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Abstract

Future mobile broadband communications working over wireless channels are required to

provide high performance services in terms of speed, capacity, and quality. A key issue

to be considered is the design of multi-standard and multi-modal ad-hoc network architec-

tures, capable of self-con�guring in an adaptive and optimal way with respect to channel

conditions and tra�c load. In the context of 4G-wireless communications, the implemen-

tation of e�cient baseband receivers characterized by a�ordable computational load is a

crucial point in the development of transmission systems exploiting diversity in di�erent

domains. This thesis proposes some novel multi-user detection techniques based on di�er-

ent criterions (i.e., MMSE, ML, and MBER) particularly suited for multi-carrier CDMA

systems, both in the single- and multi-antenna cases. Moreover, it considers the use of

evolutionary strategies (such as GA and PSO) to channel estimation purposes in MIMO

multi-carrier scenarios. Simulation results evidenced that the proposed PHY-layer opti-

mization techniques always outperform state of the art schemes by spending an a�ordable

computational burden.

Particular attention has been used on the software implementation of the formulated algo-

rithms, in order to obtain a modular software architecture that can be used in an adaptive

and optimized recon�gurable scenario.
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multi-user detection (MUD), channel estimation, adaptive algorithm, minimum bit error
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Chapter 1

Introduction

Wireless communication is one of the most active areas of research over the past and the

current decades. A variety of services have been o�ered in such a context, starting from

Voice, continuing to Data and now to Multimedia. Signi�cant reductions in cost and time

can also be achieved using wireless solutions, providing even several bene�ts to the users

in terms of mobility and �exibility in the placement of terminals. In fact, wireless mobile

systems have begun to permeate all areas of our daily life and are therefore required to

provide high-speed, high-capacity and high-quality services with performances closer to

those a�orded by wireline systems. This evolution has been made possible by academic

and industrial Research and Development (R&D) labs with the implementation of three

generations of cellular systems ([1]).

The �rst-generation (1G) was analog-based. It used analog modulations and sent in-

formation as a continuously varying waveform. The widespread commercial deployment

of 1G systems started in the 1979s in Tokyo, Japan by Nippon Telephone and Telegraph

(NTT). This was followed in Europe in 1981 by the Nordic Mobile Telephone (NMT450)

system developed by Ericsson for Scandinavia, in 1982 by the Total Access Communi-

cations System (TACS) for the United Kingdom and in 1985 by the Extended Total

Access Communications System (ETACS) for the other european countries. Those sys-

tems were not interoperable, given that the operating frequency was di�erent in almost

1



2 Introduction

each country. The situation was di�erent in the United States, where only a single analog

cellular standard called Advanced Mobile Phone System (AMPS) has been developed by

Ameritech in 1983. These systems su�ered from low user capacity and had voice quality

issues ([2, 3, 4]).

The second generation (2G) cellular systems use digital modulation schemes, source

coding, and error correction coding techniques. These advances helped improve user

capacity, voice quality, and spectrum e�ciency. The spreading of 2G systems started

with the european Global System for Mobile communications (GSM) in 1990 ([5]) and

continued with North American TDMA Systems (IS-54, IS-136) in 1992 and 1996, North

American Spread Spectrum System (IS-95) in 1993 ([6]) and Japan Digital Cellular (JDC)

in 1992 ([7]). GSM became the more widely used system throughout the world, providing

an upgraded transmission technology with a single, uni�ed standard in Europe. These

systems were able to perfectly provide basic services (e.g., voice and low bit-rate data),

but when demands for a variety of wideband services increased (e.g., high speed Internet

access and video/high quality images transmission), the evolution toward third generation

(3G) started. The �rst step in this direction has been commonly accepted as the second

and one-half generation (2.5G), with the development of new technologies always based

on the classical GSM (e.g., General Packet Radio Service (GPRS) and Enhanced Data

Rates for Global Evolution (EDGE)).

The real 3G mobile systems have been developed to o�er both low- and high-bandwidth

services like telephony (voice, video, fax, etc.), Internet access (e-mail, web browsing,

videoconferencing, e-commerce, etc.), and multimedia (playing music, viewing videos,

�lms, television, etc.), at any time and from anywhere through a single device. The �rst

3G system was introduced in October 2001 in Japan by NTT DoCoMo under the name

FOMA (Freedom of Mobile Multimedia Access) ([8]). It is based on the Wideband Code

Division Multiple Access (WCDMA) transmission protocol, which has been recognized

by the International Telecommunication Union (ITU) as the most promising candidate

for the international 3G standard under the International Mobile Telecommunications
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programme, IMT-2000. It is able to o�er wideband services, such as wireless Internet

services (with peak rate of 384 Kbps) and video transmissions (with data rate up to

2Mbps).

At the present time, it is predicted that the current 3G technology and its �rst evolu-

tions (commonly recognized as the third and one-half generation (3.5G)) will tend to be

congested in few years. The research community and the telecommunications industry are

therefore working to identify possible solutions for the fourth generation (4G) of wireless

communications. It should be able to meet needs of future high-performance applications

like wireless broadband access, Multimedia Messaging Service (MMS), video chat, mobile

TV, High-De�nition TeleVision (HDTV) content, and Digital Video Broadcasting (DVB).

It requires an extension of the 3G capacity by an order of magnitude. The 4G tendency

is to integrate mobile communications standards (speci�ed by IMT) and Wireless Local

Area Networks (WLAN). The resulting technology will be therefore based on a fully IP-

based integrated system. The goal is to have data rates in the range 50-100 Mbps in

cellular networks and around 1 Gbps in the WLAN environment, with premium quality

and high security.

The 4G working group (the Wireless World Research Forum (WWRF), launched on Au-

gust 2001 by the founding members Alcatel, Ericsson, Motorola, Nokia, and Siemens) has

de�ned the following as objectives of the 4G wireless communication standard ([9, 10, 11,

12, 13]):

• a spectral e�cient system

• high network capacity: more simultaneous users per cell

• a nominal data rate of 100 Mbps while the client physically moves at high speeds

relative to the station, and 1 Gbps while client and station are in relatively �xed

positions as de�ned by the ITU-R

• a data rate of at least 100 Mbps between any two points in the world

• smooth hando� across heterogeneous networks
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Figure 1.1: The user-centric system presented in [14]

• seamless connectivity and global roaming across multiple networks

• high quality of service for next generation multimedia support

• interoperability with existing wireless standards

• an all IP, packet switched network.

An innovative vision of 4G systems has been provided by Frattasi et al. in [14]. As

depicted in Fig. 1.1, the user is located in the center of the system and the di�erent key

features de�ning 4G rotate around him on orbits with a distance dependent on a user-

sensitivity scale. Therefore, the further the planet is from the center of the system the less

the user is sensitive to it. The user-centric system demonstrates that it is mandatory in

the design of 4G to focus on the upper layers (max user-sensitivity) before improving or

developing the lower ones. Without user friendliness, for example, the user cannot exploit

his device and access to other features, such as user personalization.

The research community has already generated several enabling technologies for 4G,

e.g., adaptive coding and modulation, iterative (turbo) decoding algorithms, space-time

coding, multiple antennas and Multiple Input Multiple Output (MIMO) channels, multi-

carrier modulation, multi-user detection, and ultra wideband radio.

The road to the fourth generation is pictorially summarized in Fig. 1.2 ([9]).



1.1 The Motivations 5

Figure 1.2: Evolution of wireless communication systems

The subject of this thesis is inserted in such a framework, considering the study and

development of novel techniques for physical layer optimization of diversity based smart

terminals in the context of next-generation wireless communications.

1.1 The Motivations

In order to implement reliable wireless communication networks, it is necessary to con-

sider the hostile physical properties of the wireless channel in the form of rapid time

variation, fading, multipath propagation, and co-channel interference. Countermeasures

should be employed in order to combat these impairments and to achieve high-speed

communications, high-quality communications and/or high-capacity communications.

A widely considered solution consists of the use of diversity in the frequency, time, and

space domains.

Frequency diversity can be obtained by transmitting the information-bearing signal by

means of several carriers that are spaced su�ciently apart from each other to provide

independently fading versions of the signals. This may be accomplished by choosing a
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frequency spacing equal or larger than the coherence bandwidth of the channel.

The most common techniques actually used to exploit the frequency diversity are based

on multi-carrier modulation: Orthogonal Frequency Division Multiplexing (OFDM) and

Multi-Carrier Code-Division Multiple Access (MC-CDMA) ([15]).

In MC-CDMA, a user sends simultaneously his data stream over N subcarriers. Multiple

users are supported by allowing each user to transmit over the same N subcarriers at the

same time by using a unique spreading sequence (typically +1/-1 values) to separate the

various users at the receiver.

Time diversity can be obtained by transmitting the information-bearing signal in di�erent

time slots, with the interval between successive time slots being equal to or grater than

the coherence time of the channel.

The transmission technique that exploits this �natural� diversity in the time domain is

Direct-Sequence Code-Division Multiple Access (DS-CDMA) with a Rake receiver ([15]).

In DS-CDMA, each symbol of the data stream of each user is modulated by a known and

unique spreading sequence. By using a Rake receiver, it is possible to demodulate each

path of the composite multipath signal. In this way, all of the energy provided by the

channel will be extracted.

Space diversity can be obtained by using multiple transmit or receive antennas, or both,

with the spacing between adjacent antennas being chosen so as to ensure the independence

of possible fading events occurring in the channel. The advantage of having NTx and NRx

multiple antennas at the transmitter and the receiver respectively is to transform the

original wireless fading channels into MIMO wireless fading channels ([16]). It has been

shown ([17]) that the link capacity can be increased by m = min (NTx, NRx) times relative

to single-antenna wireless links, because there are m spatial channels created as a result

of the multiple antennas and the scattering environment surrounding the transmitter and

the receiver. Hence, independent information streams can be delivered on the m parallel

spatial channels to realize the increased transmission bit rate (called spatial multiplexing)

or one can deliver the same information bits over multiple spatial channels to exploit the
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Figure 1.3: Wireless communications techniques overview

spatial diversity so as to enhance the reliability of the transmission.

The three types of diversity obtainable in multipath fading channels (frequency, time,

and space diversity) can be exploited separately or jointly. In the �rst case, the aforemen-

tioned techniques are used, i.e., MC-CDMA or OFDM (frequency), DS-CDMA (time),

and MIMO systems (space). In the second case, these basic techniques are partially or en-

tirely combined to obtain new, more e�cient, and more reliable transmission techniques.

In Fig. 1.3, it is possible to �nd a summary of the obtainable techniques.

It is evident that the most general case is represented by MIMO-MC-DS-CDMA and

all the other cases can be obtained by removing one or more �degrees of freedom� from

this one. Some of these transmission techniques have been already used as standard for

the second and third generations of mobile communications systems and the others are

currently considered as possible solutions for the future generations. That is the reason

why these techniques and several aspects concerning them have been widely analyzed in

the literature.
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1.2 The Problems and the Innovative Solutions

In the context of 4G wireless communications systems, the optimization of the radio link is

a key issue to be faced. This thesis work jointly considers the diversity in space, time, and

frequency domain, in order to provide performances very close to the single-user bound

in multipath fading channels. In particular, new strategies for the joint optimization of

antenna arrays and baseband receiver sections have been developed. From an algorithmic

point of view, the novelty of the considered approach relies on the joint solution of the

beamforming problem and the e�cient reception for wireless systems equipped with an-

tenna arrays. Usually, the problem of the antenna arrays optimization and the problem

of the baseband reception are separately considered in the current literature using di�er-

ent algorithms. On the contrary, the proposed methodology aims to found an integrated

approach able not only to maximize the Signal-to-Interference-plus-Noise-Ratio (SINR)

at the antenna arrays output but even to minimize simultaneously the Bit Error Rate

(BER) at the output of the baseband receiver (both for single carrier and multi-carrier

modulations).

This approach is completely di�erent from the traditional Minimum Mean Square Er-

ror (MMSE) criterion: the receiver aims to minimize directly the BER rather than the

Mean Square Error (MSE) ([18]). Using this kind of approach, it is possible to inte-

grate the space, time, and frequency diversities obtained, e.g., by using smart antennas,

Direct-Sequence Spread Spectrum (DS-SS) modulation, and multi-carrier modulations

(both OFDM and MC-CDMA). In this way, it is possible to mitigate the e�ects of the

multipath propagation and to reject interference: both RF co-channel interference coming

from other transmitters and baseband interferences (i.e., intersymbol interference, clipping

noise, interchannel interference of OFDM systems, and multi-user interference in CDMA

systems). In this work, considering that MBER approach has not been yet considered in

MIMO MC-CDMA systems, it will be introduced into the multi-user detection of Space

Time Block Coded (STBC) MIMO MC-CDMA signals.

The Multi-User Detection (MUD) problem has been even handled by considering the
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conventional MMSE criterion. Despite its intrinsic sub-optimality, it is often preferred in

practical applications of MC-CDMA due to its reduced computational load and because

it can easily support adaptive implementations based on Least Mean Square (LMS) or

Recursive Least Square (RLS) optimization algorithms ([19]). These approaches are very

e�cient from a computational point of view. However, their performances and conver-

gence rates are strongly in�uenced by the choice of the updating parameters. This draw-

back makes them more suitable for static channels rather than for time varying fading

channels ([20]). In this work, the application of evolutionary methodologies for optimiza-

tion like Genetic Algorithms (GAs) has been considered to implement a semi-adaptive

MMSE MUD reception in MC-CDMA systems transmitting information over multipath

fading channels. Their use has been also investigated in order to implement a computa-

tionally tractable Maximum Likelihood (ML) MUD detector for synchronous multi-rate

MC-CDMA systems. GAs, an evolutionary computing method, are commonly recognized

in the literature as valuable optimization tools. They are characterized by robustness,

adaptation capability and reduced sensitivity to parameter setting ([21]). This technique

was pioneered by Holland in the 60's and 70's and his work is comprehensively presented

in [22], while useful practical details of genetic algorithms are available in [23, 24].

The GAs have been even used for the Channel Impulse Response (CIR) estimation, in

conjunction with another evolutionary strategy, the Particle Swarm Optimization (PSO)

algorithm. The PSO is a stochastic evolutionary computation technique developed by

Kennedy and Eberhart in 1995 ([25]), inspired by social behavior of bird �ocking or �sh

schooling.

In real systems, the fading channel coe�cients are not known to the receiver. They

are explicitly estimated by the receiver and the estimate is used as if it were the exact

Channel State Information (CSI), even if it is only a mathematical estimation of what is

truly happening in nature. In such a context, GA- and PSO-assisted MMSE estimate of

the channel matrix has been considered, in particular for diversity based 4G-systems.

Both the proposed multi-user detection and channel estimation techniques have been
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implemented by taking into account their possible application in fully recon�gurable ter-

minals capable of adapting their transmission layer to a �change of status� of the network.

Therefore, they have been developed by considering adaptive design issues such as modu-

larity and re-usability of software modules, in order to obtain an adaptive and optimized

PHY-layer recon�gurability.

1.3 Research Contributions

Some parts of this thesis have been already published in international publications. In

particular, the GA-assisted MUD approach described in section 3.1 has been presented in

one conference paper and one journal paper:

• C. Sacchi, L. D'Orazio, M. Donelli, R. Fedrizzi, and F. G. B. De Natale, �A genetic

algorithm-assisted semi-adaptive MMSE multi-user detection for MC-CDMA mobile

communication systems,� in Proc. of PIMRC 2006 Conf., Sept. 2006.

• C. Sacchi, M. Donelli, L. D'Orazio, R. Fedrizzi, and F. G. B. De Natale, �Genetic

algorithm-based MMSE receiver for MC-CDMA systems transmitting over time-

varying mobile channels,� Electronics Letters, vol. 43, no. 3, pp. 172�173, Feb.

2007.

The adaptive MBER receiver for STBC MIMO MC-CDMA mobile communication sys-

tems proposed in section 3.3 has been presented in one conference paper:

• L. D'Orazio, C. Sacchi, R. Fedrizzi, and F. G. B. De Natale, �An adaptive minimum-

BER approach for multi-user detection in STBC-MIMO MC-CDMA systems,� in

Proc. of GLOBECOM 2007 Conf., Nov. 2007, pp. 3427�3431.

The results obtained by using the channel estimation technique presented in section 4.1

have been published in one conference paper:

• L. D'Orazio, C. Sacchi, M. Donelli, and F. G. B. De Natale, �MMSE multi-user
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detection with GA-assisted channel estimation for STBC-MIMO MC-CDMA mobile

communication systems,� in Proc. of ISSSTA 2008 Conf., Aug. 2008, pp. 182�187.

Other research contributions not presented in this dissertation are two conference papers:

• L. D'Orazio, C. Sacchi, F. Granelli, and F. G. B. De Natale, �Situation-aware radio

resource management for multi-rate MC-CDMA wireless networks targeted at mul-

timedia data exchanges in local areas,� in Proc. of ACM MOBIMEDIA 2006 Conf.,

Sept. 2006.

• L. D'Orazio, C. Sacchi, and F. G. B. De Natale, �Multicarrier CDMA for data trans-

mission over HF channels: application to �digital divide� reduction,� in Proc. of

Aerospace 2007 Conf., March 2007.

1.4 Structure of the Thesis

This thesis consists of seven chapters. The outline of each chapter is as follows.

Chapter 1, the present chapter, gives an overview of the motivations, the dealed prob-

lems and the proposed solutions. Moreover, it contains outline and research contributions

of this dissertation.

Chapter 2 reviews the state of the art of multiple access interference avoidance/cancellation

techniques for CDMA systems and overviews channel estimation techniques particularly

used in multi-carrier and multiple antenna scenarios.

Chapter 3 and Chapter 4 introduce the proposed MUD techniques and consider the

use of evolutionary strategies to channel estimation purposes, respectively.

Chapter 5 takes into account the possibility to use the presented algorithms in an

adaptive and optimized recon�gurable system, given their modular implementation.

Chapter 6 presents the experimental results obtained for the proposed techniques.

Chapter 7 concludes the dissertation summarizing the obtained results and introducing

suggestions for future works.





Chapter 2

State of the Art

At �rst, a review of multiple access interference avoidance/cancellation techniques for

CDMA systems is provided, considering both Single- and Multiple-User approaches. The

second part of the chapter is dedicated to summarize the mostly used channel estimation

techniques, in particular for multi-carrier and multiple antenna scenarios.

2.1 Multi-Access Interference Mitigation Techniques for CDMA

systems

The trend to deal with more and more simultaneous users tends to allow users to transmit

simultaneously on the same frequency band, either using Single Input Single Output

(SISO) or MIMO systems. It is well known that the capacity of a communication system is

strongly limited by Multi-Access Interference (MAI). In wireless communication channels,

the intentional non-orthogonal signaling (e.g., caused in CDMA systems by the cross-

correlation between spreading codes of active users) or the non-ideal channel e�ects (e.g.,

due to multipath propagation) can lead to lose the orthogonality between multiple users'

signals.

In this sub-section, an overview of various MAI reduction techniques will be provided

(following the classi�cation reported in Fig. 2.1, [26]).

13
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Figure 2.1: Classi�cation of various CDMA receiver techniques

2.1.1 Single-User Detection

The �rst approach to deal with the MAI problem has been the simple use of the tra-

ditional Single-User Detection receivers, where MAI is treated as noise and no use of

information regarding the interference created by other users is done ([27]). The Maximal

Ratio Combining (MRC) detector consists of a �lter matched to the channel's transfer

function. It is able to maximize the Signal-to-Noise Ratio (SNR) at the receiver output

by reducing the attenuation and eliminating the phase rotation induced by the multipath

re�ections ([20, 28]). This operation could further compromise the users' orthogonality.

In order to mitigate this behaviour, the Equal Gain Combining (EGC) detector corrects

only the phase rotation without handle the magnitude, and the Orthogonality Restoring

Combining (ORC) or Zero Forcing (ZF) detector attempts to eliminate the channel e�ect

by inverting its e�ects ([28, 29]).

These single-user techniques have been widely used in the second generation CDMA

system like IS-95 and are still implemented in mobile devices since knowledge of the pa-

rameters of the interfering users (e.g., spreading code, phase, amplitude, position,...) is

often not possible. However, when an increase in the users' number occurs or when the
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multiple users' signals are characterized by widely varying power level disparities, users

equipped with single-user detectors may lose communication. This phenomenon is known

as the near-far e�ect and it can be alleviated by using power control schemes ([30]).

2.1.2 Multi-User Detection

The natural evolution of the research has been to take into account all the available infor-

mation at the receiver in order to improve the CDMA receivers' performance by reducing

or cancelling the MAI. The resulting multi-user detectors are generally characterized by

a very high complexity but they o�er a huge capacity improvement over the conventional

single-user detectors ([31]). These methods are actually practical only at the base-station,

where all the information is readily available and there are no power consumption con-

straints.

The optimum multi-user receiver has been presented by Verdu in [32]. The sequence of

symbols is selected by jointly considering the matched �lter outputs of all users. Therefore,

the resulting K-user Maximum-Likelihood (ML) sequence detector consists of a bank of

single-user matched �lters followed by a Viterbi algorithm whose complexity per binary

decision is O
(
2K

)
. It o�ers excellent performance gains over conventional systems but it

is too complicated for practical application, given that its complexity grows exponentially

with the number of active users (see Fig. 2.2, [32]).

Thus, numerous sub-optimal approaches with acceptable complexity have been pro-

posed in the literature. Excellent reviews of them can be found in [33, 34, 35, 36, 37, 38].

In general, they can be classi�ed into two categories: linear and non-linear detectors.

In the linear multi-user detectors, the soft outputs of the conventional �lters are linearly

transformed to reduce the access interference and provide better performance. The most

used are the decorrelating ([39]), the Minimum Mean Square Error (MMSE) ([40, 41])

and the Minimum Bit Error Rate (MBER) ([18]) detector.

The decorrelating detector linearly transforms the outputs of the conventional matched

�lter receiver by applying the inverse of the correlation matrix of user spreading codes.
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(a) (b)

Figure 2.2: Conventional (a) and optimum (b) K-user detector

It has some interesting advantages over the conventional detector, e.g., the received sig-

nal power does not have to be estimated or controlled and the near-far e�ect is strongly

reduced ([37]). The disadvantages are the noise enhancement and the impossibility to

eliminate any Inter-Symbol Interference (ISI) caused by channel dynamics. The compu-

tational complexity is O (K3), due to the correlation matrix inversion.

The MMSE detector applies a linear transformation to the output of the conventional

detector of a matched �lter bank to minimize the square di�erence between the transmit-

ted symbol sequence and the estimated symbol sequence. The MBER detector aims to

directly minimize the BER in output at the decoder.

A deeper dive into the last two approaches will be taken in the follow of the dissertation.

In non-linear multi-user detectors (also called subtractive or interference cancellation

detectors), the interfering signals are estimated and then removed from the received sig-

nal before detection. The interference cancellation can be carried out either successively

(Serial Interference Cancellation, SIC) ([42, 43]) or in parallel (Parallel Interference Can-

cellation, PIC) ([44, 45]).

Generally speaking, interference cancellers are much simpler than linear multi-user

detectors but are inferior in terms of performance ([46, 47, 48]). Therefore, the core of this

thesis has been focused on the study and development of novel linear MUD techniques for
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CDMA systems. In particular, the application to MC-CDMA systems of detectors based

on the MMSE and MBER principles has been considered, both in the SISO and in the

MIMO scenario.

The choice of these particular systems has been done in order to remain in the context

of the diversity-based 4G-wireless communication devices presented in the former Chapter

1. MC-CDMA transmission techniques can jointly exploit the advantages of multi-carrier

OFDM and single-carrier Spread Spectrum DS-CDMA techniques ([15]). As previously

enounced, the basic MUD techniques for MC-CDMA are ML, MMSE and MBER detec-

tion. For each of them, several modi�cations have been proposed in the literature in order

to increase the performance and reduce the computational complexity.

Unconventional mathematical tools have been recently used to implement near-optimum

ML MUD algorithms characterized by a reduced computational load with respect to the

Verdu's work [32] (polynomially growing with the number of active users instead of ex-

ponentially). In [49] and in [50], a Genetic Algorithm (GA) and a Neural Network (NN)

MUD receiver have been presented, respectively. Brunel used in [51] a low-complexity

optimum lattice decoder (the sphere decoder) to jointly detect all users. Its complexity is

a polynomial function of the number of users and is independent of the modulation size.

Thus, it allows optimum performance even for full-loaded systems using large modula-

tions, but only for low noise received signals.

Neither of the above techniques take into account the presence of Carrier Frequency O�-

sets (CFOs). It tends to destroy the orthogonality among users, greatly degrading the

performance of MC-CDMA systems. Such a situation has been considered in [52], where a

low computational load ML MUD receiver based on the use of Carrier Interferometry (CI)

codes ([53]) has been presented. It exploits the sparsity of the cross-correlation matrix

of CI codes to obtain a complexity that grows exponentially with the channel multipath

length instead of the number of active users.

The MMSE MUD techniques o�er a polynomial complexity but are even able to easily

support adaptive implementations ([54]). Two approaches based on the LMS and on the
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RLS algorithm have been presented in [19] and another one based on the Normalized

Least Mean Square (NLMS) in [55]. They are very e�cient from a computational point

of view but their performances and convergence rates are strongly in�uenced by the choice

of the LMS/RLS updating parameters. A possible solution to this behaviour has been

proposed in [19], consisting in the calculation of the receiver weights deriving from the

explicit solution of the MMSE equation ([15]) by using an estimation of the channel

matrix obtained through LMS/RLS methodologies. Such an approach can achieve better

performance than fully adaptive MMSE solutions as well as increased robustness to the

selection of the adaptation parameters. On the other hand, it may always su�er from the

same drawbacks of deterministic gradient based algorithms.

A more reliable solution in the presence of uncertainties about channel estimation and

equalization has been described in [56], where a supplementary GA-based MUD stage has

been inserted after a classical MMSE MUD stage, driven by a blind channel identi�cation

algorithm. Another blind linear MMSE detector and channel estimator is shown in [57]. It

is based on the RLS updating of the correlation matrix, and the channel can be estimated

blindly by solving the minimum eigenvector of a data sub-matrix. A new pilot-based

channel estimation scheme has been used in [58] to drive a PIC stage with MMSE �ltering.

The MBER criterion has been applied in several works to DS-CDMA systems. Chen

et al. proposed in [59] a LMS-style stochastic gradient adaptive algorithm based on the

approach of kernel density estimation for approximating the BER from training data.

A modi�ed version of the same adaptive algorithm is shown in [60]. It is based on the

Gradient-Newton algorithm and can speed up the convergence of the multi-user receiver,

requiring shorter training data.

A linear adaptive MBER MUD approach is proposed in [61] for asynchronous MC-CDMA

systems. It employs an adaptive stochastic gradient algorithm based on the estimation

of kernel density function. Instead to use its estimation, the true Probability Density

Function (PDF) is directly considered in [62, 63, 64]. A modi�ed version of the same

algorithm is presented in [65]. It describes a Minimum Conditional BER (MCBER)
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receiver that minimizes the conditional probability of error for reducing the complexity

of the detector.

The �ow of multimedia tra�c through wireless networks is constantly increasing, both

in local and in metropolitan areas. Multimedia tra�c is characterized by heterogeneous

data rates typical of the di�erent streamed media. In this framework, e�cient tech-

niques for multi-user and multi-rate data transmission should be investigated. In the case

of frequency-selective wireless channels and time-frequency diversity-based transmission

techniques, the usual tradeo� between data rate and robustness against channel e�ects

becomes more evident. In a multi-rate context, the diversity gain of higher-data rate

transmitters may be reduced with respect to lower-data rate ones. This typically happens

in the 3G WCDMA PHY-layer standard of Universal Mobile Telecommunications System

(UMTS) (based on DS-CDMA), where variable spreading factors [66] are attributed to

various user classes in order to arrange multi-rate services ranging from 15 Kbps to 960

Kbps.

Multi-rate transmission can be fairly managed also by 4G MC-CDMA schemes by at-

tributing to di�erent user classes a di�erent number of subcarriers and variable-length

orthogonal spreading codes [67]. The usual tradeo� between diversity gain and data rate

turns on a lower number of subcarriers attributed to the �fastest� users that will be penal-

ized with respect to �slowest� users in terms of channel degradation and MAI. In such a

perspective, multi-rate MC-CDMA performances could be substantially improved by the

adoption of multi-user detection.

All the above techniques are referred to SISO scenario, just considering the diversity

in the frequency domain. Recent trends in R&D about mobile communication systems

are going towards the joint exploitation of diversity concept in di�erent domains (space,

time, and frequency). In particular, there is an increasing interest concerning the integra-

tion of MIMO techniques aimed at exploiting diversity in the space domain with digital

transmission techniques aimed at exploiting diversity in time and frequency.

The key feature of MIMO techniques is to provide a potential increase of the channel
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capacity without an expansion of the Radio Frequency (RF) bandwidth ([68]). Adaptive

antenna arrays have been already used in wireless communication systems since late 1960s.

Applebaum's paper [69] presented a method for adaptively optimizing the SINR in the

presence of any type of noise environment (background noise and jamming signals).

This work was the starting point for �intelligent� or �self-con�gured� and highly e�cient

systems: adaptive or smart antennas ([70]). They are aimed at separating a desired signal

from interfering ones by controlling the radiation pattern of the array by adjusting the

array weights so that a certain optimization criterion is met.

The conventional beamformers are based on the MMSE approach. Several beamforming

algorithms based on it have been proposed in the literature (e.g., LMS and RLS algorithms

[71], genetic algorithms based solutions [72]). Another usable approach is the MBER one

([73]). A solution based on this approach and on the use of genetic algorithms has been

proposed in [74]. A comparison between di�erent MBER-based beamforming algorithms

is reported in [75].

The core idea in MIMO system is Space-Time (ST) signal processing in which the time

dimension is complemented with the spatial dimension inherent to the use of multiple

spatially-distributed antennas ([68, 76, 77]). Commonly used ST coding schemes are ST

Trellis Codes (STTC) and STBC.

An example of conceptually simple, computationally e�cient and mathematically elegant

STBC scheme has been proposed by Alamouti in [78]. Substantially Alamouti's coding is

an orthogonal ST block code, where two successive symbols are encoded in an orthogonal

2×2 matrix. The columns of the matrix are transmitted in successive symbol periods, but

the upper and the lower symbols in a given column are sent simultaneously through the

�rst and the second transmit antenna respectively. Alamouti's scheme originally consid-

ered two transmit antennas and one receive antenna. However, Alamouti demonstrated

that the same scheme can be easily generalized to two transmit antennas and a generic

number of receive antennas and successively Tarokh et al. described in [79] the possibility

to use even an arbitrary number of transmit antennas.
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Closed form expressions for the average BER have been derived in [80] for STBC systems

with generic number of transmit and receive antennas, transmitting data over MIMO

correlated Nakagami-m fading channels.

The promising results yielded by MIMO and STBC techniques and the increasing

importance of spread-spectrum and multi-carrier modulations in next-generation cellular

systems design have recently suggested to researchers to pro�tably combine diversity in

di�erent domains. Examples of space-time-frequency coding schemes have been shown by

Petre et al. in [81] for MIMO DS-CDMA, by Bizzarri et al . in [82] for MIMO OFDM, and,

�nally, a thorough overview of MIMO MC-CDMA implementations has been proposed

by Juntti et al. in [16].

In this last work, STBC MIMO MC-CDMA systems have been regarded among the most

promising technologies for future cellular standards. They can jointly exploit diversity in

di�erent domains in order to counteract multipath fading e�ects and, therefore, to provide

performances very close to the single-user bound.

The MUD problem in STBC MC-CDMA systems has been already dealt. The advan-

tages taken by MMSE MUD in MAI cancellation are well evidenced in [83], both over

Rayleigh and MIMO METRA ([84]) channels. In [85, 86, 87], e�ective schemes employing

blind or semi-blind channel estimation techniques have been discussed. More advanced

techniques have been recently presented in [88] and [89], where a GA-based MUD de-

tector and a turbo iterative receiver for the downlink of STBC MC-CDMA systems are

described, respectively.

Recent trends of R&D in diversity combining and MUD are moving from MMSE ap-

proaches to MBER approaches. In such a framework, recent literature has shown that

BER cost function might be more suitable for MUD tasks than MSE one.

A combination of MMSE and MBER criterion has been presented in [76] to obtain a

multi-stage linear receiver for MIMO multiplexing systems.

A �rst adaptive MCBER detector for asynchronous DS-CDMA systems with multiple re-

ceive antennas is described in [90]. Its extension to general MIMO scenario is proposed in
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[91] with the presentation of another receiver which aims to minimize the joint probability

of error for all users (MJBER).

The Space Division Multiple Access (SDMA) MIMO OFDM scenario has been considered

in [92] and [93, 94]. The former presents a traditional adaptive Conjugate Gradient (CG)

algorithm for arriving at the minimum solution of the BER cost function. It o�ers good

performance but its convergence is sensitive to the choice of the algorithm's parameters

(e.g., the initialization value and the step-size parameter). The latter uses a GA to over-

come these problems. The MBER MUD's weight vectors are directly determined by the

GA with a lower complexity than the CG algorithm.

An adaptive space-time equalisation ([68]) assisted MBER MUD scheme for Single Input

Multiple Output (SIMO) systems is described in [95] and its evolution using decision

feedback in [96, 97]. An iterative version of the same approach is shown in [98]. It is

particularly suitable in the over-loaded scenarios.

Recently, a joint generalized scheme of antenna combination (using a modi�ed version of

the Antenna Subarray Formation (ASF) scheme presented by Karamalis et al. in [99])

and symbol detection based on the MBER criterion has been proposed in [100]. The two

issues are jointly considered by solving the highly non-linear decision statistic through a

PSO algorithm.

2.2 Channel Estimation Methods

All the previously presented detection techniques require the knowledge of the channel

impulse response, which can be provided by a separate channel estimator. For wireless

systems, channel estimation can be di�cult and computationally intensive, in particular

for those using multiple sub-bands and multiple antennas. In fact, its function is to

estimate the amplitude and phase shift caused by the multipath propagation for every

sub-band and for every transmit/receive antenna pair.

The channel estimation techniques can be classi�ed in pilot-assisted , decision-directed

and blind , according to the available information about the transmitted signal.
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An extensive overview of channel estimation techniques employed in OFDM systems

has been presented in [101], both for SISO and MIMO scenario. In the following sub-

sections, given that estimation of the wireless channel is a very broad topic (e.g., more than

200 references are reported in [101]), a particular emphasis will be placed on the methods

developed for multi-carrier and multiple antenna systems. Furthermore, considering that

two MMSE channel estimation techniques based on GA and PSO will be presented in this

thesis, the application of evolutionary strategies to channel estimation issues will be also

considered.

2.2.1 Pilot-Assisted

Pilot-assisted methods use a subset of the available subcarriers to transmit training se-

quences known to the receiver. The desired frequency domain channel transfer function

is directly estimated over the pilots and an interpolation method is then used to obtain

the remaining values. The most important issues are the optimum choice of training

sequences, their placement, their dimension and the used interpolation method.

The importance of the pilot pattern choice has been evidenced in [102], by comparing

in terms of BER several positioning of the pilot symbols, both in time and frequency. The

number and placement of pilots in the time-frequency grid has been extensively studied

in [103, 104, 105, 106, 107, 108, 109, 110], and their references. It represents an important

topic, a�ecting not only the quality of CIR evaluation but the transmission rate as well.

The most considered interpolation methods are the polynomial interpolation (linear,

quadratic, and cubic) ([111, 112, 113, 114]) and the Fast Fourier Transform (FFT) inter-

polation ([115, 116]). In [111] and [117], the e�ectiveness of the linear interpolation in

terms of system complexity, processing delay and estimation accuracy has been shown. A

novel linear interpolator for OFDM systems has been presented in [118] by Doukas and

Kalivas. Its performance in terms of MSE and BER have been expressed as a function of

the number and distance of the pilots, and of the channel parameters.

In [119], two channel estimation techniques for a MC-CDMA system transmitting over
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a standard UMTS channel model are compared. One considers transmitting pilot and

data symbols in the same OFDM symbol and performing interpolation in frequency be-

tween pilot symbols. The other involves transmitting pilot and data symbols in separate

OFDM symbols and interpolating in time (see Fig. 2.3 (a) and (b), respectively, [119]).

(a) (b)

Figure 2.3: Arrangement of pilot symbols

Bastug et al. proposed in [120] a three-step dedicated channel estimation procedure which

exploits all the existing pilot sequences as well as the structured dynamics of the channel

in WCDMA receivers. The method starts with block-wise dedicated and common chan-

nel Least Squares (LS) estimates of the channels associated with dedicated and common

pilots. Afterward, the initial LS estimates are optimally combined to obtain an improved

unbiased MMSE estimate of the dedicated channel, and, �nally, it is further re�ned via

Kalman �ltering by exploiting the channel temporal correlation.

A robust pilot-based OFDM channel estimator based on the combination of low-pass �l-

tering and delay-subspace projection has been presented in [121].

MMSE-based frequency domain channel estimation is proposed in [122, 123, 124] for

multiple-transmit antenna-assisted OFDM scenario.

Expectation Maximization (EM) based pilot-assisted channel transfer function estimation



2.2 Channel Estimation Methods 25

approaches have been shown in [125] and [126] for MIMO OFDM systems. Their gener-

alization in the context of the Majorize (Minorize) - Minimization (Maximization) (MM)

algorithm has been presented in [127].

In [128], a PSO-assisted frequency o�sets and channel gains estimation algorithm for

MIMO systems is described. The evolutionary strategy is used to obtain a �rst estimate

of the frequency o�sets (assuming that a training sequence is available). Then channel

gains are estimated by ML estimator.

GAs are used in [129] to estimate low Peak-to-Average Power Ratio (PAPR) near-

optimum training sequences for channel estimation in an OFDM system. It is shown that

such training sequences are able to improve channel estimation and BER performance in a

coherent system with a large number of sub-channels. A similar work has been presented

in [130] in the context of multiple antenna aided systems.

2.2.2 Decision-Directed

The Decision-Directed (DD) approaches consider all the subcarriers as pilots. The channel

estimation of a previous OFDM symbol is used for the data detection of the current

estimation, and therafter the newly detected data is used for the estimation of the current

channel. The resulting channel transfer function can be accurate in the absence of symbol

errors and in particular for slowly varying fading channels, without signaling overhead.

Regarding the space-time coded OFDM scenario, a least-squares error channel estima-

tor has been presented by Li et al. in [131]. It exploits the independence of the transmitted

subcarrier symbol sequences to recover the di�erent transmit antennas' channel transfer

functions.

Jeon et al. considered in [132] a subtraction-based channel estimator for the case with

two transmit and two receive antennas. For each speci�c receive antenna, the interfering

signal contributions associated with the remaining transmit antennas are subtracted, re-

sulting in a sort of frequency domain PIC-assisted DD channel estimation.

A similar subtraction-based approach has been applied in the time domain in [133], with
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a further deepening in [134]. It can be considered as a simpli�cation of [131]. Another

reduced-complexity version of the method proposed in [131] has been described in [135].

It returns to consider the channel's correlation in the frequency direction instead of that

in the time direction followed in the works of Li.

Gong and Letaief described in [136] a MMSE-assisted DD channel estimator as an exten-

sion of the least-squares based approach presented in [131]. It is shown to be practical in

the context of transmitting consecutive training blocks.

A robust and e�cient EM-based estimation algorithm is considered in [137]. It partitions

the problem of estimating a multi-input channel into independent channel estimations

for each transmit-receive antenna pair. Another EM-based method has been described in

[138] for MIMO STBC OFDM systems. It separates the superimposed received signals

into their signal components and estimates the channel parameters of each signal compo-

nent separately.

Wiener and Kalman channel estimation and tracking algorithms have been described in

[139, 140] and [141, 142], respectively. A comparison of LMS and RLS channel estima-

tion techniques has been provided in [143], showing the superiority of the latter over the

former.

A novel channel estimation method which optimally combines the decision-directed

and the previously described pilot-assisted framework has been shown in [144].

2.2.3 Blind

Blind methods do not require any training sequence to be transmitted but exploit the

spatial or temporal structure of the channel or, alternatively, properties of the transmitted

signal such as constant magnitude.

Bolcskei et al. proposed in [145] a blind channel identi�cation and equalization al-

gorithm for OFDM-based MIMO systems using non-redundant antenna precoding and

second-order cyclostationary statistics. Non-redundant linear block precoding has been

used extensively in such a context ([146]).
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In [147], a method based on Singular Value Decomposition (SVD) accompanied by a

simple block precoding scheme is described. Its advantage is that it does not require a

decoder at the receiver side, but the coding rate decreases with the number of transmit-

ting antennas. An improved version of the same method has been presented in [148]. It

holds the advantages of the previously described scheme without sacri�cing the coding

rate for any number of transmitting antennas (provided that the numbers of transmitting

and receiving antennas are equal).

The traditional subspace based methods have been developed in [149] in the general

context of digital communications. They can not be directly applied in MIMO-OFDM

scenario if the number of antennas at the receiver is smaller than or equal to the number

of antennas at the transmitter. Some solutions to this so-called multi-dimensional ambi-

guity ([150]) have been proposed in [151, 152, 153, 154].

Coherent processing across the subcarriers has been used in [155] to estimate the channel

in the time domain. It estimates the channel parameters in the time domain jointly for

all subcarriers instead of doing this in the frequency domain independently for each sub-

carrier.

A blind strategy addressed to the 2×1 Alamouti system is described in [156]. It estimates

the channel parameters by computing the eigenvectors of a matrix containing 4th-order

cumulant matrices of the observations. A similar work was presented in [157].

Several other techniques have been recently published in the context of STBC systems,

both OFDM (e.g., [158, 159, 160, 161, 162]) and MC-CDMA (e.g., [163, 164, 165, 166,

167]).

A blind PSO-based MIMO channel identi�cation technique has been presented in [168].

It uses particle swarm algorithm to estimate the outputs of channel equalizer, and put the

estimation to the inverse �lter algorithm. Therefore, it exploits the signal space diversity

information and the signal time diversity information.

A modi�ed PSO algorithm based on Lotka-Volterra competition equation has been pro-

posed in [169]. It is applied to determine the impulse response of a SIMO system in a
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blind way and outperforms the original PSO.

Joint blind channel estimation and symbol detection schemes using GAs are described

in [170] and [171]. The former is a single-user receiver divided into a two-layer optimization

loop: the unknown channel model is obtained through a micro genetic algorithm (µ�GA,

[172]) and then a set of Viterbi algorithms (one for each member of the channel population)

is used to provide the maximum likelihood sequence estimation of the transmitted data

sequence.

The latter is always based on the ML decision rule and proposes a multi-user detector

that jointly performs the channel estimation and the symbol detection using the same

GAs simultaneously.

In the context of SDMA multi-user MIMO OFDM scenario, Jiang et al. proposed

in [173, 174] a GA-assisted iterative joint channel estimation and multi-user detection

approach. It is able to provide a robust performance when the number of users is higher

than the number of receiving antennas (the so-called �overloaded� scenario). In such a

situation, the limitations of conventional detection and channel estimation techniques are

well known ([175]).



Chapter 3

Novel Multi-User Detection Techniques

for Multi-Carrier CDMA Systems

This Chapter is aimed at describing some novel Multi-User Detection techniques partic-

ularly suited for multi-carrier CDMA scenarios from an algorithmic point of view. Some

common guidelines followed for their implementation will be provided in Chapter 5.

At �rst, a GA-assisted MUD approach based on the MMSE criterion is described.

Then, a GA-assisted Maximum-Likelihood MUD receiver for multi-rate MC-CDMA sys-

tems will be proposed. Both are developed for single-antenna MC-CDMA systems. Fi-

nally, the description of two MUD techniques based on the MBER approach will be

provided for the multi-antenna STBC MC-CDMA context.

3.1 A Genetic Algorithm-Based Semi-Adaptive MMSE Receiver

for MC-CDMA Mobile Transmission Systems

In this section, a GA-assisted MUD approach is described for semi-adaptive per-carrier

MC-CDMA systems transmitting over time-varying multipath fading channels. At �rst,

the description of the MC-CDMA received signal model is provided. Then, the GA-

assisted MMSE MUD algorithm is detailed.

29
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3.1.1 MC-CDMA Signal Model

The MC-CDMA transmitter applies the spreading sequences in the frequency domain.

Each chip of the spreading code is mapped to an individual subcarrier, which maintains

a data rate identical to the original input data rate ([15]). A block diagram of the MC-

CDMA system is reported in Fig. 3.1 ([26]).

(a) Transmitter side

(b) Receiver side

Figure 3.1: Block diagram of the MC-CDMA system

The complex baseband equivalent multi-user signal of a synchronous downlink MC-

CDMA system can be represented as:

x (t) = A
+∞∑

i=−∞

N−1∑
n=0

K∑
k=1

ck
nak

i e
j( 2πnt

T )p (t − iT ) (3.1)

where:

• A is the transmitted signal amplitude
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• N is the number of subcarriers

• K is the number of active users

• ck
n represents the n-th chip of the spreading sequence of the k-th user (Hadamard-

Walsh sequences of length N have been employed)

• ak
i is the message symbol transmitted by the k-th user during the i-th signalling

period of duration T

• p (t) is a Non-Return-to-Zero (NRZ) rectangular signalling pulse shifted in time given

by:

p (t) ,


1 for 0 ≤ t ≤ T

0 otherwise.

(3.2)

Let's suppose to employ a Binary Phase Shift Keying (BPSK) modulation (i.e., ak
i ∈

{−1, +1}), so that each transmitted symbol corresponds to a single bit.

The signal expressed in Eq. 3.1 is transmitted over a Rayleigh multipath-fading chan-

nel, characterized by a delay spread Tm and a Doppler spread Bd. The transmission data

rate is chosen in order to assure �at fading over each single subcarrier (i.e., T À Tm) and

the signal amplitude A is equal to 1.

Under such hypothesis, the received MC-CDMA signal can be expressed as follows:

y (t) =
+∞∑

i=−∞

N−1∑
n=0

K∑
k=1

hn (t) ck
na

k
i e

j( 2πnt
T )p (t − iT ) + η (t) (3.3)

where hn (t) is the complex time-varying channel coe�cient related to subcarrier n, and

η (t) is the Additive White Gaussian Noise (AWGN). hn (t) is a complex Gaussian process

with Rayleigh-distributed envelope and uniformly-distributed phase. The samples of η (t)

are independent and identically-distributed in Gaussian way, with zero mean and variance

σ2
η.

The received signal is then processed by a coherent FFT-based OFDM demux block,

low-pass �ltered by a bank of integrators, and �nally sampled at sampling rate equal to
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1/T . The sample obtained from the subcarrier n during the i-th signalling interval is given

by:

yn (i) = hn (i)
K∑

k=1

ck
nak

i + ηn (i) (3.4)

The received signal energy scattered in the frequency domain is then combined by mul-

tiplying each sample yn (i) by a speci�c gain. The resulting decision variable is given

by:

λk (i) =
N−1∑
n=0

wn (i) yn (i) (3.5)

3.1.2 The Proposed GA-Assisted MMSE MUD Receiver Structure

The choice of the diversity-combining weights can be done according to the various tech-

niques proposed in the previous Chapter 2 (i.e., EGC, MRC, ORC,...). In particular, a

per-carrier MMSE multi-user detector has been considered in this part of the work ([19]).

The corresponding optimization criterion is to �nd an N -element weight vectorwOpt. (i) =[
wOpt.

0 (i) , . . . , wOpt.
N−1 (i)

]
that minimizes the mean square error between the equalized re-

ceived signal and the noise-less pattern we would have on each subcarrier at the receiver.

Such a problem can be formalized as follows:

wOpt.
n (i) = arg min

wn(i)
E


∣∣∣∣∣
(

K∑
k=1

ck
nak

i

)
− wn (i) yn (i)

∣∣∣∣∣
2
 (3.6)

where E {·} represents the mathematical expectation operator. The explicit solution to

Eq. 3.6 is the following ([15, 19]):

wOpt.
n (i) =

h∗
n (i)

|h∗
n (i)|2 + 2σ2

η/KEc

(3.7)

where Ec is the energy per chip and the superscript operator ∗ is the complex conjugate

operator.

The use of the ideal weights expressed in Eq. 3.7 requires the exact knowledge of the

N -element channel vector h (i) = [h0 (i) , . . . , hN−1 (i)]. If it is not available, the real h (i)

could be replaced by its estimation ĥ (i), obtained by using one of the channel estimation
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techniques described in section 2.2 of the previous Chapter 2. Nevertheless, such an

operation would increase the computational complexity of the receiver.

To avoid this additional task, a semi-adaptive GA-assisted MMSE MUD strategy has

been analyzed. It is articulated into two di�erent steps:

(a) Training-aided step

(b) Decision-Directed step

Figure 3.2: Block diagram of the GA-assisted MMSE MUD receiver

1. Training-aided step: in this period, a binary training sequence ãk =
[
ãk

1, . . . , ã
k
B

]
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of B bits is transmitted for each user k. The task of GA is to compute for each

subcarrier the weight ŵTr
n (i) that minimizes the following metric:

Λ (ŵn (i)) =
1

B

B∑
i=1

∣∣∣∣∣
(

K∑
k=1

ck
nã

k
i

)
− ŵn (i) yn (i)

∣∣∣∣∣
2

(3.8)

The GA-based computation of the optimal weights is performed after having bu�ered

B samples of the received signal yn (i) (see Fig. 3.2 (a)). The ensamble average of

Eq. 3.6 has been replaced in Eq. 3.8 by the sample average made on the entire

duration of the training sequence. The GA convergence would be seriously a�ected

by noise e�ects (particularly at low SNR) if such an average operation would not

be performed. This approximation is correct if the channel can be modeled as an

ergodic stochastic process. It can be shown that the GA-based estimation of the

MMSE weights is unbiased if the following relation is valid for each subcarrier:

1

B

B∑
i=1

(
K∑

k=1

ck
nã

k
i

)2

= K (3.9)

It happens when the training sequences of the users are orthogonal. If they are ob-

tained from Hadamard-Walsh matrices, some limitations are imposed to the system.

In particular, the training sequences' length has to be equal to a power of two and

greater than the number of users (i.e., B > K).

The GA works with a selected parameterisation in terms of generation number GTr,

population size PTr, crossover and mutation probabilities αTr and γTr, respectively.

This training step is repeated with a period approximately equal to the coherence

time of the channel.

2. Decision-directed step: during a coherence period, the stochastic values assumed by

the channel coe�cients acting over each subcarrier are strongly correlated. There-

fore, the time variations of the channel impulse response are reasonably small and

a decision-directed updating step can proceed (see Fig. 3.2 (b)). It is performed by

the GA, working with a di�erent parameterisation and a di�erent �tness function.

The updating procedure is carried on symbol after symbol and it is initialised by
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the solution computed during the training-aided step (i.e., ŵTr (i)). During each

symbol period, a single generation of individuals is produced. The new population is

stochastically generated in Gaussian way starting from the solution computed at the

previous signalling period ŵDD (i − 1) and imposing to the Gaussian generator an

updating standard deviation σup. Such a system parameter is linked to the Doppler

spread and to the SNR. An explicit mathematical link is very di�cult to be ob-

tained. It should be increased as Doppler spread and SNR increase. Experimental

trials pointed out that a good choice for this parameter is:

σup ' max
i,n

{∣∣wOpt.
n (i) − wOpt.

n (i − 1)
∣∣} (3.10)

Among the new population, it is chosen the individual that minimizes the following

metric:

Ω (ŵn (i)) =

∣∣∣∣∣
(

K∑
k=1

ck
nâ

k
i

)
− ŵn (i) yn (i)

∣∣∣∣∣
2

(3.11)

Given that only one generation runs, crossover and mutation operators do not work

in such a step (i.e., the values of crossover and mutation probabilities are αDD = 0

and γDD = 0, respectively). The generation number GDD is equal to one and the

population size PDD has to be chosen. The estimated data symbol âk
i is used to

calculate the �tness function Ω (ŵn (i)).

This updating procedure is �light�, but it is reasonable because only small variations

of the channel amplitude and phase are to be tracked during the coherence period.

Moreover, in such a way, the e�ect of possible symbol errors on weight estimation

are conveniently reduced.

These two steps are opportunely combined to obtain the whole GA-based MMSE MUD

procedure. It can be summarized as follows:

i) At time t = 0 the GA-based procedure is initialised by a constant-value popu-

lation ŵ (0) = [1, . . . , 1].

ii) The Training-aided step begins. The B-bit known training sequence is trans-

mitted, B samples of the received signal are stored, and the weights vector ŵTr
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is computed by minimizing the per-carrier cost function of Eq. 3.8. The GA

parameters (GTr, PTr, αTr, γTr) are opportunely chosen.

iii) The Training-aided step ends with the computation of the receiver weights at

the time t = BT + εT (ε is the execution time of the GA-based optimisation

procedure expressed in number of bit periods). Now, the GA switches to the

Decision-directed modality and its parameters are reassigned as follows: GDD =

1, αDD = 0, and γDD = 0. The population size PDD has to be chosen.

iv) The Decision-directed updating step ends at the time t = BT + εT + WcohT ,

whereWcoh is the coherence time-window of the channel. The GA is re-initialised

with the weights computed at the end of the coherence time-window and re-

parameterised in order to start again with the Training-aided step of ii).

3.2 Genetic Algorithm-Assisted Maximum-Likelihood Multi-User

Detection for Multi-Rate MC-CDMA Systems

In this section, the application of GAs to multi-rate MC-CDMA multi-user detection

is proposed and discussed in order to obtain a near-optimum solution to the ML MUD

problem, reached by spending a reasonable computational e�ort. The claimed objective is,

in particular, to maintain the computational burden of a polynomial order with respect to

system parameters. At �rst, the description of the multi-rate Variable-Spreading-Length

(VSL) MC-CDMA received signal model is provided. Then, the GA-assisted ML MUD

algorithm is detailed.

3.2.1 Multi-Rate VSL MC-CDMA Transmission

Let us consider the multi-rate multi-user MC-CDMA transmission concept illustrated

in [67] known as VSL access. A �xed amount of bandwidth is allocated for downlink

transmission. A �xed number of subcarriers N (being N an integer power of 2 in order to

simplify the FFT implementation of the VSL transceiver) is available. The transmitting
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user population is subdivided into �user classes�, each one transmitting a digital data

stream over a subset of Nm subcarriers, whose cardinality is an integer fractional value

of N and depends on the channel bitrate rm. More in details, M bitrate classes can be

de�ned by the rule: rm = 2(M−m) · r (with m = 1, . . . ,M), where r = 1/T is the bitrate

of the �slowest� user class (i.e., class M), also named basic data-rate of the system. The

data stream of a user of class m is converted into m parallel outputs. Symbols at each

output are copied over Nm = N/2(M−m) branches and then respectively being multiplied

by the corresponding bit of spreading codes whose length is Nm. A block diagram of the

corresponding transmitter scheme is depicted in Fig. 3.3 ([67]).

Figure 3.3: Illustration of VSL accessed multi-rate MC-CDMA

The baseband transmitted signal of the u-th user with rate rm, namely x
(m)
u (t) , is given

as follows:

x(m)
u (t) =

m∑
i=1

A(m)
u D

(m)
u,i

Nm−1∑
n=0

c(m)
u,n exp

{
2π

[
(i − 1)

N

2(M−m)
+ n

]
t

T

}
(3.12)

where 0 ≤ t ≤ T , D
(m)
u,i is the i-th binary BPSK data symbol, c

(m)
u,n is the n-th chip of the

assigned spreading code, and A
(m)
u is the user's u transmitted amplitude. According to [67]

and in order to simplify the mathematical formalization of the received signal, it is possible

to regard a user with rate rm as 2(M−m) e�ective users at rate r. The decomposition in

frequency domain, corresponding spreading codes and spectrum allocation for e�ective

users are pictorially described in Fig. 3.4.
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Figure 3.4: Pictorial illustration of the concept of e�ective users in VSL MC-CDMA multi-rate access

If Um denotes the number of users transmitting at rate rm, the total number of e�ective

users in the system is given by:

U =
M∑

m=1

2(M−m)Um (3.13)

As the users are transmitting at di�erent bit-rate, it is possible to evaluate the received

signal after the duration of 2(M−m) symbols of a user with rate rm. This is given by:

y (t) =
U∑

u=1

m∑
i=1

AuDu,i

N−1∑
n=0

hi,ncu,n exp

{
2π [(i − 1) N + n]

t

T

}
+ z (t) (3.14)

being hi,n the channel gain of the (i, n)-th subcarrier with normalized squared amplitude

expectation, i.e., E
{
|hi,n|2

}
= 1, and z (t) the AWGN with power spectral density N0.

The received signal y (t) is therefore down-converted and the resulting contribution can

be expressed in matrix notation:

Y = HΨĪD + Z (3.15)

where Ī is a U · N × N matrix, obtained by replicating the U × U identity matrix I, H

is the N × U · N channel matrix, and Ψ is the U · N × U · N diagonal signature matrix
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of the e�ective user, as de�ned in [67]. In VLS access, the matrix Ψ contains elements

of the Orthogonal Variable Spreading Factor (OVSF) sequence matrix described in [67],

completed by zeros in correspondence of spreading codes assigned to users transmitting

at higher rates. This implies that symbols coming from �fastest� users involve a reduced

amount of MAI.

3.2.2 The Proposed GA-Based Multi-User Detection for Multi-Rate VSL

MC-CDMA

The optimal MUD in multi-rate MC-CDMA VSL systems is based on the ML criterion

([67]). ML MUD is implemented by minimizing, with respect to the symbols transmitted

by the e�ective users D̂, the absolute squared error between the received signal and the

reconstructed noise-less pattern, that is:

D̂Opt. = arg min
D

{(
Y − HΨĪD

)H (
Y − HΨĪD

)}
(3.16)

where the superscript operator H denotes the Hermitian transpose. The channel matrix

H is supposed here to be completely known. Also, the OVSF code matrix, and therefore

Ψ, are assumed to be known by the receiver. Under such hypothesis, the ML-based

computation of D̂Opt. is theoretically feasible. The price to be paid is a computational

load exponentially growing with the number of the e�ective users U . The e�ective users'

number increases with: a) the number of user classes M , and b) the number of orthogonal

subcarriers N . Fig. 3.4 clearly evidences that the number of e�ective users is higher than

the number of real users. So, the computational burden of theoretical ML detection in

the multi-rate case can reach huge amounts that might not be supported by commercial

signal processing hardware products.

In the proposed approach, the metric of Eq. 3.16 is regarded as the �tness of the GA.

In Fig. 3.5, the �owchart of the proposed GA-assisted ML MUD detection algorithm

is depicted. The initial population consists of Ppop individuals obtained starting from

the solution D̂0 obtained by the hard decision made at the output of a single-user EGC

receiver stage. In particular, it has been choose to select other individuals as those ones
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Figure 3.5: Flowchart of the proposed GA-assisted ML MUD algorithm

that di�er from D̂0 by a Hamming distance lower or equal to a maximum given value

dhamm. The number of the individuals belonging to the so-generated population can

be obtained as: Ppop =
∑dhamm

p=0

(
U
P

)
. Such a criterion has been considered in order to

provide a good choice of the initial population without spending a relevant computational

e�ort. In [49], the initial population is generated by a stochastic mutation of the hard

decision made on the output of a MRC stage. Such a choice might be not very suitable

in the presence of high level of MAI. In fact, it is known by literature that MRC is

the optimal combining methodology in the single-user case, but its performances rapidly

deteriorate when the number of simultaneous users increases (see, e.g., results shown in

[15] that evidenced a worst behaviour of MRC with respect to EGC in case of increasing

level of MAI). The initialization strategy proposed in this work is very similar to the
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one considered in [56], where the initial population was generated among the elements

di�ering by dhamm from an initial solution obtained by a MMSE MUD stage. Such a last

choice may theoretically perform better than the one here proposed. But, from a more

practical viewpoint, the MMSE MUD implementation would involve the inversion of a big

N × N matrix
(
HΨĪΨHHH + N0I

)
that might be not a trivial task. EGC combining is

very simple in case of perfect knowledge of the channel matrix and would not signi�cantly

a�ect the computational burden of the entire receiver chain. After the initialization, a

�tness value is associated to the Ppop individuals by computing the metric of Eq. 3.16. At

each generation, GA stochastic operators are applied in order to evolve the population.

Selection is performed by analyzing two individuals and choosing the one with the best

value of the �tness. Crossover is applied on solutions belonging to the search space with

an assigned probability α. The crossover strategy adopted here is the uniform crossover,

in which an individual is created by randomly choosing the i-th bit of the new generated

solution among the i-th bit present in one of the two selected parents. The mutation

operator is applied by change a bit of the selected individual with an assigned probability

γ. Furthermore, elitism has been used in order to maintain the best individual from the

generation j to the next generation j + 1. The population generation terminates when

a satisfactory solution has been produced or when a �xed number of iterations Jgen has

been completed.

3.3 An Adaptive MBER Receiver for Space-Time Block-Coded

MIMO MC-CDMA Mobile Communication Systems

The potential advantages of implementing linear MBER MUD in STBC MC-CDMA con-

text can be easily explained. STBC MC-CDMA is a transmission methodology where

diversity is obtained both in space and in frequency domain. The diversity gain, increased

with respect to the conventional SISO case, is obtained at the price of an increased system

complexity. The exploitation of the �full potential� of STBCMC-CDMA techniques can be
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obtained only by means of optimized multi-user detection approaches. In such a perspec-

tive, the investigation of MBER strategies can be regarded as a step-ahead towards the

computationally-a�ordable signal detection optimization also in the STBC MC-CDMA

case. The application of MBER reception to MIMO MC-CDMA is not straightforward

and has to be investigated by carefully taking into account tight requirementes in terms

of ease of implementation and reduced computational e�ort.

This section describes an adaptive multi-user receiver based on a Minimum-BER ap-

proach for synchronous STBC MIMO MC-CDMA systems transmitting data over time-

varying multipath fading channels. The practical implementation of the proposed MBER

receiver relies on an adaptive LMS algorithm, periodically aided by a training sequence

and working in decision-directed modality during a coherence time window of the channel.

The presented algorithm relies on the estimation of the probability density function of

the decision variables obtained by using the Parzen's windows methodology.

At �rst, the description of the STBC MIMO MC-CDMA system is provided. Then,

the LMS-based MBER MUD algorithm is detailed.

3.3.1 System Description

In this work, a synchronous multi-user STBC MC-CDMA system equipped with NTx = 2

transmit antennas and NRx = 2 receive antennas has been considered (see Fig. 3.6).

Let us denote with K the number of mobile users and with N the number of orthogonal

subcarriers. Let {ak (i)}i=0,1,... be the original information sequence of user k. From the

transmitter side, the space-time block coding technique proposed by Alamouti in [78] has

been adopted. Therefore, two consecutive symbols of the generic user k (i.e., ak (i) and

ak (i + 1)) are mapped to the transmit antennas according to the code matrix given by:

Φk (i) =
1√
2

 ak (i) −ak (i + 1)∗

ak (i + 1) ak (i)∗

 =
1√
2

 ak
1 −ak∗

2

ak
2 ak∗

1

 (3.17)

with i = 0, 2, . . . and k = 1, 2, . . . , K. Without loss of generality, two consecutive symbols

of the generic user k (i.e., ak (i) and ak (i + 1)) are mapped to the variables ak
1 and ak

2,
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Figure 3.6: The considered STBC MC-CDMA system (2x2)

respectively. This mapping will be useful in order to make more readable the mathematical

formulation exposed in the following. The two columns of Φk (i) are transmitted during

two consecutive time slots (i and i + 1). The �rst element of each matrix column is sent

by the �rst transmit antenna and the second element by the second antenna, respectively.

Adopting a more agile matrix notation, the received signal can be conveniently written

in this form: yj (i)

y∗
j (i + 1)

 =

 H1j H2j

H∗
2j −H∗

1j

 C 0

0 C

 a (i)

a (i + 1)

 +

 nj (i)

n∗
j (i + 1)

 (3.18)

where:

• yj (i) = [yj,1 (i) , . . . , yj,N (i)]T is the vector of received signals related to the j-th

receive antenna element (j ∈ {1, 2}) during the i-th signaling period (i = 0, 2, . . .)

([·]T denotes the matrix transposition)

• Huj is the diagonal channel matrix diag (hu,j,1, . . . , hu,j,N) where hu,j,n (u ∈ {1, 2})

is the channel coe�cient associated with the path associated to the u-th transmit

antenna and to the j-th receive antenna over the n-th subcarrier. Let us suppose that
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the fading over the di�erent antenna elements is uncorrelated. Such a hypothesis has

been commonly done in literature about STBC MIMO systems (see, e.g., [78, 85,

176]). Moreover, it is supposed that the channel matrix is time-invariant during a

single block duration

• C = [c1, c2, . . . , cK ] is the spreading code matrix of size N × K where the column

vector ck = [ck,1, . . . , ck,N ]T is the spreading code employed by the user k

• a (i) = [a1 (i) , . . . , aK (i)]T and a (i + 1) = [a1 (i + 1) , . . . , aK (i + 1)]T are the vectors

of symbols transmitted by the K users in a STBC block

• nj (i) = [ηj,1 (i) , . . . , ηj,N (i)]T is the AWGN vector with ηj,n (i) representing the noise

term at subcarrier n, at the j-th receive antenna element during the i-th signaling

period, with zero mean and variance σ2
η.

By jointly considering the two receive antennas, the matrix formulation can be rewritten

as follows:

Y = ĤĈA + N (3.19)

Such a last formulation has been obtained by de�ning the involved terms as follows:

Y ,
[
yT

1 (i) | yH
1 (i + 1) | yT

2 (i) | yH
2 (i + 1)

]T
(where the operator | represents the ma-

trix vertical concatenation), Ĉ =

 C 0

0 C

, A ,
[
aT (i) | aT (i + 1)

]T
and N ,

[
nT

1 (i) | nH
1 (i + 1) | nT

2 (i) | nH
2 (i + 1)

]T
.

Under such hypothesis, the 2NRxN × NTxN channel matrix can be de�ned as follows:

Ĥ =


H11 H21

H∗
21 −H∗

11

H12 H22

H∗
22 −H∗

12

 (3.20)

In the next sub-section, the novel adaptive multi-user detection algorithm based on the

LMS implementation of the MBER criterion will be exposed in details.
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3.3.2 The Adaptive MBERMulti-User Detection Algorithm for STBCMIMO

MC-CDMA Mobile Transmission Systems

Let's start from the formulation of the decision variable for a generalized per-user linear

detector. The decision variable of the generic k-th user can be expressed in the usual

form:

λk
s = wH

k,sY with s ∈ {1, 2} (3.21)

where s is the index of the symbol in the block (ak
s) and wk,s the receiver weight vector.

The resulting decision variables λk
1 and λk

2 are employed to estimate the symbols belonging

to the k-th user block, i.e., ak
1 and ak

2, respectively.

Practically, the MBER receiver should compute the optimal weight vector wOpt.
k,s that

minimizes the error probability in a transmitted block of symbols P k
e . Without losing

generality, the use of a BPSK modulation with binary antipodal signals has been consid-

ered (therefore ak
s ∈ {−1, 1}). The choice of BPSK can be motivated by usual robustness

requirements typical of wireless mobile environment. The formulation of the proposed al-

gorithm for multi-level PSK (or Quadrature Amplitude Modulation, QAM) modulations

is straightforward.

Under such hypothesis, the formulation adopted in [59] can be used to de�ne the

so-called signed decision variable Λk
s (with s ∈ {1, 2} and k = 1, 2, . . . , K) as follows:

Λk
s = ak

s

{
wH

k,sY
}

= ak
s

{
wH

k,sĤĈA
}

+ ak
s

{
wH

k,sN
}

(3.22)

where ak
s

{
wH

k,sN
}
is Gaussian with zero mean and variance σ2

ηw
H
k,swk,s. By de�ning

A(j) =
[
a

1,(j)
1 , . . . , a

K,(j)
1 | a

1,(j)
2 , . . . , a

K,(j)
2

]T

as one of the 22K possible combination of

transmitted (equiprobable) data symbols, the value of the possible noise-free signal can

take the value only in the set de�ned by:

Ω(j) = wH
k,sĤĈA

(j)
with j = 1, . . . , 22K (3.23)

As shown in [59] the Probability Density Function (PDF) of the random variable Λk
s can
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be written as:

fΛk
s
(x) =

1

22K
√

2πση

√
wH

k,swk,s

22K∑
j=1

exp

−

[
x − a

k(j)
s

(
wH

k,sĤĈA
(j)

)]2

2σ2
ηw

H
k,swk,s

 (3.24)

Considering that an error in demodulating the user k occurs whenever Λk
1 < 0 and/or

Λk
2 < 0 and considering that the two random variables Λk

1 and Λk
2 are independent, the

probability of having symbol error in the block of the generic k-th user (in the usual case

of two symbols per user block) can be formally written as follows:

P k
e = Pr

{
Λk

1 > 0
}
· Pr

{
Λk

2 < 0
}

+ Pr
{
Λk

1 < 0
}
· Pr

{
Λk

2 > 0
}

+

+ Pr
{
Λk

1 < 0
}
· Pr

{
Λk

2 < 0
}

(3.25)

being Pr
{
Λk

s < 0
}
the probability of error in demodulating the symbol ak

s and Pr
{
Λk

s > 0
}

the probability of correct demodulation for the symbol ak
s (with s ∈ {1, 2}). The sum of

the �rst two terms of Eq. 3.25 actually computes the average probability of having a sin-

gle symbol error in the block. The last term of Eq. 3.25 accounts the average probability

of having two symbol errors in the block.

The computation of the probability of error of Eq. 3.25, and therefore its minimiza-

tion, would be theoretically feasible. But, such an operation involves a not tractable

computational burden of exponential order with respect to the users' number K. In order

to overcome such a problem, the estimation of fΛk
s
(x) based on the Parzen's windows

methodology ([177]) has been considered.

In particular, the real PDF of Eq. 3.24 can be approximated with a kernel density

estimate based on a block of M samples. The estimated PDF is given as follows:

f̃Λk
s
(x) =

M∑
m=1

1

M
√

2πρη

√
wH

k,s (m)wk,s (m)
·

· exp

{
−

[
x − ak

s

(
wH

k,s (m)Y (m)
)]2

2ρ2
ηw

H
k,s (m)wk,s (m)

}
(3.26)

where ρη is the standard deviation of the PDF estimate. Such a quantity is directly linked

with the noise standard deviation, but it cannot be computed in a closed-form. Only a
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lower bound of it is provided as:

ρη =

(
4

3M

) 1
5

ση (3.27)

being M the total number of symbols considered for the estimate ([177]). ρη has to be

considered as a free parameter to be set.

As noted in [18], this density estimate method requires a block of observed data bits

and high memory demand at the receiver side. Therefore, it is not suitable for adaptive

implementation. To obtain a really sample-by-sample adaptive algorithm, the following

single data-point kernel estimation of the PDF of Eq. 3.24 has to be used:

f̂Λk
s
(x) =

1
√

2πρη

√
wH

k,swk,s

exp

{
−

[
x − ak

s

(
wH

k,sY
)]2

2ρ2
ηw

H
k,swk,s

}
(3.28)

By using the estimated PDF of Eq. 3.28, it is possible to derive a closed-form expression

of the probability of error of Eq. 3.25:

P k
e = Q

 ak
1

(
wH

k,1Y
)

ρη

√
wH

k,1wk,1

 + Q

 ak
2

(
wH

k,2Y
)

ρη

√
wH

k,2wk,2

 +

− Q

 ak
1

(
wH

k,1Y
)

ρη

√
wH

k,1wk,1

 · Q

 ak
2

(
wH

k,2Y
)

ρη

√
wH

k,2wk,2

 (3.29)

where Q (x) is the conventional Gaussian error function.

As shown in [18], Eq. 3.29 represents a one-sample or instantaneous estimate of the

real probability of error expressed in Eq. 3.25.

Assuming the same probability of error for the two symbols of the STBC block, the third

term in Eq. 3.29 is negligible with respect to the �rst two ones. In such a way, the bit

error probability per block, which is the cost function of the analyzed problem, can be

rewritten as:

P k
e ' Q

 ak
1

(
wH

k,1Y
)

ρη

√
wH

k,1wk,1

 + Q

 ak
2

(
wH

k,2Y
)

ρη

√
wH

k,2wk,2

 (3.30)

The gradient of the cost function of Eq. 3.30 with respect to the weights' vectors wk,1
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and wk,2 can be computed as follows:

∇P k
e =


1√

2πρη

(
wH

k,1wk,1−wH
k,1wk,1I

(wH
k,1wk,1)

3/2

)
exp

{
− (wH

k,1Y)
2

2ρ2
ηw

H
k,1wk,1

}
· ak

1Y

1√
2πρη

(
wH

k,2wk,2−wH
k,2wk,2I

(wH
k,2wk,2)

3/2

)
exp

{
− (wH

k,2Y)
2

2ρ2
ηw

H
k,2wk,2

}
· ak

2Y

(3.31)

being I the N ×N identity matrix. It is possible to see in Eq. 3.31 that the amplitude of

the weight vector has no e�ect on the BER in the block (as already noted in [59]). For

this reason, it is useful to normalize the weight vector as follows:

w
′

k,s =
wk,s√

wH
k,swk,s

(3.32)

Thanks to this simpli�cation, the gradient vector can be rewritten in the more tractable

form:

∇P k
e =


1√

2πρη

(
wH

k,1wk,1 − I
)
exp

{
−(wH

k,1Y)
2

2ρ2
η

}
· ak

1Y

1√
2πρη

(
wH

k,2wk,2 − I
)
exp

{
−(wH

k,2Y)
2

2ρ2
η

}
· ak

2Y

(3.33)

Following the concept of the LMS adaptive optimization ([20, 178]), it is possible to

formulate an adaptive gradient descent algorithm for the MBER problem discussed above

in the following manner:



ŵOpt.
k,1 (i + 1) = ŵOpt.

k,1 (i) − µ
ãk
1(i)√
2πρη

exp

{
−

(
(ŵOpt.

k,1 (i))
H

Y(i)
)2

2ρ2
η

}
·

·
(
ŵOpt.

k,1 (i)
(
ŵOpt.

k,1 (i)
)H

Y (i) − Y (i)

)
ŵOpt.

k,2 (i + 1) = ŵOpt.
k,2 (i) − µ

ãk
2(i)√
2πρη

exp

{
−

(
(ŵOpt.

k,2 (i))
H

Y(i)
)2

2ρ2
η

}
·

·
(
ŵOpt.

k,21 (i)
(
ŵOpt.

k,2 (i)
)H

Y (i) − Y (i)

)
(3.34)

being µ the step-size parameter and ρη the already mentioned standard deviation of the

PDF estimation obtained by Parzen's windows. Also ρη is considered as a parameter. It

is possible to note in Eq. 3.34 the presence of the data symbols of the k-th user block.

The superscript notation ˜points out that an adaptive decision-directed LMS approach

is considered. It is known that decision-directed LMS updating can be a�ected by slow
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convergence ([178]). In order to solve this problem and to speed up the convergence of

the algorithm, a training-assisted adaptive procedure has been adopted. Practically, a

short, known, training sequence is periodically transmitted in order to provide a faster

convergence of the LMS procedure to the wanted solution. The period of transmission

of the training sequence approximately equals the coherence time of the channel. The

decision-directed updating procedure starts at the end of the training phase and goes on

till the end of the coherence time window. In this case, the known training sequence is

replaced by the decision made on the received symbol at the previous LMS updating step.

3.4 A Linear Multi-User Detector for STBC MIMO MC-CDMA

Systems Based on the Adaptive Implementation of the Minimum-

Conditional BER Criterion

In this section, a linear multi-user detector is described for MIMO MC-CDMA systems

with Alamouti's space-time block coding, inspired by the concept of Minimum Conditional

Bit Error Rate (MCBER). The MCBER combiner has been implemented in adaptive way

by using LMS optimization.

At �rst, the description of the considered system model is provided. Then, the theo-

retical MCBER MUD criterion is explained.

3.4.1 System Model

In the present dealing, a synchronous multi-user MIMO MC-CDMA system based on

Alamouti's Space-Time Block Coding ([78]) has been considered. Two transmitting an-

tennas and a single receiving antenna are employed. The extension to scenarios charac-

terized by an increased number of transmitting and receiving antennas is straightforward.

A block scheme of the considered STBC MC-CDMA transmission system is drawn in Fig.

3.7.

Two consecutive data symbols of the generic user k (k = 0, . . . , K − 1) (i.e., a1
k and
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Figure 3.7: The considered STBC MC-CDMA system (2x1)

a2
k) are mapped to two transmitting antennas according to the code matrix Φk, whose

elements are given by:

Φk =
1√
2

 a1
k −a2∗

k

a2
k a1∗

k

 (3.35)

This matrix represents the Alamouti's STBC block. Alamouti's scheme exhibits some

clear advantages. The classical antenna diversity approach considers the utilization of

multiple antennas at the receiver side and a single antenna at the transmitter side. As

result, the receiver becomes larger and more expensive. This is the reason why since

many years antenna diversity has been exploited only by base stations in the uplink

([78]). Essentially, Alamouti's STBC scheme makes available a space diversity gain also

for mobile terminals (therefore in the downlink) only by exploiting transmit diversity.

The most economic and advantageous Alamouti's con�gurations consider two transmit

antennas (installed at base station or access point) and a single antenna mounted at the

receiver side. This is the con�guration considered in this part of the work, where the

focus is on the development of cost-e�ective mobile terminals.

The encoder outputs are transmitted during two consecutive transmission periods (i.e.,
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T1 and T2). During the �rst transmission period T1, two generic BPSK symbols a1
k and

a2
k are sent to two separate Inverse Fast Fourier Transform (I-FFT) based multi-carrier

spreading blocks using a unique Hadamard-Walsh sequence ck , {ck (n) : n = 0, . . . , N − 1},

where N is the length of the I-FFT and therefore the number of subcarriers employed for

spreading. Finally, the RF converted Multi-Carrier Spread Spectrum (MC-SS) signals are

simultaneously transmitted by antenna A and antenna B, respectively. In the same way,

during the successive transmission period T2, the symbol −a2∗
k is transmitted by antenna

A and the symbol a1∗
k is transmitted by antenna B, respectively.

In order to make the notation more compact in the multi-user case, it is possible to de�ne

two vectors of symbols: A1 ,
[
a1

0, a
1
1, . . . , a

1
K−1

]T
and A2 ,

[
a2

0, a
2
1, . . . , a

2
K−1

]T
, and the

orthonormal code matrix C as:

C =


c0 (0) c1 (0) · · · cK−1 (0)

c0 (1) c1 (1) · · · cK−1 (1)
...

...
. . .

...

c0 (N − 1) c1 (N − 1) · · · · · · cK−1 (N − 1)

 (3.36)

The received signal samples acquired at two consecutive symbol periods after the FFT-

based coherent demultiplexing can be expressed as follows:
Y1 = HACA1 + HBCA2 + N1

Y2 = −HAC (A2)
∗
+ HBC (A1)

∗
+ N2

(3.37)

where Y1 and Y2 are N × 1 vectors, Nj = [η0, η1, . . . , ηN−1]
T (with j ∈ {1, 2}) is the

AWGN vector (all vector components are independent and identically distributed with

zero mean and variance σ2), and Hant = diag (hant
0 , hant

1 , . . . , hant
N−1

)
(with ant ∈ {A,B})

is the N × N diagonal channel matrix, where hant
n is the complex channel coe�cient

related to subcarrier n and to the transmit antenna ant. Let us suppose that fading is

�at over each subcarrier and almost time-invariant during two consecutive transmission

period (i.e., the coherence time is much greater than the symbol period).
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3.4.2 Minimum Conditional BER Decision Criterion

In this sub-section, an analytical expression for the error probability of a STBC MC-

CDMA system using generic linear combining at the receiver side will be derived. Then,

this expression will be used to formulate the LMS implementation of the MCBER detector,

starting from the formulation of the ideal MBER criterion.

A generic linear multiuser detector generates two decision variables based on the linear

combination of the received signal samples. Thus, the decision variables for the user k,

denoted by λk,1 and λk,2, can be expressed as follows:


λk,1 = w1∗

k Y1 + w2
kY

2∗

λk,2 = w2∗
k Y1 − w1

kY
2∗

(3.38)

where w1
k = [w1

k (0) , w1
k (1) , . . . , w1

k (N − 1)] and w2
k = [w2

k (0) , w2
k (1) , . . . , w2

k (N − 1)]

are the vectors of receiver gains employed by the generic k-th user in order to recombine

the baseband output of the FFT-based demodulation stage. The two bits contained in

a single STBC block (corresponding to the BPSK symbols a1
k and a2

k) can be estimated

by observing the real part of λk,1 and λk,2, respectively. In this work, the employment

of a digital BPSK modulation with real antipodal symbols has been considered. The

choice of BPSK has been motivated by the fact that such a modulation allows to write

an exact analytical expression of the BER at the output of the linear MUD combiner.

Other modulations, like M-PSK and M-QAM require approximations that can sound very

complex from a mathematical viewpoint or can be quite imprecise (in fact, the BPSK

choice is common in literature about MBER and MCBER detection. It is employed, for

instance, in [65, 91, 179]).

Under such hypothesis and substituting Eq. 3.37 in Eq. 3.38, it is possible to write
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the real parts of λk,1 and λk,2 as follows:

<{λk,1} = <
{
(w1

k)
∗
HACA1 + (w1

k)
∗
HBCA2 + (w1

k)
∗
N1+

−w2
kH

∗
ACA2 + w2

kH
∗
BCA1 + w2

k (N2)
∗}

<{λk,2} = <
{
(w2

k)
∗
HACA1 + (w2

k)
∗
HBCA2 + (w2

k)
∗
N1+

+w1
kH

∗
ACA2 − w1

kH
∗
BCA1 − w1

k (N2)
∗}

(3.39)

Conditioned on the transmitted bit vectors A1 and A2, the random variables <{λk,1}

and <{λk,2} are Gaussian-distributed with mean values:
µk,1 = <

(
(w1

k)
∗
HACA1 + (w1

k)
∗
HBCA2 − w2

kH
∗
ACA2 + w2

kH
∗
BCA1

)
µk,2 = <

(
(w2

k)
∗
HACA1 + (w2

k)
∗
HBCA2 + w1

kH
∗
ACA2 − w1

kH
∗
BCA1

) (3.40)

and variances: 
σ2

k,1 = σ2
(
‖w1

k‖
2
+ ‖w2

k‖
2
)

σ2
k,2 = σ2

(
‖w1

k‖
2
+ ‖w2

k‖
2
) (3.41)

respectively. To make the derivation of the probability of error easier, it is possible to

refer to the so-called sign-adjusted decision variables ([179]) de�ned as follows: λs
k,1 ,

a1
k<{λk,1} and λs

k,2 , a2
k<{λk,2}. These new decision variables, conditioned on the trans-

mitted bit vectors A1 and A2, are Gaussian-distributed as well with mean values a1
kµk,1

and a2
kµk,2 and variances σ2

k,1 and σ2
k,2, respectively. Thus, the probability to have an error

in a STBC block, conditioned on A1 and A2, can be written as follows:

Pe/A1,A2 = Pr
{
λs

k,1 < 0, λs
k,2 > 0

}
+ Pr

{
λs

k,1 > 0, λs
k,2 < 0

}
+

+ Pr
{
λs

k,1 < 0, λs
k,2 < 0

}
(3.42)

and, considering that λs
k,1 and λs

k,2 are independent, Eq. 3.42 reduces to:

Pe/A1,A2 = Pr
{
λs

k,1 < 0
}
· Pr

{
λs

k,2 > 0
}

+ Pr
{
λs

k,1 > 0
}
· Pr

{
λs

k,2 < 0
}

+

+ Pr
{
λs

k,1 < 0
}
· Pr

{
λs

k,2 < 0
}

(3.43)
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Using the former considerations and the standard Q function, it can be shown that:

Pr
{
λs

k,1 < 0
}

= Q
(

λs
k,1

σk,1

)
Pr

{
λs

k,1 > 0
}

= 1 − Q
(

λs
k,1

σk,1

)
Pr

{
λs

k,21 < 0
}

= Q
(

λs
k,2

σk,2

)
Pr

{
λs

k,21 > 0
}

= 1 − Q
(

λs
k,2

σk,2

) (3.44)

Using the above, Eq. 3.43 can be rewritten as:

Pe/A1,A2 = Q

(
λs

k,1

σk,1

)
+ Q

(
λs

k,2

σk,2

)
− Q

(
λs

k,1

σk,1

)
· Q

(
λs

k,2

σk,2

)
(3.45)

Assuming that the two symbols contained in a STBC block have the same probability of

error, the third term in Eq. 3.45 is negligible with respect to the �rst two ones. Thus, an

approximation of Eq. 3.45 is given by:

Pe/A1,A2 ' P̂e/A1,A2 = Q

(
λs

k,1

σk,1

)
+ Q

(
λs

k,2

σk,2

)
(3.46)

By considering that the 22K possible transmitted bit vectors are independent and equiprob-

able, the average probability of error for the k-th user can be written as:

P̂AV
e

(
w1

k,w
2
k

)
=

1

22K

∑
∀A1

∑
∀A2

P̂e/A1,A2 (3.47)

The couple of receiver gains vectors (w1
k,w

2
k) minimizing the average probability of error

shown in Eq. 3.47 practically implement the ideal MBER detection criterion for the

considered STBC MC-CDMA system. In [61], it is pointed out that no closed-form

expression for MBER solution can be found. For this reason, a numerical solution has to

be investigated. A possible solution is to exploit the LMS algorithm based on the concept

of gradient descent ([178, 180]). LMS updating of the �lter weights is done iteratively

along the negative gradient of the error probability surface, along both directions w1
k and

w2
k. The updating rule at i-th iteration is given by:

w1
k (i + 1) = w1

k (i) − ρ · ∇1

(
P̂AV

e (w1
k,w

2
k)

)
(i)

w2
k (i + 1) = w2

k (i) − ρ · ∇2

(
P̂AV

e (w1
k,w

2
k)

)
(i)

(3.48)

where ρ is the step-size parameter and ∇1 and ∇2 represent the gradient along the two

directions w1
k and w2

k, respectively. For the �rst iteration (namely: i = 0), the following
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initialization has been chosen: w1
k (0) = w2

k (0) = ck. This is a reasonable choice, com-

monly done in the literature dealing with adaptive detection of MC-CDMA signals (see,

e.g., [61] and [181]). The two gradient involved in Eq. 3.48 can be expressed as follows:

∇1
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P̂AV
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2
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(3.49)

Thus, the LMS implementation of the MBER detector for the considered STBC MC-

CDMA system is given by combining the updating rule of Eq. 3.48 and the gradient

expressions of Eq. 3.49.

The computational complexity of this detector is exponential in the number of users

O
(
22K

)
, so its practical application becomes unfeasible as K increases. However, the

computational burden of the MBER criterion can be reduced by minimizing the con-

ditional probability of error instead of the average probability of error ([65, 91]). The

conditional probability of error can be expressed as follows:

P̂COND
e

(
w1

k,w
2
k

)
=

1

22

∑
∀a1

k

∑
∀a2

k

P̂e/a1
k,a2

k
(3.50)

The BER is conditioned in Eq. 3.50 to the symbols transmitted by the user of interest in its

own STBC block and averaged with respect to all possible combinations of these symbols.

In the considered case, the Alamouti's block is 2x2-sized; therefore the number of possible

symbol combinations is 22 = 4. Dua et al. claim in [91] that the MCBER adaptive

MUD has a convergence rate comparable to MBER MUD with a minor degradation

in terms of bit error rate and a�ordable computational burden linearly increasing with

users' number. For this reason, the MCBER criterion can be regarded as an e�ective and
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feasible solution also for multi-user detection in STBC MIMO MC-CDMA systems. The

LMS implementation of the MCBER detector can be obtained straightforwardly by using

the same updating rule of Eq. 3.48 combined with the following new gradient expressions:
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(3.51)

In this way, the statistical mean is just computed over data symbols of the user of interest.

As far as data symbols transmitted by users k̄ = 0, . . . , K −1 (with k̄ 6= k) are concerned,

it is possible to de�ne the vectors Ãj ,
[
ãj

0, . . . , a
j
k, . . . , ã

j
K−1

]
(with j ∈ {1, 2}) in which

the element ãj

k̄
is the symbol decision performed by user k̄. The choice of exploiting

the symbol decisions taken by users k̄ 6= k has been considered in order to improve the

convergence of the adaptive optimization algorithm (as noted in [65]). If ãj

k̄
symbols

are chosen randomly, their e�ect can average out in the end signi�cantly decreasing the

convergence rate of the LMS algorithm.



Chapter 4

Application of Evolutionary Strategies

to Channel Estimation in MIMO

Multi-Carrier Scenarios

This Chapter takes into account the use of evolutionary strategies to channel estimation

purposes. In particular, the application of Genetic Algorithms and Particle Swarm Opti-

mization techniques will be considered in the context of multi-carrier and multi-antenna

systems, both in the single- and multi-user cases.

4.1 Genetic Algorithm-Assisted Channel Estimation for STBC

MIMO MC-CDMA Systems

The next sub-section is aimed at investigating the terminology and the basic functioning

idea of GAs. Then, a description of the GA-assisted channel estimation techniques will

be provided.

4.1.1 Basics of GAs

Genetic algorithms have a 20-years history of successful applications in telecommunica-

57
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tions, signal processing and electromagnetic �elds due to some basic features, useful to

solve complex problems with reasonable computational e�ort ([21]):

1. the convergence to the optimal solution is theoretically guaranteed (provided that

a proper parameterisation of the GA procedure is set), avoiding that solution be

trapped in local minima;

2. the GA-based procedure can dynamically adapt itself to time-varying system condi-

tions, because a new population of individuals is computed at each new generation.

Standard GA implementations represent feasible solutions as a set of individuals (called

population). The cost function to be minimized (or maximized) is called �tness function.

At each iteration (namely: generation), the genetic operators of crossover and mutation

are applied on selected chromosomes with probability α and γ respectively, in order

to generate new solutions belonging to the search space. The population generation

terminates when a satisfactory solution has been produced or when a �xed number of

generations has been completed.

A more detailed description can be found in [21, 22, 23, 24].

4.1.2 The Proposed GA-Assisted Channel Estimation

In this sub-section, an MMSE channel estimation targeted to MIMO STBC systems is

considered. In particular, the MMSE approach proposed in [182] has been modi�ed for

the STBC MIMO MC-CDMA system with Alamouti's coding previously described in

sub-section 3.4.1.

In such a context, the target of the GA is to minimize with respect to the estimated

channel matrices the following MSE metric:

J (HA,HB) =
∥∥∥Y1 − ĤACA1 − ĤBCA2

∥∥∥2

+

+
∥∥∥Y2 + ĤAC

(
A2

)∗ − ĤBC
(
A1

)∗∥∥∥2
(4.1)

This is not a trivial task from a computational point of view. As described in Chapter 2,

state of the art methodologies for channel estimation in STBC systems are substantially
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based on the insertion of training sequences and on the inversion of signal covariance ma-

trices. The application of such methodologies to the case of multi-user STBC MC-CDMA

systems would require the inversion of big covariance matrices, growing more and more

with the users' number K. In order to avoid such kind of operations, several techniques

have been proposed in the literature (see section 2.2 for a detailed description). How-

ever, some are conceptually complex and computationally hard, and others are strongly

in�uenced by the choice of the distinguishing parameters.

In order to obtain an adaptive and robust channel estimation technique, a GA-assisted

MMSE strategy has been implemented. It follows a strategy similar to the one described

in section 3.1 for the linear MUD in the single-carrier MC-CDMA case. It is articulated

into two steps:

1. Training-aided step: during this step, an L bit-length binary training sequence

ăk =
[
ă1

k, . . . , ă
L
k

]
is transmitted in form of header for each user k. The bits of

the training sequence are organized in L/2 consecutive pairs, each one corresponding

to a pair of symbols transmitted in two consecutive signaling periods. In such a

way, the vectors of known bits Ă1 =
{
ă2j−1

k : k = 1, . . . , K ∧ j = 1, . . . , L/2
}
and

Ă2 =
{
ă2j

k : k = 1, . . . , K ∧ j = 1, . . . , L/2
}
are employed to compute the MSE met-

ric (j is the index of the signaling period). The training step is repeated with a

period approximately equal to the coherence time of the channel. The GA optimizer

computes at each signaling period the estimated channel matrices using a selected

parameterisation in terms of generation number GTr, population size PTr, crossover

and mutation probabilities αTr and γTr, respectively. The footer Tr means that the

GA parameterisation is related to the training step.

2. Decision-directed adaptive step: the outputs of the training step are the channel

matrices
(
ĤA

)Tr

and
(
ĤB

)Tr

obtained by a GA-based optimizer parameterised in

such a way to �learn� the channel in reliable way. During a coherence time period, the

stochastic values of the channel coe�cients acting over each subcarrier are strongly

correlated. By this, a decision-directed adaptive updating step should be reasonably
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forecast. In the present dealing, the decision-directed updating step is performed by

the GA, working with a di�erent parameterisation. The GA-based updating pro-

cedure is initialized by the solution computed during the training-aided step, i.e.,(
ĤA

)Tr

and
(
ĤB

)Tr

. During a symbol period a single iteration is performed by the

GA and a single generation of individuals is produced. The symbols employed in this

step to �ll the data vectors A1 and A2 are the estimated symbols decided at the pre-

vious signaling period. In particular, we have: Ã1 (j) = {ã1
k (j − 1) : k = 1, . . . , K}

and Ã2 (j) = {ã2
k (j − 1) : k = 1, . . . , K}. In such a step, crossover and mutation op-

erators do not work, because only a GA generation runs. This updating procedure is

�light�, but this is reasonable because only small variations of the channel amplitude

and phase are to be tracked during the coherence period. Moreover, in such a way,

the e�ects of possible symbol errors on channel estimation are conveniently reduced.

In order to make clearer the proposed approach, the whole GA-assisted channel estimation

procedure can be summarized as follows:

i) At time t = 0 the GA-based procedure is initialized by a constant-value popu-

lation. In particular, the identity matrices have been chosen for initialization.

ii) The Training-aided step begins. The L-bit known training sequence is transmit-

ted and the estimated channel matrices are computed by minimizing the cost

function of Eq. 4.1. The GA parameters (GTr, PTr, αTr, γTr) are opportunely

chosen.

iii) The Training-aided step ends with the computation of the channel matrices at

the time t = LT + εT (ε is the execution time of the GA-based optimization

procedure expressed in number of bit periods T ). Now, the GA switches to the

Decision-directed adaptive modality.

iv) At the beginning of the adaptive step, the GA is initialized with the channel

matrices computed at the end of ii), and the GA parameters are reassigned as
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follows: generation number GDD = 1, population size PDD, crossover probability

αDD = 0 and mutation probability γDD = 0. The footer DD means that the

GA parameterisation is related now to the Decision-directed adaptive step. The

GA procedure produces a single population of individuals that are quite close to

the one chosen during the previous signaling interval. Such kind of population

is stochastically generated in Gaussian way, imposing to the Gaussian generator

an updating standard deviation σup that actually is a system parameter. Such

a parameter is linked to the Doppler spread and to the signal-to-noise ratio. An

explicit mathematical link is very di�cult to be obtained, but, as thumb rule,

it is possible to say that it needs to be increased as SNR and Doppler spread

increase.

v) The Decision-directed updating step ends at the time t = LT + εT + WcohT ,

where Wcoh is the coherence time-window of the channel (expressed in number

of bits). The GA is re-initialized with the channel matrices computed at the

end of the coherence time-window, and re-parameterised in order to start again

with the Training-aided step ii).

4.2 Particle Swarm Optimization-Assisted Channel Estimation

for STBC MIMO OFDM Systems

In this section, the terminology and the basic functioning idea of PSO is provided ([183,

184]). Then, its application to channel estimation will be considered.

4.2.1 Overview of PSO

The Particle Swarm Optimization algorithm is a biologically-inspired stochastic optimiza-

tion technique developed by Eberhart and Kennedy in 1995 ([25]), motivated by social

behaviour of bird �ocking or �sh schooling. It shares many similarities with evolutionary

computation techniques, in particular with GAs. The PSO algorithm is initialized with
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a population of solutions (randomly or opportunely chosen) and searches the global opti-

mum of a real-valued function (�tness function) de�ned in a given space (search space)

by updating generations (even called epochs). However, unlike GA, PSO has no evolution

operators such as mutation and crossover. The potential solutions (called particles) �y

through the problem space by following the current optimum particle.

From the metaphorical point of view, this algorithm can be summarized as follows.

The individuals of a society hold an opinion that is part of a �belief space� (the search

space). Individuals share this opinion and may modify it by considering three aspects:

• the knowledge of the environment (its �tness value)

• the individual's previous history of states (its memory)

• the previous history of states of the individual's neighborhood.

The de�nition of neighborhood con�gures the �social network� of the individuals. Several

neighborhood topologies exist (e.g., full, ring, star) depending on whether an individual

interacts with all, some, or only one of the rest of the population. Following certain rules

of interaction, the individuals in the population adapt their scheme of belief to the ones

that are more successful among their social network. Over the time, a culture arises, in

which the individuals hold opinions that are closely related.

The �continuous� version of the PSO algorithm uses a real-valued multidimensional

space as belief space. The position xid of the i-th particle in dimension d of that space is

determined by

xt+1
id = xt

id + vt+1
id (4.2)

The velocity vid of the particle determines its movement. It can be calculated as follows:

vt+1
id = w · vt

id + c1 · ψ1 ·
(
pt

id − xt
id

)
+ c2 · ψ2 ·

(
pt

gd − xt
id

)
(4.3)

where:

• vt
id is the component in dimension d of the i-th particle velocity in iteration t
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• xt
id is the component in dimension d of the i-th particle position in iteration t

• c1 and c2 are constant weight factors

• pi is the best position achieved so long by particle i

• pg is the best position found by the neighbors of particle i

• ψ1 and ψ2 are random factors in the [0, 1] interval

• w is the inertia weight.

A constraint (vmax) is imposed on vt
id to ensure convergence. Its value is usually kept

within the interval [−xmax
id , xmax

id ], being xmax
id the maximum value for the particle position.

A large inertia weight (w) favors global search, while a small inertia weight favors local

search. If inertia is used, it is sometimes decreased linearly during the iteration of the

algorithm, starting at an initial value close to 1.

The PSO algorithm requires tuning of some parameters: the individual and sociality

weights (c1,c2) and the inertia factor (w). Both theoretical and empirical studies are

available to help in selection of proper values ([185, 186, 187, 188, 189, 190, 191]).

From the described procedure, it is clearer that PSO shares many common points with

GA. Both algorithms start with a certain population, both have �tness values to evaluate

the population. Both update the population and search for the optimum with random

techniques.

However, PSO does not have genetic operators like crossover and mutation. Particle

update themselves with the internal velocity. They also have memory, which is also

important to the algorithm. Compared with GAs, the information sharing mechanism in

PSO is signi�cantly di�erent. In GAs, chromosomes share information with each other.

So the whole population moves like a one group towards an optimal area. In PSO, only

the global (or local) best individual gives out the information to others. It is a one-way

information sharing mechanism. The evolution only looks for the best solution. Compared

with GA, all the particles tend to converge to the best solution quickly even in the local
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version in most cases ([192]). The computational complexity of PSO is comparable with

GA, but its performance is usually much better than GA ([193]).

4.2.2 The Proposed PSO-Assisted Channel Estimation

In this sub-section, an MMSE channel estimation technique is described. The basic func-

tioning is similar to the one described in the previous section. The main di�erences are

the application to STBC MIMO OFDM systems (instead of STBC MIMO MC-CDMA

systems) and the use of the PSO algorithm (instead of the GA) for optimization purposes.

In such a context, the traditional received single-user OFDM signal samples acquired

at two consecutive symbol periods after the FFT-based coherent demultiplexing could be

expressed as follows: 
Y1 = HAA1 + HBA2 + N1

Y2 = −HA (A2)
∗
+ HB (A1)

∗
+ N2

(4.4)

where Y1 and Y2 are N × 1 vectors, Aj (with j ∈ {1, 2}) are the vectors containing

the user BPSK symbols, Nj = [η0, η1, . . . , ηN−1]
T (with j ∈ {1, 2}) is the AWGN vector

(all vector components are independent and identically distributed with zero mean and

variance σ2), and Hant = diag
(
hant

0 , hant
1 , . . . , hant

N−1

)
(with ant ∈ {A,B}) is the N × N

diagonal channel matrix, where hant
n is the complex channel coe�cient related to subcarrier

n and to the transmit antenna ant.

The usual hypothesis is that fading is �at over each subcarrier and almost time-

invariant during two consecutive transmission period (i.e., the coherence time is much

greater than the symbol period). Nevertheless, the e�ect of time-varying frequency se-

lectivity cannot be neglected in such systems as clearly stated in [194]. In fact, the

introduction of STBC into OFDM systems is not so straightforward. The length of the

symbol period is much longer than that of a single-carrier system with the same data-rate.

Therefore, a fading process slow enough to be considered block-fading in a single carrier

system might not be so in a system with an OFDM architecture. Such a problem can

be solved by considering the OFDM channel non quasi-static over the space-time blocks:
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Hant remains constant during the �rst transmission interval of the block (Hant (t)) but

changes to Hant (t + 1) at the next one. Therefore, the received signals at time t and t+1

become: 
Y (t) = Y1 = HA (t)A1 + HB (t)A2 + N1

Y (t + 1) = Y2 = −HA (t + 1) (A2)
∗
+ HB (t + 1) (A1)

∗
+ N2

(4.5)

By using such notation, it is possible to write the traditional MSE metric presented in

[131] as follows:

J (HA (t) ,HB (t) ,HA (t + 1) ,HB (t + 1)) =∥∥∥Y1 − ĤA (t)A1 − ĤB (t)A2
∥∥∥2

+

+
∥∥∥Y2 + ĤA (t + 1)

(
A2

)∗ − ĤB (t + 1)
(
A1

)∗∥∥∥2
(4.6)

The target of the PSO is to minimize it with respect to the estimated channel matrices.

The followed strategy is the same proposed in sub-section 4.1.2. Therefore, it is artic-

ulated into two steps exactly following the already described sequence. Obviously, the

characterizing parameters are those typical of the PSO algorithm.





Chapter 5

Adaptive and Optimized PHY-Layer

Recon�gurability

The implementation of the previously described multi-user detection and channel esti-

mation techniques has been done by taking into account some basic design issues typical

of Software De�ned Radio (SDR) systems, such as modularity and re-usability of devel-

oped software modules ([195]). In such a way, they could be used in the design and the

implementation of �full smart� recon�gurable terminals (RTs) capable of adapting their

transmission layer to a �change of status� of the network, meaning with the term �status�

the location and situation information, together with the identi�cation of the transmission

modes available, the typology of the transceiver, the computational capability, and power

consumption constraints. The recon�guration action can belong to two main categories:

• a change of transmission modality (vertical handover)

• a recon�guration of the parameters of the operating transmission modality in or-

der to optimize adaptively the Quality of Service (QoS) with respect to a situation

modi�cation (e.g., an increase of tra�c or interference load, a change of channel

propagation conditions, etc.).

Such a concept is well depicted in Fig. 5.1. The channel state information (known in

67
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Figure 5.1: PHY-layer recon�gurability

the case of non-linear distorsions due to ampli�ers or estimated in the multipath fading

case) can be used to chose and parameterise a set of SDR transceiver modules, aimed at

dynamically con�gure the PHY-layer in order to adapt itself to network situation. After

that, the modules are loaded in the transmitting and receiving devices. The di�erent

PHY-layer con�gurations should be also able to provide the best performances in terms

of bit error rate.

The SDR-based implementation should guarantee the due degree of �exibility and re-

con�gurability to the user terminal and to the entire network. The considered approach

is completely di�erent from the state of the art idea of embedding in a �black box� some

co-existing standard terminals provided with some switching protocol (even working on
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the basis of location/situation aware information). A RT should be capable of taking in

charge a generic wireless transmission mode provided by means of dynamically linked SDR

libraries containing the executable code of the overall protocol stack elements managed

at terminal level. The word �generic� means that the transmission mode should be both

standard, and non-standard (e.g., customized techniques for point-to-point connections),

or related to future on-going standards (e.g., OFDM and MC-CDMA regarded as key

transmission techniques for new generation WLAN and cellular networks). But, in any

case, the design and the implementation of the SDR-based RT will be performed in adap-

tive and optimized way. Generally speaking, the RT should be regarded as a �full smart

terminal� provided with extended adaptive recon�gurability managed both at RF, and

baseband level. In the standard transmission case, this means that, while retaining the ba-

sic feature e.g. of UMTS, S-UMTS or IEEE 802.11 signals, the degrees of freedom allowed

to each transmission con�guration will be exploited in order to optimize system perfor-

mances. As an example, UMTS standard could pro�tably exploit joint space and time

diversity provided by antenna arrays and rake receivers using co-ordinates adaptive array

optimization strategies, channel equalization, and multi-user detection algorithms (exam-

ples in literature have been already proposed for DS-CDMA systems ([196])). MIMO

systems represent other feasible examples of such capabilities ([197]). This is possible

now because smart antennas allow an e�ective software tuning of the radiation pattern

depending on channel conditions and interference load (also when bursts of interfering

signals are coming to the antenna with stochastic time of arrivals ([72])), and SDR pro-

cedure can actually work up to the IF stage ([198]). This can lead to the dynamic and

adaptive optimization of the RT for the generic transmission mode selected (see Fig. 5.2),

starting from the physical layer level.

When a switching from a wireless connection (standard or not standard) to another

one is issued by the network manager (and physically managed by a proper middleware

layer as shown in Fig. 5.2), a new �software-radio� library containing the executable pro-

cedures implementing the new physical layer functionalities will be downloaded replacing
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Figure 5.2: General overview of the recon�gurable architecture

the old one. Of course, this task is not trivial, because the dynamic recon�guration of the

mobile terminal should be optimized with respect to the channel conditions, bandwidth

and power resources available, interference load, transmission modalities, etc. (�status�

of the network) in order to provide the best QoS to the connecting user. So, mobile

terminals should be provided with an augmented �exibility of the physical layer. The set

of SDR algorithms loaded and executed by a DSP (Digital Signal Processor) architecture

(for example) should dynamically adapt itself to the conditions of the new communica-

tion environment. In such a sense, it is possible to say that the recon�gurability of the

terminal should be both �adaptive� and �optimized� with respect to the wireless context.

In such a way, thanks to SDR solutions, situation/location awareness can be translated

into adaptive and optimized recon�gurability of the mobile terminal directly managed at

physical layer level.

Such concepts have been taken into account during the software implementation phase.

The result is an �object oriented� vision that allows to use the software modules as ba-
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(a)

(b)

(c)

Figure 5.3: Examples of basic blocks' organization
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sic elements to build more complex transceiver architectures. Some examples of such

a concept are reported in Fig. 5.3 (a), (b), and (c). It is interesting to note that the

same blocks (opportunely parameterised) are used to build the di�erent communication

systems described in section 3.1, 3.3 and 4.1, respectively.

Figure 5.4: Basic blocks of the Simulink library

Simulators have been implemented in Matlab-Simulink environment ([199]). Their

modularity allowed to create a library which contains all the basic blocks (see Fig. 5.4).

They have been also combined in order to obtain the innovative algorithms presented

throughout this thesis (see Fig. 5.5 for a general overview, and Fig. 5.6 for the MCBER

receiver example).

Some receivers of the library have been emulated on a DSP module. In particular, the

DSK 320C6416T module of Digital Spectrum ([200]) has been used (see Fig. 5.7). It is

equipped with a 1.1 GHz CPU. The emulation of the MCBER algorithm provided the

same results obtained through software simulations, con�rming the e�ectiveness of the

hardware implementation.
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Figure 5.5: Innovative algorithms implemented in the Simulink library



74 Adaptive and Optimized PHY-Layer Recon�gurability

(a)

(b)

Figure 5.6: MCBER algorithm implemented in the Simulink library
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Figure 5.7: Digital Spectrum DSP module
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Chapter 6

Experimental Results

This Chapter is aimed at providing experimental results regarding the MUD techniques

and the channel estimation strategies previously described.

6.1 GA-Assisted MMSE MUD Receiver for MC-CDMA Systems

The e�ectiveness of the semi-adaptive GA-assisted per-carrier MMSE MUD detector pre-

sented in section 3.1 has been tested by means of intensive simulations. Its performances

have been measured in terms of BER over a urban multipath channel with a transmission

data rate rb equal to 1024 Kbps. The corresponding tapped delay line channel model is

summarized in Tab. 6.1.

The features of the channel in terms of coherence bandwidth, Doppler spread, coherence

time and Rice factor are summarized in Tab. 6.2.

Tap Number Delay [µs] Amplitude [dB]

1 0.1 -4

2 0.2 -8

3 0.3 -12

4 0.4 -16

5 0.5 -20

Table 6.1: Channel model (urban)

77
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Channel Coherence

bandwidth

[MHz]

Doppler spread

[Hz]

Coherence time

[µs]-([bit])

Rice factor

(linear)

urban 2.1 100 1.8 - (1843) 1

Table 6.2: Parameters of the considered channel

The goodness of the proposed algorithm has been tested considering the insertion of

the training phase at the beginning of each coherence time of the channel. The length

of the training and decision-directed phases has been chosen through a preliminary series

of simulations. The same procedure has been followed to obtain the GA parameters for

the two steps characterizing the algorithm. The resulting parameterisation that seems to

satisfy the tradeo�s in terms of algorithmic e�ciency and computational sustainability is

the following:

• Training-aided step: generation number GTr = 10, population size PTr = 10,

crossover probability αTr = 0.9, mutation probability γTr = 0.01

• Decision-directed step: generation number GDD = 1, population size PDD = 10,

crossover probability αDD = 0, mutation probability γDD = 0

• Training sequence length B = 32 bit

• Coherence window lengthWcoh = 1700 bit (according to the Jake's model for Rayleigh

channels [201]).

The proposed MMSE MUD receiver has been compared with the following state of the

art algorithms:

i) LMS per-carrier MMSE MUD shown in [19]. The weight-updating rule of the

LMS receiver is given as follows:

ŵLMS
n (i + 1) = ŵLMS

n (i) + µ

{
K∑

k=1

ck
nak

i − ŵLMS
n (i) yn (i)

}
(yn (i))∗ (6.1)

where µ is the step-size parameter.
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ii) RLS per-carrier MMSE MUD shown in [19]. The weight-updating rules of the

RLS receiver are given as follows:

ŵRLS
n (i + 1) = ŵRLS

n (i) +

{
K∑

k=1

ck
nak

i − ŵLMS
n (i) yn (i)

}
(Vn (i))∗ (6.2)

Vn (i) =
Pn (i) yn (i)

λ + (yn (i))∗ Pn (i) yn (i)
(6.3)

Pn (i + 1) = λ−1 {1 − Vn (i) (yn (i))∗} (yn (i))∗ Pn (i) (6.4)

where λ is the so-called forgetting factor .

iii) The ideal MMSE MUD with optimum solution computed as in Eq. 3.7. It

represents a �lower bound� of the achievable performance.

The LMS and RLS algorithms have been modi�ed in order to work in semi-adaptive

modality with the periodic transmission of a B-bit length training sequence. The step-

size parameter has been also reduced from the training to the decision-directed step in

order to force a fast convergence to the optimum weights during the former and to reduce

the impact of symbol errors in the latter. Its values reported in the following are referred

to the training-aided modality. In the decision-directed modality, their values have been

reduced to a magnitude order less.

Simulation results in terms of BER are reported in Fig. 6.1 and 6.2. BER results versus

SNR are plotted for a �xed number of users (K = 9) in Fig. 6.1. BER performances of

the proposed GA-assisted MMSE MUD receiver are almost coincident with ones yielded

by ideal MMSE MUD requiring perfect knowledge of channel gains for all SNR values.

Moreover, it clearly outperforms both adaptive MMSE receivers based on deterministic

algorithms. Both LMS and RLS performances are strongly in�uenced by the choice of the

parameters µ and λ. Two curves related to the LMS are drawn with di�erent step sizes

values (0.01 and 0.05). The resulting performances are really di�erent. The sensitivity

to the parameter λ is very strong also for RLS (small variation of the parameter can

signi�cantly worse performance). Nevertheless, RLS can approach ideal MMSE in case of

few transmitting users and relatively slow fading channels, as stated in [19].
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Figure 6.1: BER vs SNR for the simulated MC-CDMA receivers (with K = 9 users)

In Fig. 6.2, BER results versus users' number are reported for a �xed SNR value of

20 dB. It is worth noting that the performances of the proposed algorithm are very close

to those o�ered by ideal MMSE for whatever number of users. Adaptive algorithms o�er

instead performances substantially degrading for larger values of K. Such results con�rm

the sub-optimality of steepest descent algorithms when the number of users increases.

A comparison between the tracking properties of the considered algorithms can be

done by observing Fig. 6.3, where the amplitude and the phase of the estimated receiver

weight are shown for subcarrier 8, with K = 30, N = 32, and SNR = 20 dB. The proposed

technique (grey thick line) provides a good tracking of the ideal MMSE weight (dash-

dotted black line). The noisy spikes are due to the �tness computation performed in the
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Figure 6.2: BER vs K for the simulated MC-CDMA receivers (SNR = 20 dB)

decision-directed step without any kind of averaging. LMS-based weight estimation (solid

black line) exhibits problems due to lag error ([178]) when the fast channel variations

occur.

From the computational point of view, the proposed algorithm requires a number of

elementary operations equal to B · K · N · GTr · PTr during the training-aided step (see

[21] for a detailed analysis of the GA computational complexity). During the decision-

directed step, the computational burden of the GA is reduced to K ·N · PDD elementary

operations.

The complexity of the LMS receiver is proportional to K · N , but it is generally less

performing than GA-based MMSE MUD and is strongly in�uenced by the step-size pa-
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Figure 6.3: Receiver weight estimated by the considered algorithms for subcarrier #8 (N = 32, K = 15,

SNR = 20 dB)

rameter setting. The RLS detector o�ers better performances but the computational

requirement is comparable with the proposed algorithm.

The choice of the GA parameters has been done through devoted simulation trials.

It has been shown that for a generation number higher than 10, the normalized mean

squared error between the estimated weights and the optimum weights does not decrease.

Such a behaviour perfectly follows the remarks reported in [202]: it is often better to use

larger populations with less number of generations than small populations accompanied

by greater time for search. This observation also justi�es the choice to use just one

generation in the decision-directed step.

Finally, concerning the setting of the updating standard deviation σup during the decision-

directed step, it has been observed that a unique value of σup made on the basis of Eq.

3.10 for high SNR (e.g., 15-20 dB) can e�ectively perform also for higher SNR (e.g., 30

dB) and lower SNR (e.g., 10 dB). For very low SNR (e.g., 0-5 dB), the Gaussian noise
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Figure 6.4: GA updating standard deviation

is clearly predominant and the updating standard deviation should be lowered. Such a

behaviour is clearly reported in Fig. 6.4, where the best value of σup obtained through

simulations (solid blue line) and the value of σup obtained by using Eq. 3.10 (dash-dotted

red line) are plotted for each SNR value.

6.2 GA-Assisted ML MUD Receiver for Multi-Rate VSL MC-

CDMA Systems

In order to assess the GA-based MUD algorithm proposed in section 3.2, some selected

simulation trials have been performed by using an equivalent baseband simulator of a

multi-rate MC-CDMA downlink transmission system. In order to de�ne more realistic

simulation trials, the multipath fading channel modelling and parameterisation has been

performed through some experimental data reported in [203] and related to 1.95 GHz

3GPP (3G-Partnership Project) transmission scenarios. In particular, a 4-paths Rayleigh

fading channel related to an urban vehicular scenario has been simulated by using a tapped
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delay line with coherence bandwidth equal to 1.25 MHz and Doppler spread equal to 125

Hz. The users' amplitudes Au have been chosen in order to maintain the per-bit signal-to-

noise ratio Eb/N0 equal for all user classes ([67]). The simulated multi-rate MC-CDMA

con�guration employs N = 16 orthogonal subcarriers in order to allow M = 3 user classes

to transmit at data rates equal to 1024 Kbps (class 1), 512 Kbps (class 2), and 256 Kbps

(class 3). The e�ective processing gains of the di�erent user classes are: N1 = 4, N2 = 8,

and N3 = 16, respectively. The maximum user load allowed by the OVSF spreading code

attribution has been considered, i.e., U = 16 e�ective users corresponding to U1 = 1 user

of class 1, U2 = 2 users of class 2, U3 = 8 users of class 3.

As far as the parameterisation of the GA optimizer is concerned, crossover probability

α and mutation probability γ equal to 0.9 and 0.01 have been selected, respectively. This

setting is reasonable because α is the index of the �evolutionary capability� of the GA,

whereas a high value of γ would turn the GA into a kind of random search ([202]). In

the absence of speci�c analytical selection criteria, the generation number Jgen and the

population size Ppop (depending on the parameter dhamm, as mentioned in section 3.2)

have been chosen by means of preliminary experimental trials explicitly devoted to. The

heuristic selection criteria enunciated in [202] have been considered in these simulations:

a) the population size should be su�ciently large in order to have a conveniently-

dimensioned space search

b) the number of generations should be appropriately assigned in dependence of

the population size.

In fact, in case of large population, too strict limit for the search time can force algorithm

to stop without having enough time to realize its search possibility. The test was per-

formed considering Eb/N0 equal to 15 dB. As �nal results of such preliminary simulation

trials, a reasonable choice of the GA parameterisation has been derived keeping into ac-

count the usual tradeo� between computational complexity and achieved performances.

In particular, the following parameters have been selected: Jgen = 10 and dhamm = 2,
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corresponding to a value of Ppop = 137.

Figure 6.5: BER results vs Eb/N0 provided by the di�erent MUD algorithms assessed (GA-assisted

ML MUD, MMSE-SIC, MMSE-pcPIC, MMSE) and by the single-user bound: user class #1 (N1 = 4,

rb1 = 1024 Kbps), urban 3GPP vehicular channel, Jgen = 10, dhamm = 2

In Fig. 6.5, 6.6, and 6.7, curves drawing the average BER results versus Eb/N0 achieved

by the proposed GA-assisted ML detection are shown for users belonging to class 1, class

2, and class 3, respectively. These are compared with corresponding results yielded by

the following MC-CDMA detection schemes (the ideal knowledge of the channel state

information has been supposed in all the simulations performed):

i) Single-stage per-user linear MMSE MUD ([15, 67]).

ii) Two-stage detection scheme proposed in [204] (and, similarly, in [205]), consist-

ing of a per-user linear MMSE stage followed by a Per-Carrier Parallel Interfer-
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Figure 6.6: BER results vs Eb/N0 provided by the di�erent MUD algorithms assessed (GA-assisted

ML MUD, MMSE-SIC, MMSE-pcPIC, MMSE) and by the single-user bound: user class #2 (N2 = 8,

rb2 = 512 Kbps), urban 3GPP vehicular channel, Jgen = 10, dhamm = 2

ence Cancellation (pcPIC) stage. The N contributions provided as output by

the pcPIC stage are then combined by using the MRC criterion.

iii) Linear MMSE receiver followed by a SIC stage, as described in [206] and [207].

The MMSE SIC is based on a per-user successive decoding with an arbitrary,

but �xed order. In the multi-rate VSL MC-CDMA context, it is reasonable to

assume that users are received starting from the slower to arrive to the faster.

iv) Curves of the single-user bound achieved for the di�erent users classes. The

single-user bound has been derived by simulating a single-user MC-CDMA sys-

tem (therefore interference-free) using a number of subcarriers equal to e�ective
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Figure 6.7: BER results vs Eb/N0 provided by the di�erent MUD algorithms assessed (GA-assisted

ML MUD, MMSE-SIC, MMSE-pcPIC, MMSE) and by the single-user bound: user class #3 (N3 = 16,

rb3 = 256 Kbps), urban 3GPP vehicular channel, Jgen = 10, dhamm = 2

processing gain of the intended class (N1 = 4 for the class 1, N2 = 8 for the class

2 and N3 = 16 for the class 3). The output of the coherent FFT demux is then

combined on the basis of the MRC criterion that is the optimal (ML-based)

criterion in the case of single-user transmission.

It is possible to note that the GA-assisted ML MUD performs better than sub-optimum

MMSE, MMSE-pcPIC, and MMSE-SIC MUD algorithms for all the considered user

classes. In particular, the proximity of the related BER curve to the single-user bound

is dramatically evident in Fig. 6.5. As the users' data rate decreases and, therefore, the

processing gain increases, the single-user bound tends to depart from all sub-optimal al-
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gorithms. This is not unexpected, because the single-user bound drawn in Fig. 6.5-6.7 is

actually a lower bound also on theoretically-optimal ML MUD, as stated in [67]. However,

by observing BER curves of Fig. 6.6 and Fig. 6.7, it is possible to note that the perfor-

mance improvement yielded by GA-assisted ML MUD even becomes more relevant. It is

worth noting that that BER performances of MMSE-pcPIC and MMSE-SIC algorithms

drawn in Fig. 6.7 for user class 3 are almost coincident. This is due to the successive

cancellation order followed in the simulations.

MUD Algorithm

Assessed

Order of Computational

Complexity

# of Elementary

Operations Needed to

Compute the Problem

Solutions

# of Elementary

Operations Needed to

Compute the Problem

Solutions Normalized

with Respect to

Theoretical ML MUD

GA-assisted ML

detection

N + Ppop +

(α + γ)JgenPpop

1.4 · 103 (Jgen = 10,

Ppop = 137, α = 0.9,

γ = 0.01)

2.1 · 10−2

MMSE [15] U · N 2.56 · 102 3.9 · 10−3

MMSE-pcPIC

[204]
U2 · N 4.1 · 103 6.25 · 10−2

MMSE-SIC

[206, 207]
U2 · N 4.1 · 103 6.25 · 10−2

Table 6.3: Analysis of computational complexity of the di�erent MUD algorithms assessed

As far as computational issues are concerned, Tab. 6.3 shows the order of compu-

tational complexity for each MUD algorithm assessed (second column), the number of

elementary operations required by each algorithm to derive a sub-optimal solution to the

considered problem (third column), and �nally in the fourth column, the number of ele-

mentary operations normalized with respect to the corresponding value required by the

theoretical ML MUD exploring the full search space (equal to 2U). The reader can note

that the computational burden of the proposed GA-assisted ML MUD increases only by
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less than one order of magnitude with respect to that one required by MMSE MUD and

is slightly reduced with respect to MMSE-pcPIC and MMSE-SIC. In the last column of

Tab. 6.3, the noticeable reduction of computational e�ort with respect to theoretical ML

MUD is clearly shown. If the number of e�ective users U increased, such a computational

saving would be even more glaring.

6.3 Adaptive MBERMUDDetector for STBCMIMOMC-CDMA

Systems

The adaptive MBER MUD algorithm for STBC MIMO MC-CDMA systems presented in

section 3.3 has been tested by means of intensive simulations. The following parameters

have been �xed: number of subcarriers N = 8, transmission data rate rb = 1024 Kbps,

Hadamard-Walsh sequences for CDMA spreading (such a choice is suggested by some

widely-cited references about MC-CDMA like [15]).

The simulated mobile transmission channel has been modeled according to the guidelines

issued by the 3GPP standardization group in [208]. In particular, the Rural Area channel

model (identi�ed by the acronym RAx) has been used. Its tapped delay line model is

summarized in Tab. 6.4.

Tap Number Delay [µs] Amplitude [dB]

1 0 0

2 0.1 -4

3 0.2 -8

4 0.3 -12

5 0.4 -16

6 0.5 -20

Table 6.4: Channel model (RAx)

The corresponding coherence bandwidth is around 2 MHz and the considered Doppler

spread is equal to 100 Hz.
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A known sequence of 32 bits has been adopted for the periodic training-aided modality.

The adopted training sequence is a pseudo-random binary vector taken by the Hadamard-

Walsh set. The training period has been chosen equal to the coherence time of the channel

(approximately equal to the inverse of the maximum Doppler shift; therefore 10 msec or,

equivalently, 10240 bit periods).

In order to compare the proposed MBER algorithm with state of the art approaches,

the following receivers have been considered:

i) The EGC receiver shown in [176]. Such receiver assumes the perfect knowl-

edge of the CSI. In this case, the EGC receiver coherently recombines diversity

branches without amplitude weighting. It is the typical single-user receiver,

clearly sub-optimum in the multi-user case.

ii) The LMS adaptive implementation of the linear MMSE MUD receiver shown

in [85] and [176]. The same updating strategy used for the LMS-based MBER

receiver (i.e., periodic training and decision-directed updating within a channel

coherence window) has been adopted also for the MMSE adaptive receiver. The

weight updating rule for adaptive MMSE is therefore given as follows:
ŵLMS

1,n (i + 1) = ŵLMS
1,n (i) + ξ

{
ãk

1 (i) − ŵLMS
1,n (i)Y (i)

}
YH (i)

ŵLMS
2,n (i + 1) = ŵLMS

2,n (i) + ξ
{
ãk

2 (i) − ŵLMS
2,n (i)Y (i)

}
YH (i)

(6.5)

being ξ the step-size parameter of the LMS procedure.

iii) The MRC reception of the single-user MAI-free signal ([176]), obtained assum-

ing the ideal CSI knowledge, has been adopted as �single-user bound� for the

tested performances (it is known from [15] that MRC reception is theoretically

optimum for single-user MC-CDMA systems).

Simulation results in terms of BER have been shown in Fig. 6.8 (K = 2 users, namely

�light load�), Fig. 6.9 (K = 4 users, namely �half load�), and Fig. 6.10 (K = 7 users,

namely �full load�).
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Figure 6.8: BER results vs SNR provided by the di�erent signal detection algorithms assessed (with

K = 2 users, N = 8 subcarriers, NTx = NRx = 2 antenna elements)

The numerical values of the parameters controlling the weight updating (µ, ρη, and

ξ) have been experimentally chosen in order to achieve the best results in terms of BER

both for the LMS-based MBER MUD and MMSE MUD. The sensitivity to parameterisa-

tion is a well-known limitation of deterministic gradient adaptive optimization approaches

([178]). Experimental trials evidenced that the parameter ρη is directly linked with trans-

mission SNR (as clearly understandable by Eq. 3.27). On the other hand, step-size

parameters µ and ξ are more depending on the users number K and subcarriers' number

N . In particular, it has been observed that the step-size should be decreased for increas-

ing values of K and N . Moreover, the parameterisation has been di�erentiated in the

training-aided modality with respect to the decision-directed updating modality. In fact,
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Figure 6.9: BER results vs SNR provided by the di�erent signal detection algorithms assessed (with

K = 4 users, N = 8 subcarriers, NTx = NRx = 2 antenna elements)

the training phase should ensure a fast convergence of the weights to the optimal value,

exploiting a sequence of known bits. On the other hand, the decision-directed phase is

only devoted to track the small variations of the channel impulse response in the presence

of noisy symbol decisions. In order to avoid the recursive computation of a noisy gradient,

the step size is consistently decreased during decision-directed updating with respect to

the training phase.

As far as BER results are concerned, one can note from Fig. 6.8 and Fig. 6.9 that

when the user load is �light� (K = 2) or �half� (K = 4) the BER curve provided by

the MBER MUD receiver is quite close to the single-user bound, clearly outperforming

EGC and LMS-based MMSE MUD. Poor BER performances provided by EGC receiver
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Figure 6.10: BER results vs SNR provided by the di�erent signal detection algorithms assessed (with

K = 7 users, N = 8 subcarriers, NTx = NRx = 2 antenna elements)

con�rm, in all the tested cases, the unsuitability of single-user detection in the presence of

multi-user transmission and frequency-selective channel distortions. On the other hand,

as the number of users approaches the maximum allowable value (see Fig. 6.10, related to

the �full load� case with K = 7), the MBER MUD approach still provides better results

than MMSE one. Nevertheless, the two curves are closer one with respect to another than

in Fig. 6.8 and Fig. 6.9. Moreover, they are farer from the single-user bound.

Such kind of behavior has been already noted by Chen in [59] for the MBER MUD applied

to the DS-CDMA case and can be motivated by statistical reasons. As users' number K

increases, the global detection noise (including AWGN and multi-user interference) is

getting more and more Gaussian-distributed and, therefore, optimizing the receiver with
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respect to the MMSE provides very close results to optimizing on BER. Moreover, the

single-user bound curve depicted in Fig. 6.8-6.10 is a lower bound also on theoretically

optimum ML detection as it does not take into account the presence of the multi-user

interference. In case of increasing number of users, it is getting more and more di�cult

for a linear receiver to approach the single-user bound.

As far as computational issues are concerned, it is worth noting that the theoretical

ML detection is characterized by an una�ordable computational order O
(
2K

)
that is

exponentially-growing with the users' number K. The same problem occurs when the

theoretical MBER criterion is considered, as mentioned in sub-section 3.3.2. On the

contrary, the proposed LMS-based MBER MUD receiver represents a step ahead with

respect to state of the art linear combining receivers, however obtained with an a�ordable

computational e�ort. In fact, analyzing the di�erent terms of Eq. 3.34, one can note that

the computational order of the adaptive LMS-based MBER MUD is O (K), therefore

linear with respect to the users number. The same computational order characterizes

both the LMS-based MMSE MUD and the single-user EGC combiner. Considering that

the adaptive LMS-based MBER MUD always outperforms in terms of measured BER

both EGC and LMS-based MMSE, the advantages of the proposed detection scheme are

evident at a �rst glance.

6.4 Adaptive MCBER MUD Detector for STBC MIMO MC-

CDMA Systems with GA-Assisted MMSE Channel Estima-

tion

The performances of the LMS-based MCBER detector presented in section 3.4 have been

evaluated by means of intensive simulation trials in a Rayleigh fading channel �xing the

following parameters: number of subcarriers N = 8, transmission data rate rb = 1024

Kbps, coherence bandwidth of the channel 2.1 MHz, Doppler spread of the channel 100

Hz. Two test cases have been considered: the most theoretical case related to the MCBER
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detector exploiting the ideal CSI knowledge and the more realistic case related to the

MCBER detector supported by the GA-assisted channel estimation described in section

4.1 (a block diagram of the resulting transceiver scheme is depicted in Fig. 6.11).

Figure 6.11: Block diagram of the STBC MIMO MC-CDMA system with GA-assisted channel estimation

In such a way, it is possible to test the e�ectiveness of the channel estimation strategy

adopted together with the impact of non-ideal channel estimation on MCBER perfor-

mances.

In order to verify the e�ectiveness of the proposed approach, other state of the art

receivers have been considered for comparison, namely:

i) The ideal MMSE MUD receiver exploiting ideal CSI knowledge ([85, 176]).

ii) The MMSE MUD receiver supported by the GA-assisted channel estimation.

iii) The LMS adaptive implementation of MMSE receiver shown in [176] and [181].

iv) The single-user EGC receiver considered in [176].

As lower bound, the BER curve obtained by MRC detection in the single-user case has
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been considered (i.e., the optimal single-user detection, supposing the absence of multi-

user interference). The GA optimizer has been parameterised as follows:

• Training-aided step: generation number GTr = 30, population size PTr = 30,

crossover probability αTr = 0.9, mutation probability γTr = 0.01

• Decision-directed step: generation number GDD = 1, population size PDD = 10,

crossover probability αDD = 0, mutation probability γDD = 0

• Training sequence length B = 32 bit

• Coherence window lengthWcoh = 1800 bit (according to the Jake's model for Rayleigh

channels [201]). Therefore the overhead due to the insertion of the training sequence

equals to less than 1.8%.

Three di�erent scenarios including K = 2, K = 4, and K = 6 users have been considered.

The corresponding BER curves vs SNR are shown for all the tested receivers in Fig. 6.12,

Fig. 6.13, and Fig. 6.14, respectively.

It can be seen that in all scenarios the proposed LMS-based MCBER detector with and

without ideal CSI knowledge clearly outperforms both EGC detector and LMS-based

MMSE adaptive detector that exhibit a nasty error �oor as the number of users increases.

Moreover, the proposed MCBER detector exploiting ideal CSI knowledge yields perfor-

mances that are better than those ones of ideal MMSE detector. Such a last improvement

is clearly evident for K = 2 and K = 4 users, whereas it becomes slighter for K = 6 users.

In general, for an increasing number of users, BER curves related to ideal MMSE and

MCBER tend to become closer to each other and more distant with respect to the single-

user bound. Such behaviour is not unexpected. As number of users K increases, the global

detection noise (including AWGN and multi-user interference) is getting more and more

Gaussian-distributed and, therefore, optimizing the receiver with respect to the MMSE

provides very close results to optimizing on BER. Moreover, the single-user bound curve

depicted in Fig. 6.12-6.14 is a lower bound also on theoretically optimum ML detection
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Figure 6.12: BER performance yielded by LMS-based MCBER and ideal MMSE (with ideal CSI knowl-

edge and GA-assisted channel estimation), LMS-based MMSE multi-user detectors and EGC receiver

(with ideal CSI knowledge) for N = 8 subcarriers and K = 2 users

as it does not take into account the presence of the multi-user interference. In case of

increasing number of users, it is getting more and more di�cult for a linear receiver to

approach the single-user bound.

Focusing the attention on the e�ectiveness of the proposed GA-assisted channel esti-

mation methodology, it is possible to see from Fig. 6.12-6.14 that the MCBER detector

supported by non-ideal channel estimation performs very close to MCBER detector ex-

ploiting the ideal channel knowledge for K = 2 and K = 4 users. The e�ects of non-ideal

channel estimation are more evident for higher number of users (K = 6) and therefore in

the presence of higher level of multiuser interference.
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Figure 6.13: BER performance yielded by LMS-based MCBER and ideal MMSE (with ideal CSI knowl-

edge and GA-assisted channel estimation), LMS-based MMSE multi-user detectors and EGC receiver

(with ideal CSI knowledge) for N = 8 subcarriers and K = 4 users

The most relevant fact able at con�rming the correctness of the conducted analysis is that

the proposed MCBER detector always outperforms MMSE MUD when working together

in the same conditions of �channel knowledge�.

The e�ectiveness of the GA-assisted channel estimator has been tested in terms of error

variance in the worst case of interference load (i.e., K = 6). The results shown in Fig. 6.15

highlight that such a variance, computed on the overall channel coe�cients, is decreasing

with SNR and exhibits satisfactory values (e.g., lower than 10−2 for SNR > 10 dB).

Such results can be regarded as a further con�rmation of the goodness of the proposed

GA-assisted channel estimation approach.
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Figure 6.14: BER performance yielded by LMS-based MCBER and ideal MMSE (with ideal CSI knowl-

edge and GA-assisted channel estimation), LMS-based MMSE multi-user detectors and EGC receiver

(with ideal CSI knowledge) for N = 8 subcarriers and K = 6 users

As far as computational issues are concerned, current literature claims that MCBER

criterion has a computational order which is linear with the number of users ([91]). The

computational e�ort is therefore reduced with respect to the ideal MMSE detector which

isO (K3) ([65, 85, 176, 209]) and it is comparable with the LMS-based adaptive implemen-

tation of MMSE (which is linear again). The reduction of the computational complexity

is one of the main advantages yielded by the proposed approach. In fact, the MCBER

criterion is theoretically closer to optimality than MMSE and simulation results shown in

Fig. 6.12-6.14 con�rm this claim. Moreover, the developed adaptive MCBER MUD algo-

rithm is also less demanding from a computational viewpoint than ideal MMSE, although
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Figure 6.15: Variance of the channel estimation error measured for K = 6 users, N = 8 subcarriers,

NTx = 2 and NRx = 1 antenna elements

requiring the same knowledge of the channel state information.

About computational complexity of the GA-assisted MMSE channel estimator, it is

possible to say that GA requires a number of elementary operations to derive a solution

that is equal to νop = (α + γ) ·G ·P (see, e.g., [21]). Thus, B ·K ·N ·GTr ·PTr elementary

operations are required during the training-aided step. Their execution time is equal

to εT , where ε > 1. The value assigned to ε mainly depends on the computational

power of the signal-processing device employed. During the decision-directed step, the

computational burden of the GA is reduced to K · N · PDD elementary operations to be

executed during a signalling period T . Such a computational requirement is comparable

with that one involved by state of the art STBC channel estimation algorithms (see, e.g.,
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[85, 182, 210, 211]).

To conclude this section, some notes about algorithmic parameterisation are now pro-

vided. The step-size parameter λ of both LMS-based algorithms (MMSE and MCBER)

has been chosen empirically for each scenario in order to minimize the overall BER over

the various SNR values. From the parameters selection phase, it has been noted that

LMS-based MCBER detector is characterized by a reduced sensitivity to parameterisa-

tion with respect to state of the art LMS-based MMSE MUD. Indeed, �xing the number

of users K, the step-size λ is substantially invariant with respect to SNR values. On the

other hand, LMS-based MMSE multi-user detector would require a di�erent value of λ

for each SNR in order to provide satisfactory BER performances.

As far as the parameterisation of the GA-based optimizer is concerned, it is possible

to say that formal methodologies targeted to �nd an optimal parameterisation of ge-

netic procedures are not available. In literature, there are only some interesting heuristic

analysis like the one proposed by Tsoi in [202]. So GA parameters have been selected

by means of explicitly-devoted simulation trials, performed by keeping into account the

major guidelines pointed out in [202] that basically are these two ones:

a) the population size should be su�ciently large in order to have a conveniently-

dimensioned space search

b) the number of generations should be appropriately assigned in dependence of

the population size.

In fact, in case of large population, too strict limit for the search time can force algorithm

to stop without having enough time to realize its search possibility. At the end of the

simulation trials devoted to parameterisation, numerical values for generation number,

population size, crossover, and mutation probabilities have been found in order to as-

sure the best tradeo� between achieved results and computational load. In particular,

an intermediate SNR equal to 15 dB has been assumed as reference value, and the best

parameterisation has been derived by simulations for this value. Then, it has been ob-
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served by other simulations that the GA parameterisation chosen for the reference SNR

is �very close to the best� also for higher and lower SNR values. It con�rms the reduced

sensitivity to parameterisation of GA procedures.

6.5 MMSE PSO-Assisted Channel Estimator for STBC MIMO

OFDM Systems

The goodness of the PSO-assisted channel estimation technique described in section 4.2

have been tested through intensive simulation trials in a Rayleigh fading channel �xing

the following parameters: number of subcarriers N = 32 and N = 64, transmission data

rate rb = 1024 Kbps, coherence bandwidth of the channel 2.1 MHz, Doppler spread of the

channel 10 Hz.

Its performances have been compared with those one o�ered by the GA-assisted channel

estimation technique proposed in section 4.1 and the traditional LMS and RLS steepest

descent algorithms presented in [143]. The GA-based algorithm has been opportunely

modi�ed to operate in STBC MIMO OFDM systems, instead of STBC MIMO MC-

CDMA systems. Such a modi�cation can be easily done by considering the �tness function

expressed in Eq. 4.6 (instead of the one reported in Eq. 4.1). The rest of the algorithm

remains unchanged.

The e�ectiveness of the proposed approach has been tested by considering the MRC

receiver proposed in [194] with di�erent CSI knowledges (i.e., ideal, LMS-assisted, RLS-

assisted, GA-assisted, and PSO-assisted). Abreu et al. noticed that the estimates ob-

tained with the conventional linear decoder for Alamouti's scheme are no longer orthog-

onal in the presence of a non-quasi-stationary fading process. Such a situation leads to

have error �oors at higher SNR values (as already noticed in [212, 213, 214, 215, 216]).

The solution proposed by Abreu et al. was to use the following combiner:
Â1 = (HA (t))∗ Y1 + HB (t + 1) (Y2)

∗

Â2 = (HB (t))∗ Y1 − HA (t + 1) (Y2)
∗

(6.6)
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instead of the conventional one represented by:
Â1 = (HA (t))∗ Y1 + HB (t) (Y2)

∗

Â2 = (HB (t))∗ Y1 − HA (t) (Y2)
∗

(6.7)

The PSO optimizer has been parameterised as follows:

• Training-aided step: epoch number ETr = 30, population size PTr = 30

• Decision-directed step: epoch number EDD = 10, population size PDD = 10

• Inertia weight w linearly decreasing from 0.9 to 0.5

• Maximum particle velocity vmax = 0.01

• Individual and sociality weights c1 = c2 = 1.6

• Training sequence length B = 32 bit

• Coherence window length Wcoh = 1800 bit (according to the Jake's model for Rayleigh

channels [201]).

The GA optimizer has been parameterised as follows:

• Training-aided step: generation number GTr = 30, population size PTr = 30,

crossover probability αTr = 0.99, mutation probability γTr = 0.09

• Decision-directed step: generation number GDD = 10, population size PDD = 10,

crossover probability αDD = 0.99, mutation probability γDD = 0.09

• Training sequence length B = 32 bit

• Coherence window length Wcoh = 1800 bit (according to the Jake's model for Rayleigh

channels [201]).

LMS and RLS updating parameters have been chosen through devoted simulation trials.

Simulation results in terms of BER are reported in Fig. 6.16 and Fig. 6.17 for the case

with 32 and 64 subcarriers, respectively.
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Figure 6.16: BER performance yielded by MRC detector of Eq. 6.6 (with ideal CSI knowledge, LMS-

assisted, RLS-assisted, GA-assisted, and PSO-assisted channel estimation) for N = 32 subcarriers

It can be seen that in both scenarios the proposed GA- and PSO-based receivers clearly

outperforms both LMS and RLS steepest descent algorithms that exhibit a nasty error

�oor as the SNR increases. Both MRC receivers assisted by channel estimation tech-

niques based on evolutionary strategies perform really close to the one with ideal CSI

knowledge. The best performances are provided by the detector with the PSO-assisted

channel estimator. It con�rm the superiority of the PSO algorithm with respect to GA

in this application (as already described in subsection 4.2.1).

The same behaviour has been observed in terms of error variance in the case with 32

subcarriers. The results shown in Fig. 6.18 highlight that such a variance, computed on

the overall channel coe�cients, is decreasing with SNR and it is lower for the PSO-assisted
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Figure 6.17: BER performance yielded by MRC detector of Eq. 6.6 (with ideal CSI knowledge, LMS-

assisted, RLS-assisted, GA-assisted, and PSO-assisted channel estimation) for N = 64 subcarriers

channel estimator.

The computational order of PSO is O (E · G) and it is therefore comparable with that

of GA, which is O (P · G) ([193]).
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Figure 6.18: Variance of the channel estimation error measured for N = 32 subcarriers, NTx = 2 and

NRx = 1 antenna elements, both for the GA-assisted and the PSO-assisted channel estimator



Chapter 7

Conclusions and Future Works

In this Chapter, the methods and results presented in this thesis are reviewed and sev-

eral lines for future research are suggested. The main targets have been the study and

development of novel techniques for physical layer optimization of diversity based smart

terminals in the context of next-generation wireless communications. In particular, novel

multi-user detection techniques for multi-carrier CDMA systems and the application of

evolutionary strategies to channel estimation in MIMO multi-carrier scenarios have been

considered. All the formulated algorithms have been implemented in a modular software

architecture, in order to use them in an adaptive and optimized recon�gurable scenario.

Section 3.1 has formulated a novel semi-adaptive GA-based approach for MMSE MUD

in MC-CDMA systems transmitting information over time-varying fading channels. The

proposed algorithm evidenced some advantages with respect to other state of the art solu-

tions. First, it does not require any channel estimation but just a short training sequence

periodically transmitted. Then, simulation results achieved in terms of BER evidenced

a near-ideal behaviour of the proposed algorithm, outperforming LMS- and RLS-based

approaches especially when the impact of MAI becomes predominant in limiting trans-

mission capacity.

Future works could introduce an average operation in the computation of the �tness func-

tion also in the decision-directed step, in order to better counteract noise e�ects. Other

107



108 Conclusions and Future Works

intensive simulation trials should be done in presence of time varying channels character-

ized by very fast multipath fading.

Section 3.2 proposed the use of GAs in the context of the multi-user detection of

multi-rate variable-spreading-length MC-CDMA signals transmitted over mobile downlink

channels. Results shown evidenced a promising quasi-optimal behaviour of the proposed

GA-based MUD algorithm, provided that GA parameters are carefully tuned. The per-

formance improvement achieved with respect to state of the art interference cancellation

schemes is clearly demonstrated. Such relevant results have been achieved by spending

an a�ordable computational burden.

Future works could concern with some relevant aspects not faced in the present work,

like, e.g., e�ects of non-ideal channel estimation, e�ects of system non-linearities, joint

GA-based channel estimations and symbol detection, etc.

Section 3.3 presented a novel adaptive LMS-based MBER multi-user detection ap-

proach for MIMO STBC MC-CDMA systems transmitting information over time-varying

multipath fading channels. The proposed algorithm evidenced some advantages in terms

of improved BER performances with respect to state of the art receivers that rely on the

mean squared error minimization (MMSE) and on single-user diversity combining (EGC).

Experimental results evidenced that, in the case of full user load, BER curves of LMS-

based MMSE and LMS-based MBER become closer than in other test cases. This can

be justi�ed by the statistical properties of global detection noise that becomes more and

more Gaussian as the users' number increases.

Future research works should be devoted to the exploitation of more e�cient optimiza-

tion strategies based on the stochastic gradient (e.g., genetic algorithms, particle swarm

optimization). Considering again steepest descent-based optimization methodologies, the

application of RLS to MBER reception should be investigated as well. In this case, the

de�nition and the recursive computation of the Kalman gain vector do not appear as

trivial as in the MMSE case and, for this reason, might be an interesting subject of future

works.
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Section 3.4 investigated a multi-user detection strategy inspired to the concept of con-

ditional BER minimization for MIMO MC-CDMA systems using Alamouti's space-time

block coding. In the perspective of a real receiver deployment, an adaptive LMS-based

implementation of the MCBER detector has been proposed supported by the robust and

computationally-a�ordable MMSE channel estimation assisted by a genetic optimizer de-

scribed in section 4.1. The proposed MCBER approach always allows improving BER

performances with respect to other state of the art linear detectors working with the

same degree of channel knowledge. It is worth noting that the performance improvement

with respect to MMSE MUD strategies is achieved by spending a reduced computational

e�ort, linearly increasing with the number of users. Numerical results evidenced that BER

curves of MCBER and ideal MMSE are getting closer as the number of users approaches

the maximum allowable value. This behaviour is intrinsic to the linear multi-user detec-

tion and fully motivated by the nature of the MCBER criterion adopted.

Future research activities might concern the utilization of non-conventional optimization

strategies (e.g., GA, PSO, etc.) to provide a numerical solution to the MCBER problem

instead of the proposed LMS-based solution.

Section 4.2 described a PSO-based MMSE channel estimation technique for STBC

MIMO OFDM systems. Its performances have been compared with those ones o�ered by

a similar GA-assisted channel estimation technique in terms of BER and computational

complexity. Obtained results showed the superiority of the PSO algorithm with respect

to GA even with lower computational complexity.

Future works could consider the application of the proposed technique over faster multi-

path fading channels. Another interesting aspect would be the test of other evolutionary

strategies in the same context (such as Ant Colony Optimization (ACO, [217, 218]),

Quantum Evolution (QE, [219]), Bees Algorithm (BA, [220]), and Arti�cial Fish Swarm

Algorithm (AFSA, [221])).

Chapter 5 gave an overall view of the developed software modules in terms of modu-

larity and reusability. Future works could consider the implementation of the whole set
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of proposed algorithms on the same DSP device. The resulting SDR library should be

able to automatically adapt the functioning of the recon�gurable terminal to the network

situation.
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