project. YourWay! was a three-

year bilateral collaboration between the Service-Oriented Research Unit

of FBK-IRST and DoCoMo Euro-Labs (Munich, Germany). The project

aimed at developing new resource-driven service composition approach for

user-centric service provisioning in mobile environments. The related pub-

lications covered context model as abstraction layer and the novel context-

based language for control-flow requirements (ICWS 2009, [17]), the cor-

responding planning algorithm for continuous composition (ICAPS 2009,

[16]) and the user-centric aspects of the composition (CoopIS 2010, [60]).

The development of our approach to dynamic process composition (Chap-

ters 3 and 4) was initiated in the scope of the two research projects funded

by the European Commission under the 7th Framework Programme. The

S-Cube project [2] was the European Network of Excellence in Software,

Services and Systems and the ALLOW project [1] was a research project

with the goal of developing a new, flow-based programming paradigm for

adaptable pervasive systems. The related publication described the basic

principles of our adaptation framework (SOCA 2011, [26]) and the proto-

type implementation of the ASTRO-CAptEvo framework (demo track at

ICSOC 2011, [24]).

The further development of the approach included the investigation of

a realistic scenario from the car logistics domain (PESOS 2012, [22]), elab-

oration of adaptation strategies (Best Paper Award at ICWS 2012, [25])

and the demonstration of a new edition of the ASTRO-CAptEvo platform

at the Service Cup competition (winner of the Service Cup 2012, [105]).
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Chapter 2

State of the Art

In this chapter we discuss the most significant and recent advances in

the areas of service-oriented computing that are central to the disserta-

tion. The first section (Section 2.1) provides the overview of the principles

of service-oriented architecture, introduces important definitions and de-

scribes the main standards currently in use. The remaining sections of the

chapter are devoted to the current progress in two areas of interest. In

particular, in Section 2.2 we explain the general idea of automated ser-

vice composition and present the main existing approaches addressing this

important problem. Section 2.3 surveys the most important works in the

area of adaptation of service-based business processes. In addition to the

critical assessment of the existing works, each area-specific section features

a brief discussion where we identify important problems that have not or

have weakly been addressed by the existing approaches and, as such, have

become the focus of this dissertation. In the conclusion of the chapter

we show how the aforementioned research problems are related to each

other and how the thesis is supposed to extend the state of the art in the

respective areas of interest.
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2.1 Service-Oriented Architecture

Service-oriented architecture (SOA) is a software engineering paradigm in

which software is designed and developed in form of interoperable ser-

vices. The creation of SOA was inspired by the necessity to develop and

support complex cross-enterprise information systems that can be quickly

and cost-efficiently adapted to the changes in the operational environment.

Conceptually, SOA is the next step in the evolution of distributed com-

puting, whose development has chronologically gone through the steps of

client-server systems [41], multi-tier systems [40] and RPC-based systems

such as CORBA [93].

The basic intuition of SOA is to construct business applications of

loosely-coupled, autonomous and reusable components called services. How-

ever, behind this simple idea there is a bunch of principles that have to be

followed by SOA implementations in order to release the SOA potential.

The very core of them are as follows [45]:

• Standardized service contract. Services adhere to a communication

agreement (or service contract) as defined by service description doc-

uments. Within the same service inventory, services use the same

service description standards;

• Service loose coupling. Service contract is not tightly coupled with

customer requirements nor with service implementation. In this case

the contract can evolve without affecting service consumers and service

implementations;

• Service abstraction. Besides the details in the service contract, services

hide their internal logic;

• Service reusability. Service logic is arranged so that to promote its

reuse.
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• Service autonomy. Services have a high level of control of the under-

lying run-time execution environment;

• Service statelessness. Services should be maximally freed up from the

management of state data.

• Service discoverability. Services are equipped with communicative

meta data by means of which they can be discovered by consumers;

• Service composability. Services can be effectively composed into new

services with the functionality of arbitrary complexity.

The analysis of service-oriented systems suggests that the above prin-

ciples make business applications much more flexible and significantly de-

crease the cost of their initial development (especially, when new applica-

tions are “composed” on top of existing services) and further support. The

high level of abstraction of service contracts makes it possible to efficiently

integrate and manage services on the level of business functionality, no

matter which underlying platforms they use. Finally, such features as dis-

coverability and composability allow for applications with unprecedented

level of adaptability to environmental changes.

The implementation of SOA is a complex task that involves such sub-

jects as networking, knowledge representation and semantics, artificial in-

telligence, security, data management and others [95]. Moreover, to enforce

the compliance with the core principles, and to cover various aspects of in-

formation systems from the perspective of service orientation, SOA often

relies on numerous standards.

Service-oriented architectures can be implemented using a wide range of

technologies such as REST [107], Java RMI [94] and many others. Nonethe-

less, the most popular and complete implementation of SOA is based on

Web Services [127]. Although, our research is detached from particular
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SOA implementations, in the rest of this dissertation, we agree to use Web

Services and their related terminology, standards and specifications for the

demonstration and explanation purposes.

2.1.1 SOA with Web Services

In very general terms, Web Services can be considered as a method of

communication between two partners via the Web. The development and

standardization of Web Services technology is coordinated by the World

Wide Web Consortium (W3C) in the framework of Web Services Activity

[127]. The Web Services Glossary by W3C [124] succinctly defines Web

Services as follows:

A Web service is a software system designed to support inter-

operable machine-to-machine interaction over a network. It has

an interface described in a machine-processable format (specif-

ically WSDL). Other systems interact with the Web service in

a manner prescribed by its description using SOAP-messages,

typically conveyed using HTTP with an XML serialization in

conjunction with other Web-related standards.

In the Web Services Activity Statement, it is also explicitly stated that

Web Services only define the way components interact and do not impose

any restrictions on the underlying implementation technologies and plat-

forms. It is also mentioned that one of the important aspects of Web

Services is the ability to combine services “in a loosely coupled way in

order to achieve complex operations”. As a result, “programs providing

simple services can interact with each other in order to deliver sophisticated

added-value services” [128]. As we can see these definitions introduce the

main principles of SOA such as loose coupling, standardized service con-

tract, abstraction, composability, etc.
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The success of Web Services is based on the set of specifications that

standardize all important aspects of the technology, from service commu-

nication interface and protocol to coordination within service-based appli-

cations [70]. The simplified stack of Web Services standards is given in Fig.

2.1 (the complete version can be found in [55]). As one can see, the stack

covers various levels of Web Services infrastructure. The message trans-

portation relies on standard Web protocols such as HTTP and HTTPS.

The format of messages is standardized by Simple Object Access Protocol

(SOAP) [119], where the data format is defined using XML.
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Figure 2.1: Web Services stacks

In order to let the customer know how a web service can be exploited,

web services provide unified description documents. The most important of

them concern service interface (a set of operations supported) and service

protocol (valid operation sequences). Web Service Description Language

(WSDL) [120] is a standard for specifying web service interfaces. Here a

service interface is a set of operations, each defining its input and output

message. The structure of the data within a message is defined by XML

Schema [125]. A service protocol describes how the service state is affected

by operation execution and suggests valid operation sequences. In fact, a
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service protocol can be defined using any workflow language. Neverthe-

less, there are languages specifically created for Web Services, and that are

compliant with other related standards (e.g., WSDL). One of them is Ab-

stract BPEL, which is a part of Web Service Business Process Execution

Language (WS-BPEL) [91], a language for executable service-based busi-

ness processes. It is worth to mention that description standards are not

limited to the two aforementioned. There are numerous standards for cov-

ering various other aspects of web services. For example, OWL-S [121] and

WSMO [126] are attempts to provide rich service descriptions for Semantic

Web.

The centralized storage and advertising of service descriptions is neces-

sary to provide discoverability of services. For that purpose, the Universal

Description Discovery and Integration (UDDI) [90] specification has been

proposed. UDDI standardizes registries that services can exploit to adver-

tise themselves on the Web. In turn, the customer can use the registries

to discover, locate and execute services.
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Figure 2.2: SOA with Web Services

The conventional model of service-oriented architecture based on Web

Services is depicted in Fig. 2.2. Here, a service provider develops a ser-
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vice and accompanies it with service description documents (e.g., a WSDL

document). Service description comprising the WSDL document and other

information is submitted to a service registry (UDDI registry) and becomes

available to potential customers. A service requester (i.e., the customer)

uses the service registry to discover available services and obtain their

descriptions. Having a service description, the service requester can com-

municate to the service by means of SOAP messaging.

The Web Service Architecture [122] shows that this basic model can be

extended in different directions. For example, the architecture does not

impose any particular restrictions on the service descriptions accessible via

UDDI repository (though they should be machine-readable), the binding of

services may be dynamic or static, the process of service selection and dis-

covery “may be performed by an agent, or by an end-user” using different

selection criteria etc.

Substantial extensions of the basic model origin from the necessity to

coordinate the execution of multiple services. In fact, the full potential

of Web Services is released only when we speak about an ecosystem of

numerous service providers and service consumers collaborating with each

other in order to achieve certain business goals. In this situation, services

are combined into business applications (or service compositions) that pro-

vide coordinated execution of multiple services driven by complex business

logic. No surprise, a significant amount of technologies and standards in

SOA address the problem of service composition.

2.1.2 Composition of Web Services

One of the driving ideas of SOA is service composition [62], which is the

possibility to quickly create new services and applications (composite ser-

vices) by “composing” the existing ones (component services). Service

composition comes into play when services that are currently present do
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not provide the needed functionality or when coordinated execution of ex-

isting services is required in the context of some business objective. Very

often the process of service composition is recursive, i.e., the newly cre-

ated composite service can consequently be used as a component in future

compositions.

Service composition is a complex problem that generally consists of a

few steps. First, based on the business requirements, suitable services have

to be selected from those available on the Web [73]. Then, service compo-

sition has to be formally specified using one of standard languages (e.g.,

WS-BPEL [91] or WS-CDL [123]). This may involve automated synthesis

algorithms [103]. Finally, the service composition has to be verified against

the compliance with business and composition requirements [61], executed,

monitored [100] and, if needed, adapted [78].

One might notice that any of these steps is by itself a complex research

problem. For instance, the problem of requirements engineering for service

composition often has to consider such aspects as functionality, quality of

service, security, business policies and others. Similar set of features have

to be taken into account while selecting services. Moreover, to allow for

intelligent selection, services have to be properly annotated with relevant

information. The same high level of complexity is attributed to the steps

of composition specification, verification, monitoring and adaptation.

There exist two conventional ways two compose services: choreography

and orchestration [98]. The difference in the interaction model of these

composition types is explained in Fig. 2.3. Choreography describes inter-

action protocols between different participants of the composition from the

global perspective. As such, the composition logic is distributed among all

participants. Orchestration is characterized by the existence of a central

component (orchestrator) that has full control of the composition logic and

facilitates interoperability between component services. In this case, the

22



CHAPTER 2. STATE OF THE ART
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Figure 2.3: Choreography and orchestration

components are normally not aware of the composition. It is worth to

mention that two types of composition may co-exist within one service-

based application, e.g., a choreography of orchestrations. In addition to

that, from the choreography specification it is always possible to derive

a number of orchestrations, where choreography participants play a role

of orchestrators [83]. In [3], very specific minor composition models are

additionally distinguished (service coordination and service assembly).

One of the main standards for specifying choreographies is Web Services

Choreography Description Language (WS-CDL) [123]. This language is

used to describe peer-to-peer collaborations between parties through the

definition of their observable behaviour (message exchange) from the global

perspective. When the message exchange between the partners is organized

according to the WS-CDL specification, a certain business goal is achieved.

The standard languages for orchestrations are represented, first of all, by

Business Process Execution Language (BPEL). The part of this standard

devoted to the description of executable service-based business process is

called Executable BPEL. It is used to define workflows comprising such ac-

tivities as service invocation, message send and receipt (for asynchronous

interaction), events, operations on variables. The language is equipped

with a set of standard control-flow constructions (sequential and parallel
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execution, loops, conditional branching etc.) in order to define workflows

of arbitrary structure and complexity. The process specification can intro-

duce variables and perform various manipulations on them. There exist

numerous engines for the direct execution of BPEL processes (e.g., Apache

ODE [47], ActiveVOS [44]).

Speaking about BPEL, it is also worth to mention Business Process

Model And Notation (BPMN) [92], a powerful approach to defining busi-

ness processes on conceptual level. Although there is no one-to-one cor-

respondence between BPEL and BPMN [71], BPMN is frequently used

for specifying service-based business processes. No wonder a number of

middleware vendors have recently added direct support for BPMN to their

process engines [44].

On the basis of BPEL, a number of extensions have been created to

bring aspects that are not present in the original BPEL. For instance, WS-

BPEL Extension for People (BPEL4People) [54] aims to introduce human

activities to BPEL in order to let it define general purpose business pro-

cesses rather that orchestrations of web services. Of special interest for us

is an Adaptable Pervasive Flow Language (APFL [23],[78]) that facilitates

the definition of highly adaptable business processes operating in dynamic

execution environments. In addition to conventional BPEL activities, the

language introduces internal activities, human activities, context events

and abstract activities (i.e., activities whose final specification is postponed

to run time).

2.2 Automated Service Composition

Despite the existence of numerous standard languages for defining service

composition, this task, when performed manually, tends to be extremely

time-consuming, error-prone and thus costly. A considerable amount of
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effort in service computing community aims at creating tools that automate

this process.

COMPOSER

composition
requirements

service
specifications

executable
composition

Figure 2.4: Automated service composition

The conceptual model of automated service composition is shown in Fig.

2.4. The composer automatically derives executable composition from ser-

vice descriptions and composition requirements. For different solutions, the

structure of the inputs and output of the composer may widely vary. Ser-

vice description normally includes specifications of service interface and/or

protocol. They are sometimes supplemented with additional annotations,

e.g., semantic annotations [64], non-functional property annotations [131],

etc. As a rule, custom annotations enable richer composition requirements

[17]. The composition requirements express the user’s expectations about

the service composition. Although they can also be quite diverse, to enable

automated reasoning they must be expressed in terms of service descrip-

tions. In the literature, two types of composition requirements are often

distinguished: control-flow requirements and data-flow requirements [11].

Control-flow requirements impose restrictions on the order of message ex-

change within a composition. Data-flow requirements regulate the handling

of message data. For many approaches, it is not possible to clearly sepa-

rate these two since rules on data manipulation may affect the control flow

and vice versa [79]. Finally, the outcome of the composer may be either

orchestration (in the vast majority of cases) or choreography.

For the last decade, it has been repeatedly shown that the creation of
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a composer that could deal with realistic and general enough service com-

position tasks is an extremely complex research problem. Let us outline

some of the major issues that an industry-ready automated composition

solution should address. First of all, real services may be stateful rather

than atomic and are described by complex workflows (e.g., following the re-

cursive model of BPEL, some of the components can themselves be service

orchestrations with complex behaviour). Consequently, stateful services

may be asynchronous, nondeterministic (with unpredictable outcome of

some operations) and partially observable (the full real status of a service

is hidden and only partially accessible through interactions). To this, we

have to add a need for an expressive enough requirements language (and,

if needed, service annotation language), that reflects both control- and

data-flow requirements and can be processed by the composer.

The experts distinguish two different strategies in synthesizing service

compositions: top-down and bottom-up [3]. In top-down approaches, the

composition is first defined at a higher level of abstraction (e.g., as a UML

model [114], or as an abstract process model with QoS constraints [131])

and then is converted to an executable composition specification. The con-

version usually consist of 1) discovery and selection of suitable services and

2) final synthesis based on selected services and the initial abstract defini-

tion. In bottom-up approaches, the services are composed based on their

definitions (often, extended compared to standard documents like WSDL

and Abstract BPEL) and abstract composition goals using an automated

reasoner (e.g., AI planning [103]). We remark that sometimes it is not easy

to distinguish a strategy used by a certain approach. As an example, an

abstract process defining desired interaction model for a composite service

can be considered both as a composition requirement and as an abstract

model to refine.

The further classification and analysis of automated service composition
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solutions is complicated by the existence of numerous classification criteria

and by the fact that many approaches are hardly comparable to each other

because they differently perceive a composition problem. Several works

concerning the classification of automated service compositions approaches

can be found in the literature ([3], [106], [7], [75]). Using them, we can

enumerate the main classification criteria as follows:

• Orchestration/Choreography. In the first case, the goal is to create

a centralized orchestrator that fulfills the composition requirements.

In the second case, the result is usually a number of orchestrations

attached to services that form a choreography fulfilling the compo-

sition requirements. It is also worth to mention approaches [9] and

[86], that involve the distribution of a centralized orchestrator among

participants, thus transforming an orchestration into a choreography.

In [9], for instance, to that purpose WS-BPEL processes are converted

into attributed graphs and special rules for graph transformation are

used to split them into a set of related graphs (distributed pieces of the

orchestration). Graph analysis is also used in [86], but the authors also

consider dependencies among the parts obtained to minimize commu-

nication costs and maximize the throughput of the composition.

• Static/Dynamic. Static approaches are supposed to produce com-

position using statically predefined set of services and composition

requirements. On the contrary, dynamic approaches can “monitor”

the execution environment and once the need for composition/re-

composition emerges, they can derive all necessary input data (ser-

vice descriptions and composition requirements) automatically. To

the best of our knowledge, none of the existing approaches can be

named completely dynamic. The point is to what extend an approach

is dynamic or static, i. e., how much involvement of the designer it
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requires to perform compositions at run time. Since the problem of

dynamicity is one of the central in the dissertation, we have to agree

that with respect to composition we use terms static/design-time and

dynamic/run-time interchangeably.

• Data-flow/Control-flow. The criterion shows to what extent data and

control aspect can be reflected in composition requirements and re-

sulting composition. It is possible to find polar cases here. On the one

hand, there are quite many approaches that ignore the data flow. On

the other hand, mashup-like approaches ([72]) provide data integra-

tion of information-producing services and cannot work with stateful

services. Finally, a large amount of solutions consider to different

extent both data and control flows.

• Requirements expressiveness. The expressiveness of requirement lan-

guage determines a range of composition problems that can be en-

coded with them. For instance, desirable control-flow can be expressed

through termination conditions, event handlers, constraints, transac-

tionality requirements etc. Requirements can also consider functional

and non-functional properties of the composition.

• Service Model. The difference between a service model and real prop-

erties of services may substantially affect the applicability of the ap-

proach to real composition problems. For example, if services are con-

sidered to be atomic the approach will not be able to work with state-

ful services which is a serious limitation. Other details may include

determinism/nondeterminism, synchronicity/asynchronicity etc.

In our survey and consequent high-level comparison, we will try to con-

sider the existing solutions from the perspective of the classification criteria

above.
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2.2.1 Existing Approaches

To structure the survey, we grouped approaches according to the reasoning

mechanism they exploit. From this perspective, we clearly distinguished

two groups: approaches that do not exploit AI planning (non-planning ap-

proaches) and approaches that exploit AI planning (planning approaches).

Such division is justified by a large amount and diversity of approaches us-

ing planning, which by quantity can be compared to all other approaches

joined together. Planning approaches transform a composition problem

into a planning problem and apply planning algorithms to resolve it. Simi-

larly, non-planning approaches reduce composition problems to other well-

known models (e. g., graphs) and apply appropriate techniques to resolve

them.

We remark that the presence of numerous approaches to service com-

position does not allow us to mention all of them here. That is why we

primarily chose those that, from our point of view, are more mature, rep-

resent the diversity of composition methods and are interesting to be com-

pared to our approach. For the broader survey of other service composition

synthesis techniques (especially for model-driven composition, QoS-aware

service composition, semantic web composition) we encourage the reader

to check out works [3], [106], [97], [38] and others.

Non-planning Approaches

In [13, 14] a logic-based approach is proposed. Component services are

encoded as finite state machines (FSM) on the basis of their exported

behaviours (i.e., protocols). The user specifies a desired behaviour of a

composite service as a tree of actions which is, again, transformed into

FSM. Analyzing all available services (graphs), the approach figures out if

it is possible to build a composite service from available components re-
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specting both the specified composite service behaviour and the behaviours

of component services. If this is the case, it synthesizes a composition. A

further extension of this work [12] allows for more advanced control flow

requirements relying on semantic-like annotations of web services in terms

of effects on the real world (the world is modeled as a database). It also

addresses basic data-flow requirements in terms of data pieces that services

can receive and send. The problem of composition is transformed into a

Proportional Dynamic Logic (PDL) formula, and logical reasoning is used

to derive an orchestrator satisfying it.

A more profound approach based on a graph search algorithm can be

found in [57]. Component services and composition requirements are mod-

elled as directed graphs with rich semantic attributes. To make search

more efficient, all services stored in the registry are joined into an aggre-

gated graph representing collective behaviour of a service system. Once

a goal graph is specified, a search algorithm is used to find solution in

the aggregation graph. The implementation also addresses the problems

related to pervasive systems, such as dynamic recomposition of a solution

in changing conditions and unevenness of resources available to different

devices (low performance devices rely on those with high performance for

performance-demanding tasks like discovery and composition).

In [29], a simulation-based approach is proposed. Services (possibly,

nondeterministic) are modelled as transition systems and a composition

requirement is represented with a goal transition system sharing operations

with component services. The goal transition system represents desirable

interface of a composite service. Nondeterministic simulation is used to

find a transition system of all possible satisfying paths in an asynchronous

product of service transition systems. The possibility to generate the best

solutions with respect to non-functional properties is added in [30]. Here,

the transitions in service models are additionally given a weight, which
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reflects the cost of operation execution. The path with minimal weight is

taken as the best.

The approach of [20] provides a way to build service aggregations of

stateful services. Service aggregation is a special type of composition in

which composition requirements are not expressed explicitly. The goal

of service aggregation is to build a composite service that will expose all

behaviours of a set of component services that are correct with respect

to their behaviours and inter-service dependencies. The approach uses a

rich model of service contract reflecting both service protocol (encoded

with YAWL language [118]) and its ontology-based inputs and outputs.

An aggregation algorithm analyzes control and data flow of services and

comes up with a contract of a service aggregation.

A rule-based service composition system is described in [104]. In this

work, services are modeled in terms of rules that specify what input data

is necessary for a service to produce certain output data. Having require-

ments for the inputs and outputs of a composite service and rules for avail-

able component services, a rule-based expert system checks whether it is

possible to build a corresponding composition. The authors focus mainly

on data-flow requirements, while services are considered to be atomic, with-

out observable complex behaviour. This is an example of the approach

where control-flow requirements are not explicitly presented but partially

defined by data-flow requirements. The fact that one service can be ex-

ecuted only when certain data is received from another service, imposes

restrictions on the acceptable order of service executions. Although rules

are used instead of semantic web services, the approach is conceptually

close to semantic service composition ([117]).

A similar approach of composition through data integration is de-

scribed in [116, 115]. Here services are modelled as data sources and func-

tional dependencies between them. A composition goal is defined as a

31



CHAPTER 2. STATE OF THE ART

desirable output and a set of query templates it has to support. An in-

tegration plan is a number of queries to data sources respecting binding

patterns. One of the focuses of the work is a solution optimization with

respect to the number of queries to data sources by eliminating redundant

queries.

In workflow-based approaches, services are treated as workflows and

advanced techniques for processing workflows are applied. For example,

[65] introduces a Transactional Workflow Ontology, in which service work-

flows and composition workflows are defined, and implements a process

engine that can run ontology-based workflows. The composition consists

in finding services that match tasks in a goal workflow. The solution is

inferred from definitions of a goal workflow and service workflows by a

semantic reasoner (DAMLJessKB).

The authors of [84] present an interesting approach to service composi-

tion based on heuristic search. In this paper, the authors try to overcome

the limitations of planning-based algorithms by using heuristic search as

a reasoner. Since heuristic search algorithms have quite some limitations

themselves, the authors aim to create a new heuristic search algorithm

that would better address the problem of service composition. In particu-

lar, the authors require that the algorithm allows for parallel control flow,

uncertainty in service effects and initial state of the execution environ-

ment, alternative control flow for the same problem. Services are modelled

as atomic operations with input, output and ontology-based preconditions

and effects. Composition requirements are specified as ontology-based ini-

tial and goal states and a service domain containing all available services.

The solution is a partially ordered set of service invocations.
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Planning Approaches

AI planning ([49]) is by far the most popular reasoning mechanism for auto-

mated service composition. In general, planning based approaches consist

in converting a service composition problem into a planning problem so

that the latter can be resolved using well-established planning algorithms.

As a rule, service descriptions form a planning domain and composition

requirements are transformed into planning goals. Despite all the works

below are based on AI planning, the way they exploit it may differ a lot

from work to work.

The logic-based planning is exploited by the works [80, 87] by McIl-

raith et al. The approach adopts high-level logic programming language

Golog [69] based on situation calculus. The authors show that Golog can

be adapted for the purposes of semantic web service composition. The

language is extended to allow for generic and customizable programs. The

central idea is to write generic Golog programs that encode certain tasks

and, upon user’s request, can be customized with user constraints and

can be bound to available services. The component services are originally

described semantically using DARBA Agent Markup Language-Services

(DAML-S) [28] and are later translated into situational calculus to be com-

patible with Golog-based reasoning. The authors also present an extended

version of ConGolog (Concurrent Golog) [50] interpreter that implements

the novel ideas of their approach and allows for calling real web services.

The translation of OWL-S semantic web services into ConGolog programs

is proposed in [99].

In [96], the author encodes composition problems as planning problems

using Planning Domain Definition Language ([48]). Service interfaces ex-

pressed in WSDL are additionally annotated with semantic information

similar to that of OWL-S. The problem of statefulness of services is solved
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by introducing relation that express the “payload” of service operations,

i.e., how operations affect the service state. To describe complex compo-

sition goals that go beyond reachability, the approach uses Java programs

that encode goal logic (although problems with formal verification of com-

positions may occur). In a similar way, nondeterminism is addressed. if

during the execution unpredictable behaviour occurs, the fault handling

strategy can be explicitly added to goal-specifying program. The approach

introduces a novel idea of using planning in combination with other rea-

soning techniques.

In [6], the authors perform service composition by dynamically binding

services to an abstract process. As such, composition requirements are

specified in form of abstract process whose activities have to be further as-

sociated with services. To model abstract processes, WS-BPEL is extended

with semantic annotations and a new process engine is implemented. The

dynamic binding takes into account inter-service dependencies and is real-

ized using planning.

In [113], Sirin et al. present a semi-automated approach to semantic

web service composition. In this approach the user firstly has to find a

service in a repository that can produce a needed piece of information.

From the service semantic description in DAML-S [28] the system “un-

derstands” what input information is necessary to run the service. Then

it explores the repository for services that can produce such information

and let the user choose manually those of them that better fit the user’s

needs. As such, the system guides the user through the iterative process

of service composition that results in a composite service that satisfied the

requirements. To automate this method, the authors use a Hierarchical

Task Network (HTN) planning techniques [46]. In particular, they ex-

ploit SHOP2 HTN planner [88]. In [130], all service semantic descriptions

(DAML-S processes) from the repository are translated into SHOP2 oper-
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ators and methods in order to build an HTN, i.e., a planning domain. The

composition requirements are defined through a semantic description of a

composite process and its inputs (this description has the same structure

as the descriptions of components in the repository). Such a description is

further translated into a planning goal. After that, the algorithm delivers

all the possible service workflows that satisfy the requirements.

The problem of bridging the gap between high-level user’s perception

of the composition goal and low-level service descriptions is addressed in

[10]. Here, deterministic service protocols are expressed in YAWL. Service

operations are additionally associated with abstract capabilities services

can provide and a hierarchical structure is defined to express how high-

level tasks relate to various service capabilities. Finally, service operation

parameters are linked to an ontology. Having a user’s need expressed as

a task to accomplish, GraphHTN [74] planning engine is used to derive a

service composition that satisfies the user’s need. Hierarchical structure

is used to figure out which capabilities have to be involved and linkage to

data ontology provides mapping between service operations parameters.

The work of [35] proposes to model the knowledge about the domain in

the form of a state transition system, with transitions associated to service

actions of available services. Such a domain reflects how the execution of

service actions affects the domain. Being implemented as state transition

systems, services can be synchronously joined with the domain to form a

large state transition system encoding all possible service orchestrations

and their respective effect on the domain. In the approach, the goal is

defined as a linear abstract process, where each action is a reachability goal

over the domain which can be resolved using standard planning algorithms.

A complete approach to service composition has been gradually devel-

oped in [102, 103, 76, 18] by Pistore et al. The approach was proposed

in the context of the ASTRO framework ([4]) supporting all activities
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related to service composition life cycle (composition synthesis, verifica-

tion, monitoring and adaptation). Concerning the composition synthesis,

the framework provides automated assistance at all phases, from specify-

ing composition requirements to generating WSDL and Executable BPEL

specification of a composite service, to deploying it. A service descrip-

tion includes WSDL interface and Abstract BPEL protocol. A procedure

for translating Abstract BPEL processes to state transition systems is pro-

vided. The formal model carefully reflects such aspects of services as partial

observability, nondeterminism and asynchronous behaviour. The planning

domain is obtained as asynchronous product of component state transition

systems. Control-flow composition requirements are defined as a reach-

ability goal over the states in service protocols and can be additionally

extended using CTL temporal logic formulas [43] or the language for ex-

tended goals EaGLe [67]. Control-flow requirements are later transformed

into a planning goal for the planning domain. The planning problem is

resolved using variations [15, 111] of planning-as-model-checking tech-

nique ([32]), exploiting symbolic model checking ([27]). Once the plan is

found, it is translated into an Executable BPEL process. The approach is

formally proved to be complete and correct.

The approach of [102, 103, 76, 18] also received support for data handling

by planning at the knowledge level ([101]) and by introducing explicit data-

flow requirements in the form of DataNet notation ([79]). The techniques

proposed have been successfully tested on real case studies ([77]).

2.2.2 Discussion

As we mentioned, there are quite some works concerning the survey and

classification of automated service composition approaches (e.g., [3], [106],

[97], [75], [66]). However, there is a very limited choice of publication

(especially, recent ones) that, in addition to overview, try to compare the
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existing approaches and identify the most important open issues to be chal-

lenged next (works [66, 75] could be suggested). Concluding this section,

we come up with this discussion reflecting our understanding of the most

important open issues in the area of automated service composition.

From our point of view, all the approaches presented in our survey share

the two main problems, namely 1) detachment from real SOA and 2) low

applicability in dynamic SOA.

Detachment from real SOA. Many existing approaches feature for-

mal model that does not adhere to adopted standards and operational

semantics of real services and service compositions. As a result, these

solutions are usually applicable to a very limited set of real composition

problems and cannot be adopted by the industry as a general-purpose

composition engine. In other words, for any critical aspects of real service

composition there usually exists a whole bunch of solutions that carefully

take this aspect into account. Nevertheless, there is hardly a single ap-

proach that addresses all or at least a substantial number of such critical

aspects, which would give it enough comprehensiveness to deal with a wide

range of real composition problems. What is even more disappointing is

that possessing conceptually different formal models and using different

techniques, approaches targeting different issues are difficult or even im-

possible to be integrated together.

For example, it is widely recognised that services are often stateful com-

ponents that feature complex communication protocol. However, many

approaches (e.g., [104, 115, 80, 113]) consider services to be atomic op-

erations characterized by input/output and sometimes precondition and

effect. Although this restriction is reasonable for some ad-hoc composition

problems (e.g., dynamic service binding, data integration of information

services), it is too limiting for a wide variety of others.

The same is true with nondeterminism, which is a natural property of
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real services. For example, approaches [104, 130, 6, 10] consider services

and their protocols to be deterministic.

An important issue is the expressiveness of requirements languages for

control flow. The point is that very often requirements languages of exist-

ing solutions are not appropriate for capturing real composition problems.

In most cases, existing approaches specify control-flow requirements 1) as

an abstract process (e.g., [14, 57, 29, 65]) or abstract protocol (e.g., [103])

to be implemented by the service composition or 2) as a rechability goal

(e.g., [104, 130, 18]) in component workflows. In the former, the specifica-

tion of an abstract process model encoding the solution requires exhaustive

analysis of available services and deep knowledge of application domain in

order to understand the step-by-step strategy which is optimal and correct.

This approach also lacks flexibility with respect to changes in service im-

plementations. In the latter, the reachability goals, although do not have

drawbacks of workflow-based goals, are frequently too “primitive” to ex-

press complex expectations of the customer about the service composition

(e.g., such expectation may involve the maintenance of some properties,

goal preferences, partially defined operation order etc.)

An important element of service composition requirements that is of-

ten neglected even by strong approaches (e.g., [57, 29, 35]) is data-flow

requirements.

Finally, we would like to mention such important problem as modelling

overhead. Very often, the strength of composition approaches is achieved

at the expense of initial modelling overhead such as defining multiple on-

tologies (e.g., [28, 10, 35]). In this case, the overhead has to either be

decreased or distributed among partners, or be highly reusable through

the life cycle of the execution environment.

Low applicability in dynamic SOA. Modern SOA tends to be dy-

namic. Among the dynamic factors we can distinguish volatile context,
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dynamic availability of services, constantly evolving business policies etc.

As a rule, these factors negatively affect the applicability of automated

service composition solutions.

Every time a dynamic change occurs in execution environment, the ex-

isting compositions may be broken (e.g., disappearance of a service in-

validates all compositions using it). As a result, recomposition may be

needed. The sticking point here is how much designer’s effort is necessary

to adjust composition requirements to new conditions in order to enable

recomposition. Indeed, it can be easily observed that although automated

service composition significantly reduces the amount of “manual” work to

produce a composition, there is still a considerable effort on the modelling

side (composition requirements, service annotations, ontologies, goal ab-

stract processes etc.). If dynamic changes happen frequently, the redesign

of composition requirements and accompanying specifications may become

the main item in the cost of application support.

In this regard, requirements models relying on implementation details

of services (e.g., [14, 103, 29, 96, 35]) are very inflexible since any change to

service implementation or replacement of one implementation by another

is likely to result in invalidation of composition requirements. At the same

time, abstract requirement models may also be inflexible. For example,

abstract goal process may require considerable redesign in case business

policies have changed. Even service unavailability may break the business

strategy implemented by an abstract process.

From our point of view, the two aforementioned problems, (i) detachment

from real SOA and (ii) low applicability in dynamic SOA, will remain the

driving challenges in the development of automated service composition in

the near future. That is why the creation of an automated service compo-

sition technique addressing them is one of the focuses of this thesis.
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2.3 Adaptation of Service-Based Business Processes

Modern enterprise-level SOA-based systems are characterized not only by

complex structure but also by increasing dynamicity. The major dynamic

factors include changes in service QoS, unavailability of services, exogenous

changes in the operational context, changes in business policies etc. Many

of these factors may negatively affect the normal operation of the whole

system or of some of its components. That is why, the problem of creating

business infrastructures that can rapidly and automatically adapt to envi-

ronmental changes (adaptability) in order to facilitate further achievement

of business goals is one of the critical issues in enterprise SOA.

Since the scope of adaptation of service-based systems is quite broad,

we start with positioning our contribution inside it. First of all, adap-

tation may take place at different levels of abstraction of service-oriented

architecture. These levels (or layers) are differently identified in the liter-

ature (e.g., [3, 129]), but normally at least three layers are distinguished:

1) infrastructure layer 2) service layer and 3) process layer. Our adap-

tation research concerns the last one, which is also the most abstract in

this hierarchy. This level comprises mechanisms for coordinated execution

of services, which are commonly realized through service-based business

processes. Adaptation may further be divided into short-term adaptation

(often simply called adaptation) and long-term adaptation (also know as

evolution) [129]. The former implies temporal changes in the system to

address a particular problem or exceptional case. The latter implies defini-

tive changes to the system that will change its future operation. In respect

of business processes, adaptation stands for changes to a particular process

instance while evolution stands for changes to a process model so that they

will be propagated to all its future instances. In the rest of this section we

will concentrate on the short-term adaptation of business processes. We
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also remark that the evolution of business process on the basis of the short-

term adaptation approach proposed is considered as one of the principal

future steps and is briefly discussed in Chapter 9 (Conclusions and Future

Work). Finally, we encourage the reader to consult [3] and [109] for the

broader overview and taxonomy of adaptation in service-based systems.

Monitor Adaptation Engine

Monitored
Events

Adaptation
Strategies

Adaptation 
Requirements

detects

trigger

implements

satisfy

Figure 2.5: Adaptation concepts

Business processes is currently the main tool for specifying complex

and structured business activities (and applications) in SOA. That is why

their ability to flexibly adapt to various changes in the execution environ-

ment is of high importance for enabling adaptable service-based systems.

The main concepts related to process adaptation are shown in Fig. 2.5

[3]. The monitor is supposed to check if the parameters of the execution

environment evolve as expected. Critical violations of expected behaviour

happen in the form of monitored events detected by the monitor. Mon-

itored events may describe wide range of conditions in the system, from

simple infrastructure failures to the violation of QoS properties. Monitored

events trigger adaptation requirements that express the expectations about

the process/system operation and indicate how to improved the situation

(e.g., to apply certain modification to a process instance) in order to en-

able further achievement of the business goal. Adaptation requirements

are fulfilled through adaptation strategies, which are general techniques for

achieving adaptation goals (e.g., service rebinding, process reconfiguration

or replanning etc.) Finally, it is the adaptation engine who implements

41



CHAPTER 2. STATE OF THE ART

adaptation strategies for every particular situation and set of adaptation

requirements.

Adaptation
Engine

Process
Engine

Monitor

Environment

statussolution
monitored

events

Figure 2.6: Architecture of adaptable system

The general architecture of a system for process adaptation is presented

in Fig. 2.6. The process engine is responsible for executing business pro-

cesses. The status of process execution and the status of execution en-

vironment is monitored by the monitor and constantly checked against

requirements violation. As soon as violation is detected, along with the

status information, it is reported as a monitored event to the adaptation

engined. The adaptation engine identifies which of the adaptation require-

ments are violated and chooses an adaptation strategy to follow. Finally,

a solution is derived, sent to the process engine and deployed.

There are quite many classification criteria for process adaptation tech-

niques. The most important of them are as follows:

• Adaptation Requirements. Three types of approaches can be distin-

guished. Built-in approaches statically embed adaptation logic into

the process specification. The process defined at design time does

not change its structure at run time. Rule-based approaches use

situation-action rules that explicitly indicate actions to be taken in
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order to transform a process (for example, certain service rebind-

ing or re-execution) in case a particular situation occurs. Goal-based

approaches implement adaptation on the basis of abstract goals de-

scribing the adaptation objectives. These approaches usually rely on

automated reasoning mechanisms such as planning;

• Autonomicity. Autonomicity shows how much involvement of the de-

signer is required during the adaptation. Automated approaches can

be roughly characterized as semi-automated (require some manual

work) and automated (do not require manual work);

• Adaptation Timing. Reactive adaptation is where adaptation is under-

taken when a problematic situation is reached. Pro-active adaptation

tries to detect potential problems before they really happen and act

proactively to avoid them. Post-mortem adaptation is usually asso-

ciated with situations where the normal process execution cannot be

restored and process recovery is applied in order to terminate it with

minimal loss;

• Adaptation strategies. Different approaches may implement various

strategies such as re-binding, re-configuration, recovery, re-execution

etc. More advanced techniques may dynamically switch between strate-

gies depending on the run-time situation;

• Environmental Awareness. Environment-Aware adaptation logic can

benefit from the information about the current status of the execu-

tion environment to perform adaptation better and more robustly. In

certain sense, environmental awareness reflects the dynamicity of the

approach. One particularly important type of environmental aware-

ness is context-awareness, where an approach can perform adaptation

based on the current critical parameters of the real world.
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2.3.1 Existing Approaches

The survey is structured according to the adaptation requirements cri-

terion, i.e., all approaches are divided into built-in, rule-based and goal-

based. In the approach descriptions and in the final discussion we also pay

attention to other criteria that appeared in the classification above.

Built-in Approaches

Built-in adaptation is the most basic (and chronologically first) type of

process adaptation. It consists in statically embedding the adaptation logic

into a process specification. The most primitive tool for built-in adaptation

is exception handling ([36]). Some business process languages provide their

own facilities for that. For instance, in WS-BPEL ([91]) fault, event and

compensation handlers can be used to specify sub processes that have to

be executed in exceptional situations. What is essential is that even these

simple tools allow for a few strategies to be implemented (e.g., rebinding,

re-execution with compensation, recovery, etc.)

There are also some works that try to extend standard languages in

order to improve their flexibility and robustness. As a rule, such exten-

sions go along with modifications to process engines facilitating them. For

instance, in [58] the authors propose to extend WS-BPEL in order to al-

low for dynamic swapping of participating web service instances (rebinding

adaptation strategy). For that purpose, all WS-BPEL communication ac-

tivities (invoke, receive, reply) are extended with the additional element

of selection policy. Before the activity execution the extended engine 1)

discovers services that have WSDL port type compatible with the activity,

2) selects one of them according to selection policy (e.g., QoS parame-

ters) and 3) binds it to the activity. The adaptation does not change the

process structure. A similar approach to service re-binding based on QoS
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properties of services in proposed in [132].

The approach of [78] introduces WS-BPEL extension for context-aware

process execution. The central idea is to constantly monitor the context

and to introduce specific constructs to WS-BPEL that very the execution

according to the current contextual conditions. In particular, these con-

structions include context handlers (similar to error handlers but triggered

by contextual conditions), contextual branching (contextual if ), contex-

tual process variants with dynamic “jumps” from one variant to another,

etc. The broader scope of this work is the Adaptive Pervasive Flow Lan-

guage (APFL [23]) developed in the context of the ALLOW project ([1]).

One of the objectives of APFL is to offer rich adaptation possibilities, such

as abstract activities that can be refined to concrete sub processes at run

time and constructions for context-aware execution.

Rule-based Approaches

Rule-based approaches introduce situation-action rules that explicitly state

the process instance transformations to be undertaken in order to correct

it.

Conventional rule-based approaches explicitly state a system of rules.

For example, rules for dynamic binding of services are proposed in [33].

Service are annotated with service roles and process activities can be as-

sociated to these roles to enable service discovery. Binding rules specify

how a certain activity can be dynamically bound to a service instance with

the same role. Additional binding preferences (e.g., QoS properties) are

allowed in the rules. The rule system is completely separated from process

specification. We remark that this approach is conceptually very close to

that of [58]. The only difference is that in the former the adaptation logic

in form of rules is separated from the process itself, whereas the latter em-

beds it into the process specification. This example shows that sometimes
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the border between classification groups is really vague.

In [8], a rule-based approach to defining self-healing processes is pro-

posed. In this work, conventional WS-BPEL processes are accompanied

with constraints and adaptation rules. The former determines the expec-

tations from the correct process execution and the latter indicates how to

adapt a process instance if constraints are violated. The both additions

use their own languages and are completely separated from the WS-BPEL

definition. The adaptation rules includes high-level strategy-related con-

structions (retry, rebind) that can become parts of more complex strategies.

The authors of [68] present a theoretical model of rule-based adaptable

application (technology-independent) and later show how it can be imple-

mented in SOA using the Jolie language ([85]). The work contains interest-

ing discussion on when to apply the rules (various types of proactiveness),

how to choose the order of the rules to apply, and how to classify the rules.

Defined in the detachment from concrete technologies, the framework can

also be used with other SOA technologies and beyond.

A number of approaches try to implement adaptability through process

variants. In this case, critical process sections can have a few predefined

variants that are chosen depending on the run-time situation. This class

of approaches differs from built-in adaptation since the structure of the

process may dramatically change here. At the same time, the choice of

process variants is normally realized through a set of rules, which let us

consider these approaches to be rule-based.

The basic idea behind the process variants is nicely presented in [5]. The

authors introduce worklets as reusable process fragments that can be used

to accomplish certain tasks. The main process is allowed to contain spe-

cial abstract activities (called tasks) that can be replaced with appropriate

worklets at run time. The approach allows for nested tasks (i.e., worklets

can themselves include tasks). A context model containing a set of dis-
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crete values is proposed. Worklet selection for a certain task is based on

context-aware situation-worfket rules. The rules can be joined into com-

plex hierarchies to allow for their compact description. The selection is

performed by an external component that is detached from process engine.

A comprehensive framework for managing process variants called

PROVOP (PROcess Variant by OPtions) is presented in [51, 52]. Here pro-

cess variants are flexibly defined through a basic variant and a number of

elementary transformations (such as activity insertion, deletion, move and

modification) that have to be applied to obtain other variants. Moreover,

complex relations between variants can be specified (dependency, mutual

exclusion etc.) Finally, PROVOP introduces a context model. Elementary

transformation operations may then be annotated with context conditions

in which they are applicable (which, in fact, makes them similar to trans-

formation rules), thus allowing for context-aware process adaptation. A

very similar approach is also proposed in [56].

An example of the use of aspect-oriented methodology in process

adaptation can be found in [63]. In this paper, the adaptation is performed

by identifying the most common types of mismatches and specifying adap-

tation templates for them. The points in the process where adaptation is

needed are equivalent to aspect-oriented joinpoints (they are identifiable

through queries to a BPEL specification of a process to adapt) and adapta-

tion actions are equivalent to aspect-oriented advices. Query-advice pairs

work very much like rules in rule-based approaches.

Goal-based Approaches

Goal-based approaches are those that express their adaptation needs in

form of abstract goals to be achieved. Automated goal-based approaches

have to essentially solve two problems: 1) how to derive the adaptation

goal from the environment status and 2) how to derive the adaptation
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procedure for a given adaptation goal.

Our analysis of the literature on goal-based adaptation approaches re-

vealed only one approach that intentionally targets the problem of process

adaptation. It is the SmartPM approach presented in [37]. The initial

process is defined as an abstract workflow that is dynamically bound to

services. The process is formally modeled with IndiGolog language [108]

based on situation calculus. Services are atomic activities that can perform

certain abstract tasks under certain conditions and change the execution

environment in certain way. At every step of execution, next task is as-

signed to a service and executed. If the current situation does not allow

such assignment, the adaptation is triggered. The adaptation goal is to

reach the environmental situation from which the further execution of the

main process is possible. The adaptation consists in generating an adap-

tation process whose execution from the current situation would reach the

goal situation. The problem of deriving an adaptation process is reduced

to classical planning problem.

2.3.2 Discussion

In this discussion we consider and compare the approaches surveyed above

from the perspective of their robustness against dynamic changes in the

environment. We remark that dynamic factors of the execution environ-

ment are not limited to service availability or changes in QoS properties

of services, but also include such aspects as emergence of new and more

efficient services, changes to service implementations, volatile context, dy-

namic changes to business policies etc.

The built-in static approaches ([36, 78]) provide very basic level of ro-

bustness. The main drawback of such approaches is that all the critical

situation requiring adaptation have to be recognised and addressed at de-

sign time. Indeed, such critical situations may be two many to be com-
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pletely analysed manually. Moreover, statically defined adaptation process

is vulnerable to dynamic factors that go beyond predefined exceptions or

critical contextual situation. Indeed, dynamic service availability or con-

stantly changing business policies may corrupt the predefined adaptation

procedures and require their complete redesign. Consequently, the cost

of support for built-in static adaptation may explode. The other built-in

approaches ([58, 132]), though provide run-time rebinding of services, can

deal only with very specific dynamic factors (non-functional properties or

service unavailability), implement only one strategy (rebinding) that does

not allow for complex structural process changes and feature a very simple

service model (atomic, synchronous and deterministic services).

The rule-based approaches provide a more robust and flexible adapta-

tion mechanisms compared to built-in approaches. First of all, a system

of adaptation rules is normally much more compact (and thus easy to

support) compared to an equivalent built-in system. Moreover, rules al-

low for complex dynamic restructuring of the initial process instance (e.g.,

[5, 51, 56]) and can be extremely flexible with respect to adaptation tim-

ing (e.g., [68]). Rules are also more flexible with respect to policy changes

since a change in a policy is likely to affect only a small portion of a rule

system (though further verification of the whole changed system may be

required).

Unfortunately, the situation-action rules in most of the approaches sur-

veyed above specify concrete (implementation-dependent) “action” part.

In other words, adapting actions are mostly specified as concrete subpro-

cesses ([8]) or process transformations dependent on implementation details

of concrete services. This makes rule-based approaches vulnerable to such

common dynamic factors as service unavailability or modification of service

implementations. From this point of view, approaches with abstract rules

look better (e.g., in [5], abstractness is achieved through worklets that may
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contain abstract tasks).

However, there is still one major drawback that cannot be overcome in

rule-based approaches (it can be also attributed to built-in adaptation).

Since rules are specified at design time, the designer has to choose a par-

ticular adaptation tactic for a certain extraordinary situation (such as “in

this situation do this and that”). At run time, it may happen that the

tactic chosen is not applicable (e. g., since it requires the usage of a ser-

vice that became unavailable) but a different tactic for the same problem

still exists. Similarly, it may happen that newly emerged services allow

for a more efficient tactic rather than the one currently encoded in rules.

In such situations, maintaining an up-to-date and consistent system of

adaptation rules may become a very time-consuming and error-prone task

that requires profound knowledge of the execution environment, as well as

advanced supporting tools. Moreover, our evaluation suggests that sophis-

ticated adaptation tactics usually require considerable amount of rules to

be specified.

The drawback attributed to built-in and rule-based approaches are mostly

overcome by goal-based adaptation. Specifying adaptation needs in form

of abstract goals and relying on advanced reasoning mechanisms such as

planning, this type of adaptation potentially allows for highly automated

solutions that can deal with various kinds of dynamic factors with the min-

imal involvement of the process designer. For instance, [37] demonstrates

the ability to deal with dynamic set of services, can flexibly address changes

in business policies and can dynamically identify a suitable adaptation tac-

tic by analyzing available service and their execution and business policies.

Being a pioneer in goal-based adaptation, [37] still has some disadvan-

tages, among which we can mention detachment of adaptation framework

from real standards, oversimplified service model (stateless synchronous

services), limited adaptation strategies (only replanning for precondition
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violations is allowed) and lack of nondeterminism in adaptation processes

(limitation of classical planning).

The bottom-line is that goal-based approaches, though yet not well-developed,

offer high potential for extremely flexible and robust adaptation of business

processes. We note that goal-based approached can benefit from advanced

automated service composition techniques, where composition requirements

are often described as reachability goals. The main issues that have to be

addressed are 1) how to deal with realistic services and processes , 2) how

to derive abstract adaptation (composition) goals automatically and 3) how

to realize various adaptation strategies.

2.4 Problem Statement

In the concluding discussions for Sections 2.2 and 2.3 we have already

discussed in detail the main challenges that have to be faced in order

to bring the solutions in the respective areas to conceptually new level.

Although the challenges related to the automated service composition may

look unconnected from those related to process adaptation in dynamic

environments, through this dissertation we show that once we have a service

composition engine ready to be used with realistic services and in dynamic

environments, it can serve as a core for a state-of-the-art approach to

dynamic process adaptation.

The first contribution of the thesis is the creation of a state-of-the-art

engine for automated composition of services and process fragment that

has the following main properties:

• Realistic services. The ability of the engine to compose realistic ser-

vices featuring statefulness, nondeterminism and asynchronicity. The

engine has to adhere to existing standards for specifying services and
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processes, so that it supports complete composition life cycle: from

taking specifications of components and composition requirements as

input to delivering a solution in form of executable specification as

output;

• Rich composition requirements. The engine has to allow for rich

control-flow and data-flow requirements, so that realistic composition

problems of high complexity can be expressed in it;

• Abstract requirements. The composition requirements have to be

detached from service implementation to enable 1) the ability to derive

them automatically at run time from various abstract models associ-

ated to applications and 2) the ability to reuse the same requirements

for different or constantly changing service implementations.

We are to demonstrate that the composition engine with the aforemen-

tioned properties can successfully address the challenges described in the

discussion of Section 2.2.

The second contribution is the state-of-the-art approach to dynamic pro-

cess adaptation. In particular, we show that a service composition engine

with above properties can be used as a core for advanced techniques for

dynamic adaptation of service-based business processes. For that purpose,

the following issues are to be addressed:

• Adaptation-enabling Process and Service Definitions. Con-

ventional process and service definition languages have to be extended

in order to have allow for processes with flexible and easily customiz-

able structure. They must also facilitate automatic problem detection

and adaptation goal derivation;

• Adaptation strategies. There might be multiple ways (adaptation

strategies) to modify the original process in order to address run-time
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problems. One of the central issues is to identify a compact set of such

strategies that will be enough to cover the vast majority of adaptation

cases. Moreover, there must be a reasoning mechanism that allows for

automatic selection of an adaptation strategy(s) to be used in certain

conditions;

• Automated adaptation life cycle. In order to enable completely

automatic run-time adaptation we have to automate all steps in pro-

cess adaptation life cycle, which in addition to process detection and

strategy selection includes derivation of an adaptation goal, strategy

implementation (in our case, using service composition) and solution

integration and execution.

From the title of the thesis one can see that our ultimate goal is not only

to provide theoretical framework for solving the problems above but also to

come up with prototype tools that can demonstrate the applicability of our

solutions and serve as a platform for further experiments and evaluation.
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Chapter 3

Process Adaptation in Dynamic

Environments

Among the key advantages service-oriented paradigm gives to software de-

velopers is the possibility to decrease the cost of software development and

maintenance while preserving control over software life cycle and quality.

One of the key enabling factors for these advantages is the capability of

service-oriented applications to flexibly adapt to critical changes in the ex-

ecution environment, i. e., to modify their behavior and to evolve in order

to satisfy new requirements and to fit new situations. This is especially

true for the modern SOA, where applications often operate under con-

stantly changing conditions, both in terms of the context and of services,

users and providers involved. In such setting, the same application shall

operate differently for different contextual situations, deal with the fact

that involved services are not known a priori, and be able to dynamically

react to unexpected changes. As we already showed in Section 2.3 this task

is not at all easy to solve.

In this chapter we introduce the reader to our comprehensive framework

for adaptivity of service-based business processes. The framework exploits

the concept of process fragments ([39]) as a way to model reusable pro-

cess knowledge so that service-based applications are delivered in form of
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compositions of such fragments, i.e., business processes. The adaptabil-

ity of the processes is based on our tools for run-time and context-aware

composition of fragments (it will be covered in Chapter 4).

The framework allows for business processes that are only partially spec-

ified at design time, and that are automatically refined (customized) at run

time taking into account the specific execution context. This refinement

exploits the available fragments, which are provided by the other actors

and systems to describe the services and capabilities that are offered to

the process in the specific context. The framework also supports run-time

adaptation to unexpected or improbable context changes that may affect

the execution of the application. This is achieved through a set of adapta-

tion mechanisms that, if properly combined through adaptation strategies,

automatically find solutions to bring the application to a state where the

execution can be correctly resumed.

We consider our adaptation framework per se as a significant contribu-

tion in the respective research area. However, in the context of the thesis

it also plays the role of the main motivator for our research in the area of

dynamic service composition. And this is essentially why we decided to

start the main part of the thesis from the process adaptation framework

rather than from the composition approaches themselves. In our opinion,

the adaptation framework presented below delivers a clear idea of what we

mean by “dynamic execution environment” and why the ability to com-

pose services/fragments completely automatically and at run time is so

important in modern SOA. Moreover, it serves as a platform, where we

can examine issues related to the management of composition life cycle in

dynamic setting.

We start this chapter with the motivating example from the car logistics

domain that is intensively used in many parts of the thesis, from theoretical

definitions to the final implementation and evaluation. Then we give a de-
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tailed overview of the adaptation approach with the focus on the key issues

it addresses. Finally, we define the process modeling language exploited

by our solution to model both processes and reusable process fragments.

3.1 Motivating Example

The scenario used throughout this dissertation is based on the operation of

the sea port of Bremen, Germany [19], where nearly 2 million new vehicles

are handled each year in order to deliver them from manufacturers to

retailers. The delivery process of each car (see Figure 3.1) consists of a set

of procedures that can be customized according to the car brand, model,

retailer-specific requirements, etc. Cars arrive by ship and are unloaded

and unpacked at a certain terminal. Once a car is unpacked, it has to

be moved to one of the storage areas, depending on the car type (e. g.,

covered/guarded areas for luxury cars) and on the availability of parking

spaces; different storage areas have different parking procedures that need

to be followed. The car remains at the storage area until it is ordered by

a retailer. Once a car stored is ordered, it continues its way towards the

delivery. In particular, the car is treated at dedicated treatment areas (e.

g., washing, painting, equipping, repairing) according to the details in the

order. When a car is ready to be delivered it is moved to the assigned

delivery gate, where it is loaded onto a truck, and eventually delivered to

the retailer.

Our goal is to develop a system (the Car Logistic System or CLS) to

support the management and operation of the port, where numerous actors

(i. e., cars, ships, trucks, treatment areas, etc.) need to cooperate in a

synergistic manner respecting their own procedures and business policies.

The system needs to deal with the dynamicity of the scenario, both in

terms of the variability of the actors’ procedures (customizable processes),
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Figure 3.1: Process chain of the car logistics scenario

and of the exogenous context changes affecting its operation.

Customization means that different brands and models of cars should

be treated in a similar but customizable way. Moreover new car models,

having specific requirements and procedures, have to be able to be eas-

ily integrated in the system. Similarly, the system needs to flexibly deal

with changes in the procedures of external actors such as ships and trucks.

Finally, the system needs to promptly reflect changes in international reg-

ulations and laws.

Concerning context dynamicity, examples of environment conditions to

be taken into account are the unavailability or malfunctioning of the dif-

ferent port facilities, accidental damages of cars and trucks, human errors

(e.g., a car is parked in the wrong parking lot). These conditions, although

related to specific entities in the domain, may affect the operation of other

entities, as shown in the following examples:

• Vehicle damage: A car has been unloaded from a ship and must be

parked in the storage area. A storage place is assigned to the car and

it starts to move there. While moving, the vehicle gets damaged. The

system should be able to handle damaged cars and, in case of serious

damage, to free the booked parking lot in the storage area;

• Unavailability of a storage area: A vehicle is unloaded to the unloading

area and using fragments of other partners “organizes” a process of

storing itself at some storage area. While the vehicle is moving to
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the assigned storage area, the latter is no longer available due to the

lack of space or other kind of problems. The system should deal with

the car storage, either finding and redirecting the car to a different

storage area, or moving the car back to the unloading area to let it

wait. Moreover, the system should deal with the same problem for all

the cars possessing storage tickets for the unavailable storage area.

3.2 Approach Overview

In this section we present our approach to modeling adaptable and context-

aware fragment-based systems that are able to meet all the challenges de-

scribed in the motivating example. The proposed approach enables the

adaptation of fragment-based systems, and is based on the exploitation

of context information to continuously adapt the executing processes by

appropriately composing available and reusable process fragments. While

discussing our approach, we introduce the key ingredients needed for mod-

eling and efficiently operating systems such as the CLS.

3.2.1 Application model

The system operation is modeled through a set of entities (e.g., ships, cars,

trucks, etc.) (as depicted in Fig. 3.2), each specifying its behavior through

a business process. Unlike traditional system specifications, where business

processes are static descriptions of the expected run-time operation, our

approach allows to define dynamic business processes that are refined at

run time according to the current status of the system.

The underline idea is that entities can join the system dynamically,

publish their functionalities through a set of process fragments that can

be used by other entities to interoperate, discover fragments offered by

the other entities, and use them to automatically refine their own business
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Figure 3.2: Artifacts of application model

processes. For instance, within the CLS, whenever a ship approaches the

harbor, it discovers the fragments provided by the landing manager and by

the gates. These fragments model the harbor-specific procedures and reg-

ulations that the ship should execute in order to land. Different fragments

may be provided by different gates and for different ship types. Similarly,

the ship will publish its own fragments implementing the procedures to be

followed for the unloading of cars.

Another important feature of the proposed framework is the possibility

of leaving the handling of extraordinary/improbable situations to run time

instead of analyzing all the extraordinary situations at design time and

embedding the corresponding recovery activities in the business process.
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This kind of modeling extremely simplifies the specification of business

processes that have to operate in dynamic environments, since the devel-

oper does not need to think about and specify all the possible alternatives

(with respect to context changes, availability of functionalities, improba-

ble events). It also efficiently copes with the fact that proper handling

of extraordinary situation is not always doable at design time (e.g., in

case run-time information such as a set of fragments currently available

or the current contextual situation is needed to properly react to dynamic

changes).

These dynamic features offered by the framework rely on a shared con-

text model, describing the operational environment of the system. The

context is defined through a set of context properties, each describing a

particular aspect of the system domain (e.g., current location of a car, sta-

tus of a car, availability of a storage area). A context property may evolve

as an effect of the execution of a fragment activity, which corresponds to

the “normal” behavior of the domain (e.g., current location of car may

change from unpacking area to storage area A as a result of the execution

of movement fragment), but also as a result of exogenous changes (e.g., car

status changes from ok to nok). A context configuration is a snapshot of

the context at a specific time, capturing the current status of all its context

properties.

To better explain the idea behind the context, let us consider some

of the context properties that may be defined in the scope of CLS. For

instance, the CarLocation diagram (depicted in Fig. 3.3) captures how the

car location can change over time. Initially, the car is on the ship. The car

process aims to unload the car to the unpacking area and move it to the

storage. The treatment location is where the car can be repaired. Similarly,

the CarStatus diagram represents car operability status. An example of

an exogenous change could be where the car status changes from ok to nok
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Figure 3.3: Examples of context properties in car logistics scenario

by the exogenous event damaged.

Business processes and fragments are modeled as Adaptable Pervasive

Flows (APFs) [23, 53], an extension of traditional workflow languages (e.g.,

BPEL) which makes them suitable for adaptation and execution in dy-

namic pervasive environments. In addition to the classical workflow lan-

guage constructs (e.g., input, output, data manipulation activities, com-

plex control flow constructs), our edition of APFs adds the possibility to

relate the process execution to the system context by annotating activities

with preconditions, effects and compensations. Preconditions constrain the

activity execution to specific context configurations, and in our framework

are used to catch violations in the expected behavior and trigger run-time

adaptation. Effects model the expected impact of the activity on the sys-

tem context, and are used to automatically reason on the consequences of

fragment/process execution. Finally, compensations indicate the goal over

the context to be reached in case we want to compensate the effect of an

activity already executed.

Consider for instance the precondition P1: CarStatus=ok and CarReg-

istration=no in the Registration Reply activity of Fig. 3.4 (label 1B). The
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Figure 3.4: Adaptation mechanisms in car logistics scenario
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Storage Manager, the provider of the fragment, specifies through this con-

dition that the activity can be executed only if the car is not yet registered

and is not damaged. The same activity, is annotated with the effect E1:

CarRegistration.registered, meaning that the expected impact of this activ-

ity is to make the system context evolve to a configuration where property

CarRegistration is in state yes. Finally, it is also annotated with the com-

pensation goal that has to be fulfilled every time adaptation requires to

rollback the process instance and it has already been successfully executed.

It is the compensation goal C1: CarRegistration=no.

Finally, in order to have dynamically customizable processes, we ex-

tended the APFL language with constructs enabling the customization

and adaptation of process fragments. In particular, we introduced the

possibility of specifying abstract activities within fragments. An abstract

activity is defined at design time in terms of an abstract context-based goal

it is supposed to achieve. It is expressed as context configurations to be

reached, and is automatically refined at run time to an executable process

according to the goal to be reached. Being performed at run time, the

procedure of refinement can benefit from the run-time information such as

the set of available fragments and the current context configuration.

For instance, the abstract activity Store of the car process model in

Fig. 3.4 (label 1A), aiming at storing the car in a storage area, is anno-

tated with the goal G3: CarProgressStoring=yes. At run time, a specific

fragment composition will be generated to achieve this goal taking into

account the characteristics of the car, the status of the storage areas, and

the available fragments for the car storing.

3.2.2 Adaptation Mechanisms

In this section we present different adaptation mechanisms that can be used

to handle the dynamicity of context-aware pervasive systems. Our adapta-
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tion framework can deal with two different adaptation needs: the need for

refining an abstract activity within a process instance, and the violation

of the context precondition of an activity that has to be executed. In the

former case, the problem is resolved by providing a refinement process for

an abstract activity. In the latter case, the aim of adaptation is to resolve

the violation by bringing the system to a context state where the process

execution can be resumed.

Refinement mechanism

The refinement mechanism is triggered whenever an abstract activity in

a process instance needs to be refined. The aim of this mechanism is to

automatically compose available process fragments taking into account the

goal associated to the abstract activity and the current context configura-

tion. The result of the refinement is an executable process that composes a

set of fragments provided by other entities in the system and, if executed,

fulfills the goal of the abstract activity. As we mentioned, the advantage

of performing adaptation in general and refinement in particular at run

time is twofold: available fragments are not always known at design time

(e. g., a truck arriving at the delivery area may provide its own loading

fragment), and the correct refinement may strongly depend on the current

execution context (e.g., a storage area may be full and thus its fragments

are not usable).

Consider, for instance, the abstract activity Store of the main car pro-

cess in Fig. 3.4 (label 1A). During the execution the activity is automati-

cally refined and composes five available fragments (i.e., Registration, Stor-

ageAssignment, StoreToA, StoreToB and StoreToC) provided by different

entities (i.e, Storage Manager, Storage Area A, Storage Area B, and Storage

Area C ). The refinement obtained is injected in the car process instance

that can continue its execution and achieve its goal.
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Composed fragments may also contain abstract activities which requires

further refinements during the process execution. The result of this incre-

mental refinement is a multi-layer process execution model (see Fig. 3.4),

where the top layer is the initial process of the entity and intermediate

layers correspond to incremental refinements.

Local Adaptation Mechanism

Local adaptation aims at identifying a solution that lets the process engine

to resume the execution of a process that faulted due to precondition vi-

olation from the activity where the violation occurred. To achieve this, a

composition of fragments is generated with the goal to bring the system

to the situation where the precondition is not violated anymore. After its

execution, the execution of the main process can be resumed.

As an example, consider adaptation A1 of Fig. 3.4 (label 1B). The car

process is ready to execute the Registration Reply activity of the Registra-

tion fragment, however the car gets damaged and the precondition P1 of

the activity is not valid. The aim of local adaptation in this case is to re-

pair the car (i.e., precondition CarStatus=ok must hold). It is achieved by

composing two fragments that allow us to move the car to the treatment

station (MoveToTreatment) and to repair it (Repair). After executing the

local adaptation process, the car process instance can resume the execution

of the original process.

Compensation Mechanism

The compensation mechanism can be used to dynamically compute a com-

pensation process for a specific activity. The compensation process is a

composition of fragments specifically selected for the current context and

whose execution fulfills the compensation goal.

The advantage of specifying activity compensation as a goal on the
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context, rather than explicitly declaring the activities to be executed (e.g.,

as it is done in WS-BPEL), are the same as with the adaptation in general:

in this case it is possible to dynamically compute the compensation process

taking into account the current status of the execution environment.

Consider for instance the compensation of the BookA activity of the

StoreToA fragment provided by Storage Area A in Fig. 3.4 (lable 1C). The

compensation goal C2 associated to the activity requires that a context

configuration where there are no places booked for the car in the storage

area is reached. In our case the activity needs to be compensated after

its completion and the generated compensation process requires that the

ticket for the storage area is dropped.

3.2.3 Adaptation Strategies

When different adaptation mechanisms are combined and executed in a

precise order, adaptation strategies are realized. They are able to deal with

complex adaptation needs that cannot be addressed by applying adaptation

mechanism in isolation. An example is the case where a violation of an

activity precondition cannot be resolved with local adaptation (e. g., there

is no way of making the storage area A1 available for adaptation need A3

of Fig.3.4 (label 1E). Another example is the failure of an abstract activity

refinement, caused by unavailability of fragments to be composed to fulfill

the goal within a specific execution context.

Our framework provides different ways of combining adaptation mech-

anisms. A first possibility is a one shot adaptation, where the different

adaptation mechanisms are combined for a single adaptation problem, and

a comprehensive solution is searched for and, if found, executed. Another

possibility is incremental adaptation, where each adaptation mechanism

in the strategy is called and the resulting adaptation process is executed

before applying the next adaptation mechanism. This interleaving of adap-
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tation and execution makes it possible tailor each adaptation to the specific

execution context, but has the main drawback of not knowing in advance

whether the whole strategy can be completely executed (though, a solution

to this problem may include execution simulation).

In the following we present some adaptation strategies that we have

identified and that resulted to be very useful in our scenario. All the

patterns can be implemented through one-shot or incremental adaptation,

and, if needed, other patterns can be easily added to the framework.

The rerefinement strategy can be applied whenever a faulted activity

belongs to the refinement of an abstract activity. The aim of this strat-

egy is to compensate all the activities of the refinement labelled with a

compensation goal and that have been already executed (through compen-

sation mechanism) and to compute a new refinement (through refinement

mechanism) that satisfies the goal of the abstract activity and takes into

account the new environmental conditions. This strategy is used in the sce-

nario of Fig. 3.4 to resolve the adaptation need A3 (label 1E), where the

storage area A1 becomes unavailable. In this specific execution context,

the rerefinement of the abstract activity StoreAndDropA requires to com-

pensate the activities BookTicketA1Reply of the BookStorageA1 fragment

of entity Storage Area A1 by dropping the ticket and then to recompute a

fragment composition that, taking into account the current storage avail-

ability, allows the car to be parked in Storage Area A2 (see Fig. 3.4 (label

1F)).

The backward adaptation strategy aims at bringing back the process

instance to some specific point in the process from which, given the new

context configuration, a different execution decision may be taken. The

easiest way to exemplify this situation is where at some branching point of

the process you (or a fragment under execution) decides which branch to

enter. Afterwards, it may happen that the further execution in the branch
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chosen is not possible, nor the aforementioned strategies can help to change

the situation for better. The radical solution could be to compensate what

has already been done in this branch and to jump back to the point where

you took a decision on the branch (so called decision point) in hope that a

different branch will be taken. This strategy requires the compensation of

all the activities that need to be rollebacked (compensation mechanism),

and for bringing the context to a state where the precondition of the activ-

ity next to the decision point is satisfied (local adaptation). In this case,

the main process execution restarts form a decision point. One overhead

of this strategy is that we have to manually designate the decision point,

which become another component of fragment annotation. This strategy is

used in our scenario to deal with adaptation A2 (see Fig. 3.4 (label 1D)),

where the storage area A is no longer available but a parking ticket has

already been booked for the car. In this case, where neither local adapta-

tion nor rerefinement would work, a successfull strategy could be to bring

back the execution to an activity that can potentially make a different deci-

sion about the storage area assigned to the car (i.e., AssignStorageRequest

in StorageAssignment fragment). To implement this strategy there is the

need for compensating the BookA abstract activity by dropping the ticket

(i.e., DropTicketA fragment) and of making the precondition P2 valid (i.e.,

executing Move2Unpacking fragment, see Figure 3.4 (label 1G)).

We remark that other adaptation strategies (or even mechanisms) can

be defined within our formal framework. Here we discussed only those we

needed in the scenario (they were also the most intuitive). New strate-

gies can be defined by composing the adaptation mechanisms in a different

way or by combining sub-strategies. To give an example, a possible strat-

egy could be to search for a local adaptation, and, in case no solution is

found, try backward adaptation within the same fragment composition,

then apply the rerefinement mechanism, then recursively apply backward
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and rerefinement mechanism, moving up in the hierarchy of execution lay-

ers, till the upper layer, which is the process instance itself. A completely

different strategy could be to search for alternative solutions in parallel and

then choose the best solution according to a set of predefined metrics (e.g.,

number of activities to be performed, impact on the process structure,

impact on the context configuration).

3.3 Adaptable Pervasive Flows and APFL

Adaptable Pervasive Flows (APFs) [53, 23] have been proposed as an ex-

tension of traditional workflow concept in order to make workflows flexible

enough to be used in pervasive execution environments. One of the main

requirements to APFs is the ability to dynamically (at run time) modify

their structure in order to adapt to changes in the execution environment.

To make it possible, certain changes have to be done both to the language

for specifying APFs and to the execution engine that executes them.

In particular, in order to allow for the changes based on the status of

the execution environment, the process specification has to contain some

information that links process structure and its particular activities to the

execution environment (e.g., context), so that the adaptation tools can

automatically derive the changes to the process instance required by the

current context. The structure of such process has to be flexible enough

to integrate changes “on the fly”. Correspondingly, the execution engine

has to additionally be equipped with tools that monitor the status of the

context and tools that allow for dynamic changes to the running process

instances.

In our research on process adaptation we needed a process model that

possessed the qualities mentioned above but stayed adhered to service-

based systems. That is why we adopted and modified the Adaptable Per-
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vasive Flow Language (AFPL [23]). The APFL has originally been intro-

duced to model APFs and is based on WS-BPEL. It extends the latter in

order to take into account the aspects related to pervasive applications. In

particular, APFL distinguishes basic activities into two groups: concrete

activities and abstract activities. Concrete activities include all activities

for communicating with services (e.g., reply, receive) plus some other

activities that go beyond service communication (e.g., internal data ma-

nipulation or human operation). An abstract activities are non-executable

activities that abstractly define some tasks that have to be performed at

certain point in the process. The idea is that the proper implementation of

an abstract activity can be derived and assigned to it dynamically at run

time. The implementation can be derived automatically using the abstract

task specification attached to the abstract activity, and can take into ac-

count the most recent information about the execution conditions. As we

already showed in Section 3.2, abstract activities, while simple in under-

standing, bring unprecedented level of flexibility to process structure. The

set of structured activities included in APFL mostly repeats those used in

WS-BPEL. The further details on the APFL can be found in [78].

In this paper, we consider a simplified version of APFL, that is de-

picted in Table 3.1. Among the basic activities are send, receive for

communicating with services, concrete to model any kind of internal

activity (e.g., internal processing, or human operations) and abstract

for any abstract activity. The structured activities include sequence,

switch,while and pick, whose semantics is the same as in WS-BPEL.

As we will show in the next section, we equip processes and process frag-

ments with context-based annotations to enable context-based adaptation

mechanisms. Moreover, since we do not consider the data aspect in our

adaptatino-related research, we require that all conditions used in process

specification (in switch, while) are expressed as context formulas. The
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further details on this will be given in the next chapter.

Table 3.1: Basic and structured activities of APFL

APFL Basic Activities

send

receive

concrete

abstract

APFL Structured Activities

sequence

switch

pick

Our edition of APFL language is used throughout the thesis to specify

both executable processes attached to entities within the CLS and to spec-

ify process fragments that are used to advertise the functionality provided

by entities. In fact, process and fragments can be compared to executable

and abstract WS-BPEL specifications respectively.

3.4 Discussion

From the description of the scenario and adaptation approach it can even-

tually be observed that in extremely volatile environments the predefined

solutions may often be inefficient and, what is more frustrating, even erro-

neous. Since dynamic changes in the environment can occur at any time,

the general intuition is that the closer to the execution point a process

is defined the more likely its execution will be successful. Indeed, a pro-

cess defined immediately before the execution can take into account the

most up-to-date information about the environment and, consequently, it

becomes less probable that critical changes causing process failure will

happen before/during the execution. The attempt to include predefined
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“exception handlers” for all extraordinary cases does not work since 1)

such cases may be too many and 2) not all extraordinary cases may be

predicted (e. g., certain changes in fragment specification).

The conclusion is that an affordable solution can be provided only when

processes are refined and, if needed, repaired at run time. However, such

mechanisms can hardly be realized by “manual” composition and the au-

tomated techniques are needed. So we come to the need of an automated

engine for fragment composition that could be integrated with the adap-

tation framework above. The complete automation of the composition

process essentially implies that also the composition requirements have to

be derived automatically, by examining the current situation in the sys-

tem and understanding the adaptation needs. Such examination is likely

to be performed at the level of the context and contextual annotations of

fragments. As a result, the composition requirements will originally be

expressed at the abstract level (e.g., to bring the “Car Status” property

to state “ok”), which requires that composition engine is able to deal with

such context-based requirements.

Our composition engine is presented in the next chapter. In Chapter

5 we show that it is powerful enough to support all types of adaptation

mechanisms and strategies introduced by the adaptation framework. In

there, we also discuss the details of how the composition engine integrates

with the adaptation framework and, most importantly, what are the issues

of composition execution in dynamic environment.
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Chapter 4

Context-Aware Composition of

Fragments

This chapter is devoted to the fragment composition approach inspired

by the process adaptation framework introduced in Chapter 3. The cen-

tral novel idea of the approach is the use of explicit context model as a

way to conceptually describe operational semantics of fragments and to

express composition requirements detached from service implementations.

The chapter defines the formal model of composition and covers all phases

of fragment composition, from representing their specifications with the

elements of the model to building a planning domain to resolving the for-

mal composition problem with a planning algorithm. We start with the

approach overview (Section 4.1), then introduce the elements of the for-

mal model (Section 4.2) and, using these elements, define the problem of

fragment composition (Section 4.3). Afterwards we show how a formal

composition problem can be converted into a planning problem (Section

4.4). Finally, the ad-hoc planning algorithm is presented and proved to be

correct and complete (Section 4.5).
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4.1 Overview

The overview of our fragment composition model is represented in Fig. 4.1.

It is built around the explicit model of the execution context, which is a

collection of context properties. Each context property models some aspect

of the application domain that is relevant for a particular composition

problem. For example, in our motivating case study context properties

might be car location, car status, storage availability etc.
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Figure 4.1: Fragment composition model

Each property may have complex behaviour (e. g., the car location and

status may change over time). Context property behaviour is captured by

its state diagram, which defines all possible property states and transitions

between them. In fact, the transitions correspond to activities that can be

performed over the context property (e.g., the car status may change as a

result of repair) and to the external events affecting it (e.g., car can get

damaged). We remark that our model of context properties is conceptu-

ally close to the notion of business process artifacts with behaviour ([89]).

However, in our approach they are used to reason on how a certain objec-
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tive can be achieved through fragment execution, rather than for process

modeling purposes.

To link fragments defined in APFL (or, potentially, in any other similar

language), we annotate fragment descriptions with context-related infor-

mation. In this way we implicitly define mapping between the execution of

fragment activities and the state of context properties. As we mentioned

in Section 3.2, fragment activity may be annotated with effect, precondi-

tion and goals (only for abstract activities). The aforementioned fragment

annotations are usually quite intuitive since they reflect the functional

properties of fragments from the perspective of the application domain.

In order to define composition requirements on abstract level, we define

them as reachability goals for context property states rather than fragment

states (e.g., the car status have to be ok). We remark that the requirements

language can be extended with much more sophisticated constructs (e.g.,

see [17]), but since our primarily objective in this work was the practical

implementation and demonstration of concepts we reduced the require-

ments language to simple reachability of context states (for more complex

composition requirements see Chapter 6).

The core idea of our fragment composition model is that, while frag-

ment execution is closely related to the changes in context properties, the

modeling of the latter does not depend on a particular fragment implemen-

tation. As such, by expressing composition requirements at the level of

context properties on the one side, and by relating fragment execution to

context properties on the other side, we create a composition framework

in which composition requirements, though detached from fragment imple-

mentations, can always be automatically grounded on them.

In order to use abstract requirements with particular fragments, we

have to restate them in terms of this fragments. Ans this is exactly what

we mean by grounding. It is easy to understand that the same abstract
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requirements will be grounded differently for different fragment implemen-

tations. However, using fragment annotations the procedure of grounding

can be completely automated so that the requirements can be dynamically

adjusted to certain concrete fragments.

It is worth to notice that in this way it becomes easy to modify a sce-

nario to account for different fragment implementations: it is enough that

new fragments are properly annotated, while it is not necessary to change

context property models nor composition requirements.

As we will show in Section 4.4, once context properties and compo-

sition requirements are specified and component fragments are properly

annotated, the whole set of these specifications can be converted into a

planning problem which is then resolved using planning algorithms.

Another important point is that using our fragment composition engine,

all the aforementioned adaptation mechanisms and thus strategies can be

realized (for details see Chapter 5).

4.2 Composition Model Elements

In this section we formally define all elements of our composition frame-

work. One of the key issues addressed is how real APFL fragment spec-

ifications correlate with the fragment model used in our approach. All

elements are accompanied with examples from the CLS scenario.

4.2.1 Context

We model the context as a set of context properties. Context property

behaviour is described by a state transition system that contains all pos-

sible states of the context property and transitions between them. Each

transition is labeled with a context event. Formally:

Definition 1 (Context Property). Context property is a state transition
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system p = 〈L, l0, E, T 〉, where:

• L is a set of context states and l0 ∈ L is the initial state;

• E is a set of context property events;

• T ⊆ L× E × L is a transition relation.

In our context model, context events are usually triggered by fragment

execution (we sometimes call them controlled events). However, some

events are not controlled by fragments and are somehow external (or ex-

ogenous) to the system. This difference is demonstrated in the following

example.

Example 1 (Context Properties). In our motivating example, one con-

text property considered is the “Car Status” (Fig. 4.2), which is attached

to any car entity operating within the scenario. It includes two states: ok

corresponds to operable car and nok corresponds to non-operable car. An

exogenous transition (ok, damaged, nok) models a situation where the car

gets damaged (of course, there is no service that intentionally breaks the

car, that is why the corresponding event is exogenous). On the contrary, a

controlled transition (nok, repaired, ok) models a situation where the car

is repaired.

nok

repaired

ok

damaged

Figure 4.2: Context property for car status

Examples of other types of context properties within the car logistics

scenario are given in Fig. 3.3).
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Later in this chapter we will show that our composition approach ignores

exogenous events at the composition phase. However, in the next chapter,

we provide mechanisms for handling such events during the composition

execution (i.e., outside the composition engine).

Since the overall context may be quite complex, it can be defined as a

set of context properties (what is essentially demonstrated in Fig. 3.3). In

this case we require that evolutions of context properties within the same

context do not explicitly correlate, i. e., they feature mutually disjoint sets

of context events. Formally, the context is defined as follows:

Definition 2 (Context). A context is a set of context properties C =

{p1, p2, . . . , pn} such that pi = 〈Li, l0i , Ei, Ti〉 for all i ∈ [1, n] and for any

two constituent context properties pi, pj ∈ C sets of events do not intersect

(i.e., Ei ∩ Ej = ∅). In this case, the current state of the context is deter-

mined by current states of all its constituent context properties, so that the

initial context state is l0C = (l01, l
0
2, . . . , l

0
n) and the set of all context states is

LC =
n∏
i=1

Li. We additionally introduce a set of context events EC =
n⋃
i=1

Ei.

In order to be able to succinctly specify groups of context states we

use context formulas which are disjunctions of conjunctions over states of

context properties belonging to some context:

Definition 3 (Context Formula). Let C = {p1, p2, . . . , pn} be a context

such that pk = 〈Lk, l0k, Ek, Tk〉 for all k ∈ [1, n]. A state formula for C is a

propositional formula
∨
i

∧
j

lij, where lij ∈
n⋃
k=1

Lk.

The space of all context formulas of context C is denoted as RC . In

order to define the satisfaction of context formulas we introduce the notion

of context state projection:

Definition 4 (Context State Projection). Let C = {p1, p2, . . . , pn} be

a context such that pi = 〈Li, l0i , Ei, Ti〉 for all i ∈ [1, n] and let l =
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(l1, . . . , lj, . . . , ln) ∈ LC be one of its states. Projection of state l onto

context property pj is defined as follows:

l ↓pj= lj

The satisfaction of the context formula by context states is defined as

follows:

Definition 5 (Context Formula Satisfaction). Let C = {p1, p2, . . . , pn} be

a context such that pi = 〈Li, l0i , Ei, Ti〉 for all i ∈ [1, n]. Let ρ, ρ1, ρ2 ∈ RC be

context formulas over C. Context state l ∈ LC satisfies ρ (denoted l |= ρ),

if and only if one of the following holds:

• ρ = >;

• ρ ∈ Li, i ∈ [1, n] and l ↓Σj= ρ;

• ρ = ρ1 ∨ ρ2, such that s |= ρ1 or s |= ρ2;

• ρ = ρ1 ∧ ρ2, such that s |= ρ1 and s |= ρ2.

A context formula can be associated with a set of states it satisfies. As

it will become clear in future sections, we adhere to formulas in form of

disjunction of conjunctions in order to be able to properly handle abstract

activities within our formal model. Nevertheless, we remark that with this

restriction we still have enough flexibility to identify any subset of context

states with a single formula (indeed, any context diagram state can be

identified with a conjunction, while any set of states is a disjunction of

corresponding conjunctions). The exception is an empty set of states,

which, however, can hardly be useful in our model. We also remark that

each conjunction may have no more than one state per context property,

otherwise it would identify an empty set (a single context property cannot

be in two states at a time).

For the future use, we define the applicability of context event on the

context as follows:
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Definition 6 (Context Event Applicability). Let C = {p1, p2, . . . , pn} be a

context, such that pi = 〈Li, l0i , Ei, Ti〉 for all i ∈ [1, n] and its set of context

states is LC, and its set of context events is EC. Event e ∈ EC is applicable

on state l ∈ LC (denoted AppC(e, l)) if ∃i ∈ [1, n] : ∃(l ↓pi, e, l′) ∈ Ti.

Informally, the event is applicable on the context state if there exists a

constituent context property such that this event is applicable on its state

corresponding to the current context state.

4.2.2 Annotated Fragments

In our framework we use a unified model for both fragments and processes

(which often represent the composition of fragments), and uniformly use

the term of fragment for both of them. We model fragments as state

transition systems where transitions are labelled with two different types of

actions : controllable and uncontrollable. Controllable actions are used to

model process activities that do not depend on external actors (e. g., send

or concrete). Uncontrollable actions model activities whose execution

depends on external actors (e. g., receive or pick). Finally, the both

types of actions are used to model abstract activities (the details are

discussed later in this section). The distinction between controllable and

uncontrollable actions is crucial for proper handling of the asynchronicity

of fragments behaviour in fragment composition. The fragment STS is

formally defined as follows:

Definition 7 (Fragment). A fragment is a deterministic state transition

system f = 〈S, s0, I,O,R〉, where

• S is the set of states and s0 ⊆ S is the initial state;

• I and O are sets of controllable and uncontrollable actions such that

I ∩ O = ∅;
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• R ⊆ S × {I ∪ O} × S is a transition relation.

Example 2 (Repair Fragment). In connection with the “Car Status” con-

text property in Example 1, a simple variant of the “Car Repair” fragment

is given in Fig. 4.3). It is provided by a treatment facility and is used

for repairing cars. It is a simple request-response fragment that, upon the

request repairRequest, replies with repairResponse indicating that treat-

ments is successful. Here and later in the text we prepend ’ !’ and ’?’ to

the names of controllable and uncontrollable fragment actions respectively.

!repairRequest

?repairResponse

Figure 4.3: Fragment model of “Car Repair” fragment

To link a fragment to some context C, we introduce context annotations

in fragment specifications. In particular:

• any send, receive or concrete activity can be annotated with a

precondition specifying a set of context states in which activity exe-

cution is allowed;

• any send, receive or concrete activity can be annotated with an

effect specifying a set of context events that are triggered with the

execution of the activity;

• any abstract activity must be annotated with a goal specifying a set

of context states in which a task related to this activity is considered

to be completed.
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Since propositional formulas can be used to capture any set of context

states, fragment annotation can be formalized as follows:

Definition 8 (Fragment Annotation). Let f = 〈S, s0, I,O,R〉 be a frag-

ment and let C be a context. An annotation of fragment f over context C

is a tuple ωf = 〈P , E ,G〉, where:

• P : {I ∪ O} → RC is the precondition labeling function;

• E : {I ∪ O} → E∗C is the effect labeling function. Any action effect

E(a) may contain no more than one event per context property, i. e.,

for any context property p = 〈L, l0, E, T 〉 ∈ C the following holds:

6 ∃e1, e2 ∈ E(a) : e1, e2 ∈ E. Moreover, if E(a) 6= ∅ then G(a) = ∅ (i.e.,

an action can be annotated either with a goal or with an effect);

• G : {I ∪ O} → RC is the goal labeling function, such that G(a) 6= ∅
only if E(a) = ∅ (i.e., an action can be annotated either with a goal

or with an effect).

We remark that these annotations are used both in APFL specifications

and in formal fragments defined in Def. 7. In the latter case, the union of

a fragment and its annotation form an annotated fragment :

Definition 9 (Annotated Fragment). Let C be a context, let f be a frag-

ment and let ω be its annotation over C. An annotated fragment is a tuple

f+ = 〈f, ω〉.

Example 3 (Repair Fragment). Joining together Examples 1 and 2, in

Fig. 4.4 we show how the “Car Repair” fragment can be annotated. The

repairRequest action is annotated with a precondition CarStatus = nok

meaning that its execution is allowed only in context states where the state

of the “Car Status” context property is nok. Conceptually, it means that

“Car Repair” fragment can be only applied to non-operable cars, which is
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a sort of business policy. Similarly, the effect of the repairResponse action

is associated with even CarStatus.repaired indicating that the expected

result of the “Car Repair” fragments is that the car status changes from

nok to ok. We remark that this is just a very simple example that gives

the flavour of how our formal framework works. In general, fragments and

their annotations may be way more complex.

nok

repaired

ok

damaged

!repairRequest

?repairResponse
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P: CarStatus = nok

E: CarStatus.repaired

Figure 4.4: Fragment annotation of “Car Repair” fragment

Annotated APFL process as STS. In the following we present the

synopsis of our APFL language with annotations and the details of how

an annotated APFL process can be transformed into an annotated STS

as defined in Def. 8. Since both fragments and processes are defined in

the same language, the translations below are valid for both of them. Our

translation supports all APFL basic and structured activities introduced

in Table 3.1. In Table 4.1 the translation for basic activities is shown.

Specifically, send and concrete are represented with a single controllable

transition, while receive is a single uncontrollable transition.

Abstract activities are way more complex since at the moment of

creating a new process they are not refined to a concrete process and the

only thing we know about them is their abstract goals. We treat an abstract
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Table 4.1: Translation of basic APFL activities into STSs

APFL Basic Activity STS Annotation

receive

P(A) = P

E(A) = E

C(A) = C

send

P(A) = P

E(A) = E

C(A) = C

concrete

P(A) = P

E(A) = E

C(A) = C

abstract

G(ai) = gi

activity as a “black box” that performs a task as defined by its goal. In

this regard, an abstract activity combines the properties of controllable

and uncontrollable actions. On the one hand, the initiation of an abstract

activity is controllable (within a process we can decide if to execute it

and when). On the other hand, it is not possible to predict a priori the

terminal context configuration. In STS, such behaviour can be modeled

as a controllable action followed by a number of uncontrollable actions

corresponding to all possible terminal context states. We actually reduce

the number of terminal states to the number of conjunctive clauses in the
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goal formula. Later in this section we will make this transformation rule

clearer.

Table 4.2: Translation of structured APFL activities into STSs

APFL Structured

Activity

STS Annotation

sequence

switch

P(a1) = ρ1

P(a2) = ρ2

P(a3) = ¬ρ1 ∨ ¬ρ2

pick

Based on the above translations of basic activities, a structured APFL
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activity (sequence, switch, while and pick) is translated by recursive

translation of its subactivities and their further linkage into a more complex

STS as shown in Table 4.2. Since and APFL process at higher level of

abstraction always consists of one activity (probably, structured), such

recursive translation procedure can be applied to complex processes.

Example 4. In the CLS scenario, the Landing Manager is an entity that

is responsible for landing ships to the gates. As any other entity within

the CLS, the landing manager has an executable process attached to it

that regulates its operation. In Figure 4.5 we show the APFL process that

regulates the operation of the Landing Manager. From the process, it can

be seen, that ship handling consists in landing it to the gate and then

providing its departure. Some of the activities are abstract (PrepareGate1,

PrepareGate2 and ShipDeparture) and will be refined at run time. The

annotation details are presented in the accompanying table. The result of

the translation of the main process of the Landing Manager into annotated

model is shown in Figure 4.6. The transformation of fragments is done in

the same way as the transformation of processes.

Figure 4.5: Annotated APFL process of Landing Manager
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Figure 4.6: Landing Manager process as STS

4.2.3 STS to APFL

In order to be able to produce executable processes, we have to provide the

rules for backward translation of state transition systems into APFL pro-

cesses. Indeed, in our formal model, the composition is obtained in form

of a state transition system and, in order to be further executed has to

be converted into an APFL process. To guarantee that such conversion is

possible, we have to impose a few additional restrictions on the structure of

STSs encoding compositions. In particular, a solution STS cannot contain

multiple controllable actions starting from the same state. Indeed, such

constructions are not allowed in APFL since the process engine would not

be able to figure out which of the actions has to be executed next. Sim-

ilarly, the STS cannot contain an uncontrollable and controllable action

from the same state, since in this case the process engine would not be

able to figure out if it has to execute a controllable action or to “listen”

to an uncontrollable one. Such conflicting situations are referred to in

the literature as ”internal” nondeterminism. At the same time, having a
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number of uncontrollable actions from one state is quite natural since it

reflects the nondeterministic behaviour of external partner, where all cases

have to be taken into account. Such situation is easily processed by the

process engine (e.g., pick activity of APFL models the situation where

multiple uncontrollable actions can unpredictably fire). These second type

of situations is also known as ”external” nondeterminism. Summing it

up, “external” nondeterminism is acceptable and “internal” nondetermin-

ism is not acceptable in an STS that encodes an executable process. We

also require that runnable process is deterministic. Formally, we introduce

runnable STS as follows:

Definition 10 (Runnable Process). A process f = 〈S, s0, I,O,R〉 is

runnable if for each s ∈ S, if (s, a, s′) ∈ R and a ∈ I then no other

transition is available from s.

The only situation where multiple controllable actions from the same

state could be unambiguously resolved is when they featured preconditions

corresponding to mutually disjoint sets of context states. These would

model a switch structure in the final process. However, since in our

model context configuration at each point is completely predictable (con-

text evolves only as a result of action executions), at each such point of

choice we can unambiguously figure out which choice will be made by the

process engine at run time. Consequently, including all controllable actions

from the same state in this case would be somewhat redundant.

The translation of a runnable process (STS) into an APFL process is

quite straightforward. Since we prevent loops in the final STS (it will be

better explained in the section to come), we simply revisit all states of

the runnable STS and convert the respective transitions into APFL activ-

ities using the information in specifications of component fragments and

by inverting the transformation rules for APFL-to-STS conversion. For

example, an uncontrollable transitions become receive (or pick if muti-
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ple uncontrollable transitions originate from the same state). Similarly,

controllable transitions become send or concrete or abstract.

4.2.4 Context-Aware System and Annotation Semantics

A context and a set of fragments annotated over it form a context-aware

system:

Definition 11 (Context-Aware System). Let C be a context and let F+ =

{〈f1, ω1〉, 〈f2, ω2〉, . . . , 〈fn, ωn〉} be a set of fragments annotated over C.

Context-aware system is a tuple Ψ = 〈F+, C〉.

By means of fragment annotations, the relation between the context

evolution and fragment execution is created. This relation is twofold. First,

the ability of the activity to be executed is constrained to certain context

configurations. Second, the activity execution may trigger the context

evolution. To formalize these two relations, we introduce the notions of

action executability and action impact.

An action can be executed from a context configuration if 1) the action

precondition holds in this configuration and 2) all context events belonging

to the action effect are applicable on this configuration. Formally:

Definition 12 (Action Executability). Let Ψ = 〈F+, C〉 be a context-aware

system with a set of context states LC and a set of context events EC.

Action a belonging to some fragment f+ ∈ F+ annotated with precondition

P(a) = ρ and effect E(a) = {e1, e2, . . . , en} is executable from context state

l ∈ LC if and only if

1. l |= ρ;

2. for all i ∈ [1, n] event ei ∈ E(a) is applicable on state l, i.e., AppC(ei, l);

The set of all context states in which a is executable is denoted as ExecΨ(a).
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The impact indicates how the current context state changes after action

execution. The impact of an action is determined by the action effect or

by the action goal (only one of them can belong to action annotation).

Actions that are not annotated with effect or goal are impactless and do

not change the context configuration.

For an action annotated with effect, all events belonging to the effect

are considered to be triggered as a result of action execution:

Definition 13 (Action Impact (Effect)). Let Ψ = 〈F+, C〉 be a context-

aware system with a set of context states LC and a set of context events

EC. The impact of action a belonging to some fragment f+ ∈ F+ and

annotated with non-empty effect (E(a) 6= ∅) when executed from context

configuration l ∈ LC (denoted ImpΨ(a, l)) is a context configuration l′ ∈ LC
such that for every context property pi = 〈Li, l0i , Ei, Ti〉 ∈ C, if ∃e ∈ E(a) :

(l ↓pi, e, l′i) ∈ Ti then l′ ↓pi= l′i, otherwise l′ ↓pi= l ↓pi.

In other words, if an action has a non-empty effect then all events be-

longing to the effect fire as a result of its execution (all the constituent

context properties evolve correspondingly). Due to the fact that action

annotation can have no more than one event per context property (see

Def. 8) and context properties are deterministic STSs, action impact is

always deterministic. Although in our model we never consider action im-

pact of a in states where a is not executable, Def. 13 does not prohibit such

calculations explicitly.

In order to define a goal-based impact we introduce the notion of mini-

mal satisfaction:

Definition 14 (Minimal Satisfaction). Let C = {p1, p2, . . . , pn} be a con-

text with a set of context states LC and let ρ ∈ RC be a context for-

mula that is a conjunctive clause of context property states. State l′ =

(l′1, . . . , l
′
j, . . . , l

′
n) ∈ LC is a minimal satisfaction of conjunctive clause ρ
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for state l (written Min(l, ρ)) if l′ |= ρ and for all j ∈ [1, n] the following

holds: (l′j 6= lj)→ ((l′1, . . . , l
′
j−1, lj, l

′
j+1, . . . , l

′
n) 6|= ρ).

In fact, a minimal satisfaction for state l and context formula ρ is a

context state l′ that differs from l only in those components, that must be

changed in order to satisfy ρ. All the other components remain the same as

in l. It is trivial to prove that for any context state l and any conjunctive

clause ρ there exists exactly one context state Min(l, ρ).

For an action annotated with a goal (which is, as it can be seen from

Table 4.2, always a conjunctive clause), the impact is derived from the

assumption that an abstract action never produces side-effects. In other

words, it satisfies its goal with minimal changes to the context, which are

defined with minimal satisfaction. Taking into account that in fragments

goals are always conjunctive clauses, we define the goal-based impact as

follows:

Definition 15 (Action Impact (Goal)). Let Ψ = 〈F+, C〉 be a context-

aware system with a set of context states LC and a set of context events EC.

The impact of action a belonging to some fragment f+ ∈ F+ and annotated

with non-empty goal (G(a) 6= ∅) when executed from context configuration

l ∈ LC (denoted ImpΨ(a, l)) is a context configuration l′ ∈ LC such that

l′ = Min(l,G(a)).

Finally, the actions that have neither effect nor goal are called impactless

and do not change the state of the context when executed:

Definition 16 (Action Impact (Empty)). Let Ψ = 〈F+, C〉 be a context-

aware system with a set of context states LC. The impact of action a

belonging to some fragment f+ ∈ F+ and annotated with neither effect nor

goal (G(a) = ∅∧E(a) = ∅) when executed from context configuration l ∈ LC
(denoted ImpΨ(a, l)) is a context configuration l′ = l.
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It can be easily observed that impact is a deterministic function, i.e.,

for each pair a, l there is always a single state l′ = ImpΨ(a, l).

4.2.5 Composition Requirements

In our fragment composition engine, we specify composition requirements

as a set of goal context states that have to be reached as a result of com-

position execution. As such, for a context-aware system Ψ = 〈F+, C〉,
composition requirements are expressed as a context formula ρ ∈ RC

4.3 Problem of Context-Aware Fragment Composi-

tion

Within fragment orchestration, the component fragments are executed in

parallel and evolve independently. We assume that fragments within a

single context-aware system have uncorrelated actions, i.e., such fragments

have mutually disjoint sets of actions. In order to encode all possible par-

allel executions of fragments for some context-aware system we introduce

the notion of execution domain, which is a parallel product of fragments:

Definition 17 (Execution Domain). Let f1 = 〈S1, s
0
1, I1,O1,R1〉 and f2 =

〈S2, s
0
2, I2,O2,R2〉 be two observable state transition systems such that (I1∪

O1) ∩ (I2 ∪ O2) = ∅. An execution domain ΣF for fragments F = {f1, f2}
is an asynchronous product of two fragments:

ΣF = 〈S1 × S2, (s
0
1, s

0
2), I1 ∪ I2,O1 ∪ O2,RF 〉

where:

((s1, s2), a, (s
′
1, s2)) ∈ RF , if (s1, a, s

′
1) ∈ R1

((s1, s2), a, (s1, s
′
2)) ∈ RF , if (s2, a, s

′
2) ∈ R2
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When we consider a context-aware system Ψ = 〈F+, C〉 such that

F+ = {〈f1, ω1〉, 〈f2, ω2〉, . . . , 〈fn, ωn〉} the execution domain for Ψ is an

asynchronous product of all its fragments f1, . . . , fn.

In the future we will intensively use some STS-related terms that are

given below regarding some execution domain ΣF = 〈SF , s0
F , IF ,OF ,RF 〉.

STS run is a sequence π = (s1, a1, s2, a2, . . . , an−1, sn) such that s1 = s0
F

and ∀i ∈ [1, n] : si ∈ SF and ∀i ∈ [1, n − 1] : ai ∈ (IF ∪ OF ). Moreover,

∀i ∈ [1, n − 1] : (si, ai, si+1) ∈ RF . Final states of an STS (denoted

Finals(ΣF )) are the states that have no outgoing transitions. A run that

terminates in a final state is called a complete run.

Intuitively, every run of a process that correctly (with respect to the

action order in fragments) orchestrates a set of fragments F has to be a

run of the respective execution domain ΣF . And so the idea of fragment

composition consists in finding a set of executions of execution domain that

satisfy certain composition requirements and constraints. In the following

we will talk about these requirements and constraints in detail.

In the future, in order to show how the current context state changes

in time, we will use the notion of context evolution. Formally, context

evolution of context C is any sequence of context configurations belonging

to LC .

First of all, certain constraints on the runs are imposed by the context

model and semantics of fragment annotations. In particular, we require

that we consider only those runs that, in the presence of context evolv-

ing according to action impact (Definitions 13,15,16), never violate action

preconditions. We call this runs context-aware and define them as follows.

Definition 18 (Context-Aware Run). Let Ψ = 〈F+, C〉 be a context-aware

system with initial context state l0C and let ΣF be its execution domain. A

run of ΣF

π = (s1, a1, s2, a2, . . . , an−1, sn)
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is context-aware in Ψ if there exists a context evolution of C

πC = (l1, l2, . . . , ln)

such that

• l1 = l0C;

• ImpΨ(ai, li) = li+1 for all i ∈ [1, n− 1];

• li ∈ ExecΨ(ai) for all i ∈ [1, n− 1].

In the definition we exploit the fact that, since execution domain ΣF

shares actions with component fragments F , the respective fragment anno-

tations of the context-aware system Ψ = 〈F+, C〉 remain valid in ΣF . The

context evolution πC is called associated context evolution for the execution

domain run π. It is obvious that since impact is deterministic, for each

context-aware run there exists only one associated context evolution.

Since our composition goals are expressed as context formulas, the run

that achieves the goal is the one whose associated context evolution termi-

nates in a context state satisfying the formula. Formally:

Definition 19 (Satisfying Run). Let Ψ = 〈F+, C〉 be a context-aware sys-

tem, let ΣF be its execution domain and let ρ ∈ RC be a context formula

for C. A run of ΣF

π = (s1, a1, s2, a2, . . . , an−1, sn)

is satisfying for ρ if it is context-aware for Ψ and its associated context

evolution

πC = (l1, l2, . . . , ln)

is such that ln |= ρ.

In order to be able to deal with the execution domain in the presence of

context, we introduce the notion of context-aware execution domain. The
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context-aware execution domain is an STS that is a sort of synchronous

product of the execution domain and the context based on the notions of

action impact and action executability. The idea is that the context-aware

execution domain reflects how the context evolves with the execution of

fragment actions and explicitly prohibits violating executions of fragment

actions:

Definition 20 (Context-Aware Execution Domain). Let Ψ = 〈F+, C〉 be

a context-aware system, let ΣF = 〈SF , s0
F , IF ,OF ,RF 〉 be its execution

domain and let C be its context with a set of context states LC. A context-

aware execution domain is an STS ΣCF = 〈SCF , s0
CF , IF ,OF ,RCF 〉 such

that:

ΣCF = 〈SF × LC , {s0
S, l

0
C}, IF ,OF ,RCF 〉

where:

((s, l), a, (s′, l′)) ∈ RCF , if (s, a, s′) ∈ RF , and l ∈ ExecΨ(a)

and l′ = ImpΨ(a, l);

Taking into account that ΣF is a deterministic STS and impact is a

deterministic function we conclude that ΣCF is a deterministic STS.

Before we proceed with the other details, we have to remark that the

context-aware execution domain as it is defined above, eliminates from con-

sideration all exogenous events, i.e., those events that are not associated

with some fragment activity. From the further definitions it will become

clear, that the resulting fragment composition neglects the possibility of ex-

ogenous events. However, in Section 3.4 we explain how exogenous events,

though ignored by the composition, can be properly handled at the phase

of composition execution.

From the definition above and the definition of context-aware run (Def. 18)
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it can be easily observed that for every context-aware run

πF = (s1, a1, s2, a2, . . . , an−1, sn)

of execution domain ΣF there exists a run

πCF = ((s1, l1), a1, (s2, l2), a2, . . . , an−1, (sn, ln))

of context-aware execution domain ΣCF such that

πC = (l1, l2, . . . , ln)

is the associated context evolution for πF . The same is true in the opposite

direction: for every run of πCF of ΣCF there exists an equivalent run πF

of ΣF . So we can conclude that ΣCF encodes all the context-aware runs of

ΣF .

The notion of satisfying run can also be easily propagated to context-

aware execution domain. A run

πCF = ((s1, l1), a1, (s2, l2), a2, . . . , an−1, (sn, ln))

of context-aware execution domain ΣCF is satisfying for context formula ρ

if ln |= ρ.

Since we are interested only in context-aware and satisfying runs, we are

essentially interested in the runs of the context-aware execution domain

that satisfy the goal formula. In order to encode a set of runs of the

execution domain, which is the prototype of the solution to the composition

problem, we introduce the notion of solution executor :

Definition 21 (Solution Executor). Let Ψ = 〈F+, C〉 be a context-aware

system and let ΣCF = 〈SCF , s0
CF , IF ,OF ,RCF 〉 be its context-aware execu-

tion domain. A solution executor for ΣCF and context formula ρ is an STS

ΣE = 〈SE, s0
E, IF ,OF ,RE〉 such that:

• SE ⊆ SCF , s0
E = s0

CF , RE ⊆ RCF , i.e., ΣE is a subgraph of ΣCF ;
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• ∀s ∈ Finals(ΣE) : s |= ρ, i.e., all complete runs of ΣE are satisfying

for ρ.

The fact that we search for a solution in form of subgraph of the context-

aware execution domain imposes some restrictions on the solutions that

can be found by the approach. However, as we will discuss later on in this

section, these restrictions are reasonable and do not affect the practical

applicability of the approach.

There are some additional restrictions that we have to deliberately im-

pose on the solution executor in order to guarantee that it executes the

fragments within a context-aware system consistently. In the following we

explain what we mean by “consistency” and give the appropriate formal

definition. In the discussion we will use the fact that every state s of a

solution executor can be always associated with a pair (sF , l) where sF is

a state of respective execution domain and l is a state of context (this fact

is a direct consequence of Definitions 20 and 21).

First, since the solution executor is supposed to encode a solution to a

composition problem and, as such it is supposed to be further translated

into APFL, it has to be a runnable process as defined in Definition 10.

Second, while executing a number of fragments in parallel, the executor

has to take into account the asynchronous behaviour of the fragments and

treat controllable and uncontrollable actions differently. In particular, we

have to bear in mind that uncontrollable actions in fragments are unpre-

dictable (we cannot predict which of uncontrollable actions available from

the current state of the fragment will fire next) and uncontrollable (we can-

not prevent the firing of an uncontrollable transition if it is available from

the current state of the fragment). Consequently, in order to avoid incon-

sistent behaviour we require that every time the solution executor brings

its context-aware execution domain to a state from which uncontrollable

actions are available the next actions of the executor must be all uncontrol-
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lable actions that are available from the current state of the context-aware

execution domain and are executable (Def. 12) from the current context

state. We remark that any other behaviour of the executor may result

in unpredictable behaviour and dead-locks of the whole system. Indeed,

if the executor does not “listen” to some uncontrollable action available,

the corresponding message will be lost if this action fires. Moreover, if

the executor tries to execute some controllable action while an uncontrol-

lable action is available from the current state, the latter can fire in the

meanwhile, which will again result in message loss.

Third, we want the executor to reach its objectives in efficient way,

that is without traversing more than once the same state of the execution

domain in the same context. This requirement actually implies that all

executions of the executor have to be finite and cannot contain loops.

We join all the restrictions above in the definition of consistent executor :

Definition 22 (Consistent Executor). Let Ψ = 〈F+, C〉 be a context-aware

system, let ΣCF = 〈SCF , s0
CF , IF ,OF ,RCF 〉 be its context-aware execution

domain and let ΣE = 〈SE, s0
E, IF ,OF ,RE〉 be a solution executor for ΣCF

and some context formula ρ. Solution executor ΣE is consistent if:

1. for all s ∈ SE, if exists transition (s, a′, s′) ∈ RE : a ∈ IF , then it is

the only transition from this state ( 6 ∃(s, a′′, s′′) ∈ RE);

2. if s ∈ SE : s 6|= ρ then ∀(s, a, s′) ∈ RCF : (a ∈ OF ) → ((s, a, s′) ∈
RE)), i.e., if the executor traverses some state of the context-aware

execution domain where uncontrollable actions are available, it has to

include from this state all respective uncontrollable transitions and, as

such, to account for all possible outputs of the execution domain;

3. for every complete run πE of ΣE any state s ∈ SE is traversed no

more than once, i.e., ΣE does not contain infinite runs.
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A few important observations can be done in the definition above:

• a consistent executor is a runnable process (condition 1);

• a consistent executor correctly tackles fragments asynchronicity: con-

dition 1 prevents controllable and uncontrollable action originating

from the same state and condition 2 guarantees that all uncontrol-

lable actions are always accounted;

• due to the fact that all runs are finite (condition 3) a consistent ex-

ecutor is a DAG structure that does not contain cycles.

It is worth to notice that in condition 2 we require that all the uncontrol-

lable actions are accounted only for non-goal states. We assume that once

a goal state is reached the composition terminates despite the existence of

uncontrollable transitions available from this state. The different approach

is considered in Chapter 7, where the composition is continuous and takes

into account the fact that once a goal state is reached, the system can still

be forced to leave it unintentionally through uncontrollable transitions. In

this case the further coordination has to be provided in order to bring the

system back to one of its goal states.

The fact that the solution is searched for in form of subgraph of the

context-aware execution domain actually imposes the restriction that from

the same state of the context-aware execution domain, the consistent ex-

ecutor must always execute the same controllable action (otherwise the

executor will not be runnable). We remark that in extreme cases the same

configuration of the context-aware execution domain can be reached though

different paths in the domain and, having different execution history one

may take different decision on a controllable action to execute. However,

in our approach we assume that the current run-time situation is only de-

termined by the state of the execution domain and the state of the context

(it is basically the context who stores all important information about the
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previous execution) and does not explicitly take into account the previous

execution history (i.e., does not have memory other than the current con-

text). That is why we find this restriction reasonable: there is no sense to

make different decisions in the same state of the context-aware execution

domain.

Eventually, the problem of context-aware fragment composition can be

formulated as a problem of finding a consistent executor satisfying compo-

sition requirements in form of goal formula:

Definition 23 (Problem of Context-Aware Fragment Composition). Let

Ψ = 〈F+, C〉 be a context-aware system and let ρ ∈ RC be a context formula

over C expressing composition requirements. The problem of context-aware

fragment composition for Ψ and ρ consists in finding a solution executor

ΣE for Ψ and ρ that is consistent.

4.4 Composition Problem as Planning Problem

In this section we explain how a fragment composition problem as defined in

Def. 23 can be transformed into a planning problem and can consequently

be resolved by a planning algorithm for asynchronous and nondeterminis-

tic domains. Specifically, we present a multi-step procedure for building a

planning domain from the elements of the composition problem and for-

mulate a planning problem. We prove the correctness and completeness of

our approach by showing that 1) any solution to a planning problem is a

consistent executor for a given composition problem and 2)if a solution to

a planning problem is not found, a solution to the composition problem

does not exist.

The overview of our fragment composition approach is given in Fig. 4.7.

The composition engine accepts as input a context C represented by con-

text properties p1, p2, . . . , pm, a set of fragments F+ = {f+
1 , f

+
2 , . . . , f

+
n }
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Figure 4.7: Fragment composition approach

annotated over C (together C and F+ form a context-aware system Ψ =

〈F+, C〉) and composition requirements ρ expressed as a context formula

over C. The output is an executor ΣE that is a solution executor for Ψ and

ρ and is consistent. As we showed in Section 4.2, fragment models can be

directly derived from APFL process specifications and a runnable process

(including ΣE) can be translated into an APFL process.

The very general idea of the approach consists in building a planning

domain ΣCF , that together with a goal ρ form a planing problem.

The execution domain ΣF is built as asynchronous product of frag-

ments F+ (see Def. 17). Using fragment annotations extracted by A-
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EXTRACTOR, context properties are grounded on fragment actions by

GROUNDER so that the grounded context properties Σp1,Σp2, . . . ,Σpm

are produced. In brief, the procedure of grounding is where event-labeled

transitions in context properties are replaced with guarded action-labeled

transitions basing on fragment action effects and preconditions. Addition-

ally, transitions corresponding to goal-based actions and impactless actions

are added. When derived in this way, a grounded context property reflects

how the execution of fragment actions affects its state. It also accounts

for action executability. The grounded context ΣC is obtained as a syn-

chronous product of the grounded context properties. As it will be proved

later on, its runs encode all the evolutions of the context that are enabled

by the current system of annotated fragments F+.

In turn, the synchronous product of the execution domain ΣF and

grounded context ΣC is a context-aware execution domain ΣCF whose runs

are all possible context-aware runs of the execution domain ΣF . Moreover,

ΣCF reflects contextual impact of any its run. We show that it coincide

with the notion of context-aware execution domain presented in Def. 20.

The goal formula ρ can be directly applied to the context-aware execution

domain. We show that using a specific planning algorithm, the consistent

solution executor for a composition problem of Ψ and ρ can be directly

derived from a composition problem of ΣCF and ρ. Moreover, if such plan

is not found, then the composition problem does not have a solution.

4.4.1 Grounded Context

The procedure of context grounding consists in replacing event-labeled

transitions in context properties with action-labeled transition reflecting

the impact of these actions on the property state. Additionally, we use

transition guards to reflect the executability of actions. As a result the

grounded context property features the same set of states as the orginial
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context property, but has different transition relation:

Definition 24 (Grounded Context Property). Let Ψ = 〈F+, C〉 be a

context-aware system and let RC be a space of context formulas of con-

text C. A grounded context property for context property p is a tuple

Σp = 〈L, l0,AF , T 〉, where:

• L is a set of states and l0 ∈ L is the initial state;

• AF is a set of all fragment actions of fragments F+;

• T ⊆ L×RC ×AF × L is a guarded transition relation.

The procedure of grounding consists in defining a grounded context

property Σp on top of a context property p. While the sets of states in p

and Σp are the same, in Σp the event-based transitions of p are replaced with

action-based transitions as indicated by annotations. For each transition

of p labelled with event e and for each action a whose effect contains e, we

define a transition in Σp with the same initial and final state and labelled

with a. For each goal-labeled action aabs, if an action goal (which is a

conjunctive clause) requires that this property has to be in a particular

state l (i.e., a proposition corresponding to l appears in the conjunctive

clause expressing the goal of aabs), for every state in Σp we add a transition

that starts in this state, terminates in l and is labelled with aabs. Finally, for

each action aless that has no impact on the property we define a transition

that start and finishes in this state and is labelled with aless. As such,

we reflect the impact of all actions with respect to context property p.

In order to take into account action preconditions, for each transition we

introduce the guard, which is a precondition formula of its labelling action.

A transition guard must be interpreted as a condition on the state of the

whole context for which the transition is enabled. Formally:
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Definition 25 (Grounding). Let Ψ = 〈F+, C〉 be a context-aware system.

A grounding of a context property p = 〈L, l0, E, T 〉 ∈ C is a grounded

context property Σp = 〈L, l0,AF , T g〉 such that for every action a ∈ AF :

1. if ∃e ∈ E(a) : e ∈ E then for every transition (l, e, l′) ∈ T there exists

transition (l,P(a), a, l′) ∈ T g;

2. if state lg ∈ L appears in conjunctive clause G(a) then for every state

l ∈ T there exists transition (l,P(a), a, lg) ∈ T g;

3. if E(a) = ∅ ∧ G(a) = ∅ or (E(a) 6= ∅) ∧ (E(a) ∩ E = ∅) or (G(a) 6=
∅) ∧ (6 ∃lg ∈ L : lg ∈ G(a)) then for every state l ∈ L there exists a

transition (l,P(a), a, l′) ∈ T g;

4. no other states and transitions belong to Σp.

Since action effect contains no more than one event per context property,

and since a goal conjunctive clause cannot contain more than one state per

context property, the grounded context property is a deterministic STS

(only one transition with the same label is possible from each state).

In order to reflect the impact and executabilty of fragment actions with

respect to the whole context we introduce the notion of grounded context,

which is a synchronous product of all constituent grounded context prop-

erties. We remark that the guards in the synchronous product can be

removed. Indeed, for any guarded transition we can unambiguously fig-

ure out if the initial state of a transition satisfies the guard (a guard is a

context formula and a state is a context state, so the Def. 5 for context

satisfaction can be applied). Consequently, if the initial state satisfies the

guard it is always “unlocked” and we can replace it with the unguarded

transition with the same properties, and if the initial state does not satisfy

the guard it is always “locked” and can be removed from the transition

relation. Formally:
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Definition 26 (Grounded Context). Let Ψ = 〈F+, C〉 be a context-aware

system with context C = {p1, p2, . . . , pn} and let Σp1,Σp2, . . . ,Σpn be the

respective grounded context properties such that Σpi = 〈Li, l0i ,AF , Ti〉 for

all i ∈ [1, n]. Grounded context for Ψ is an STS ΣC = 〈LC , l0C ,AF , TC〉
which is defined as follows:

ΣC = 〈L1 × . . .× Ln, {l01, . . . l0n},AF , TC〉

where:

((l1, . . . , ln), a, (l
′
1, . . . l

′
n)) ∈ TC , if (li,P(a), a, l′i) ∈ Ti for all i ∈ [1, n]

and (l1, . . . , ln) |= P(a)

It can be easily shown that since grounded context properties are de-

terministic STSs, the grounded context is also a deterministic STS. A set

of states in grounded context coincides with the set of states in the corre-

sponding context (Def. 2).

Conceptually, grounded context ΣC for context-aware system Ψ = 〈F+, C〉
reflects all evolutions of context C that can be caused by the execution of

fragments F+ according to their annotations. In the following lemma we

show that every transition (l, a, l′) ∈ TC in the grounded context is such

that l′ = ImpΨ(a, l) and l ∈ ExecΨ(a). Moreover, for each pair of states

l, l′ ∈ LC and action a ∈ AF , such that l′ = ImpΨ(a, l) and l ∈ ExecΨ(a),

the corresponding transition exists in the grounded context ((l, a, l′) ∈ TC).

Lemma 1 (Properties of Grounded Context). Let Ψ = 〈F+, C〉 be a

context-aware system and let ΣC = 〈LC , l0C ,AF , TC〉 be its grounded context

as defined in Definition 26. Then (l, a, l′) ∈ TC if and only if l ∈ ExecΨ(a)

and ImpΨ(a, l) = l′.

Proof. In fact, the proof directly follows from the way we constructed the

grounded context and the definitions of action executability (Def. 12) and
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action impact (Defs. 13, 15, 16). In the proof we presume that C =

{p1, . . . , pn} and that pi = 〈Li, l0, Ei, Ti〉, i ∈ [1, n] and their respective

grounded properties are Σpi = 〈Li, l0i ,AF , T
g
i 〉, i ∈ [1, n]. In order to prove

the lemma we have to prove the two statements.

1. ∀(l, a, l′) ∈ TC : (ImpΨ(a, l) = l′)∧ (l ∈ ExecΨ(a)). Let (l, a, l′) ∈ TC
and let l = (l1, . . . , ln) and l′ = (l′1, . . . , l

′
n).

From Def. 26 of the grounded context it follows that (li,P(a), a, l′i) ∈
T gi , i ∈ [1, n]. From Def. 24 we can conclude that:

(a) if E(a) 6= ∅ then

(∃e ∈ E(a) : e ∈ Ei)→ ((li, e, l
′
i) ∈ Ti), i ∈ [1, n]

and

(6 ∃e ∈ E(a) : e ∈ Ei)→ (l′i = li), i ∈ [1, n].

From Def. 13, it follows that ImpΨ(a, l) = l′;

(b) if G(a) 6= ∅ then from Def. 25, 26 it follows that l′ = Min(l,G(a)).

From Def. 15, it follows that ImpΨ(a, l) = l′;

(c) if G(a) = ∅ ∧ E(a) = ∅ then l′ = l. From Def. 16, it follows that

ImpΨ(a, l) = l′.

This means that in general ImpΨ(a, l) = l′. From statement (a) and

from Def. 26 it also follows that if E(a) 6= ∅ then all events of E(a) are

applicable on l (Def. 6). Taking into account that according to Def. 26

l |= P(a) we conclude that l ∈ ExecΨ(a) (Def. 12).

2.∀a ∈ AF ,∀l, l′ ∈ LC : ((ImpΨ(a, l) = l′) ∧ (l ∈ ExecΨ(a))) →
((l, a, l′) ∈ TC). Let l = (l1, . . . , ln) and l′ = (l′1, . . . , l

′
n). From the fact

that ImpΨ(a, l) = l′ it follows that

(a) if E(a) 6= ∅ then

(∃e ∈ E(a) : e ∈ Ei)→ ((li, e, l
′
i) ∈ Ti), i ∈ [1, n]
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and

(6 ∃e ∈ E(a) : e ∈ Ei)→ (l′i = li), i ∈ [1, n].

At the same time, from Def. 25 it follows that (li,P(a), a, l′i) ∈ T gi ,

i ∈ [1, n]. Consequently, taking into account that l ∈ ExecΨ(a) and

considering Def. 26 we can conclude that (l, a, l′) ∈ TC ;

(b) if G(a) 6= ∅ then l′ = Min(G(a), l). At the same time, from Def-

inition 25 it follows that (li,P(a), a, lgi ) ∈ T gi , i ∈ [1, n] such that

(lg1, l
g
2, . . . , l

g
n) = Min(l,G(a)). Taking into account that l ∈ ExecΨ(a)

and considering Def. 26 we can conclude that (l, a, l′) ∈ TC ;

(c) if G(a) = ∅ ∧ E(a) = ∅ then l′ = l. At the same time, from Def. 25 it

follows that (li,P(a), a, l′i) ∈ T
g
i , i ∈ [1, n]. Taking into account that l ∈

ExecΨ(a) and considering Def. 26 we can conclude that (l, a, l′) ∈ TC .

4.4.2 Context-Aware Execution Domain From Grounding

In Def. 20 we already introduced context-aware execution domain. The

alternative way of obtaining a context-aware execution domain is through

synchronous product of grounded context and execution domain. This

method is more practical from the implementation perspective and gives

additional understanding of the nature of the context-aware execution do-

main.

Definition 27 (Context-Aware Execution Domain (From Grounding)).

Let Ψ = 〈F+, C〉 be a context-aware system, let ΣF = 〈SF , s0
F , IF ,OF ,RF 〉

be its execution domain and let ΣC = 〈LC , l0C ,AF , TC〉 be its grounded

context (from the definitions of execution domain and grounded context it

follows that AF = IF ∪ OF ). The context-aware execution domain is a
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fragment-like STS ΣCF = 〈SCF , s0
CF , IF ,OF ,RCF 〉 that is defined as fol-

lows:

ΣCF = 〈SF × LC , {s0
S, l

0
C}, IF ,OF ,RCF 〉

where:

((s, l), a, (s′, l′)) ∈ RCF , if (s, a, s′) ∈ RF , and (l, a, l′) ∈ TC

From Lemma 1 it becomes obvious that Defs. 20 and 27 actually define

the same STS. As a consequence, the consistent solution executor can be

searched for using the context-aware execution domain obtained though

the procedures of this section.

4.5 Algorithm

Following the formal model of the previous section, we solve the problem

of fragment composition by 1) building a context-aware execution domain

ΣCF and 2) searching for its consistent solution executor for goal ρ.

The construction of the context-aware execution domain is pretty

straightforward and relies on the definitions of grounding (Def. 25) and

context-aware execution domain (Def. 27). Once the resulting STS

ΣCF = 〈SCF , s0
CF , IF ,OF ,RCF 〉 is obtained it becomes a planning domain

D = ΣCF . For our convenience in this section we will omit the indices and

denote the domain as follows: D = 〈S, s0, I,O,R〉. The initial state of D

becomes the initial state of the planning problem I = s0, and the goal states

are all states of the domain that satisfy ρ, that is G = {s ∈ S : s |= ρ}. As

such, we obtain a conventional planning problem {D, I,G}.
Once a planning problem is obtained, a consistent solution executor is

derived by the algorithm for strong planning in asynchronous domain pre-

sented in [18]. In the following, we recap the description of this algorithm
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and proof of its correctness and completeness. Although the most part of

the content of this section can be found in [18], we find it necessary to be

explicitly present it here since it is crucial for understanding the proofs of

Chapter 7.

1 function plan ( I ,G)

2 OldSA := Fa i l

3 SA := ∅
4 while (OldSA 6= SA ∧ I 6∈ (G ∪ StatesOf (SA) ) )

5 Pr := StrongPreImage (G ∪ StatesOf (SA) )

6 NewSA := PruneStates (Pr , G ∪ StatesOf (SA) )

7 OldSA := SA

8 SA := SA ∪ NewSA

9 done

10 i f ( I ∈ (G ∪ StatesOf (SA) ) )

11 return SA

12 else

13 return Fa i l

14 f i

Figure 4.8: Search algorithm

The routine for searching consistent solution executor is presented in

Fig. 4.8. In it we assume that the domain D is globally available, while

we explicitly pass to it initial states I and goal state G. The algorithm is

a fix-point iteration that incrementally constructs a state-action table SA,

that indicates which action has to be executed in certain state of D in order

to reach a goal state. As such, SA encodes all transitions of the domain

that can potentially be presented in the consistent solution executor. SA

is initially empty and grows at each iteration by adding state-actions which

unconditionally lead to the states that are already covered by SA or goal

states (i.e., states StatesOf(SA)∪G). The termination of the algorithm

111



CHAPTER 4. CONTEXT-AWARE COMPOSITION OF FRAGMENTS

is caused by either the situation when 1) no new states are included in

the next iteration or 2) the current state-action table already contains all

initial states I, which actually means that the solution for the initial states

is already found.

The algorithm is defined such that it explicitly deals with the constraints

imposed by consistent solution executor (Def. 22). This logic is essentially

realized by the key primitives StrongPreImage and PruneStates.

StrongPreImage is the basis of the backward search. For a subset

S of states of ΣCF , StrongPreImage returns a set of state-action pairs

{〈s, a〉} that encode all transitions of ΣCF that immediately lead to S. It

takes into account that uncontrollable actions can be neither controlled

nor predicted. So the function guarantees that ones a state-action 〈s, a〉 is

included in the table, states of S can always be reached from s despite of

nondeterminism. The primitive is defined as follows:

StrongPreImage(S) = {〈s, a〉 : (a ∈ I) ∧ (∃(s, a, s′) ∈ R : s′ ∈ S) ∧

(6 ∃(s, a′, s′′) ∈ R) : a ∈ O)}
⋃

{(s, a) : (a ∈ O) ∧ (∃(s, a, s′) ∈ R : s′ ∈ S) ∧

∀(s, a′, s′′) ∈ R : (a′ ∈ O)→ (s′′ ∈ S))}.

In order to properly reflect the requirements imposed by the definition

of consistent solution executor (Def. 22), controllable and uncontrollable

actions are treated differently. For example, when we include controllable

state-action, not only do we check that it leads to the states that are

already in the state-action table but also make sure that uncontrollable

actions are not available from the same state. Similarly, the way we treat

uncontrollable actions guarantees, that none of the uncontrollable actions

originating from the same state are disregarded. Consequently, the strong

pre-imaging function significantly contributes to the satisfaction of condi-
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tion 1 (executor is runnable) of Def. 22 of consistent solution executor. We

remark that this planning algorithm is significantly different from the con-

ventional strong planning algorithms (e.g., [32]) that treat all the actions

of the planning domain uniformly.

PruneStates function is responsible for removing from the current

pre-image all the state for which the solution is already available (i.e.,

those that are already included in the state-actino table). It is defined as

follows:

PruneStates(γ, S) = {〈s, a〉 ∈ γ : s 6∈ S}.

We remark that the purpose of the pruning goes beyond avoiding the du-

plication of the same state-actions in the resulting table. The pruning

ensures that for each state no more than one controllable state-action is

included which closely relates to conditions 1 of consistent solution execu-

tor. It also guarantees that the state-action table does not contain loops

(conditions 3). Another property of the pruning that has nothing to do

with the definition of consistent solution executor is that only the shortest

solution from any state appears in the state-action table.

The resulting state-action table (a collection of state-action pairs) shows

how the resulting executable process should behave in different states (i.e.,

which actions and where must be executed). Uncontrollable state-actions

indicate which uncontrollable actions have to be expected in the respective

state. Similarly, controllable state-actions indicate which controllable ac-

tion has to be executed from the respective state. The consistent solution

executor can be directly derived from the state-action table.

In the following we show that the main routine always terminates and

is correct and complete. The correctness of the algorithm means that the

STS derived from the state-action table built by the algorithm is always

a consistent solution executor for the given problem. The completeness of

the algorithm means that whenever a state-action is not found (Fail is
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returned), the consistent solution executor for the given problem does not

exist.

In order to prove the termination we show that at every iteration the

size of the state-action table monotonically grows and the number of states

is finite.

Theorem 1 (Termination). Let D = 〈S, s0, I,O,R〉 be a context-aware

execution domain, let I = s0 be its initial state and let G ⊆ S be a set of

goal states. The execution of plan(I,G) on D terminates.

Proof. We observe that S contains finite number of states. From the defi-

nition of the algorithm it can be seen that the within the main cycle (lines

4-9) the state-action table SA monotonically grows up (line 8) Therefore we

can conclude that after at most |S| iterations no new state-actions can be

added to SA. Consequently, the program exits the loop due to violation of

looping condition OldSA 6= SA, and so plan(I,G) always terminates.

In order to prove the correctness and completeness we actually prove

that at every iteration of the main cycle the states that are included in

state-action table are those for which a consistent solution executor already

exists. In other words, if any state within state-action table was the initial

state, the consistent solution executor for it would be (a part of) the current

state-action table.

The STS associated with state-action table SA is defined as a set of

states and transitions that can be traversed from the initial state of D

using state-actions of SA:

Definition 28 (STS associated with state-action table).

Let SA = {〈s, a〉 : s ∈ S, a ∈ I ∪ O} be a state-action table over some

STS D = 〈S, s0, I,O,R〉, let I be set of initial states so that I = s0 if

∃〈s, a〉 ∈ SA : s = s0 and I = ∅ otherwise, and let G ⊆ S be a set of goal

states.
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The STS associated with SA, I, G on STS D, denoted D/ (SA, I,G) =

〈SSA, I, I,O,RSA〉, is defined as follows:

1. I ⊆ SSA;

2. if s ∈ SSA and there exists a sequence 〈s0, a0〉, ..., 〈sn, an〉 such that

s0 = s, 〈si, ai〉 ∈ SA, i ∈ [1, n] : (si, ai, si+1) ∈ R, then sn ∈ SSA;

3. SSA contains no other states;

4. if s ∈ SSA and (s, a, s′) ∈ R, then (s, a, s′) ∈ RSA.

Lemma 2 (Invariant property of the state-action table).

After the i-th iteration of the main loop of routine plan(I,G), set of states

G ∪ StatesOf(SA) contains all the states for which a consistent solution

executor of depth up to i exists. In particular, if s ∈ G ∪ StatesOf(SA),

then D / (SA, I,G) is a consistent solution executor for s.

Proof. To prove the lemma we use induction on the number i of iterations

of the main loop of routine plan(I,G)(lines 4-9).

Basis (i = 0). Since SA is initialized to empty set, the state set

G ∪ StatesOf(SA) contains only goal states G and for them a solution

exists that requires 0 steps to achieve the goal (i.e. for which a consistent

solution executor of depth 0 exists).

Induction step. Assuming that the theorem holds for the i-th itera-

tion, we prove that it also holds for the i+1-th iteration. According to the

definition of StrongPreImage (called at line 5), a state-action 〈s, a〉 will

be included in Pri+1 = StrongPreImage(G ∪ StatesOf(SA)) only if

states G∪StatesOf(SA) are achievable from s through some controllable

transition (in this case it is a transition labeled with action a) or through

all possible outgoing uncontrollable transitions of s (one of them is labeled

with a). As a result, we can conclude that the goal is achievable from
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StatesOf(Pri+1) in at most i+ 1 steps. Indeed, from StatesOf(Pri+1)

there exists a possibility to strongly reach states G ∪ StatesOf(SA) in

one step, while according to the inductive hypothesis for every state of

G ∪ StatesOf(SA) the state transition system D / (SA, I,G) already

contains a consistent solution executor of depth up to i. Given the induc-

tive hypothesis and the correspondence between the definition of Strong-

PreImage and the conditions of the consistent solution executor in Defi-

nition 22, at the i+1-th iteration there will be extracted exactly the state-

actions corresponding to a consistent solution executor of depth i + 1).

As a result, only state-action pairs in Pri+1 for which the goal is reach-

able in no more than i + 1 steps will be store to NewSA (line 6). Such

state-action pairs are added to SA (line 8), which consequently will hold

all of the state-action pairs from which the goal is reachable in up to i+ 1

steps.

Theorem 2 (Correctness and Completeness).

If plan(I,G) returns state-action table SA, then D/(SA, I,G) is a consis-

tent solution executor to the respective composition problem. If plan(I,G)

returns Fail, then no consistent solution executor to the respective com-

position problem exists.

Proof. The proof directly follows from Lemma 2 and Definition 22 of con-

sistent solution executor. The consistent solution executor guarantees

that a goal state will be unconditionally reached from the initial state

in a finite number of steps. It essentially means that at some itera-

tion of the algorithm it will be included in the state-action table (i.e.,

I ∈ G ∪ StatesOf(SA)) and SA, encoding consistent solution executor

will be returned. On the contrary, if a consistent solution executor does

not exist, Fail will be eventually returned.

The further information on algorithm implementation and evaluation
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will be given in Chapter 8.

4.6 Discussion

The ability to handle abstract composition requirements defined in detach-

ment from details of fragment implementations is the main novel feature of

our fragment composition approach presented in this chapter. Due to the

explicit context model being one of the central elements of our formalism,

we call our approach context-aware.

One of the key advantages of using abstract requirements that comes di-

rectly from our adaptation framework presented in Chapter 3, is the ability

to integrate our engine with the adaptation framework, which automati-

cally derives composition requirements in terms of context. However, there

is one more advantage that can be considered separately from the process

adaptation problem and that has already been articulated in Section 4.1.

When composition requirements are expressed over context, they are es-

sentially detached from the fragments, but any fragment that is properly

annotated over the same context model can be used in combination with

them . As we will show, this point can be used, for example, in user-

centric systems, where requirements are expressed by the technical expert

(designer) while the choice of fragments/services is made by the end user.

The further composition can run without any intervention from techni-

cians, since in our formal framework the predefined abstract requirements

will successfully be grounded on the fragment/service implementation cho-

sen at run time.

We find our composition model quite intuitive to be effectively mas-

tered and used by service/fragment designers (especially, in the presence

of graphic modeling tools that seem to be easy to implement). At the

same time, our context model is expected to allow for many advanced
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composition features bringing the automated service composition to a new

level. In particular, in Chapter 7 we describe 1) a simple yet expressive

context-based language for control-flow requirements that goes beyond the

reachability of context states, 2) a prototypal approach to integrating data-

flow requirements into the engin. In [60] it can also be found a prototypal

approach to automatic derivation of composition interface/protocol.
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Chapter 5

Composition in Dynamic

Environment

In this chapter we show how the composition engine presented in Chapter

4 can be exploited by the adaptation framework presented in Chapter 3

to realize dynamic adaptation. In Section 5.1 we discuss the operation of

the integrated system. For that purpose, we define the notion of system

configuration completely describing the status of the system and show all

possible ways the system configuration can evolve. Section 5.2 is devoted

to the issues of executing composite processes in the dynamic environment.

In particular, we analyze the most important dynamic factors featured by

the execution environment of the CLS and discuss the ways we can handle

them from the perspective of running instances of composite processes.

The execution of composed processes in dynamic environments is a more

general topic that can also be considered out of the scope of our adaptation

framework.

5.1 System Operation

In this section we mostly reuse the definitions given in Chapter 4, however

some additional elements are needed. In particular, some adaptation mech-
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anisms and strategies require extra annotations to be added to fragments.

As a result, the standard effect, precondition and goal annotations, which

preserve their meaning and semantics, are accomplished with compensa-

tions and decision points. Compensation associates a fragment action with

a set of context states where the effect of this action is considered to be

negated (i.e., compensated). For example, if the fragment action is devoted

to booking a place at a storage area (context property “storage ticket” goes

to state “booked”), its compensation may naturally be to have the same

context property in state “not booked”. Decision points are states of frag-

ments where critical decision within a fragment are supposed to be made

(e.g., branching point in a fragment). Such points can be considered as a

target for backward adaptation (rollback), where we would like to revert

the process in hope a different decision will be made afterwards. The exam-

ples of both annotations can be found in Section 3.2. The new extensions

do not affect the way the composition is performed and are not reflected

in the composition framework. They are used exclusively for adaptation

purposes. Formally, the updated definition of fragment annotation is as

follows:

Definition 29 (Fragment Annotation (Extended)). Let f = 〈S, s0, I,O,R〉
be a fragment and let C be a context. An annotation of fragment f over

context C is a tuple ωf = 〈P , E ,G, C,B〉, where:

• P : {I ∪ O} → RC is the precondition labeling function;

• E : {I ∪ O} → E∗C is the effect labeling function. Any action effect

E(a) may contain no more than one event per context property, i. e.,

for any context property p = 〈L, l0, E, T 〉 ∈ C the following holds:

6 ∃e1, e2 ∈ E(a) : e1, e2 ∈ E. Moreover, if E(a) 6= ∅ then G(a) = ∅ (i.e.,

an action can be annotated either with a goal or with an effect);

• G : {I ∪ O} → RC is the goal labeling function, such that G(a) 6= ∅
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only if E(a) = ∅ (i.e., an action can be annotated either with a goal

or with an effect);

• C : {I ∪ O} → RC is the compensation labeling function;

• B ⊆ S is a set of decision points.

The following definition captures the status of the execution of an adapt-

able process. As illustrated in Fig. 3.4, an adaptable process is usually a

hierarchical structure, where on top of a core process other processes re-

lated to adaptation tasks may exist. Complex adaptation and “adaptation

of adaptation” may require multiple levels in such hierarchy. Each element

of the hierarchy is a triple process-state-history describing the configuration

of an elementary process. In the triple, process is a fragment as defined in

Def. 7 describing a process model, state is the current state of the process

instance and history is a partial run of the process describing its execu-

tion history. In order to intuitively introduce adaptation mechanisms and

strategies, we model process configuration of an adaptable process as a

stack of triples. The bottom (first) triple refers to the core process and

all the others refers to adaptation processes. The top (last) triple in the

stack is the one that is currently under execution. Triples can be pushed to

the stack when process adaptation is performed and can be popped from

the stack when, e.g., the process instance of the top triple terminates.

Formally:

Definition 30. (Process Configuration) A process configuration is a non-

empty stack of triples φ = (w1, s1, h1), (w2, s2, h2), . . . , (wn, sn, hn), where:

• wi = 〈Si, s0
i , Ii,Oi,Ri〉 is a process fragments;

• si ∈ Si is a current state in the corresponding process fragments;
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• hi is a partial run of wi terminating in si and representing the previous

execution history of wi.

The configuration of the whole system is defined by the current config-

uration of the context properties, by the configuration of the processes in

the system, and by the set of available fragments.

Definition 31. (System Configuration) A system configuration is a tuple

Θ = 〈C,F+, l0C ,Φ〉, where:

• C is the context;

• F+ is the set of fragments available in the system;

• l0C is the current state of context C;

• Φ = {φ1, φ2, . . . , φn} are configurations of all processes running within

the system.

5.1.1 General Adaptation Problem

The core of our adaptation framework is the fragment composition engine

presented in Chapter 4. Our framework is designed such that all the adap-

tation mechanism can be realized through fragment composition. As a

result, the formal definition of a general adaptation problem is structurally

very close to the definition of the problem of context-aware fragment com-

position:

Definition 32 (General Adaptation Problem). A general adaptation prob-

lem is a tuple ξ = 〈F+, C, l0C , ρ〉, where:

• F+ is a set of fragments annotated over context C;

• l0C is the current state of context C;

• ρ ∈ RC is a context formula describing the set of goal configurations.
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The resolution of a general adaptation problem ξ = 〈F+, C, l0C , ρ〉 con-

sists in building a context-aware fragment composition for Ψ = 〈F+, C〉
and ρ (see Def. 23) considering l0C as the initial context state.

All the adaptation mechanisms and strategies used in our adaptation

framework (see Section 3.2) essentially consist in deriving certain general

adaptation problems from the current system configuration, resolving them

using the composition engine and executing the compositions obtained

(we call them adaptation processes). Various adaptation mechanisms and

strategies differ only in how the corresponding general adaptation problems

are derived.

5.1.2 Evolution of System Configuration

To describe the dynamic aspects of system operation we show how the sys-

tem configuration can evolve in time. We distinguish five different kinds of

evolution, that cover both “normal” evolution and various unexpected (ex-

traordinary) situations that may require process adaptations. These five

types are: 1) exogenous events, 2) entity in/out, 3) fragment in/out, 4)

process execution, 5) adaptation. The first three types of evolution corre-

spond to dynamic changes in the environment that affect the way existing

processes are executed and adapted. The last two types correspond to the

“normal” execution of adaptable processes, which include the execution

itself, and the adaptation.

In the following we take a closer look at all of them. We assume that

the system configuration is Θ = 〈C,F+, l0C ,Φ〉 before elementary evolution

and Θ′ = 〈C ′, F+′
, l0

′

C ,Φ
′〉 after it.

Exogenous Events

Exogenous events correspond to changes of the current state of the context

that are not triggered by process execution. As such, within the related
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type of system evolution only the current context state changes: l0
′

C 6= l0C .

Entity In/Out

In our adaptation framework, a set of active entities constantly evolves,

with new entities entering the scenario and existing entities exiting it. Since

an entity has a complex structure comprising process(es) attached to it, a

set of fragments advertised to other entities, and a set of context properties

describing the entity, once an entity enters or exits the scenario the system

configuration may dramatically change. What is important is that these

changes may affect the operation of other entities within the scenario.

An entity exiting the scenario may potentially cause troubles, mostly if

other entities are dependent on its fragments, (e.g., if an activity refinement

of some adaptable process engages a fragment belonging to the exiting

entity). On the contrary, the entrance of a new entity may create new

opportunities for the other entities by introducing new facilities in form of

its fragments.

In general the changes in the set of entities operating within the sce-

nario affects the set of available fragments F+ (some new fragments are

added or some existing fragments are removed), the global context model

C (some new context-properties are added or some existing context proper-

ties are removed) and the set of configurations of running processes (some

adaptable processes may be instantiated or unexpectedly terminated). The

current states of context properties that do not belong to the entity en-

tering/existing the scenario remain unchanged. Summarizing it, we can

state that for this type of system evolution all the element of the system

configuration may change: l0
′

C 6= l0C , C ′ 6= C, F+′ 6= F+ and Φ′ 6= Φ.
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Fragment In/Out

Even if an entity does not enter/exit the scenario it can dynamically change

the set of fragments advertised in order to temporarily enable/disable some

types of collaboration (e. g., a treatment station may vary the set of

treatment facilities available to cars by adding/removing the respective

fragments to/from its set of available fragments). In this case, F+′ 6= F+.

Process Execution

Let φ = (w1, s1, h1), (w2, s2, h2), . . . , (wn, sn, hn) be some process configu-

ration such that φ ∈ Φ. As we discussed, the top triple is the one under

execution. Consequently, the final configuration of the same fragment is

supposed to be φ′ = (w1, s1, h1), (w2, s2, h2), . . . , (wn, s
′
n, h

′
n), where the cur-

rent state and the history of the top triple is updated. Taking into account

that wn is a fragment, the execution of wn is possible if there exists an activ-

ity an available from current state sn such that 1) the activity precondition

holds in the current context l0C |= P(a) 2) an belongs to some fragment

among F+ (it is still available) and 3) an is not abstract (otherwise, the

refinement is needed). We remark that a special case of execution is when

a top triple terminates and is popped from the stack. In this case the final

configuration is φ′ = (w1, s1, h1), (w2, s2, h2), . . . , (wn−1, sn−1, hn−1), i.e., the

terminated triple is removed.

Since process execution changes the related process configuration φ for

φ′, a container set Φ also changes (Φ′ 6= Φ). It is worth to mention that

within Φ′ more than one process may have its configuration updated (e.g.,

when the activity executed is a communication between two processes).

Moreover, Φ′ may have increased or decreased number of process config-

urations (in case activity execution instantiates a partner process and in

case the bottom (core) triple of some process terminates respectively).
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Concerning the other elements of the system configuration, process ex-

ecution may also change the current context state according to the anno-

tation semantics (see Section 4.2.2), so that l0
′

C 6= l0C . At the same time,

the context model and the set of fragments remain unchanged.

Adaptation

Let φ ∈ Φ be a process configuration of a process to be updated. The adap-

tation of φ = (w1, s1, h1), (w2, s2, h2), . . . , (wn, sn, hn) affects exclusively φ

(i.e., φ′ 6= φ) and does not affect the other elements of the system config-

uration (i.e., l0
′

C = l0C , C ′ = C, F+′
= F+), nor does it affect other process

configurations within Φ.

As a rule, adaptation results in new triple(s) added to the top of the

stack (e.g., refinement of an abstract activity in n-th triple will add the

refinement process as n + 1-th triple). In addition to that, some changes

are usually done to the triple whose execution caused adaptation (e.g.,

in case of refinement the top triple is changed as if the abstract activity

was already executed, so that after the refinement process terminates, the

execution of the process that contains the refined abstract activity will

resume from the state after the respective abstract activity).

The way φ changes in result of adaptation heavily depends on the adap-

tation strategies and mechanisms applied. In the following, we describe

these changes for each of the adaptation mechanisms mentioned in Section

3.2. The solution to the general adaptation problem ξ = 〈F+, C, l0C , ρ〉 is

denoted as w = Adapt(ξ).

Refinement mechanism. The refinement mechanism is applied when

the next activity a to be executed in the current triple is abstract. Let G(a)

be the goal of a. In this case, the problem of finding activity refinement

is formulated as a general adaptation problem ξabs = 〈F+, C, l0C ,G(a)〉. In

other words, the goal of the refinement process is to achieve one of the
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context states that satisfy the goal formula of a from the current context

state. Let wabs = Adapt(ξabs) by an adaptation process form problem ξabs.

The changes to process configuration will be the following:

φ′ = (w1, s1, h1), . . . , (wn, s
′
n, h

′
n), (wabs, sabs, habs)

, where triple (wn, s
′
n, h

′
n) reflects the result of execution of abstract activity

a in (wn, sn, hn) and triple (wabs, sabs, habs) relates to the refinement process

with sabs being the initial state of process wabs and habs being an empty

execution history containing only state sabs. It can be seen that after wabs

terminates the top triple will be removed from the configuration and the

execution will proceed from the point of wn immediately after the abstract

action a, which will simulate the fact that a has been executed.

Local adaptation mechanism. The local adaptation is used when the

precondition of the activity is violated. It is the simplest possible solution,

aiming at bringing the context to a state from which the execution of the

process can be resumed. Let next action be a with precondition P(a).

The problem of local adaptation is formulated as a general adaptation

problem ξlocal = 〈F+, C, l0C ,P(a)〉. The goal of the refinement process is

to achieve one of the context states that satisfy the precondition of a. Let

wlocal = Adapt(ξlocal) be an adaptation process for problem ξlocal. The final

process configuration will be the following:

φ′ = (w1, s1, h1), . . . , (wn, sn, hn), (wlocal, slocal, hlocal)

, where triple (wn, sn, hn) remains unchanged (the precondition is violated

and the process gets stuck) and triple (wlocal, slocal, hlocal) relates to the local

adaptation process with slocal being the initial state of process wlocal and

hlocal being an empty execution history containing only state slocal. After

wlocal terminates the top triple will be removed from the configuration and

the execution of wn will proceed with action a, whose precondition in the

“corrected” context already holds.
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Compensation mechanism. The compensation mechanism is applied

when it is necessary to compensate the effects of some actions executed be-

fore. Let the current triple be (wn, sn, hn) and let the respective history be

hn = (sn1 , a
n
1 , s

n
2 , a

n
2 , . . . , a

n
m−1, s

n
m) such that sn = snm. The compensation

of an action anm−1 annotated with compensation goal C(anm−1) can be for-

mulated as a general adaptation problem ξm−1 = 〈F+, C, l0C , C(anm−1)〉 with

the resulting compensation process wm−1 = Adapt(ξm−1). So the compen-

sation process will bring the context to the state where the effect of action

anm−1 is considered to be compensated. The final configuration will be:

φ = (w1, s1, h1), . . . , (wn, s
′
n, h

′
n), (wm−1, sm−1, hm−1).

The new triple added on top of the n-th triple is related to the compensa-

tion of action anm−1. Process wn is partially “rollbacked” so that its current

state is s′n = snm−1 and its history is h′n = (sn1 , a
n
1 , . . . , a

n
m−2, s

n
m−1). The

further execution of the adaptable process will first compensate anm−1, and

then will come back to the execution of the n-th triple from the point to

which it was rollbacked. It is clear that “pure” compensation does not

make a lot of sense (it is rarely reasonable to compensate actions and then

re-execute them), however compensation mechanism is extremely useful

when combined with other mechanisms into an adaptation strategy.

We remark that often a part of a process has to be compensated. In this

case, different implementations are possible. One of them is to use complex

planning goals (e.g., [67]) in order to produce a “one-shot” compensation

process that compensates all chain of activities. A simpler solution is to

perform incremental compensation, where actions are compensated one-

by-one.

As we already mentioned in Section 3.2, adaptation mechanisms can be

further combined into strategies, where a few mechanisms are applied (in
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sequence or in parallel) in order to resolve a single adaptation problem.

In general, combining a few mechanisms is quite intuitive, though many

alternative implementations of the same strategy may often be proposed.

Here we give only one example of an adaptation strategy, which is the

rerefinement strategy.

The idea of rerefinement is to compensate the execution of the current

refinement of some abstract action and to refine it anew in order to produce

a more up-to-date refinement. These strategy is applicable in situations

where the execution of the current refinement cannot be completed, e.g.,

due to “bad” context or due to unavailability of some fragments exploited

by it. In these case, the new refinement takes into account the most re-

cent changes in the system configuration and produces a solution that is

compatible with them.

Let φ = (w1, s1, h1), . . . , (wn−1, sn−1, hn−1), (wn, sn, hn) be the current

process configuration. Here, triple (wn, sn, hn) represents the refinement of

some abstract action aabs with goal G(aabs) of process wn−1. We assume

that at this point the execution of wn got stuck and we decide to apply

re-refinement. In order to perform it, we, first, compensate all actions

of hn and then produce a new refinement of the same action aabs in new

conditions. The compensation consists in generating an adaptation process

for a general adaptation problem ξCMP
i = 〈F+, C, l0i , C(ani )〉, executing it

and repeating the same steps for all activities of hn in backward order.

After that, we come to the point when wn is compensated and the problem

of new refinement is formulated as a general adaptation problem ξ′abs =

〈F+′
, C ′, l0

′

C ,G(aabs)〉. Its solution is process w′n = Adapt(ξ′abs). We remark

that although w′n is produced to achieve the same goal as wn, the two

processes are not generally the same since all other elements of their original

general adaptation problems may be different. So the resulting process

configuration is φ = (w1, s1, h1), . . . , (wn−1, sn−1, hn−1), (w
′
n, s
′
n, h

′
n), where
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triple (w′n, s
′
n, h

′
n) represents new refinement of aabs.

5.1.3 Managing Adaptation Strategies

As we showed in the previous section, the adaptation of business processes

is often an extremely complex procedure that has to take into account

multiple factors. In our adaptation framework, the most basic elements of

the adaptation logic are adaptation mechanisms. We showed that all of

them can be expressed as a general adaptation problem, which is resolved

through fragment composition. In turn, adaptation mechanisms can fur-

ther be combined into adaptation strategies, which can be even more di-

verse and complex. We notice that even the same adaptation strategy may

have multiple implementations that work differently in different situations.

An important open issue here is how to manage different strategies de-

fined within the framework and how to decide on which strategy should

be applied in a particular situation and how this has to be done. Ideally,

the management of adaptation strategies has to take into account multiple

factors such as 1) the application domain, 2) the type of problem trigger-

ing the adaptation, 2) the current system configuration, 4) non-functional

properties of fragments and processes 5) the previous adaptation history

of the process etc. The adaptation management can be way more complex

then just deciding on which strategy to use. For instance, the multiple

strategies may be chosen and ordered according to their expected effi-

ciency in the current case. Once the most preferable strategy fails, the

ones with lower priority may be actualized. Alternatively, simultaneous

strategy simulations may be performed in order to empirically choose the

one that performs better for the given adaptation case. We expect that

other approaches can be proposed here.

Our first steps in the direction of the management of adaptation strate-

gies showed that our adaptation framework is a promising platform for
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implementing various strategies and experimenting with them. Although

we admit that adaptation strategy management goes beyond the scope of

the dissertation, we still have to come up with some basic solution in or-

der to be able to implement the demonstrator. The idea here is to try to

solve problems as “locally” as possible. For example if a problem in some

refinement happens, we try to resolve it within this refinement, without

“jumping” to a higher level of abstraction, where the associated abstract

activity is located. In other words, the process repair should be done to

affect as smaller portion of the whole large adaptable process as possible.

In our implementation we consider two types of inconsistencies: unrefined

abstract activities and precondition violation. The problem of unrefined

abstract activity is always resolved by simple refinement (for now, we avoid

situation where refinement cannot be found). Assuming that the process

currently under execution is w, for the precondition violation the following

set of rules is proposed:

1. Try to apply local adaptation;

2. If 1 does not work and w is itself a local adaptation for some activity

aparent of process wparent, skip the execution of w and try to resume

the execution of wparent;

3. If 1 does not work and w is itself a refinement for some activity aabs

of process wparent, compensate w and resume the execution of wparent.

It can be observed, that using these rules the adaptation is attempted to

be performed in the very limited scope first (local adaptation is essentially

adaptation in the scope of particular problematic activity). Then, if it

is not possible, we widen the scope of adaptation and try to resolve a

problem more globally, for example, in the scope of the parent process

(which is one level higher in the hierarchy of process configuration), and
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so on. In case of rule 2, if w is itself and local adaptation process, we skip

it and try to resume the execution of the parent process. It is very likely

that we will still have the precondition violation for aparent (indeed the

problem resolution implemented by w has not been completed) and so the

resolution of precondition violation of aparent will be restarted anew and the

same rules will be applied. In case of rule 3, once the local adaptation is

not possible and w is a refinement for some abstract activity aabs of process

wparent, we compensate w and jump back to the level of the wparent to try

to re-refine aabs.

5.2 Fragment Composition in Dynamic Environment

It can be easily observed that the fragment composition algorithm of Chap-

ter 4 exploited by our adaptation framework actually operates under a

number of strict assumptions that let it neglect the dynamic factors of

the execution environments (e.g., exogenous events, fragments unavail-

ability etc). As a result, the correctness of the produced compositions

is guaranteed only in static environment where these assumptions hold.

Consequently, taking into account that dynamic changes in the execution

environment are quite frequent (e.g., entities constantly enter and exit the

scenario) and the composition is a process whose execution may last for

long, we cannot avoid the discussion of how the dynamic factors affect the

ability of the compositions to achieve their original goals.

We identify three basic assumptions that are explicitly made by the frag-

ment composition algorithm and related to the dynamicity of the execution

environment:

1. Controllable Context. The context can evolve only as a result of pro-

cess execution. No exogenous events are possible;

2. Static Fragment Set. The set of fragments remains unchanged;
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3. Pure Refinement. The abstract activities in the fragments can always

be refined such that they achieve activity goal in minimalistic way

(without side effects).

We remark that the violation of these assumptions does not necessarily

lead (and often does not lead) to the process failure. In big application

domains, a process depends only on a small portion of the execution en-

vironment and if the related elements are not affected (or if they are not

affected in critical way) the process execution can still be successful. For

example, the process for parking a car at the storage area has nothing to do

with treatment facilities and so if a treatment facility becomes unavailable

it does not in any way affect the parking process. However, in some cases

assumption violation results in problems that can be resolved only through

process adaptation.

There are two conceptually different ways to increase composition ro-

bustness against dynamic factors: (i) to change the composition approach

so that it considers dynamic factors while planning for a solution and (ii) to

design the adaptation framework such that once critical changes happen at

run time they are automatically addressed using the run-time adaptation.

From our point of view, the first solution cannot successfully solve the

problems related to dynamicity. For example, the problem of dynamic set

of available fragments cannot be addressed by this approach in principle.

Indeed, we cannot make predictions at composition time about which frag-

ments will disappear and especially about which new fragments will emerge

in the system when a real problem occurs. The same is true with the other

assumptions. Another important point is that the attempt to take into

account all possible exogenous events at all steps of execution will dra-

matically increase the size of the domain and slow down the composition

procedure. What is more frustrating is that the reactions to exogenous

events will still be vulnerable against dynamic factors such as volatile set
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of available fragments. Then the question arises: does it make sense to cal-

culate in advance solutions to dozens of different improbable problematic

situation if we know that 1) most of these solutions will never be demanded

and 2) they can be easily broken by other dynamic factors and will not

work when they are needed. It is also worth to mention that the attempt

to deal with system dynamicity at design time does not follow the flavour

of “dynamic adaptation”, where a problem is addressed as soon as it hap-

pens and the run-time information is intensively used to produce a better

solution.

This is why in our adaptation framework we follow the second approach.

We treat all processes running within a system (including the adaptation

processes themselves) as potential target for adaptation and constantly

track their execution. For example, if a problem occurs in a running process

w, the adaptation engine automatically produces an adaptation process wx

that is supposed to address the problem. While running wx, new dynamic

changes may happen and so the adaptation process may get stuck itself.

In this case, the adaptation engine may try to repair the adaptation pro-

cess (“adaptation of adaptation”) using the same adaptation mechanisms

and strategies as for the core process w and so on. Alternatively, as we

discussed in the previous section, more sophisticated adaptation manage-

ment may take into account the previous adaptation history of a process.

For example, if process wx realizes local adaptation for process w and at

some point wx gets stuck due to precondition violation, knowing that wx is

already a local adaptation process, the adaptation manager may decide to

skip it and to produce a new adaptation process w′x with the same goal but

for updated environmental conditions. In general, we presume that with

advanced management of adaptation strategies it is possible to achieve

extreme robustness against dynamic factors even using “static” fragment

composition.
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Our adaptation framework never reacts directly to dynamic changes in

the execution environment and always continues execution normally. Only

when the process execution cannot proceed due to known adaptation trig-

gers (i.e., precondition violation, fragment not available, unrefined abstract

activity), the adaptation is applied. As such, we assume that all critical

changes will sooner or later trigger adaptation and will be properly ad-

dresses by the respective adaptation process. We also admit that certain

level of proactiveness could be of much help here (though we do not use

it in our demonstrator and consider it as potential direction for future re-

search). In the rest of this section we have a short discussion of the three

assumptions introduced above and show the problems that can arise once

the assumptions are violated. We also briefly outline possible proactive-

ness enhancements to the adaptation manager that can improve efficiency

in this case.

Controllable Context. In the lack of exogenous events, the context

evolves precisely as it is defined by the contextual impact (see Defs. 13, 15,

16). Automatically composed processes are guaranteed to be correct only

if the context is controllable. Once exogenous event happens, the process

may get stuck due to precondition violation, which can be dealt with in

normal way. Sometimes it makes sense to perform process simulation as

a reaction to exogenous events. In this case, the harmful effect of these

events can be detected a priori and more efficient adaptive actions may

be performed. For example, if a car is about to start driving towards the

storage area, and the storage area becomes full, it seems to be unwise to

let the car drive to the storage area even though we know a priori it will

not be able to get stored there. By simulating the process we can actually

identify the problem before moving the car to the area and so more efficient

adaptation may be proposed. Alternative solution (which is actually used

in the demonstrator) is to provide proactive fragment annotations (e. g.,

135



CHAPTER 5. COMPOSITION IN DYNAMIC ENVIRONMENT

to specify that driving to the storage area can be performed only when the

latter is not full: the only reason to drive to the storage are is for store the

car over there).

Static Fragment Set. The problem of fragment unavailability, as a

rule, has more serious consequences for a process using unavailable frag-

ment. This problem can hardly be addressed at design time. At run time,

the fragment unavailability usually results in process compensation and re-

planning (clearly enough local adaptation does not resolve the problem).

The proactiveness can drastically improve the adaptation efficiency and

can be easily provided by checking all the activities in the process every

time some fragment disappears.

Pure Refinement. In fragment composition, abstract activities are

always treated as “black boxes” that act according to their goals. As a

result, it is never checked at composition time if the abstract activities

within a composition are refinable and whether they produce side effects.

The proactiveness can be achieved here, for instance, by checking the re-

finability of abstract actions after the composition is produce but before

its execution starts. In this way we can identify potential problems and

use recomposition to avoid them. Concerning the side effects, they can be

treated in the same way as exogenous events.

We remark that many additional aspects related to the static fragment

composition and consequent execution in a dynamic environment may arise

in real setting. For example, the inability to refine an abstract activity may

be the direct consequence of unavailability of some fragments. The proac-

tive checking of refinability should then be additionally performed every

time the set of available fragments changes. One more example is where

we have two sequential activities a1 and a2 with different preconditions.

Once the precondition of a1 is violated, a local adaptation process w1 is
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produced and executed. However, in addition to satisfying the precondi-

tion of a1 it, as a side effect, may violate the precondition of a2, and so a

more intelligent adaptation may be needed in this case.

Similarly to the management of adaptation strategies, we have to admit

that the efficient treatment of dynamic factors in automated systems is

by itself a large research area that cannot be completely covered in this

dissertation. However, we find this discussion important to understand the

advantages of our adaptation framework and to come up with some basic

ideas for our implementation of the adaptation engine.

In the conclusion, we would like to emphasize, that we consider the

simplifying assumptions in fragment composition algorithm to be rather

an advantage than a disadvantage of our approach. In fact, these as-

sumptions are a way to simplify the specification of core processes and to

postpone the resolution of potential execution problems to the very last

moment, when they really occur and when we have the most up-to-date

information about the environment and thus can produce better solutions.

Finally, this makes it possible to create a truly run-time adaptation engine

that provides unprecedented level of flexibility and robustness in dynamic

environments.
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Chapter 6

Context-Aware Composition of

Services

In this chapter we present the context-aware model for service composition

in dynamic environments which strongly relies on the fragment composi-

tion model of Chapter 4. We start from the motivating example that is

substantially different from the one presented in Section 3.1. After that we

discuss the difference between the notion of service and the notion of frag-

ment and show that under certain reasonable assumptions the composition

of services is very close to the composition of fragments. Consequently, we

show that the context-aware composition of services can actually be per-

formed following the approach of Chapter 4.

We remark that in this section we consider simple context-aware service

composition, where composition goals are reachability goals for context

states (the same as in Chapter 4). For the time being, we also neglect

data-flow requirements. In Chapter 7 we will discuss advanced control-

and data-flow requirements in context-aware service composition, based

on the motivating example and the background material of this chapter.

139



CHAPTER 6. CONTEXT-AWARE COMPOSITION OF SERVICES

6.1 Motivating case study

In order to illustrate the advantages of our approach and to exemplify its

concepts we use a well-known motivating example from the travel domain

(later referred to as Virtual Travel Agency or VTA scenario). Two inde-

pendent service providers that have no direct communication with each

other provide sets of services for managing flight tickets and hotel reser-

vations respectively. In particular, with the services of the flight company

flight tickets can booked and canceled, while with the services of the hotel

reservation company hotel reservations can be made, modified and can-

celed. In addition to that, there is a third-party service that tracks flights

and sends notifications about flight delays and cancellations. In order to

help the user conveniently manage a flight ticket and an associated hotel

reservation as a single travel package a service composition is needed. The

composition has to support the complete life cycle of the package, from its

acquisition, to possible modifications and cancellations.

The details of the service protocols are given in Figures 6.1, 6.2, 6.3,

6.4, 6.5 in form of abstract BPEL processes. Flight Booking Service (Fig.

6.1) accepts a flight ticket request and checks for the ticket availability. If

tickets are available it asks for the user’s confirmation of booking. Flight

Cancellation Service (Fig. 6.3) is a simple request-response service. Hotel

Management Service (Fig. 6.4) implements all three operations associated

with hotel reservations. Hotel reservation and modification resemble the

flight booking procedure and hotel cancellation resembles flight cancella-

tion. Finally, there is a Flight Notification Service (Fig. 6.2) that can send

notifications of two types: “flight is delayed” and “flight is cancelled”.

The interaction with the user is modeled as another service (Fig. 6.5),

which essentially determines the communication protocol of the future ser-

vice composition.

140



CHAPTER 6. CONTEXT-AWARE COMPOSITION OF SERVICES

Figure 6.1: Flight Booking Service

Figure 6.2: Flight Notification Service

The composition requirements can be expressed in natural language as

follows:
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Figure 6.3: Flight Cancellation Service

1. The initial objective is to purchase a travel package requested by the

user. A flight and hotel must be booked transactionally (incomplete

packages of only hotel or flight are impossible) and aligned in time and

location so that hotel location coincides with flight destination and

hotel check-in date corresponds to the flight arrival date (to simplify

the resulting model we consider a one-way ticket only);

2. Upon the delay of the purchased flight, the hotel reservation has to be

aligned to the new arrival date. If it is not possible, the whole package

has to be cancelled, which means the transactional cancellation of both

the flight and the hotel reservation;

3. Upon the flight cancellation, the hotel reservation has to be cancelled

as well.

We remark that more complex and close-to-reality variants of these sce-

narios can be modelled with our framework. However, even this simple

variant features a number of important issues that have never been ad-

dressed altogether by the existing automated composition techniques.

First of all, the services within the scenario are stateful components

featuring asynchronous interaction, partial observability and nondetermin-

ism.
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Figure 6.4: Hotel Management Service
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Figure 6.5: User Protocol
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Second, the composition goal cannot be expressed in terms of a single

protocol state to be reached. While requirement (1) can be encoded as

state reachability, requirements (2) and (3) are reactive rules that express

desirable reaction to critical events. Moreover, requirements (1) and (2)

include prioritized alternatives (e.g., to modify a hotel, if not possible - to

cancel the whole package). Another important aspect is that these complex

control-flow requirements go along with data-flow requirements that also

have to be encoded and taken into account by the composition.

Finally, the selected application domain motivates the reuse of the com-

position requirements. Indeed, it is quite likely that at some point one

provider of flight ticket services will be replaced with another one (e.g.,

in user-centric setting the situation may become even more complex if we

want to let the user select the providers to be used within the composition).

To avoid additional expenses on application support, the requirements have

to be reusable.

6.2 Composition Model Overview

The overview of our composition model is represented in Fig. 6.6. Struc-

turally, it is very close to the model for fragment composition discussed

in Chapter 4. However, in addition to dealing with services rather than

fragments, our service composition approach concerns some advanced com-

position topics that have not been covered in the approach for fragment

composition. In particular, we consider the problems of rich control- and

data-flow requirements and show how the context-aware service composi-

tion can be used in user-centric applications.

The explicit context model is the same as in fragment composition,

and is modeled as a set of context properties. In the VTA scenario, con-

text properties might be the Hotel Reservation, the Flight Ticket and the
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Travel Package. Similarly to the model of fragment composition, services

are related to context model through service annotations and composition

requirements are expressed over the context model rather than over service

states. The core idea is that while service execution is closely related to

the changes in status and data of context properties, the modeling of the

latter does not depend on a particular service implementation. As such,

by expressing control- and data-flow composition requirements at the level

of context properties on the one side, and by relating services to context

properties on the other side, we create a composition framework in which

composition requirements, though detached from service implementations,

can always be automatically grounded on them.

Context property behaviour is captured by its state diagram, which

defines all possible property states and transitions between them. In fact,

the transitions correspond to activities that can be performed over the

context property (e.g., the flight ticket can be booked or cancelled) and to

the external events affecting it (e.g., flight delay). Context property data
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Figure 6.6: Service composition model
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is a collection of data fields similar to parts in WSDL messages.

To link context properties and services described in WSDL and Abstract

BPEL (or, potentially, in any other similar language), we annotate service

descriptions with context-related information. In this way we implicitly de-

fine mapping between the execution of service operations and the changes

in context property status and data. From the control flow perspective,

every service operation may be annotated with 1) contextual effect indi-

cating context property evolution enforced by operation execution and 2)

contextual precondition indicating in which contextual conditions operation

execution is allowed. Concerning the data flow, it is explicitly specified how

the parts of input and output messages relates to the data fields of context

properties (similarly to the DataNet approach of [79]).

The aforementioned service annotations are usually quite intuitive since

they reflect the functional properties of services from the perspective of

the application domain. It is worth to notice that in this way it becomes

easy to modify a scenario to account for different service implementations:

it is enough that services are properly annotated, while it is not necessary

to change context property models nor requirements on their control- and

data-flow.

In order to define requirements on conceptual level, we define them at

the level of context properties rather than service specifications. Namely,

in control-flow requirements we express tasks in terms of reachability of

states in context property state diagrams (e.g., to reach state “created”

in the Flight Ticket) or in terms of context property transitions (events)

to be triggered (e.g., to trigger transition related to the modification of

Hhotel Reservation). We also allow for coordination requirements, where

a task has to be performed as a reaction to some contextual situation (e.g.,

to cancel hotel reservation in case of flight cancellation). Within a task,

recovery goals can also be specified (e.g., to modified a hotel reservation, if
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not possible to cancel the whole package). Conceptual data-flow require-

ments show how data fields of one context property relate to data fields of

another context property (e.g., flight arrival date is equal to hotel check-

in date). This information is later used to direct data flows within the

composition. The extension of DataNet approach of [79] is used here.

6.3 Context Model

We completely reuse the context model and all the respective definitions

presented in Chapter 4. Here we simply give some examples related to the

motivating case study of this section.

Example 5 (Context Properties). In our motivating example we distin-

guish three context properties: Flight Ticket, Hotel Reservation and Travel

Package. Their respective state diagrams are show in Fig. 6.7. Flight

Ticket and Hotel Reservation model real entities that the composition op-

erates while Travel Package models the virtual concept of predefined travel

solution as it is perceived by the user.
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Figure 6.7: Context properties in virtual travel agency scenario

Let us consider one of the properties in detail. Flight Ticket contains

three states. State st is the initial state where the flight ticket is not yet
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instantiated, state cr corresponds to the situation where the ticket is al-

ready booked and state del is where the ticket is not valid anymore. The

transitions model all possible activities and events related to the ticket.

For example, transition labeled with event created corresponds to ticket

booking, events delayed and canceled correspond to flight delay and can-

cellation. It can be seen that there are two transitions leading from state

cr to state del. Although they correspond to the same changes to the state,

unbooked corresponds to intentional cancellation of the ticket by the cus-

tomer while the canceled corresponds to its cancellation by the airline. We

model them as two different events in order to be able to distinguish them

in requirements (e.g., if we want to react only to the flight cancellation by

the airline while ignoring the same action performed by the customer).

In order to be able to resolve state and event of different objects with

the same name we agree to denote event ev of property p as eve(p) and

state st of property p as sts(p). In the future we use the names of flight,

hotel and package to denote the context properties of Flight Ticket, Hotel

Reservation and Travel Package respectively.

Example 6 (Context Formula). In our service composition model we

intensively use context formulas, both in service annotations and in goal

specifications. For example, a context formula expressing the situation in

which both parts of a travel package (i.e., flight ticket and hotel reservation)

are instantiated can be expressed as formula crs(flight) ∧ crs(hotel), and

can be used as a goal reflecting the need to book both parts of the package.
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6.4 Services and Service Orchestration

6.4.1 Service Model

We assume that services are stateful and their description includes both

service interface and protocol. Following [18], we initially model service

protocol with a state transition system with three types of actions. In-

put actions model input messages received by a service, output actions

model output messages sent by a service, and internal actions(also called

τ -actions) model internal operations such as auxiliary control-flow transi-

tions and data-related manipulations that are both hidden from the outside

world. Output and internal actions can be considered as controllable since

the service can decide when and which of them to execute. Similarly, in-

put actions are not controllable since the decision on their execution is

made by a service client. This distinction is important to produce correct

composition of asynchronous services. Formally:

Definition 33 (Service). Service is a tuple s = 〈V, v0, I, O,R〉, where

• V is the set of states and v0 ∈ V is the initial state;

• I is a set of input actions, O is a set of output actions such that

I ∩O = ∅;

• R ⊆ V × (I ∪O ∪ {τ})× V is a transition relation with three types of

actions.

6.4.2 WS-BPEL Services as STS

Translation of Abstract BPEL specifications to STS

In order to translate Abstract BPEL specifications to state transition sys-

tems we use the translation rules similar to those described in [18, 76]. We

remark that our translation is restricted to the most common constructions
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of the WS-BPEL language, namely basic activities invoke, receive, receive,

assign, empty and structured activities sequence, switch, while, pick (with-

out timeouts). However, we believe that the considered subset provides

enough expressiveness to be enough in the most of application domains.

As we already mentioned, we do not focus on the data flow in our ap-

proach, which significantly simplifies the transformation compared to those

used in [18, 76] (we actually ignore all data-related information, including

conditions in such constructs as switch and while). The key transformation

principles are quite intuitive. The basic observable actions in Abstract

BPEL specifications (i.e., those related to message exchange) appear as

input/output transitions in a service STS. Similarly, unobservable actions

become τ -transitions in a service STS. The structure activities imply the

recursive transformation of its constituent elements and the transforma-

tion of the whole process consists in recursive transforming its individual

constructs and rejoining them into a single STS.

The visual rules for the translation of basic activities are given in Ta-

ble 6.1. The observable actions are represented with receive, reply and

invoke, altogether covering both synchronous and asynchronous interac-

tion. The reply and receive activity are used for asynchronous interactions

in both directions. In order to keep the sets of input and output actions

in an STS disjoint, reply and receive for the same operation use differ-

ent action names. The invoke activity can be of two types (as defined is

WS-BPEL): one-way operation invocation and synchronous operation in-

vocation. request-response invocation. The two basic activities assign (of

all types) and empty are transformed into internal activities since they are

not observable to a service partner and are a part of internal service logic.

The mapping of the structured activities can be found in Table 6.2. The

sequence activity is a linearly ordered list of activities. The switch activity is

used to model internal conditional branching in the protocol that is hidden
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WS-BPEL activity State Transition System

receive

operation="op"
?op

reply

operation="op"
!rep_op

invoke

operation="op"

inputVariable="x"

!op

invoke

operation="op"

inputVariable="x1"

outputVariable="x2"

!op

?rep_op

assign

copy from variable="x1" part="p1"

to variable="x2" part="p2"

τ

empty τ

Table 6.1: Translation of basic WS-BPEL activities into STSs

from the outside world. The while activity supports loops. Its behaviour

is similar to that of switch. The pick activity models another type of

branching that is controlled by the client by means of input messages to a

service.

Example 7. As an example, in Fig. 6.8 we give the result of the trans-

formation of the Flight Booking Service (Fig. 6.1).
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WS-BPEL activity State Transition System

sequence

activity a1

activity a2

�������
�������τ

switch

case condition="c1" activity a1

case condition="c2" activity a2

otherwise activity a3

τ
τ

τ������� ��������������
τττ

while

condition="c"

activity a

τ τ������
τ

pick

onMessage operation="op1"

activity a1

onMessage operation="op2"

activity a2

?op1 ��������������
ττ

?op2

Table 6.2: Translation of structured WS-BPEL activities into STSs
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!fFail

τ τ

τ

?fRequest

!fOffer

τ

?fReject?fAccept

τ τ

τ τ

τ

τ

Figure 6.8: Flight Booking Service as STS

Translation of STS into executable WS-BPEL

In our formal model, the composition is obtained as a state transition sys-

tem and has to be translated back to an executable process specification.

This imposes additional restrictions on the model of such STS compared

to that of a service. In particular, a solution STS cannot contain mul-

tiple controllable actions (in case of orchestrator, they are τ -actions and

output actions) starting from the same state. Indeed, in such situation,

the engine would not be able to figure out which of them has to be ex-

ecuted next. Such conflicting situations are referred to in the literature

as ”internal” nondeterminism. At the same time, having a number of un-

controllable (input) actions from one state is quite natural since it reflects

the nondeterministic behaviour of external service, where all cases have to

be taken into account. Such situation is easily processed by a process en-

gine (e.g., “pick” activity in BPEL waits for a number of possible inputs).

154



CHAPTER 6. CONTEXT-AWARE COMPOSITION OF SERVICES

These second type of situations is also known as ”external” nondetermin-

ism. Summing it up, “external” nondeterminism is fine and “internal”

nondeterminism is not fine in an STS that encodes executable processes.

We also require that runnable STS is deterministic. To define it formally,

we introduce runnable STS as follows:

Definition 34 (Runnable STS (Process)). A runnable STS is a determin-

istic STS 〈V, v0, I, O,R〉, such that:

• if (v, a, v′) ∈ R and a ∈ O, then no other transition from v belongs to

R;

• if (v, τ, v′) ∈ R then no other transition from v belongs to R.

The back translation of a runnable STS is quite straightforward. We

simply revisit all states of the tree and convert the respective transitions

into BPEL activities using the information in original specifications of com-

ponents and mapping between action labels and names in the specifications

that can be created during the procedure of direct translation. In particu-

lar, all output transitions become invoke and reply activities (depending on

whether the corresponding operations are synchronous or asynchronous in

a component protocol). Similarly, input transitions become either receive,

or pick (depending on whether it is only one input transitions from this

state or they are many).

6.4.3 Observable Behaviour

In order to discuss observable behaviour of services, we introduce a concept

of τ -closure(v) in service s as a set of states that are reachable from v

through τ -transitions:

Definition 35 (τ -closure). Let s = 〈V, v0, I, O,R〉 be a service and v ∈ V
be one of its states. A τ -closure of v is a set of states that are reachable
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from v through τ -transitions, i. e., τ -closure(v)= {vx : ∃v0, v1, . . . , vn :

v0 = v, vx = vn,∀i ∈ [0, n− 1] : (vi, τ, vi+1) ∈ R}.

In our formal model we make an assumption that all the internal logic

of services is hidden from external partners (which is consistent with basic

principles of SOA), and the partners can perceive the internal state of a

service only via its observable behaviour (i.e., input and output messages).

So our approach aims to perform service composition on the level of ob-

servable behaviours rather than on the level of internal protocols. As a

result, all the τ -actions within a protocol become of no use to us since we

cannot track their execution. Considering Def. 33, we can conclude that

the observable behaviour of a service is an STS such that at each step

of its evolution we can precisely understand what are the next observable

operations to be performed. In fact, it must be an STS with only input

and output actions.

Definition 36 (Observable STS (Observable Service Behaviour)). Observ-

able STS is a tuple s = 〈V, v0, I, O,R〉, where

• V is the set of states and v0 ∈ V is the initial state;

• I is a set of input actions, O is a set of output actions such that

I ∩O = ∅;

• R ⊆ V × (I ∪O)× V is a transition relation with no τ -actions.

The problem here is how service protocol as defined in Def. 33 correlates

with service observable behaviour.

The fact of partial observability is a problem for service orchestration,

because when a service transits via τ -actions, an external partner (e.g.,

an orchestrator) cannot figure out the moment when a service is ready

to execute next observable action (i.e., receive or send messages). To fix

service behaviour in such situations, we assume that service s is ready

156



CHAPTER 6. CONTEXT-AWARE COMPOSITION OF SERVICES

for observable action a in state v if there exists a state v′ accessible from

v via τ -transitions (i.e., v′ ∈ τ -closure(v)) such that a transition labeled

with a is available from v′. In other words, if action a is applicable on

a state belonging to τ -closure(v), the external partner, being not able to

distinguish between states within the same τ -closure, should treat it as

if a was applicable on v. We can define the procedure for deriving an

observable service behaviour from its protocol as follows:

Definition 37 (Service Protocol as Observable Behaviour).

Let s = 〈V, v0, I, O,R〉 be a service. The observable behaviour of s is an

STS s′ = 〈V ′, V ′0, I, O,R′〉 such that:

• V ′ = {v′ ∈ V : (∃(v, a, v′) ∈ R : a 6= τ) ∨ (v′ = v0) ∨ (v′ ∈ Finals(s)};

• for every transition (v, a, v′) ∈ R : a 6= τ and for every state vx ∈ V ′ :
v ∈ τ -closure(vx), we define a transition (vx, a, v

′) ∈ R′;

• no other states and transitions belong to s′.

Keeping it simple, the observable behaviour is obtained by eliminat-

ing all τ -transitions and connecting non-τ transitions directly rather then

via a chain of τ -transitions. We remark that in such way the observable

behaviour can be directly derived from service protocol specification.

Example 8. The observable behaviour of the services from the Virtual

Travel Agency scenario are shown in Fig. 6.9. Although the parts of the

protocols that correspond to while-loops may look complex, they still

correctly reflect the observable behaviour of a service in this way.

Undecidable behaviour. We remark that such process languages

as Abstract BPEL allow for service protocols that have undecidable ob-

servable behaviour. For example, if a service protocol contains a switch

activity with two branches starting with receive and reply activities
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!fFail

?fRequest

!fOffer

?fReject?fAccept

(a) Flight Booking

?fCancel

!fCanceled

(b) Flight Cancellation

!fMsgDelayed !fMsgCanceled

!fMsgDelayed !fMsgCanceled

(c) Flight Notification

!hFail

?hRequest

!hOffer

?hReject?hAccept

!hmFail!hmOffer

?hmReject?hmAccept

?hmRequest

!hCanceled

?hCancel

(d) Hotel Management

!noPackage

?pRequest

!pOffer

?pReject?pAccept

?pmOffer ?pCancel

!pmAccept

?pmReject

(e) User Protocol

Figure 6.9: Observable behavior of services from virtual travel agency scenario

respectively, an external partner that cannot evaluate the conditional ex-

pression of the switch block, cannot decide whether to send a message to

a service or to receive a message from it. In our formalism, services with

undecidable behavior can be defined as follows:

Definition 38 (Service With Undecidable Observable Behaviour). Service

s = 〈V, v0, I, O,R〉 has undecidable observable behaviour if there exists state

v ∈ V such that:

1. (∃(v1, a1, v
′
1), (v2, a2, v

′
2) ∈ R : v1, v2 ∈ τ -closure(v)) ∧ (a1 ∈ I) ∧

(a2 ∈ O);

2. (∃(v1, a1, v
′
1), (v2, a2, v

′
2) ∈ R : v1, v2 ∈ τ -closure(v)) ∧ (a1, a2 ∈ I) ∧

(v1 6= v2);

3. (∃(v1, a1, v
′
1), (v2, a1, v

′
2) ∈ R : v1, v2 ∈ τ -closure(v)).
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!output1

τ τ

τ

?input1

?input2

(a)

?input3

τ

?input1

?input2

τ

(b)

!output1

τ τ

?input1

!output1

?input2 ?input3  

(c)

Figure 6.10: Services with undecidable observable behaviour

Example 9. In Fig. 6.10 the three cases of undecidable behaviour de-

fined in Def. 38 are exemplified. Case 1 (Fig.6.10a) describes a situation

where a partner cannot know from observable behaviour if to send a mes-

sage (?input2) or to expect a message from a service (!output1). Case 2

(Fig.6.10b) is where a service may wait for different input message (?inpit2

or ?input3) but not for all of them altogether. So, the partner cannot

know which message must be sent. Case 3 (Fig.6.10c) describes behaviours

with nondeterministic terminal state (after observable executions ?input1,

!output1 the service behaviour is unpredictable).

In other words, a service with decidable behaviour at each step either

sends a known set of output messages, or expects a known set of input

messages. Moreover, the observable action has to unambiguously indicate

the next state of the observable behaviour. In our model, we assume that

all the services we work with have decidable behaviours. Elimination of

Case 3 also guarantees that an observable behaviour in our system is always

a deterministic STS.

6.4.4 Services as Fragments

While comparing service protocols and service-based fragments of Chap-

ter 4, it can actually be concluded that they have similar nature. The
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major difference between them is that service protocols reflect the inter-

action between the two partners from the perspective of a service, while

fragments reflect the same aspect but from the perspective of a client (e.g.,

orchestrator).

In general, fragments are more flexible since they let the designer to

specify not only the interaction model but also some internal operations

that have to be performed “inside” the client (e.g., this internal operations

are concrete activities in APFL). Still, the fragments can be naturally

used by service providers to express how the respective functionality of

their services has to be consumed by clients. As such, fragments can be

considered as a competitor to abstract service protocols described with

languages such as Abstract BPEL.

Considering observable behaviour of a service (Def. 36), it can be con-

cluded that the observable behaviour of a client compatible with this ser-

vice is essentially dictated by the observable behaviour of a service. By the

compatibility in this case we understand the situations, where all interac-

tions between the two parties are synchronized, i.e., whenever one partner

is supposed to send a message, another partner has to be ready to accept

it. It can be easily shown that such behaviour of a partner can actually be

derived from an observable protocol by inverting input and output actions

in observable protocol. In fact, in such way we obtain a process fragment

reflecting the correct behaviour of an orchestrator when communicating to

the corresponding service. Intuitively, if at some point a service is going

to send one or a couple (in case of external nondeterminism) of output

messages, the client has to be ready to accept any of them. Similarly,

when a service is ready to receive one of a set of messages, one of these

messages can be sent by the client. This semantics directly corresponds to

the semantics of process fragments defined in Def. 7. As such, the following

correspondence of an observable STS and a fragment can be installed:
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Definition 39 (Service as Fragment). Let srv = 〈V, v0, I, O,R〉 be an ob-

servable behavior of some service. A fragment (as in Def. 7) corresponding

to srv is an STS f = 〈S, s0, I,O,R〉 such that:

• S = V and s0 = v0;

• I = O and O = I;

• R = R.

A fragment corresponding to some service is called its complementary

fragment.

Considering a set of services to be orchestrated we can eventually con-

clude that the problem of service composition consists in properly com-

posing the fragments corresponding to the observable behaviour of such

services. More precisely, having a set of services s1, . . . , sn, we obtain their

observable behaviours s′1, . . . , s
′
n and finally obtain their complementary

fragments f1, . . . , fn. The further composition theory generally coincides

with the theory of Chapter 4 on context-aware fragment composition with

minor differences that will be discussed later on. In several words, through

asynchronous product we obtain an execution domain as in Def. 17 that

encodes all possible correct executions of fragments. Since fragments are

completely synchronized with the observable behaviour of services, the

paths in the execution domain can also be interpreted as a parallel evo-

lution of services s1, . . . , sn. Since in our model the operational semantics

of fragments and services coincides, the asynchronisity of services is essen-

tially determined by asynchronisity of respective fragments. Consequently,

the notion of consistent orchestrator for services and the way we derive it

generally coincides with those of Chapter 4.

Belief-level system. In our approach to service composition we state

that services are completely described by their observable behaviour and, as

such, the problem of service composition can be eventually reduced to the
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problem of fragment composition. This idea is based on the assumptions

that 1) internal operation of services can never be observed by external

clients and that 2) all services have decidable observable behaviour as de-

fined by Def. 38. Although we think that these assumptions are reasonable,

we remark that [18] proposes a more profound approach to treating partial

observability and asynchronisity of interaction that does not require the

assumptions above. This approach completely compatible with our frame-

work and, if needed, can be integrated into it. In this approach complete

service protocols s1, . . . , sn are directly combined by means of asynchronous

product into execution domain Σ that contains τ -transitions reflecting in-

ternal evolutions of services. To make use of effective planning techniques

for fully observable domains, the partial observability of services, modeled

by τ -actions, is compiled away from Σ by building a so-called belief-level

system ΣB, an STS whose states correspond to beliefs of Σ - that is, to sets

of states of Σ which are equally plausible for an external observer sensing

the STS’s inputs and outputs. ΣB can then be encoded into a planning

domain D, and, under mild assumptions, one can prove that the composi-

tion problem is solved by identifying (the STS corresponding to) a plan π

that satisfies the composition goal ρ for the planning domain D. Although

we have never performed this kind of analysis, we expect that a belief-level

system and an execution domain in our approach for the same sets of ser-

vices are likely to be very close to each other and in many cases coincide.

This is a consequence of the similarity of the ways both approaches collapse

τ -closures into single states.

6.5 Service Annotations

In order to link services to context we allow for service annotations which

can be of two types: action preconditions and action effects. Semantically,
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they are very close to those used in fragment annotation. Action precon-

dition indicates in which context states an action can be executed. The

set of allowed states is specified through a context formula. Action effect

contains a set of context events that are triggered by action execution. The

formal definition is as follows

Definition 40 (Service Annotation). Let C = {p1, p2, . . . , pn} be a context

with a set of context states LC and a set of context events EC and let

s = 〈V, v0, I, O,R〉 be a service. A service annotation of the service s over

the context C is a tuple ω = 〈P , E〉, where:

• P : (I ∪ O) → RC is a precondition function that connect observable

service action (inputs and outputs) to a context formula describing a

set of allowed states;

• E : (I ∪ O) → E∗ is an effect function that relates observable ser-

vice actions to context events that they trigger. To avoid nondeter-

ministic context runs we require that for any context property p =

〈L, l0, E, T 〉 ∈ C the following holds: 6 ∃e1, e2 ∈ E(a) : e1, e2 ∈ E.

Example 10. Annotations of some service actions in Virtual Travel Agency

scenario are shown in Table 6.3. For example, action fAccept (Fig. 6.9a)

corresponds to the positive accomplishment of the flight booking process.

In the precondition we require that the flight ticket is not yet booked

(sts(flight)) and that the user has already approved the package book-

ing (crs(package)) since this operation is not revertible. The effect of the

action suggests that after the action is executed, the Flight Ticket prop-

erty will proceed through a transition labelled with event bookede(flight),

which corresponds to ticket booking.

The definition of action executability coincides with Def. 12 and the

definition of action impact coincides with Def. 13 and Def. 16 (we do not
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Table 6.3: Service annotations from virtual travel agency scenario

a P(a) E(a)

fRequest sts(flight) ∅
fAccept sts(flight) ∧ crs(package) bookede(flight)

fCanceled crs(flight) unbookede(flight)

fMsgDelayed > delayede(flight)

fMsgCancelled > cancelede(flight)

pRequest sts(package) ∅
pAccept sts(package) bookede(package)

pmAccept crs(package) modifiede(package)

pCancel crs(package) cancelede(package)

use impact for goals since neither goals not abstract activities are used in

service specifications and their complementary fragments).

6.6 Problem of Context-Aware Service Composition

Due to similarity between annotations of services and fragments, the ser-

vice annotations can be easily converted into the annotations of the com-

plementary fragments. Taking into account that, similarly to annotated

fragments, services and their annotations form annotated services, a sys-

tem of annotated services

S+ = {〈s1, ω1〉, . . . , 〈sn, ωn〉}

can be converted into a system of complementary annotated fragments

F+ = {〈f1, ω1〉, 〈f2, ω2〉, . . . , 〈fn, ωn〉}

that, when accompanied by context model C becomes a context-aware

system of fragments Ψ = 〈F+, C〉.
Since the elementary goal is expressed as a context formula ρ encom-

passing the goal states to be reached, the problem of context-aware service

composition can be formulated as follows:
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Definition 41 (Context-Aware Service Composition Problem). Let S+

be a set of services annotated over context C and let ρ ∈ RC be a con-

text formula over C expressing composition requirements. The problem of

context-aware service composition for S+, C, ρ corresponds to a problem

of fragment composition for Ψ = 〈F+, C〉 and ρ (see Def. 23), where F+

is a set of annotated fragments complementary to services S+.

The procedure of resolving the composition problem is practically the

same as described in Chapter 4. The only difference is that the first step

of translation of services into an execution domain consists in deriving the

observable behaviours of services and converting them into complimentary

fragments. The remaining steps are the same as for the context-aware

composition of fragments.

6.7 Discussion

Coming back to the motivating example of Virtual Travel Agency and

considering the context properties in Fig. 6.7 it can be easily observed that

the composition requirements expressed in terms of context formulas are

not enough to cover the three requirement expressions given in Section 6.1.

Here we can identify a number of problems that have to be addressed.

The first requirement in the list expresses a need of transactional book-

ing of all of the parts of the package from the initial situation. This require-

ment can be expressed in our formalism through the following formula:

(crs(flight) ∧ crs(hotel) ∧ crs(package))∨

(sts(flight) ∧ sts(hotel) ∧ sts(package))

The formula indicates that either all respective objects are booked or none

of them is booked. However, the strong planning for such goal with initial

context state (sts(flight)∧sts(hotel)∧sts(package)) will eventually return
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an empty plan (the plan will be found but it will contain no actions). The

reason is that this requirement does not distinguish the preferences between

two goal states. Although state (sts(flight) ∧ sts(hotel) ∧ sts(package) is

a goal state (and this is why the plan is empty: in the initial state we are

already in the goal state and so the shortest way to satisfy the goal is to

do nothing) it is not indeed what we would expect to get as a result of

composition. Our primary goal is (crs(flight)∧ crs(hotel)∧ crs(package))
and only if it is not possible to reach it, we would like to guarantee that we

at least stay with none of the objects booked. So the expected behaviour

is where the composition does its best to book the package but guarantees

that once it is not possible, nothing is booked. We can conclude that

preferences in the requirements language are needed.

The second and the third statement of the requirements are actually

reactive requirements. They specify some task that has to be performed

exclusively as a reaction to some triggering situation. In general such

expressions cannot be expressed as reachability goals. Moreover, the second

requirement also features two alternative reactions that have to be given

different preference (once a flight is delayed, the hotel and the package

have to be aligned with them, and only if it is not possible the cancellation

of all three has to be performed). From this, we conclude that reactive

requirements are needed to target our motivating example.

Another important aspect is that sometimes context states are not

enough to express the tasks to be performed. Indeed, in the second expres-

sion it is said that once the flight has been delayed, we have to modify both

the hotel and the package. Going back to context properties in Fig. 6.7,

it can be observed that once the initial booking is performed the context

remains in state (crs(flight)∧ crs(hotel)∧ crs(package)). When the flight

is delayed the state of the context is still the same but what is more im-

portant is that the state that will be reached as a result of modification
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of hotel and package will also be the same. And so the current state and

the goal state in this case coincide and the plan that will be returned in

case of requirements expressed as a rechability goal will be the empty one.

The solution here is to enable composition requirements that combine both

states to be reached and events to be triggered (so-called procedural goals).

Finally, what is more important is that we would like to combine all

requirements into one composition so that not only does it perform certain

tasks but also provides maintenance of consistency by proper reaction to

certain situations. The intuition of such approach in the VTA scenario,

is that the composition first transactionally books the package and then

supports its consistency by properly reacting to flight delays and cancella-

tions.

The problems outlined in this discussion are addressed in the next chap-

ter.
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Chapter 7

Advanced Topics in Service

Composition

Although the composition requirements expressed in terms of context states

to be reached were enough for the tasks of process adaptation considered

in Chapter 3, in the concluding discussion of Chapter 6 we showed that

very often the expectation from the composition cannot be expressed as a

simple reachability of context states and may need advanced requirement

languages and resolution techniques. In the first section of this chapter

we propose our context-based language for control-flow requirements that

aims to overcome the limitations of composition goals exploited in Chapter

6.

Although the main focus of these dissertation is control-flow require-

ments, we realize the importance of data-flow requirements and devote

the second section of this chapter to them. We overview one of the ap-

proaches to specifying data-flow requirements for service composition that

was originally developed to be used in the planning-based service composi-

tion systems. After that, we propose a prototype solution for adopting this

technique to be exploited in our context-based composition framework.

In this chapter we work with annotated fragments assuming that they

are complementary fragments for some system of annotated services S+.
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7.1 Control-Flow Requirements

Similarly to context goals, our language for control-flow requirements is

context-based, i. e., it expresses requirements on top of our context model.

As we showed in the previous chapters, this increases requirements reusabil-

ity and makes them more robust against certain types of dynamic changes.

At the same time, in our language we try to address the challenges that

were discussed in the conclusion of Chapter 6 and that can be summarized

as follows:

• the use of context events along with context formulas;

• the possibility of tasks with preferences;

• the possibility to express reactive tasks.

7.1.1 Language and Semantics

In the language syntax we reuse elements of our context model, in particu-

lar context events and context formulas. Conceptually, there are two types

of requirements: imperative and reaction. An imperative contains a task to

be unconditionally performed by the composition. A reaction consists of a

context event (trigger) and a task. It requires that every time the trigger

occurs in the context, the associated task is performed. A task consists of

a few prioritized clauses. A task is considered to be performed if at least

one of its clauses (preferably, the one with higher preference) is satisfied.

Clauses are propositional formulas over context events and context formu-

las. A clause containing a context formulas is satisfied when the context

transits via a context state satisfying the formula. A clause containing a

context event is satisfied when this event occurs in the context. The syntax

of the language is formally defined as follows:
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Definition 42 (Control-Flow Requirements Language). Let C be a con-

text. Composition requirements expr are specified as:

expr := task | e→ task | expr ; expr

task := (clause, c) | task, task
clause := ρ | e | clause ∨ clause | clause ∧ clause

,where e ∈ EC is a context event, ρ ∈ RC is a context formula and c ∈ N
is a task preference.

In the future with Terms(clause) we will denote all terms (i.e.,

event and context formulas) appearing in clause clause. Similarly, with

Terms(task) we will denote all terms appearing in the clauses of task.

For example, if task = (clause, c) then Terms(task) = Terms(clause)

and if task = (clause1, c1), . . . , (clausen, cn) then Terms(task) =

Terms(clause1) ∪ . . . ∪ Terms(clausen).
Composition requirements of form expr = task or expr = e → task

are called elementary expressions while requirements of form expr =

expr1; expr2; . . . ; exprn, where expri is an elementary expression for all

i ∈ [1, n], are called composite expressions.

Example 11. Using the new language, the control-flow composition re-

quirements from the Virtual Travel Agency scenario discussed in Section

6.1 can be specified in our requirements language as follows:

1.

(crs(flight) ∧ crs(hotel) ∧ crs(package), 2),

(sts(flight) ∧ sts(hotel) ∧ sts(package), 1)

The expression is an imperative containing two tasks with different

preferences. It ensures that all the components of the package are

purchased transactionally. The task with the higher preference re-

quires that all context properties are in state cr which corresponds to
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the situation where both hotel reservation and flight ticket are pur-

chased and the package is approved by the user. The recovery goal

requires that none of the elements are purchased upon user’s disap-

proval (or if some item is not available). As such, only two situations

satisfy the expression: when all of the elements are purchased (more

preferable) or none of them is purchased (less preferable);

2.

delayede(flight)→

(modifiede(package) ∧modifiede(hotel), 2),

(unbookede(package) ∧ unbookede(hotel) ∧ unbookede(flight), 1)

The expression specifies the reaction to the flight delay. The more

preferable reactive task is where a hotel reservation is modified in

order to be aligned with the flight changes. The modification has to

be agreed with the user (the package has to be modified as well, which

corresponds to the user’s approval of changes. The less preferable

alternative suggests that the whole package with all its constituent is

unbooked;

3.

cancelede(flight)→

(unbookede(package) ∧ unbookede(hotel), 1)

The reaction to the flight cancellation consists in unbooking the ho-

tel reservation and the package (i.e., to inform the user about the

cancellation).

172



CHAPTER 7. ADVANCED TOPICS IN SERVICE COMPOSITION

Control-flow Requirements Semantics

We define the semantics of the control-flow composition requirements

through the runs of the context-aware execution domain that satisfy it.

Definition 43 (Clause Satisfaction). Let Ψ = 〈F+, C〉 be a context-aware

system, LC and EC be sets of context states and context events of context

C respectively and let ΣCF be the context-aware execution domain for Ψ

(see Def. 20). A run π = ((s1, l1), a1, (s2, l2), a2, . . . , an−1, (sn, ln)) of ΣCF

satisfies requirement clause cl defined over C (denoted π |= cl) if and only

if:

• cl = ρ and ∃(s, l) ∈ π : l |= ρ;

• cl = e and ∃a ∈ π : e ∈ E(a);

• cl = cl1 ∨ cl2 and π |= (cl1, n) or π |= (cl2, n);

• cl = cl1 ∧ cl2 and π |= (cl1, n) and π |= (cl2, n).

Conceptually, the idea is that a context-aware run of the execution

domain satisfies some context formula if its associated context evolution

passes through a state where this formula is satisfied. The run satisfies

some event if this event is among the events triggered within the run. The

extension of these semantics to formulas over events and context formulas

is trivial.

While extending the notion of satisfaction to imperative and reaction

expression in requirements, we have to take into account the preferences

presented in them. For the sake of simplicity, we assume that all tasks

within an expression are given different preferences that are natural num-

bers 1, 2, . . . ,m without gaps:
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Definition 44 (Elementary Expression Satisfaction). Let Ψ = 〈F+, C〉 be

a context-aware system, and let ΣCF be the context-aware execution domain

for Ψ.

A run π = ((s1, l1), a1, (s2, l2), a2, . . . , an−1, (sn, ln)) of ΣCF satisfies im-

perative expression

expr = (cl1, 1), (cl2, 2), . . . , (clm,m)

defined over C with preference i : 1 ≤ i ≤ m (denoted π |=i expr) if and

only if π |= cli and 6 ∃j : i < j ≤ m : π |= clj.

In a similar situation π satisfies reaction expression

expr = et → (cl1, 1), (cl2, 2), . . . , (clm,m)

defined over C with preference m if 6 ∃a ∈ π : e ∈ E(a) (i.e., re-

quirement is never triggered). Otherwise π satisfies expr with prefer-

ence i : 1 ≤ i ≤ m if there exists a terminating subsequence πk =

((sk, lk), ak, . . . , an−1, (sn, ln)) ∈ π such that 6 ∃a ∈ πk : e ∈ E(a) and

πk |= cli and 6 ∃j : i < j ≤ m : πk |= clj.

In other words, a run satisfies an imperative expression with preference i

if it satisfies a clause of a task with assigned preference i and there exists no

task with preference higher than i whose clause is also satisfied by this run.

For a reaction expression the definition is the same but the satisfaction is

considered since the last occurrence of trigger et.

Finally, there is an issue of how to define the satisfaction of a group

of expressions. Indeed, while each requirement expression prioritizes tasks

within itself, it is not clear how to prioritize the tasks belonging to differ-

ent expressions. In this case we can say that tasks within the requirements

are partially ordered. The problem of dealing with such requirements is

very close to the problem of dealing with partially ordered goals in plan-

ning with preferences (e.g., see [110]). The problem of flattening partially
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ordered goals/tasks is a complex problem that, however, goes beyond the

scope of this thesis. In our approach we use the most simple flatten-

ing technique where in order to calculate the satisfaction preference for a

group of expressions we simply sum up the satisfaction preferences of each

expression. Formally:

Definition 45 (Requirements Satisfaction). Let Ψ = 〈F+, C〉 be a context-

aware system and let ΣCF be the context-aware execution domain for Ψ.

A run π = ((s1, l1), a1, (s2, l2), a2, . . . , an−1, (sn, ln)) of ΣCF satisfies re-

quirements expr = expr1; expr2; . . . ; exprk defined over C with preference

x ∈ N (denoted π |=x expr) if and only if there exists a set of natural

numbers c1, c2, . . . , ck : ci ∈ N, i ∈ [1, k] such that π |=ci expri, i ∈ [1, k] and

c1 + c2 + . . .+ ck = x.

Since in our approach the composition is supposed to provide continu-

ous satisfaction of the requirements. It means that infinite runs are legal

(for example, the flight can be delayed infinite number of times, and the

execution may be infinite as well). That is why we have to extend the

requirements satisfaction to infinite runs. We consider an infinite run as

satisfying if from any its point it provides requirements satisfaction in finite

number of step. The satisfaction preference of the infinite run is the lowest

achieved in the infinite perspective.

Definition 46 (Requirements Satisfaction (Infinite Run)). Let Ψ =

〈F+, C〉 be a context-aware system and let ΣCF be the execution domain

for Ψ. Let π = ((s1, l1), a1, (s2, l2), a2, . . .) be an infinite run of the context-

aware execution domain ΣCF . π satisfies requirements expr defined over

C with preference x if and only if for any n ∈ N the following holds:

• there exists m : n ≤ m < ∞ such that the starting subsequence

πm = ((s1, l1), a1, (s2, l2), a2, . . . , am−1, (sm, lm)) of π is such that

πm |=x′ expr : x′ ≥ x;

175



CHAPTER 7. ADVANCED TOPICS IN SERVICE COMPOSITION

• there exists no m′ : n ≤ m′ < ∞ such that the starting subse-

quence πm
′

= ((s1, l1), a1, (s2, l2), a2, . . . , am′−1, (s
′
m, l

′
m)) of π is such

that πm
′ |=x′′ expr : x′′ < x.

The idea is that infinite runs are supposed to keep on satisfying the

composition requirements forever. Once requirements are satisfied, they

still may become unsatisfied (due to uncontrollable actions executed by

services). In this case, their satisfaction has to always be reached again

in finite number of steps. The satisfaction preference for an infinite run

is determined by a minimal satisfaction preference provided by this run in

the infinite perspective.

7.1.2 Requirements as STS

From Def. 45 we see that the evaluation of satisfaction of requirements

expr by some run of the context-aware execution domain can be reduced

to the evaluation of satisfaction of clauses within tasks of expressions of

expr. Consequently, a clause can be evaluated by evaluating all its terms,

which are context formulas and events. The evaluation of satisfaction of a

context formula ρ consists in tracking if we have traversed a state satisfying

ρ. Similarly, the evaluation of satisfaction of event e consists in tracking

if we have executed an action annotated with effect containing e. The

tracking of satisfaction for terms appearing in imperative statements is

different from the tracking of satisfaction of those appearing in reaction

statements. For the imperative statements we track the corresponding

situations starting from the very beginning of the system run. For the

reaction statements we track the situations of interest starting from the

last appearance of the reaction trigger as required by Def. 45. In other

words, every time trigger fires during the system run we have to reset all

the tracking information and start tracking anew.
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In order to introduce the satisfaction of our composition requirements

in the context-aware execution domain, we generally follow the approach

proposed for planning with extended goals ([67]), where a special control

automaton is introduced in order to track requirements satisfaction.

We define our elementary control STS as a state transition system track-

ing the satisfaction of one single term. It has only two states false and true

and the transitions between states can be labeled with events or context

formulas:

Definition 47 (Elementary Control STS). An elementary control STS for

context C is a state transition system r = 〈V, v0, T 〉 such that:

• V = {true, false} is a set of control states and v0 ∈ V is the initial

state;

• T ⊆ V × {RC ∪ EC} × V is a set of transitions labelled with context

formulas or events of C.

In fact, we can notice that in order to track the satisfaction of an ar-

bitrary requirement expr expressed in our language we have to track four

elementary situations: 1) the occurrence of a context formula, 2) the oc-

currence of an event, 3) the occurrence of a context formula after an event

and 4) the occurrence of an event after another event. For that purpose,

we define the following four elementary control STSs:

Definition 48 (Elementary Control STS for Language). To translate our

language to STS we use four elementary control STSs:

• to track a context formula ρ in imperative expressions we use elemen-

tary control STS rρ
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false

true

�

where the initial state is set to true if for the initial context configu-

ration l0C |= ρ, and set to false otherwise;

• to track a context event e in imperative expressions we use elementary

control STS re

�

false

true

where the initial state is set to false if for the initial context configu-

ration l0C |= ρ;

• to track a context formula ρ in reaction expressions with trigger et we

use elementary control STS retρ

� et

false

true
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where the initial state is set to true;

• to track a context event e in reaction expressions with trigger et we

use elementary control STS rete

� et

false

true

where the initial state is set to true.

The semantics of elementary control STSs with respect to the context-

aware execution domain will be presented later. A control STS for some

requirements expr contains elementary control STSs for all terms appearing

in expr:

Definition 49 (Control STS for Requirements). A control STS for some

requirements expr = expr1; expr2; . . . ; exprn defined over context C, where

expri is an elementary expression for all i ∈ [1, n], is a set of elementary

control STSs R(expr) such that:

• for each context formula ρ ∈ RC if there exists i ∈ N such that expri =

task (i.e., expri is an imperative expression) and ρ ∈ Terms(task)

then ∃rρ ∈ R(expr);

• for each context event e ∈ EC if there exists i ∈ N such that expri =

task and e ∈ Terms(task) then ∃re ∈ R(expr);

• for each context formula ρ ∈ RC if there exists i ∈ N such that expri =

et → task and ρ ∈ Terms(task) then ∃retρ ∈ R(expr);
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• for each context event e ∈ EC if there exists i ∈ N such that expri =

et → task and e ∈ Terms(task) then ∃rete ∈ R(expr);

• no other STSs belong to R(expr).

The state of the Control STS is described by states of its con-

stituent elementary control STSs. If R(expr) = r1, . . . , rm such that

ri = 〈Vi, v0
i , Ti〉,i ∈ [1,m] then the initial state is v0

R = (v0
1, . . . , v

0
m) and

the set of all states is VR =
m∏
i=1

Vi.

The control STS R(expr) can be used to evaluate any clause within

expr and, as such, can also be used to evaluate requirements expr. In the

following we propagate the notion of requirements satisfaction introduced

by Defs. 43, 44 and 45 for runs of the context-aware execution domain to

the states of the control STS. We use the concept of state projection as it

was defined for context in Def. 4.

Definition 50 (Requirements Satisfaction (Control STS)). Let R(expr)

be a control STS for requirements expr = expr1; expr2; . . . ; exprn defined

over context C, where expri is an elementary expression for all i ∈ [1, n],

and let vR ∈ VR be one of its state.

Clause cl belonging to some task within elementary expression exprk :

k ∈ [1, n] is satisfied by state vR (denoted vR |= cl) if and only if one of the

following holds:

• cl = ρ and cl belongs to imperative expression and vR ↓rρ= true;

• cl = ρ and cl belongs to a reaction expression with trigger et and

vR ↓retρ= true;

• cl = e and cl belongs to an imperative expression and vR ↓re= true;

• cl = e and cl belongs to a reaction expression with trigger et and

vR ↓rete= true;
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• cl = cl1 ∨ cl2, and r |= cl1 or vR |= cl2;

• cl = cl1 ∧ cl2, and r |= cl1 and vR |= cl2.

If exprk : k ∈ [1, n] is an imperative expression such that exprk =

(cl1, 1), (cl2, 2), . . . , (clm,m) then state r satisfies exprk with preference

i : 1 ≤ i ≤ m (denoted vR |=i exprk) if and only if vR |= cli and

6 ∃j : i < j ≤ m : vR |= clj.

If exprk : k ∈ [1, n] is a reaction expression such that exprk =

et → (cl1, 1), (cl2, 2), . . . , (clm,m) then state vR satisfies exprk with pref-

erence i : 1 ≤ i ≤ m (denoted vR |=i exprk) if and only if vR |= cli and

6 ∃j : i < j ≤ m : vR |= clj.

Finally, vR satisfies requirements expr with preference x ∈ N (de-

noted vR |=x expr) if and only if there exists a set of natural numbers

c1, c2, . . . , cn : ci ∈ N, i ∈ [1, n] such that vR |=ci expri for all i ∈ [1, n] and

c1 + c2 + . . .+ cn = x.

Example 12. In Fig. 7.1 we show elementary control STS that are used

to track and evaluate expression

cancelede(flight)→

(unbookede(package) ∧ unbookede(hotel), 1)

in Example 11. STS r1 is used to track the occurrence of event

unbookede(package) after event cancelede(flight), while STS r2 is used

to track the occurrence of event unbookede(hotel) after the same event

cancelede(flight). As a result, the combination of two STSs can be

used to track the satisfaction of the whole expression. The require-

ment is considered as satisfied when the resulting control STS is in state

(r1 = true ∧ r2 = true).

In order to be able to fuse control STS with the context-aware execution

domain so that the resulting STS reflects the satisfaction of composition
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Figure 7.1: Requirements as STS

requirements at any point of domain evolution, we, using the analogy with

the impact function for context, introduce the requirements impact function

for control STS. It indicates how the execution of certain action in certain

conditions affects the control STS:

Definition 51 (Requirements Impact). Let Ψ = 〈F+, C〉 be a context-

aware system, let ΣCF = 〈SCF , s0
CF , IF ,OF ,RCF 〉 be the context-aware

execution domain for Ψ. Let expr be composition requirements over C

and let R(expr) (with set of states VR) be its control STS. The impact of

transition t ∈ RCF on the control STS R(expr) in state vR ∈ VR is a state

v′R ∈ VR (denoted v′R = ReqImpΨ[R(expr)](vR, t)) such that:

• if t = (s, a, s′), then for all r = 〈V, v0, T 〉 ∈ R(g) if there exists

(vR ↓r, e, v′) ∈ T such that e ∈ E(a) then v′R ↓r= v′;

• if t = (s, a, s′), then for all r = 〈V, v0, T 〉 ∈ R(g) if there exists

(vR ↓r, ρ, v′) ∈ T such that s′ |= ρ then v′R ↓r= v′;

• in all other cases for all r ∈ R(g) the state of r does not change, i.e.,

v′R ↓r= vR ↓r.

In fact, the requirements impact shows that once an event fires in the
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domain, it triggers all transitions in elementary control STSs that are la-

beled with this event. Similarly, when some new state is reached in the

domain, it also triggers all transitions labeled with formulas satisfied by

the new state.

Having the notion of requirements impact, we fuse the context-aware

execution domain and the control STS into a context-aware execution do-

main with tracking, or simply domain with tracking. The state of the

domain with tracking is supposed to reflect not only the evolution of the

context-aware execution domain but also the satisfaction of composition

requirements in the current situation. In fact, the domain with tracking

encodes the simultaneous execution of the context-aware execution domain

and the control STS, which “tracks” the evolution of the former and evolves

according to the requirements impact function. In this regard, the control

STS plays the role of “passive logger” of the execution domain and by no

means restricts its evolution.

Definition 52 (Domain with Tracking). Let Ψ = 〈F+, C〉 be a context-

aware system, let ΣCF = 〈SCF , s0
CF , IF ,OF ,RCF 〉 be the context-aware

execution domain for Ψ. Let expr be composition requirements over C

and let R(expr) (with set of states VR and initial state v0
R) be its control

STS. The domain with tracking for Ψ and expr is a state transition system

ΣRCF = 〈SRCF , s0
RCF , IF ,OF ,RRCF 〉 such that:

• SRCF = SCF ×VR is a set of states and s0
RCF = (SCF , v0

R) is the initial

state;

• the transition relation RRCF is such that:

((s, vR), a, (s′, v′R)) ∈ RRCF if (s, a, s′) ∈ RCF , and

v′R = ReqImpΨ[R(expr)](vR, (s, a, s
′)).
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From the definition above it can be easily observed that for every run

π = (s1, a1, s2, a2, . . . , an−1, sn)

of ΣCF there exists run

πR = ((s1, v
R
1 ), a1, (s2, v

R
2 ), a2, . . . , an−1, (sn, v

R
n ))

of the tracking domain ΣRCF . It is the direct consequence of the fact that

requirements impact can be calculated for any set of arguments. In other

words, the domain with and without tracking has the same set of runs

with respect to the operations executed. And so we can conclude that

control STS does not restrict in any way the set of possible evolutions

of the context-aware execution domain within the respective domain with

tracking. At the same time, the control STS itself evolves only according

to requirements impact. Consequently, the state of the tracking domain

is supposed to reflect the satisfaction of requirements expr as defined by

Def. 51.

The central idea behind the domain with tracking is that every its state

unambiguously shows if requirements expr are satisfied in it and with

which preference. As such, the domain with tracking “converts” complex

extended goals expressed in our language into reachability goals. Conse-

quently, it allows us to use planning techniques similar to those presented

in Chapter 4 to resolve the composition problems with goals expressed in

language of Def. 42.

We remark that the way we build a control STS and fuse it with the

context-aware execution domain is an alternative way to describe the se-

mantics of the requirements language from the perspective of planning.

In this regard, Defs. 43, 44 and 45 and the theory of this section essen-

tially serve for the same purpose and can be used independently, regarding

the final goal of such definition. The execution-based definitions give bet-

ter conceptual understanding of the language semantics. However, they
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cannot be directly reused in planning. The state-based approach is more

technical but is ready to be integrated with planning algorithms similar

to those exploited in Chapter 4. Being complementary to each other, the

two approaches demonstrate the methodology of how to use complex and

extended control-flow requirements in planning.

In the conclusion of this section we introduce a theorem stating the

equivalence of the satisfaction semantics for the execution-based definitions

and for the domain with tracking:

Theorem 3 (Semantics of Domain With Tracking). Let Ψ = 〈F+, C〉 be a

context-aware system, let ΣCF be the context-aware execution domain for

Ψ. Let expr be composition requirements over C and let ΣRCF be domain

with tracking for Ψ and expr. A run

π = (s1, a1, s2, a2, . . . , an−1, sn)

of the context-aware domain ΣCF satisfies expr with preference x (i.e.,

π |=x expr) if and only if its equivalent run

πR = ((s1, v
R
1 ), a1, (s2, v

R
2 ), a2, . . . , an−1, (sn, v

R
n ))

of the domain with tracking ΣRCF is such that vRn |=x expr;

Proof. The proof of the theorem is based on the way the domain with

tracking is built. Using the Defs. 43, 44 and 45 (satisfaction for execu-

tion paths) on the one side and Def. 50 (satisfaction for states of control

STS) on the other side, we can incrementally show that the theorem holds

for clauses, elementary requirement expressions, and complex requirement

expressions. Consequently, it is easy to show that the satisfaction is also

preserved for infinite runs (Def. 46)
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7.1.3 Problem of Continuous Composition

Similarly to context-aware execution domain in Chapters 4 and 6, a do-

main with tracking ΣRCF = 〈SRCF , s0
RCF , IF ,OF ,RRCF 〉 defined for some

context-aware system Ψ and requirements expr can be used as a search

space for service compositions for requirements expr. Naturally enough,

we are interested in those runs of a domain with tracking that terminate in

the states satisfying expr. However, differently from the approach of Chap-

ter 4, the goal states of ΣRCF are ordered according to their preferences.

This has to be taken into account by potential solutions.

Let us consider some composition requirements expr =

expr1; expr2; . . . ; exprn where expri is an elementary expression for

all i ∈ [1, n]. We assume that for each expri the tasks are given preferences

1, 2, . . . ,Max[expri] without gaps. Then all the goal states

G = {vR ∈ SRCF : ∃x ∈ N : vR |=x expr}

can be split into Max[expr] =
n∑
i=1

Max[expri] groups G1, . . . , GMax[expr]

containing only those goal states that satisfy requirements with certain

preference:

Gi = {vR ∈ SRCF : vR |=i expr}, i ∈ [1, n].

In order to introduce the notion of solution executor for a domain with

tracking we adopt Def. 21 and neglect the preferences of goal states.

Definition 53 (Solution Executor(Tracking)).

Let ΣRCF = 〈SRCF , s0
RCF , IF ,OF ,RRCF 〉 be a domain with tracking for

context-aware system Ψ = 〈F+, C〉 and requirements expr over C. A so-

lution executor for Ψ and expr is an STS ΣE = 〈SE, s0
E, IF ,OF ,RE〉 such

that:

• SE ⊆ SRCF , s0
E = s0

RCF , RE ⊆ RRCF , i.e., ΣE is a subgraph of ΣRCF ;
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• Finals(ΣE) ⊆ G, i.e., all complete runs of ΣE are satisfying for expr.

In the same way we adopt the notion of consistent executor:

Definition 54 (Consistent Executor (Tracking)).

Let ΣRCF = 〈SRCF , s0
RCF , IF ,OF ,RRCF 〉 be a domain with tracking for

context-aware system Ψ = 〈F+, C〉 and requirements expr over C. A so-

lution executor ΣE = 〈SE, s0
E, IF ,OF ,RE〉 for Ψ and expr is consistent

if:

1. for all s ∈ SE, if exists transition (s, a′, s′) ∈ RE : a ∈ IF , then it is

the only transition from this state ( 6 ∃(s, a′′, s′′) ∈ RE);

2. if s ∈ SE : s 6|= ρ then ∀(s, a, s′) ∈ RRCF : (a ∈ OF ) → ((s, a, s′) ∈
RE)) (all uncontrollable actions are considered);

3. for every complete run πE of ΣE any state s ∈ SE is traversed no

more than once, i.e., ΣE does not contain infinite runs.

Finally we have to address the problem of preferences in goals. Indeed,

when multiple consistent solution executors exist our choice has to be regu-

lated by the preferences of goals they achieve. We remark that the problem

of preferences is an important topic in AI planning that, however, goes be-

yond the scope of this work. In our approach, we adopt the way to order

solution proposed in [111] and [110] and reuse some definitions from these

works.

Considering some consistent solution executor ΣE =

〈SE, s0
E, IF ,OF ,RE〉, we denote with best(ΣE, s) the highest prefer-

ence among the final states of ΣE reachable from state s ∈ SE. Similarly,

with worst(ΣE, s) we denote the lowest preference among the final states

reachable from s. So we can say, that ΣE gives a possibility to reach at

most goal state with preference best(ΣE, s) while guaranteeing that a state

with preference at least worst(ΣE, s) will be reached. While comparing two

187



CHAPTER 7. ADVANCED TOPICS IN SERVICE COMPOSITION

executors Σ1
E = 〈S1

E,S0 1
E , IF ,OF ,R1

E〉 and Σ2
E = 〈S2

E,S0 2
E , IF ,OF ,R2

E〉
we use so-called optimistic approach: the executor whose best preference

is higher for this state is better. When the best preferences are equal we

prefer the one with higher worst preference:

Definition 55 (Executor Ordering in State). Let Σ1
E and Σ2

E be two con-

sistent solution executors for the same context-aware domain Ψ and re-

quirements expr and let s be a state belonging to both of them (i.e., a state

of their respective domain with tracking). Then Σ1
E is better than Σ2

E in s

(denoted Σ1
E >

s Σ2
E) if:

• best(Σ1
E, s) > best(Σ2

E, s), or

• best(Σ1
E, s) = best(Σ2

E, s) and worst(Σ1
E, s) > worst(Σ2

E, s).

If best(Σ1
E, s) = best(Σ2

E, s) and worst(Σ1
E, s) = worst(Σ2

E, s) then execu-

tors are equivalent in this state (denoted Σ1
E 's Σ2

E). We denote with

Σ1
E ≥s Σ2

E the fact that Σ1
E >

s Σ2
E or Σ1

E 's Σ2
E.

Consequently, we order executors by considering their properties in com-

mon states Scommon(Σ1
E,Σ

2
E) = S1

E ∩ S2
E:

Definition 56 (Executor Ordering). Let Σ1
E and Σ2

E be two consistent

executors for the same context-aware domain Ψ and requirements expr.

Executor Σ1
E is better than executor Σ2

E (denoted Σ1
E > Σ2

E) if:

• Σ1
E ≥s Σ2

E for all s ∈ Scommon(Σ1
E,Σ

2
E) and

• Σ1
E >

s′ Σ2
E for some s′ ∈ Scommon(Σ1

E,Σ
2
E).

If Σ1
E 's Σ2

E for all s ∈ Scommon(Σ1
E,Σ

2
E) then the two executors are equiv-

alent (denoted Σ1
E = Σ2

E).

Finally, the consistent solution executor is considered to be optimal if

is in not worse than all the other possible consistent solution executors for

the same system Ψ and requirements expr:
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Definition 57 (Optimal Executor). Consistent solution executor ΣE for

context-aware domain Ψ and requirements expr is optimal if ΣE ≥ Σ′E for

any other executor Σ′E for Ψ and expr.

The last important aspect we would like to reflect in the solution is

that the preferable goal states are not always the terminal states of the

execution domain and sometimes the system can be forced to leave such

state through uncontrollable transitions. Consider, for example, the VTA

scenario. Our booking requirement is satisfied when all the appropriate

bookings are transactionally completed. However, we know that the goal

state reached is actually not a final state of the domain and uncontrollable

transitions are available from it (namely, those corresponding to flight delay

and cancellation). Since we cannot prevent uncontrollable transitions from

being triggered by external services, the idea is to take them into account

in the executor, so that it is ready to react to this kind of situations.

First of all, a consistent executor has to include (and thus provide a

solution for) all uncontrollable transitions also from goal states, which is

different from condition 2 of Def. 54. Conceptually, once we reached some

goal state we still have to consider the situation, in which we leave this

state through an uncontrollable transition (if any), and guarantee that in

this case we “bring” the system to the goal state. This is what we mean

by continuous composition.

The second change in the definition of consistent orchestrator (Def. 54)

concerns condition 3, prohibiting infinite loops. The point is that in con-

tinuous composition loops are affordable and almost unavoidable. Indeed,

once you leave a goal state, an affordable solution may be to come back

to this state. For example in the VTA scenario when the flight is delayed

in a situation when everything is booked, the best solution is to adjust

all other components (i.e., hotel and package) to the flight changes and, in

fact, bring the system back to the state where the delay initially happened.
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Such solution can still be considered as strong since, though we have loops,

they are loops traversing goal states. As a result, we guarantee that from

any its state, the goal state is reached in finite number of steps. Formally,

the continuosly consistent executor is defined as follows:

Definition 58 (Continuously Consistent Executor).

Let ΣRCF = 〈SRCF , s0
RCF , IF ,OF ,RRCF 〉 be a domain with tracking for

context-aware system Ψ = 〈F+, C〉 and requirements expr over C. A so-

lution executor ΣE = 〈SE, s0
E, IF ,OF ,RE〉 for Ψ and expr is continuously

consistent if:

1. for all s ∈ SE, if exists transition (s, a′, s′) ∈ RE : a ∈ IF , then it is

the only transition from this state ( 6 ∃(s, a′′, s′′) ∈ RE);

2. if s ∈ SE then ∀(s, a, s′) ∈ RRCF : (a ∈ OF ) → ((s, a, s′) ∈ RE)) (all

uncontrollable actions are considered);

3. for all states s ∈ SE, there exists no infinite run π = (s1, a1, s2, a2, . . .) :

s1 = s) of ΣRCF such that ∀i ∈ [1,∞) : si 6|= expr.

Comparing this definition with Def. 54, we see that condition 2 requires

that all uncontrollable transitions are considered also in goal states. More-

over, condition 3 is reformulated such that it allows for loops but only in

case this loops traverse goal states. This ensures that from any state of

the executor a goal is guaranteed to be achieved in finite number of steps.

We remark that continuously consistent executors can be compared to

each other using the optimality criterion introduced by Defs. 55,56 and 57.

Finally, the problem of continuous service composition for extended

control-flow requirements can be introduced as follows:

Definition 59 (Continuous Service Composition Problem). Let S+ be a

set of services annotated over context C and let F+ be a set of annotated

fragments that are complimentary to S+. The problem of continuous service
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composition for annotated services S+, context model C and requirements

expr expressed in language of Def. 42 over C consists in finding optimal

and continuously consistent solution executor for context-aware system Ψ =

〈F+, C〉 and requirements expr.

7.1.4 Approach Architecture and Prototype Algorithm

Approach Architecture

As it can be seen in Fig. 7.2, our approach to continuous composition

generally follows the flavour of fragment composition approach depicted

in Fig. 4.7 of Chapter 4. The main difference concerns the appropriate

handling of control-flow requirements and their integration to the planning

problem.

The derivation of the context-aware execution domain ΣCF is the same

as in Chapter 4 except for the fact that since we start from services, the A-

EXTRACTOR has to additionally convert annotated services s+
1 , . . . , s

+
n

to annotated complementary fragments f+
1 , . . . , f

+
n .

The requirements processing is performed by the ENCODER. It essen-

tially consists in defining the elementary control STS for expr and ground-

ing them on annotations of fragments. The procedure of grounding is

conceptually similar to the grounding of context: in every elementary STS

all transitions labeled with context events and context formulas are in-

telligently replaced with transitions labelled with fragment actions. The

grounding is performed such that when the grounded elementary STSs are

joined into synchronous product ΣR and then ΣR is synchronously joined

with the context-aware execution domain ΣCF into STS ΣRCF , the re-

sulting STS ΣRCF completely corresponds to the notion of domain with

tracking of Def. 52. Another function of the ENCODER is to derive from

requirements expr reachability goals G = {G1, . . . , GMax[expr]}, which is
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Figure 7.2: Continuous composition approach

essentially the list of satisfying states of the control STS ΣR ordered ac-

cording to their preferences (e.g., as it is shown in the beginning of Section

7.1.3).

After the domain with tracking ΣRCF and the goal with preferences

G are passed to the PLANNER, the latter is expected to produce the

optimal and continuously consistent solution executor ΣE that can further

be converted into an executable process.
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Prototype Algorithm

Once the domain with tracking ΣRCF = 〈SRCF , s0
RCF , IF ,OF ,RRCF 〉 is

passed to the planner, it becomes a planning domain D = ΣRCF . For our

convenience we will omit the indices and denote the domain as follows:

D = 〈S, s0, I,O,R〉. Its initial state becomes the initial state of the plan-

ning problem I = s0. Finally, the set of goal states ordered according to

their preferences becomes a goal with preferences G = {G1, . . . , Gn} where

Gi ⊆ S,i ∈ [1, n] is a set of goal states of preference i (see Section 7.1.3).

The resulting composition problem 〈D, I, {G1, . . . , Gn}〉 is similar to the

one used in [111] and is known as a planning problem with preferences.

In the algorithm description we keep on using the PruneStates and

StrongPreImage routines introduced in Section 4.5.

Our prototype algorithm for deriving optimal continuously consistent

solution executor (later in this section simply solution executor)adopts

some ideas of [111]. The algorithm contains two major steps:

1. As a first step, we reduce the set of goal states G = {G1, . . . , Gn} to

their subset G′ = {G′1, . . . , G′n} such that G′i ⊆ Gi, i ∈ [1, n]. Goal

states G′ are a maximal subset of goal states G such that all uncon-

trollable transitions from G′ lead to a state from which a strong plan

for G′ exists;

2. The second step is based on the backward search for the pruned goal

states G′ = {G′1, . . . , G′n}. The plan search routines used here are

close to those used in [111].

The pre-processing of goal states (Step 1) is necessary since some of goal

states are not suitable for continuous composition. Indeed, when we reach

a goal state among G, the only thing that is guaranteed is that the require-

ments are satisfied in this state. However, the continuous composition has
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to guarantee that whenever a goal state is left through an uncontrollable

transition we can always bring it back to some goal state. Therefore we

have to filter off all the goal states that do not fit this criterion.

The filtering routines implementing the first step are shown in picture

7.3. Here and in the following algorithms we assume that the planning

domain D is globally available. The routine filterStep takes as input

a list of goal states G = {G1, . . . , Gn} and returns a set of filtered goal

states G′ = {G′1, . . . , G′n}. First, all the goals are collected into single set

flatGoal (lines 2-4). Then the backward pre-imaging for states flatGoal

is performed (lines 5) using the routine strongPreFP (lines 14-23) that

implements strong pre-imaging for given states till the most fixed point.

The result of pre-imaging is stored in state-action table SA. Finally, we

prune all the goal states from gList that have uncontrollable transitions

leading to states outside SA (line 6-11), i.e., to states from which no strong

plan for flatGoal exists. Suc goal states are “bad” since for them the con-

tinuous maintenance of requirements is not guaranteed. The main filtering

routine filter (lines 26-33) consists in running filterStep till the least

fixed point. It is necessary since after removing some goalStates within

filterStep we may “make” some other goal states unsuitable for contin-

uous composition and so the filtering should continue till the least fixed

point.

The termination of the filtering algorithm can be easily proved by show-

ing that at each iteration of cycle in lines 29-32 at least one goal state is

filtered off. Since the initial set of goal states G is finite, the loop always

terminates. The goal state filtering performed by the filter routine does

not affect the completeness of the further planning algorithm and does

not eliminate potential solutions. To show that, we prove that solution

executor never traverses “bad” goal states eliminated by the filtering pro-

cedure. As a consequence, it is erroneous to consider them as “truly” goal
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states since once they are included in the executor, the latter cannot be

continuously consistent.

Let Gtotal =
n⋃
i=1

Gi be a union of all goal states of G, and let G′total =

n⋃
i=1

G′i be a set of goal states remained after filtering (G′total ⊆ Gtotal).

Lemma 3 (Filtering). Let D = 〈S, s0, I,O,R〉 be some domain with track-

ing, let G be its ordered set of goal states and let ΣE = 〈SE, s0
E, I,O,RE〉

be its solution executor for goals G. Let G′total be a set of states remained

after filtering by routine filter. Then SE ∩ (Gtotal \G′total) = ∅, i. e. the

solution executor never traverses goal states removed by filtering.

Proof. Let us denote with Gbad = Gtotal\G′total a set of goal states eventually

filtered off. Since the filtering algorithm terminates then we will have finite

number m of iterations of loop in lines 29-32, each of which will filter off

states Gi
bad so that Gbad =

m⋃
i=1

Gi
bad. Using induction on the number i of

iteration of the filtering loop we show that once a state s ∈ Gbad is included

in the solution executor ΣE (i.e., s ∈ SE) there exists an infinite run of ΣE

never reaching goal states Gtotal in infinite perspective, which contradicts

to condition 3 of Def. 58 of continuously consistent executor.

Basis (i = 1). If s ∈ G1
bad, then there exists an uncontrollable transition

(s, o, s′) such that from s′ a strong solution for Gtotal does not exist. This

transition also belongs to ΣE (condition 2 of Def. 58). Since s′ is not a goal

state, s′ cannot be final state of ΣE. At the same time, 1) if s′ contains

only controllable outgoing transitions then all of them lead to states from

which no strong solution for Gtotal exists and 2) if s′ contains uncontrollable

outgoing transitions, then at least one of them leads to a state from which

no strong solution for Gtotal exists (otherwise, strong solution from s would

also exist). Then we can conclude that there exists (s′, a′, s′′) ∈ RE, such
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1 function f i l t e r S t e p ( gL i s t )

2 f l a t G o a l = ∅ ;

3 for ( i :=1; i≤ | gL i s t | ; i++)

4 f l a t G o a l := f l a t G o a l ∪ gL i s t [ i ]

5 SA := strongPreFP ( f l a t G o a l )

6 gListPruned := ∅
7 for ( i :=1; i≤ | gL i s t | ; i++

8 foreach ( g∈gL i s t [ i ] )

9 nextUncont ro l l ab l e = { s∈ S : ∃ ( g , a , s )∈ R , a∈ O}
10 i f ( nextUncont ro l l ab l e⊆StatesOf (SA) )

11 gListPruned [ i ] = gListPruned [ i ]∪g

12 return gListPruned

13

14 function strongPreFP ( goa l )

15 OldSA := ∅
16 NewSA := ∅
17 do

18 OldSA := NewSA

19 Pr := StrongPreImage ( goa l ∪ StatesOf (OldSA ) )

20 NewStates := PruneStates (Pr , goa l ∪ StatesOf (OldSA ) )

21 NewSA := OldSA ∪ NewStates

22 while (OldSA 6=NewSA)

23 return NewSA

24

25

26 function f i l t e r ( gL i s t )

27 gListOld = ∅
28 gListPruned = gL i s t

29 do

30 gListOld = gListPruned

31 gListPruned = f i l t e r S t e p ( gListOld )

32 while ( gListNew 6= gListOld )

33 return gListPruned

Figure 7.3: Goal filtering algorithm
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that s′′ 6∈ G. Continuing the same reasoning we show that there exists an

infinite run of ΣE that never reaches goal states Gtotal.

Induction step. Let us denote with G
[1,i]
bad =

i⋃
j=1

Gj
bad a set of goal states

filtered off after i iterations of the loop of lines 29-32 and for which the

lemma is already proved. Let us denote with G
[1,i]
total = Gtotal \ G[1,i]

bad a set

of goal states still remaining in consideration. If s ∈ Gi+1
bad then using the

same reasoning as in the Basis we can show that there exists a run of ΣE

that never reaches states of G
[1,i]
total. The only possibility for it to still be

continuously consistent (condition 3 of Def. 58) is by constantly traversing

states of G
[1,i]
bad but it is already proved that the inclusion of states of states

G
[1,i]
bad results in an infinite run of ΣE that never reaches Gtotal in infinite

presepctive.

The second step, which is the plan search itself, is a modification of

the algorithm proposed in [111]. The main idea is to consider each of the

goal sets Gi one by one, and to build for each of them a state-action table

that shows for the states of D, which action (if any) leads towards Gi.

In this way, it is fairly easy to finally merge state-action tables into an

overall plan, by layering them according to the respective preferences. In

particular, as discussed in [111], to correctly consider preferences so that

the resulting overall plan is optimal, one has to build state-action tables

starting from the less preferred goal and going to the most preferred one:

only in this way, the state-action tables built for Gi : i ∈ [1, j] can be

used as a “recovery” basis for the state-action table referring to the more

preferable goal Gj+1.

The core of this algorithm is the computeSATables routine in Fig. 7.4,

whose structure is inspired by the work in [111]. Starting from the lowest

preference 1, for each preference i it performs the following steps:
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1 function computeSATables ( gL i s t )

2 for ( i :=1; i≤ | gL i s t | ; i++)

3 SA := StrongPreFP ( gL i s t [ i ] )

4 oldSA := SA

5 wSt := StatesOf (SA) ∪ gL i s t [ i ]

6 j := i−1

7 while ( j≥1)

8 wSt := wSt ∪ StatesOf ( pL i s t [ j ] ) ∪ gL i s t [ j ]

9 s ta := StatesOf (SA)

10 preImage := StrongPreImage ( wSt ) ∩ WeakPreImg( s ta )

11 SA := SA ∪ PruneStates (SA, preImage )

12 i f ( oldSA 6= SA)

13 SA := SA ∪ StrongPreFP ( StatesOf (SA) ∪ gL i s t [ j ] )

14 oldSA := SA

15 wSt := StatesOf (SA)

16 j := i−1

17 else

18 j−−
19 pLi s t [ i ] := SA

20 return pLi s t

21

22 function mergeTables ( pList , gL i s t )

23 plan := ∅
24 goa l s := ∅ ;

25 for ( i := | pLi s t | ; i >0; i++)

26 goa l s := goa l s ∪ gL i s t [ i ]

27 foreach (〈s, a〉 : 〈s, a〉 ∈ pLi s t [ i ] )

28 i f ( a∈ O ∧ s 6∈ StatesOf ( plan ) )

29 plan := plan∪〈s, a〉
30 i f ( a∈ I ∧ s 6∈ StatesOf ( plan ) ∧ s 6∈goa l s )

31 plan := plan∪〈s, a〉
32 return plan

Figure 7.4: Algorithm for deriving state-action tables
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1. Strong pre-imaging till fixed point for goal set Gi (i.e., gList[i]) in the

listing) is performed (line 3);

2. When a fixed point is reached, weakening is performed (lines 7-18).

Although the states for which strong solution exists are already found,

we are also interested in states for which 1) a possibility (i.e., a weak

plan) to reach Gi exists and 2) the guarantee of recovery (i.e., a strong

plan) for goal states
i⋃

j=1

Gj exists. To find the states satisfying condi-

tion 1, we calculate weak pre-image for the current states of SA using

the following routine:

WeakPreImage(S) = {〈s, a〉 : (a ∈ I) ∧ (∃(s, a, s′) ∈ R : s′ ∈ S) ∧

(6 ∃(s, a′, s′′) ∈ R : a ∈ O)} ∪

{〈s, a〉 : (a ∈ O) ∧ (∃(s, a, s′) ∈ R) ∧

(∃(s, a′, s′′) ∈ R : (a′ ∈ O) ∧ (s′ ∈ S))}.

Similarly to the StrongPreImage routine, WeakPreImage cor-

rectly handles asynchronisity but, differently from StrongPreIm-

age, includes also states that have at least one uncontrollable action

leading to S. To find states satisfying condition 2, strong pre-image is

calculated for the states of SA joined with the states of state-action

tables (pList[j] : j ∈ [1, i − 1]) with lower preference (such tables

are added gradually within loop of line 7 in order to guarantee the

optimality of the final plan). Finally, the states satisfying the both

conditions are found and added to the current state-action table (lines

10-11). After that the execution of steps 1 and 2 goes on within loop

of lines 7-18 till the weakening fails;

3. When the weakening fails we store the current state=action table as

pList[i] and exit (line 19).
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The function mergeTables merges state-state action tables pList(lines

22-33 of Fig. 7.4) into a single state-action table plan representing the final

plan. By processing tables in descending order (starting from preference

|pList|), it guarantees that controllable state-action 〈s, a〉 is copied to the

plan from table pList[i] : 1 ≤ j ≤ |pList| only if no other subplan with

higher preference pList[j] : i < j ≤ |pList| manages state s and if state s is

not itself a goal state with higher preference. So the optimality of the plan

is guaranteed. At the same time, the function includes all uncontrollable

state-actions 〈s, a〉 into the final plan even if s is a goal state with higher

preference.

1 function Planning ( I , gL i s t )

2 prunedGList = f i l t e r ( gL i s t )

3 pLi s t := computeSATables ( prunedGList )

4 i f I∈
⋃

1≤i≤|pList|
StatesOf ( pL i s t [ i ] )

5 return mergeTables ( pList , prunedGList )

6 else

7 return ⊥

Figure 7.5: Main planning routine

Finally, the main planning routine is presented in Fig. 7.5. The planning

consists in filtering the goals states (line 2), computing the state-action

tables for all preferences (line 3). If the resulting state-action tables “cover”

the initial state I then the state-action table for plan exists and can be

obtained by merging the respective state-action tables (line 5). Otherwise,

⊥ is returned (line 7). The plan can be obtained from the resulting state-

action table using the procedure of Def. 28. It is supposed to be a solution

executor for the respective composition problem.
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In the following, we proof the termination, completeness and correctness

of our algorithm:

Theorem 4 (Termination). Function Planning(I, G) terminates for any

planning domain D.

Proof. Since the filtering procedure terminates as discussed above, the

threat of non-terminating execution can only come form the loop of rou-

tine ComputeSATables. However, in this routine it can be observed

that the state-action table SA must monotonically grow up by including

new and new states of D. Since the number of states in D is finite, the

loop terminates and so does the whole algorithm.

Theorem 5 (Completeness). If function Planning(I, G) returns ⊥ for

some planning problem 〈D, I,G〉 then no plan encoding solution executor

exists for 〈D, I,G〉.

Proof. From the definition of the filtering algorithm it can be observed that

only goal states belonging to G′total can be traversed by the STS induced

by the correct plan. Consequently, it can be observed that ⊥ is returned

by Planning(I, G) only when the initial state I is not covered by the

resulting state-action table plan. So we conclude that the STS induced by

the correct plan must be such that all its runs from the initial state reach

goal states of G′total in finite number of steps. For the future use, we denote

with All =
⋃

1≤i≤n
(StatesOf(pList[i]) ∪ G′i) all states covered by subplans

of pList and, consequently by plan plan, plus all unfiltered goal states.

We prove the theorem by contradiction. We assume that while ⊥ is

returned by the algorithm, there still exists a plan plan′ that encodes the

solution executor. Then it covers state I (it has to provide a way to reach

goals G′total from I) and, I 6∈ All. If there exist uncontrollable transitions

from I then there exists at least one of them that leads to states that are
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not among All. Similarly, if there are no uncontrollable transitions for I

then all its controllable transitions must lead to states that are not among

All. The violation of the above conditions would result in the inclusion of

I in All (see the definition of ComputeSATables). Consequently, there

exists a state-action pair 〈I, a〉 ∈ plan′ such that (I, a, s) ∈ R and s 6∈ All.
Since s is not a goal state it must also be covered by plan′. To state s′

we can apply the same reasoning as to state I. Finally, we can prove that

the STS induced by plan′ must contain an infinite run that never reaches

G′total, which contradicts to the definition of the solution executor.

Theorem 6 (Correctness). If function Planning(I, G) returns plan for

some planning problem 〈D, I,G〉 then plan encodes optimal continuously

consistent solution executor for 〈D, I,G〉.

Proof. We will built the proof on observing the STS ΣE induced by the

resulting state-action table plan. First of all, from the way ComputeSA-

Tables and mergeTables are defined it can be observed that all states

of D for which strong solution for G′total exists (including G′total themselves)

belong to ΣE (this can be proved by contradiction using the same rea-

soning as the one in Theorem 5). Through the way WeakPreImage,

StrongPreImage and mergeTables are defined it can be seen that

ΣE correctly handles asynchornisity even if for goal states (conditions 1

and 2 of Def. 58).

The final states of ΣE can only be goal states. Indeed, for all non-goal

states there is at least one transition in ΣE (see mergeTables).

Considering some state s belonging to ΣE it can be proved that ΣE pro-

vides a strong plan for s. Let us denote with best(s) the highest preference

achievable from s in D. Let us assume that best(s) = i so that 1 ≤ i ≤ n.

From the definition of ComputeSATables it follows that table pList[i]

will encode at least one run from s leading to G′i. From the definition

of mergeTables it can be seen that this run will further be included in
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plan and consequently will appear in ΣE as its run π. For any state s′ to

which π can deviate as a result of nondeterminism the following holds by

definition: best(s′) = i′ : i′ ≤ i. Then we can apply the same reasoning

to s′: consequently table pList[i′] will induce a run π′ of ΣE from state s′

that will lead to goal states with preference i′ in finite steps and for all the

deviations of it, we recursively apply the same reasoning again and again.

Finally, it can be shown that ΣE provides a strong solution for s.

The optimality of ΣE can be proved by contradiction. Let us assume

that ΣE is not optimal and there exists Σ′E that is optimal and it is better

than ΣE in some state s. Let best(Σ′E, s) = i and worst(Σ′E, s) = j. And

so Σ′E is a strong solution for G′[j,i] =
i⋃

k=j

G′k and a weak solution for G′i.

At the same time, by observing the routine ComputeSATables and its

weakening procedure we can observe that pList[i] will provide for state s a

weak solution for G′i and a strong solution for G′[j,i] and this solution will be

a part of ΣE (see additionally mergeTables). Consequently, we conclude

that ΣE 's Σ′E which contradicts to the initial assumption.

As a result, we conclude that ΣE is an optimal continuously consistent

solution executor for 〈D, I,G〉.

It is worth to notice that the support of optimality for goal states is

partially guaranteed by the way mergeTables joins the subplans into a

final plan. In particular, a controllable action is allowed to be executed

from a goal state only if it belongs to a table with higher preference. In

other words, a goal state can only be left in controllable way only if we

know that a goal with higher preference can potentially be achieved.

We remark that our algorithm, though based on [111], is significantly

different from it. First, since we consider asynchronous planning domains

including both controllable and uncontrollable transitions, the pre-imaging
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primitives WeakPreImage, StrongPreImage are significantly differ-

ent. Second and most importantly, the asynchronisity in goal states makes

us build the plans considering maintainability ofgoals. Such plans are are

likely to contain loops. This feature is provided by pre-filtering of goal

states and proper adjustment of pre-imaging procedures, which now run

until the fixed point and may include goal states in state-action tables.

The further details of the implementation and evaluation of the algo-

rithm are presented in Chapter 8.

7.2 Data-Flow Requirements

In this section we introduce a prototype solution for specifying data-flow

requirements in our context-aware composition framework. Our solution

is based on the Datanet approach ([75] and [79] can be used for further

reading), which is a graphical language for data-flow requirement in service

composition. Datanet is specifically developed for the service composition

techniques based on AI planning and can be easily integrated with them.

In the following we give a brief overview of the Datanet language and

its semantics. Using an example from the VTA scenario, we demonstrate

that the standard modeling methodology of Datanet cannot implement

data-flow requirements that follow our vision of dynamic context-aware

composition. Finally, we show how, by means of changing the modelling

methodology and introducing some pre-processing we can naturally adopt

the Datanet as a data-flow requirements language in our framework. We

remark, that in this case no changes are done to the language nor to its

semantics.
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7.2.1 Datanet Overview

The way Datanet works is extremely intuitive since it explicitly specifies

the flow of data within the orchestrator. In other words, Datanet specifies

how the orchestrator has to handle and manipulate data pieces arriving

with incoming messages in order to properly populate data for outgoing

messages. The syntax of Datanet is expressive enough to specify even very

complex data flow.

Syntax

The graphical notation of Datanet is organized such that it intuitively and

explicitly shows how the data “flows” from the data parts of input messages

to the data parts of output messages (the notion of data parts can be

taken, e.g., from WSDL [120]). It basically consists of nodes representing

variables within the orchestrator and arcs of different types representing

data copying/manipulations. In the following we represent only a portion

of the original language that is used in the examples of this section. The

full language description can be found in [79].

• Connection Node

Connection nodes represent variables within the orchestrator. They

can be of three types: input, output and internal. Input nodes rep-

resent variables where the data of input messages is stored. They

become sources of information for a datanet. Output nodes are those

variables where the data populating iuput messages is stored. They

are destination for all data within a datanet. Finally, internal nodes

are internal variables used for intermidiate storage of data “flowing”

from inputs to outputs:����� ������ ������	
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• Identity

Identity represents simple copying of data between two nodes. It has

one starting node (it can be either input or internal node) and one

finishing node (output or internal node). The graphical notation of a

link id(a)(b) connecting nodes a and b is the following:�� �
• Operation

Operation represents processing of data from the starting nodes (they

can be more than one) and sending the result to the finishing node.

The graphical notation of a link op[operation](a,b)(c) applying

operation operation to the information of nodes a and b and storing

the result in node c is the following:����������	 

In the following we will use word “Datanet” for the language above and

word “datanet” for specification written (drawn) in this language. The

formal definition of a datanet essentially includes a number of nodes of

all types (N i, N o, N int for input, output and internal nodes respectively),

a number of arcs of different types between them (Arcs), and a space of

accepted values (V alues). In the definition below we denote starting and

finishing nodes of arc a with in nodes(a) and out nodes(a) respectively:

Definition 60 (datanet).

A data net ∆ is a tuple 〈N i, N o, N int, Arcs, V alues〉 where:

• for each n ∈ N i there exists at least one arc a ∈ Arcs such that

n ∈ in nodes(a);
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• for each n ∈ N o there exists at least one arc a ∈ Arcs such that

n ∈ out nodes(a);

• for each n ∈ N int there exists at least one arc a1 ∈ Arcs such that

n ∈ in nodes(a1) and there exists at least one arc a2 ∈ Arcs s.t.

n ∈ in nodes(a2);

• for each a ∈ Arcs, in nodes(a) ⊆ N i ∪ N int and out nodes(a) ⊆
N o ∪N int.

In the next example from the VTA scenario we show that even the

limited edition of Datanet syntax presented above is enough to deal with

quite complex scenarios:

Example 13 (VTA datanet). In Fig. 7.6 we show a simple datanet for the

services involved in the first phase of the VTA scenario, which is the initial

package reservation. The datanet specifies data flow between different

data parts of messages of services responsible for booking package, hotel

and flight.

For example, it can be seen that the location presented in the flight and

hotel requests (fRequest.location and hRequest.location) is the same

and coincides with the one of the package request (pRequest.location)

that comes from the customer. Another important example is where the

costs of flight and hotel (fOffer.cost and hOffer.cost respectively) are

summed up by operation sum in order to produce the total cost of the

package (pOffer.cost) that will be sent to the customer.

Datanet Semantics

In order to formally define the semantics of the Datanet we encompass all

possible flows of values through the nodes of datanet for given Datanet

arc types. For a datanet ∆ = 〈N i, N o, N int, Arcs, V alues〉, a datanet
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Figure 7.6: Original Datanet

event e consists in some value v ∈ V alues passing through some node

n ∈ N i ∪N o ∪N int, so that e = 〈n, v〉. Consequently, the datanet execu-

tion π∆ is a sequence of events happening in the datanet. Given a set

of nodes N ∈ N i ∪ N o ∪ N int we define the projection of π∆ on N as a

subsequence of π∆ that contains only events of N (denoted ΠN(π∆)). Us-

ing regular expressions and the notion of projection above, the Datanet

semantics is formally defined as a set of accepted executions of a certain

datanet ∆:

Definition 61 (datanet).

An execution π∆ is an accepting execution for datanet

∆ = 〈N i, N o, N int, Arcs, V alues〉
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if the following holds:

• each identity element id(a)(b) in ∆

Π{a,b}(π∆) =

(∑
v∈V

〈a, v〉 · 〈b, v〉

)∗
;

• each operation element op[f](a,b)(c) in ∆

Π{a,b,c}(π∆) =

∑
v,w∈V

(〈a, v〉 · 〈b, w〉+ 〈b, w〉 · 〈a, v〉) · 〈c, f(v, w)〉

∗ .
The definition can be recursively applied to the datanet of arbitrary

complexity.

Datanet in Planning

Datanet semantics is defined by specifying all possible sequences of events

that are allowed by a certain datanet. Such sets of sequence can actually

be encoded using state transition systems. Indeed, the semantics of each

arc a in the datanet is defined through a regular expression and can be

naturally represented with a corresponding STS Σa. Consequently, all

accepting sequences of events for the whole datanet can be derived from

a system of such STSs. In order to synchronize the datanet STSs with

the execution domain (e.g., the one introduced by Def. 17), we make a

couple of intuitive observations. First, values “enter” input nodes when

a corresponding output message of the execution domain is received, i.e.,

a domain’s output message is always followed by events happening in its

associated input nodes. Second, a domain’s input message has to be always

preceded by events in its associated output nodes, so that messages with

unpopulated data parts are never sent to the execution domain.
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In order to illustrate these ideas we will use examples related to Example

13. In them, a transition labeled with a->b stands for an internal action

copying data from node a to node b. Node x is used as a placeholder for

any node, so that the labeling x->a means any action copying data to node

a. Moreover, each STS has an accepting state (black dot in the diagrams),

in which it has to be in the end of the accepting execution. For each

output message of the domain (i.e., input message for the orchestrator)

we require that every time this message arrived all the associated input

nodes of the datanet are populated with the message data. So, for the

output message !fOffer and its two associated input nodes fOffer.cost

and fOffer.info the following STS can be built (we use fOffer cost and

fOffer info to denote internal data fields of the message):

!fOffer

fOffer_cost->fOffer.cost

fOffer_info->fOffer.info

Similarly, we want to ensure that a message is sent by an orchestrator

only if it is completely populated with data. For an input message, !pOffer

associated with output nodes pOffer.cost and pOffer.info such control-

ling STS would look as follows:

x->pOffer.info
x->pOffer.cost

?pOffer

x->pOffer.info x->pOffer.cost

Such STS ensures that the message will be sent only after the both part
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are populated with data.

Finally, we encode the arc between nodes using the following construc-

tions:

• the identity arc id(a)(b) is modelled with STS:

x->aa->b

• the operation arc op[f](a,b)(c) is modelled with STS:

x->bx->a

f(a,b)->c

x->b x->a

The resulting datanet controller is an STS Σ∆ that is the synchronous

product of all STSs corresponding to all input and output nodes and all

arcs in the datanet.

In a few words, the composition in the presence of datanet is performed

almost in the same way as the composition of Chapter 6. The difference

is that the final planning domain is obtained as a synchronous product

of a context-aware domain ΣCF (Def. 27) and a datanet controller Σ∆.

Moreover, it is required in the planning problem that the datanet controller

terminates in one of its accepting states. In [75] it is proved that the

resulting plan reflects the data handling that guarantees the behaviour

that respects the semantics of Datanet. In the final plan, along with input

and output actions datanet-related actions exist. In the back translation
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of the plan into an executable process, such actions have to be interpreted

as copying or applying a function to data and then copying. For instance,

in WS-BPEL such actions can be fully realized by the assign activity.

7.2.2 Context-Aware Datanet

Coming back to Example 13, it can be easily concluded that the Datanet

approach as it is does not follow the principles of dynamic and context-

aware composition showed in Fig. 6.6. As a result, it cannot be directly in-

tegrated in our framework for service/fragment composition. Indeed, while

in our approach, control-flow requirements are specified on abstract level

and can be grounded on any set of properly annotated services, Datanet-

based requirements are implementation-dependent and have to be provided

for concrete service implementations. In other words, every time we expe-

rience a run-time need for composition, we have to manually specify the

respective datanet for a given set of services/fragments, which is not what

we call dynamic composition. However, the concept of context properties

can be easily integrated into the Datanet approach in order to make it

dynamic and context-aware.

Our architecture for adopting the Datanet in our dynamic context-aware

composition framework is shown in Fig. 7.7. The central idea is to intro-

duce context properties to a datanet by associating certain data fields to

context properties and representing them in a datanet with internal nodes

(by analogy with service ports, we sometimes call the collection of such

internal nodes the context port). For example, the Flight Ticket context

property can be associated with data fields such as flight time, flight ori-

gin, flight destination, flight ticket cost etc. As a result, the datanet will

contain input and output nodes corresponding to the ports of services and

internal nodes corresponding to the data fields of context properties.

At this point, the whole datanet can be split into two conceptually dif-
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Figure 7.7: Architecture of context-based Datanet

ferent parts. One part determines data flow between the nodes of service

ports and the nodes of context port. It is called annotation datanet. An-

other part specifies how data flows between the nodes of context port and

is called abstract datanet. The relation between these two parts of datanet

is essentially the same as between the context-based service annotations

and context-based composition requirements. Abstract datanet specifies

relations between data fields of different properties and does not depend

on service implementations. We can say that it reflects conceptual data-

flow requirements for a certain type of composition and can be specified

at design time even without knowing which services will be composed.

Similarly, annotation datanet can be perceived as a new type of service an-

notation indicating how data parts of service messages correlate with data
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fields in the context model. In this regard, they look extremely similar to

the service annotation for control flow introduced in Chapters 4 and 6

From the modeling perspective, abstract datanet is supposed to be spec-

ified by the designer of the composition and requires only the knowledge

about the application domain. The annotation datanet, being a part of

annotation, should rather be specified by a service provider who wants its

service to be used within the composition. As a result, the modeling effort

of the datanet can be distibuted among the participants of the composi-

tion. Once a need for composition emerges at run time and appropriate

services are selected, the abstract datanet and the annotation datanets of

participants can be joined together to make up the complete datanet as it

is given in Fig. 7.7. Considering the whole picture, it can be noticed that

in the complete datanet service-to-service data flows is organized: now

the data values traverse the annotation datanet of the source service, then

pass through the abstract datanet and by means of links in the annotation

datanet of the destination service can populate its nodes. Using the ter-

minology of Chapter 6 we can say that the abstract datanet is defined in

separation from services, but using the annotation datanets of services can

always be grounded on them.

Example 14 (Context-Aware Datanet). In order to demonstrate context-

aware Datanet in action, in Fig. 7.8 we propose a variant of a datanet

presented in Example 13 when modelled using context properties. In this

datanet, in addition to service ports, there exist three groups of inter-

nal nodes representing data fields of the three context properties of the

VTA scenario. For example, the data fields of the hotel reservation reflect

such aspects as original request information, check-in/check-out date of

the reservation, its cost etc. The central part of the datanet, which is the

abstract datanet, installs conceptual data relations between context prop-

erties. For instance, the links between the cost fields of all three properties
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indicate that “the cost of the package equals the sum of the costs of con-

stituent flight ticket and hotel reservation”. (By the way, this requirement

can be flexibly changed by only changing the operation sum and without

affecting service providers and their annotation datanets). In this exam-

ple, one more interesting observation can be made: each service provider

and the composition owner may use their own data formats, which can

be radically different. For example, the package-related service and the

context model use starting and finishing date of the trip in their internal

models. At the same time, the hotel provider uses the starting data and

duration. In this case, the interoperation is guaranteed by the fact that

each provider specifies its annotation datanet, which also plays the role of

data mediator and that supports compatibility of different data models. In

our example, such compatibility is realized by properly defined conversion

functions getDateH, getDurationH, getDateInH and getDateOutH, which

are defined by the hotel service provider.

Our preliminary estimation of the context-aware Datanet approach sug-

gests that no additional effort is needed for the datanet to be properly

integrated to the planning problem and the techniques of [75], [79] can be

used unchanged.

7.3 Discussion

The goal of this chapter was to show that our context-based service model

can actually be used to address various aspects of service composition. In

particular, we showed that it allows for rich abstract control-flow and data-

flow requirements, both following the same methodology where 1) concep-

tual part of requirements is expressed on abstract level separately from

actual service implementations and 2) requirements grounding on particu-

lar service implementation is provided by service annotations. In this case,
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Figure 7.8: Context-based datanet for virtual travel agency scenario
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the modeling effort can be distributed among the participating parties.

Namely, the owner of the application (composition) is supposed to provide

the context model and the conceptual requirements while all the partners

wanting their service to be consumed within the application have to provide

their proper annotations. As a result, using such requirements method-

ology, it is possible to create customizable applications where, while the

concept of the application is predefined (e.g., “application for buying travel

packages”) and the respective conceptual requirements remain unchanged,

the choice of services to be used within this concept can be entrusted to

the end user and can be made at run time with consequent automatic com-

position. This brings us to the concept of user-centric service composition.

One of the key issues to be addressed to make our approach ready for user-

centric applications is the ability to generate the composition interface and

protocol automatically. The first step in this direction has laready been

made and the prototype solution to this problem is available in [60].

We also want to remark that our control-flow requirements and the re-

spective planning algorithm bring up a novel aspect of reactive requirements

where certain composition goals have to be achieved only as a reaction to

context events. Moreover, we expect that our modeling methodology for

encoding requirements in planning can be used for even more complex

requirement constructions and languages.
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Chapter 8

Implementation and Evaluation

In this chapter we present the implementation and evaluation of our ap-

proaches to service composition and process adaptation. In particular,

we discuss 1) the implementation of the context-based service composer

introduced in Chapters 4, 6 and 7 (this includes the implementation of

our extensions to the planning algorithm proposed in Section 7.1), and 2)

a demonstration platform ASTRO-CAptEvo for dynamic process adapta-

tion that realizes the ideas introduced in Chapters 3, 4 and 5 and adopts

the aforementioned service composition approach. The evaluation of the

two tools considers both “qualitative” and “quantitative” aspect. By qual-

itative aspect we mean the ability of the tools to successfully solve the

problems posed by the respective motivating examples. By quantitative

aspect we mainly mean the performance of the planning algorithm and its

ability to produce solutions in realistic setting in affordable time.

8.1 Composer

8.1.1 Implementation

All the planning algorithms presented in this dissertation essentially rely

on the planning-as-model-checking technique ([32, 15]). In this technique,
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symbolic representation of states of a planning domain based on Binary De-

cision Diagrams (BDDs [21]) is used to effectively encode and manipulate

sets of states (symbolic model checking [81, 31]).

While various (e.g., XML) specifications of fragments/services and con-

text properties can be used at design phase, all the STSs at the planning

phase (i.e., grounded context properties, fragments/services and grounded

control STSs) are uniformly encoded using the SMV (Symbolic Model Ver-

ifier) language. SMV is a rich modeling language providing diverse con-

structs and mechanisms for compactly encoding state transition systems.

In particular, states and actions are encoded by means of special state

and action variables, and formulas are used to encode transitions between

states of variables. SMV is mostly exploited by symbolic model check-

ing systems. One of such systems (NuSMV [31]) was originally adopted

by the planning-as-model-checking algorithm of [18] (which is the core of

our planning algorithms) and so SMV became the language for encoding

a planning domain in our approach.

Luckily enough, SMV allows for defining a planning domain through a

number of smaller STSs with possibly overlapping sets of actions. When

such model is eventually represented in memory with BDDs, it generally

corresponds to a synchronous product of these smaller STSs (the function-

ality for reading models into memory is provided by core NuSMV libraries).

As such, the transformation of the composition problem into the planning

problem generally requires 1) transformation of service/fragment specifi-

cations into STSs, 2) grounding of context properties and 3) grounding of

elementary control STSs. After that, the STSs obtained can be straight-

forwardly “written down” in SMV and be passed to the algorithm. Our

experience suggests that the transformation of the composition problem

into the planning problem requires much less computational effort than

the planning itself and does not affect significantly the overall performance
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of the approach.

The SMV model is represented in memory as a complex BDD encoding

all transitions between state variables that are possible in the domain.

The fundamental primitives of the original planning algorithms of [18] and

[111], such as states pruning and pre-imaging, essentially involve various

manipulations over BDDs. For example, given a BDD encoding current

states of the state action table and a BDD encoding the planning domain,

the strong backward pre-image function finds a BDD encoding the state

actions of the pre-image by means of standard logic operations over BDDs.

The algorithm used in Chapters 4 and 6 was essentially the algorithm

of [18]. The algorithm of Chapter 7, though inspired by [111], is signifi-

cantly different from it and required some important modifications to the

original code. First of all, we needed to implement core pre-imaging rou-

tines WeakPreImage, StrongPreImage for the case of asynchronous

domain. Second, we had to implement the preliminary filtering of the goal

states of the original planning problem (see Fig. 7.3), which consisted in

executing a strong planning algorithm for the whole set of goal states so

that recoverable goal states were identified. Third, the implementation of

the algorithm for deriving subplans for different priorities (Fig. 7.4) had

to be modified to use new routines for pre-imaging. Finally, some minor

changes to the merging procedure for subplans had to be made.

One important optimization, that we used to improve the performance

of planning was based on the observation that Lemma 3 can be proved in

the same way not only for goal states but also for all states of the domain.

In other words, a state of the planning domain can appear in the final

plan only if there exists a strong solution from this state for a filtered

set of goals G′total. As such, the filtering procedure can be used not only

to filter off the “bad” goal states but also to shrink the domain to those

states that can potentially appear in the plan. From the performance

221



CHAPTER 8. IMPLEMENTATION AND EVALUATION

perspective, although the filtering procedure imposes some overhead to

the algorithm, it lets us decrease the size of the resulting domain. The

further n runs of the planning algorithm within the computeSATables

routine can be performed for this smaller domain and, consequently, be

accomplished faster.
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Figure 8.1: Planning procedure overview

To sum it up, in Fig. 8.1 we give a general overview of the planning

procedure used by the algorithm of Chapter 4 (the algorithm of Chapter 6

generally works in the same way). The general adaptation problem is en-

coded using our custom XML-based format. The definitions of the context

properties, fragments/services and general adaptation problem in XML

files completely corresponds to the respective formal definitions of Chap-

ters 4 and 5. Step 1 converts general adaptation problem into an SMV

specification of the planning domain. This step follows the transformation

rules described in Sections 4.2 and 4.4. Step 2 reads SMV specification to

memory is form of BDD. Step 3 is realized by the planning algorithm of

Section 4.5, which produces a plan in form of STS. Finally, Step 4 converts

the plan obtained into an executable process using the transformations

that are opposite to those used in Step 1.

8.1.2 Evaluation

All the experiments for evaluating the composer were carried out on a 2.6

GHz dual core machine with 4Gb of memory running Linux. The qualita-
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tive evaluation has been done for the Virtual Travel Agency scenario (Sec-

tion 6.1), while the quantitative evaluation exploited simple and scalable

scenarios to measure performance in connection with complexity factors.

VTA Solution

Our experiment with the VTA scenario included creating all the necessary

specifications of annotated services, context properties and composition

requirements as shown in Chapter 6 and running the composition algorithm

to produce an orchestrating plan.

As a result, we received a plan in Fig. 8.2 that orchestrates the five

component services of the scenario in order to continuously satisfy the

respective control-flow requirements. While considering the scenario in

connection with the components (Fig. 6.9), we pay attention to a few im-

portant aspects. First of all, the plan encodes a runnable process (no more

than one controllable action per state) and properly handles asynchronous

behaviour of components (it never executes controllable actions in the pres-

ence of uncontrollable ones and accounts for all uncontrollable actions for

a given state). The plan is a strong solution for all its states, i.e., from

each state a goal state is reachable in finite number of execution steps.

From the high-level structure of the process (demarcated using bold

dotted lines), it can be observed that its behaviour is generally inspired by

control-flow requirement expressions. From the initial state, the process

tries to perform the transactional booking of the package (expression 1 in

Example 11 and part A in the figure), which includes booking of flight and

hotel, correctly taking into account possible non-deterministic outcomes of

the component services, and creating a travel offer upon successful reser-

vations . Once the booking is successful, the process continuously handles

flight delays and cancellations. In the first case (expression 2 in Example

11 and part B in the figure), it tries to modify the hotel reservation: if the
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Figure 8.2: Solution for virtual travel agency scenario
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hotel agrees and the user accepts the new offer, the process comes back to

the goal state and is ready for new flight notifications. Otherwise, the pro-

cess cancels all reservations and terminates. In the second case (expression

3 in Example 11 and parts C and D in the figure), the process cancels all

reservations and terminates.

In the process, it is easy to identify the goal states. Consequently, all

the subprocesses connecting goal states are associated to certain situations

within the scenario. Our special interest goes to goal states with high-

est priority that are in the middle of the process. It is clear that the

“conventional” planner would prefer to finalize the execution there. How-

ever, uncontrollable actions are available from these states and, according

to our needs, this uncontrollable situations have to be (and actually are)

accounted by the plan.

Finally, we can see that the plan does not contain “bad” loops: the

only loop in the plan traverses a goal state which ensures that every run of

the plan reaches goal state in finite number of steps. In general, the plan

is quite complex, with several branching points, and much more complex

than any of the involved components. We may conclude the task of building

such composition manually is far from trivial. The composed service was

generated in about 35 seconds; given the complexity of the task, we consider

it as an important evidence of practical applicability of our approach.

Performance

The profound evaluation of the planning algorithm used in Chapters 4 and

6 is provided in [18]. The general conclusion about the performance of

the plan search is that “the performance of synthesis appears to degrade

sub-exponentially with the size of the components; and in vast majority

of cases, it degrades polynomially with the number of components”. It

is also noticed that the performance does not depend significantly on the
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Figure 8.3: Performance scalability charts
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nondeterminism in components.

In our algorithm for continuous composition presented in Chapter 6 we

expected similar results. We did not evaluate the time on synthesizing the

planning domain form the composition problem specification since in our

experiments it was significantly smaller that the time on plan search (nor-

mally, by the order of magnitude of at least 2). We measured performance

depending on the number of services participated, the number of compo-

sition constraints (reactive goals) and the number of preferences. For each

set of experiments we used simple scalable scenarios.

In the first set, we evaluated the scalability of coordinating an increasing

number of services. The scenario involved an “inviting” service and n

“guest” services. The inviting service sent an invitation, and then kept

listening to responses; vice versa, a guest was activated by an invitation,

and then could continuously send updates on its decision. Our goal was to

propagate invitation to all guests, and then to keep I continuously updated

on the responses of each guest. Our results for this set of experiments are

shown in Fig. 8.3, top. It can be seen that for smaller number of services

the performance scales up polynomially, however after some point it turns

out to be exponential. The most reasonable explanation for that is based

on the implementation details of the BDD library used: big domains are

much more memory-demanding and for them the garbage collection and

data re-arrangement mechanisms may take considerable time to keep the

memory consumption within certain limits. However, even in this case the

algorithm is good enough to solve quite large problems in reasonable time

(e.g., 10 seconds for problems containing up to 9 services).

In the second scenario, we evaluated the scalability with respect to the

number of reactive expressions (goals) in the requirements. For this pur-

pose, we considered a master and a slave service: the master continuously

produced a command out of a set of n possible ones, and the slave was
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awaiting for commands to be executed. To keep the two services con-

tinuously aligned, we used a set of n reactive requirements. The results

are shown in Fig. 8.3, center. We can see that the results are essentially

similar to the previous once. It can be easily explained by the fact that

requirements are encoded with STSs and, from the planning perspective,

the growth in the number of requirements is similar to the growth in the

number of services: both result in comparable growth of the planning do-

main.

Finally, we correlated performance with the number of preferences in

the goal. We did so by running the example with a set of services simu-

lating a robot scenario where each ’robot’ service could be commanded to

guard a door, but might then autonomously break or decide to recharge,

so becoming (temporarily or finally) unavailable. Considering 20 robots

and 20 doors, we tested it with goals that used n = 1, . . . , 20 preferences

to express that we intended to keep n doors guarded, but whenever this

could not be guaranteed, as many as possible. As we see from Fig. 8.3,

right, the performance essentially scales linearly with the number of pref-

erences. Since our algorithm calculates a subplan for each preference, the

linear dependency shows that the time on calculating a single subplan is

more or less constant and does not depend on the total number of subplans

to be calculated within a given problem.

8.2 ASTRO-CAptEvo

This section describes the ASTRO-CAptEvo platform, which is a demon-

strator of our approach to dynamic adaptation of fragment-based business

processes based on the CLS scenario. The core of the platform is the al-

gorithm for context-aware fragment composition via planning presented in

Chapter 4.
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Figure 8.4: ASTRO-CAptEvo architecture

8.2.1 Implementation

The general architecture of the platform is shown in Fig. 8.4. All the

elements of the architecture are split into three layers of abstraction com-

municating to each other. The presentation layer makes it possible for the

user to receive complete visual information about all the aspects of system

evolution and actively affect the course of the scenario, e.g., by firing exoge-

nous events in order to simulate various extraordinary situations and see

certain types of process adaptation in action. The execution layer contains

all the components for executing adaptable business processes and for sim-

ulating the respective execution environment (i.e., entities collaborating

with each other within the scenario). The adaptation layer implements all

tasks related to process adaptation, from managing adaptation strategies

to constructing an executable process.
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In the rest of this section we overview each of the three layers and

describe how they interoperate.

Execution layer

The Execution layer is in charge of 1) simulating the application domain

consisting of a number of collaborating entities, 2) executing fragment-

based process instances, 3) detecting execution problems and triggering

adaptation by passing necessary information to the adaptation layer, and

4) adapting process instances according to the solution produced by the

adaptation layer.

The Entity Manager controls all active entities within the scenario

(e.g., ships, cars, tracks, storage managers, etc.), simulates their behaviour

and provide the presentation layer with respective information in order to

visualize the application domain. In fact the Entity Manager simulates the

real world in which the CLS application operates. It also implements all

fragment activities and simulates their execution and effects.

The instantiation of a new entity can be performed: 1) within the ap-

plication initialization 2) as a result of fragment execution (e.g., ship un-

loading creates new car entities), or 3) as a result of user’s command (new

ship can be created in this way). When the Entity Manager creates a

new entity, it deploys the entity process to the Process Engine, adds corre-

sponding context properties to the context model in the Context Manager

and puts all the entity-related specifications (such as fragment models and

context property models) to the Domain Models repository for the future

use by fragment composition engine. When the entity “exits” the scenario

the opposite procedures are used.

One of the major functions of the Entity Manager is to actualize the

execution of fragment activities upon the commands from the Process En-

gine and to simulate respective behaviour of entities. Once actions are
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executed the synchronization information is sent back to the Process En-

gine. While simulating the evolution of the application domain, the Entity

Manager keeps on updating the Context Manager with the actual state

of the domain so that the context model always contains actual informa-

tion about the current state of the context. Similarly, the Scenario Viewer

is constantly updated in order to visualize the actual state of the virtual

world. Finally, the Entity Manager can also accept user commands trig-

gering various events and situations (e.g., exogenous events).

The Context Manager stores the system context as it is defined by

Definition 2 (i.e., a set of context properties of all active entities) and con-

stantly synchronizes its current state using the synchronization information

coming from the Entity Manager. The system context is a simplified view

of the real world (in this case, of the virtual world modeled by the Entity

Manager) that reflects the information about the world that is of impor-

tance for process execution. The current state of the context is used by the

Process Engine to check activity preconditions and by the adaptation layer

for adaptation-related tasks such as adaptation strategy management and

fragment composition.

The Process Engine is essentially a conventional process engine that

is extended with some adaptation-related tools. The Process Engines ex-

ecutes all the process instances within the demonstrator, both the core

processes and the adaptation ones. The extensions compared to the con-

ventional process engines are the following:

• Consistency checking. The Process Engine detects conflicting situa-

tions that require process adaptation. Once a conflicting situation is

detected, the information about it is passed to the Demo Controller

and is further directed to the adaptation manager. The consistency

checking relies on fragment specifications and annotations and on the

run-time information about the world (current context and fragments
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availability);

• Execution suspension. The Process Engine has to be able to suspend

the execution of the process in case inconsistency is detected and to

resume it after the adaptation is applied;

• Adaptation integration. The Process Engine has to provide facilities to

implement the hierarchical adaptable processes as described in Chap-

ters 3 and 5 . This basically includes the aforementioned possibility to

deliberately suspend process execution with further resumption, and

to perform “jumps” in suspended process instances.

The Demo Controller provides the integration of the execution layer

and the adaptation layer. When execution inconsistency is reported by the

Process Engine, the Demo Controller aggregates the information needed by

the adaptation layer in order to resolve the problem (e.g., current context

state, set of available fragments, type of violation, status of the conflict-

ing process instance etc.) and sends the complete problem description to

the adaptation layer. Once the solution to the problem is provided by the

adaptation layer, the Demo Controller supervises the adaptation procedure

respecting the adaptation strategy chosen by the adaptation layer. This

may be done by deploying necessary adaptation process(es), by changing

the current states of process instances and by suspending/resuming execu-

tion if certain process instances.

Adaptation layer

The adaptation layer is responsible for producing solutions to adaptation

problems. In particular, it 1) decides on the adaptation strategy to be used,

2) transforms a general adaptation problem into a planning problems 3)

builds an adaptation plan, 4) converts the plan into an executable process
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and returns it to the execution layer together with instructions for further

integration.

The operation of the Adaptation layer is coordinated by the Adap-

tation Manager. Once the Adaptation Manager is notified about an

execution problem, it decides on the adaptation strategy to be used (in

our case, the rules of Section 3.4 are applied). The information on the

adaptation goal and the status of the execution environment (i.e., set of

available fragments, current context) is then passed to the Domain Builder

and the fragment composition “chain” including the Domain Builder, the

Translator and the Planner is activated. Once the solution process is re-

ported by the Translator the Adaptation Manager sends the result to the

execution layer together with the instruction for its integration. In princi-

ple, before producing the result the Adaptation Manager may need to run

composition multiple times. For instance, if we use complex strategy man-

agement and if the first strategy cannot be used (plan is not found for it),

the Adaptation Manager may switch to the strategy with lower preference

and run the fragment composition again to find a solution for this trategy.

The Domain Builder is supposed to specify a general adaptation

problem (see Def. 32). For that purpose, the Domain Builder uses the

run-time information obtained from the Adaptation Manager and extracts

necessary fragment and context property models from the Domain Mod-

els repository. Taking into account the current context and the adaptation

goal, the Domain Builder uses basic optimizations to simplify the general

adaptation problem. For instance, it can eliminate fragments that cannot

be used in the current context or for the current goal, or prune all context

states that are not reachable with the current set of fragments. Fragment

annotations are used to enable this kind of reasoning. With such optimiza-

tions the size of the planning domain is supposed to further be reduced,

which, in turn, significantly saves the time spent on planning.
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The Translator provides two-way translation. First, it translates a

general adaptation problem specified in XML and received from the Do-

main Builder into a planning problem specified in SMV ([82]) such that it

can be processed by the Planner. Second, it provides back translation of

the plan generated by the Planner into an executable APFL process, which

is passed to the Adaptation Manager. The translations basically follow the

the transformation rules discussed in Sections 4.2 and 4.4.

The Planner is based on our composition-as-planning approach pro-

posed in Chapter 4. The adaptation layer supports parallel runs of the

planning algorithm in order to improve the overall performance of the

platform.

Presentation layer

The presentation layer provides a detailed live view of the details of the

operation of the execution and adaptation layers. It also gives certain

control over the scenario evolution to the user and lets him model different

critical situation to test the adaptation techniques.

The Scenario Viewer provide graphical representation of the CLS

scenario that is constantly synchronized with the simulation data of the

execution layer. Visually, it is a map of the Bremen harbour where all the

facilities (e.g., storage areas, treatment areas, gates, roads etc.) and all

the entities participating in the scenario (e.g., cars, trucks ships, facility

managers) are depicted at their current location and in their current status.

With the Scenario Viewer the user can intuitively follow the progress of

the scenario (Fig. 8.5).

The Scenario Viewer is integrated with the System Viewer, which

gives the insight into the objects operated by the execution and adaptation

layers. The System Viewer is represented by a number of windows covering

various aspects of the system. The two main of them are the Process Viewer
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Figure 8.5: Scenario Viewer

and the Adaptation Viewer. The Process Viewer (Fig. 8.6) gives access to

full details of a certain process instance including:

• the process model with the execution progress indicated (upper left

part);

• the execution history including all adaptations applied, e.g., all refine-

ments and local adaptation that have been used within the instance

(lower part);

• execution context comprising all relevant context properties and their

current states (upper right part).

For each adaptation case within a process instance, the Adaptation
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Viewer can be called (Fig. 8.7). It provides details on how a certain

adaptation problem has been resolved, including:

• the general adaptation problem featuring a set of fragments partici-

pating in the composition and the portion of context that is relevant

for the process instance under adaptation (tab Adaptation Prob-

lem);

• the result of fragment selection based on the pruning of useless frag-

ments (tab Service Selection);

• planning domain expressed in the SMV language (tab Planning Do-

main);

• planning algorithm timing (lower part);

• the resulting APFL adaptation process (tab APFL Process).

The User Commands are used to control the simulation running in the

execution and adaptation layers and make it possible to lead the scenario

to extraordinary situations where the capabilities of process adaptation

can be demonstrated. The simulation can be controlled by pausing and re-

suming the execution or by increasing and decreasing the execution speed.

The user can affect the scenario i) by triggering exogenous events (e.g.,

cause damages to cars, order cars stored at the storage areas and cause

unavailability of storage areas) and ii) by creating new entities (e.g., new

ships loaded with customizable number/types of cars).

The CAptEvo platform has been presented at Service Cup 2012 com-

petition [105] and can be freely downloaded from the ASTRO project web

site at http://www.astroproject.org/captevo.php. There, the reader

can also find a video tutorial explaining how to run and use the demo.
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Figure 8.6: Process Viewer

While running the demo, we encourage the reader to pay attention to the

evaluation cases that will be described in the next section.

8.2.2 Evaluation

The evaluation of our adaptation approach using the ASTRO-CAptEvo

platform included three main parts. First, we made a qualitative evaluation

to demonstrate how the challenges posed by the motivating example of

Section 3.1 could be addressed. Second, we assessed the modeling effort

required in order to enable the adaptation (i.e., time on context modeling,

fragment annotations etc.). Third, we made some performance evaluations

of the composition approach to see how it scaled up for the adaptation-

related tasks.

All the evaluation was carried out using a dual-core CPU running at
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Figure 8.7: Adaptation Viewer

2.8GHz, with 8Gb memory. To give an idea about the complexity of the

world modeled by ASTRO-CAptEvo, we have to mention 29 entity types

(e.g., ships, cars, trucks, storage areas, various managers etc.) each includ-

ing its own business process, 69 fragment models provided by entities and

40 types of context properties forming the context. During the runs of the

demonstration, the number of entity instances simultaneously operating

within the scenario reached up to 60.

Adaptation in Action

Using ASTRO-CAptEvo, we can show how the challenges posed by the

motivating example of Section 3.1 can be addressed by our approach. For

that purpose we can consider a process attached to a car (Fig. 8.6), which

is the central process in the scenario.
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By adopting the APFL language with context annotations (see Sections

3.3 and 4.2.2) and by implementing the refinement adaptation mechanism

(see Section 3.2) we allow for highly customizable processes. Even though

all three types of cars (normal, luxury and heavy) have to follow different

procedures to accomplish the same tasks, the uniform process is used by

all of them. This process contains mainly abstract activities, which are

dynamically refined (i.e., customized) by the adaptation engine according

to the needs of each individual car and taking into account the current

conditions. To see that in the demo, it is enough to examine refinements

of the same abstract activities for different cars using Process View.

By implementing all three adaptation mechanisms (local, refinement

and compensation) and by enabling the adaptation engine to detect pre-

condition violations, we can provide complex and intelligent reaction to

exogenous events (“storage unavailable” and “car damaged” can be mod-

elled in the current version of the demo). The strategy order used is to

apply local adaptation, and, if it is not possible, to compensate the current

refinement, and re-refine it. The first important observation is that the

adaptation process produced in reaction to car damage (local adaptation),

while always having the same objective (to repair a car and bring it back

to the previous location), can be different for different cars/conditions.

Much more complex situations can be modelled by multiple failures

happening in short period of time. In this case, an unexpected situation

happens while the adaptation processes is still beign executed to handle

the previous unexpected situation. For example, when a car gets damaged

the respective adaptation process brings the car to the mechanical station,

repairs it and brings it back to the location where it got damaged. If

the second damage happens immediately after the repair of the previous

damage the car will still be following a previous adaptation process the

adaptation engine has to act in specific way. In particular, it skips the old
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adaptation process, and re-plans it from scratch, taking into account the

new conditions.

The most complex situation is where a car books a place at some stor-

age facility (say, “Storage A”) and gets damaged on its way to it. Then,

during the car repair, this facility becomes unavailable (similar situation

is depicted in Fig. 3.4) Such chain of failures makes the adaptation engine

to combine all three adaptation mechanisms to handle the situation cor-

rectly. After the car is repaired it tries to continue the execution of the old

refinement of the Storage abstract activity. However, the car cannot be

stored since “Storage A” is not available (the precondition of the activity

storing a car to “Storage A” is violated). The attempt to resolve the pre-

condition violation does not help (there is no way to force “Storage A” to

be available) and so the refinement of activity Storage is compensated

(the ticket is dropped), and a new refinement is generated (this one will

store a car at “Storage C”).

The final important observation is that the vast majority of changes

to the execution environment, such as adding new fragments, removing

existing fragments, changing fragment implementations, changing fragment

business policies (i.e., fragment annotations) require minimal or even no

effort to keep the system operable. Indeed, the context-based fragment

composition algorithm used as a core of adaptation engine, guarantees

that all these changes are automatically reflected in the execution of all

instances within the system, including those that already existed at the

moment of changes..

Modeling Effort

Although the automated tools for process adaptation operate much faster

than manual adaptation, we have to admit that they introduce quite some

preliminary modeling overhead that has to be considered. Our approach is
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not an exception since to enable automatic adaptation in the CLS scenario

we have to create a context model (40 context properties) and properly

annotate fragments (69 fragment) and entity processes (29 processes).

In order to compare the modeling overhead of our approach to other

approaches, we chose one of the rule-based adaptation techniques ([42])

and used it to implement a very similar scenario. The adaptation was

encoded as ECA (event-condition-action) rules 1.

While in [42] the context properties and fragment annotations are not

modeled explicitly, the effort necessary for the encoding of the multiple

rules and policies is estimated by us as comparable. In case of rules, the

additional effort comes from the necessity to explicitly consider and en-

code various conceptually different adaptation cases (we counted them to

be more than 20), which is not required in our goal-based approach. At

the same time, we estimate our modeling approach to be better at modu-

larization and reuse of the results of preliminary modeling. The rule-based

systems seem to be much more centralized and less flexible with respect to

changes. For example, the work on annotating fragments can be entrusted

to fragment providers while rules being interleaved with each other have to

be managed centrally. Another example is that a fragment annotation can

be reviewed and adjusted by its provider separately from other elements

of the application. In the centralized rule-based approaches any change

in fragment and/or application policies may imply revision of the whole

set of rules. In the same way, our framework can be easily and seamlessly

extended with new fragments by simply annotating them properly and

adding them to the repository. For the rule-based system, this would need

to learn the whole rule system and modify and re-verify it again. Finally,

some elements of our model can be reused by other applications in a given

domain: the context model and fragment annotations, once defined, may

1http://soa.fbk.eu/Logistics-AGG.zip/
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be adopted by different business processes. For the rules it is hardly the

case.

Planning Performance

In order to evaluate the performance of the planning algorithm with re-

spect to the adaptation-related composition problems, we ran our demo

in continuous mode for around an hour and collected information about

1060 compositions performed within this time. For each composition we

measured a number of indicators that characterized the complexity of the

problem and the timing. Then we tried to organize them into charts that

would allow us to prove or disprove the applicability of the approach.

Figure 8.8: Dependency between performance and number of services composed

First of all, we check the scalability of the approach with respect to the

number of services participating in the composition (Fig. 8.8). In general,

the result corresponds to that of [18]. However, as we already mentioned

in Section 8.1, the trend is supposed to be polynomial in the region of low

values and to become exponential only for big values (since more time is
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needed to optimize memory while working with big domains). The result of

Fig. 8.8 can be explained taking into account that, in addition to services,

the planning domain in context-aware composition contains context-related

STSs, which makes it larger even for a small number of services presented.

Consequently, even in the region of low values the exponential trend that

is typical of larger domains dominates.

Figure 8.9: Complexity distribution and performance scalability
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Alternatively, we propose our own indicator of domain complexity that

is the total number of transitions in services and context properties making

up the domain:

Complexity = NumContextTrans+NumServiceTrans.

We find this indicator more precise compared to the number of services.

It also allows us to see a more fine-grained distribution of all composition

problems with respect to complexity. The performance scalability with

respect to composition complexity is represented by the chart in Fig. 8.9,

top. It can be observed that it generally corresponds to the chart if Fig. 8.8

and features exponential growth. However, it is more informative if we

consider this chart along with the complexity distribution of composition

cases Fig. 8.9, bottom. It can be observed that the most adaptation cases

reside in the region with low or moderate complexity, while the cases with

high complexity are quite few. We remark that such distribution also

affects the precision of the scalability chart in the region of high complexity

(less experiments are carried out there).

Consequently, from the charts in Fig. 8.9 we can derive the following

table showing the percentage of composition cases that are resolved in no

more than n seconds:

n, sec compositions resolved within n, %

0.1 19.07

1 91.12

3 96.51

10 99.62

30 100.00

From the table it can be observed that the vast majority of adaptation-

related compositions actually take less than 10 seconds. This is the first

evidence of practical applicability of our approach: although the perfor-

244



CHAPTER 8. IMPLEMENTATION AND EVALUATION

mance of context-aware composition degrades exponentially with growing

complexity of a composition problem, it is still enough to be used for our

purposes. This becomes especially true when we notice that in many ap-

plication domain there are no severe restrictions on the performance of

adaptation related tasks. For example, in the CLS scenario, the typical

life cycle of a car may have duration up to several months. In this set-

ting, even the composition that takes several minutes should not raise any

problem.

The last important observation is that for each particular composition

problem we build a planning domain that includes only the information

that is relevant for this problem, namely: 1) the subset of context prop-

erties that are relevant for entities under consideration, which is normally

a small portion of the overall context of the scenario and 2) the subset of

all fragments that may be useful within the current composition problem,

which is, again, only a small portion of all fragments currently available

in the system. We expect that such fragment and context selection mech-

anism (whose prototype is already available in the current version of the

demo platform) will allow us to preserve the same average size of the plan-

ning problem even for much larger (with respect to the number of entities)

domains. Indeed, if within the scenario we operate thousands rather than

dozens of cars at a time it is unlikely to increase the complexity of an av-

erage composition problem: the proper selection will always come up with

more or less the same amount of relevant fragments and context. The fact

that there are thousands of cars in the harbour rather than dozens does

not functionally affects the way I park a car at a parking lot. As such,

we expect our approach to be easily scalable in this regard. Of course, to

run such a large system, much more powerful computers is supposed to be

used.
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Conclusions and Future Work

In this dissertation, we investigated a problem of automated service com-

position in dynamic execution environments. We proposed a solution that

integrally addresses the most important open issue associated with this

problem. On the basis of our composition technique, we also proposed

an approach to dynamic adaptation of service-based processes. The both

solutions were implemented and evaluated.

We considered two types of composable components: conventional ser-

vices and process fragments. We showed that under certain reasonable

assumptions, services can be considered as fragments and, as such, the

both types of components can be composed using the same composition

techniques.

A large portion of the thesis was devoted to the idea of abstraction of

composition requirements. We showed that once the requirements are sepa-

rated from the details of composable components, they become much more

robust against common run-time changes in the execution environment.

As a consequence, the whole approach becomes much more suitable for

dynamic conditions. In order to separate composition requirements from

services, we introduced an explicit context model, which played the role

of abstraction layer. We demonstrated how the abstract requirements can
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be connected to services by means of service annotations. Finally, by ex-

tending and developing the ideas of [18], we showed that our context-based

composition model can be resolved using planning techniques.

One of the main focuses of this research was composition requirements

languages and their semanrics and implementation. To allow for more ex-

pressive control-flow requirements, we proposed our own abstract (context-

based) language that introduced the following features: 1) the ability to

express both reachability and procedural goals, 2) the ability to express

reactive goals and 3) the ability to set preferences among alternative goals.

Significant attention was paid to defining the reasonable semantics for the

language and providing a way to encode this semantics in planning. To be

able to process the new semantics, we proposed a new planning algorithm

developing the ideas of [18, 111] and exploiting planning-as-model-checking

approach. Although data-flow requirements were not considered in detail,

we proposed a prototype solution based on the approach of [79].

On the basis of our composition technique, we developed a solution to

the problem of dynamic adaptation of business processes. This required ad-

ditional elaboration of some adaptation-related aspects. One of the major

contributions here was our work on understanding and implementing vari-

ous adaptation strategies. To enable rich adaptation possibilities, we used

a special language for adaptable flows (APFL) additionally equipped with

context-based annotations. All adaptation strategies in our adaptation

engine were realized though run-time composition of process fragments.

One of the key contributions of the thesis is the ASTRO-CAptEvo

demonstration platform. In it, we modeled a pervasive system based on

the car logistics scenario and realized adaptable pervasive flows using our

adaptation framework. The platform allowed us to evaluate not only the

applicability of adaptation strategies but also the performance of the com-

position engine on adaptation-related tasks. It is also worth to mention
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the implementation of a planning algorithm for continuous composition.

Of course, within this dissertation we could not cover every single issue

related to the topics of interest. We admit that there are still many exten-

sions and improvements we can consider in order to make the approaches

more mature and profound. In the following we discuss the most important

next steps we plan to take in the near future.

9.1 Future Work

User-Centric Service Composition

In the introduction, we mentioned user-centric systems as an example of

dynamic environment where our ideas might be in demand. We expect

that our approach to service composition can be extended to user-centric

systems. Comparing business-centric and user-centric systems we can high-

light some significant differences between them.

1. Business-centric composition usually has an ultimate goal to be

achieved. User-centric composition aims to continuously support the

user in performing a variety of different tasks and to react to possible

changes in the user’s objectives and execution environment;

2. The execution of a business-centric composition is normally driven

and controlled by embedded business logic. The execution of user-

centric service composition has to be controlled by the user, who is

continuously informed about the execution progress and can make

decisions;

3. In user-centric setting it is hard to provide an affordable predefined

solution (we have neither information about services to compose nor

information about user preferences). The composition has to be com-

pletely managed at run-time, with minimal human involvement.
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We have to admit that user-centricity is SOA is an emerging topic and

no complex solution to the above issues exist (some relevant works are

[59, 34, 112]). At the same time, we can notice that we already have ingre-

dients for addressing issues 1 and 3. Indeed, our requirements language

already allows for composition constraints (preconditions), reactive be-

haviour and continuous composition requirements support (issue 1). More-

over, requirements are abstract and, while defined by IT experts at design

time, can be grounded on services chosen by the user at run time, which

contributes a lot to complete automation of the composition life cycle (is-

sue 3). To address issue 2, we have to find a way to dynamically generate

the composition interface/protocol that keeps the user “in the loop”. Some

preliminary results have already been published in [60]. We assume that

the communication with the user can be linked to the evolution of the con-

text model. For example, once a context event happens, the user has to be

notified about that. Similarly, the interface has to allow the user to order

the accomplishment of some task (e.g., to trigger some event).

The overall “idealistic” picture could be the following. At design time,

the IT experts define a context model for some application domain and

define a set of abstract requirements for a specific composition problem

(e.g., integral management of trip elements, such as car rent, hotel reser-

vation and flight tickets). In addition to that, service providers provide

context-based annotations for their services. At run time, the user, who

would like to organize a trip, first chooses a set of requirement expressions

from the list that correspond to her needs (e.g., she wants “IF flight cancel-

lation THEN book new flight” rather than “IF flight cancellation THEN

trip cancellation” and so on). After that, she chooses service providers to

be used and the resulting composition is produced automatically.
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Composition Requirements

One of the direction for future work is the further development of the model

of composition requirements. In the thesis, we noted that our methodol-

ogy for representing complex, extended requirements in planning is pow-

erful enough to handle even more complex constructs. The one obvious

improvements is to make reaction expressions symmetric, i.e. to have both

trigger and reaction part in form of any formula over events and context

states (so far the trigger part is always a context event).

We plan to continue our work on data-flow requirements, which are not

yet fully integrated to the approach. We also consider a problem of relation

between data and control flow. For example, an activity precondition may

be not only on the current context state but also on the values of data

variables of the context. We expect it to be a very complex task that will

probably partially adopt the ideas proposed in [101]

Performance Optimization

We mentioned that in the ASTRO-CAptEvo framework we already intro-

duced some performance optimizations. They consist in removing the parts

of the planning domain that will never belong to a plan. There are a few

trivial observations that allow us to do so. For example, if we know that

there is no service that triggers certain event, we can remove the respec-

tive transition because it will never be triggered. Similarly, we can remove

components of STSs that are unconnected from the current states. In ser-

vices, we can remove actions with preconditions that will never be satisfied

through the execution. Our first experiments with such kind of optimiza-

tion suggest that they can improve the performance of the planning by

a factor of 2. We still need to structure and formalize these optimizing

transformations.
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Better Adaptation

There are a few directions for improving our process adaptation approach.

One of them is proactive problem detection. For example, while executing

a process we detect precondition violation only for the next activity to be

executed. Our observations suggest that very often potential precondition

violation can be detected much more in advance. In this case, we can act

immediately, which may safe a lot of time and resources. The same is true

for unrefined abstract activities.

Another direction is the further study of adaptation strategy selection

and management. In this work we have chosen one most intuitive way

of strategy selection. We presume that in different application domains

efficient strategy order may be different. Moreover, we want to consider

more sophisticated criteria for strategy selection such as QoS, status of the

environment, execution and adaptation history etc.

Process Evolution

As we mentioned in Section 2.3, our adaptation approach belongs to short-

term adaptation where changes are applied only to a single problematic

process instance. At the same time, we remark that the by analyzing

the adaptation history of a certain process it is possible to identify the

directions in which we can change the process model (process evolution)

in order to increase its efficiency. We currently consider the possibility to

create an automated or semi-automated process evolution approach based

on the aforementioned principles.
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