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In the last years it has been widely proven that the introduction of very small amounts of inorganic 

nanoparticles in polymeric matrices can lead to noticeable improvements of their mechanical 

properties, in terms of elastic modulus and tensile properties at yield and at break. Linear low 

density polyethylene (LLDPE) is widely applied in several industrial applications, especially for the 

production of transparent high performance film for the packaging industry. The objective of this 

work is to study the role played by different kinds of amorphous silica (SiO2) micro and 

nanoparticles on the viscoelastic and fracture behaviour of LLDPE based composites, prepared 

through a melt compounding process. 

Different typologies of silica filler have been considered : hydrophilic and hydrophobic fumed silica 

nanoparticles with different surface area, precipitated silica microparticles, and silica glass 

microbeads. In this way it has been possible to study the influence of the filler dimensions and 

morphology on the viscoelastic behaviour of the prepared composites, both in the molten and in the 

solid states, and on their fracture properties. 

In the first part of the work, a detailed microstructural characterization was performed to assess the 

different morphologies and surface properties of the utilized powders. Furthermore a detailed 

analysis of the dispersion state of the fillers in the matrix and of the thermal behaviour of the 

prepared composites was also conducted through optical and electron microscopy. 

In the second part of the work, viscoelastic behaviour of the composites in the molten state was 

studied through dynamic rheological tests. It was evidenced how the introduction of fumed silica 

nanoparticles and precipitated silica microparticles could lead very strong enhancement both of the 

storage (G’) and shear moduli (G’’), and of the viscosity (η), at low frequencies, especially by using 

high surface area fumed silicas at an high filler loading, while glass filled microcomposites showed 

the traditional rheological behaviour of microparticles filled polymeric systems, with marginal 

enhancements of rheological properties. Elaboration of new rheological models allowed us to find 

important correlations between fitting parameters and microstructural situation of the samples. 
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Viscoelastic behaviour in the solid state was analyzed through quasi-static tensile tests, creep tests 

and dynamic tensile tests. Elastic moduli of the prepared composites resulted to be strictly related to 

the surface area of the filler rather than by its dimensions. Even in this case a new model, taking 

into account the physical interfacial interaction between the matrix and particles, proposed to 

explain experimental results. The same conclusions could be drawn for the creep behaviour, with 

important improvements of the creep stability of the material due to the introduction of fumed silica 

nanoparticles, especially at high filler amounts. Moreover, the limit of the linear viscoelastic region 

was extended by adding fumed silica nanoperticles. Furthermore, a non linear tensile creep 

approach was succesfully applied to study the dependence of the creep behaviour from the free 

volume of the samples. The application of the classic time-temperature superposition principle was 

successfully adopted to the nanocomposite samples, evidencing that the reinforcing effect provided 

by the nanoparticles was more effective at high temperatures or longer times. Burgers model was 

adopted to model temperature dependent creep data, revealing interesting correlations between 

fitting parameters and nanofiller surface area. 

For as concern tensile dynamic mechanical properties, the introduction of the nanofiller lead to an 

increase of dynamic moduli (E’ and E’’) and to a lowering of tanδ values, especially when high 

surface area nanoparticles and elevated filler amounts were used. Even in this case dynamic 

properties of the material were mainly ruled by the surface area of the filler. 

The last part of the work was centered on the analysis of the fracture behaviour. Tensile properties 

at yield and at break increased with the surface area of the nanofiller and were positively affected 

by the presence of the organosilane on the surface of the nanoparticles. Tensile impact tests 

confirmed the enhancement of the fracture toughness provided by the nanoparticles. The application 

of the Essential Work of Fracture (EWF) approach led to the conclusion that the introduction of 

fumed silica nanoparticles produced a considerable improvement of the essential work of fracture 

(we) with the nanofiller surface area. 
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1 Introduction 
 
 
 
 

 

 

 

Nanotechnology (NT) deals with materials and devices 1 to 100 nm in length [1]. NT is one of the 

most promising areas for current research and development in several technical disciplines. Polymer 

Science and Technology is also included, with investigations covering a broad range of topics. 

Microelectronics (which could now be referred to as nanoelectronics) are involved, as the critical 

dimension scale for modern devices is now below 100 nm. Other areas include polymer-based 

biomaterials, nanoparticle drug delivery, miniemulsion particles, fuel cell electrode polymer bound 

catalysts, layer-by-layer self-assembled polymer films, electrospun nanofibers, imprint lithography, 

polymer blends and nanocomposites. Even in the field of nanocomposites, several topics exist 

including composite reinforcement, barrier properties, flame resistance, electro-optical properties, 

cosmetic applications, bactericidal properties. While the reinforcement aspects of nanocomposites 

are the primary area of interest, a number of other properties and potential applications are 

important including barrier properties, flammability resistance, electrical/electronic properties, 

membrane properties, polymer blend compatibilization. 

In the last 20 years, polymer matrix based nanocomposites have attracted the attention of many 

researchers, starting from the consideration that the addition of nanostructured materials to 

polymeric matrices can improve the physical, mechanical, thermal and electrical properties of 

polymeric matrices in relation to the application [2, 3]. Their potential use covers several fields such 

as automotive, medical, aerospace, sports and recreation, renewable energies, and so on. In recent 

years new processing routes have been developed to produce filler particles with dimensions from 

micrometric to nanometric range and for this reasons the term nanocomposites has been introduced 

[4-8]. The main thrust of this route is related to the possibility of improving the properties of the 

polymer matrix with reduced filler content (up to 5 wt%) and to the possibility of obtaining 

materials with new properties not obtainable with traditional micrometric fillers (as for example 

transparency and smoothness). 
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Both industrial and academic worlds look with great expectations toward the development of new 

nanocomposite materials: according to the ISI Web of Science database, about 10000 papers 

published in scientific journal in the period 1990-2008 contain the keywords “nanocomposite” and 

“polymer” [9].  

Starting from these considerations, the aim of this work was mainly to investigate viscoelastic and 

fracture properties of fumed silica nanocomposites based on polyethylene matrix, that still 

represents one of the most used and versatile polymers [10]. In order to evaluate the  effect of the 

filler surface area and dimensions, prepared nanocomposites were then compared with traditional 

microcomposites. Linear Low Density Polyethylene (LLDPE) based composites at different filler 

content (from 1 vol% to 4 vol%) were produced by melt compounding by using an internal mixer, 

followed by an hot pressing process (see Chapter 3.2). Different kinds of composites were 

considered: 

 

• Nanocomposites with fumed silica nanoparticles. In order to evaluate the effect of the filler 

dimensions on the mechanical behaviour of the samples, nanofillers with different surface 

area, ranging from 90 m2/g (primary particles diameter 20 nm) to 380 m2/g (primary 

particles diameter 7 nm) were employed. The effect of the surface functonalization was also 

evaluated, by using organosilane treated nanoparticles with the same surface area of the 

untreated ones. 

 

• Microcomposites with precipitated silica microparticles. This microfiller presents an average 

diameter of 7-8 µm, but surface area values comparable with that of fumed silica 

nanoparticles (165 m2/g), because of the high surface porosity obtained during the synthesis 

process. 

 

• Traditional microcomposites with silica glass beads microbeads. These microparticles have 

a mean dimension of about 20 µm and very low surface area values, due to their surface 

smoothness. 

 

The viscoelastic behaviour of the prepared samples was studied with several techniques. 

Rheological tests allowed us to characterize the mechanical response of the samples at the molten 

state, in order to evaluate the effect of particle-particle and polymer-particle interactions on the 

deformational state of the material under shearing conditions. Viscoelastic properties in the solid 
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state were assessed through quasi-static tensile tests for the evaluation of the elastic modulus, 

tensile creep tests and dynamic mechanical tensile tests. Particular attention was devoted to the 

effect of the temperature and of the applied stress on the deformational behaviour of the samples 

under constant load conditions. 

The fracture behaviour was evaluated through quasi-static tensile tests, in order to evaluate the 

effect of the various fillers on the tensile properties at yield and at break. Moreover a more detailed 

analysis on the fracture behaviour of nanocomposites based on fumed silica was conducted by the 

Essential Work of Fracture (EWF) approach. 

Several tools were used in order to correlate the mechanical behaviour to the microstructure of the 

produced samples. The various typologies of fillers were characterized through the evaluation of 

their surface area and densities. Optical and electron microscopy techniques were employed to 

evaluate the filler dispersion in the matrix, while calorimetric analyses were conducted to evaluate 

the crystallization behaviour of the composites. 

An attempt has been also made to interprete the obtained results through the application of classical 

predictive schemes developed for traditional microcomposites. These models resulted to be 

inadeguate to describe the mechanical response of nanocomposites, and new models have been 

proposed to interprete their viscoelastic and  fracture behaviour. 
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2 Background 
 
 
 
 
 
 
 
 

2.1 Micro and nano-composites 
 
 
 

In the recent years, scientific and technological developments led to the development of two 

different types of  particulate polymer composites, distinguished by the characteristic size of the 

inorganic filler particles: 

 
• traditional composites or micro-composites that contain micrometer-scale fillers (carbon 

black, calcium carbide, metal oxides microparticles, etc.) [11, 12] 

• nanocomposites that contain nanometer-scale fillers, i.e. fillers that have at least a 

characteristic size under 100 nm [4-6, 13-15] 

 

The nanofillers are generally divided in three main categories according to the shape (Figure 2.1) : 
 

• one nanodimensional fillers (1-D), i.e. plate-like materials such as all the types of layered 

silicates and graphite nanoplates [16-20] 

• two nanodimensional fillers (2-D), i.e. nanotubes or nanofibers such as carbon nanotubes, 

carbon nanofibers, boron/nitrogen nanotubes, nanotubes made of dichalcogenides (MoS2, 

WS2, etc.), nanotubes of several oxides (V2O5, MoO3, etc.) and organic nanotubes [8, 15]  

• three nanodimensional fillers (3-D), i.e. particulate like-spherical materials such as metal 

oxides (ZnO, Al2O3, CaCO3, TiO2, etc.), fumed metal oxides (SiO2, TiO2, etc.), silicon 

carbide (SiC), polyhedral oligomeric silsesquioxanes (POSS) and carbon black (CB) [21-23] 
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(a) (b) (c) 

Figure 2.1 Examples of nanofillers: plate-like materials (a), nanotubes (b) and equi-axed nanofillers (c) 

 

Research and development of nanocomposites greatly increased in recent years for several reasons. 

Most of all, unprecedented combinations of properties have been observed in some polymer 

nanocomposites. The unique properties of the nanocomposites are mainly related to the small size 

of the filler particles and to the particular properties of the particles themselves, as schematically 

represented in Figure 2.2 [24]. Moreover controlling the degree of interaction between the filler and 

the polymer it is possible to change the final properties of the composite, because the polymeric 

chains around nanofillers show a different behaviour than in the bulk matrix (e.g. degree of 

mobility, cross-linking or crystallinity). In the case of the nanocomposites the extent of the 

interphase (which typically has a thickness between 2 and 50 nm) is more important than in 

traditional microcomposites because the small size of the particles results in exceptionally large 

filler-polymer interfacial area. This means that original matrix properties can be altered 

significantly, even at low filler contents. 

 

 

Figure 2.2 Dimensional comparison between microparticles and nanoparticles 
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The key factor in order to obtain all these advantages is controlling the nanoparticles dispersion 

degree, in the sense that nanofillers must be homogeneously distributed and dispersed in the 

polymer matrix. Figure 2.3 shows examples of the different dispersion and distribution conditions 

that can be eventually reached [4].  

 

 
 

Figure 2.3 A schematic illustration of (a) good distribution but poor dispersion, (b) poor distributio n and poor 
dispersion, (c) poor distribution but good dispersion and (d) good distribution and good dispersion 

 
In order to obtain a high dispersion degree and a good interaction, several techniques can be used to 

prepared polymer matrix nanocomposites. The various processes can be grouped in three main 

categories [25]: 

 

• Solution process : the nanofiller is previously dispersed in a solvent and then a soluble 

polymer is added. In this way an homogeneous solution, in which the nanoparticles are well 

dispersed, can be obtained. The solvent is then removed through evaporation . 

 

• In situ polymerization : this method is mainly used when thermosetting resin, such as 

epoxies and polyurethanes, are chosen as matrices. In some cases thermoplastic matrices. 

The nanofiller is previously dispersed in the monomer or in an organic precursor, then the 

complete polymerization of the matrix is conducted by adding the crosslinking agent or the 

catalyst, or by simply heating the reactive system.    

  

• Melt compounding process : this technique is mainly utilized for the preparation of 

thermoplastic based nanocomposites, and the nanofiller is simply added in the molten 

polymer as any other kind of additive. Traditional techniques, such as melt mixing with twin 

screw extruder or injection moulding, can be employed in this case. 



Background 
_______________________________________________________________________________________ 

_____________________________________________________________________________ 
29 

 

In any case, the dispersion degree of the nanoparticles can be improved with surface treatment of 

the filler, in order to hinder agglomeration phenomena. Moreover, these treatment can be employed 

to improve the filler-polymer interaction. 

It is difficult to construct a general scheme for the interpretation of the results available in the 

scientific literature on polymer based nanocomposites, because of the complex interaction 

possibilities between the inorganic nanofiller and the polymeric matrix. In general the advantages 

due to the use of nanocomposites are generally related to an improvement of the mechanical 

properties, to an increase of the dimensional stability, to a better thermal degradation resistance 

[20]. In many cases this improvements can be obtained without any loss of the original optical 

clarity of the unfilled matrix [26, 27]. 

For as concern the mechanical properties improvement, it is well known that the addition of high 

modulus fillers increases the modulus and the strength of a polymer, but in traditional composites 

this comes at the cost of an heavy reduction in ductility and in impact strength, because of stress 

concentrations caused by the fillers. Well dispersed nanoparticles can improve the stiffness and the 

strength of the pristine material, maintaining or even improving ductility, because their small size 

does not provoke large stress concentrations [28]. Moreover, the large interfacial area of 

nanocomposites provides an opportunity for significantly altering the original matrix properties. It 

is also clear that a proper dispersion is critical for improving the fracture toughness of the material. 

As an example, Hasegawa prepared polypropylene-clay nanocomposites, finding that the strain at 

break of the material is unaffected by the presence of clay when a complete exfoliation of the 

nanoplatelets occurred. For higher filler loading (>3 wt%), nanoclay aggregation leads to a strong 

decrease of the ductility of the material, typical of microcomposite systems. In the scientific 

literature there are several examples supporting these considerations, and many authors reported an 

optimum volume percent of filler, claiming that the decrease in ductility above the optimum is due 

to agglomeration [29, 30].   

The extremely large interfacial region in nanocomposites gives a significant opportunity for 

changing the polymer mobility and relaxation dynamics. Although the specific mechanisms of 

chain dynamics are not completely understood, it is clear that the rheology/glass transition 

temperature of a polymer can be altered by changing the polymer mobility by nanofillers addition. 

For example, in some cases it was demonstrated that the Tg can be suppressed for clay 

nanocomposites with intercalated polymer chains. This indicates a limited ability for cooperative 

motion when the polymers are confined between the layers [31]. On the contrary, if the clays are 

exfoliated, the polymer is not confined, and the Tg does not change significantly. Without the effect  
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of the confinement, the glass transition temperature can be increased if the polymer is tightly bound 

to the nanofller [29, 32, 33]. Many studies are now in course to understand the role of nanofillers in 

controlling damping and melt rheology [31, 34, 35]. The incorporation of nanoscale fillers may 

cause unexpected results on abrasion resistance. In traditional composites, as the filler size 

decreases to a size similar to that of the abrading particles, filler particles are removed and the 

abrasion resistance is compromised. This does not happen on nanocomposites. As an example, the 

addition of CaCO3 nanoparticles to PMMA leads to a significant enhancement of the abrasion 

resistance of the material, with a filler content of only 3 wt% [36]. Moreover, nanoparticles can 

simultaneously improve wear resistance and decrease the coefficient of friction 

Nanocomposites can also be an optimal solution for improving both thermal and environmental 

stability. This is due to the reduction in the coefficient of thermal expansion (CTE) due to the 

presence of the nanofiller [37, 38]. If for traditional low filled microcomposites the lowering of the 

CTE is almost linear, for nanofilled material this dependency is nonlinear anymore, because of the 

presence of a wide interfacial region. The formation of a thin film of polymer with very low CTE 

around the nanofiller can be hypothesized. For the same reason, the strong interaction between 

polymer and nanofiller leads to a strong increase of the swelling resistance, especially for nanofilled 

rubbers [39]. 

The presence of a tortuous diffusion path due to the complete dispersion of nanofillers in polymeric 

membranes can be exploited for a very important reduction of gas and liquid permeability of 

nanofilled polymers, making them attractive for industrial applications [40, 41]. Several simple 

models have been elaborated in order to predict the decrease of the relative permeability with the 

nanofiller content of polymeric materials [42, 43], taking into account the effect provided by the 

nanofiller dispersion state on the diffusion path and the matrix-filler interfacial interaction [44-46]. 

For the same reasons it is easy to understand that the dispersion of nanofillers (especially clays) can 

be very important to increase the degradation temperature of the material, and exfoliated 

nanocomposites have in general significantly higher degradation temperatures than intercalated 

nanocomposites or traditional microcomposites [47, 48]. In fact, if the oxygen cannot penetrate, 

then the oxidation of the resin is impossible. As an example, the degradation temperature increased 

of 50 °C for a polyethylene matrix intercalated with 10 wt% clay [49]. 

Moreover, the flammability properties of many nanofilled systems can be strongly improved [50, 

51]. From the analysis of the resulting char for clay filled nanocomposites it is evident that the 

layered silicate collapses during combustion and forms a uniform layered structure, that acts to 

reinforce the char and reduce the permeability of the char itself, reducing the rate of volatile product  
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release [52, 53]. As an indication, clay nanocomposites commonly show a 60% reduction in peak 

HRR (heat release rate) relative to the unfilled polymer.  

Electrical and optical properties of nanofilled polymers are promising areas of applications for these 

new systems. For example, it is possible to obtain composites that combine a good electrical 

conductivity with good wear properties and optical transparency. This is possible because in many 

cases the nanoparticles have diameters well below the Rayleigh scattering limit, still displaying a 

solid state behaviour when embedded in transparent matrices. If the permittivity of polymers can be 

increased also with traditional metallic microparticles, the use of microfiller results in a significant 

decrease in breakdown strength due to the field concentration created by the particles. By using 

nanoparticles the reduction in breakdown strength is not so dramatic, because of the good 

dispersion of the nanostructured domains. Relatively good optical clarity has been obtained in many 

nanocomposites, particularly at low volume fractions. For example, studies on modified PMMA 

were shown to maintain optical clarity up to 10 wt% bentonite. Moreover, with the use of 

nanoparticles it is also possible to significantly alter the original refractive index of the material, 

preparing nanocomposites with refractive indices over the entire range between 1 and 3.9 [54, 55]. 

As an example, the addition of nanoscale iron sulphide to polyethylene increased the index of 

refraction between up to 2.8 [56]. 

Obviously, many other applications and interesting properties can be obtained by incorporating 

nanostructured materials in polymers, but the complete description of these system is out of the 

main purposes of these introductive section, that was intended to provide a general overview on the 

most important technological possibilities related to the formulation of nanocomposites.  

 
 

2.1.1 Layered crystals nanomaterials 
 
 
Layered crystals are a particular kind of nanomaterials, characterized by only one dimension in the 

nanometer range. In this case the filler is present in the form of sheets of one to a few nanometer 

thick to hundreds to thousands nanometers long. For this reason layered crystals nanocomposites 

can be exclusively obtained by the intercalation of the polymer (or a monomer subsequently 

polymerized) inside the galleries of layered host crystals. There is a wide variety of crystalline 

fillers that are able, under specific conditions, to host a polymer in the interlayer galleries, as 

reported in Table 2.1. 
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Chemical nature Examples 

Element Graphite 

Carbon oxides Graphite oxides 

Metal phosphates Zr(HPO4) 

Clays and layered silicates 
Montmorillonite, hectorite, saponite, 

fluoromica, fluorohectorite, 
vermiculite, kaolinite, magadiite, … 

Layered double hydroxides M6Al 2(OH)16CO3·nH2O (M = Mg, Zn) 

 

Table 2.1 A summary of the main typologies of layered crystalline nanostructured materials [57] 

  
Among all the layered crystals, those based on clay and layered silicates have been more widely 

investigated probably because the starting clay materials are easily available and because their 

intercalation chemistry has been studied for a long time. The layered silicates commonly used in 

nanocomposites belong to the structural family known as the 2:1 phyllosilicates [57]. Their crystal 

lattice consists of two-dimensional layers where a central octahedral sheet of alumina or magnesia 

is fused to two external silica tetrahedron by the tip so that the oxygen ions of the octahedral sheet 

do also belong to the tetrahedral sheets, as reported in Figure 2.4. 

 
 

 
 

Figure 2.4 Typical chemical structure of a 2:1 phyllosilicate [58] 
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The layer thickness is around 1 nm and the lateral dimensions of these layers may vary from 300 Å 

to several microns and even larger depending on the particular silicate. These layers organize 

themselves to form stacks with a regular van der Walls gap in between them called the interlayer or 

the gallery. Isomorphic substitution within the layers (for example, Al3+ replaced by Mg2+ or by 

Fe2+, or Mg2+ replaced by Li+) generates negative charges that are counterbalanced by alkali or 

alkaline earth cations situated in the interlayer.  

As the forces that hold the stacks together are relatively weak, the intercalation of small molecules 

between the layers is relatively easy [59]. In order to render these hydrophilic phyllosilicates more 

organophilic, the hydrated cations of the interlayer can be exchanged with cationic surfactants such 

as alkylammonium or alkylphosphonium (onium). The modified clay (or organoclay) being 

organophilic, its surface energy is lowered and is more compatible with organic polymers [60-62]. 

Montmorillonite, hectorite and saponite are the most commonly used layered silicates, and their 

chemical formula is reported in Table 2.2. 

This type of clay is characterized by a moderate negative surface charge (known as the cation 

exchange capacity, CEC and expressed in meq/100 g). Even if a small part of the charge balancing 

cations is located on the external crystallite surface, the majority of these exchangeable cations is 

located inside the galleries. When the hydrated cations are ion-exchanged with organic cations such 

as more bulky alkyammoniums, it usually results in a larger interlayer spacing . 

 
 

2:1 phyllosilicate type general formula 

Montmorillonite Mx(Al 4-xMgx)Si8020(OH)4 

Hectorite Mx(Mg6-xLi x)Si8020(OH)4 

Saponite MxMg6(Si8-xAl x)020(OH)4 

M = monovalent cation; x = isomorphous substitution degree (0.5 -1.3) 

 

Table 2.2 General formulas of montmorillonite, hectorite and saponite [58] 

 
Depending on the nature of the components used (layered silicate, organic cation and polymer 

matrix) and the method of preparation, three main types of composites may be obtained when a 

layered clay is associated with a polymer, as summarized in Figure 2.5. When the polymer is unable 

to intercalate between the silicate sheets, a phase separated microcomposite is obtained, whose  
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properties stays in the same range as traditional microcomposites. Beyond this classical family of 

composites, two types of nanocomposites can be recovered. Intercalated structure in which a single 

(and sometimes more than one) extended polymer chain is intercalated between the silicate layers 

resulting in a well ordered multilayer morphology built up with alternating polymeric and inorganic 

layers. When the silicate layers are completely and uniformly dispersed in a continuous polymer 

matrix, an exfoliated or delaminated structure is obtained [63]. 

 

 
 

Figure 2.5 Three different microstrctural configuration of polymer clay nanocompsites 

 
 

Two complementary techniques are used in order to characterize those structures. XRD is used to 

identify intercalated structures. In such nanocomposites, the repetitive multilayer structure is well 

preserved, allowing the interlayer spacing to be determined. The intercalation of the polymer chains 

usually increases the interlayer spacing, in comparison with the spacing of the organoclay used, 

leading to a shift of the diffraction peak towards lower angle values, according to the Bragg’s law. 

Figure 2.6 reports an example of X-Ray diffractogram in the three different microstructural 

situations.  
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Figure 2.6 XRD patterns of: (a) phase separated microcomposite (organo-modified fluorohectorite in a HDPE 

matrix); (b) intercalated nanocomposite (same organomodified fluorohectorite in a PS matrix) and (c) exfoliated 
nanocomposite (the same organo-modified fluoro fluorohectorite in a silicone rubber matrix) [58] 

 
As far as exfoliated structure is concerned, no more diffraction peaks are visible in the XRD 

diffractograms either because of a much too large spacing between the layers (i.e. exceeding 8 nm 

in the case of ordered exfoliated structure) or because the nanocomposite does not present ordering 

anymore. In the latter case, transmission electronic spectroscopy (TEM) is used to characterize the 

nanocomposite morphology [64, 65], as represented in Figure 2.7. 

 

 
Figure 2.7 TEM micrographs of epoxy-clay (5 wt%) nanocomposite at various magnifications [14] 

 
The thermodynamics that drives the intercalation is determined by an interplay of entropic and 

enthalpic factors [66]. In fact, although the confinement of the polymer chains inside the silicate  
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galleries results in a decrease in the overall entropy of the macromolecular chains (partially 

compensated by the increase in conformational freedom of the tethered alkyl surfactant chains as 

the inorganic layers separate), intercalation will rather be driven by the decrease of the total 

enthalpy, due to two components : apolar interactions generally unfavorable and arising from 

interaction between polymer and surfactant aliphatic (apolar) chains, and polar interactions which 

originate from the Lewis acid/Lewis base character of the layered polar silicates interacting with the 

polymer chains. The free energy curves may be grouped into three types, as reported in Figure 2.8. 

First, curves that are positive at all gallery heights (type I). In this case, polymer intercalation is 

unfavorable, and the polymer and the organo-modified layered silicates are immiscible. The second 

type regroups the curves displaying one minimum (type IIa and IIb), corresponding to well defined 

intercalated structures before complete layer exfoliation. Finally, the third type of curves displays a 

continuous decrease in the free energy values with gallery height expansion, indicating that polymer 

intercalation and complete layer separation is favorable. This last type corresponds to complete 

polymer-silicate layer miscibility, characteristic of exfoliation. 

 

 
Figure 2.8 Variation of the free energy per unit area (h∆fV) in function of the change in gallery height (h-h0) 
calculated for an arbitrary polymer interacting wit h a silicate layer functionalized with octadecylammonium 

groups [66]. 

 
 

2.1.2 Nanofiber or nanotubes fillers 
 
 
The most important class of 2-D nanomaterial is for sure that of carbon nanotubes. Since the 

discovery of carbon nanotubes (CNTs) in 1991 by Iijima [67], CNTs have been looked at with great  
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interest in the field of the polymer composites because their unique physical, mechanical, electrical, 

thermal and optical properties [68-70] . 

The production of composites requires preliminary treatments to prepare the CNTs for the 

processing. In fact, most production processes generate a range of carbonaceous particles such as 

amorphous carbon, fullerenes, and nanocrystalline graphite. Moreover, metal catalysts remain as a 

residue. The most common methods to remove unwanted by-products include thermal treatment in 

air or oxygen for selective etching of amorphous carbons, and acid treatment for eliminating 

catalyst residues. Mechanical techniques like centrifugal separation, size exclusion chromatography 

and microfiltration may be applied as well. Obviously all these techniques reduce the effective yield 

of the production process. In addition a chemical functionalization, i.e. the addition of new 

functional groups, can be conducted on the CNTs to improve the nanotube-polymer interactions for 

processability and property enhancement. Several approaches have been employed to obtain surface 

modifications, but the most relevant treatments are the acid treatments. In fact, acid treatments with 

HNO3, H2SO4, H2O2 or mixture oxidize the surface of CNT and introduce carboxylic acid, hydroxyl 

groups, etc. Then the new functional groups can be used as linking for subsequent chemical 

reactions to attach new chemical groups on the CNT surface. Examples of this procedure are the 

reactions with thionyl chloride, amines, silane coupling agents and thiols. 

From a structural point of view a carbon nanotube is a hexagonal network of carbon atoms rolled up 

into a seamless, hollow cylinder, with each end capped with half of a fullerene molecule (Figure 

2.9). There are two main kinds of nanotube. Single-walled nanotubes (SWCNTs) are individual 

cylinders of 1-2 nm in  diameter, which are actually a single molecule, and multi-walled nanotubes 

(MWCNTs) are a collection of several concentric graphene cylinders. The diameter, the chirality, 

and the form of the nanotube determine its properties. 

The mechanical properties of various types of nanotubes have been extensively studied both by 

experimental and computational tools. From a general point of view their modulus can be higher 

than 1 TPa and their tensile strength can reach 600 GPa with strain at break up to 40% (Figure 

2.10). Moreover they can have the same electrical and thermal conductivity of the graphite (in-

plane), i.e. 3000 W⋅m-1⋅K-1 and 5⋅10-5 Ω⋅cm, and very low density, i.e. 1.3 g/cm3. Nevertheless, 

these properties are achieved only in the case of individual SWCNT: the modulus of a ropes 

containing bundled SWCNT considerably decreases as the rope diameter increases because of the 

slippage occurring between the individual nanotubes within the rope. Moreover the MWCNTs have 

a lower modulus because only the outermost layers carry the load, and it can go down to 100 GPa. 
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(a) 
 

(b) 

Figure 2.9. (a) Schematics of a single-walled carbon nanotube and a multiwalled carbon nanotube [5]  and (b) 
TEM micrographs [67] 

 
 

 
Figure 2.10. Tensile modulus and shear modulus (onset) of SWCNT as a function of rope diameter [71] 

 
There are other types of carbon nanotubes with some role in the fabrication of nanocomposite 

materials. The closest in the structure and mechanical properties to carbon nanotubes are hexagonal 

boron/nitrogen (BN) nanotubes. Several techniques can be used to produce single walled and  
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multiwalled nanotubes : arc-discharge, laser ablation and CVD processes. The modulus and strength  

of BN nanotubes are very similar to those of their carbon counterparts, but they possess better 

oxidation resistance and electrical insulation [72]. It is also possible to dope the lattice of carbon 

nanotubes with boron and nitrogen, providing a broad range of BCN structures [73].  

Furthermore most layered materials can be fabricated into nanotubes, for example starting from 

dichalcogenides (MoS2, WS2, etc.) [74], several oxides (V2O5, MoO3, etc.) [75] and organic 

materials. These materials are not currently available in bulk quantities, and hence very little data 

are available on the mechanical and electrical properties of composites containing these 

nanostructures.  

 
 

2.1.3 Equiaxic nanoparticles 
 
 
 

The production of nanoparticles with controlled size and degree of aggregation is the goal of many 

research efforts. On of the main advantages of using nanoparticles in a composite structure is that 

the particle size and distribution can be stabilized. Moreover the particles can lend properties of the 

final composites that cannot be achieved with traditional fillers. Nanoparticles have been available 

for more than a century [76], but in the last decades important developments have been made in this 

field. Attrition of purified minerals is the most common method. In this technique, macro or micro 

scale particles are ground in a ball mill, a planetary ball mill, or other size reducing mechanism. The 

resulting particles are than air classified to recover nanoparticles. 

 

2.1.3.1 Fumed metal oxides nanoparticles 
 

 

Aerosol methods usually result in the formation of nanoparticles by condensation from a gas phase 

[77]. One example of a highly successful commercial aerosol process is flame hydrolysis, the 

principal technique to produce fumed oxides nanoparticles. Here, a vapour precursor (such as 

silicon tetrachloride to make silica) is burned an a hydrogen / oxygen fuel mixture to produce the 

metal oxide, as represented in Figure 2.11. 
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Figure 2.11 Production process of fumed silica nanoparticles 

 

Titania, alumina, and zirconium oxide can all be produced this way. For silica, particle sizes from 7 

to 27 nm of diameter and surface area ranging form 100 to 380 m2/g can be produced. An example 

of silica fumed nanoparticles with a surface area of about 160 m2/g is represented in Figure 2.12. 

 

 
 

Figure 2.12 TEM images of the structure of fumed silica nanoparticles (160 m2/g) 

 
The structure can be controlled by adjusting the temperature and time of reaction. For example at 

higher temperatures particles coalescence is faster and low surface area materials are produced. At 

lower temperatures, coalescence is slow relative to the collision rate, and fractal agglomerates are 

generated [78]. The surface of these nanoparticles can then chemically treated in order to attach 

different functionalities and impart specific properties to the nanofiller. This process can be done by  
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using organosilanes, that can be chemically linked to the silanol groups present on the surface of the 

nanoparticles. The most important use of fumed mixed oxides nanoparticles is for improving the 

rheological properties of paints, for reinforcing elastomers and as surface modifiers. One of the 

most important properties of fumed metal oxides is their ability to increase viscosity and provide 

thixotropic effects. At rest, when fumed silica (or another fumed metal oxide) is incorporated into a 

liquid, interactions, i.e. forces of attraction, can arise between the particles. These surface forces 

cause aggregates that coalesce to form into large agglomerates, until a three dimensional network is 

formed. As this network forms, the viscosity of the liquid increases greatly. The special bulky 

structure of this nanofiller means that a high viscosity can be built up by only small amounts of 

nanoparticles. As reported in Figure 2.13, in the case of hydrophilic (not surface treated) 

nanoparticles, these interactions are typically caused by hydrogen bonds between silanol groups on 

the surfaces of adjacent particles. With hydrophobic (surface treated nanoparticles), additional 

hydrophobic interactions and forces of attraction occur between the silylated surfaces [22]. 

 

 

(a) 

 

(b) 

Figure 2.13 Filler-filler interactions of fumed silica aggregates (a) in the steady state, (b) after shearing 
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Under shearing, breakdown of hydrogen bonds occurs. The particle-particle interactions are broken 

down and the nanoparticles can move with respect to one another. This breaks down the particle 

network, and the agglomerates become smaller. The viscosity of the liquid decreases. The greater 

the applied shear force, the more fluid the substance becomes (Figure 2.14). 

 

 
Figure 2.14 Viscosity and shear stress vs shear rate in fumed silica filled viscous liquid 

 
 
For as concern the use of fumed metal oxides nanoparticles as reinforcement for elastomers, the 

addition of active fillers provides the required high level of elasticity to several kinds of elastomers. 

Moreover the addition of these fillers can improve the elastomer's mechanical properties, such as 

modulus, tensile strength or elongation at break [23]. 

The excellent reinforcing effect of fumed oxides nanoparticles can be directly attributed to their 

large specific surface area. This exists as an external surface, and is therefore readily available for a 

large number of interactions with polymer chains of the elastomer network. The characteristic 

particle structure allows mechanical stresses and forces to be distributed throughout the elastomer 

network, thus increasing strength and ensuring high elongation and loading capacity. In many 

applications, these nanofillers are used as reinforcing filler and rheological additive. In highly filled 

silicone elastomers, the high thickening effect of hydrophilic silicas can limit processability. High 

filler contents and good processability with low viscosity can be obtained by rendering the surface 

of these nanoparticles hydrophobic by reaction of the silanol groups with silylating agents to form 

dimethylsiloxy or trimethylsiloxy groups. 
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2.1.3.2 Carbon black nanoparticles  
 

 

Pyrolysis is another aerosol method and is commonly used to make carbon black [79, 80]. The 

carbon black (CB) is a amorphous form of carbon produced by incomplete combustion or thermal 

decomposition of gaseous or liquid hydrocarbons under controlled conditions. The carbon atoms are 

arranged in blocks of graphene layers with reduced dimensions and then these basic units are 

organized with a turbostratic structure to form spherical particles with diameter from 10 to 100 nm. 

The graphene layers are very similar to the graphitic structure: most of the carbon atoms in carbon 

black are sp2-hybridized to form benzene rings as for graphite, but the ordered structure is 

maintained only over short lengths (3-4 layers). 

During the production process the primary particles fuses into aggregates. Moreover agglomerates 

can grow because the small distances between the aggregates and the strong van der Waals forces 

present (Figure 2.15). While an aggregate is indivisible, the agglomerates can be destroyed during 

the typical processing of the polymer. A CB characterized by primary aggregates composed of 

many prime particles, with considerable branching and chaining, is referred to as a high-structure 

black. If the primary aggregates consist of relatively few prime particles, the CB is referred to as a 

low-structure black. Moreover from a general point of view the primary particle diameter and the 

structure complexity are not directly related [81]. 

 
 

 

Figure 2.15. CB primary particles fused together to form aggregates and then agglomerates. 
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Figure 2.16. Scheme of the different CB conformations in relation to particle size and structure 

 
The particle size is typically determined by transmission electron microscope (TEM) measurements 

(see ASTM D-3849). Alternatively the specific surface area (SSA) can be measured by nitrogen 

adsorption measurements using the Brunauer-Emmet-Teller procedure (ASTM D 6556) or by the 

iodine number test (ASTM D 1510): small particles will confer a large surface area per unit weight. 

SSA measured with the BET method typically varies between 25 and 1500 m2/g (Figure 2.16). 

Furthermore Equation  2.1 holds in the case of spherical particles with low porosity: 

 

Equation  2.1 

ρBET
BET S

d
6000=  

 

where dBET is the average primary particle diameter in nm, SBET the specific surface area determined 

by BET method in m2/g and ρ the density in g/cm3. 

On the other side CB structure is evaluated by oil adsorption number (OAN), which represents the 

amount of oil (normally dibutyl phthalate, DBP) that can be absorbed by CB to reach a critical 

viscosity (ASTM D 2414). A higher value of OAN indicates a higher structure. OAN measured 

with DBP typically varies between 0.05 and 5 cm3/g. Moreover, CBs have to be evaluated by taking 

to account other factors such as the porosity, that in certain case can reach 30%, and the chemical 

groups on the surface introduced by the manufacturing process such as phenolic, quinolic and 

carboxyl chemisorbed complexes. 
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2.1.3.3 Other typologies of equiaxic nanoparticles  
 

 

Gas condensation method is another important technique to produce equiaxic nanoparticles [82, 83]. 

In  this case a metal vapour is formed in either an oxygen atmosphere or an inert gas. In an oxygen 

atmosphere, the metal reacts with the oxygen to form metal oxides, which are collected by cooling 

the gas and condensing the nanoparticles. In an inert atmosphere, metal nanoparticles result. 

Advantages of this technique are that the particle size distribution is narrow, the particles are 

crystalline and the surface are clean.    

Laser ablation is another form of gas condensation [84-86]. Here, targets (metal, metal oxides, or 

semiconductors) are ablated with a laser. An inert or reactive is supplied to cool, condense, and 

sometimes react with the target material. Significant amount of nanoparticles can be produced with 

this technique. 

Other methods for creating a vapour that condenses into nanoparticles include plasma and chemical 

vapour condensation, spray pyrolysis, electrospray, and plasma spray. These processes can form a 

wide range of nanoparticles.  

One very interesting variation of the aerosol process recently developed combines sol-gel 

processing with the aerosol process [87]. Hydrolysis and condensation of tethraetoxysilane (TEOS) 

is carried out in a laminar flow chamber at temperatures ranging from room temperature to 100 °C. 

Through this technique large surface area (400 m2/g) linearly agglomerated nanoparticles can be 

obtained. 

There are several wet-chemistry methods, in which one or two precursor are placed in an 

appropriate solution and nanoparticles form [88, 89]. These can be stabilized with an emulsion, 

surfactant, or a macromolecule that surrounds and protects the nanoparticles from agglomerations.  

There are also minor techniques, used in some particular applications. For example metal 

nanoparticles can be also made by sonication chemistry [90], while metal oxides can also be formed 

by taking advantage of hydrodynamic cavitation [91], produced by using a high pressure fluid 

system in the presence of a sol-gel solution. 

Because the objective of this introductive part is giving a general panorama of the main  

technological aspects and of the properties of isodimensional nanoparticles, many significant 

aspects about the nanoparticle processing were left out, leaving a more detailed description to 

specific texts. 
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2.1.4 Polyhedral oligomeric silsesquioxanes (POSS)  
 

 

Hybrid organic-inorganic materials are a very wide class of  materials, that attracted the interest of 

many researchers in the last years. These materials can combine an inorganic structure with organic 

functionalities, or viceversa. From this definition it is immediately evident that a huge number of 

different chemical structures can be obtained. Leaving the complete description of these system to 

specific books, our attention is now focused on polyhedral oligomeric silsesquioxanes (POSS) , that 

are one of the most important kind of nanohybrids. 

They were discovered and isolated for the first time in 1946 [92], starting from the hydrolytic 

condensation of trifunctional organosilicon monomers (for example RSiCl3, RSi(OMe)3). As 

represented in Figure 2.17, POSS are constituted by a Si-O cage, and by different organic 

functionalizations that can be chemically attached on silicon atoms of the cage. In this way a wide 

chemical versatility can be obtained, developing POSS nanoparticles that can be chemically or 

physically linked to the polymeric matrix. 

 

 

Figure 2.17 Structure of a polyhedral oligomeric silsesquioxane (POSS) 

 

As represented in Figure 2.18, POSS molecules are physically large with respect to the lateral 

dimensions of polymeric chains, and nearly equivalent in size to most polymer segments and coils. 
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Figure 2.18 Comparison between POSS inorganic domains and polymer segments and coils 

 

POSS molecules can be thought of as the smallest particles of silica possible [93, 94]. However 

unlike silica or modified clays, each POSS molecule contains covalently bonded reactive 

functionalities suitable for polymerization or grafting POSS monomers to polymer chains. Each 

POSS molecule contains non reactive organic functionalities for solubility and compatibility of the 

POSS segments with the various polymer systems. The chemical diversity of POSS technology is 

very broad and a large number of POSS monomers and polymers are currently available. 

POSS chemical technology is easy to use with monomers available in both liquid and solid form 

and they are soluble in most common solvents. Hence, POSS technology can be used in the same 

manner as common organics, in either monomer or polymeric (resin) form. POSS chemical 

feedstocks can be added to nearly all polymer types (glassy, elastomeric, rubbery, semicrystalline 

and crystalline) and compositions.  

Enhancements in the physical properties of polymers incorporating POSS segments result from 

POSS’s ability to control the motions of the chains while still maintaining the processability and 

mechanical properties of the base resin. This is a direct result of POSS’s nanoscopic size and its 

relationship to polymer dimensions.  

It is widely demonstrated that the use of POSS segments in plastics results in enhancement of the 

physical properties of the compositions [95]. Compared to common fire retarded plastics, polymers 

containing POSS show delayed combustion and major reductions in heat evolution [96]. POSS’s 

ability to control chain motion results in usage temperature enhancement of nearly all types of 

thermoplastics and thermoset polymers [97]. In many cases the glass transition can be increased by 

100-200°C or even up to the decomposition temperature of the polymer. Moreover use of POSS  
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additives often eliminates the need to use common (dense) fillers such as silica. Depending on 

loading level, bulk density reductions of up to 10% have been observed with viscosity reductions of 

up to 24% relative to silica. In many cases POSS incorporation increases modulus and hardness 

while maintaining the stress and strain characteristics of the base resin [98]. Additionally since 

POSS is a chemical nanotechnology, processing and moldability is maintained. Because of its 

chemical nature POSS technology can be tailored to meet resin and consumer compatibility needs. 

Furthermore, since POSS is a new chemical feedstock technology it can be used to upgrade the 

properties of existing patented compositions while enabling the patentability of the new material 

composition. 

 

 

2.2  Viscoelastic behaviour in the molten state : rheological properties 
 
 

2.2.1 General definitions 
 

 

The rheology is a science that studies how materials flow, in order to predict their deformational 

behaviour under different loading conditions. It is easy to understand that the field of application of 

rheological studies is very wide, because every material will, under different stresses, behave in a 

different way [99]. Theoretically, all the material present a viscoelastic response at an imposed load. 

In polymeric materials above the glass transition temperature (Tg), this behaviour is predominant, 

while in the glassy state the linear elastic response is prevalent. The viscoelasticity theory can be 

understood referring to two ideal models : the elastic solid and the viscous liquid. A perfect solid 

under a stress deforms itself elastically : all the deformational energy is stored as elastic potential 

energy, that will be released when loads are removed. On the contrary, ideal fluids deform 

irreversibly : all the deformational energy is dissipated and not recoverable. Hooke law (Equation  

2.2) and Newton law (Equation  2.3) describe the behaviour of elastic bodies and viscous fluids, 

respectively [100]: 

 

Equation  2.2 

γτ G=  
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Equation  2.3    
γητ &=  

 
Where τ is the applied shear stress, γ is the shear strain, G is the shear modulus and η is the 

viscosity. In elastic materials the stress is directly proportional to the deformation and completely 

independent from the deformation rate. Hooke law is valid both for normal and shear stresses. For 

pure viscous fluids the stress is proportional to the deformation rate and completely independent 

from the deformation itself. The viscosity defines the resistance of a fluid to the irreversible 

deformation. There are two important deviations from the purely Hookean or Newtonian behaviour. 

 
 
1) The deformation in a solid or the deformation rate in a liquid can be not directly proportional to 

the applied stress, following more complex dependences, as reported in Equation  2.4 and in 

Equation  2.5 : 

 

Equation  2.4 

( )nK γτ &=  
 

Equation  2.5 

( ) 1−= nK γη &  
 

 

where n is an exponent that determines the rheological nature of the material [101]. If n > 1 the 

material is called dilatant, if n < 1 the fluid is pseudoplastic, while for n = 1 we have again a 

Newtonian fluid, as reported in Figure 2.19 and in Figure 2.20. 

 

 
Figure 2.19 Deviation from the Newtonian behaviour: dilatant and pseudoplastic fluids 
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Figure 2.20 Rheological curves for Newtonian, Dilatant and Pseudoplastic fluids 

 

Polymeric materials at the molten state behave typically as pseudoplastic materials, and Figure 2.21 

reports a typical rheological curve, in which the shear rate intervals for the different technological 

processes, are reported. It is possible to see that at low shear rates, Newtonian behaviour is 

observed, and apparent viscosity corresponding to this region of a flow curve is called zero-shear or 

initial or maximum Newtonian Viscosity (η0). Then the decrease of apparent viscosity (declining 

from the straight line) is observed, typical of non-Newtonian behaviour.  

 

 
Figure 2.21 Typical rheological curve for a thermoplastic material 

 
Many attempts were made to describe flow curves of various materials by analytical functions of 

different type, both on theoretical and empirical levels. The most frequently applied equations for 

the flow curves with distinctly expressed range of initial Newtonian viscosity are reported in Table 

2.3 [102]. 
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Table 2.3 The most important equations used to analitically describe the rheological behaviour of polymeric 
materials 

 
 
2) The stress can depend both on the deformation and on the strain rate, in this case the material 

presents simultaneously elastic and viscous properties and it is called viscoelastic. In this situation 

the basic relation that describes stress-strain relation is a linear expression, reported in Equation  2.6 

:  

Equation  2.6 

γηγτττ &+=+= Gve  

 
 
This relation puts in evidence a linear viscoelastic behaviour, in which the stresses associated to the 

strain and to the strain rate are additive. In many cases linear viscoelasticity is present when 

infinitesimal deformations are applied. For higher strain level stress-strain relations are more 

complex and the viscoelastic behaviour of the material is not linear anymore. In order to study the 

viscoelastic behaviour of a material it is possible to conduct creep (constant stress) or relaxation 

(constant strain) experiments, or referring to dynamic mechanical analyses. 

 
 

2.2.2 Dynamic rheological tests 
 
 
Creep or relaxation tests are very useful techniques in order to study the viscoelastic behaviour of 

the material at relatively high loading times. With dynamic methods it is possible to extend the  
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characterization curve of a material on a wide frequency range (10-9-109
 Hz)  in relatively short 

testing times [101]. The experimental procedure is based on the application of a sinusoidal shear 

strain with a certain frequency (ω) and the evaluation of the shear stress, or viceversa. The test are 

conducted with a rotational rheometer. Supposing that a sinusoidal shear strain is applied to the 

material (Equation  2.7) :  

 

Equation  2.7 

)sin()( 0 tt ωγγ =  

 
the strain rate is defined as reported in Equation  2.8 : 
 

Equation  2.8 

)cos()( 0 t
dt

d
t ωωγγγ ==&  

 

 

If the material has a linear viscoelastic behaviour, it will answer with a sinusoidal shear stress, with 

a phase shifted by an angle δ on the shear stress, as reported in equations below : 

 

Equation  2.9 

)sin()( 0 δωττ += tt  

Equation  2.10 

)cos()sin()sin()cos()( 00 ttt ωδτωδττ +=  

Equation  2.11 

)cos('')sin(')( 00 tGtGt ωτωττ +⋅=  

 
 

where :     )cos('
0

0 δ
γ
τ

=G            )sin(''
0

0 δ
γ
τ

=G   

 
 

The quantities G’ and G’’ are defined storage and loss modulus, respectively. The equations 

reported above put in evidence that the shear stress can be expressed as a term in phase with the 

strain and a term in opposition (in phase with the strain rate). We can also refer to the complex 

notation : 

 

Equation  2.12 

tie ωγωγ 0
* )( =  
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Equation  2.13    
( )δωτωτ += tie0

* )(  

Equation  2.14 
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Dynamic measurements provide also the value of the complex modulus G*(ω), defined as the ratio 

between the stress and the strain at a certain frequency. 

 

Equation  2.15    

)('')(')(
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ωωω
ωγ
ωτ

iGGG +==  

 
G’(ω) describes the capacity of the sample to store the input energy, while G’’(ω) represents the 

ability of the material to dissipate the input energy. The frequency at which G’(ω) is equal to G’’(ω) 

is called crossover frequency [102]. This point represents the frequency at which the material passes 

from an elastic to a dissipative behaviour, or viceversa, as reported in Figure 2.22. 

 
    

Figure 2.22 G' and G'' rheological curves with the crossover frequency 

 

The ratio between the loss modulus and the storage modulus is defined as loss tangent, reported in  

Equation  2.16 : 



Background 
_______________________________________________________________________________________ 

_____________________________________________________________________________ 
54 

 

Equation  2.16 

)('

)(''
)(

ωG
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δtg =  

 

Another important parameter to describe the behaviour of the material is the complex viscosity (η
*), 

defined as the ratio between the shear stress and the strain rate. Referring to the complex notation :  

 

Equation  2.17 
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where :        
ω

ωG
η

)(''
'=         

ω

ωG
η

)('
'' =  

 
 
The real part η’, defined as dynamic viscosity, is the term describing the dissipative phaenomena, 

and it is the ratio between the stress in phase with the strain rate and the strain rate itself. For ω→0 

the dynamic viscosity tends to the steady flow viscosity (η0), described in the previous paragraph.  

 
 

2.2.3 Time-temperature superposition principle 
 
 
Viscoelastic properties, especially at temperatures higher than the glass transition of the material, 

are greatly influenced by the temperature. For some materials, called thermorheologically simple, a 

time-temperature superposition principle can be introduced. According to this principle, a 

viscoelastic property (G’, G’’, tanδ,…) can be translated along the time (or frequency) scale by 

changing the test temperature [100]. 

Consequently it is possible to visualize on a single curve (called master curve) the viscoelastic 

behaviour of the material over a very wide range of frequencies, simplifying the analysis of the 

influence of the temperature on the mechanical properties. According to this method, every 

viscoelastic property (for example G’) evaluated at a certain temperature can be shifted along the 

frequency axis to another curves taken at a reference temperature, as expressed in Equation  2.18 :   

 

Equation  2.18 

)()( 0 TaT Tωω =  
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where ϖ is called reduced frequency.   

In practice it is possible to shift all the experimental curves obtained at different temperatures over 

the same curve (master curve), determined at a reference temperature T0. The quantity aT (shift 

factor) is obtained from the evaluation of the horizontal translation necessary to superimpose curves 

obtained at a temperature T over the data obtained at a reference temperature T0. The validity of this 

principle implies that shift factors are the same for all the viscoelastic properties. It is possible to 

visualize the construction of the master curve in Figure 2.23. 

 
 

 
(a) 

 

 
(b) 

 

Figure 2.23 Construction of the storage shear modulus (G’) master curve of an LLDPE sample, (a) G’ curves at 
temperatures ranging from 125 °C to 210 °C, (b) superimposed curves (T0=170 °C) 

 

The dependency of the shift factors from the temperature can be generally expressed by using two 

relations, the Williams-Landel-Ferry (WLF) and the Arrhenius equation. In the case of polymeric 

materials, WLF equation provides a good fitting of the shift factors in a temperature interval 

between Tg and Tg + 100 K : 

 

Equation  2.19 
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Arrhenius equation can be applied below the glass transition temperature : 
 

Equation  2.20 
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where Ea is the activation energy, R is the universal constant of the universal gases. 

Among different techniques suitable to evaluate viscoelastic properties, parallel plate rheometers 

are widely used in order to conduct dynamic measurements. The configuration of the experimental 

apparatus for these tests is represented in Figure 2.24.  

 

 
Figure 2.24 Parallel plate geometry for rheological tests 

 
According to this geometry it is not possible to obtain a direct measurement for non Newtonian 

fluids, because the shear rate is not the same over the flow surface. The equation of the shear rate at 

a certain distance between the plates (h) is : 

  

Equation  2.21 

h

r

h

v
r

ωγγ === )(&&  

 
 

Consequently for a non-Newtonian fluid the viscosity varies from the centre to the external surface 

of the sample. In any case it is possible to estimate the viscosity trough some analytical 

approximations [101]. 
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2.3 Viscoelastic behaviour in the solid state 
 
 

2.3.1 Creep behaviour 
 
 

2.3.1.1  Creep loading conditions 
 

 

The distinction between solid (or elastic) and liquid (or viscous) is not an absolute distinction 

between different classes of materials: the ability to detect elastic or viscous responses depends in 

many cases on the time scale of the experiment. In this way, from a strict point of view, all the 

materials have a viscoelastic behaviour, i.e. the strain does not depend on the applied stress only, 

but also on the previous loading history of the material [10, 103-106]. Polymers are the most 

important viscoelastic systems. The viscoelastic behaviour is investigated with several method: in 

this work creep experiments and dynamical experiments were adopted. 

In a creep experiment a constant stress σ0 is applied to a sample and the strain ε is monitored as a 

function of time t . Normally the strain increases with time and creep curves (i.e. strain as function 

of time) may exhibit three regions (Figure 2.25): primary creep in which the curve is concave down, 

secondary creep in which deformation is proportional to time, and tertiary creep in which 

deformation accelerates until creep rupture occurs. The strain rateε& , i.e. the derivative of the strain, 

also exhibits three regions. The material has a linearly viscoelastic behaviour if the stress is 

proportional to the strain at a given time: in this case it is also possible to apply the linear 

superposition principle. However, linearity does not hold at high strains: creep isochrones diagrams, 

i.e. curves of stress as a function of strain at a given time, may evidence the transition from linear to 

nonlinear behaviour in creep experiments (Figure 2.26). The creep compliance D(t) is the ratio of 

the strain to the stress and is generally a function of time, as reported in Equation  2.22. In linearly 

viscoelastic materials, the creep compliance is independent from the stress level. 

 

Equation  2.22 

( ) ( )
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Moreover, a compliance rate D&  can be defined as the derivative of the compliance over the time. 
 

  
Figure 2.25 Creep strain and strain rate as a function of time at different applied stresses 

 

 
Figure 2.26 Isochronous stress-strain curves in creep experiments 

 

Total strain at any instant of time ε(t) in a creep test of a linear material may be represented as the 

sum of the instantaneous elastic strain εE (i.e. the initial strain when the constant stress is applied) 

and the viscoelastic strain εV. Similarly the compliance can be divided into elastic and viscous 

components. 
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2.3.1.2    Linear superposition principle 
 
 

As seen in the previous paragraph, linear viscoelasticity implies a linear superposition principle. 

These systems may be modelled as arrangements of springs (i.e. an elastic solid) and dashpots (i.e. a 

viscous liquid). The spring represents Hookean deformation (i.e. an element in which the force is 

proportional to the extension) and the dashpot Newtonian flow (i.e. an element in which the force is 

proportional to the strain rate). The behaviour of more complicated materials is described by 

connecting the basic elements in series or in parallel. In other words, stress, strain and time can be 

related with the characteristic constant of the mechanical elements [10, 104]. The overall system 

(mechanical model) behaves analogously to a real material, although the elements themselves may 

have no direct analogues in the actual material .  

The basic configurations are the Kelvin (or Voigt) model and the Maxwell model (Figure 2.27). The 

first one results from a parallel combination of a spring and a dashpot, while the second one is 

represented by a spring connected in series with a dashpot. In both system a characteristic time τ , 

that is the ratio of the viscosity η  (dashpot) to the elastic modulus E  (spring), describes the 

viscoelastic behaviour of the material. This parameter is called retardation time for the Kelvin 

model, while relaxation time for the Maxwell model. 

 

 
(a) 

 
(b) 

Figure 2.27 Simplest linear viscoelastic models: (a) the Kelvin model and (b) the Maxwell model 

 

More complicated and complex models could be introduced, but all the models can be reduced to 

two canonical forms. The creep behaviour of polymeric materials can be successfully interpreted by 

applying Burgers model, derived from a series combination of a Maxwell and a Kelvin model, as 

represented in Figure 2.28.  
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Figure 2.28 Schematic representation of the Burgers model 

 
 
The equation of the creep compliance according to this model is reported in Equation  2.23 :  
 

Equation  2.23 
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Alternatively it is possible to consider the generalized Voigt-Kelvin model and the generalized 

Maxwell-Wiechert model. The generalized Maxwell-Wiechert model may have a finite number or 

an enumerable infinity of Maxwell elements, each with a different relaxation time, and similarly the 

generalized Voigt-Kelvin model may have a finite number or an enumerable infinity of Kelvin 

elements. Thus, by a suitable choice of the model parameters, the canonical forms themselves can 

be shown to be mechanically equivalent and it is also possible to compute the parameters of one 

canonical form from those of the other. In this way, by taking into account the generalized models, 

an enumerable infinity or a continuous distribution of retardation or relaxation times is obtained 

[106]. In particular the strain as a function of time with the generalized Kelvin model for a system 

with n  pairs of elements has the following expression: 
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where ηi and τi are the viscosity and the retardation times of the i-th Kelvin element. The extension 

to a continuous distribution of relaxation times is employed by introducing the distribution function 

of retardation times (or retardation spectrum) N’(1/τ): in detail N’(1/τ)dτ represents the 

contributions to the total modulus of all the Kelvin elements with relaxation times lying between τ 

and τ +dτ. The strain equation becomes: 

 

Equation  2.25 
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Alternatively the retardation spectrum function L(τ) = N’(1/τ)/τ can be used. An approximate value 

of L(τ) can be derived from the creep compliance function D(t) by means of the relationship: 

 

Equation  2.26 

( ) ( ) ( )
τ

τ
=

≅
t

td

tDd
tDL

log
log

 

 
 
Figure 2.29 reports a typical example of retardation spectrum of a polystyrene sample.  
 

 
Figure 2.29 Example of retardation spectrum for polystyrene with a narrow molecular weight distribution. The 

weight average molecular weight is 3.4 kDa [107]. 
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2.3.1.3     Time-temperature superposition principle 
 
 
Viscoelastic functions, such as the creep compliance as a function of the time, depend on the 

temperature too. Theoretical and experimental results indicate that for many materials the effect due 

to time and temperature in the linearly viscoelastic region can be combined into a single curve 

trough the concept of the time-temperature superposition principle which implies that the following 

relations exist [104]: 

 

Equation  2.27 

( ) ( )*
0,, tTDtTD =  

 

Equation  2.28 

( )Tatt T0

* =  

 
 
where T is the temperature and t* the reduced time. The reduced time is related to the real time t  by 

the temperature shift factor aT0(T), and T0 is the reference temperature. In this way the effect of 

temperature on time-dependent mechanical behaviour is equivalent to a stretching (or shrinking) of 

real time for temperatures above (or below) the reference temperature; or alternatively, since 

viscoelastic properties are usually plotted as a function of the logarithm of time or frequency, a 

temperature change corresponds to a rigid horizontal shift of the material property curves on the 

abscissa. In other words, high-temperature response is analogous to low-strain-rate behaviour, and 

low-temperature response corresponds to high-strain-rate behaviour. Thus, the determination of the 

temperature shift factor aT0(T) as a function of temperature provides the required information for 

determining the reduced time. Figure 2.30 reports the typical superposition procedure applied on 

creep curves of a polyethylene sample. 

 
 
 
 
 
 
 
 
 
 
 



Background 
_______________________________________________________________________________________ 

_____________________________________________________________________________ 
63 

 
 

 
(a) 

 

 
(b) 

Figure 2.30. Example of master curve (b) from short term creep tests at different temperature (a). The data refer 
to an HDPE sample. 

 
Many materials exhibit temperature-creep behaviour that follows the Arrhenius relation for 

temperature lower than the glass temperature and the relation proposed by Williams, Landel and 

Ferry (WLF equation) for higher temperatures [104, 106] 

 

Equation  2.29 
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Equation  2.30 
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In these expressions ∆H is an activation energy, R the ideal gas constant, and C1 and C2 are 

empirical constants that depend on the material. Experimentally, for many linear amorphous 

polymers, if the reference temperature is the glass transition temperature, the values of the constants 

in the WLF equation are independent of chemical structure (C1=17.44 and C2=51.6 K). Moreover 

the product of C1 and C2 (for any reference temperature) is almost always 900 K. The curves 

constructed on the basis of a time-temperature superposition principle are generally denoted as 

master curves. As an example, Figure 2.31 reports shift factor as a function of temperature of a 

polyethylene sample. 

 

 
Figure 2.31. Example of shift factor as a function of temperature. 

 

2.3.1.4     Non linear tensile creep behaviour 
 
 
In most practical applications, isothermal compliance of polymeric materials depends on both time 

and stress, so that their non-linear viscoelastic behaviour is of primary importance. A very useful 

approach, reported in the works of Kolarik et al. [108, 109], starts from the consideration that the 

non-linearity of tensile creep is mainly brought about by the strain induced increment of the free 

volume. Consequently, the traditional stress-strain linearity limit can be viewed only as an artificial 

limit related to limited accuracy of the measurements at low stresses and strains. The internal time-

tensile compliance superposition of non-linear creep data is applied to construct a generalized 

compliance curve, which corresponds to a pseudo iso-free volume state. The superposition of 

compliance curves obtained at different stresses requires shift factors along the time axis calculated 

a priori for individual data points. The outlined format is that the generalized dependence can be  
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employed for predicting the real time-dependent compliance for any stress in the range of reversible 

strains. 

First of all, the strain in tensile creep, ε(t,σ,T), depending on time t, stress σ and temperature T, is 

usually viewed as consisting of three components [12, 104, 106, 110-113] : (i) elastic 

(instantaneous, reversible) εe(σ,T); (ii) viscoelastic (time-dependent, reversible) εv(t,σ,T); (iii) 

plastic (irreversible) εp(t,σ,T) :  

 

Equation  2.31 

( ) ( ) ( ) ( )TtTtTTt pve ,,,,,,, σεσεσεσε ++=  

 

If no plastic deformation is produced in the course of creeping, the tensile compliance D(t,σ) = 

ε(t,σ)/σ for the isothermal non-linear creep reads : 

 

Equation  2.32 
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It would be practical to express the compliance as a product of independent functions of time, stress 

and temperature, i.e. D(t,σ,T)=g1(t)•g2(σ)•g3(T) [12]. However, experimental results often indicate 

interrelations between these presumably independent functions. A relatively simple equation was 

found suitable for describing isothermal creep of polypropylene and its blends [114] : 

 

Equation  2.33 
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where W(σ) is a function of stress (usually can be approximated by the power law or hyperbolic 

sine), τrm is the mean retardation time and 0 ≤ n ≤ 1 is the shape parameter reflecting the distribution 

of retardation times. Indicated parameters are generally determined a posteriori by fitting 

experimental data. The free volume concept provides a simple unifying basis for explaining the 

effects of temperature, hydrostatic pressure, tensile deformation, chain ends, diluents (plasticizers), 

the state of physical aging, etc. on the viscoelastic behaviour of polymers. The dimensionless 

fractional free volume is routinely defined as [104, 106, 112, 115]: 
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Equation  2.34 
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where V is the specific volume, Vh is the specific volume occupied by molecules (extrapolated from 

the melt without change of phase) and Vf is the free volume. If solely the effects of temperature T 

and of time dependent tensile strain ε(t) in the region of reversible deformations are considered, the 

fractional free volume can be expressed as : 

 

Equation  2.35 
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Equation  2.36 

( )[ ] εε ffftTf Tg ∆+∆+=,  

 

where fg is the free volume at the glassy state (0.025 according to the Flory’s theory), αfv is the 

expansion coefficient of the free volume at T > Tg (which can be approximated as the difference 

between the expansion coefficients of the material above and below Tg), ν is Poisson’s ratio and (1-

2ν)•ε(t) is the strain-induced dilatation. The free volume f is assumed to control retardation times τr 

according to Equation  2.37 [105, 106, 115] : 

 

Equation  2.37 

f

B
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where Ω is the frequency of thermal motion inside a potential well and B is a numerical factor 

related to the ratio of the volume of a jumping segment to the volume of critical vacancy necessary 

for the implementation of a segment jump (B is generally expected to be close to 1). The effect of f 

on τr is routinely expressed by means of the shift factor (loga) along the time scale [105, 106, 115] : 

 

Equation  2.38 
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The time-strain shift factor, logaε(t), is then obtained by combining Equation  2.38 and Equation  

2.35 : 

 

Equation  2.39 
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where M is the ratio of the average strain of the creeping phase (or component) in the multiphase 

test specimen and of measured strain. The values of logaε(t) needed for the time-strain superposition 

are to be calculated a priori as a function of ε(t). In this strain-based formulation, logaε(t) is not a 

constant for an iso-stress creep curve, but grows from point to point with the creep strain due to 

increasing free volume in the creeping specimen. If τrm obeys to Equation  2.37, then isothermal 

D(t,σ) can be expressed as : 

 

Equation  2.40 
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Equation  2.41 

( ) ( ) ( )tntCtD log,log,log += σσ  
 
 
To separate the effects of stress and time, Equation  2.40 can be rewritten in the following form: 
 

 

Equation  2.42 

( ) ( )[ ] ( ) ( )[ ]tatnnWtD rmi ετσσ loglogloglog,log −+−=  

 

Equation  2.43 

( ) ( ) ( )*** loglog,log tnCtD += σσ  
 
 

where parameters C* and n* are related to internal time t* which reads: 
 

Equation  2.44 
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To account for differing strains of amorphous and crystalline phases in the Equivalent Box Model 

(EBM), the strain magnifying factor M can be introduced as the mean ratio of the actual 

(microscopic) strain of the amorphous phase and the measured (macroscopic) strain of the 

specimen. If a crystalline polymer is deformed, the strain of the amorphous and crystalline fractions 

coupled in parallel, i.e. v1p and v2p, are identical with the measured strain. On the other hand, if the 

crystalline phase has the compliance by 2–3 orders of magnitude lower than the amorphous phase 

above its Tg, it is evident that the crystalline fraction v2s coupled in series is not perceptibly 

deformed in the course of the creep (Figure 2.32).  

 

 
Figure 2.32 Equivalent Box Model (EBM) for a two-component system (schematically) 

 
As the displacement in the fraction v1s is equal to the macroscopic displacement, the resulting strain 

of the amorphous phase coupled in series is higher than the measured strain; consequently, the 

generation of the strain-induced free volume in the fraction v1s will be higher than in the fraction 

v1p. The mean value of M for the amorphous phase is : 

 

Equation  2.45 
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Utilizing a universal formula for the elastic modulus (or compliance) proposed by the percolation 

theory for heterogeneous binary systems [116], it is possible to derive the following equations for 

the volume fractions of the EBM : 
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Equation  2.46 
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Equation  2.47 
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where v1cr and v2cr are the critical volume fractions and q is the critical universal exponent. The 

fractions v1s and v2s can be calculated by using the following relations: 

 

Equation  2.48 

ps vvv 111 −=  

 

Equation  2.49 

ps vvv 222 −=  

 
 
Values of q were mostly reported in an interval of 1.6–2.0, so that q = 1.8 may be used as a typical 

value. In this work, v1cr = v2cr = 0.156 and q = 1.8 for approximate calculations of the parameter M 

were used [116, 117]. 

 
 

2.3.2 Dymamic mechanical tensile behaviour 
 
 

2.3.2.1 Dynamic loading conditions 
 
 
In dynamical experiment a sinusoidal strain ε(t), with an amplitude ε0 and a frequency ω, is imposed 

on a sample: the output stress σ(t), that follows a sinusoidal function with an amplitude σ0 and a 

phase shift δ, is monitored [105, 106]. These data can be analyzed in following terms: 
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• the storage modulus ( ) ( ) ( )δεσω cos00=′E , that is related to output stress components in 

phase with the applied strain 

• the loss modulus ( ) ( ) ( )δεσω sin00=′′E , that is related to output stress components out of 

phase with the applied strain 

• the loss factor ( ) ( ) ( )ωωδ EE ′′′=tan . 

 

In a dynamical experiments E’, E’’ and tanδ can be measured as a function of the temperature or of 

the frequency, as depicted in the following figures. 

 

 

Figure 2.33. Examples of E’, E’’ and tanδ as a function of frequency 

 
 

 
Figure 2.34 Typical E' and E'' tensile moduli for a polystyrene sample 
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2.3.2.2      Linear superposition principle 
 
 
If the linear viscoelasticity holds, it is possible to apply the linear superposition principle as for the 

creep behaviour. Similarly a distribution function of relaxation times (or relaxation spectrum) H(τ) 

is defined in relation to viscoelastic function [104]: 

 

Equation  2.50 

( ) ( )∫
∞+

+
=′

0 22

2

1
τ

τω
τωτω dHE  

 
 

Equation  2.51 

( ) ( )∫
∞+

∞− +
=′′ τ

τω
ωτω dHE

221
 

 
 
The approximate value of H(τ) can be derived from the storage modulus function E’(ω) by means of 

the following relationship: 

 

Equation  2.52 

( ) ( ) ( )
ωτω

ωωτ
1
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=
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d

Ed
EH  

 
 

2.3.2.3       Time-temperature superposition principle 
 

 

As for the creep experiments, it is also possible to apply the time-temperature superposition 

principle for the dynamical experiments. In this case the frequency is used instead of the time and 

the master curve is a function of the reduced frequency ω*. 

In practice the experiments are carried out at a limited number of frequencies (4 to 6) by scanning 

temperature. These data are used to build up a spectrum, i.e. the modulus as a function of the 

frequency at different temperatures, and then the time-temperature superposition principle is applied 

to obtain the master curve and the shift factor as a function of the temperature [106]. As an  
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example, Figure 2.35 reports the typical construction process of the storage modulus (E’) master 

curve of a polyethylene sample. 

 

(a) (b) 

(c) 

Figure 2.35. Example of the construction of the master curve of  E’ : E’ as a function of temperature at different 
frequency (a), the spectrum of E’ (b) and finally the master curve (c). The data refers to an HDPE 

 
 

2.4 Fracture behaviour 
 
 

2.4.1 Quasi-static tensile tests 
 
 
The evaluation of the mechanical properties of a material (elastic modulus, strain and stress at yield, 

stress and strain at break) can be done through the elaboration of the stress (σ)-strain (ε) curve. This 

curve can be obtained through different loading conditions (tension, compression, flexure, torsion, 

shear). In any case these properties can be measured by using universal mechanical testing 

machines [118, 119]. There are two main categories of these machines : electromechanic  and 

servo-hydraulic machines. 
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Electromechanic machines have a loading capacity between 0.5 and 600 kN, and the tests are 

conducted in displacement controlled conditions, with cross-head speeds between 0.001 and 1000 

mm/min. Figure 2.36 reports a typical configuration of these machines 

 

 
Figure 2.36 A typical configuration for an electromechanic tensile testing machine 

 
In servo-hydraulic machines the strain is applied through an hydraulic actuator, able to work both 

under displacement or load controlled conditions. In this configuration it is possible to rapidly 

change the load and an higher loading capacity can be achieved (between 1 and 10000 kN). The 

typical configuration of an uniaxial tensile test is reported in Figure 2.37. On the cubic element an 

uniaxial tensile stress (σx) is applied, and a corresponding deformation (εx) is generated, as reported 

in Equation  2.53 and in Equation  2.54. 

 

 
Figure 2.37 Typical configuration of an uniaxial tensile test 
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Equation  2.53 

A

F
x =σ         

Equation  2.54       

     
0L

L
x

∆=ε  

 
If the material as a linear elastic behaviour, Hooke’s law can be applied : 
 

Equation  2.55 

xx Eεσ =  

 
Where E is called elastic (Young) modulus of the material. Materials have in general a linear elastic 

behaviour only at small deformations. In the case of polymeric materials this limit is ε < 1%, while 

ceramic materials has a linear elastic behaviour until break. According to S.Venant’s analysis, the 

hypothesis of uniaxial stress condition is valid only if the distance between the grips is sufficiently 

high with respect to the thickness of the sample. Moreover the section of the sample in the grips 

must be higher, in order to prevent the failure near the grips. For these reason “dumb-bell” 

specimens are generally used during tensile tests [119]. For example Figure 2.38 reports the 

dimensions of specimens used for uniaxial tensile tests of polymeric materials.  

 

 
Figure 2.38 Dimension of dumbell specimen for the unaxial tensile tests (ISO 527) 
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The yielding is a phenomenon that occurs at relatively high deformations, and is characterized by a 

non-elastic, non-homogeneous and irreversibile deformation of the material. The yielding point is 

localized in a specific point of the sample. As reported in Figure 2.39, two possible configurations 

are possible for polymeric materials when the yielding occurs. In the first case the yielding is 

followed by a strain softening mechanism, due to a local increase of the temperature. In the second 

case a strain hardening mechanism, associated to the polymeric chain orientation, is represented.   

 

 

Figure 2.39 Possible configurations for the yielding of a polymeric material 

 

In polymers two different yielding mechanisms can be active : shear yielding or crazing (Figure 

2.40). In the case of shear yielding, the relative flow of polymeric chains occurs, with no loss of 

molecular cohesion or volumetric changes. The yielded zone can propagate at about 45° with 

respect to the stress direction. In the case of crazing, microcavitation associated to orientation of 

polymeric chains occurs. Even in this case there is no loss of molecular cohesion, but a strong 

decrease of density can be easily detected.  

 

 

(a) 
 

(b) 

Figure 2.40 Yielding mechanisms of a polymeric material. (a) shear yielding, (b) crazing 
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The yielding process can be influenced by many variables, such as temperature, strain rate, and 

many structural (additives, molecular weight, cristallinity) and environmental factors (solvent and 

aggressive chemical agents).  

 
 

2.4.2 Tensile impact test 
 
 
It is often necessary the evaluation of the fracture behaviour of the material at high strain rate levels, 

not achievable with traditional tensile testing machines, by which a maximum strain rate of 1 m/min 

can be imposed. In this case tensile impact tests can be successfully employed. These tests are all 

characterized by the falling of a striker. There are different configurations (Figure 2.41): Charpy 

impact tests, Izod impact tests, falling weight normal impact and tensile impact tests.  

 

 
 
(a)  

(b) 
 

 
(c) 
 

 

 
 
 
(d) 

Figure 2.41 Configuration of impact tests. (a) Charpy, (b) Izod, (c) Falling Weight, (d) Tensile Impact tests 
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In tensile impact tests the impact energy due to a pendulum falling mass can be used to conduct an 

high speed uniaxial tensile test. These tests can be generally adopted only with plastic materials, 

following ISO 8256 (1990) standard. While for non-instrumented tensile impact tests it is possible 

only to measure the total energy adsorbed a break (∆U) by the sample, with instrumented tests also 

stress and strain values during all the test can be measured. The force measurement is possible 

through piezoelectric load cells connected to the sample grips. In this way force-displacement 

curves can be easily elaborated. 

 
 

2.4.3 Essential Work of Fracture (EWF) analysis 

 
The essential work of fracture (EWF) method is an appropriate approach to experimentally 

characterize the ductile fracture of polymers and composites [7, 120-128]. According to Broberg 

[123] and Cotterel [124], the total work of fracture Wf can be divided into two parts: the essential 

work of fracture We, that is the work dissipated in the process zone close to the crack tip, and the 

non-essential work of fracture Wp, that is the work responsible for the plastic deformation outside 

the fracture-process zone. The total work of fracture may therefore be written as: 

 

Equation  2.56 

pef WWW +=  

 
 
The principle of the technique is to measure the load-displacement trace and hence the energy to 

fracture for a series of notched specimens, reported in Figure 2.42, ensuring that plasticity in the 

ligament (L) (fracture region) is fully developed. Under plane stress conditions, the total work of 

fracture can be divided into a part required to create the new fracture surfaces and another part 

dissipated in plastic phenomena in a volume of material surrounding the crack. The former element 

is proportional to the fracture area and hence the ligament length, while the latter element is 

proportional to the volume of the outer region.  
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Figure 2.42. DENT specimen geometry: in evidence the crack tip deformation zones 

 

For both metals and plastics, it has been observed that the volume of the outer region is proportional 

to the square of the ligament length. Thus the specific total work of fracture wf may be written as: 

 

Equation  2.57 

Lww
LB

W
w pe

f
f β+==  

 
 
where B is the specimen thickness, β is a shape factor taking into account the shape of the outer 

plastic zone, which depends upon the geometry of the specimen and the crack, and we and wp are 

the specific essential and non-essential work of fracture, respectively. The parameter we is regarded 

as a material property quantifying the fracture toughness. The parameters we and wp can be 

evaluated by testing a series of specimens differing in ligament length, and by linearly interpolating 

a number of experimental data of wf plotted against the ligament length L. 

Notched specimens such as the double edge notched tension (DENT) is commonly used for this 

purpose. A rectangular specimen of width W and length H is cut from the test material. In order to 

prevent the plastic zone being disturbed by edge effects and to ensure complete yielding of the 

ligament region before the crack starts to propagate, the maximum ligament length L used should be 

less than one third of the specimen width W or less than the plastic zone size, whichever is the 

lower [128]. On the other hand, the length H includes the gauge length h and the amount of material 

used in gripping the specimen. However, the choice of h is normally not critical. Moreover the 

ligament length L must be greater than three to five times the specimen thickness B to generate a 

state of pure plane-stress [127]. Furthermore, for each specimen, two sharp edge notches, directly 

opposite one another, should be made. Several commonly used techniques are razor pushing, razor  
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sliding and razor tapping. The fracture tests are conducted in tensile mode on DENT specimens that 

have the ligament lengths spanning the range of all allowable ligament lengths (as explained 

above). In particular a minimum of 25 specimens is typically suggested [120]. 

 

 
Figure 2.43. A typical load-displacement curve for DENT specimens. 

 

 
Figure 2.44. Schematic diagram of specific total work of fracture against ligament length. 

 
In addition, by plotting the maximal net-section stress σmax, defined as the ratio between the 

maximum load and the net-section LB, versus the ligament length for each group of specimens, the 

data obtained can be checked with Hill’s criterion to verify that the tests were performed under 

plane-stress conditions [125]. If the stress criterion is satisfied, the net-section stress is about 1.15σy. 

A useful check on the validity of the data is provided by the maximum stress on the ligament which 

can be compared to the tensile yield stress σy, as reported in a paper of Williams and Rink about the 

standardization of the EWF test [129]. The results are assumed to be valid if the maximum stress is 

within the range of 0.9–1.1 σmax (mean), as reported in Figure 2.45. 
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Figure 2.45 Application of the stress criterion in a EWF test 

 
The wf versus L data are then subjected to a linear regression analysis, and the quality of the data is 

usually assessed in terms of the standard deviation (S) of the linear fit. In general a value of S < 

0.1we is expected. Any data point which lies outside the range of ± 2S is excluded and the line 

recalculated. Again this can pick up measurement errors. At this point the correlation coefficient R2 

is computed to assess the quality of the linear fit and values of R2 > 0.98 are expected. These 

exclusion criteria are useful in detecting random errors such as a misreading of a data point. A 

systematic error which occurs in all points is more difficult to detect since consistent, but erroneous 

results are obtained. In order to investigate the energy contribution to different fracture stages, a 

partition between the specific work of fracture for yielding and for necking and subsequent fracture 

can be introduced by considering the peak of the load–displacement curves as the cut-off point 

[121, 122, 126]. As the composed terms are under plane stress, it can be concluded that : 

 

Equation  2.58 

nyf www +=  

 

Equation  2.59 

Lwww pnenn ,, β ′′+=  

 
 
where wy and wn,e are the yielding and the necking and subsequent fracture related components of 

the specific essential work of fracture, respectively, β’’w n,e is the fracture component of the specific 

non-essential work of fracture. 
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3 Experimental 
 
 
 
 
 
 
 

3.1 Materials 
 
 

3.1.1 LLDPE 
 
Polyethylene (PE) is the most widely used commercially available thermoplastic, because of its 

combination of low cost, high chemical resistance and relatively good mechanical properties. For 

example in 1992 in the United States 11 million tonnes (one third of the whole USA plastic 

materials production) of PE were produced. 

As reported in Figure 3.1, polyethylene macromolecules are formed by a long chain of carbon 

atoms linked together by covalent bonds. Every C atom is also linked to a couple of hydrogen atoms 

[130]. From a chemical point of  view polyethylene can be identified with the formula C2nH4n+2, 

where n is the polymerization degree [131]. Typically n is higher than 100 and can reach values as 

high as 250000, consequently the molecular weight stays between 1400 and 3500000 [132].   

 

 
 

Figure 3.1 Chemical formula of Polyethylene (PE) 

 
There are several types of polyethylene, depending of the molecular weight and the ramification 

degree. High density polyethylene (HDPE) is a low ramificated PE, and is synthesized through 

coordination polymerization with a Ziegler-Natta catalysis. In this way an high polymerization 

degree and a relatively elevated density (0.94-0.97 g/cm3) can be easily reached. 
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Low density polyethylene (LDPE), synthesized through a radical process, has an higher 

ramification degree, consequently a lower crystallization degree and a relatively low density (0.9-

0.94 g/cm3) can be obtained. For these reasons LDPE is more ductile than HDPE. 

Linear low density polyethylene (LLDPE), the polymeric matrix used in this work, combines the 

properties of HDPE and LDPE. It can be obtained through a copolymerization of a mixture of 

ethylene and α-olefins (buthene, exene, octene) with a Ziegler-Natta or metallocene catalysis. The 

ramifications are generally ethylic and buthylic groups. The presence of ramificated structure does 

not allow LLDPE to reach high crystallization degree and high densities (0.9-0.94 g/cm3). Figure 

3.2 reports the chemical structure of the different PE typologies. 

 
 

(a) 
 

 
 

(b) 
 

 

(c) 
 

 

Figure 3.2 Chemical structures of different typologies of PE 

 
One of the main features of LLDPE is its high ductility and wear resistance, if extruded in thin 

films. For this reason it is extensively used for high quality packages. LLDPE is also used for the 

production of insulating rods, flexible pipes and several medical devices, by using traditional 

transformation technologies (extrusion, injection moulding). The organic matrix used in this work 

was Flexirene® CL10, a linear low density polyethylene, kindly supplied by Polimeri Europa 

(Mantova, Italy). From a chemical point of view Flexirene® CL10 is a butene copolymer linear low 

density polyethylene (C4-LLDPE), additivated with antioxidants, suitable for cast extrusion of thin 

film with high optical properties. It is recommended for the production of stretch film to be used 

both in manual and in automatic wrapping machines. In a multilayer film, Flexirene® CL10 

enhances the optical properties of the global formulation; moreover, for its high processability, the 

resin is recommended whenever high productivity has to be reached. Table 3.1 summarizes the 

main features of this matrix [133]. 
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Properties Test Method Typical value 

MFI (190 °C, 2.16 kg) (g/10’) ISO 1133 2.6 

Mean numeric molecular weight (Mn) - 27000 

Mean ponderal molecular weight (Mw) - 95000 

Density (g/cm3) ISO 1183 0.918 

Melting Point (°C) PE method 121 

Vicat Softening Point (1 kg)  (°C) ISO 306/A 97 

Tensile stress at yield (MPa) ISO 527-3 9 

Tensile stress at break (MPa) ISO 527-3 35 

Secant Modulus 1% (MPa) ISO 527-3 90 

Tear Resistance (N/mm) ISO 6383-2 38 

Coefficient of Friction ISO 8295 > 0.5 

Haze (%) ISO 14782 2 

Table 3.1 Technical datasheet of Polimeri Europa Flexirene® CL10 

 
 

3.1.2 Fumed Silica Nanoparticles 
 
 

Fumed silica nanoparticles were used in this work for the preparation of nanocomposites. The 

description of the chemical nature and of the microstructure of fumed silica nanoparticles is 

reported in Chapter 2.1.3. A series of Aerosil® commercial fumed silica were kindly supplied by 

Degussa. These nanoparticles are different for the surface area, i.e. 90 m2/g for Aerosil 90, 200 m2/g 

for Aerosil 200, 300 m2/g for Aerosil 300, 380 m2/g for Aerosil 380, and for the surface treatment. 

In fact Aerosil r816 is obtained by functionalizing Aerosil 200 with hexadecylsilane. The main 

features of the fumed silica used in this work are reported in Table 3.2.  
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Property Aerosil  
90 

Aerosil 
 200 

Aerosil  
300 

Aerosil  
380 

Aerosil 
 r816 

BET surface area (m2/g) 90 ± 15 200 ± 25 300 ± 15 380 ± 30 190 ± 20 

Primary particle 
diameter (nm) 

20 12 7 7 12 

Tapped density (g/l) 
DIN EN ISO 787 

80 50 50 50 60 

Moisture content (wt%) 
(2h 105 °C) 

≤ 1 ≤ 1 ≤ 1.5 ≤ 2.5 - 

SiO2 content (wt%) ≥ 99.8 ≥ 99.8 ≥ 99.8 ≥ 99.8 ≥ 99.8 

Table 3.2 Technical datasheet of Degussa Aerosil® fumed silica nanoparticles 

 
Aerosil® hydrophilic fumed silica nanopaticles are specifically used in paints and coatings and as 

filler in liquid silicone rubber (LSR). They are also added in cable resin compounds and unsaturated 

polyester resins, in adhesives, sealants and printing inks. They are used for rheology and thixotropy 

control of liquids, binders, polymers, providing an excellent transparency in unsaturated polyester 

resins. Aerosil® hydrophobic fumed silica nanoparticles (as Aerosil r816) are used in silicone 

rubber adhesives and sealants, defoamers, and toners. They provide a low thickening effect and 

excellent processability, enabling high loading levels of polymer systems. By the addition of these 

nanoparticles an excellent reinforcing properties in silicone rubber applications at high filler loading 

levels can be obtained [134]. They are also well suited for transparent systems. Figure 3.3 reports a 

representative TEM image of fumed silica filler having a surface area of 380 m2/g, in which it is 

easy to distinguish primary nanoparticles, aggregates and agglomerates.  

 

 

Figure 3.3 TEM image of Aerosil 380 fumed silica nanoparticles 
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3.1.3 Precipitated Silica Microparticles 
 
 
In order to analyze the role of the surface area and of the dimensions of the nanofiller on the 

mechanical properties of LLDPE composites, precipitated silica microparticles were considered. 

Precipitated silica consists of a three-dimensional network of coagulated primary silica particles. 

The latter grow to sizes higher than 10 nm before they coagulate to form the aggregated clusters in 

the micrometric range of size [135, 136]. By simple milling operations aggregates can then be 

reduced to dimensions of few microns, as represented in Figure 3.4. 

 

 

Figure 3.4 Typical morphology of precipitated silica microparticles 

 

From a chemical point of view, precipitated silicas are synthesized by acidifying sodium silicate. In 

nearly all commercial processes, sulfuric acid is used as the acid source. Under standard conditions, 

the sodium silicate solution and the acid are fed simultaneously in a stirred vessel containing water. 

Precipitation is carried out under alkaline conditions. The choice of agitation, duration of 

precipitation, addition rate of reactants, temperature and concentration, and pH can influence the 

properties of the silica. The formation of a gel stage is avoided by stirring at elevated temperatures. 

In the next stage, the precipitated silica slurry is washed to remove soluble salts. The washing 

conditions, although important, have a negligible effect on the properties of the final product. 

Different filter types such as filter presses, rotary, or belt filters can be used. The resultant filter 

cake with typical solid content between 15-25% is then dried. The most common drying techniques 

are spray drying and rotary drying, which give rise to different particle shapes, degrees of 

agglomeration and porosity. The dried silica may be subjected to milling and classifying steps to 

obtain a specific particle size distribution. The precipitated silicas differ from silica gels on the basis 

of pore structure. Precipitates typically have a broad meso/macroporous structure reflected in the  
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pore size distribution, whereas gels generally have a more narrow microporous or mesoporous 

structure. Precipitated silicas are synthetic amorphous silica products. In contrast to naturally 

occurring silicas, the synthetic origin of these materials eliminates the risk of contamination with 

crystalline quartz particles as it may occur in mined products. Amorphous silica, in contrast to 

crystalline silica such as cristobalite or quartz, does not present a potential health hazard to workers 

with respect to irreversible lung injuries such as lung tumors or silicosis.  

In this work Sipernat® 160 precipitated silica microparticles, supplied by Degussa, were used as 

filler. Despite their micrometric dimensions, these microparticles possess elevated surface area 

values, because of their high surface porosity. This filler finds applications in tire and rubber goods, 

in order to improve mechanical performance of some polymers (for example in organic rubbers for 

footwear and for elastomeric membranes). It is also used in industrial specialties, in nutritions and 

in dentifrices [134]. The datasheet of these microparticles is reported in Table 3.3. 

 

Property Value 

Specific surface area (N2) 

ISO 5794-1 
165 m2/g 

Mean particle size 

ASTM C690 
7 µm 

Tapped density 

ISO 787-1 
65 g/l 

SiO2 content (wt%) 

ISO 3262-19 
99.4 

Table 3.3 Technical datasheet of Degussa Sipernat 160 precipitated silica microparticles 

 

3.1.4 Glass Microspheres 
 
 
Glass microspheres are commonly used as filler for organic compound [137]. In this work glass 

microparticles were used as comparison, in order to put in evidence the difference in the tensile 

mechanical response between nanocomposites and traditional microcomposites. In general glass 

microspheres present high wear and impact resistance, and no health hazards, because of their 

amorphous structure. The absence of any surface porosity results in a very low surface area. The 

typical morphology of silica glass microspheres is reported in Figure 3.5. 
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Figure 3.5 A representative ESEM image of silica glass microspheres 

 
In this research, Cores® silica glass microspheres were used. These microparticles have a mean 

particle size of 50 µm, with a resulting surface area of less than 1m2/g. The microparticles were then 

sieved in a 32 µm sieve, in order to obtain glass microparticles with a mean diameter of 18 ± 3 µm. 

This type of glass microspheres are generally used in surface finishing operations of metallic 

manufacts. Glass microspheres can also reduce the post moulding shrinkage of polymeric 

composites, improving their final tensile properties. Table 3.4 reports the chemical composition of 

Cores® glass microspheres. 

 
 

Oxides Chemical composition (wt%) 

SiO2 72.0-73.0 

Na2O 13.3-14.3 

K2O 0.2-0.6 

CaO 7.2-9.2 

MgO 3.5-4 

Fe2O3 0.08-0.11 

Al 2O3 0.8-2 

SO3 0.2-0.3 

Table 3.4 Chemical composition of Cores® silica glass microparticles 

 
Table 3.5 summarizes the principal properties of the silica fillers used in this work. 
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Aerosil 

90 
Aerosil 

200 
Aerosil 

r816 
Aerosil 

300 
Aerosil 

380 
Sipernat 

160 
Glass 

microspheres 

BET surface 
area (m2/g) 

90 ± 15 200 ± 25  190 ± 20 300 ± 15 380 ± 30 ≈ 165 ≈ 0.5 

Mean 
particles 
diameter 

20 nm 12 nm 12 nm 7 nm 7 nm 9 µm 18 µm 

SiO2 content 
(wt%) 

≥ 99.8 ≥ 99.8 ≥ 99.8 ≥ 99.8 ≥ 99.8 99.4 72.0 - 73.0 

Table 3.5 Summary of the properties of silica fillers used in this work 

 
 

3.2 Composite preparation 
 

 

For all the samples a melt compounding process followed by an hot pressing was adopted in order 

to prepare the sample. Polyethylene chips and all the filler typologies were utilized as received. The 

filler was melt compounded with LLDPE in a Thermo Haake® internal mixer, at 170 °C for 15 min 

and 90 rpm. In the case of fumed silica nanocomposites, the nanoparticles  were added slowly in the 

hot chamber of the mixer, immediately after the complete melting of the LLDPE, in order to 

prevent nanoparticles agglomeration. The materials were then hot pressed in a Carver® press at 170 

°C for 15 minutes at low pressure (0.2 kPa), in order to produce square sheets of about 0.8 mm of 

thickness. The internal mixer and the hot plate press are represented in Figure 3.6. 
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(a) 

              

               
  
 (b) 

 

Figure 3.6 Photographs of (a) Haake® internal mixer and (b) Carver® hot press 

 
In this way LLDPE composites with Aerosil® fumed silica nanoparticles, Sipernat® precipitated 

silica microparticles and Cores® glass microspheres were prepared. The filler volume loading was 

varied between 1% and 4%. The filler volume percentage was determined by the weight fraction 

through Equation  3.1, considering the absence of voids in the composite : 

 

Equation  3.1 
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where Vp is the filler volume fraction, Wm and Wp are respectively the matrix an the filler weight 

fraction, ρm and ρp represent the densities of the matrix and of the filler. 

In all the figures and the discussion session, the fumed silica nanopowders were designated with the 

letter A followed by the indication of the surface area (for example A90 indicates Aerosil 90 

nanoparticles). Precipitated silica microparticles were denoted as S160, while glass microspheres 

were simply designated as Glass. LLDPE indicates the unfilled material, while the composites were 

denoted with the name of the matrix (LLDPE), followed by the name of the filler and the filler 

volume content (vol%). For example LLDPE-A200-2 indicates 2 vol% Aerosil 200 fumed silica 

nanocomposite sample, while LLDPE-S160-4 is referred to 4 vol% Sipernat 160 microcomposite.     
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During the melt compounding process it was possible to monitoring the process parameters, i.e. 

melt temperature, rotor speed, torque. As represented in Figure 3.7, after the introduction of the 

chips in the mixer chamber, the torque increased till the beginning of the melting. Only when the 

material was completely molten the torque reached a plateau.  

 

 

Figure 3.7 Torque values during the melt compounding process for pure LLDPE and relative composites 

 

No thermo-oxidative degradation phenomena could be evidenced by the analysis of the torque. In 

the case of filled sample, the maximum torque value was lower with respect to the unfilled sample, 

because a lower LLPDE quantity was introduced. The introduction of the filler caused a little 

instantaneous increase of the torque, but the plateau value of the torque for the filled sample was 

practically the same of that of the pure LLDPE.      

 
 

3.3 Experimental activities 
 
 

3.3.1 Microstructural characterization 
 

3.3.1.1 Density measurements 
 

Density measurements were performed by using a Micromeritics® Accupyc 1330 helium 

picnometer, at a temperature of 23 °C, both on the nanofillers and to the microparticles. A testing  



Experimental 
_______________________________________________________________________________________ 

_____________________________________________________________________________ 
91 

 

chamber of 3.5 cm3 was utilized for all the samples. In the case of fumed silica nanoparticles, in 

order to obtain a reproducible evaluation of powders densities, 300 measurements were conducted 

on every sample, and the mean of the last 80 measures was considered as the plateau density of the 

silicas. In this way possible overestimations of the real density due to the helium absorption on the 

surface of the nanofiller during the first 200 measures were avoided. In the case of precipitated 

silica microparticles and glass beads 100 measurements were sufficient to obtain a plateau value of 

the density. 

In the case of pure LLDPE and 2 vol% filled fumed silica nanocomposites, density measurements 

were conducted in order to detect the presence of any microvoid in the material. In this case 100 

measures were sufficient in order to obtain a constant value of the density of the material, taking the 

mean of the last 30 measures as the real value of the density. The results were then compared with 

the theoretical prediction of the density of composites, based on the rule of mixture, as reported in 

Equation  3.2: 

 

Equation  3.2 

ppmmc VV ρρρ +=  

 
 
where ρc, ρm, ρp are the densities of the composites, of the pure matrix and of the nanoparticles 

respectively, while Vm and Vp are the volume fraction of the matrix and of the nanofiller. 

 

3.3.1.2 Evaluation of fillers surface properties   
 
 
In order to evaluate the influence of the surface morphology of the filler on the mechanical tensile 

response of LLDPE composites, BET surface area and porosity measurements were conducted both 

on fumed silica nanoparticles and microparticles. An ASAP® 2010 Accelerated Surface Area and 

Porosimetry machine, located by the Ceramurgy laboratory of the University of Trento, was 

utilized. Surface properties were evaluated referring to the nitrogen gas physisorption process, 

setting a saturation pressure of 738.57 mmHg and a bath temperature of 77.35 K. 

Adsorption/desorption curves reported the adsorbed nitrogen volume vs the relative pressure, and 

from the interpolation of the linear part of the adsorption curve the BET (Brunauer, Emmett, Teller) 

surface area was calculated [138], as reported in Equation  3.3 and in Equation  3.4. 

                                                                      



Experimental 
_______________________________________________________________________________________ 

_____________________________________________________________________________ 
92 

 

Equation  3.3 
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Equation  3.4 
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Where P and P0 are the applied and the saturation pressure respectively, Va is the volume of the 

adsorbed gas at the pressure P, Vm is the adsorbed gas when the whole surface is covered with a 

mono-molecular layer, and C is a constant depending on the probing gas (98.0 for nitrogen). σ is the 

area of a single gas molecule, NA is the Avogadro constant, m is the mass of the adsorbing sample 

and V0 is the molar volume of the gas. Figure 3.8 reports BET transform plots with the regression 

lines. 

 

 
Figure 3.8 BET transform plots, each with a regression curve through the linear region 

 
From the comparison of the absorption and desorption curves is was also possible to analyse the 

possibility oh having an internal porosity in the sample, while following BJH (Barrett-Joiner-

Holenda) [139] method it was possible to determine the pore size distribution and the surface area 

contribution associated to pores of different dimensions. According to this theory the pores 

dimension is related to the relative pressure, and in the case of N2 at 77 K Equation  3.5 and 

Equation  3.6 are valid during the absorption and desorption process respectively. 

 
 



Experimental 
_______________________________________________________________________________________ 

_____________________________________________________________________________ 
93 

 

Equation  3.5 

05.0

log034.0(

99.13

0




























−

=

P

P
t  

 

Equation  3.6 

333.0

ln

5.0
54.3

0





























−=

P

P
t  

 
where t is the pore thickness, expressed in nm. 

 
 

3.3.1.3 Microscopy techniques 
 
 

Enviromental Scanning Electron Microscopy (ESEM) and Transmission Electron Microscopy 

(TEM) technique were adopted in order to evaluate the dimensions and the morphology of the 

fillers and their dispersion degree in the composites. 

TEM images were made in order to evaluate the morphological features of fumed silica 

nanoparticles. In particular they were observed through a Philips® EM 400 T transmission electron 

microscope. The sample for the observation were prepared dispersing fumed silica powders in 

acetone, then the solution was ultrasonicated for 3 minutes, in order to break the agglomerates. A 

little drop of solution was posed on a supporting grid, and the observation was conducted after the 

complete evaporation of the solvent.   

TEM images were also made on fumed silica and precipitated silica composites, in order to evaluate 

the dispersion state of the aggregates in the matrix and their orientation when a strain was applied. 

In particular LLDPE-A380-2 and LLDPE-S160-2 samples at different deformation levels (0, 30, 60, 

100 %) were observed. A Philips®/FEI CM120 transmission electronic microscope, was utilized, at 

an acceleration voltage of 80 kV. Thin section of LLDPE and LLDPE-A380-2 samples were 

ultramicrotomed at a temperature of -70 °C by using a Reichert-Jung® Ultracut FC4E crio-

ultramicrotome. 
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Fumed silica, precipitated silica and silica glass powders were observed at different magnifications 

by using a Philips® XL30 Enviromental Scanning Electron Microscope, at an acceleration voltage 

between 15 and 30 kV. In this case the powders were dispersed in ethanol and a little drop of the 

solution was posed on metallic support. The solvent was removed through a constant air flow. 

Fracture surfaces of LLDPE-A380-2, LLDPE-S160-2 and LLDPE-Glass-2 composites at different 

magnification were also observed with the same instrument. The samples for the observation were 

prepared immerging notched samples in liquid nitrogen for 30 minutes and breaking them with a 

impact tensile testing machine. In this case an acceleration voltage of 15 kV was set. 

 
 

3.3.1.4 Differential Scanning Calorimetry (DSC) 
 
 
Differential Scanning Calorimetry (DSC) was utilized in order to detect the influence of the fillers 

on the melting and crystallization behaviour of the resulting material. It was also used to assess the 

presence of crystallization phenomena in the yielded zone of fumed silica nanocomposites, when an 

uniaxial stress was applied to the material. 

These tests were carried out on pure LLDPE and relative micro and nanocomposites at all the 

investigated compositions by using a Mettler® DSC30 differential scanning calorimeter. All 

measurements were performed under nitrogen flow of 100 ml/min. The samples were first heated at 

a rate of 10°C/min from 0 °C to 200 °C, and then cooled to room temperature at 10 °C/min. A 

second heating was performed at the same rate until 200 °C. The melting hentalpy ( ∆Hm) was 

determined from the corresponding peak areas in the heating and cooling thermograms. The 

crystallinity content (Xc) of LLDPE in the composites was calculated as reported in Equation  3.7 : 

 

Equation  3.7 
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where ∆H is the apparent enthalpy of fusion per gram of composite, ∆H0 is the heat of fusion of 

100% crystallinity polyethylene, taken as 290 J/g [130], and W(LLDPE) is the weight fraction of 

LLDPE in the composites. In order to verify the possibility of strain induced crystallization 

phaenomena in nanocomposites, the same tests were then performed on the yielded zone of the 

dogbone samples of 2 vol% fumed silica filled samples that were previously utilized in quasi-static  
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uniaxial tensile tests, applying a strain rate of 50 mm/min until a deformation of the 100 % was 

reached. Even in this case the crystallinity, the melting and crystallization temperatures were 

evaluated.   

 
 

3.3.1.5 X-Ray Diffraction (XRD) analysis  
 
 
In order to evaluate the influence of the different typologies of filler on the crystalline structure of 

the material, X-Ray diffraction analysis was conducted on LLDPE composites filled with 2 vol% of 

A200, A380, S160 and Glass particles. A Rigaku® 3D Max X-Ray diffractometer was used, 

scanning the samples in a 2θ range between 1° and  67°, at a 2θ step of 0.1°. The wavelength of the 

X-Ray source was 0.154056 nm. In this way the diffractograms reporting the intensity of the 

diffracted radiation versus 2θ angular position was plotted.  

From these diffractograms it was possible to determine the dimensional distribution of the 

crystalline domains, starting from the Fourier transform of the scattered intensity. Leaving the 

complete description of this method to more specific works in the field of the microstructural 

analysis, these operations were performed on the basis of a recent algorithm for Whole Powder 

Pattern Modelling (WPPM) [140-142]. This approach could be used for any crystal shape, but in 

this work we considered the case of polydisperse crystalline spherical grains, whose volume could 

be described by a single length parameter (e.g. sphere diameter or edge for cube, tetrahedron or 

octahedron). The dimensional distribution of the crystalline domains was analyzed through a 

lognormal size distribution, that frequently proved to be appropriate in practical cases, like highly 

dispersed ceramic powders produced by chemical methods (e.g. sol-gel), or in catalysts. Such a 

distribution was also observed in highly deformed metal grains [140]. A lognormal is described by 

two parameters, µ and σ, the lognormal mean and variance, respectively, as reported in Equation  

3.8: 

Equation  3.8 
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Consequently, mean size of the crystalline domains M(D) and variance V(D) were evaluated, 

according to the expressions reported in Equation  3.9 and in Equation  3.10 : 
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Equation  3.9 
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Equation  3.10 
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It is important to underline that the approach proposed in this work could be developed for any 

other distribution function (for example the Poisson distribution could be alternatively considered). 

 

3.3.1.6 Infrared (IR) spectroscopy 
 
 
Infrared spectroscopies (IR) were conducted in order to assess the presence of the different 

functional groups in the materials. These tests were conducted by using a Perkin Elmer® Spectrum 

One FT-IR-ATR analyser in a scanning interval between 650 and 4000 cm-1. Pure LLDPE and 

A380 filled nanocomposite samples were tested, by using small square samples 0.7 mm thick, 

previously washed in acetone and accurately dried with a nitrogen flow. 

 
 

3.3.2 Viscoelastic behaviour in the molten state 
 
 
Dynamic rheological tests were conducted in order to evaluate the influence of the filler 

morphology and content on the final properties of the material in the molten state. For this reason a 

TA® Ares Rheometer was used in dynamic mode and in parallel plate configuration, at a melt 

temperature of 190 °C. A plates diameter of 25 mm at a distance of 0.8 mm was chosen for these 

tests. A maximum strain (γ0) of 1% was imposed to the material, while the frequency range adopted 

was between 0.05 and 200 rad/s. Pure LLDPE and all the prepared composites at the different 

compositions were testes in this configuration. 

For pure LLDPE and relative micro and nanocomposites filled with 2 vol% A380, S160 and Glass 

rheological tests in the same configuration and at different temperatures were conducted, in order to  
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obtain G’ and G’’ master curves at the reference temperature (T0) of 170 °C, according to the time-

frequency superposition principle (see Chapter 2.2.3). The temperature range was set between 125 

°C and 210 °C. In this way the rheological behaviour of the tested material over a wider range of 

frequencies was evaluated.   

 
 

3.3.3 Viscoelastic behaviour in the solid state 
 

3.3.3.1 Elastic modulus evaluation 
 
 
Uniaxial tensile tests were performed with an Instron® 4502 tensile machine. ISO 527 type 1BA 

samples were tested, at a crosshead speed of 0.25 mm/min. The strain was recorded by using a 

resistance extensometer Instron® model 2620-601 (gage length = 12.5 mm). The test were 

performed imposing a maximum axial deformation level of 1%. According to ISO 527 standard, the 

elastic modulus was evaluated as secant modulus between deformation levels of 0.05 % and 0.25 %. 

 

3.3.3.2 Creep tests 
 
 
Creep tests were performed in order to evaluate the deformational behaviour of the material under a 

constant load. For these tests an Instron® 4502 tensile testing machine was utilized. Pure LLDPE 

and 2 vol% micro and nanocomposites were tested at a temperature of 30 °C, imposing a constant 

stress (σ0) of 1 MPa, corresponding to about 10% of the stress at yield. In order to avoid problems 

related to non-uniform gage length, rectangular samples 100 mm long, 5 mm wide and 0.8 mm 

thick were adopted, setting a gage length of 60 mm. The total duration of the test was 3600 s. In this 

way the creep compliance D(t), determined as the ratio between the deformation and the applied 

constant stress, was determined. In order to evaluate the effect of the filler content on the creep 

behaviour of the material, creep tests with the same configuration were also conducted on A200, 

A380, S160 and Glass filled composites by varying the filler loading. 

Considering that fumed silica nanocomposites showed the best creep stability, isothermal creep 

tests at 30 °C were conducted on LLDPE, LLDPE-A200-2 and LLDPE-A380-2 nanocomposites, by 

varying the applied constant stress, ranging from 1 MPa to 5 MPa. In this case the total duration of 

the test was 1200 s. Isochronous curves were then constructed, considering the deformation of the  
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samples at different creep stresses at a time of 200 s and 1000 s. Starting from the same tests, the 

analysis of the non linear tensile behaviour of the samples considering the free volume evaluation 

approach was performed (see Chapter 2.3.1.4).  

In order to evaluate the effect of the temperature on the deformational behaviour of the material, 

creep tests at different temperatures, ranging from 30 °C to 70 °C, were then conducted on LLDPE, 

LLDPE-A200-2 and LLDPE-A380-2 samples, at a constant stress of 1 MPa, in order to remain in 

the linear viscoelastic region of the material. The total duration of these tests was 1200 s. The creep 

behaviour of the samples was then interpreted by applying the Burgers model (see Chapter 2.3.1.2). 

By applying time-temperature superposition principle, master curves were then constructed setting a 

reference temperature (T0) of 30 °C. In this way it was possible to evaluate the creep behaviour of 

the material at 30 °C over a wider time scale. 

 
 

3.3.3.3 Dynamical mechanical thermal analysis 
 
 
Dynamic mechanical thermal analyses were performed in order to evaluate the tensile behaviour of 

the prepared samples at different temperatures. For all the test a Polymer Laboratories® MKII 

testing machine was utilized. Rectangular specimens 15 mm long, 5 mm wide and 0.8 mm thick 

were tested. 

Firstly LLDPE and 2 vol% fumed silica nanocomposites were analyzed, in a temperature range 

between -130 °C and 80 °C, at an heating rate of 3 °C/min and a frequency of 1 Hz. Imposing a 

preload of 0.2 MPa, a maximum strain corresponding to a peak to peak displacement of 32 µm was 

set to the material. In this way the most important viscoelastic functions (E’, E’’, tanδ) were 

registered at different temperatures. 

In order to evaluate the viscoelastic behaviour of the material as a function of the frequency, multi-

frequency DMTA test were conducted on LLDPE, LLDPE-A200-2 and LLDPE-A380-2 

nanocomposite samples. Samples were tested from -60 °C to 50 °C at an heating rate of 0.5 °C/min 

and at the following frequencies : 0.3, 1, 3, 5, 10 and 30 Hz. Setting 30 °C as a reference 

temperature, E’ and E’’ master curves were constructed, according to frequency-temperature 

superposition principle. In this way the dynamic behaviour of the materials over a wide frequency 

range was determined. 

Then LLDPE, precipitated silica and glass filled composites at different filler loading were also 

tested, in order to evaluate the effect of the filler morphology and content on the dynamic behaviour  
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of the material. Samples were analyzed in a temperature range between -130 °C and 80 °C at an 

heating rate of 3 °C/min and a frequency of 1 Hz. In this case a preload of 0.4 MPa and a peak to 

peak displacement of 32 µm were applied to the material. 

 

3.3.4 Fracture behaviour 
 

3.3.4.1 Quasi-static tensile tests 
 
 
Quasi-static uniaxial tensile tests at break were performed with an Instron® 4502 tensile machine, 

setting a crosshead speed of 50 mm/min and without using the extensometer. ISO527 1BA dogbone 

specimens (gage length 30 mm, width 5 mm, distance between the grips 55 mm, thickness 0.8 mm) 

were tested. All the prepared composites at all the filler compositions were tested, in order to 

evaluate the role of the different micro and nanofillers on the most important tensile properties at 

yield and at break : stress at yield (σy), stress at break (σb) and strain at break (εb). In the case of 

fumed silica nanocomposites the adsorbed specific Tensile Energy to Break (TEB) was also 

evaluated, by simply integrating the stress-strain curves.  

Considering that fumed silica filled samples showed a better tensile behaviour at break with respect 

to the unfilled material, the mechanism  of the toughening effect associated to the presence of 

fumed silica nanoparticles was  analyzed. In order to detect the presence of a possible filler-matrix 

debonding mechanism during the application of the load, dilatometric tests were carried out, by 

using rectangular specimens of LLDPE and LLDPE-A380-2, with a length of 100 mm, width of 10 

mm, thickness of about 4 mm and gage length of 60 mm. The tests were carried out with an 

Instron® 4502 tensile testing machine, at a crosshead speed of 5 mm/min. At least three samples for 

each material were tested at room temperature. Elongation and specimen width were measured 

during deformation by using an Instron® 2620-613 bi-axial extensometer [143]. Considering that 

the two transversal strain components (ε2) were equal, the volume strain was calculated as reported 

in Equation  3.11: 

 

Equation  3.11 
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where ∆V is the change in volume, V0 the original volume, ε1 the axial strain, and ε2 the transversal 

strain. Volume strain was measured assuming that the changes in the thickness and width were the 

same, the specimen’s cross section remained rectangular and the deformation was affine (non-

necking in the measured zone). In our samples the deformation started to be not homogeneous 

throughout the specimen for the presence of a necked zone at about 30% elongation, but the tests 

were stopped at a strain level of 10%. No evidence of differential changes in width and thickness 

were noticed and the cross section remained rectangular shape during straining. In this way 

Poisson’s ratio (ν) was calculated as the negative ratio between the longitudinal and the axial strain, 

as reported Equation  3.12 : 

 

Equation  3.12 
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3.3.4.2 Tensile impact tests 
 
 

Because fumed silica nancocomposites showed a better fracture toughness with respect to the 

unfilled material, the impact behaviour of these samples was also evaluated. Tensile impact tests 

were carried out with a CEAST® tensile impact instrumented pendulum. The striker, with a mass of 

3.65 kg and an initial angular position of 63°, had an impact speed of 2 m/s and a total impact 

energy of 7.3 J. In this way the specific tensile energy to break (TEB), obtained by simply 

integrating load-displacement curves, was obtained. 

 
 

3.3.4.3 Essential Work of Fracture (EWF) analysis 
 
 
In order to investigate the toughening mechanism associated to the presence of fumed silica 

nanoparticles in LLDPE, an elasto-plastic mechanics approach was adopted in order to evaluate the 

fracture toughness of the nanocomposites. There are different approaches suitable to study the non-

linear fracture toughness of polymeric matrices. It can be determined by the J-integral method, 

which is an energy-based parameter to characterize the stress–strain field near a crack tip 

surrounded by small-scale yielding. The fracture toughness, JIC represents the energy required to  
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initiate crack growth [144-147]. Being the JIC determination of polymers quite difficult, especially 

for polymers having high plastic resources, the Essential Work of Fracture (EWF) concept was 

considered to evaluate the fracture toughness of polymers, under tensile conditions [129]. The 

complete explanation of this approach is reported in Chapter 2.4.3. In the present work DENT 

specimens (width 30 mm, height 30 mm, thickness 0.8 mm, distance between the grips 50 mm) 

were tested (see Figure 3.9). 

 

 

Figure 3.9 Typical configuration of DENT specimens for EWF tests 

 

Four specimens for every ligament length (L) were considered, and five ligament length between 5 

and 13 mm were tested at a crosshead speed of 10 mm/min. The notches were prepared by using a 

razor blade, in order to obtain a very sharp crack tip. The experimental apparatus for the preparation 

of the DENT specimens is represented in Figure 3.10. From SEM images it was possible to estimate 

an average crack tip radius of less than 2 µm (see Chapter 4.4.3).  

 

 

Figure 3.10 Experimental apparatus for the preparation of DENT specimens for EWF tests 
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The statistical analysis of the collected data was then conducted in accordance to the indications 

reported in the paper of Williams about the standardization of the EWF test, and is reported in 

Chapter 2.4.3. In this way the essential work of fracture (we) and the specific plastic work of 

dissipation (βwp) for LLDPE and 2 vol% fumed silica nanocomposites was evaluated. The necking 

component of the essential work of fracture (weini) was also determined. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Results and discussion 
_______________________________________________________________________________________ 

_____________________________________________________________________________ 
103 

 
 
 

4 Results and discussion 
 
 
 
 
 
 
 
 
 

4.1 Microstructural characterization  
 
 

A microstructural characterization was conducted both on micro and nanofillers and respective 

micro-nanocomposites, in order to explore possible correlation between microstructure and 

properties of the prepared composites. 

 
 

4.1.1 Microparticles and nanoparticles 
 
 

4.1.1.1 TEM/ESEM observations 
 
 
In Figure 4.1 TEM images of fumed silica nanoparticles at different surface area are reported, while 

in Figure 4.2 and in Figure 4.3 ESEM images of precipitated silica microparticles and glass spheres 

are respectively represented. It the case of fumed silica nanoparticles, it is evident the structure of 

the primary nanoparticles, with a diameter between 20 nm and 7-8 nm, according to the producer’s 

data. It is also evident the correlation between primary nanoparticles size and surface area values. 

These nanoparticles are fused together to form aggregates, and some agglomerates can be easily 

detected.    
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(l) 

Figure 4.1 TEM images of fumed silica nanoparticles at different magnifications. (a-b) A90, (c-d) A200, (e-f) 
A300, (g-h) A380, (i-l) Ar816 

 
 
For as concern Sipernat® 160 microparticles, ESEM observations reported in Figure 4.2 evidence a 

structure characterized by spherical irregular nanoparticles, with a mean diameter of 9 ± 2 µm, 

according to the producer’s datasheet. From high magnification photos it is also evident the 

presence of an elevated surface porosity, responsible of the high surface area value of this 

microfiller. 

As reported in Figure 4.3, Glass microbeads are characterized by an almost spherical shape with 

mean diameter of 18 ± 3 µm. The surface is very smooth, thus justifying the low surface area value 

reported in the datasheet. Moreover some beads are physically fused together, forming 

microparticle agglomerates of 50-60 µm.    
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(a) 
 

 
(b) 
 

 
(c) 

Figure 4.2 ESEM images of Sipernat® 160 microparticles at different magnifications 
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(a) 
 

 
(b) 

 

 
 

(c) 

Figure 4.3 ESEM images of Cores® glass microparticles at different magnifications 
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4.1.1.2 Density measurements 
 
 
 
In Figure 4.4 the helyum pycnometer data obtained on silica micro and nanoparticles are reported, 

while in Table 4.1 density results are summarized. Regarding fumed silica nanoparticles, it is 

evident that at least 200 measures are necessary to reach a constant density value. This probably 

indicates that the surface of fumed silica aggregates has a very diffused open porosity, among which 

helium molecules can hardly penetrate and diffuse. As evidenced in Figure 4.1, these pores are 

constituted by the interstitial spaces formed by the random aggregation of fumed silica primary 

nanoparticles. In the case of untreated fumed silica nanoparticles, density values are around 2.3-2.5 

g/cm3, near the density of a typical non porous silica glass (2.5 g/cm3). When surface treated 

nanoparticles are considered (Ar816), the density is considerably lower (2.04 g/cm3), because of the 

presence of hydrocarbon chains, with relatively low density, on the surface of primary 

nanoparticles.   

For precipitated silica microparticles (S160) the density is lower (1.85 g/cm3) and at least 400 

density measures are necessary to reach an almost constant value. It is probable that these 

microparticles have a small amount of internal close porosity and a considerable amount of surface 

open porosity with little dimensions (a few nanometers), hardly reachable by helium molecules and 

responsible of the high surface area reported in the datasheet. The presence of an high surface 

porosity is confirmed by high magnification ESEM images (Figure 4.2). 

For glass microspheres, a plateau value of 2.43 g/cm3 can be easily reached after only 100 

measures, because of the absence of pores on the surface of the beads, as evidenced in Figure 4.3.  
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(c) 

 

 
(d) 

 

 
(e) 

 

 
(f) 

Figure 4.4 Density measurements on the different typologies of silica powders used in this work. (a) A90, (b) 
A200, (c) A380, (d) Ar816, (e) S160, (f) Glass microparticles 

 
 
 

Sample Density (g/cm3) 

A90 2.502 ± 0.013 

A200 2.272 ± 0.021 

Ar816 2.042 ± 0.008 

A300 2.230 ± 0.019 

A380 2.406 ± 0.018 

 

S160 1.850 ± 0.010 

Glass 2.430 ± 0.010 

Table 4.1 Density measurements on silica micro and nanopowders 
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4.1.1.3 Evaluation of the surface properties   
 
 
In Figure 4.5 representative curves of the surface properties of fumed silica nanoparticles, in 

particular of A90 and A380 sample, are reported. From the absorption/desorption curves it is 

evident the complete absence of hysteresis phenomena. Referring to the general theories regarding 

the gas physical absorption by powders and porous solids [148], it is possible to conclude that 

fumed silica nanoparticles are not internally porous, and the greatest part of the pores is constituted 

by open pores on the surface of the aggregates. These pores are mainly constituted by interstitial 

spaces between primary nanoparticles physically fused together. From the extrapolation of the 

adsorbed gas volume at low relative pressure it is possible to obtain BET surface area of fumed 

silica nanoparticles, which values are summarized in Table 4.2. The so obtained surface area values 

are very near to that reported in the datasheets (see Table 3.2). Furthermore through the application 

of the BJH method it is possible to determine the cumulative pore area distribution, as represented 

in Figure 4.5c and in Figure 4.5f. In Table 4.2 the surface area contribution due to pores between 

1.7 and 300 nm is summarized. Regardless to the total surface area values, it is possible to conclude 

that the major contribution is due to the presence of pores with diameters between 2 and 10 nm, 

while the surface area due to micropores (with diameter lower than 2 nm) is relatively low. The 

arithmetic mean pore diameter reported in Table 4.2 has only a mathematical meaning, because the 

maximum of the cumulative distribution is around 2-3 nm.   
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(b) 

 

 
(e) 

 

 
(c) 

 

 
(f) 

Figure 4.5 Representative curves of the surface properties of fumed silica nanoparticles. (a,b,c) A90, (d,e,f) A380. 
(a-d) specific gas volume adsorbed vs relative pressure, (b-e) linear plot for the evaluation of the BET surface 

area, (c-f) cumulative pore area vs pore size 

 
The same analysis was conducted on precipitated silica microparticles and glass microbeads, as 

represented in Figure 4.6. In the case of S160 microparticles, little hysteresis at high relative 

pressures can be easily detected. This probably means that these materials are probably internally 

porous, and that non-rigid slit-shaped pores can be probably found in correspondence of the 

aggregates of plate-like particles, formed during the synthesis of the microparticles. It can be also 

hypothesized the presence of open pores that start from the surface with tubular and tortuous 

structure, responsible of the high surface area of these microparticles. These considerations are 

supported by ESEM images at high magnification, by the relatively low density and by the 

difficulty to reach a plateau density value for these microparticles. Even in this case the greatest 

contribution to the total surface area is due to the presence of pores higher than 2 nm, even if the 

mean dimension of pores is probably slightly higher than that encountered for fumed silica 

nanoparticles. In the case of glass microbeads the measured surface area value is very low, this  
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means that the total amount of adsorbed gas is very low. Consequently the instrumental error is 

comparable to the measured value, and for this reason the adsorption curve stays above the 

desorption curve.  

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 

 
(f) 

Figure 4.6 Representative curves of the surface properties of (a,c,e) S160 microparticles and (b,d,f) Glass 
microspheres. (a-b) specific gas volume adsorbed vs relative pressure, (c-d) linear plot for the evaluation of the 

BET surface area, (e-f) cumulative pore area vs pore size 
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Sample 
 

BET Surface Area 
(m2/g) 

 
BJH Adsorption 

Cumulative Surface 
Area of pores 
(1.7-300 nm) 

(m2/g) 
 

BJH Adsorption 
Average Pore Diameter 

(nm) 
 

A90 
 

99.5 ± 0.7 
 

85.9 14.1 

A200 
 

196.6 ± 1.7 
 

165.2 14.4 

Ar816 
 

159.2 ± 1.3 
 

140.0 15.6 

A300 
 

274.0 ± 2.6 
 

220.9 11.6 

A380 
 

320.8 ± 3.4 
 

247.0 11.5 

 

S160 
 

168.3 ± 0.6 
 

125.9 32.9 

Glass 
 

0.5 ± 0.1 
 

0.4 6.7 

Table 4.2 Surface properties of fumed silica nanoparticles and silica microparticles used in this work 

 
 

4.1.2 Composites 
 
 

4.1.2.1 ESEM/TEM fracture surface images  
 
 
In Figure 4.7 ESEM images of the fracture surfaces of LLDPE-Glass-2 composite are represented. 

It is evident the presence of spherical smooth microparticles homogeneously distributed through the 

sample, with mean dimension of about 15-20 µm. 
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(a) 
 

 
(b) 
 

 
(c) 

Figure 4.7 ESEM images of the fracture surfaces of LLDPE-Glass-2 composite at different magnifications 
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In Figure 4.8 ESEM images of the fracture surfaces of LLDPE-S160-2 composite at different 

magnifications are represented. The microparticles appear irregular even if substantially spherical, 

but the most important information is that the mean microparticles dimension is about 1.5-2 µm, 

much lower than the mean dimensions of the microparticles before melt compounding. It is 

probable that the high shear forces applied to the very porous precipitated silica microparticles 

during compounding leads to their partial fracture, as confirmed by SEM observations of 

precipitated silica composites in the papers of Shim and Isayev on polydimethylsiloxane systems 

[135] and Uotila et al. on PP/elastomer/microsilica composites [136].  

      
 

 

 
(a) 
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(c) 

Figure 4.8 ESEM images of the fracture surfaces of LLDPE-S160-2 composite at different magnifications 

 
 

A more detailed microstructural analysis can be conducted considering TEM images reported in 

Figure 4.9 and in Figure 4.10. Isodimensional aggregates of about 400 nm homogeneously 

dispersed in the matrix can be easily detected. This means that the fracture of the aggregates during 

melt compounding is more effective than that evidenced by ESEM images. It is important to note 

that the deformation leads to the orientation of the aggregates along the stress direction, especially 

when a deformation level higher than 60% is applied to the sample. 
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(c) 

 

 
 
(d) 

Figure 4.9 TEM images of the fracture surfaces of LLDPE-S160-2 nanocomposite at different deformation levels 
(marker 1 µm). (a) 0%, (b) 30%, (c) 60 %, (d) 100% 

 
 

 
 

(a) 

 

 
 

(b) 
 

 
 

(c) 

 

 
 

(d) 

Figure 4.10 TEM images of the fracture surfaces of LLDPE-S160-2 nanocomposite at different deformation 
levels (marker 0.5 µm). (a) 0%, (b) 30%, (c) 60 %, (d) 100% 
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In Figure 4.11 ESEM images of the fracture surfaces of LLDPE-A380-2 at different magnifications 

are represented. From high magnification images it is possible to detect the presence of fumed silica 

agglomerates with submicron size and irregular shape localized in a particular zone of the sample. 

In any case the relatively low magnification degree and the low resolution of the image do not 

provide detailed information about the microstructural arrangement of fumed silica nanoparticles in 

the composite. 

 
 

 

Figure 4.11 ESEM images of the fracture surfaces of LLDPE-A380-2 nanocomposite at different magnifications 

 
(a) 

 
(b) 

 
(c) 
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In Figure 4.12 and in Figure 4.13 TEM images of the fracture surfaces of LLDPE-A380-2 

nanocomposite at different deformation levels are reported. Considering the un-deformed sample, it 

is very easy to detect the presence of spherical silica aggregates homogeneously dispersed in the 

matrix, with mean diameter of about 200 nm. Fumed silica aggregates remain dimensionally 

unaltered even when deformation levels of 30 % are applied to the samples. For higher applied 

strains, silica aggregates begin to align themselves along the strain direction, increasing the 

length/thickness ratio. As it will be clarified in the section on the fracture behaviour, the tensile 

strain at yield of these nanocomposites is about 25 %. This means that the orientation of fumed 

silica aggregates begins at strains higher than the yield point, while in the elastic region silica 

aggregates remain randomly distributed. 

 

 
 

 
 
(a) 

 

 
 
(b) 

 

 
 
(c) 

 

 
 
(d) 

Figure 4.12 TEM images of the fracture surfaces of LLDPE-A380-2 nanocomposite at different deformation 
levels (marker 1 µm). (a) 0%, (b) 30%, (c) 60 %, (d) 100% 
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(a) 

 

 
 
(b) 

 

 
 
(c) 

 

 
 
(d) 

Figure 4.13 TEM images of the fracture surfaces of LLDPE-A380-2 nanocomposite at different deformation 
levels (marker 0.5 µm). (a) 0%, (b) 30%, (c) 60 %, (d) 100% 

 
 

As a comparison, the mean size of silica aggregates of LLDPE-A380-2 and LLDPE-S160 samples 

and their length/thickness (L/t) ratio are summarized in Table 4.3. It is evident that the mean 

diameter of S160 aggregates is slightly higher than that of A380 filled sample. Moreover the 

orientation of nanoparticles in LLDPE-S160-2 sample is less intense, with lower L/t values with 

respect to LLDPE-A380-2 sample at the same strain level. This aspect will be considered in the 

section dedicated to the analysis of the fracture behaviour of the composites (Chapter 4.4.1).  
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LLDPE-S160-2 LLDPE-A380-2 

ε (%) 
L (nm) t (nm) L/t 

 
L (nm) 

 
t (nm) L/t 

0 411 ± 36 405 ± 14 1.0 ± 0.1 198 ± 12 199 ± 21 1.0 ± 0.1 

30 546 ± 52 206 ± 40 2.6 ± 0.7 684 ± 79  151 ± 23 4.5 ± 0.7 

60 731 ± 88 210 ± 43 3.5 ± 0.7  1011 ± 61 113 ± 9 8.9 ± 0.7 

100 999 ± 140 193 ± 25 5.2 ± 0.7  1603 ± 100 76 ± 19 21.1 ± 2.3 

Table 4.3 Dimensional analysis of the silica aggregates of the LLDPE-S160-2 and LLDPE-A380-2 samples at 
different deformation levels 

 
 

4.1.2.2 Density measurements 
 
 
In Figure 4.14 density measurements of LLDPE and 2 vol% silica filled composites are reported, 

while in Table 4.4 plateau density values, compared with theoretical values, are summarized. As 

can be easily predicted, the density of the composites is only slightly higher than that of the pure 

LLDPE. Moreover measured density values are in accordance with theoretical density predictions 

based on traditional rule of mixture. This means that the presence of the filler does not lead to void 

formation during melt compounding. 
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(a) 

 
(b)  

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g)  

(h) 

Figure 4.14 Density measurements of LLDPE- 2 vol% filled composites. (a) LLDPE, (b) LLDPE-A90-2, (c) 
LLDPE-A200-2, (d) LLDPE-A300-2, (e) LLDPE-A380-2, (f) LLDPE-Ar816-2, (g) LLDPE-S160-2, (h) LLDPE-

Glass-2 
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Sample ρ filler  
(g/cm3) 

ρ experimental 
(g/cm3) 

ρ theoretical 
(g/cm3) 

LLDPE - 0.911 ± 0.002 0.911 

LLDPE-A90-2 2.502 ± 0.013 0.934 ± 0.002 0.940 

LLDPE-A200-2 2.272 ± 0.021 0.935 ± 0.002 0.938 

LLDPE-Ar816-2 2.042 ± 0.008 0.937 ± 0.001 0.936 

LLDPE-A300-2 2.230 ± 0.019 0.939 ± 0.001 0.938 

LLDPE-A380-2 2.406 ± 0.018 0.941 ± 0.002 0.940 

 

LLDPE-S160-2 1.850 ± 0.010  0.937 ± 0.001 0.934 

LLDPE-Glass-2 2.430 ± 0.010 0.940 ± 0.001 0.940 

Table 4.4 Density of LLDPE- 2 vol% composites, compared with theoretical density values 

 
 

In order to study the deformational mechanisms of fumed silica nanocomposites, density 

measurements after yielding were conducted. In Figure 4.15 density values of LLDPE and LLDPE-

A380-2 nanocomposite are compared, before and after yielding process, while in Table 4.5 plateau 

density values are summarized. Density of the yielded sample is slightly lower than that of 

undeformed samples, probably because of the presence of voiding phenomena in the yielded zone. 

Furthermore, density reduction of LLDPE-A380-2 sample is practically the same of that obtained 

for the unfilled sample. It is therefore possible to conclude that the presence of nanoparticles does 

not lead to void formation or microcavitation during the yielding process, in contrast with the 

conclusion reported by Lazzeri et al. In fact, they associated the observed increase in volume strain 

with deformation to matrix-particle debonding phenomenon [149]. 
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(a) 

 
(b) 

Figure 4.15 Density measurements of (a) LLDPE and (b) LLDPE-A380-2 nanocomposite. ( ) Not-yielded 
sample, ( ) yielded sample (v=50 mm/min, deformation level 100%) 

 
 

Density (g/cm3) 
Sample 

Undeformed Deformed at ε = 100 % 

Density 
reduction (%) 

LLDPE 0.911 ± 0.001 0.899 ± 0.001 1.31 ± 0.15 

LLDPE-A380-2 0.941 ± 0.002 0.927 ± 0.002 1.49 ± 0.29 

Table 4.5 Effect of the yielding on the density of LLDPE and LLDPE-A380-2 nanocomposite (yielded samples at 
v=50 mm/min and at a deformation level of 100%) 

 

4.1.2.3 Differential scanning calorimetry (DSC) 
 
 
In order to analyze the influence of silica fillers on the melting behaviour and on the crystallinity of 

the LLDPE matrix, DSC tests were conducted. In Figure 4.16, DSC thermograms of LLDPE and 

relative 2 vol% fumed silica nanocomposites are reported, while in Figure 4.17 thermograms of 2 

vol% precipitated microparticles and glass microbeads filled samples are represented. The most 

important results are then summarized in Table 4.6. It is evident that the melting behaviour of the 

material is not affected by the presence of the fillers. In fact melting temperatures and crystallinity 

content of the composites are practically the same of that of pure LLDPE, both during first and 

second scans. The presence of crystalline nanoparticles may lead to an increase of the total 

crystalline amount and of an enhancement of the melting temperatures [149]. In some cases the  
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presence of nanoparticles is responsible of a substantial increase of the crystallization rate and of 

significant modifications of the crystalline morphology of the material [150]. It is possible that in 

our case the amorphous structure of the filler does not induce heterogeneous nucleation phenomena, 

while more extended crystallization kinetics tests should be necessary to assess the influence of the 

considered silica filler on the crystallization behaviour of the matrix. 

  
 

 
(a) 

 

 
(b) 

Figure 4.16 DSC on LLDPE - 2 vol% fumed silica nanocomposites, (a) first scan, (b) second scan. () LLDPE, 
( ) LLDPE-A90-2, ( ) LLDPE-A200-2, ( ) LLDPE-A300-2, (◊) LLDPE-A380-2, ( ) LLDPE-Ar816-2 

 
 
 

 

 
(a) 

 

 
(b) 

Figure 4.17 DSC on LLDPE - 2 vol% microcomposites, (a) first scan, (b) second scan. () LLDPE, ( ) LLDPE-
S160-2, ( ) LLDPE-Glass-2 
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Sample 

 
Tm1 (°C) xc1 (%) Tm2 (°C) xc2 (%) 

LLDPE 123.0 41.7 122.9 38.4 

LLDPE-A90-2 123.6 42.1 123.2 39.2 

LLDPE-A200-2 123.0 42.5 123.6 40.0 

LLDPE-Ar816-2 123.7 41.2 123.8 39.9 

LLDPE-A300-2 123.1 43.0 123.7 40.0 

LLDPE-A380-2 123.0 42.4 124.1 39.0 

 

LLDPE-S160-2 123.3 41.0 122.5 39.0 

LLDPE-Glass-2 123.0 41.0 122.7 39.1 

Table 4.6 DSC on LLDPE and relative 2 vol% composites 

 
 
DSC tests were also conducted on post-yield deformed samples, in order to understand the 

influence of silica nanoparticles on the deformational behaviour of the prepared nanocomposites. In 

Figure 4.18 thermograms of LLDPE - 2 vol% fumed silica nanocomposites after yielding are 

reported, while the most important results are summarized in Table 4.7. Even in this case the 

melting temperatures and the total crystallinity amount are not substantially affected by the 

presence of the nanoparticles. This means that the influence of the nanoparticles is not directed on 

the crystalline part of the material, and that the deformational behaviour of the prepared 

nanocomposites can not be explained considering modifications of the crystallization behaviour of 

the material in the yielded zone. Furthermore, it can be easily noticed that yielded samples show 

slightly lower cristallinity values than the undeformed ones. This is probably due to the fact that the 

crystalline order of the matrix is partially destroyed when the macromolecules are forced to align 

themselves along the loading direction during the deformational process. 
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(a) 

 

 
(b) 

Figure 4.18 DSC on LLDPE - 2 vol% fumed silica nanocomposites after yielding (v=50 mm/min, deformation 
level 100%) , (a) first scan, (b) second scan. () LLDPE, ( ) LLDPE-A90-2, ( ) LLDPE-A200-2, ( ) LLDPE-

A300-2, (◊) LLDPE-A380-2, ( ) LLDPE-Ar816-2 

 
 

Sample Tm1 (°C) xc1 (%) Tm2 (°C) xc2 (%) 

LLDPE 122.0 39.1 122.4 38.2 

LLDPE-A90-2 121.7 39.5 122.5 38.8 

LLDPE-A200-2 121.4 39.8 122.8 38.4 

LLDPE-Ar816-2 121.6 39.9 122.8 38.2 

LLDPE-A300-2 121.6 37.8 123.0 37.8 

LLDPE-A380-2 121.4 39.1 122.8 37.7 

Table 4.7 DSC on LLDPE and relative 2 vol% fumed silica nanocomposites after yielding (v=50 mm/min, 
deformation level 100%) 

 

4.1.2.4 X-Ray diffraction analysis 
 
 
In order to investigate the influence of the different typologies of silica fillers on the crystalline 

structure of LLDPE, X-Ray diffraction analysis was conducted both on nano and microcomposites. 

In Figure 4.19 X-Ray diffractograms of LLDPE and relative 2 vol% filled composites are reported, 

while in Figure 4.20 lognormal distributions of the crystallite size, elaborated through the Whole  
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Powder Pattern Model (WPPM) algorithm, are represented. The main features of the distributions 

and the mean crystallite size are summarized in Table 4.8. Even in this case the crystalline structure 

and the mean crystallites size (about 20 nm) are practically not affected by the presence of silica 

fillers, neither by using microparticles nor nanoparticles. These considerations are in agreement 

with the indications emerged from DSC tests, confirming that the crystalline phase of the matrix is 

not affected by the presence of SiO2 nanoparticles. 

 
 

 

 
(a) 

 

 
(b) 

Figure 4.19 X-Ray diffractograms of LLDPE - 2 vol% filled composites. (a) Nanocomposites, (b) 
microcomposites 

 
 

 
(a) 

 

 
(b) 

Figure 4.20 Lognormal distributions of LLDPE crystallites in LLDPE - 2 vol% composites. (a) Nanocomposites, 
(b) microcomposites. (□) LLDPE, (○) LLDPE-A200-2, ( ) LLDPE-A380-2, ( ) LLDPE-S160-2, ( ) LLDPE-

Glass-2 
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Sample µ σ D (nm) 

LLDPE 2.995 0.232 20.5 ± 4.8 

LLDPE-A200-2 3.114 0.178 22.9 ± 4.1 

LLDPE-A380-2 3.026 0.246 21.2 ± 5.3  

LLDPE-S160-2 3.053 0.190 21.6 ± 4.1 

LLDPE-Glass-2 3.017 0.250 21.1 ± 5.4 

Table 4.8 Mean and variance of the lognormal distribution of the crystallites diameter of LLDPE - 2 vol% 
composites 

 
 

4.1.2.5 Infrared (IR) spectroscopy 
 
 
In Figure 4.21 infrared spectroscopy plots of pure A380 powder, LLDPE and A380 filled 

nanocomposites are reported. All the samples present two distinct peaks around 2900 cm-1, typically 

associated to the presence of CH2 groups of polyolefinic materials [151]. Morevover, fumed silica 

powder and filled samples show an absorption peak at about 1100 cm-1, whose intensity is 

proportional to the filler content. This absorbance peak can be attributed to Si-O-Si stretching 

vibrations, indicating the presence of silica on the surface, as largerly confirmed by many 

observations present in literature on silica and POSS based composites [93, 151-154]. 

It is important to underline the presence of a very small signal at about 1700 cm-1 for the filled 

samples, whose intensity is proportional to the filler content (see Figure 4.21b). Furthermore this 

absorption peak is practically absent for pure LLDPE and fumed silica powder. According to 

infrared spectroscopy handbooks [151], this peak can be attributed to the stretching of carbonylic 

groups (C=O). The presence of carbonilic groups in polyolefinic material was studied by Della 

Volpe et al. on PE and PP samples through X-Ray Photoelectron Spectroscopy (XPS) and Electron 

Spectroscopy for Chemical Analysis (ESCA) [155], leading to the conclusion that, even when ultra-

pure polymeric matrices are used, a small percentage of oxygen is present in the product, due to the 

oxidation induced during the production process [156, 157]. In this case an industrial product was  
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utilized, and a relatively low temperature was chosen for the melt compounding process (170 °C), 

consequently a negligible oxidation process can be obtained in the case of pure LLDPE sample. 

As reported by Pandey et al. in a review on the degradability of polymer nanocomposites, the 

presence of this functionalities in the material can be explained considering that the degradation of 

hydrocarbon chains leads to the formation of hydroxyl (O-H) and carbonylic (C=O) groups [158]. 

The presence of these functionalities only for the nanofilled samples can be justified in different 

ways. According to the observation of Pandey and Singh, once oxygen reaches the matrix, it 

remains for longer time in the case of nanofilled polymers, because the nanoparticles may interfere 

in the path, thus O2 is available to initiate the degradation process for more time than for the neat 

polymer [159]. Moreover, Huaili et al. studied the photo-oxidative degradation of PE/OMMT 

nanocomposites compared with neat polyethylene. By FT-IR analysis they found a considerable 

increase in the intensity of the carbonyl signal increasing the irradiation time in the PE/OMMT, 

while in the pure PE the intensity in the carbonyl region was significantly less [160]. It is also 

possible that oxygen atoms physically adsorbed on the surface of fumed silica nanoparticles favour 

the local oxidation process of the polyethylenic matrix, leading to the formation of C=O bonds in 

correspondence to the interface. Increasing the filler content the availability of oxygen atoms for the 

oxidation process is enhanced, leading to the formation of an higher number of C=O groups at the 

interface. 

 

 
(a) 

 

 
(b) 

Figure 4.21 Infrared spectroscopy of A380 powder, LLDPE and A380 filled nanocomposites (the curves were 
shifted along the y-axis). (a) full scale, (b) zoom around 1700 cm-1 

 
The intensity of C=O peak could be compared with that of the other reflections in the spectrum. For 

example it is possible to normalize the adsorbed intensity of this peak (A1720) with that of the 

reflection associated to CH2 stretching at around 2920 cm-1 (A2920), taking into account the reduced  
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amount of the organic phase due to the presence of the filler. In Table 4.9 relative intensity values 

of the carbonylic group peak of A380 powder, LLDPE and A380 filled nanocomposites 

(A1720/A2920) are reported. It is evident that C=O peak intensity is gradually increasing with the filler 

content. 

 

Sample A1720/A2920 (x 10-3) 

A380 - 

LLDPE - 

LLDPE-A380-1 5.2 

LLDPE-A380-2 7.1 

LLDPE-A380-3 14.9 

LLDPE-A380-4 24.4 

Table 4.9 Relative intensity of the carbonylic group peak of A380 powder, LLDPE and A380 filled 
nanocomposites 

 
Taking into account the literature references and the observed FT-IR spectra, it can be hypothesizes 

that when the nanofiller is added to the matrix, the high shear forces during melt compounding and 

the availability of oxygen atoms at the filler surface can be responsible to a considerable oxidation 

of polymeric chain around fumed silica nanoparticles, leading to the formation of carbonylic groups 

at the interface. Even if the intensity of the signal associated to C=O group from IR analysis is 

relatively low, it has to be considered that all the carbonylic groups were formed around the filler 

surface.  

As can be clearly seen in Figure 4.21, FT-IR analysis does not evidence the presence of OH groups, 

that generally are associated to reflection peaks at about 3400 cm-1. It has to be considered that, if 

compared with CH2 or SiO reflections, the intensity of hydroxyl group peak is relatively low, and 

more sophisticated analyses should be conducted to detect the presence of OH functionalities in the 

samples. In any case the presence of silanol groups on the surface of silica powders is well 

documented in literature, and several attempts were made to estimate the number of hydroxyl 

groups on the silica surface [161-166]. 

Consequently it is possible to hypothesize the presence of physical polymer-filler interaction based 

on hydrogen bonding between C=O groups (and probably OH groups) of the matrix and Si-OH 

functionalities present on the surface of the nanofiller. 
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4.2 Viscoelastic behaviour in  the molten state 
 
 
 
In Figure 4.22 dynamic rheological properties of LLDPE- 2 vol% fumed silica nanocomposites are 

represented. Regardless to the surface area, it is evident that the introduction of the nanofiller in 

LLDPE leads to a very strong enhancement both of the storage (G’) and shear moduli (G’’), and of 

the viscosity (η), especially at low frequencies, while loss tangent values are strongly lowered, with 

a shift of the tanδ peak towards higher frequencies. These observations are in agreement with the 

scientific literature on the rheological properties of nanoparticles filled systems [22, 167-172]. It is 

important to underline that in the low frequency region G’ of nanocomposites becomes frequency 

independent, which is the characteristic behaviour of solid-like materials (solid-like behaviour). 

If in the case of clay filled polymeric nanocomposites the observed G’ behaviour in the low 

frequency region indicates strong interactions between clay layers and polymeric matrix, in fumed 

silica nanocomposites the solids like behaviour is generally due to particle-particle interactions and 

the consequent formation of a network structure [22]. As reported in Chapter 2.1.3, these 

interactions may arise from hydrogen bonds of silanolic groups present on the surface of primary 

nanoparticles. At high test frequencies these bonds are broken by shear forces, consequently G’ 

begins to be near to that of the unfilled matrix, while the viscosity begins to drop at values 

comparable to that of pure LLDPE. 

The effect of the surface area can be detected only at low frequencies, with arising shear viscosity 

as the surface area of the nanofiller increases. It is probable that the reduction of the primary 

nanoparticle diameter for high surface area silicas results in an higher number of sylanol groups on 

the surface of the aggregates, leading to an higher number of hydrogen bonds and to stronger 

interactions between nanoparticles.    

For the same reason the presence of physical interactions between the nanoparticles leads to a 

considerable lowering of tanδ values, more consistent than that predictable on the basis of the 

traditional rule of mixtures. The tanδ peak indicates the beginning of the breakdown of the silica 

network, and the little shift of the peak towards higher frequencies induced by high surface area 

silicas is due to stronger interparticle interactions, favoured by the presence of silanol groups at the 

surface. 

Moreover, fumed silica nanocomposites seem to be insensitive to the surface functionalization of 

the nanoparticles, being the rheological properties of LLDPE-Ar816-2 sample similar to that of  
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LLDPE-A200-2 sample. Even if in the work of Cassagnau [22] the presence of hydrocarbon 

functionalities on the surface of fumed silica nanoparticles results in a breakdown in the particle 

interactions, with a decrease of G’ values, it is possible that in this case the grafting density of 

Ar816 powder is too low to achieve this effect, or the grafted hydrocarbon chains are too short to 

create a steric repulsion between silica particles. 

 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 

(d) 

Figure 4.22 Dynamic rheological properties of LLDPE- 2 vol% fumed silica nanocomposites (T=190 °C). (a) G', 
(b) G'', (c) tanδ, (d) η. (□) LLDPE, (○) LLDPE-A90-2, ( ) LLDPE-A200-2, ( ) LLDPE-A300-2, ( ) LLDPE-

A380-2, ( ) LLDPE-Ar816-2 

 
The results obtained by using fumed silica nanoparticles can be compared with rheological 

properties of precipitated silica and glass beads microcomposites, and in Figure 4.23 a comparison 

of dynamic rheological properties of LLDPE- 2 vol% micro and nanocomposites is reported. It is 

evident that the behaviour of LLDPE-S160-2 sample is similar to that of fumed silica 

nanocomposites, with a strong increase of G’ and G’’ and the presence of the solid-like behaviour  
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in the low frequency regime, associated to a decrease of tanδ with a shift of the peak towards higher 

frequencies. Even in this case dynamic shear viscosity curves do not show a Newtonian plateau at 

low frequencies, probably because of the previously discussed network formation mechanism. 

When glass microbeads are used as filler, the traditional trend of the rheological behaviour of 

microparticles filled polymeric systems can be detected [99-102]. Only marginal improvements of 

G’, G’’ and η can be measured, especially at low frequencies, while tanδ is only slightly reduced. 

The great difference between rheological properties of traditional glass microbeads filled systems 

and precipitated silica microparticles composites is mainly due to the different surface area values 

(168 m2/g against 0.45 m2/g) of the particles.  

 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Figure 4.23 Comparison of dynamic rheological properties of LLDPE- 2 vol% composites. (a) G', (b) G'', (c) 
tanδ, (d) η. (□) LLDPE, ( ) LLDPE-Glass-2, ( ) LLDPE-S160-2, (○) LLDPE-A200-2, ( ) LLDPE-A380-2  

 
In order to obtain a deeper comprehension of the influence of the filler typology on the rheological 

properties of the resulting material, dynamic tests at different temperatures, ranging from 125 °C to  
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210 °C, were conducted. Dynamic storage modulus (G’) and loss modulus (G’’) of LLDPE– 2 vol% 

composites at different temperatures are respectively reported in Figure 4.24 and in Figure 4.25. 

Through the frequency-temperature superposition principle it was possible to construct G’ and G’’ 

master curves (Figure 4.26), in order to evaluate the dynamic behaviour of the materials over a 

wider frequency range.  

 
 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Figure 4.24 Storage modulus (G’) of LLDPE– 2vol% composites at different temperatures. (a) LLDPE, (b) 
LLDPE-Glass-2, (c) LLDPE-S160-2, (d) LLDPE-A380-2. (□) 125 °C, (○) 135 °C, ( ) 150 °C, ( ) 170 °C, ( ) 190 

°C, ( ) 210 °C 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Figure 4.25 Loss modulus (G’’) of LLDPE– 2vol% composites at different temperatures. (a) LLDPE, (b) 
LLDPE-Glass-2, (c) LLDPE-S160-2, (d) LLDPE-A380-2. (□) 125 °C, (○) 135 °C, ( ) 150 °C, ( ) 170 °C, ( ) 190 

°C, ( ) 210 °C 

 
The analyzed frequency range is only slightly extended by the application of the superposition 

principle, and the observations previously reported are confirmed. G’ and G’’ are strongly increased 

by the presence of fumed silica nanoparticles and precipitated silica microparticles, with the 

appearance of G’ plateau at low frequencies (solid-like behaviour). For glass filled composites only 

marginal improvements of G’’ and G’’ can be detected. 
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(a) 

 

 
(b) 

Figure 4.26 Master curves of LLDPE– 2vol% composites according to the time-frequency superposition 
principle (T 0=170 °C). (a) G’, (b) G’’. (□) LLDPE, (○) LLDPE-Glass-2, ( ) LLDPE-S160-2, ( ) LLDPE-A380-2 

 
It is also possible to analyze the trends of the shift-factor at the different temperatures, considering 

G’ curves and keeping a reference temperature T0=170 °C (the same analysis can be done 

considering G’’ curves). As reported in Chapter 2.2.3, at temperatures far above the glass transition 

of the material, Arrhenius equation can be adopted in order to fit shift factor data (Equation  4.1). In 

Table 4.10 shift factor values of LLDPE -2 vol% composites at different temperatures are reported, 

while in Table 4.11 activation energy (Ea) values of LLDPE – 2 vol% composites according to 

Arrhenius equation are summarized.  

 

Equation  4.1 
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Ea value obtained for unfilled LLDPE is in accordance with literature data [101], while all the 

composites show lower energy of activation values. Moreover Ea of LLDPE-A380-2 sample is even 

lower than that of LLDPE-S160-2 and LLDPE-Glass-2 filled sample. Even if the differences in Ea 

values are not so much pronounced and further investigations would be necessary to have a 

complete comprehension of the molecular dynamics of the investigated materials in the molten 

state, it is possible to explain the lowering of activation energy referring to the polymer-filler 

interaction. As reported by Ajayan et al. [4], when the interparticle distance is lower than the radius 

of gyration (Rg) of the macromolecules, a drop of the Tg of the material, due to a decrease of the 

density of the polymeric chains, can be usually detected. According to the data reported in polymer  
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handbooks [132], a typical value for the radius of gyration for our LLDPE matrix is about 13 nm. 

According to TEM observations on LLDPE-A380-2 nanocomposite it is evident that many zones of 

the samples present interparticles spaces of about 30 nm. Consequently it is possible to hypothesize 

a local chain depletion in these zone, with a consequent local Tg drop and lower energy of activation 

values for the viscous flow. 

 
 

T 1/T ln(a(T)) 

°C K -1 LLDPE LLDPE-Glass-2 LLDPE-S160-2 LLDPE-A380-2 

125 0.002513 1.082 0.760 0.668 0.852 

135 0.002451 0.691 0.553 0.576 0.461 

150 0.002364 0.345 0.276 0.345 0.184 

170 0.002257 0 0 0 0 

190 0.00216 -0.115 -0.231 -0.276 -0.230 

210 0.00207 -0.461 -0.484 -0.507 -0.276 

Table 4.10 Shift factor values of LLDPE -2 vol% composites from rheological tests at different temperatures 
(T0=170 °C) 

 
 

Sample Ea (kJ/mol) 

LLDPE 27.0 ± 2.6 

LLDPE-Glass-2 23.0 ± 0.7 

LLDPE-S160-2 23.0 ± 0.8 

LLDPE-A380-2 20.2 ± 3.0 

 

Table 4.11 Energy of activation (Ea) values of LLDPE- 2vol% composites according to Arrhenius equation 

 
 
The effect of the filler content on the composite rheology can be evaluated from G’ and G’’ curves 

of LLDPE and relative composites at 190 °C. These curves are reported in Figure 4.27 and in 

Figure 4.28, while in Figure 4.29 and in Figure 4.30 loss tangent (tanδ) and viscosity (η) values are 

represented. It can be observed that G’ increases proportionally to the filler content. In the case of 

glass microbeads filled samples the increase of G’ is very limited in all the frequency range. For 

precipitated silica microcomposites the observed behaviour is completely different. A strong G’ 

enhancement can be easily detected even at relatively low silica loading, and the presence of the  
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solid-like behaviour begins to be evident from filler contents of 2 vol%. The same considerations 

are valid also for fumed silica nanocomposites, but in this case G’ increase is even more evident, 

especially when high surface area nanoparticles are used.   

 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Figure 4.27 Storage modulus (G’) curves of LLDPE and relative composites (T=190 °C). (a) LLDPE-Glass-x, (b) 
LLDPE-S160-x, (c) LLDPE-A200-x, (d) LLDPE-A380-x. (□) LLDPE, (○) x=1 vol%, ( ) x=2 vol%, ( ) x=3 

vol%, ( ) x=4 vol% 

 
Similar observations arise from the analysis of G’’ trends of LLDPE and relative composites. G’’ 

increase for glass microbeads filled composites is marginal, while for S160 microcomposites and 

fumed silica composites the enhancement of loss modulus is very evident and proportional to the 

filler content, especially at low frequencies. 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Figure 4.28 Loss modulus (G’’) curves of LLDPE and relative composites (T=190 °C). (a) LLDPE-Glass-x, (b) 
LLDPE-S160-x, (c) LLDPE-A200-x, (d) LLDPE-A380-x. (□) LLDPE, (○) x=1 vol%, ( ) x=2 vol%, ( ) x=3 

vol%, ( ) x=4 vol% 

 
 
From the analysis of tanδ curves the difference in the rheological behaviour between glass 

microbeads and the other fillers is confirmed. If glass filled microcomposites are considered, the 

decrease of the loss tangent is very limited even at high filler contents. In the case of S160 filled 

composites it is evident a strong decrease of tanδ values with the filler content. Moreover there is a 

shift of the peak of tanδ towards higher frequencies. Even in this case this evidence can be justified 

considering the formation of a stronger silica network for the highly filled samples, because of the 

higher availability of silanol groups on the filler surface. 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Figure 4.29  Loss tangent (tanδ) curves of LLDPE and relative composites (T=190 °C). (a) LLDPE-Glass-x, (b) 
LLDPE-S160-x, (c) LLDPE-A200-x, (d) LLDPE-A380-x. (□) LLDPE, (○) x=1 vol%, ( ) x=2 vol%, ( ) x=3 

vol%, ( ) x=4 vol% 

 
A similar behaviour can be observed for shear viscosity (η) trends. Even in this case glass 

microcomposites showed only marginal improvements of the viscosity, with the presence of a 

Newtonian plateau at low frequencies. For precipitated silica microcomposites and fumed silica 

nanocomposites viscosity enhancement is very pronounced, especially at low frequencies and for 

high silica loadings. The pseudoplastic plateau disappears for filler contents higher than 2 vol%, 

probably for the presence of the network formed by silica aggregates through hydrogen bonds. 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Figure 4.30 Viscosity (η) curves of LLDPE and relative composites (T=190 °C). (a) LLDPE-Glass-x, (b) LLDPE-
S160-x, (c) LLDPE-A200-x, (d) LLDPE-A380-x. (□) LLDPE, (○) x=1 vol%, ( ) x=2 vol%, ( ) x=3 vol%, ( ) x=4 

vol% 

 
In Figure 4.31 relative viscosity of LLDPE and relative composites, both in the low and in the high 

frequency region, are reported. It is evident that the enhancement of the viscosity is much more 

pronounced at low frequencies, when the interparticles forces due to hydrogen bonding are more 

effective. While at 0.05 rad/s the viscosity of the LLDPE-A380-4 sample is about 100 times higher 

than that of the pure LLDPE, at 158 rad/s the viscosity of the same sample is only 2.4 times higher 

than that of the unfilled sample, confirming that in the high frequency region the shear forces lead 

to the breakage of the silica network, with a considerable reduction of viscosity values.  

In order to compare the rheological properties of the prepared composites with traditional models, 

Batchelor relation was adopted [173]. This model was elaborated to calculate the relative viscosity  
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of polymer composites containing colloidal hard spheres in the limit of low shear rate, and it is 

based on the following equation : 

 

Equation  4.2 

 
2

0

2.65.21 φφ
η
η ++=  

 
 

where η and η0 are the viscosity of the composite and of the matrix, respectively. It can be easily 

noted that the proposed model is an extension of the Einstein equation [174], originally proposed to 

predict the effect of a rigid filler on the viscosity of a Newtonian liquid in the case of diluite 

suspension. It is evident that Batchelor model is well followed by glass filled microcomposites, 

both in the low and in the high frequency regions, while in the case of precipitated silica 

microcomposites and fumed silica nanocomposites the relative viscosity increase is largerly 

underestimated. This means that traditional models are unsuitable to catch the rheological behaviour 

of polymeric composites containing high surface area fillers. 
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(a) 
 

 
(b) 

Figure 4.31 Relative viscosity values of LLDPE and relative composites (T=190 °C) at (a) 0.05 rad/s and (b) 158 
rad/s. (□) LLDPE-Glass-x, (○) LLDPE-S160-x, ( ) LLDPE-A200-x, ( ) LLDPE-A380-x. The dashed line 

represent the theoretical prediction of the relative viscosity according to the Batchelor model 

 
As reported in Chapter 2.2.1, quite a variety of non-Newtonian viscosity models, constituted by 2, 

3, 4 or 5 elements, have been proposed in the literature [102]. In this case the difficulty of finding a 

suitable model arises from the difference of viscosity trends between unfilled LLDPE and fumed 

silica nanocomposites. Among different models, De Kee and Turcotte in 1980 proposed a three-

parameter model [175], as reported in Equation  4.3.  
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Equation  4.3 

ωη
ω
τη 1

1
0 te−+=  

 
 
The first term on the right side of the equation involves a constant yield stress (τ0). This parameter 

is more closely related to the breakage of the solid network formed by silica aggregates. The 

limiting viscosity (η1) represent the zero-shear viscosity values when the solid network is absent, 

while t1 is a characteristic time, related to the velocity of the viscosity drop at high frequencies. In 

this work a modification of the original De Kee-Turcotte model was proposed, in order to obtain a 

better fit of the data even in the high-frequency regime, as reported in Equation  4.4 :        

 

Equation  4.4 
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A comparison between the traditional De Kee-Turcotte model and the modified one was then 

conducted on pure LLDPE and A380 filled samples, as reported in Figure 4.32. It is evident that the 

modified De Kee-Turcotte model can more satisfactorily fit experimental data, especially in the 

high frequency region. For this reason the proposed modified model was used to fit all the viscosity 

curves of LLDPE and of all the prepared composites. In Figure 4.33 experimental viscosity curves 

of LLDPE and relative composites at 190 °C, fitted according to the modified De Kee- Turcotte 

model, are reported. It is evident that this model is able to satisfactorily fit all the rheological curves 

of the considered samples, even when an high filler content is adopted. 
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(a) 
 

 
(b) 

 

 
(c) 

Figure 4.32 Experimental viscosity (η) curves of (a) LLDPE and (b-c) LLDPE-A380-x nanocomposites (T=190 
°C). (□) LLDPE, ( ) LLDPE-A380-2, ( ) LLDPE-A380-4. The dashed lines represent the fitted data according 

to the traditional De Kee-Turcotte model, while the continuous ones the fitted data according to the modified De 
Kee-Turcotte model 
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(d) 

Figure 4.33 Experimental viscosity (η) curves of LLDPE and relative composites (T=190 °C). (a) LLDPE-Glass-
x, (b) LLDPE-S160-x, (c) LLDPE-A200-x, (d) LLDPE-A380-x. (□) LLDPE, (○) x=1 vol%, ( ) x=2 vol%, ( ) 

x=3 vol%, ( ) x=4 vol%. The continuous lines represent the fitted data according to the Modified De Kee- 
Turcotte model 

 
It is now important to evaluate the influence of the filler content and typology on the fitting 

parameters, as reported in Figure 4.34. It is evident that yield stress (τ0) is practically zero for pure 

LLDPE and glass filled composites. For S160 filled composites yield stress begins to increase after 

a filler content of 2 vol%, while for fumed silica nanocomposites τ0 increases for a lower filler 

content. The concentration at which yield stress begins to increase can be interpreted as a 

percolation threshold, a critical concentration at which the interaction between the particles leads to 

a formation of a solid network, and the viscosity greatly increases. After the percolation threshold 

traditional pseudoplastic behaviour of LLDPE, with a Newtonian plateau in the low frequency 

regime, disappears. The same consideration holds for limiting viscosity (η1). For pure LLDPE and 

glass filled composites this parameter is around 3000-4000 Pa·s and can be considered as the zero  



Results and discussion 
_______________________________________________________________________________________ 

_____________________________________________________________________________ 
148 

 

shear viscosity. For the other composites η1 begins to increase for filler contents higher than 2 vol%. 

It is important to underline that by using elevated silica volume fractions (3-4 vol%) η1 is around 

1030 Pa·s, that is the typical viscosity values of a solid material, in accordance of the solid-like 

behaviour observed for G’ curves in the case of S160 filled microcomposites and fumed silica 

nanocomposites. Even t1 give us the same picture on the microstructure of the prepared composites. 

In fact, this parameter rules the viscosity drop at high frequencies. For glass filled composites t1 is 

practically the same of that of pure LLDPE, while for S160 and fumed silica composites the 

characteristic time begins to increase for silica contents higher than 2 vol%, that can be considered 

the percolation threshold for the rheological properties of the prepared composites. For the same 

reason α parameter is practically insensitive to the filer content for glass filled composites, while for 

S160 and fumed silica filled samples α considerably drops with the filler content. 
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(d) 

Figure 4.34 Evaluation of the Modified De Kee- Turcotte parameters derived from the fitting of the viscosity 
curves of LLDPE and relative composites.). (a) τ0, (b) η1, (c) t1, (d) α. (■) LLDPE-Glass-x, (●) LLDPE-S160-x, 

(▲) LLDPE-A200-x, (▼) LLDPE-A380-x 



Results and discussion 
_______________________________________________________________________________________ 

_____________________________________________________________________________ 
149 

 
 

4.3 Viscoelastic behaviour in  the solid state 
 
 
 

4.3.1 Elastic modulus evaluation 
 
 
In Figure 4.35 representative curves of quasi-static tensile tests for the evaluation of the elastic 

modulus of LLDPE - 2 vol% fumed silica nanocomposites are represented, while all the results are 

summarized in Table 4.12. It is evident the strong increase of the stiffness of the material with the 

surface area of the nanofiller. For example LLDPE-A380-2 sample shows an improvement of the 

elastic modulus of about 43 %. It is important to underline that the elastic modulus of functionalized 

nanoparticles (Ar816) filled sample is equal to that of the composite filled with untreated nanofillers 

with the same surface area (A200). The stiffening effect due to the presence of nanoparticles in 

polymeric systems is a well known phenomenon, and many papers dealing with this topic can be 

found in literature [21, 23, 176-185]. Consequently it is possible to conclude that the enhancement 

of the elastic modulus obtained by using fumed silica nanoparticles is comparable and in many 

cases superior to the improvements reported in literature on polyolefin based nanocomposite 

systems. 

 

 

Figure 4.35 Representative curves of quasi-static tensile tests for the evaluation of the elastic modulus of LLDPE 
- 2 vol% fumed silica nanocomposites 
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Sample E (MPa) 

LLDPE 199 ± 27 

LLDPE-A90-2 262 ± 25 

LLDPE-A200-2 274 ± 6 

LLDPE-Ar816-2 275 ± 10 

LLDPE-A300-2 311 ± 41 

LLDPE-A380-2 285 ± 46 

Table 4.12 Elastic modulus (E) results of LLDPE - 2 vol% fumed silica nanocomposites 

 
It is now important to compare the results found for fumed silica nanocomposite with that of 

precipitated silica nanoparticles and glass beads filled microcomposites, assessing also the influence 

of the filler content on the elastic properties of the prepared samples. In Figure 4.36 elastic moduli 

of LLDPE and relative composites at different filler contents are represented. It is immediately 

evident that in all cases the elastic modulus increases with the silica loading. In the case of glass 

microcomposites the stiffening effect is very limited, while for S160 filled composites a very 

interesting improvement of the elastic modulus can be detected. The stiffening effect obtained for 

S160 microcomposites is close to that found for A200 filled nanocomposites, while using fumed 

silica nanoparticles with the highest surface area (A380) the elastic modulus enhancement is even 

more pronounced. It can be concluded that quasi-static elastic properties of the composites are only 

marginally affected by the presence of glass beads at very low silica loadings, while they markedly 

depend on the surface area of the filler rather than on its dimensions. 

An attempt has been made to model the elastic modulus by considering the theoretical approaches 

developed for traditional microcomposites. The elastic modulus Ec (shear, Young’s, or bulk) of a 

stiff polymer filled with hard, almost spherical, microparticles can be well represented by the 

modified Kerner equation proposed by Lewis and Nielsen [186] in the following form: 

 

Equation  4.5 
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In Equation  4.5 Em and Ep are the elastic modulus of the matrix and of the particles respectively, Φp 

is the particle volume fraction, νm is the matrix Poisson ratio, while Φm represents the maximum 

packing fraction of the filler (0.632 for randomly close packed non-agglomerated spherical particles 

[12]). For as concern the choice of the matrix Poisson’s ratio, different experimental values, ranging 

from 0.4 to 0.5, can be found in literature. In this work a value of 0.44 was chosen for νm [187]. It 

should be noted that, in this model, the Young’s modulus does not explicitly depend on the particle 

size and particle size distribution, while the effect of surface treatment enters only indirectly into the 

model through the maximum packing fraction Φm. The modulus value of the silica particles is not 

known since its evaluation is of considerable experimental difficulty. In literature it can be easily 

found that a value of the Young’s modulus of about 70 GPa is generally reported for amorphous 

silicon dioxide [188]. While in the case of glass filled composites Lewis-Nielsen model can be 

successfully used to fit experimental data, the stiffening effect of the precipitated silica 

microparticles and fumed silica nanoparticles is in any case much higher than that theoretically 

predicted on the basis of the modified Kerner equation.  

 

 
Figure 4.36 Relative elastic modulus of LLDPE-SiO2 composites. (■) LLDPE-Glass-x, (●) LLDPE-S160-x, (▲) 

LLDPE-A200-x, (▼) LLDPE-A380-x. The dashed line is the theoretical prediction according to the Lewis-Nielsen 
model 

 
Therefore, we can conclude that the classical models adopted for microcomposites are not 

considering that in polymers filled with submicron particles in the interfacial area is much extended, 

and new models, taking into account the possibility of matrix-particle and particle-particle physical 

interactions, have to be elaborated. Two possible mechanisms are generally invoked in order to  
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explain the marked elastic modulus improvement obtained by using nanoparticles [4]. According to 

the first mechanism, if a high modulus filler is added to a lower modulus polymer, then load 

transfers from matrix to the filler, leading to an increase in modulus. In some nanocomposites 

polymeric chains and filler are almost the same size. Stress is transferred via shear stress at the 

filler/matrix interface, and the rate of load transfer depends on the shear stress. This highlights the 

role of the interface in controlling the modulus of filled polymers. For example, the higher the 

interfacial shear stress and the shorter the load transfer length, the more efficient the filler is in 

carrying load and the higher the composite modulus. The second mechanism takes into account the 

fact that the filler can constrain the mobility of the polymer chains as well as their relaxation spectra 

[189], thus modifying the glass transition temperature and the modulus of the matrix. 

In order to find suitable models for the interpretation of the elastic properties of nanocomposites, 

many attempts can be found in literature. For example Hirsch elaborated an empirical model, by 

using a combination of equal strain and equal stress conditions in the reinforcement and matrix 

phases [190]. Even if this model was successfully applied in many cases to predict the elastic 

response of nanofilled polymeric systems, it does not provide a complete explanation of the 

stiffening mechanism of the nanocomposites. Moreover the effects of the filler size and the 

possibility of interfacial interactions are not taken into account [191]. Recently, new models which 

incorporate the effect of the interface were proposed [192, 193]. Basing on Takayanagi’s two-phase 

model [194], a three phase model including the matrix, interfacial region and fillers was proposed 

by Ji et al. to estimate the tensile modulus of polymer nanocomposites, assuming that the 

composites can be represented by three independent segments connected to one another, in a series 

or a parallel fashion and considering a linear gradient of the properties in the interphase [193]. The 

expression proposed by these authors is rather complicated, taking into account the shape of the 

dispersed particle size, the thickness of the interfacial region and parameters related to the linear 

gradient change in modulus between the matrix and the surface of particles. The analysis of the 

rheological properties indicated that the solid like behaviour showed by nanofilled samples at low 

frequencies is probably due to hydrogen bonding between silica nanoparticles. In the solid state the 

extent of the reinforcing effect provided by the nanoparticles is considerably lower, moreover 

interparticle interactions are not effective anymore, because hydrodynamic forces are predominant. 

Considering that in our work the viscoelastic behaviour of the composites is mainly ruled by the 

filler surface area both in the molten and in the solid state, we propose a model that takes into 

account the physical interfacial interaction between the matrix and particles. Due to their relative  

high hydrophobicity, it is generally believed that polyolefins cannot have a good interaction with  
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inorganic fillers, moreover the lack of chemical affinity often does not allow to obtain a good 

dispersion degree [21, 178-180, 182, 195-197]. On the other hand the physico-chemical interaction 

and the filler dispersion degree is favoured in relatively polar matrices (polyamides, polyurethanes, 

epoxy resins, etc…) [2, 16, 52, 53, 198].  

The model proposed in this work starts from the consideration that physical polymer-matrix 

interactions are possible even in polyethylene filled systems, because of the presence of carbonylic 

and hydroxyl groups on the backbone of the matrix macromolecules. In fact, from FT-IR analysis, 

an absorption peak at about 1720 cm-1, associated to the stretching of carbonylic groups, was 

detected for LLDPE-A380-x nanocomposites at high filler loadings. Even if this aspect is 

completely neglected in many works, it is reasonable to think that the presence of these polar 

groups can be important for the possibility of surface interaction between matrix and filler.  

The situation can be visualized as in Figure 4.37 and in Figure 4.38. It is reasonable to hypothesize 

that only amorphous segments of LLDPE chains interact with silica nanoparticles. In fact, in the 

present case any change of the crystalline phase due to the presence of nanoparticles can be 

excluded, as explained in Chapters 4.1.2.3 and in Chapter 4.1.2.4. The hydrogen bonding between 

hydroxyl groups of fumed silica aggregates and carbonyl/hydroxyl groups in thermally oxydized 

parts of LLDPE chains may create physical entanglements, with relevant consequences on the 

mechanical response of the material. 
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Figure 4.37 Proposed schematic of the state of structural organization and polymer-filler interaction in the 
LLDPE-fumed silica nanocomposites 
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Figure 4.38 Schematic representation of the polymer-filler interaction in LLDPE-fumed silica nanocomposites 

 

Beside the traditional reinforcing effect provided by particulate microfiller, the effect of the 

polymer-filler physical interaction, based on hydrogen bonding, should be taken into account. Being 

the hydroxyl groups (-OH) present on the surface of the filler responsible of the interaction with the 

matrix, it can be hypothesized that the stiffening effect provided by the introduction of the particles 

is proportional to the total number of -OH groups at the matrix-filler interface. The number of 

hydroxyl groups is proportional to the total surface area per unit volume of the composite. It can be 

also supposed that only a fraction of the surface -OH groups is involved in hydrogen bonding with 

hydroxyl and carbonyl groups of the polymeric matrix, depending on the surface morphology of the 

filler. A tentative model can be therefore based on the expression reported in Equation  4.6 : 

 

Equation  4.6 
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 where ρ is the density of the filler (g/m3), Φ is the filler volume fraction, SSA is the surface area 

(m2/g) effectively available for the interaction with polymeric chains, while k is a parameter 

depending on the surface density of hydroxyl groups and the surface morphology of the filler 

(number, shape and dimensions of pores). Furthermore, being k related to the probability of 

physical polymer-filler interactions, this parameter will also depend on the factors characterizing 

macromolecules mobility, such as the typology of matrix utilized (LLDPE in this case), the average 

molecular weight and the temperature. 

The determination of the effective SSA can be quite complex. According to the BET observations 

previously reported, the major part of the total surface area derives from pores with size higher than 

1.7 nm. Moreover, the lateral dimensions of a PE chain is around 0.2 nm [199]. So it can be 

reasonably assumed that major part of the measured BET surface area is available for the physical 

interaction with polymeric chains. This means that all the open pores on the surface of the filler 

could be reached by PE macromolecules, consequently k parameter should depend only on the 

surface density of -OH groups. 

For a quantitative assessment of k it is necessary to have reliable quantitative data on the 

concentration of -OH groups for different kinds of SiO2 fillers in the fully hydroxylated state (no 

thermal treatments were conducted on the fillers). In 1957 De Boer and Vleeskens compared silanol 

numbers for completely hydroxylated surfaces of amorphous silica and crystalline modifications of 

silica (β-cristobalite, β-tridymite) whose density is close to that of amorphous SiO2 [162]. They 

found that the surface concentration of -OH groups of amorphous silica is practically the same of 

that of the crystalline ones (4.6-4.9 -OH/nm2). Since, Zhuravlev and co-workers determined the -

OH surface density values of about 150 hydroxylated SiO2 samples which were prepared by 

different methods and had different structural characteristics, through BET measures by using low 

temperature adsorption of krypton [164-166]. The average silanol number (arithmetical mean) was 

found to be 4.9 OH/nm2. Calculations by the least squares method yielded a value of 4.6 OH/nm2. 

These values are in agreement with those reported by De Boer and Vleeskens as well as with results 

reported by other researchers. It was concluded that the magnitude of the silanol number, which is 

independent of the origin and structural characteristics of amorphous silicas is considered to be a 

physicochemical constant. The results fully confirmed the idea predicted earlier by Kiselev and co-

workers on the constancy of the silanol number for a completely hydroxylated silica surface [161, 

163], and this constant (4.6 ± 0.5 OH/nm2) now is known in literature as the Kiselev-Zhuravlev 

constant. More recently, the total number of surface hydroxyl groups of different kind of silica 

samples was estimated from the amount of methane evolved by the reaction of the Grignard reagent 
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with the active hydrogen of the hydroxyls [200]. In that case a slightly lower OH surface density 

value for fumed silica nanoparticles was found (2.3 OH/nm2), similar to that reported in the same 

paper for a silica gel prepared by a sol-gel method and for a porous silica glass. 

Therefore it can be concluded that k parameter of the proposed model should be a constant for all 

typologies of investigated fillers. In Figure 4.39 relative elastic moduli of LLDPE and relative 

composites are compared with theoretical predictions according to the proposed model. The choice 

of the right value of k is fundamental for a correct prediction of the elastic modulus of the prepared 

composites. The k parameter was determined minimizing the sum of the squares of the differences 

between the theoretical and experimental values for all the samples. It can be concluded that, if a k 

value of 3·10-8 m is chosen, the accordance of the model with the experimental data is good for all 

the typologies of the adopted fillers.  

 
 

 
Figure 4.39 Relative elastic modulus of LLDPE-SiO2 composites. (■) LLDPE-Glass-x, (●) LLDPE-S160-x, (▲) 
LLDPE-A200-x, (▼) LLDPE-A380-x. The dashed line is the theoretical prediction according to the modified 

Lewis-Nielsen model 

 
It is important to underline that this model can be successfully applied both for the nanocomposites, 

in which the contribution of the surface interaction is predominant, and for traditional 

microcomposites, in which the effect of the surface area is very low and the classical contribution 

predicted by Lewis-Nielsen equation is more important.   
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4.3.2 Creep tests 
 
 
 
In Figure 4.40 isothermal creep compliance of LLDPE - 2 vol% fumed silica nanocomposites, 

under a constant load of 1 MPa and at 30 °C, is reported, while in Table 4.13 elastic (De) and total 

components of the creep compliance after a time of 2000 s (Dt2000) are summarized. It is evident 

that the introduction of fumed silica nanoparticles leads to a relevant improvement of the creep 

stability of the material. In fact, both the elastic and the viscoelastic components of the creep 

compliance of the composites are sensibly lower than that of the pure LLDPE. Moreover, the creep 

resistance increases with the surface area of the nanofiller. It is important to underline that the effect 

on the creep compliance of functionalized nanoparticles (Ar816) is the same of that obtained by 

using untreated nanoparticles with the same surface area (A200), similarly to what observed in 

quasi-static tests for the evaluation of the elastic modulus. The improvement in the creep stability 

due to the introduction of nanoparticles was already reported in some literature papers. For 

example, titania nanoparticles have been proven to markedly reduce the creep compliance of nylon-

66 [185, 201, 202], while alumina nanoparticles resulted to effectively reduce the creep compliance 

of polystyrene [203]. Also this research group documented a marked reduction of the creep 

compliance of high density polyethylene (HDPE) filled with submicron titania particles [21] and 

organoclays [180]. Moreover, Ranade et al. [181] reported that the creep compliance of HDPE 

blown films can be significantly reduced by the introduction of a layered silicate (Cloisite® 15A) 

and maleated polyethylene. Even in this case, it is generally believed that nanoparticles may 

effectively restrict the motion of polymer chains, influencing the stress transfer at a nanoscale, with 

positive effects on the final creep stability of the material. 
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(a) 

 

 
(b) 

Figure 4.40 Creep compliance (D(t)) of LLDPE - 2 vol% fumed silica nanocomposites (T=30 °C, σ0=1 MPa). (a) 
Effect of the silica surface area, (b) effect of the surface functionalization. ( ) LLDPE, ( ) LLDPE-A90-2, ( ) 

LLDPE-A200-2, ( ) LLDPE-A300-2, ( ) LLDPE-A380-2, ( ) LLDPE-Ar816-2 

 
 

sample De (GPa-1) Dve2000 (GPa-1) Dt2000 (GPa-1) 

LLDPE 3.81 6.05 9.86 

LLDPE-A90-2 3.05 5.61 8.66 

LLDPE-A200-2 2.92 5.63 8.55 

LLDPE-Ar816-2 2.92 5.86 8.78 

LLDPE-A300-2 2.83 5.74 8.57 

LLDPE-A380-2 2.84 5.46 8.30 

Table 4.13 Elastic (De), viscoelastic (Dve2000) and total creep compliance at 2000 s (Dt2000) of LLDPE - 2 vol% 
fumed silica nanocomposites 

 
It is interesting to evaluate the effect of the filler content on the creep behaviour of the prepared 

composites. In Figure 4.41 the total creep compliance of LLDPE and relative silica composites at 

various volume fractions (from 1 to 4 vol%), under a constant load of 1 MPa and at 30 °C, are 

represented, while in Figure 4.42 relative creep compliance values at 2000 s are summarized. It is 

evident that the creep compliance of the composites decreases with the filler content. In the case of 

glass filled composites the enhancement of the creep stability is much lower in comparison to that 

of fumed silica and precipitated silica sample. The reinforcing effect obtained by using precipitated 

silica nanoparticles is comparable to that observed by using fumed silica nanoparticles, confirming 

the observation, already reported commenting elastic modulus tests, that the deformational  
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behaviour of the material in the solid state is mainly governed by the filler surface area, while 

particles dimension seems to be less important.  

As already reported in quasi-static tensile tests, the reinforcing effect due to the presence of the 

nanoparticles can be explained considering the polymer-filler surface physical interaction due to the 

presence of hydrogen bonds at the interface. This means that even in this case the enhancement of 

the creep resistance experienced for fumed silica filled sample can be explained on the basis of the 

large availability of -OH groups on the filler surface. 

 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Figure 4.41 Creep compliance (D(t)) of LLDPE – silica composites (T=30 °C, σ0=1 MPa). (a) LLDPE-Glass-x, (b) 
LLDPE-S160-x, (c) LLDPE-A200-x, (d) LLDPE-A380-x. ( ) LLDPE, ( ) x=1 vol%, ( ) x=2 vol% ,( ) x=3 

vol%, ( ) x=4 vol% 
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Figure 4.42 Relative creep compliance at 2000 s of LLDPE and relative composites (σ0=1MPa, T=30 °C). ( ) 
LLDPE-Glass-x, ( ) LLDPE-S160-x, ( ) LLDPE-A200-x, ( ) LLDPE-A380-x 

 
 
Considering that fumed silica nanocomposites showed the highest creep stability among the 

investigated materials, a more detailed analysis on these samples, focused on the effect of the stress 

and the temperature on the creep behaviour of the material, is required. In Figure 4.43 isothermal 

creep compliance at 30°C of LLDPE, LLDPE-A200-2 and LLDPE-A380-2 nanocomposites, are 

represented. Considering that the stress at yield of LLDPE is about 10 MPa, constant stress levels 

(σ0) between 1 MPa and 5 MPa were applied. As it can be easily predicted, the creep compliance 

increases with the applied strain, and it is also evident that the creep compliance of LLPDE is 

sensibly higher than that of LLDPE-A200-2 and LLDPE-A380-2 samples, if D(t) values under the 

same load are compared.    

Also Zhang, Yang and Friedrich studied the effect of the stress on the creep behaviour of PA66-

TiO2 nancomposites [185], finding that the creep resistance of the matrix could be significantly 

improved with a very low filler fraction (2 vol%). The same conclusions were reported by Wang 

and Zhao in a paper on the viscoelastic properties of polyimide-silica nanocomposites [204].  
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(a) 

 

 
(b) 
 

 
(c) 

Figure 4.43 Creep compliance (D(t)) of LLDPE – 2 vol% fumed silica nanocomposites (T=30 °C). (a) LLDPE, (b) 
LLDPE-A200-2, (c) LLDPE-A380-2. ( ) σ0= 1 MPa, ( ) σ0= 2 MPa, ( ) σ0= 3 MPa, ( ) σ0= 4 MPa, ( ) σ0= 5 

MPa 
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In Figure 4.44 isochronous curves of LLDPE, LLDPE-A200-2 and LLDPE-A380-2 samples, at 

times between 200 s and 1000 s, while a direct comparison between isochronous curves at times of 

200 s and 1000 s are reported in Figure 4.45. Considering that isochronous creep curves of the filled 

samples lay above that of pure LLDPE, it is evident that even in this case a better creep stability can 

be evidenced by using fumed silica nanoparticles with the highest surface area (A380). As an 

example, the strong lowering of the creep compliance due to the presence of nanoparticles can be 

evidenced considering that isochronous curve of LLDPE-A380-2 sample at 1000 s superimposes to 

that of pure LLDPE at 200 s. Moreover analyzing creep curves at 200 s it can be concluded that the 

linearity limit, corresponding to the linear viscoelastic behaviour of the material, can be extended by 

the presence of nanoparticles in the matrix. This means that while the creep compliance of LLDPE 

is independent from the applied stress if σ0 is lower than 2 MPa (20% of σy), the linearity limit is 

extended to 3 MPa in the case of LLDPE-A200-2 sample and to 4 MPa for LLDPE-A380-2 filled 

nanocomposite. This aspect can be very important for structural applications of plastic engineering, 

when the deformational behaviour under constant loads is considered. 

 

 
(a) 

 
(b) 
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(c) 

Figure 4.44 Isochronous curves of LLDPE- 2 vol% fumed silica nanocomposites (T=30 °C). (a) LLDPE, (b) 
LLDPE-A200-2, (c) LLDPE-A380-2. ( ) t=200 s, ( ) t=400 s, ( ) t=600 s, ( ) t=800 s, ( ) t=1000 s 

 
 

 
(a) 

 

 
(b) 

Figure 4.45 Comparison between isochronous curves of LLDPE- 2 vol% fumed silica nanocomposites (T=30 °C). 
(a) t=200 s, (b) t=1000 s. () LLDPE, ( ) LLDPE-A200-2, ( ) LLDPE-A380-2 

 
A time-strain superposition principle can be adopted to construct an isothermal creep compliance 

master curve at the reference stress, simply superimposing creep curves at different stresses [201, 

205]. Even if  in many papers this procedure was satisfactorily adopted in order to predict the creep 

behaviour of the material over long time-scales, in this case we tried to consider the possibility to 

construct creep compliance master curves taking into account the non-linear viscoelastic behaviour 

of the material when relatively high stresses are applied. As reported in Chapter 2.3.1.4, this 

approach was originally developed by Kolarik et al. [108, 109, 114], and it is based to the 

consideration that the free volume of the matrix depends on the applied strain. In order to correctly 

develop this approach, a suitable choice of model’s parameter must be done. 
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In Table 4.14 the parameters chosen for the evaluation of the non linear tensile behaviour of 

LLDPE, LLDPE-A200-2 and LLDPE-A380-2 composites are summarized. The glass transition 

temperature (Tg) of polyethylene can be easily found in many handbooks and it will be reported 

both for LLDPE and for fumed silica nanocomposites in the section dedicated for dynamical 

mechanical measurements (Chapter 4.3.3). As it will be explained in that section, Tg values of 

nanocomposites are little lower than that of pure LLDPE, but an approximate value of -100 °C can 

be reasonably adopted for all the samples, because strain dependent shift factors log(aε) are not very 

sensitive to variation of Tg. The free volume at the glassy state (fg) is generally taken as 0.025, but 

in the case of polyethylene a lower values of fg can be considered (0.0125). In fact polyethylene is a 

semicrystalline material with an high degree of crystallinity, for this reason it is possible that the 

amorphous part of LLDPE is more compact and well ordered with respect to that of other fully 

amorphous polymers. On the other hand a direct measure of the free volume at the glass transition 

temperature is rather complicate in practice. For the same reason it is possible that the difference 

between the expansion coefficients of the material above and below Tg (αfv) is lower than that 

reported by Kolarik for PP [109], and a value of 0.0002 K-1 can be reasonably adopted. The 

crystalline fraction was taken from DSC tests in Chapter 4.1.2.3, while Poisson’s ratio was chosen 

as 0.44, the same value utilized in Chapter 4.3.1. The parameter B is related to the ratio of the 

volume of a jumping segment to the volume of critical vacancy necessary for the implementation of 

a segment jump, and it is generally expected to be close to 1. The other values reported in Table 

4.14 are determined by using the equations reported in Chapter 2.3.1.4.  
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Parameter Value 

fg 0.0125 

Tg (°C) -100 

T (°C) 30 

αfv (K
-1) 0.0002 

∆fTc 0.026 

xc 0.42 

v2 0.42 

v2cr 0.156 

q 1.8 

M 1.51 

ν 0.44 

B 1 

Table 4.14 Parameter's choice for the evaluation of the non linear tensile behaviour of LLDPE- 2 vol% fumed 
silica nanocomposites 

 
 
In Figure 4.46 creep compliance curves of LLDPE, LLDPE-A200-2 and LLDPE-A380-2 at 30 °C, 

and relative superimposed curves according to strain dependent shift factors log(aε) (see Equation  

2.44), are reported. It is evident that, if creep data are represented considering an internal time (t*), 

the superposition of the creep curves is very good for all the considered sample. This means that 

this approach for the analysis of the non-linear tensile creep behaviour of LLDPE and relative 

nanocomposites can be successfully applied, if appropriate parameters are selected. In Figure 4.47 

master curves of LLDPE and relative nanocomposites are compared. Even in this case it possible to 

conclude that the creep compliance of LLDPE is considerably higher than that of nanocomposites 

with fumed silica nanoparticles. Moreover, the creep stability of the material increases with the 

surface area of the nanoparticles.  
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(a) 

 

 
(d) 

 

 
(b) 

 

 
(e) 

 

 
(c) 

 

 
(f) 

Figure 4.46 Creep compliance (D(t)) of LLDPE – 2 vol% fumed silica nanocomposites (T=30 °C). (a) LLDPE, (b) 
LLDPE-A200-2, (c) LLDPE-A380-2. Superimposed creep curves according to the no linear tensile creep 

approach, (d) LLDPE, (e) LLDPE-A200-2 , (f) LLDPE-A380-2. ( ) σ0= 1 MPa, ( ) σ0= 2 MPa, ( ) σ0= 3 MPa, 
( ) σ0= 4 MPa, ( ) σ0= 5 MPa 
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Figure 4.47 Master curves of the creep compliance (D(t)) of LLDPE – 2 vol% fumed silica nanocomposites 

according to the non linear tensile creep superposition principle (T=30 °C). ( ) LLDPE, ( ) LLDPE-A200-2, ( ) 
LLDPE-A380-2 

 
 

This approach can be followed to fit creep data over the real time scale, in order to predict the creep 

behaviour of the samples over extended periods. As described in Chapter 2.3.1.4, it is possible to 

express the trend of the creep compliance in the real time by using Equation  2.43 and Equation  

2.44. In Figure 4.48 creep compliance curves are compared with the theoretical ones, derived from 

the fitting according to the non linear tensile creep approach (solid lines). It is evident that the 

superposition is good for all the samples, even when the applied strain is relatively high. 
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(a) 
 

 
(b) 
 

 
(c) 

Figure 4.48 Creep compliance (D(t)) of LLDPE – 2 vol% fumed silica nanocomposites (T=30 °C), with the 
theoretical curves derived from the fitting according to the non linear tensile creep approach (solid lines). (a) 

LLDPE, (b) LLDPE-A200-2, (c) LLDPE-A380-2. ( ) σ0= 1 MPa, ( ) σ0= 2 MPa, ( ) σ0= 3 MPa, ( ) σ0= 4 MPa, 
( ) σ0= 5 MPa 
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Furthermore, in Table 4.15 fitting parameters based on Equation  2.43 and on Equation  2.44 are 

summarized. R2 values are in general higher than 0.995, confirming the good accordance with 

experimental data. As it can be easily predicted, logC* increases with the applied stress. According 

to Equation  2.43 n* should be independent from σ0, in fact from Table 4.15 it is evident that the 

dependence of n* on the applied stress is very weak. It can be concluded that the proposed approach 

can be successfully applied also to LLDPE and relative fumed silica nanocomposites, providing a 

convenient way to analyze the stress dependency of the deformational behaviour of the prepared 

composites. 

 

 LLDPE LLDPE-A200-2 LLDPE-A380-2 

σ0 (MPa) logC* n* R2 logC* n* R2 logC* n* R2 

1 0.0894 0.2117 0.9983 0.0375 0.2183 0.9962 0.0006 0.2050 0.9974 

2 0.1509 0.1841 0.9951 0.1337 0.1864 0.9933 0.0935 0.1784 0.9994 

3 0.2268 0.1617 0.9963 0.1507 0.1766 0.9950 0.0956 0.1734 0.9952 

4 0.2732 0.1523 0.9931 0.2002 0.1604 0.9980 0.0873 0.1765 0.9960 

5 0.2954 0.1450 0.9944 0.3310 0.1310 0.9970 0.1676 0.1575 0.9951 

Table 4.15 Parameters of the fitting from the creep data of LLDPE- 2 vol% fumed silica nanocomposites 
according to Equation  2.43 

 
The temperature dependence of the tensile creep response of LLDPE based nanocomposites is now 

considered. In Figure 4.49 creep compliance of LLDPE, LLDPE-A200-2 and LLDPE-A380-2 

samples at temperatures ranging from 30 °C to 70 °C, under an applied stress of 1 MPa, are 

reported. As it could be noted, the deformational behaviour of the materials is strongly dependent 

on the temperature. Moreover, at every investigated temperature the introduction of fumed silica 

nanoparticles leads to an evident lowering of the creep compliance, especially at high 

temperatures. At an applied stress of 1 MPa both LLDPE and relative nanocomposites behave in a 

linear viscoelastic manner (see Figure 4.45), and a time-temperature superposition principle can be 

applied, as explained in Chapter 2.3.1.3. In Figure 4.50 superimposed curves, taking the creep 

curve at 30 °C as reference, are represented. It is evident that for every temperature the 

superposition of the curves is very good both for the pure matrix and the fumed silica filled 

samples. 
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(a) 

 

 

(b) 

 

 

(c) 

Figure 4.49 Creep compliance (D(t)) of LLDPE – 2 vol% fumed silica nanocomposites (σ0=1 MPa), at different 
temperatures. (a) LLDPE, (b) LLDPE-A200-2, (c) LLDPE-A380-2. ( ) T=30 °C, ( ) T=40 °C, ( ) T=50 °C, ( ) 

T=60 °C, ( ) T=70°C 
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(a) 

 

 
(d) 

 

 
(b) 

 

 
(e) 

 

 
(c) 

 

 
(f) 

Figure 4.50 Creep compliance (D(t)) of LLDPE – 2 vol% fumed silica nanocomposites (σ0=1 MPa), at different 
temperatures. (a) LLDPE, (b) LLDPE-A200-2, (c) LLDPE-A380-2. Superimposed curves according to the time-

temperature superposition principle. ( ) T=30 °C, ( ) T=40 °C, ( ) T=50 °C, ( ) T=60 °C, ( ) T=70°C 

 
In Figure 4.51 master curves of LLDPE and of fumed silica nanocomposites are directly compared. 

It can be concluded that even in this case the creep stability increases with the surface area of the  
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nanofiller. Moreover, being the reinforcing effect due to the introduction of the nanofiller more 

evident at high temperatures, it can be concluded that the lowering of the creep compliance of the 

nanocomposites is more efficient when long creep times are considered. A similar observation was 

already reported when stress dependence of the creep behaviour was analyzed. The temperature 

dependence of the creep behaviour of nanocomposites was already studied by other researchers. For 

example Yang et al. characterized polypropylene and polyamide 66 based nanocomposites filled 

with short and long aspect-ratio multiwalled carbon nanotubes at different temperatures, finding 

that creep stability could be significantly improved with reduced creep deformation and creep rate 

at long-term loading periods [202, 206]. 

Through the superposition principle it is possible to determine the creep behaviour of the material 

for extended times. As an example, the time necessary to reach a creep compliance of 20 GPa-1 can 

be obtained. For LLDPE, this target value is reached in about 10 days, while for LLDPE-A200-2 

and LLDPE-A380-2 samples times of respectively 24 days and 554 days are necessary to reach 

such that target compliance. 

 

 
Figure 4.51 Master curves of the creep compliance (D(t)) of LLDPE-fumed silica nanocomposites according to 

the time-temperature superposition principle (T0= 30 °C, σ0=1MPa). ( ) LLDPE, ( ) LLDPE-A200-2, ( ) 
LLDPE-A380-2 

 
In order to study the correlation between creep properties and polymeric chain dynamics, an 

analysis of the shift factors derived from the time-temperature superposition principle has been 

conducted. In Figure 4.52 shift factors of LLDPE and LLDPE-A200-2 and LLDPE-A380-2 

nanocomposites at different temperatures are reported. If shift factors are plotted versus the 

reciprocal of the absolute temperature, a linear trend can be easily detected. This means that  



Results and discussion 
_______________________________________________________________________________________ 

_____________________________________________________________________________ 
174 

Arrhenius equation (see Equation  2.29) can be successfully applied to determine the shift factor 

dependency on the temperature. From the slope of the obtained regression lines it is possible to 

determine the activation energy values (Ea), that provides an indication of the energy required for 

the flow process. In Table 4.16 Ea values for pure LLDPE and for relative nanocomposites are 

summarized. The activation energy found for unfilled matrix is consistent with the data reported in 

literature, but from the Ea values of fumed silica nanocomposites is hard to detect a clear trend. In 

other words from the analysis of the shift factors it is impossible to assess if the flow dynamics of 

LLDPE macromolecules are really influenced by the presence of nanoparticles. Considering the 

relatively high standard deviation of Ea values, it is probable that viscous flow of the 

macromolecules is substantially not dependent by the presence of the nanofiller. Anyway further 

investigations would be necessary to have a better comprehension of the temperature dependent 

molecular dynamics of the prepared samples in the solid state. 

 

 

Figure 4.52 Shift factors for ( ) LLDPE, ( ) LLDPE-A200-2, ( ) LLDPE-A380-2 samples, with fitting lines 
according to Arrhenius equation 

 
 

Sample Ea (kJ/mol) 

LLDPE 287.6 ± 24.3 

LLDPE-A200-2 252.3 ± 12.8 

LLDPE-A380-2 311.9 ± 12.7 

Table 4.16 Activation energy values from the fitting of the shift factor data according to the Arrhenius equation 
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Creep behaviour at different temperatures of LLDPE and fumed silica nanocomposites can be also 

analyzed considering viscoelastic mechanical models available for thermoplastics materials. Among 

various models available, Burgers model resulted to be the best for our samples. As reported in 

Chapter 2.3.1.1, this model derives from the combination in series of the Maxwell and Kelvin 

models, as described by the constitutive law reported in Equation  2.23. In Figure 4.53 creep 

compliance curves of LLDPE and relative fumed silica nanocomposites at different temperatures 

are compared with the fitted data according to the Burgers model (represented by straight lines), and 

in Table 4.17 parameters derived from the fitting procedure are summarized. It is evident that the 

accordance of the model with experimental data is quite good for all the samples and at all the 

investigated temperatures, especially for long creep times. In fact R2 values higher than 0.97 can be 

obtained for all the considered samples. The effectiveness of this viscoelastic model in interpreting 

creep data of nanofilled samples was recently reported in some papers. For example non-linearity in 

the creep response of polyethylene-montmorillonite nanocomposites was successfully modeled by 

using the Burgers model by Ranade et al. [181]. The time-dependent deformation under constant 

and fatigue loading of polyimide-silica nanocomposites was simulated based on Burgers model and 

Findley power law by Wang and Zhao [204], adopting the parameters analysis to interpret the 

structure–property relationship and deformation mechanisms of this kind of composites. 

 

 
 

 
(a) 
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(b) 
 

 
(c) 

Figure 4.53 Creep compliance (D(t)) of LLDPE – 2 vol% fumed silica nanocomposites (σ0=1 MPa), at different 
temperatures. (a) LLDPE, (b) LLDPE-A200-2, (c) LLDPE-A380-2, with the fitted data according to the Burgers 

model (straight lines). ( ) T=30 °C, ( ) T=40 °C, ( ) T=50 °C, ( ) T=60 °C, ( ) T=70°C 

 

As reported in Table 4.17, viscous (ηK, ηM) and elastic (EK, EM) parameters of the Burgers model 

decrease with the temperature, but the most important conclusion is that the enhancement of the 

creep resistance of the material can be related to a substantial increase of the elastic (especially EK) 

and viscous components (both ηK and ηM) of the model, with a clear dependency on the surface 

area of the nanofiller. 
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Sample T 
(°C) 

EK 
(MPa) 

ηK 
(GPa·s) 

EM  
(MPa) 

ηM  
(GPa·s) R2 

30 240 25.1 274 518.1 0.9945 

40 211 19.7 188 510.2 0.9839 

50 121 10.6 138 555.6 0.9898 

60 89 7.5 82 537.6 0.9810 

LLDPE 

70 88 7.4 57 207.9 0.9884 

 

30 262 29.1 277 606.1 0.9975 

40 186 20.3 211 531.9 0.9938 

50 133 13.5 158 460.8 0.9939 

60 100 8.0 116 334.4 0.9934 

LLDPE-A200-2 

70 83 5.5 83 241.5 0.9914 

 

30 316 30.1 228 781.3 0.9938 

40 268 22.5 155 934.6 0.9800 

50 196 18.0 116 826.4 0.9852 

60 150 12.8 87 724.6 0.9710 

LLDPE-A380-2 

70 91 10.8 71 341.3 0.9830 

Table 4.17 Parameters of the fitting of the creep data of LLDPE-2 vol% fumed silica nanocomposites at different 
temperatures (σ0=1MPa), according to the Burgers model 

 
 

4.3.3 Dynamic mechanical thermal analysis 
 
 
 
In Figure 4.54 storage moduli and loss tangent values derived from dynamic mechanical analysis of 

LLDPE-2 vol% fumed silica nanocomposites are reported, while some relevant values are 

summarized in Table 4.18. It is evident that the introduction of the nanofiller leads to an increase of 

E’ both in the glassy region and in the rubbery regions, especially when high surface area 

nanoparticles are utilized. Storage modulus values obtained by using functionalized nanoparticles 

are similar to that obtained with untreated nanoparticles with the same surface area, confirming the 

observations based on quasi-static and creep tests. In fact, the presence of organosilanes does not 

substantially affect the deformational behaviour of the material, when the applied strain is relatively 

low. An enhancement of the storage modulus of polymeric materials due to the presence of  
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nanoparticles was already detected by Joshi and Viswanathan in a work on polypropylene/clay 

nanocomposites [207], while Kontou and Niaounakis reported the same conclusion studying an 

LLDPE-fumed silica systems [23]. In this latter work, the increase of E’ values was explained 

considering that the matrix of the composite can be assumed as consisting of two parts: a bulk 

region, where the state of the macromolecular chains is the same as that in the pure LLDPE, and an 

interphase, formed by the physical or chemical adsorption of the polyethylene molecules and/or 

trans-crystallization on the filler’s surface. The larger the interfacial area and the stronger the 

interaction between the matrix and the filler, the greater the volume of the interphase. Because the 

macromolecular chains of the interphase are restricted to the surface of the fillers, the molecular 

motion is greatly limited. This means that the storage modulus of the interphase is higher than that 

of the bulk region, and an increase in the silica content enlarges the interfacial area and results in an 

increased volume of interphase. 

The experienced increase of E’ values for fumed silica nanocomposites in the present work is 

accordance with the observations derived from quasi-static tensile tests and creep tests. The 

physical polymer-filler interaction due to the presence of hydrogen bonds at the composite interface 

hinders the molecular chain mobility around the nanoparticles, and the larger availability of 

hydroxyl groups for high surface area nanoparticles leads to a more effective block of the segmental 

motion of the macromolecules. 

Considering the trends of the loss tangent values, it is evident that tanδ values of filled samples are 

lower than that of pure LLDPE, while considering the position of tanδ peak it can be concluded that 

the glass transition temperature (Tg) is slightly lowered by the presence of the nanofiller. In fact it 

passes from -95.6 °C for the pure LLDPE to -103.4 °C for LLDPE-A200-2 sample. For the LLDPE-

Ar816-2 sample Tg is practically the same of the unfilled sample. The lowering of the glass 

transition temperature due to the presence of nanoparticles on LLDPE-SiO2 systems was already 

detected by Kontou and Niaounakis [23], who did not provide a satisfactory explanation of this 

result. As already mentioned in the section on creep tests, the Tg drop observed in our 

nanocomposites can be explained referring to the molecular dynamics analysis of the nanofilled 

systems reported in the book of Ajayan et al. [4]. Referring to TEM images of our nanocomposites, 

several zones of the samples show an interparticle distance comparable to the double of the radius 

of gyration of PE macromoleclues (in this case about 30 nm). As reported by several authors in 

literature [208-211], when the thickness of polymeric films is lowered down to 20-30 nm, a sensible 

glass transition decrease can be detected. From molecular dynamics simulations [212] it was  
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demonstrated that this Tg drop is caused by a decrease in the chain density, which in turn increases 

the mobility of the macromolecules. It is also possible that the polymer-filler interaction leads to a 

partial physical adsorption of the macromolecules at the surface, with a consequent chain depletion 

in the interparticle region and a little increase of the chain mobility in this region. In any case the 

drop of the chain density in the interparticle region is largerly overcompensated by the reinforcing 

effect provided by the polymer-filler interaction at the interface.  

Furthermore when organosilane nanoparticles filled samples (Ar816) are considered, the Tg 

decrease is practically absent. It is possible that the presence of a long chain organosilane (C16) at 

the filler surface limits the possibility of the hydrogen bonding between polymer and nanoparticles, 

hindering the consequent physical chain adsorption at the surface and the macromolecules depletion 

in the interparticle spaces. 

 
 
 

 

 
(a) 

 

 
(b) 

Figure 4.54 Dynamic mechanical properties of LLDPE-2 vol% fumed silica nanocomposites (f=1 Hz). (a) Storage 
modulus (E’), (b) Loss tangent (tanδ). ( ) LLDPE, ( ) LLDPE-A90-2, ( ) LLDPE-A200-2, ( ) LLDPE-A300-2, 

( ) LLDPE-A380-2, ( ) LLDPE-Ar816-2 
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Sample E' (-130 °C)  
(GPa) 

Tg  
(°C) 

E' (20 °C)  
(GPa) 

LLDPE 1.99 -95.6 0.34 

LLDPE-A90-2 2.30 -103.6 0.46 

LLDPE-A200-2 2.32 -103.4 0.55 

LLDPE-Ar816-2 2.22 -97.5 0.50 

LLDPE-A300-2 2.76 -100.5 0.56 

LLDPE-A380-2 3.01 -99.7 0.59 

Table 4.18 Dynamic mechanical properties of LLDPE - 2 vol% fumed silica nanocomposites (f=1 Hz) 

 
In order to reach a better comprehension on the viscoelastic phenomena affecting the dynamic 

mechanical behaviour of the prepared composites, multi-frequency dynamic mechanical tests were 

conducted. In Figure 4.55 storage modulus of LLDPE-2 vol% fumed silica nanocomposites at 

frequencies between 0.3 Hz and 30 Hz are reported. In Figure 4.56 isothermal curves at 

temperatures between -60 °C and +45 °C are represented. Even in this case an increase of E’ with 

the surface area of the nanofiller can be easily detected, confirming the conclusions reported in 

mono-frequency dynamic tests. Moreover in Figure 4.56 superimposed curves of the storage 

modulus according to time-frequency superposition principle, taking as reference temperature 

T0=30 °C, are represented. It is evident that the superposition of E’ curves is good for all the 

samples and over the whole frequency range. 

 

 
(a) 
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(b) 
 

 
(c) 

Figure 4.55 Storage modulus (E’) of LLDPE-2 vol% fumed silica nanocomposites from dynamic multi-frequency 
tests. (a) LLDPE, (b) LLDPE-A200-2, (c) LLDPE-A380-2. ( ) f=0.3 Hz, ( ) f=1 Hz, ( ) f=3 Hz, ( ) f=5 Hz, ( ) 

f=10 Hz, ( ) f=30 Hz 

 
 

 

 
(a) 

 

 
(d) 
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(b) 

 

 
(e) 

 

 
(c) 

 

 
(f) 

Figure 4.56 Isothermal sections of the storage modulus (E’) of LLDPE- 2 vol% fumed silica nanocomposites 
from dynamic multi-frequency tests. (a) LLDPE, (b) LLDPE-A200-2, (c) LLDPE-A380-2. Superimposed curves 

according to the time-frequency equivalence principle (T0=30 °C) 

 
A direct comparison between E' master curves is represented in Figure 4.57. It is evident that the 

enhancement of the storage modulus is dependent on the surface area of the nanofiller. 
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(a) 

 

 
(b) 

Figure 4.57 Comparison between E' master curves from multi-frequency dynamic tests on LLDPE-2 vol% 
fumed silica nanocomposites (T0=30 °C). (a) Linear plot, (b) Logarithmic plot. ( ) LLDPE, ( ) LLDPE-A200-2, 

( ) LLDPE-A380-2 

 
As already done for creep tests at various temperatures, an analysis of the shift factor trends was 

conducted, and in Figure 4.58 shift factors derived from the construction of the master curves are 

reported. Even in this case, Arrhenius equation can be utilized (see Equation  2.29) in order to 

obtain activation energy (Ea) values, summarized in Table 4.19. Ea values determined with dynamic 

multi-frequency tests are similar to that obtained with creep tests at different temperatures. Neither 

in this case a monotonic trend of Ea with the surface area of the nanofiller was detected, and 

considering the relative errors it is possible to conclude that energy of activation values of fumed 

silica nanocomposites are very near to that obtained for pure LLDPE.   

 

 
Figure 4.58 Shift factor for the construction of the E’ master curves from multi-frequency dynamic tests on 

LLDPE-2 vol% fumed silica nanocomposites (T0=30 °C), with fitting lines according to Arrhenius equation. ( ) 
LLDPE, ( ) LLDPE-A200-2, ( ) LLDPE-A380-2 
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Sample Ea (kJ/mol) 

LLDPE 275.4 ± 3.6 

LLDPE-A200-2 318.2 ± 10.1 

LLDPE-A380-2 285.7 ± 3.3 

Table 4.19 Energy of activation values (Ea) of LLDPE-2 vol% fumed silica nanocomposites according to 
Arrhenius equation 

 
 
The dynamic behaviour of fumed silica nanocomposites can be compared to that of precipitated 

silica and glass filled samples at various filler loadings. In Figure 4.59 representative curves of the 

storage modulus of LLDPE and relative composites from dynamic mechanical tests conducted at 1 

Hz are reported, while in Figure 4.60 E’ and tanδ at 25 °C are summarized. It can be generally 

concluded that E’ increases with the filler content for all the typologies of filler in the whole 

temperature range. As already reported in tensile quasi-static and creep tests, the improvement 

obtained by using glass microspheres is limited, if compared with that determined by using fumed 

silica nanoparticles at high surface area (A380). The storage modulus at ambient temperature of 

S160 filled samples is near to that of A200 composites. Considering tanδ trends with the filler 

content, it can be easily concluded that in the case of glass microcomposites loss tangent values are 

practically unaffected by the presence of the filler, while for precipitated silica and fumed silica 

nanoparticles tanδ decreases with the filler content. Even in this case the behaviour of S160 samples 

is similar to that of A200 filled nanocomposites, being the dynamic behaviour of the material 

mainly ruled by the surface area of the filler. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.59 Storage modulus (E’) of LLDPE and relative composites from dymanic mechanical tests (f=1 Hz). (a) 
LLDPE-Glass-x, (b) LLDPE-S160-x, (c) LLDPE-A200-x, (d) LLDPE-A380-x. ( ) LLDPE, ( ) x = 1 vol%, ( ) x 

= 2 vol%, ( ) x = 3 vol%, ( ) x = 4 vol% 

 
 

 
(a) 

 

 
(b) 

Figure 4.60 Dynamic properties of LLDPE and relative composites from DMTA tests (f=1 Hz) at T=25 °C. (a) 
Storage modulus (E’), (b) loss tangent (tanδ). ( ) LLDPE-Glass-x, ( ) LLDPE-S160-x, ( ) LLDPE-A200-x, ( ) 

LLDPE-A380-x 
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Furthermore in Figure 4.61 loss tangent values of LLDPE and relative composites at low 

temperatures are reported, while glass transition temperatures, obtained from the peak of loss 

tangent curves, are summarized in Figure 4.62. If Tg is practically not influenced by the introduction 

of glass beads in the material, glass transition temperatures for fumed silica nanocomposites are 

considerably lower than that of pure LLDPE, especially for LLDPE-A380-x sample at high filler 

loadings. Even in this case the decrease of the glass transition temperature could be explained by a 

drop of the chain density in the interparticle region, more intense when high nanofilled samples are 

considered, because of the reduction of the interparticle distances. It is also possible that the higher 

number of polymer-filler surface interaction for the highly filled samples causes a more intense 

chain depletion in the interparticle region. The effect displayed by fumed silica nanoparticles in this 

work was completely different from that reported by Bugnicourt et al. in a paper about the 

mechanical performances of epoxy-fumed silica nanocomposites [213]. In that case the strong 

enhancement of the glass transition temperature due to the presence of silica nanoparticles was 

related to a reduction in the molecular mobility of the macromolecules around the filler due to 

strong physical polymer-filler interactions, comprising dispersion and dipolar interaction and 

hydrogen bonds to silica silanols. This discrepancy can be temptatively explained considering the 

different chemical nature and molecular mobility conditions of an LLDPE matrix with respect to an 

epoxy resin.    

 
 

 

 
(a) 

 

 
(b) 
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(c) 

 

 
(d) 

Figure 4.61 Loss tangent of LLDPE and relative composites from DMTA tests (f=1 Hz). (a) LLDPE-Glass-x, (b) 
LLDPE-S160-x, (c) LLDPE-A200-x, (d) LLDPE-A380-x. ( ) LLDPE, ( ) x=1 vol%, ( ) x=2 vol%, ( ) x=3 

vol%, ( ) x=4 vol% 

 

 

Figure 4.62 Glass transition temperatures (Tg) of LLDPE and relative composites from DMTA tests (f=1 Hz). ( ) 
LLDPE-Glass-x, ( ) LLDPE-S160-x, ( ) LLDPE-A200-x, ( ) LLDPE-A380-x 

 
 

4.4 Fracture behaviour 
 
 

4.4.1 Quasi-static tensile tests 
 
 
In Figure 4.63 representative stress-strain curves of LLDPE- 2 vol% fumed silica nanocomposites 

derived from quasi-static tensile tests are reported, while in Table 4.20 tensile properties at yield 

and at break are summarized.  
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(a) 

 

 
(b) 

Figure 4.63 Representative stress-strain curves of LLDPE- 2 vol% fumed silica nanocomposites from quasi-static 
tensile tests. (a) Effect of the surface area, (b) effect of the surface functionalization 

 
 

Sample σy (MPa) εy (%) σb (MPa) εb (%) TEB (J/mm2) 

LLDPE 10.11 ± 0.07 26.6 ± 1.1 19.8 ± 2.0 1439 ± 141 5.1 ± 0.5 

LLDPE-A90-2 10.77 ± 0.07 24.8 ± 0.2 22.6 ± 0.3 1625 ± 49 7.1 ± 0.2 

LLDPE-A200-2 10.99 ± 0.07 24.1 ± 1.3 22.3 ± 0.9 1613 ± 78 7.2 ± 0.5 

LLDPE-Ar816-2 11.96 ± 0.10 22.8 ± 0.5 25.7 ± 0.7 1738 ± 65 8.6 ± 0.5 

LLDPE-A300-2 11.07 ± 0.02 22.9 ± 0.6 22.9 ± 1.1 1637 ± 76 7.6 ± 0.5 

LLDPE-A380-2 11.09 ± 0.04 23.9 ± 0.5 23.3 ± 0.3 1722 ± 40 7.9 ± 0.3 

Table 4.20 Quasi-static tensile properties at yield and at break of LLDPE-2 vol% fumed silica nanocomposites 

 

First of all, tensile stress at yield (σy) slightly increases with the surface area of the nanofiller, and 

this improvement is more evident when functionalized silica nanoparticles are used. The slight 

improvement of the yield strength is a signal of a quite good interfacial adhesion between LLDPE 

and nanoparticles, otherwise σy would decrease with the introduction of the filler [12, 192, 214, 

215]. In fact, as suggested by Galeski et al. [216-218], in polyolefins filled with traditional 

microfiller (chalk, calcium carbonate) the strong increase in the elastic modulus of the material is  

 



Results and discussion 
_______________________________________________________________________________________ 

_____________________________________________________________________________ 
189 

 

associated to an heavy decrease of the yield stress. This follows from the fact that traditional fillers 

do not bear the load in the direction of deformation. The same conclusions for the yield properties 

can be made for as concern the stress at break (σb) and the strain at break values (εb), that increase 

with the surface area and are positively affected by the presence of the organosilane on the surface 

of the nanoparticles. For example LLDPE-Ar816-2 sample shows an enhancement of the stress at 

break of about 30%, associated to an increase of the 21% of the strain at break. Furthermore 

specific tensile energy to break (TEB) values were obtained by integrating stress-strain curves in 

quasi-static tensile tests. The influence of the nanofiller dimension and of the surface modifications 

can be easily observed. In particular, it is worthwhile to note the marked TEB increase induced by 

the functionalized silica nanoparticles. Pure LLDPE sample shows TEB value of 5.74 J/mm2, while 

for Ar816 filled material a TEB value of 8.50 J/mm2 is reported. 

The toughening effect encountered for fumed silica nanocomposites in this work is a very particular 

and interesting result, that is confirmed by the conclusions of the paper of Kontou and Niaounakis 

on LLDPE-fumed silica nanocomposite systems [23]. In fact in the major part of the works on 

polyolefin nanocomposites, the stiffening effect was accompanied by an heavy embrittlement, with 

a reduction of the tensile strain at break [180, 195]. Galeski confrmed that the most undesirable 

effect due to the introduction of traditional microfiller in polymeric systems is the loss of toughness 

[216], indicating the softening of a polymer-filler interface as the best way to recover toughness in 

traditional microcomposites. 

It is now interesting to evaluate the effect of the filler content on the tensile properties at yield and 

at break, considering also precipitated silica and glass beads filled microcomposites. The effect of 

the various fillers on the tensile stress at yield (σy) is summarized in Figure 4.64 as relative values 

with respect to the unfilled materials. It is immediately evident that σy increases with the filler 

content. While glass filled samples show negligible σy enhancements with respect to the unfilled 

matrix, the effect is more evident if precipitated microsilica and fumed silica nanoparticles are used. 

As reported by Ganss et al. [168], several equation are availale to predict the yield strength of 

particulate filled polymers. The Nicolais-Narkis equation is a two-third power law function with K 

as a parameter for filler-matrix adhesion [219] : 

 

Equation  4.7 

( ) 3/21 φ
σ
σ

K
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This model predicts a decrease of the yield strength of the composite with respect of the pure matrix 

as the filler amount increases. According to this model, traditionally adopted for particulate filled 

microcomposites, the stress at yield would gradually decrease with the filler content. As an 

example, in the case of poor filler-matrix adhesion 2 vol% filled nanocomposites would have a 

relative σy of 0.91. More recently the following equation was proposed by Pukanszky et al. [220] : 

 

Equation  4.8 
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where B is an empirical parameter characterizing the degree of filler-matrix interaction. The value 

of parameter B depends on all factors influencing the load-bearing capacity, i.e. strength and size of 

the interface [221]. In Figure 4.64 relative tensile stress at yield data of LLDPE and relative 

composites with the fitting lines according to Pukanszky and Nicolais-Narkis equation are reported. 

B values of the Pukanszky model were choosen minimizing chi-square values during the fitting 

procedure, while for Nicolais-Narkis equation a theoretical K value of 1.21, commonly used in the 

case of poor filler-matrix adhesion, was utilized. 

It is evident that Nicolais-Narkis equation is completely unsuitable to describe the yield behaviour 

of the prepared samples, because negative K values would be necessary to fit yield strength data. 

The inappreciable significance of the parameters based on these models is attributed to the fact that 

dynamics of polymer-filler interaction are fundamentally different from the same as in the case of 

nanocomposites, where the presence of a wide interface alters the physical significance of polymer-

filler interaction at the molecular level since structural organization of the matrix at the interface is 

largerly different from that in the bulk 

Pukanszky model seems to better interprete yield stress data. For glass filled sample B has a 

relatively low value (3.95), if compared with that of precipitated silica microcomposites (6.71). B 

values for nanocomposites is even more elevated, around 8. The values found for B parameter are 

reasonable, considering that generally B parameter for different nanocomposites remains between 2 

and 15 [222]. This evidence confirms that the filler-matrix interaction, mainly related to nanofiller 

dimensions, can not be neglected for the prepared nanocomposites. 
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(a) 

 

 

(b) 

Figure 4.64 Relative tensile stress at yield of LLDPE and relative composites (a), with fitting curves (b) according 
to Pukanszky model (continuous lines) and Nicolais-Narkis equation (dashed line) in the case of poor filler-

matrix adhesion (K=1.21). ( ) LLDPE-Glass-x, ( ) LLDPE-S160-x, ( ) LLDPE-A200-x, ( ) LLDPE-A380-x. 

 

In Figure 4.65 relative stress at break and strain at break data are reported. It is evident that the 

introduction of fumed silica nanoparticles leads to a remarkable improvement of the stress and 

strain at break with maximum increments close to about 20% with respect to the pure matrix for 

A380 filled samples. It is also evident that an optimal filler loading of 2-3 vol% maximizes the 

stress and strain at break values that can be achieved. After this critical concentration the failure 

behaviour is most probably negatively affected by nanoparticles agglomeration. On the contrary, 

when micrometric silica particles are used, such as S160 or glass microbeads, a slight reduction of  
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the tensile properties at break is detected. The negative trend is more evident when glass 

microbeads are used. The fracture behaviour seems therefore to strictly depend on the dimensions 

of the filler. As comparison, the prediction of Nielsen model [223], originally proposed to predict 

the strain at break of spherical microparticles filled composites with good adhesion between filler 

and matrix is also reported in Figure 4.65. The model is based on the following equation : 

 

Equation  4.9 

( )3/11 φεε −= bmbc  

 
 
where εbc and εbm are respectively the stress at break of the composite and of the pure matrix, while 

Φ is the filler volume fraction. It is evident that the model is not able to capture the behaviour of the 

investigated materials, and the negative trend observed for microbeads filled composites is 

overestimated. It has to be considered that this model was elaborated for traditional composites with 

good filler-matrix adhesion. It can be concluded that the trends of the tensile properties at break 

observed for fumed silica nanocomposites are not explicable on the basis of the models proposed 

for traditionally microcomposites. 

 

 

 

(a) 
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(b) 

Figure 4.65 Quasi-static tensile properties at break of LLDPE and relative composites. (a) Relative stress at 
break, (b) relative strain at break. ( ) LLDPE-Glass-x, ( ) LLDPE-S160-x, ( ) LLDPE-A200-x, ( ) LLDPE-

A380-x. The dashed line is the theoretical prediction of the strain at break according to the Nielsen model 
(Equation  4.9) 

 

A microstructural explanation for the toughnening effect due to the introduction of fumed silica 

nanoparticles in these systems is then required. Lazzeri et al. studied the debonding mechanism 

during tensile tests in 10 wt% CaCO3-HDPE nanocomposites [149]. In this paper the stress 

whitening zones appearing along the gauge length during tensile tests were attributed to the matrix-

particle debonding and to the consequent void growth. Volume measurements confirmed this 

hypothesis, since the volume increased with deformation for CaCO3 filled samples, while for pure 

HDPE a decrease in volume with elongation was observed. Moreover TEM observations showed 

cavities and voids due to debonding and deformation bands in the stress whitened areas. In order to 

analyze the debonding process and the various stages of void formation during tensile tests, Sudar et 

al. conducted volume strain measurements on PE/CaCO3 composites, by using different matrices 

and various amounts of filler [224]. Starting from the consideration that in thermoplastic composites 

filler-matrix debonding and plastic deformation of the matrix are competitive processes, they found 

that the number of voids formed was inversely proportional to the stiffness of the matrix. In stiff 

matrices ( i.e. elastic modulus higher than 1 GPa) almost the entire amount of filler separated from 

the matrix under the effect of external load, while for soft matrices (with an elastic modulus lower 

than 0.4 GPa) the debonding was completely absent and the composite could deform exclusively by 

shear yielding. In Figure 4.66 the trends of the volume strain and of the Poisson’s ratio versus the 

longitudinal strain of LLDPE and LLDPE-A380-2 samples are reported. A neat decrease of the 

volume strain with deformation for pure LDPE can be easily detected. Lazzeri et al. [149],  
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following the considerations of Gaucher-Miri et al. [225], suggested that the decrease can be 

probably due to the fact that the stretching of amorphous phases led to the orientation of the 

amorphous chains along the strain direction and the consequent formation of a mesomorphic 

structure similar to those found in liquid–crystal polymers in the smectic state, with a consequent 

decrease in volume strain. The strain induced decrease in volume in pure HDPE could not be 

attributed to further crystallization, being the crystallinity of the yielded samples practically the 

same of the undeformed ones (see Chapter 4.1.2.3). The volume decreases with the deformation 

also for LLDPE-A380-2 sample, in accordance with the trend reported by Sudar et al. [224], being 

the elastic modulus of LLDPE relatively low (about 0.2 GPa). Furthermore from Figure 4.66 it is 

evident that even Poisson’s ratio is not practically affected by the presence of nanoparticles, being ν 

values around 0.45-0.5 for an applied strain of 10%. This means that in our system the filler-matrix 

debonding mechanism is practically absent and the composite deformed by shear yielding. This 

consideration is supported by the density measurements reported in Chapter 4.1.2.2, from which 

any void formation during melt compounding can be excluded, being the experimental density 

values of the nanocomposites very close to the theoretical ones. Moreover the little decrease of the 

density detected for yielded sample with respect to the not deformed samples is practically the same 

for LLDPE and LLDPE-A380-2 samples.  

 
 

 
(a) 

 

 
(b) 

Figure 4.66 Dilatometric tests on LLDPE and LLDPE-A380-2 nanocomposite. (a) Volume strain vs longitudinal 
strain, (b) Poisson's ratio vs longitudinal strain. ( ) LLDPE, ( ) LLDPE-A380-2 

 

A possible explanation of the toughening effect encountered for the silica composites can be found 

considering TEM images of LLDPE-A380-2 samples at different strain levels, reported in Figure 

4.12 and in Figure 4.13. As explained in Chapter 4.1.2.1, the nanofiller is well dispersed in the  
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LLDPE matrix, being the mean diameter of the aggregates around 200 nm. The aggregates remain 

isodimensional up to an applied strain of 30 %, for higher deformation levels a strong orientation 

along the stress direction is evident. This means that for deformations higher than the strain at yield 

(about 25% for all the samples considered) the shear yielding process becomes very intense and the 

nanoparticles can align parallel to the strain direction. For a strain of 100 %, silica aggregates are 

about 1.5 µm long and less than 100 nm large, and are separated of about 100 nm. It is possible that 

during the viscous flow produced by shear yielding the nanoparticles, segregated in the amorphous 

regions, orient themselves along the strain direction. This experimental evidence is supported by 

Jeol et al. [226], which studied the deformation induced modification of the dispersion state of 2.5 

wt% silica nanoparticles in PET nanocomposites, after a stretch-blowing process just above the 

glass transition temperature of the matrix. They found that the fumed silica nanoparticles tended to 

agglomerate and orient parallelly to the elongation direction, forming long streams of aggregates 

(more than 2 µm), regularly spaced by a distance of 50-100 nm. They concluded that the 

nanoparticles were rejected from the highly oriented crystalline domains induced by the strain, on 

the contrary of that happened using spherical silica nanoparticles, for which the long streams of 

nanoparticles where oriented perpendicular to the elongation direction. They hypothesized that this 

unexpected orientation was produced by the extended growth of mesophases and crystallites 

perpendicular to the orientation and that stacked lamellae were formed rather than microfibrils. In 

our case it is probable that the very little width of silica aggregates at high deformation (less than 

100 nm) is well below the critical defect size for crack nucleation of LLDPE, moreover the long 

streams of aggregates along the stress direction favoures the matrix-filler load transfer mechanism. 

In these conditions the load sustained by the polymeric phase is reduced and LLDPE 

macromolecules can deform at an higher extent before breaking. 

As reported in Figure 4.9 and in Figure 4.10, in the case of LLDPE-S160-2 sample silica aggregates 

have an higher mean size (about 400 nm). Furthermore, the orientation of silica aggregates is less 

pronounced and begins to be effective at higher deformation levels with respect to LLDPE-A380-2. 

This considerations can explain why the stress and the strain at break of LLDPE are not improved 

by the presence of precipitated silica microparticles. 
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4.4.2 Tensile impact tests 
 
 
Considering that an optimal fracture behaviour was obtained for 2 vol% fumed silica 

nanocomposites, a more detailed analysis was conducted for this composition. In particular tensile 

behaviour under impact conditions was evaluated. In Figure 4.67 representative force-time curves 

of tensile impact tests of LLDPE and LLDPE-Ar816-2 nanocomposite are reported, while in Table 

4.21 specific Tensile Energy to Break (TEB), determined through the integration reported in 

Equation  4.10, are summarized. 

 

 

Figure 4.67 Representative curves of tensile impact tests of LLDPE-2 vol% fumed silica nanocomposites (v=2 
m/s) 

 
 

Equation  4.10 
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It is evident that even when the load is applied at high speed (2 m/s) the introduction of fumed silica 

nanoparticles leads to an interesting increase of the energy adsorbed at break. The toughening effect 

is more intense as the nanoparticles are surface functionalized, in accordance with the conclusions 

reported in quasi-static tensile tests. 
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sample TEB (J/mm2) 

LLDPE 0.62 ± 0.01 

LLDPE-A90-2 0.70 ± 0.13 

LLDPE-A200-2 0.65 ± 0.12 

LLDPE-Ar816-2 0.86 ± 0.12 

LLDPE-A300-2 0.74 ± 0.09 

LLDPE-A380-2 0.67 ± 0.12 

Table 4.21 Specific tensile energy values of LLDPE- 2 vol% fumed silica nanocomposites from tensile impact 
tests (v=2 m/s). 

 
While the presence of the organic modifier on the surface of the nanoparticles seems to not affect 

the viscoelastic response of the resulting material, tensile properties at break are interestingly 

improved in the case of Ar816 filled nanocomposites, both in quasi-static and in impact test. Rong 

et al. [227, 228] and Wu et al. [229] already found that the addition of small amount of modified 

nanoparticles (SiO2 or CaCO3, typically less than 3% by volume) could improve the strength and 

the fracture toughness of polypropylene more effectively than the untreated ones. 

According to the indications of Zhang [230] and Kontou [23], it is possible that the presence of the 

organosilane on the surface of the nanoparticles increases their hydrophobicity, facilitating 

filler/matrix miscibility and allowing a more uniform dispersion of the nanoparticles during melt 

compounding. It is also possible that filler/matrix interaction is enhanced through the entanglements 

between the surface modifier and the polymer matrix, thus delaying the shear yielding of the matrix 

and favouring the filler-matrix load transfer mechanism. Further investigations will be necessary to 

reach a better comprehension of the effect of the surface modification on the tensile response of the 

prepared nanocomposites. 

 
 

4.4.3 Essential Work of Fracture (EWF) analysis 
 
 
In order to complete the analysis of the fracture behaviour of LLDPE-fumed silica nanocomposites, 

essential work of fracture (EWF) tests were conducted on unfilled matrix and relative 2 vol% filled 

samples. In Figure 4.68 SEM images of the notch tip of LLDPE DENT samples for the EWF tests  
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at different magnifications are reported. It is evident that the crack tip is very sharp, with a mean 

radius of curvature of about 1-2 µm. Williams and Rink summarizing the standardisation efforts of 

the EWF tests [129], recommended a crack tip with a radius lower than 20 µm. This means that the 

prepared experimental apparatus (see Figure 3.10) and the cutting technique are suitable to prepare 

the specimens required for the EWF test.  

 
 

 
 
(a) 

 

 
 
(b) 

Figure 4.68 SEM images of the notch tip of LLDPE DENT samples for the EWF tests at different magnifications 

 
In Figure 4.69 representative pictures of the EWF tests at different times of pure LLDPE and 

LLDPE-A380-2 samples are reported. The unfilled sample does not show stress whitening in the 

yielded zone, while for all the filled samples the yielding process is associated to an evident stress 

whitening, which makes easy the determination of the initiation of the propagation of the plastic 

zone in the material. The yielding starts at the crack tip, where the stress concentration favours the 

plastic deformation process. When the yielded zone is extended over the whole ligament length, the 

propagation of the plastic zone is faster and the sample can be deformed with a lower load, until the 

fracture of the specimen is reached. Referring to TEM images of the yielded samples (see Figure 

4.12 and Figure 4.13), the stress withening of the yielded samples experienced by fumed silica 

nanocomposites can be explained considering the alignment of silica aggregtes along the stress 

direction, forming streams of nanoparticles 2 µm long, well above the visible light vawelength. The 

concentration of the crystalline zones with the segregation of the nanoparticles along the stress 

direction during the yielding process can be hypothesized as another explanation for the stress 

whitening of the nanocomposites. It is important to underline that the whitening for traditional glass  
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beads microcomposites is less evident, probably because of the formation of a less oriented 

microstructure during the straining process. 

 

 
 
(a) 

 

 
 
(b) 

Figure 4.69 Photograms of the EWF tests at different times. (a) LLDPE, (b) LLDPE-A380-2 samples 

 
Figure 4.70 reports representative curves from EWF tests at different ligament lengths, while in 

Figure 4.71 representative linear plots of specific total work of fracture (wf) versus ligament length 

(L) of LLDPE and relative 2 vol% fumed silica nanocomposites are represented. The most 

important results are then summarized in Table 4.22. It is evident that the introduction of silica 

nanoparticles leads to a remarkable improvement of the specific essential work of fracture (we), that 

increases with the surface area of untreated silica nanoparticles, in accordance with the results of 

tensile quasi-static and impact tests. In particular an enhancement of the we value of 43 % is 

determined for LLDPE-A380-2 sample. Moreover, the increase of specific essential work of 

fracture values with the surface area is accompanied by a slight reduction of the specific plastic 

work of dissipation (βwp), due probably to a parallel reduction of the plastic zone. 

we value of LLDPE-Ar816-2 sample is practically the same of that obtained for the sample 

containing the same amount of untreated A200 nanoparticles with the same surface area (around 31 

kJ/m2). In all cases, R2 values are around 0.99, this means that a good fitting, with little dispersion  
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of data, was obtained, in accordance with the indication reported in the work of Williamson about 

the standardisation of the EWF method [129]. The essential work of fracture approach was also 

adopted by Bureau et al. [231, 232] for studying the fracture behavior of polymer nanocomposites 

(PNCs) based on a polypropylene with organo-modified clays, finding an interesting improvement 

of we (+20%). In that case toughness improvement was attributed to higher voiding and improved 

matrix resistance attributed to finer, more oriented clay nanoparticles. Tjong and Bao [196] 

prepared high density polyethylene (HDPE)-organoclay (MMT) nanocomposites toughened with 

maleated styrene–ethylene–butylene–styrene (SEBSg-MA) elastomer by melt compounding. SEBS-

g-MA additions were found to exhibit beneficial effect on the specific essential work of fracture of 

HDPE/2% OMMT and HDPE/4% OMMT nanocomposites. Such enhanced tensile fracture 

toughness was attributed to an improved shear yielding of the matrix. An enhancement of we values 

due to silica nanoparticles was also detected from Musto et al. [233] in a work on polyimides filled 

by in situ generated SiO2 nanoparticles. 

 

 
(a) 

 
(b) 

 
(b) 

 
(d) 

Figure 4.70 Representative curves from EWF tests on LLDPE-2 vol% fumed silica nanocomposites. Every line 
refers to a different ligament length. (a) LLDPE, (b) LLDPE-A200-2, (c) LLDPE-A380-2, (d) LLDPE-Ar816-2 
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(a) 

 

 
(b) 

Figure 4.71 Specific work to fracture vs ligament length from EWF tests on LLDPE- 2 vol% fumed silica 
nanocomposites. (a) Effect of the surface area, () LLDPE, ( ) LLDPE-A200-2, ( ) LLDPE-A380-2. (b) Effect 

of the surface functionalization, ( ) LLDPE, ( ) LLDPE-A200-2, ( ) LLDPE-Ar816-2 

 
 

In Figure 4.72 representative linear plots of the specific work to yield of LLDPE and relative 2 

vol% fumed silica nanocomposites are reported, while in Table 4.22 the specific work for crack 

initiation (wini) values are reported. The essential work of crack initiation is positively affected by 

the introduction of silica fumed nanoparticles, increasing wini with the filler surface area, even if the 

major part of the fracture toughness enhancement is related to the propagation part. Similar 

conclusions were reported by Zhang et al. [234], who studied the crack initiation fracture toughness 

of various nanoparticles filled polyamide 66 in a broad temperature range by using the EWF 

approach. In that case, the addition of nanoparticles led to an enhancement of specific EWF 

parameters at most test temperatures at the cost of a reduction of the non-essential terms. 
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(a) 

 

 
(b) 

Figure 4.72 Specific work to yielding vs ligament length from EWF tests on LLDPE- 2 vol% fumed silica 
nanocomposites. (a) Effect of the surface area, () LLDPE, ( ) LLDPE-A200-2, ( ) LLDPE-A380-2. (b) Effect 

of the surface functionalization, ( ) LLDPE, ( ) LLDPE-A200-2, ( ) LLDPE-Ar816-2 

 
 
 

Sample we (kJ/m2) βwp (MJ/m3) wini (kJ/m2) Wprop (kJ/m2) 

LLDPE 24.7 ± 2.7 12.8 ± 0.3 2.3 ± 0.3 22.4 ± 2.7 

LLDPE-A90-2 21.0 ± 2.7 13.1 ± 0.3 2.4 ± 0.5 18.6 ± 2.7 

LLDPE-A200-2 31.1 ± 2.2 12.3 ± 0.3 3.6 ± 0.4 27.5 ± 2.2 

LLDPE-Ar816-2 31.2 ± 2.1 12.7 ± 0.2 3.3 ± 0.6 27.9 ± 2.1 

LLDPE-A300-2 28.4 ± 2.3 12.2 ± 0.2 3.2 ± 0.4 25.2 ± 2.3 

LLDPE-A380-2 35.3 ± 1.8 11.4 ± 0.2 3.5 ± 0.3 31.8 ± 1.8 

Table 4.22 Results of the EWF tests on LLDPE - 2 vol% fumed silica nanocomposites 

 
 
 
 
 
 
 
 
 



Conclusions 
_______________________________________________________________________________________ 

_____________________________________________________________________________ 
203 

 
 
 
 

5 Conclusions 
 
 
 

 

 

 

Linear low density polyethylene (LLDPE) based composites were prepared through a melt 

compounding process, by using different kinds of amorphous silicon dioxide (SiO2) micro and 

nanoparticles, in order to detect the role of the filler size and surface area on the viscoelastic and 

fracture behaviour of the resulting composites. In particular, various nanocomposites were prepared 

by using different percentages of hydrophilic and surface treated fumed silica nanoparticles. A 

comparion was then conducted with micrometric precipitated silica and glass microspheres 

composites. 

 

• The rheological behaviour of the composites in the molten state manifested a strong 

dependence on the surface area of the filler. The introduction of fumed silica nanoparticles 

and precipitated silica microparticles in the composites led to a remarkable enhancement 

both of the storage (G’) and shear moduli (G’’), and of the viscosity (η) at low frequencies, 

especially at high filler loadings, while glass microbeads marginally affected rheological 

properties of the material. This result was explained considering the formation of a network 

structure arising from particle-particle interactions due to hydrogen bonding between silanol 

groups. The presence of the solid like behaviour for the filled samples al low frequencies 

was confirmed by fitting viscosity data  with a modified De-Kee Turcotte model, taking into 

account the presence of an initial yield stress.  

 

• Also the viscoelastic behaviour in the solid state was mainly ruled by the surface area of the 

fillers. When precipitated silica microparticles or fumed silica nanoparticles were 

considered, a very interesting improvement of the elastic modulus with the filler content was 

observed, while in the case of glass particle filled microcomposites the stiffening effect was 

rather limited. Considering that FT-IR analysis evidenced the presence of carbonylic groups 
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in the matrix, probably due to the thermal oxydation induced during the production 

processes, elastic modulus data were interpreted accordingly to a new model, incorporating 

the surface interaction between the matrix and silanols present on the surface of the 

particles. Isothermal creep tests at various stress levels and temperatures confirmed the link 

between the surface area of the nanofiller and the creep stability of the material. Through the 

application of a time-temperature superposition approach, creep curves at different 

temperatures allowed the construction of creep master curves. It was therefore possible to 

conclude that the stabilizing effect provided by the nanoparticles was more effective at long 

loading times. Even the dynamic mechanical behaviour of the prepared composites was 

related to the surface area of the filler. Storage modulus (E’) enhancement obtained by using 

glass microspheres was limited, if compared with that provided by precipitated silica 

microparticles and fumed silica nanoparticles of high surface area. Interestingly, the glass 

transition temperature (Tg) of the LLDPE matrix was slightly lowered by the presence of 

untreated nanofillers, probably because polymer-filler interaction lead to a partial physical 

adsorption of the macromolecules at the surface, with a consequent chain depletion in the 

interparticle region.  

 

• Filler dimensions revealed important also when the fracture behaviour of the prepared 

composites was considered. In the case of fumed silica nanocomposites, tensile properties at 

yield and at break slightly increased with the surface area of the nanofiller and were 

positively affected by the presence of an organosilane on the surface of the nanoparticles, 

especially when an optimal filler loading of 2-3 vol% was used. The original toughness of 

the material was negatively affected if precipitated silica and glass microcomposites filled 

samples were considered. The fine dispersion of fumed silica aggregates and their strong 

orientation along the stress direction could explain the toughening effect provided by these 

nanoparticles, while cavitation or induced crystallization phenomena during the application 

of the load were excluded. Tensile impact tests and the essential work of fracture (EWF) 

approach confirmed the enhancement of the fracture toughness provided by fumed silica 

nanoparticles, with considerable improvements of the specific essential work of fracture 

parameter (we) with the nanofiller surface area. Concurrently, a slight reduction of the 

specific plastic work of dissipation (βwp), probably due to a parallel reduction of the plastic 

zone, was observed. It was also found that the major part of the fracture toughness 

enhancement was related to the crack propagation component. 
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