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Chapter 1

Introduction

In this thesis we theoretically study the dynamic and ground state prop-

erties of ultracold dipolar Fermi gases. Since 1995, when a Bose-Einstein

condensate was experimentally created [1, 2], the �eld of ultracold gases has

been developing very rapidly. The �rst degenerate Fermi gas has become

experimentally available since 1999 [3] and during the last ten years a spec-

tacular experimental progress has been achieved in the creation of Bose and

Fermi gases with dipolar interactions (see Section 1.1). A lot of theoreti-

cal studies devoted to ultracold gases with short- and long-range interactions

were performed as well. Several reviews are available: Bose [4] and Fermi [5]

gases with short-range interactions, Bose [6] and Fermi [7] gases with dipolar

interactions.

The interest in ultracold atoms is based on the fact that they are highly

controllable and clean systems and they can be used to verify with great pre-

cision condensed-matter theoretical predictions. This task has already been

largely accomplished in the case of the short-range interactions, but systems

with dipolar interaction can give access to a wider range of physical phenom-

ena. As an example, in the near future they can be used to simulate solid

state systems with long-range interactions similar to Coulomb case. The new

interesting features of the dipolar interaction is the possibility of controling

its strength and the anisotropic character.

In the weakly interacting regime, the mean-�eld approach and perturba-

tion theory can be used to study the ground-state and dynamic properties of

ultracold gases. These approaches, however, have the disadvantage that they

become inaccurate with the increase of the interaction strength. Therefore,

more precise numerical techniques, such as the Quantum Monte Carlo meth-

ods (QMC), are better suited to investigate the strongly interacting regime.

These methods allow one to �nd the exact ground-state energy of a many-

body Hamiltonian for bosonic systems and a very good upper bound of the

ground-state energy for fermionic ones. The investigation of dynamic prop-

erties using the QMC methods is computationally very demanding and the

majority of the QMC studies are devoted to the ground-state properties.

In this Thesis we apply the mean-�eld approach based on the Thomas-

Fermi energy functional to study the dynamic properties of bilayer harmon-

ically trapped dipolar Fermi gases. The �xed-node Di�usion Monte Carlo
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method (FNDMC) is used instead to investigate the ground-state properties

of two dimensional dipolar Fermi gases. This technique is also applied to the

problem of one impurity in a bilayer con�guration with dipolar fermions.

In the �rst project a trapped bilayer con�guration of a dipolar Fermi gas is

studied (Chapter 2). Due to the long-range character of the dipolar interaction

a frequency shift of the collective dipole mode is expected. This shift can

open the possibility to experimentally measure the parameters of the dipolar

potential. Our goal is to propose a scheme of a drag experiment (analogous

to the famous Coulomb drag experiment), which can be realized using dipolar

Fermi gases. We found that this e�ect is relatively large and can be detected

in a sample of polar molecules.

Chapter 3 contains the detailed description of the QMC methods which

we use, namely the Variational and the Di�usion Monte Carlo techniques.

The second project, which is discussed in Chapter 4, is devoted to the

study of the ground-state properties of a two dimensional dipolar Fermi gas

at zero temperature by means of the FNDMC method. The dipoles are ori-

ented by an external �eld perpendicular to the plane of motion, resulting in a

purely repulsive 1/r3 interaction. In the weakly interacting regime the ground

state of the system can be described in terms of the Fermi liquid theory. We

calculated the ground-state energy, the e�ective mass of a quasiparticle and

the renormalization factor of the momentum distribution. In the strongly

interacting regime the system is expected to undergo the transition to a crys-

talline phase. The point of this quantum phase transition was quantitatively

established. Near the phase transition point we also searched for the existence

of a stripe phase predicted by di�erent mean-�eld approaches. It was found

that this phase is never energetically favorable. Also, important quantities

related to the system, such as the pair-distribution function, the static struc-

ture factor and the momentum distribution were obtained for a wide range of

parameters.

In Chapter 5 we discuss 2D dipolar fermions in a bilayer con�guration,

where the dipole moments are polarized perpendicular to the planes. We con-

sider the case of only one particle in the top layer and many particles in the

bottom layer which are in the Fermi liquid phase. The intralayer interaction

has a purely repulsive 1/r3 character, but the interlayer one has an attrac-

tive part. This system represents an interesting impurity problem with long-

range anisotropic interactions. Using the FNDMC method we calculated the

chemical potential of the impurity, its e�ective mass and the pair-correlation

function between the impurity and the bottom layer particles.

The results discussed in this thesis are published in Ref. [8] and Ref. [9].

In the rest of the Introduction we discuss the basic physical properties of

ultracold dipolar gases. Also, we review the recent experimental progress in
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the �eld of ultracold dipolar gases and the new physical phenomena which

appear due to the long-range character of the dipolar interaction.

1.1 Ultracold dipolar gases

As it follows from the basic principles of quantum mechanics, a particle can

be described as a matter wave packet with the characteristic de Broglie wave

length λT =
√

~
2πmkBT

, where T is the temperature, m is the atomic mass and

kB is Boltzmann's constant. At density n ' 1012cm−3 and at temperature T '
10−6K, the mean interparticle distance l = 1/n3 is comparable or less than λT
meaning that the matter waves of the di�erent particles overlap and quantum

indistinguishability becomes important. If these conditions are satis�ed, a gas

is in the quantum degenerate regime. It means that the e�ects of quantum

statistics play an important role. If the temperature of an atomic ensemble is

less than a critical temperature a Bose gas forms a Bose-Einstein condensate,

while a Fermi gas enters gradually the degenerate regime by reducing the

temperature. For a detailed description of these states of matter see the

reviews [4] and [5].

If the particles of an ultracold gas do not have a dipole moment, the s-wave

scattering is the dominant process. Therefore, the real interatomic potential

(typically the van der Waals interaction) can be e�ectively replaced by the

contact interaction potential

Ucont(r) =
4π~2a
m

δ(r) = gδ(r), (1.1)

where a is the s-wave scattering length. As one sees from Eq. (1.1), the

contact potential is isotropic, short-range and is characterized only by the

value of the scattering length a. Notice that for a single-component Fermi gas

the potential (1.1) is absent and only p-wave interactions are allowed by the

Pauli principle.

If the particles have a dipole moment their interaction include both the

contact and the dipolar part. Assuming that the dipoles are polarized by

an external �eld (electric or magnetic) along the z-axis (see Fig. 1.1.a), the

dipolar interaction has the following form

Vdd(r) =
d2

r3
(1− 3 cos2 θ). (1.2)

Here d is the electric (magnetic) dipole moment, r is the vector connecting

two particles, and θ is the angle between r and the direction of d (z-axis).

The dipolar potential is anisotropic: depending on the orientation of dipoles
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Figure 1.1: Two aligned dipoles (a), "side-by-side" con�guration, purely repul-

sive interaction (b), "head-to-tail" con�guration, purely attractive interaction

(c).

with respect to r, the dipolar potential Vdd can be completely repulsive (Fig.

1.1.b), completely attractive (Fig. 1.1.c) or partially repulsive and partially

attractive. The other important property of Vdd is its long-range character,

which appears because, from Eq. (1.2), it decays as 1
r3
at large distances. Such

long-range behavior leads to scattering properties di�erent from the contact

interaction case. As it was found in Ref. [10], for the dipole-dipole interaction

the phase shift δl in a scattering channel with angular momentum l behaves

as δl ∼ k for l ≥ 0 and small k and therefore all partial waves must be taken

into account.

The other important characteristic of the dipolar potential is the existence

of a contribution to the s-wave scattering channel. It appears because, due

to the anisotropy of Vdd, the angular momentum is not conserved during the

scattering. Therefore, the dipole-dipole interaction mixes all even angular

scattering channels for the bosons and all odd ones for the fermions. For two

bosonic dipolar particles the scattering at low energy is determined not only

by the short-range part of the interaction (Eq. (1.1)), but also by the long-

range one. For two identical fermions the situation is di�erent because, as we

already mentioned, for the purely short-range interaction potential (1.1) the
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s-wave contribution to the scattering amplitude is equal to zero due to the

Pauli exclusion principle and the long-range dipolar part of the interaction

alone de�nes the scattering properties.

In the weakly interacting regime the following pseudopotential was pro-

posed in Ref. [11] to describe the properties of a polarized ultracold dipolar

gas of bosons

Vpseud(r) = gδ(r) +
d2

r3
(1− 3 cos2 θ), (1.3)

where

g =
4π~2a
m

. (1.4)

Here a is the s-wave scattering length. It is worth noticing here that the dipolar

potential (the second term in the right-hand side of Eq. (1.3) also contributes

to the s-wave scattering and therefore modi�es the s-wave scattering length a.

For a one-component Fermi gas the pure dipolar potentail Vdd is used instead

of Eq. (1.3).

The strength of the dipolar interaction can be characterized by the quan-

tity

r0 =
md2

~2
. (1.5)

The scale of r0 in Eq. (1.5) has the dimension of length and it can be consid-

ered as the characteristic length of the dipolar interaction.

The other important property of the dipolar interaction is its tunability.

There are possibilities to tune the strength and the sign of the dipolar interac-

tion [12] as well as its shape [13, 14] using a combination of external magnetic

and electric �elds.

Let us discuss now the experimental progress in the �eld of ultracold dipo-

lar gases. There are several possibilities to experimentally realize an ultracold

gas with a dominant dipolar interaction. On one hand, one can work with

atomic species having a large magnetic moment µ. At the present time several

of them are already available in the quantum degenerate regime. They are

the following bosonic and fermionic atomic species: 52Cr [15] with µ = 6µB,
168Er [16] with µ = 7µB,

164Dy [17] and 161Dy with µ = 10µB [18] (where µB

is Bohr magneton). The magnetic interaction can be made stronger than the

short-range one by tuning the e�ective scattering length close to zero using

Feshbach resonances [19].

The second possibility to obtain a dipolar gas is the creation of heteronu-

clear polar molecules. In their lowest rovibrational state such molecules can

have an induced dipole moment along the internuclear axis as large as 0.1−10

debye (D), where 1D = 107.92µB. For comparison, the dipole moments corre-

sponding to 52Cr, 168Er and 164Dy are d = 0.054 D, d = 0.065 D and d = 0.093
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D, respectively. The most spectacular progress was obtained with 40K87Rb

fermionic molecules [20, 21, 22], which have a dipole moment d = 0.56D. The

experimental technique can be described as follows: potassium and rubid-

ium atoms are brought to quantum degeneracy, then large and very weakly

bound Feshbach molecules are created by tuning the interaction close to the

resonance. These molecules, which have a very small dipole moment are trans-

fered to the rovibrational ground state, where the dipole moment can reach

its maximum value. The main problem with KRb molecules is the process of

two-body losses which occur due to the possibility of the following isothermal

chemical reaction

KRb+KRb→ K2 +Rb2. (1.6)

At present, a three-dimensional gas of KRb molecules is available in the quan-

tum degenerate regime, but the molecules have a dipole moment d = 0.2D.

For larger values of d, a two-body losses increases exponentially due to the

chemical reaction (1.6). In a 2D geometry, the losses are greatly suppressed,

but the gas is not yet available in the quantum degenerate regime (the lowest

obtained temperature is T = 2.4TF ). Other heteronuclear molecules can have

a dipole moment on the order of several debye. Currently, there are exper-

imental attempts to create and bring to quantum degeneracy the following

molecules: NaLi [23], NaK [24], LiCs [25] and RbCs [26].

Finally, let us mention a dipolar gas of Rydberg atoms [27, 28]. These

atoms have a large dipole moment because they are in a highly exited elec-

tronic state. The disadvantage of Rydberg atoms is a very short life-time

compared to the case of magnetic atoms and dipolar molecules.

Such a spectacular experimental development goes alongside with the the-

oretical progress. We brie�y discuss some of the theoretical works, which

are devoted to homogeneous and trapped systems, without considering lattice

models (e. g. Bose-Hubbard model). For a general review see Ref. [7].

The ground-state properties of a spatially homogeneous and a trapped

dipolar Bose gas were studied within the mean-�eld approximation in Refs.

[29, 30, 31, 32]. It was found that a bulk system with a dominant dipo-

lar interaction is always unstable against collapse. However, a trapped Bose

gas can be stabilized when the number of particles is smaller than a critical

number. The analysis of the excitation spectrum of a trapped Bose gas was

performed using the time-dependent Gross-Pitaevskii equation [29, 33, 34]

and the Bogoliubov- de Gennes equations [32]. For a very anisotropic pan-

cake trap, with the dipoles perpendicular to the trap plane, the excitation

spectrum has a roton-maxon shape similar to that in super�uid helium [35].

Dipolar weakly-interacting homogeneous Fermi gases with purely 1/r3 in-

teraction were studied in Ref. [36]. Such systems behave as a Fermi liquid
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with modi�ed Landau parameters. The anisotropy of the dipolar interac-

tion leads to the anisotropy of the Fermi surface and, correspondingly, of the

Fermi liquid parameters. This e�ect was investigated in Refs. [37, 38], using

the Hartree-Fock approximation. It was also found that the anisotropy of the

Fermi surface results in the appearance of a stripe phase [39, 40] characterized

by stationary density modulations.

The attractive part of the dipole-dipole interaction opens the possibility

of Barden-Cooper-Shifter (BCS) pairing in fermionic many-body dipolar sys-

tems. This e�ect was discussed in Ref. [41] for a polarized single-component

dipolar Fermi gas. An exact value of the critical temperature and the angular

dependence of the order parameter for a dilute gas were determined in Ref.

[42]. A bilayer system of dipolar fermions was considered in Refs. [43, 44].

The long-range character of the dipolar potential couples particles from the

di�erent layers allowing for the formation of bound states and of BCS pairing.

Strongly interacting dipolar Bose gases in 2D at zero temperature were

investigated in Refs. [45, 46] by means of QMC methods. It was found that at

some critical density a quantum phase transition takes place and a triangular

crystal forms. The �nite temperature study of 2D dipolar Bose systems by

Path-Integral Monte Carlo methods was performed in Ref. [47]. The case of a

dipolar potential with a cut-o� at small interparticle distance was considered

in Ref. [48] and the appearance of a supersolid phase was predicted for this

system.





Chapter 2

Dipolar drag in bilayer

harmonically trapped gases

We consider two separated pancake-shaped trapped gases interacting with

a dipolar (either magnetic or electric) force. We study how the center of

mass motion propagates from one cloud to the other as a consequence of the

long-range nature of the interaction. The corresponding dynamics is �xed by

the frequency di�erence between the in-phase and the out-of-phase center of

mass modes of the two clouds, whose dependence on the dipolar interaction

strength and the cloud separation is explicitly investigated. We discuss Fermi

gases in the degenerate as well as in the classical limit and comment on the

case of Bose-Einstein condensed gases. This chapter shares the main results

with Ref. [8].

2.1 Introduction

The aim of the present work is to propose a drag experiment induced by

the long-range nature of the dipolar interaction. We consider an atomic or

molecular gas harmonically trapped in a double well con�guration such that

the overlap between the two clouds and the corresponding tunneling e�ect

can be neglected (see Fig. 2.1). The only force acting between the two gases

is of long-range nature (here and in the following we assume that dipoles

are oriented in the direction orthogonal to the discs, i.e along the z-th axis

of Figure 1) and we study how the out-of-phase transverse dipole mode is

a�ected by the long-range interaction. Displacing one of the two clouds out of

its equilibrium position and releasing it, will excite both the in-phase (center

of mass) and the out-of-phase dipole modes. On a time scale �xed by the

inverse of the frequency di�erence between the two modes, the center of mass

motion of the �rst cloud will be transferred to the second one. We call this

e�ect �dipolar drag" in analogy to the well known Coulomb drag (see e.g.,

[49]) exhibited by electrons in uniform bilayer systems[50].
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Figure 2.1: Scheme of two not overlapping pancake shaped clouds of a dipolar

gas. The distance between the centers of mass of the clouds is 2L. The clouds

are harmonically con�ned in the transverse directions x, y.

2.2 Dipolar drag of the center-of-mass motion

We consider a gas con�ned by a cylindrically harmonic potential:

V 1,2
trap(x, y, z) =

1

2
mω2

⊥[x
2 + y2 + λ2(z ± z0)

2]. (2.1)

where 2z0 is the distance between the minima of the potential along z,

λ = ωz/ω⊥ is the ratio between the transverse and longitudinal trapping

frequencies and we consider pancake con�gurations, i.e., λ� 1. Let xi being

the center of mass coordinate along x of the i-th cloud. The equations of

motion can be written as

d2x1
dt2

= − ω2
⊥x1 − α(x1 − x2), (2.2)

d2x2
dt2

= − ω2
⊥x2 + α(x1 − x2), (2.3)

where α is the coupling between the two bare center-of-mass modes. The

eigenfrequencies of the previous equations are simply ωin = ω⊥, for the in-

phase sloshing mode and ωout = ω⊥
√
1 + 2α/ω2

⊥ for the out-of-phase sloshing

mode. Thus in order to determine α we just need to determine the splitting

ωout−ω⊥ for the dipolar coupled system. Once the frequency ωout is known, we

can determine quantitatively the evolution of the system as described by Eq.

(2.3). In Fig. 2.2 the motion of the coupled clouds for a value of ωout = 1.1ω⊥
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Figure 2.2: The motion of the center of mass of the two clouds for ωout =

1.1ω⊥, with ω⊥/2π = 200 Hz which corresponds to a beating time t̄ =

π/(ωout − ω⊥) = 0.025s. Initially, at t = 0, only the cloud 1 is displaced

from its central equilibrium position.

is shown. The beating of the motion is a direct measurement of the out-of-

phase mode frequency, since the time at which the initially displaced cloud

stops in the center is simply t̄ = π/(ωout − ω⊥).

In the following we calculate the frequency ωout as a function of the dipolar

interaction strength and the distance between the two clouds. We will also

discuss how the equation of state of the gas a�ects such a frequency. The

frequency ωout was recently calculated by Huang and Wu [51] in the case of a

magnetic dipolar Bose gas, using a technique very similar to the one employed

in the present work. For this reason we mainly focus on the case of a Fermi gas.

Moreover the Fermi statistics allows for an easier realization of cold gases of

hethero-nuclear molecules carrying an electric dipole moment (e.g., the recent

experiment [22]) so that the strength of the dipolar force can be much larger.

2.3 The model and the method

We consider two clouds of dipolar ultracold gas (Fig. 2.1), each cloud is

con�ned in the cylindrically harmonical potential (2.1).

The dipoles are oriented along the axis z by an additional external �eld.

The interaction potential between two dipoles (~d1 = ~d2 = ~d) has the standard

form:

VD(~r1, ~r2, θ) =
d2(1− 3 cos2 θ)

|~r1 − ~r2|3
, (2.4)

where θ is the angle between ~d and ~r1 − ~r2.
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The energy functional for the system has the following general form:

E[na, nb] = E[na] + E[nb] +

∫
d~rad~rbVD(~ra − ~rb)na(~ra)nb(~rb), (2.5)

where na and nb are the atomic densities for clouds a and b, ~ra and ~rb are

the coordinates relative to the two clouds, E[na] and E[nb] are the energy

functionals of each cloud separately.

Let us consider the small density shifts along the x axis of cloud a and

cloud b:

na,b(x, y, z) → na,b(x− εa,b, y, z). (2.6)

We can write the variation of the energy (2.5) as a di�erence between the

energy of shifted and nonshifted position:

δE = E[na(x− εa, y, z), nb(x− εb, y, z)]− E[na(x, y, z), nb(x, y, z)]. (2.7)

From the other hand for small oscillations the expression (2.7) is equal to the

potential energy:

δE = mω2
DN(ε2a + ε2b), (2.8)

where ωD is the frequency of the dipole mode and N is the number of atoms

in each cloud. Provided that the frequency shifts εa and εb are small the

expansion of expression (2.7) up to second order can be performed giving the

result

na,b(x− εa,b) ≈ na,b − εa,b
∂na,b

∂x
+

1

2
ε2a,b

∂2na,b

∂x2
+ .... (2.9)

After substitution Eq. (2.9) into Eq. (2.7) we obtain the following expression

for δE:

δE =
1

2
mω2

pN(ε2a + ε2b)−
1

2
(εa − εb)

2

∫
d~rad~rbVD(~ra − ~rb)

∂na(~ra)

∂xa

∂nb(~rb)

∂xb
.

(2.10)

It can be seen from Eq. (2.10) and Eq. (2.8) that for the in-phase mode

(εa = εb) the frequency of the collective oscillation ωD equals the trap fre-

quency ωp. But, for the out-of-phase mode (εa = −εb) the frequency of the

dipole mode is di�erent from the trap frequency:

ωD = ωp

(
1− 2

mω2
pN

∫
d~rad~rbVD(~ra − ~rb)

∂na(~ra)

∂xa

∂nb(~rb)

∂xb

)1/2

. (2.11)

Consequently, from Eq. (2.11), that one can see for the out-of phase mode the

presence of long-range dipolar interactions leads to a shift of the dipole mode

frequency. In the following we calculate the shift for experementally relevant

parameters.
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2.4 The details of calculations

Let us denote by I the integral in Eq. (2.11)

I =

∫
d~rad~rbVD(~ra − ~rb)

∂na(~ra)

∂xa

∂nb(~rb)

∂xb
. (2.12)

It can be rewritten in the following way using the properties of the Fourier

transformation and of the convolution:

I =

∫
d~ra

(
VD ∗ ∂nb(~rb)

∂xb

)
(~ra)

∂na(~ra)

∂xa
=

=

∫
d~kF [VD ∗ ∂nb(~rb)

∂xb
](~k)F [

∂na(~ra)

∂xa
](~k) =

=

∫
d~kF [VD](~k)F [

∂na(~ra)

∂x
](~k)F [

∂nb(~rb)

∂x
](~k), (2.13)

where the symbol ∗ denotes the convolution and F [. . .] is the Fourier trans-

formation. The Fourier transformation of dipole potential [33] can be approx-

imated as

F [VD](~k) = 4πd2(1− 3 cos2 α)

(
cos(bk)

(bk)2
− sin(bk)

(bk)3

)
, (2.14)

where α is the angle between ~k and the dipole direction, and b is a cuto�

distance corresponding to the atomic radius. Since b is much smaller than

any signi�cant length scale of the system, it is possible to perform the limit

lim
b→0

F [VD(~r)] =
4π

3
d2(3 cos2 α− 1). (2.15)

In the following we will always use Eq. (2.15).

To obtain the density distributions na(~ra) and nb(~rb) one needs to solve

the stationary non-local Gross-Pitaevskii equation with long-range dipolar

interactions. In the present work we use the following Gaussian anzatz for the

density:

na,b(x, y, z) =
N

W 2
pWzπ

3
2

e
− (x2+y2)

W2
p

− (z2∓2zL+L2)

W2
z , (2.16)

where 2L is the distance between layers a and b, while Wp and Wz are the

variational parameters that de�ne the size of the cloud.

Using spherical coordinates I can be written as:

I =
N2d2

6π2

∫ ∞

0

∫ π

0

∫ 2π

0

k4(3 cos2 α− 1) sin3 α cos2 φ×

× exp

(
−k

2

2
sin2 αW 2

p − W 2
z k

2 cos2 α

2
+ 2ıLk cosα

)
dkdαdφ. (2.17)



14 Chapter 2. Dipolar drag in bilayer harmonically trapped gases

After the substitution cosα = y and the integration over φ Eq. (2.17)

becomes

I =
N2d2

6π2
Ĩ ,

where

Ĩ =

∫ ∞

0

∫ 1

−1

k4(1− y2)(3y2 − 1)×

× exp

(
−y

2k2

2
(W 2

z −W 2
p )−

k2W 2
p

2
+ 2ıLky

)
dkdy.

Finally, the expression for ωD can be written as

ωd = ωp(1−
Nd2

3πmω2
p

Ĩ)1/2. (2.18)

2.5 Variational parameters

In this section we discuss the variational parameters of the Gaussian anzatz

(2.16) which minimize the energy of a single cloud. The results of a Bose gas

are also considered and compared to the ones of a Fermi gas.

2.5.1 Bosons

In the case of bosons the total energy for a single cloud has the following

form [52]

Ebos = Etrap + Ekin + Econt + Edd, (2.19)

where Etrap =
∫
nVtrapd~r is the potential energy due to the trap, Ekin =

~2
2m

∫
∇n2d~r is the kinetic energy, Econt =

g
2

∫
n2d~r is the contact interaction

energy and

Edd =
1

2

∫
n(~r)n(~r′)Udd(~r − ~r′)d~rd~r′

is the energy of dipolar interactions. By using the Gaussian anzatz (2.16) Eq.

(2.19) becomes

Ebos =
mNω2

p

2
(W 2

p +
ω2
z

2ω2
p

W 2
z ) +

N

4m
(
2

W 2
p

+
1

W 2
z

) +

+
N2a√

2πmW 2
pWz

− d2N2

3
√
2πW 2

pWz

f(κ), (2.20)
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where κ = Wp

Wz
is the cloud aspect ratio, and

f(κ) =
1 + 2κ2

1− 2κ2
− 3κ2 arctan

√
1− κ2

(1− κ2)3/2
.

As an example of a bosonic dipolar gas we consider 52Cr atoms (that

have relatively large magnetic dipole moment dCr = 6µB) and
41K87Rb polar

molecules. The �rst case is important because BEC of 52Cr atoms has been

already created experimentally [15]. The second case is also very interesting

because 41K87Rb molecules have a large electric dipole moment (dKRB = 0.6D)

in the rovibrational ground state and their fermionic counterpart (40K87Rb)

is already available experimentally in the degenerate regime [22].

In Table 2.1 the values ofWp, Wz are shown for di�erent trap aspect ratios

(λ = ωz

ωp
) in the case of 52Cr (for λ = 1.6 notice that the cloud is predicted to

be spherical). The other parameters are as follows: number of atoms 30000

and ω = 2π · 800 Hz, where ω = (ω2
pωz)

1/3 is the average trap frequency. The

scattering length is taken to be equal to 18a0, where a0 is the Borh radius,

ap =
√

~/mωp and az =
√
~/mωz are the oscillator lengths in the radial and

axial direction.

Table 2.1: Bosons. The size of cloud for 52Cr.
λ ωp

2π
, Hz ωz

2π
, Hz Wp, 10

−4cm Wz, 10
−5cm Wp

ap
Wz

az

1.6 684 1094 1.05 10 1.88 2.5

10 372 3720 2.5 3.2 2.8 1.4

20 295 5894 3.2 2.3 3.94 1.3

40 234 9356 3.9 1.6 4.28 1.1

The cloud size for the bosonic polar molecule 41K87Rb is shown in the

Table 2.2 at the same number of atoms and trap parameters (the case λ = 1.6

absence because cloud is unstable for such parameters). The scattering length

here is equal to 100a0.

Table 2.2: Bosons. The size of cloud for 41K87Rb.
λ ωp

2π
, Hz ωz

2π
, Hz Rp, 10

−4cm Rz, 10
−5cm Rp

ap
Rz

az

10 372 3720 4.14 5 9 3.4

20 295 5894 5.6 2.8 10.8 2.4

40 234 9356 7.2 1.9 12.4 2.1
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2.5.2 Fermions

The total energy of a single cloud of dipolar fermions can be expressed in

terms of the Thomas-Fermi energy functional [53]

Eferm =
3

5

~2

2m
(6π2)2/3

∫
n5/3d3x+ Edd + Epot, (2.21)

where Edd and Epot are the same as in the bosonic case. In the energy func-

tional (2.21) we have not included the intra-cloud exchange energy. We safely

neglect it, because for the pancake-like con�gurations, which are our main

interest, the direct term is the dominant e�ect (see, e.g., [37]).

For the Gaussian anzatz (2.16) Eferm becomes

Eferm = (
3

5
)5/262/3

1

2m
π1/3 N5/3

R
4/3
p R

2/3
z

+
mNω2

p

2
(R2

p +
ω2
z

2ω2
p

R2
z)−

− d2N2

3
√
2πW 2

pWz

f(κ). (2.22)

In Table 2.3 the size of the cloud is shown for the fermionic polar molecules
40K87Rb. The trap parameters, the number of atoms and the scattering length

are taken to be the same as for the bosonic polar molecule 41K87Rb.

Table 2.3: Fermions. The size of cloud for 40K87Rb.
λ ωp

2π
, Hz ωz

2π
, Hz Rp, 10

−4cm Rz, 10
−5cm Rp

ap
Rz

az

10 372 3720 4.64 5.28 10 3.6

20 295 5894 6.1 3.25 11.7 2.8

40 234 9356 7.84 2.02 13.4 2.18

From the comparison of Table 2.2 and Table 2.3 one sees that for the same

trap parameters and value of the dipolar moment the fermionic cloud has a

larger size compared to the bosonic one. This e�ect is a direct consequence of

the Pauli exclusion principle.

2.6 Frequency shift: bosons versus fermions

In this section we study the frequency of the dipole mode (2.18) for bosonic

(52Cr and 41K87Rb) and fermionic (40K87Rb) dipolar gases. We use the vari-

ational parameters which were presented in the previous section. Fig. 2.3

shows the dependence of ωD on the distance L between the clouds at di�erent

values of the parameter λ. The top �gure shows the results for 52Cr. One
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can see that the e�ect of the frequency shift is not too small (around several

percents) and, in principle, can be experimentally detected. The middle and

bottom �gures depict the ωD for 41K87Rb and 40K87Rb polar molecules. The

e�ect is slightly larger for bosons than for fermions. This fact can be under-

stood in the following way: as emerges from Eq. (2.11) the e�ect is ampli�ed

for smaller radial sizes where the gradient of the density is larger, and, as it

was discussed above, the sizes Wp and Wz are smaller for a bosonic cloud.

Moreover, we see that for small enough distances the larger the cloud

(larger λ for �xed N) the smaller the e�ect. This can be easily understood in

terms of the potential of a single disk of radius W⊥ on a probe dipole. Indeed

at a distance z � W⊥ the potential decays with W⊥, which is a general result

independent of statistics. On the other hand we have that the asymptotic

behavior of the frequency shift at large distance is ∝
√
1 + C/L5 with C a

constant, which is the result one immediately obtains by considering just two

trapped dipoles. It can also be easily shown that for spherical clouds with

W⊥ = Wz = W in Eq. (2.11) the frequency of the out-of-phase dipole mode

reads

ωout = ω⊥

(
1−

√
2Nd2h(L/W )

3
√
πmω2

⊥L
5

)1/2

, (2.23)

where h(y) = e−2y2(4y5 +6y3 +9/2y)− 9/2
√

π
2
Erf(

√
2y), which approaches a

constant for large values of y.

2.7 Comparison with a classical gas

An important question arises: is it possible to detect the frequency shift

of dipolar mode for a classical gas? This section is devoted to the comparison

of ωD for a degenerate Fermi gas of 40K87Rb molecules with a classical gas

composed of the same molecules. Here we chose other parameters for the

trap and number of particles, which should be closer to the parameters of

the 41K87Rb experiment [22]. The Tables 2.4 and 2.5 show the variational

parameters for degenerate and classical gases, correspondingly. There TF ≡
~ω⊥(6Nλ)

1/3/kB is the Fermi temperature and kB is Boltzmann's constant.

For a classical gas we use simply the Gaussian density pro�les of Eq. (2.16)

where the radii are given by the Boltzmann expression W 2
⊥ = 2kBT/(mω

2
⊥)

and κ = λ.

In Fig. 2.4 and Fig. 2.5 we report the predictions for the frequency shifts

exhibited by the degenerate gas and the thermal con�guration calculated at

the temperature T = TF . The variational parameters are taken from Tables

2.4 and 2.5. We see that the e�ect, for the same trapping conditions and
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Table 2.4: The cloud size for N = 2200 40K87Rb molecules with ωz/2π = 10

kHz (corresponding to az = 8.89 × 10−6cm) and dipole momentum d = 0.56

D.
λ W⊥, 10

−4cm Wz, 10
−5cm

10 1.8 2.05

20 2.9 1.54

40 4.6 1.17

Table 2.5: The size of cloud for classical gas of 40K87Rb at T = TF with

dipole momentum d = 0.56D and trapping frequency ωz = 10 kHz (az =

8.89× 10−6cm).

λ W⊥, 10
−4cm Wz, 10

−5cm

10 2.8 2.8

20 4.5 2.25

40 7.15 1.79

number of particles, is smaller for a classical gas than for a degenerate Fermi

gas, since the thermal radii are larger and the densities smaller than the ones

of the degenerate con�guration.

2.8 Conclusions

We have proposed a drag experiment between two non-overlapping

atomic/molecular clouds (see Fig. 2.1 and Fig. 2.2) to test the long-range

nature of the dipolar potential. The method is independent of quantum statis-

tics and holds for both degenerate and thermal gases. This e�ect corresponds

to the trapped version of the famous Coulomb drag exhibited by electrons

in uniform bilayer systems. The realization of such a drag experiment would

provide a direct and easy signature of the long-range nature of the dipole

interaction.
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Figure 2.3: Frequency shift of dipole mode for bosons: 52Cr (a), 41K87Rb (b);

and for fermions 40K87Rb (c).
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Figure 2.4: Frequency shift of ωout/ω⊥ for the out-of-phase mode for a degen-

erate gas of 40K87Rb, with parameters as given in Table 2.4.
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Figure 2.5: Frequency shift of ωout/ω⊥ for the out-of-phase mode for a classical

gas of 40K87Rb at temperature T = TF , where TF is the Fermi temperature

of the gas. Parameters are given in Table 2.5.



Chapter 3

Quantum Monte Carlo methods

In this chapter we describe Quantum Monte Carlo methods and the under-

lying concepts, such as Markov chains and Metropolis algorithm. We discuss

Variational and Di�usion Monte Carlo techniques, as well as trial wave func-

tions used for bosonic and fermionic systems.

3.1 Introduction

The behavior of a nonrelativistic quantum system can be described by

the many-body Schroedinger equation. The ground state expectation value

of an operator can be found as a quantum-mechanical average on the many-

body wave function that leads to the calculation of multidimensional integrals.

Usually we are interested in the physical properties of a system which contains

a large number of particles, so the problem of solving Schroedinger's equation

as well as calculation of the observables becomes very di�cult. If the degrees

of freedom are strongly coupled, perturbation theories are not reliable and the

use of di�erent numerical techniques becomes necessary.

Monte Carlo (MC) methods are a class of techniques that are used to solve

multidimensional integrals, where grid methods becomes ine�ective because

the number of grid points rapidly increase with dimensionality. The essential

property of MC methods is the stochastic nature, which arises from the use of

random number sequences. More exactly, to compute the results, Monte Carlo

methods rely on repeated random sampling which is governed by a probabil-

ity distribution function. The term "quantum Monte Carlo" (QMC) covers

several related stochastic methods that are used to investigate the properties

of a variety of quantum systems. The word "quantum" is important since

QMC approaches di�er signi�cantly from Monte Carlo methods for classical

systems.

Originally MC methods were developed mainly to study the properties

of condensed matter systems. Historically the �rst method was Variational

Monte Carlo (VMC), which was used to study the ground-state properties of

a bosonic isotope of helium, namely He4 [54]. In that method the modulus

square of a trial wave function plays the role of a probability distribution,

which is used to stochastically sample physical observables. It provides an
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upper bound of the ground-state energy (both for bosons and fermions) which

crucially depends on the quality of the trial wave function used. The ground-

state energy of liquid He4 was found to be in agreement with the experimental

value using more sophisticated wave functions [55]. VMC was also used to

study the fermionic isotope 3He ([55], [56]) and later to investigate the ground-

state properties of the electron gas. Later the Green's Function Monte Carlo

(GFMC) method was developed and used for 4He [57] . For bosons GFMC

method samples a probability distribution proportional to the exact ground-

state wave function, and it gives an exact ground-state energy biased only

by a statistical error, which can be decreased at the cost of simulation time.

For fermions GFMC was �rst used in [58]. Another method called Di�usion

Monte Carlo (DMC) was introduced in [59]. DMC solves the Schroedinger

equation in imaginary time based on the short-time approximation of the

Green function. It had allowed to signi�cantly improve the VMC results for

the electron gas [61]. DMC is similar to GFMC but simpler in implementation

which makes DMC a very popular method up to the present time (for review

see [62]).

All techniques mentioned before are valid only at zero temperature. But

there is the possibility to study �nite temperature properties of quantum

systems using Path Integral Monte Carlo methods (PIMC). They are based

on the isomorphism between the partition function of quantum particles in

the canonical ensemble representation and classical polymers. This partition

function can be simulated using Monte Carlo algorithms. Firstly PIMC was

used to study low-temperature properties of liquid 4He [63] and then became

a standard technique to study quantum liquids. Recently more sophisticated

variants of PIMC were developed such as the Worm algorithm [64], which

allows one to consider very large systems (up to several hundred thousands of

bosons).

Unfortunately, QMC methods, that are exact for bosons, are only approxi-

mate for fermions because of the sign problem. This problem is a consequence

of the fundamental quantum mechanical statement which requires antisym-

metry of the many-body wave function with respect to particles exchange.

Therefore the probability distribution sampled during the simulation can not

be proportional to the many-body wave-function because it should be pos-

itively de�ned and various approximations were developed to overcome this

problem. In case of the DMC method a valid scheme is provided by the �xed-

node approximation, where the nodes of the ground-state wave function are

chosen to coincide with the nodes of a trial wave function. Since the exact

nodes of the ground state are in general not known the energy calculated by

the �xed-node DMC method is only an upper bound to the exact ground-state

energy. In case of PIMC method, an algorithm for fermions, called constrained
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Path-Integral technique discussed in [65], [66], deals with the sign problem at

�nite temperature.

During the last twenty years these methods were employed to study ultra-

cold atomic systems. In the following we describe some of the most important

QMC results. Initially, only systems with short-range contact interaction were

studied.

We �rst consider continuum systems. In Bose gases, beyond mean-�eld

corrections to the equation of state at zero temperature were calculated

in three dimensions [67], two dimensions [68] and one dimension [69]. In

fermionic systems, QMC approaches were used to give quantitative informa-

tion about the BEC-BCS crossover [70], and especially the unitarity regime

where there is no small parameter for perturbation theory. For example, the

equation of state at zero temperature was calculated in [71] and in [72]. An-

other interesting phenomena such as itinerant ferromagnetism was studied by

means of the FNDMC method for a three dimensional repulsive Fermi gas

[73], where evidence for a ferromagnetic phase was found.

Lattice models which are described by di�erent variants of the Hubbard

model also attracted a lot of attention. The Bose-Hubbard model [74], which is

the simplest model that describes a conductor-insulator transition for bosons

was the object of many studies. Such interest is based on the hope that

bosons in optical lattices can play the role of quantum simulators for solid state

systems (see Introduction). In [75] the super�uid to normal liquid transition of

the Bose - Hubbard model was experimentally investigated and benchmarked

against the theoretical calculations. The integrated column densities from

time-of-�ight images showed excellent agreement with the results of the worm

algorithm PIMC method over the whole temperature range. Remarkably, the

QMC simulations were performed for 3 ∗ 105 bosons, the same number of

particles presenting in the experiment. Disordered Bose-Hubbard model for

3D bosons was studied by QMC methods in [76], [77]. The authors found

that the Bose glass phase is an intermediate phase between the super�uid and

Mott insulator phases of the Bose-Hubbard model.

In the case of fermions the attractive Hubbard model was studied at uni-

tarity in [78], [79], and the super�uid transition temperature as well as the

thermodynamic properties for unpolarized gases have been calculated.

Let us now move to the progress of QMC studies of ultracold systems with

long-range interactions (for a review see [80]). One of the interesting questions

which was addressed by QMC methods is the phenomenon of supersolidity.

Two-dimensional Bose-Hubbard model with dipolar interactions was studied

in [81], [82] and a supersolid phase was found as an intermediate phase between

the super�uid and solid phase. A bulk two dimensional bosonic system with

pure repulsive 1/r3 dipolar interaction was investigated at zero temperature
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in [45], [46]. It was found that at small densities the ground state of the

system a liquid and at large densities a triangular crystal is formed. For 1/r3

interaction with a cut-o� at small distances, the supersolid phase was instead

predicted to appear at least in two dimensions [48]. This phase is formed

through the formation of super�uid droplets that become coherent as one

lowers the temperature.

Finally, let us mention the Diagrammatic Monte Carlo method, which was

developed to investigate the properties of fermionic systems at �nite temper-

ature. This method is based on a direct sampling of Fermi diagrams that

contribute to physical properties. Recently, in [83] the equation of state of a

balanced Fermi gas at unitarity was determined using this method.

3.2 Basic concepts

As it was already mentioned the most important use of Monte Carlo meth-

ods is the calculation of multidimensional integrals. Non-stochastic methods,

such as grid methods are highly e�ective for low dimensional integrals or in

case where the integrand can be approximately separated into low dimensional

parts. But when the dimensionality d of the space increases the number of

grid points increases as Nd. For the case d ≤ 5 some more sophisticated grid

techniques can still be e�ective. But for higher dimensions the computational

e�orts increases so rapidly, that other possibilities such as Monte Carlo sam-

pling become more favorable. Monte Carlo integration is based on sampling

points from an appropriate probability distribution function instead of using

a grid.

Let us explain the idea of Monte Carlo evaluation of de�nite integrals.

Only the one dimensional case is considered below, but the results can be

easily generalized to the multidimensional case.

At the beginning, let us de�ne what is a random variable. Let us consider

for example such process as throwing a dice. At each trial the result of this

action can be expressed in term of a numerical value x which is called a

random variable. It can be discrete or take values in the continuum. The

random variable is characterized by its domain and its probability distribution

function (pdf), which also can be discrete or continuous. As an example, two

common pdf's are written below. The �rst one is the uniform distribution,

de�ned in [a, b] as

f(x) =
1

(b− a)
θ(x− a)θ(b− x), (3.1)

where θ is a Heaviside step function. The second one is the Gaussian distri-
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bution de�ned in (−∞,+∞) as

f(x) =
1√
2πσ

exp− (x−x̄)2

2σ2 . (3.2)

Usually we are not directly interested in the value of the variable x but in

some function g(x). In this case the expectation value of g can be found as

< g >=

∫ b

a

g(x)f(x)dx, (3.3)

here it is assumed that x is de�ned in the interval (a, b). The important

characteristics of a distribution are its mean value µ and central moments µn.

Mean value is de�ned for g(x) = x as

< x >= µ =

∫ b

a

xf(x)dx (3.4)

and another choice of g(x) such as g(x) = (x − µ)n determines the central

moments as

µn =

∫ b

a

(x− µ)nf(x)dx. (3.5)

The second central moment µ2 is called the variance of the probability distri-

bution, usually its square root σ is used which corresponds to the standard

deviation.

Now we are ready to discuss the central limit theorem (CLT). Let us

consider a random variable x with probability distribution f(x) which has

mean value µ and variance σ. Also let us de�ne the random variable z as the

average over n random realizations of x:

z =
x1 + x2 + ...+ xn

n
. (3.6)

The CLT tells us that for n large enough the random variable z is distributed

according to the Gaussian distribution (3.2) independently of the form of f(x).

More exactly, the pdf p(z) of the random variable z is

p(z) =
1√
2π

1

(σ/
√
n)

exp(− (z − µ)2

2(σ/
√
n)2

). (3.7)

The mean of p(z) equals the mean of the original distribution f(x) and its

variance is equal to the variance of f(x) divided by n.

So, the CLT proves that the mean of the probability distribution f(x)

can be found as the average over n realizations of x. And the error in its

determination decreases with the square root of n.



26 Chapter 3. Quantum Monte Carlo methods

The importance of CLT is that it can be used not only for the calculation

of the mean value of a probability distribution but can be easily generalized

to other types of expectation values such as

mh =

∫ b

a

h(x)f(x)dx, (3.8)

which has the variance

s2 =

∫
f(x)(h(x)− µh)

2dx. (3.9)

The generalized version of CLT tells us that mh can be estimated as the mean

value of a new random variable

zh =
h(x1) + h(x2) + ...+ h(xn)

n
. (3.10)

The variance of this estimate of mh is equal to the s2/n.

The most important use of CLT is the possibility to calculate de�ned

integrals stochastically. Suppose we are interested in the calculation of the

integral

I =

∫ b

a

h(x)dx, (3.11)

where h(x) is an arbitrary function (no necessarily positively de�ned). One

can rewrite the integral I as

I = (b− a)

∫ b

a

h(x)f(x)dx, (3.12)

where f(x) is the uniform distribution (3.1). Now the integral I can be con-

sidered as the expectation value mh of h(x) on the distribution f(x)

I = (b− a) < h >u . (3.13)

According to CLT the expectation value < h >u can be estimated as the

average over a large numberN of h(xi), where xi are sampled from the uniform

distribution

< h >u≈ h̄ =
1

N

N∑
i=1

h(xi). (3.14)

The variance of this estimate of I is equal to

σ2
I = σ2

h/N, (3.15)
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where for a �nite number of samples

σ2
h ≈ 1

N

N∑
i=1

(h(xi)− h̄)2. (3.16)

Therefore the variance in the estimate of the integral I equals

σ2
I ≈ 1

N2

N∑
i=1

(h(xi)− h̄)2. (3.17)

One can see that the variance σ2
I depends on the variance of the function

h(x) and on the number N of samples. But the variance σ2
h depends only

on the shape of the function h(x). Therefore, the only way to reduce σI
is to increase N . This limitation can be overcome by using the importance

sampling technique, which allow one to signi�cantly reduce the variance of

the integrand function.

In order to do this we should rewrite the integral (3.12) as

I =

∫ b

a

h(x)

q(x)
q(x)dx =<

h(x)

q(x)
>q, (3.18)

where h(x)
q(x)

is the new integrand function and q(x) is the new (not uniform!)

distribution function such that q(x) is close to h(x). So, the integral can be

estimated as

I ≈ h(x)

q(x)
=

1

N

N∑
i=1

h(xi)

q(xi)
, (3.19)

where the points {xi} are sampled from q(x). The probability to sample a

given point xi is larger where h(x) is large and smaller where h(x) is small,

which leads to smaller �uctuations of h(xi)
q(xi)

and, �nally, to a decrease of the

variance with respect to the case of the uniform distribution.

3.3 Random walks and Metropolis sampling

In this section we discuss sampling from an arbitrary distribution function.

In some cases the sampling can be done relatively easily, as, for example, for

the Gaussian probability distribution (3.2), where the Box-Muller algorithm

was developed [85]. Suppose we want to sample from a Gaussian distribution

(3.2) with σ = 1 and µ = 0. Firstly, one needs to sample two random variables

u1 and u2 from the uniform distribution (3.1) with a = 0 and b = 1 using, for

example, the standard algorithms ran2 or ran3 from [86]. Then, two variables

x1 and x2 should be calculated as

x1 =
√

−2 log u1 cos(2πu2), x2 =
√

−2 log u1 sin(2πu2). (3.20)
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These variables x1 and x2 are independent random variables distributed ac-

cording to a Gaussian pdf. In case of arbitrary σ and µ, the random variables

x1,2 should be rescaled as x1,2 → σx1,2 + µ.

In case of more sophisticated pdf's, usually there is no easy way to sample

points from them. Metropolis and coworkers [87] developed a stochastic algo-

rithm which generate asymptotically the given set of random numbers. This

algorithm is based on a random walk in multidimensional space. Before going

to the details of this algorithm we explain the underlying concept of Markov

chain [84].

Firstly, let us de�ne a "walker" as a mathematical quantity which com-

pletely describes the state of the system. The walker moves in con�gurational

space by combination of deterministic and random displacements. Suppose

the system has N states S1, ..., SN such that the probability for the system to

occupy each of the states at a given time i is pi1, ..., p
i
N . All this probabilities

form the probability-space density, which can be represented as the vector

pi = [pi1...p
i
N ]

T . (3.21)

If the system starts its evolution from the state Si, then after some time

it ends at Sf after a sequence of jumps between intermediate states. If at

every time the current state depends only on the previous one, then such a

sequence of events is called a "Markov chain". The probability of the system

to jump from state Sj to Sk in one time step is de�ned as Pkj. The whole set

of probabilities {Pkj} forms so called transition probability matrix P̂ . It is

obvious that its elements must satisfy the following conditions: 0 ≤ Pkj ≤ 1

and
∑

j Pkj = 1.

What happens to a system after a large number of jumps? Suppose that

at time i the system is in the state Sj and then at the next time step i +

1 it moves to Sk with probability Pkj. During this jump the probability

distribution changes as pi+1
k =

∑
j Pkjp

i
j, which can be written in a matrix form

as pi+1 = P̂pi. Using this notation the evolution of the system from the initial

distribution can be written as follows: p1 = P̂p0, then p2 = P̂p1 = P̂ P̂p0

and so on. After m steps the probability-space density becomes pm = P̂mp0.

If time m is su�ciently long |pm+1 − pm| → 0, which means that the system

has reached the equilibrium probability distribution p∗, de�ned as

p∗ = P̂p∗. (3.22)

The probabilities p∗ can be found as the solution of the set of linear equa-

tions (3.22). The existence of such equilibrium state requires that the system

satis�es some conditions, one of the most important is the ergodicity, which

means that none of the possible states has zero probability for being visited

by the walker.
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The generalization of the discussed concept to the case of continuum space

is called a Markov process. In this case the states can be labeled by the con-

tinuous variable x′ and the transition probability can be de�ned as a function

p(x, x′) with the properties p(x, x′) > 0 and
∫
p(x, x′)dx′ = 1.

Above we have considered a direct problem: how to get the stationary

probability distribution which corresponds to a given transition probability

matrix. But our sampling task requires the solution of the inverse problem:

we should be able to �nd an appropriate P̂ for the desired p∗. This issue is

addressed by the Metropolis algorithm [87, 88].

Assume the system is in state Si which has the equilibrium probability

p∗i . Then let us choose a trial state Sj which has the equilibrium probability

p∗j . The probability of transition between these two states is denoted as Qij,

where Q̂ could be an arbitrary matrix. If p∗j > p∗i then the move is accepted

and the matrix element of the matrix P̂ is Pij = Qij. If p
∗
j ≤ p∗i the trial state

is accepted with the probability p∗j/p
∗
i . In case the state Sj is not accepted the

new state is the old one. More precisely the above statements can be written

as follows:

Pij = Qij, (p
∗
j > p∗i ) (3.23)

Pij = Qijp
∗
j/p

∗
i , (p

∗
j ≤ p∗i ) (3.24)

Pii = Qii +
∑

k,p∗k<p∗i

Qik(1− p∗k/p
∗
i ) (3.25)

The last equation (3.25) is chosen in such a form to ful�ll the condition∑
j Pkj = 1.

It is worth to mention here that the matrix P̂ constructed according to

Eqs. 3.23, 3.24, 3.25 satis�es the detailed balance condition: Pkjp
∗
k = Pjkp

∗
j .

The transition probability matrix should satisfy this condition in order to

produce a stationary probability distribution. So, the repeated actions of the

matrix P̂ drives the probability distribution to the equilibrium.

The Metropolis algorithm can be generalized to the case of continuous

variables, which means that instead of the vector p∗ we use now the function

p∗(x). In this case, to generate a random move one can use the continuous

transition matrix W (xfin, xin) where xfin is given by

xfin = xin +D(2z − 1), (3.26)

where D is an arbitrary constant and z is a random variable sampled from an

uniform probability distribution. Suppose that at the initial time the system

can be characterized by a vector xin, which contains the coordinates of all

particles (as it was already mentioned, this quantity is called a walker). The
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easiest version of the Metropolis algorithm for continuous variables can be

written as follows:

1. generate a random vector z from an uniform distribution

2. make an attempt move xin → xfin

3. if p∗(xfin) ≥ p∗(xin) then go to step 5

4. if p∗(xfin) < p∗(xin) the new position xfin can be accepted with the

probability p(xfin)/p(xin) meaning that one needs to do the following

test:

i) generate a new random number z′ from an uniform distribution

ii) if p(xfin)/p(xin) > z′ then go to step 5

iii) if p(xfin)/p(xin) ≤ z′ the proposed position xfin is not accepted and

we need to put xfin = xin

5. the new state is xfin

After many repetitions, we get a random number (vector) xfin sampled from

the desired probability distribution p∗(x).

It is important to mention the following. In the above algorithm the sta-

tionary probability distribution is considered. But in practice the Metropolis

algorithm gives the stationary distribution only after some equilibration time,

so in order to use the points sampled from p∗(x) one should wait an appropri-

ate number of iterations. The parameter D in�uences the acceptance rate A

of the random moves, which is de�ned as A = Nac

Ntot
, where Nac is the number

of accepted moves and Ntot is the total number of attempts. In principle D

can be arbitrary, but if it is too small A is large, and many moves are needed

to cover the whole space; on the contrary if D is too large A is small and the

system is stuck in each position for a large number of iterations. In both cases

the equilibration time becomes too long. Therefore, the appropriate value of

D should be chosen empirically such that A = 0.5− 0.7.

Another issue to address here is the number of walkers which is used in

real simulations. As it was already mentioned the equilibrium random walk is

an ergodic process, which, by de�nition, means that the temporal average can

be replaced by the average on an ensemble. Therefore, we can use instead of a

single walker some number Nw of uncorrelated walkers that perform random

walks independently and then average over them to calculate observables.
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3.4 Variational Monte Carlo

In this section we discuss the Variational Monte Carlo (VMC) method,

which is based on the evaluation of multidimensional integrals using impor-

tance sampling guided by the Metropolis algorithm. Before going to the de-

tails of this method, a very important concept called the variational theorem

should be introduced [89, 90]. It can be formulated as follows: "The expec-

tation value of a Hamiltonian calculated using a trial wave function is always

larger (or equal) than the ground-state energy calculated using the ground-

state wave function". In other words it means that it is always possible to

make an estimate of the ground-state energy without exact knowledge of the

ground-state wave function. Below we prove this statement, which is rather

straightforward.

Let ET be the estimate of the energy calculated as the expectation value

of the Hamiltonian Ĥ with respect to a normalized trial wave function ΨT :

ET = 〈ΨT |Ĥ|ΨT 〉 =
∫

Ψ∗
T ĤΨTdR. (3.27)

The trial wave function ΨT can be expanded on the set of eigenfunctions of

Ĥ as ΨT =
∑

n anΨn. Now Eq. (3.27) can be rewritten as:

ET =

∫ (∑
n

a∗nΨ
∗
n

)
Ĥ

(∑
m

a∗mΨ
∗
m

)
dR =

=
∑
n

∑
m

a∗nam

∫
Ψ∗

nĤΨmdR =
∑
n

|an|2En, (3.28)

where En are the eigenstates of Ĥ. Since E0 ≤ E1 ≤ E2... it is obvious

that ET ≥ E0. It is worth noticing here that the variational principle can be

applied both to bosonic and fermionic systems. The trial wave functions that

are used in QMC methods for bosonic and fermionic systems are described in

Section 3.7.

The VMC methos is directly based on the variational principle. The esti-

mate of the ground-state energy Evmc can be obtained as

Evmc =
〈ΨT |Ĥ|ΨT 〉
〈ΨT |ΨT 〉

=

∫
Ψ∗

T ĤΨTdR∫
Ψ∗

TΨTdR
, (3.29)

where the denominator is added in order to generalize Eq. (3.27) to non-

normalized trial wave functions. Here the vector R contains d∗N coordinates,

where d is the dimensionality and N is the number of particles of the system.

For large N the calculation of the integrals in Eq. (3.27) using grid methods
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becomes very ine�ective, so the stochastic Variational Monte Carlo method is

used.

As it was discussed in Section 3.2, a de�nite integral can be considered

as a mean value over a probability distribution function. Therefore, let us

rewrite (3.29) as

Evmc =

∫
|ΨT |2 ĤΨT

ΨT
dR∫

Ψ∗
TΨTdR

=

∫
ρ(R)EL(R)R, (3.30)

where ρ(R) = |ΨT |2∫
Ψ∗

TΨT dR
is the multivariate probability distribution function

and EL = ĤΨT

ΨT
is the so called "local energy". Here it is important to notice

that ρ(R), de�ned in such way, is always positive and normalized to 1. So,

in Eq. (3.30) ρ(R) is the pdf and EL(R) is the function, which should be

averaged over ρ(R). Finally, the estimate of the variational energy can be

written as

Evmc =
1

Nw

Nw∑
i=1

EL(Ri), (3.31)

where Ri are Nw random variables sampled from ρ(R). The variance of Eq.

(3.31) is

σ2
vmc =

∑Nw

i=1E
2
L(Ri)

N2
w

− E2
vmc

Nw

. (3.32)

There is another way to estimate the VMC energy, which can be used

to test the implementation of the calculation of the trial function in the al-

ghorithm. It is based on integration by parts in Eq. (3.29). Let us rewrite

the expression for the kinetic energy part of Evmc in the following way:∫
V

ΨT (R)∇2ΨT (R)dR =

∫
V

∇ (Ψ∗
T (R)∇ΨT (R))−

∫
V

∇Ψ∗
T (R)∇ΨT (R)dR,

(3.33)

where V is the volume of the simulation box. The �rst term in the right part

of Eq. (3.33) can be rewritten as the integral over the surface of V :∫
V

∇ (Ψ∗
T (R)∇ΨT (R)) =

∫
S

Ψ∗
T (R)∇ΨT (R)dS = 0. (3.34)

The expression (3.34) is equal to zero because the trial wave function is chosen

to have zero derivatives at the surface of the simulation box. The variational

energy can be estimated as follows:

EF
vmc =

∫
ρ(R)EF

L (R), (3.35)
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where ρ(R) is the same as in (3.29) and

EF
L (R) =

∇Ψ∗
T (R)

Ψ∗
T (R)

∇ΨT (R)

ΨT (R)
+ V (R). (3.36)

The local energy EF
L is called the "force" estimator, because it can be rewritten

in terms of the "quantum force" FQ = 2∇ΨT (R)
ΨT (R)

as

EF
L (R) =

|FQ(R)|2

4
+ V (R). (3.37)

It is very useful to use both direct and force estimaties of the energy since af-

ter statistical average they should agree within error bars providing therefore

a test of the implementation of the alghorithm. Finally, it is worth noticing

that the force estimator gives a larger variance compared to the direct one.

This fact can be understod from the arguments below. If ΨT (R) is the exact

ground-state wave function, the direct estimator EL(R) provides the exact

value of the ground-state energy with zero variance. However, the force esti-

mator EF
L (R) gives an estimate for the ground-state energy with a non-zero

variance due to the term V (R).

Let us now consider how to sample Ri from the probability distribution

ρ(R). The transition matrix W (xfin, xin) for the Metropolis algorithm is

chosen to be a Gaussian

W (Rin → Rfin) =
1

(2πα)dN/2
exp(−|Rin −Rfin|2

2α
), (3.38)

where α is the variance of the Gaussian distribution. The acceptance proba-

bility of the move Rin → Rfin is provided by

min

(
1,

|ΨT (Rfin)|2

|ΨT (Rin)|2

)
. (3.39)

A more sophisticated version of VMC, which guarantees faster convergence

to the ground-state, is called Smart VMC (SVMC) [91], [92]. It is based on

the use of the improved transition matrix which reads as

Wsmart(Rin → Rfin) =
1

(4πDτ)dN/2
exp(−|Rin + 4DFQ(Rin)−Rfin|2

4Dτ
),

(3.40)

where D = ~2
2m
, and τ is the imaginary time. This method shares some

analogies (such as the dependence of Wsmart(Rin → Rfin) on FQ and τ)

with the Di�usion Monte Carlo, which is described in the next section. It is

important to mention here that the transition matrix Wsmart(Rin → Rfin) is

not symmetric relative to the exchange between Rin and Rfin. Therefore the
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acceptance probability for the Metropolis test should not be calculated using

Eq. (3.39), but instead using the expression described in the next section

for the DMC method. Finally, let us mention that the use of SVMC helps

to check if the quantum force is implemented correctly in the code, because

SVMC should give the same results as usual VMC (within error bars).

At the end of this section, let us discuss a very important issue of the

optimization of the trial wave function. It is obvious, that the closer ΨT is

to the real ground-state wave function, the lower the variational energy. So,

it is necessary to �nd the set of parameters de�ning the trial wave function

which correspond to the minimum of Evmc. In the case of only one variational

parameter a, the procedure is rather straightforward: one needs to get Evmc

as a function of a and �nd the global minimum (for an example, see Section

4.3.2). If ΨT depends on several variational parameters a1, a2, a3, ..., the task

becomes more complicated as one needs to �nd the global minimum of a

function of several variables. The most straightforward way here is to use

standard numerical procedures such as conjugate gradient methods [86]. More

sophisticated methods of optimization were developed, for example, by S.

Sorella in [93].

3.5 Di�usion Monte Carlo

In this section we discuss a more advanced Monte Carlo method called

Di�usion Monte Carlo (DMC) [94, 95]. This method solves the imaginary time

Schroedinger equation using the analogy with a classical di�usion equation.

For bosonic system the DMC method gives the exact ground-state energy

apart from statistical uncertainty. This means that one can reach a desired

error in the determination of the ground-state energy simply by increasing

the number of statistically independent walkers. Another great advantage of

DMC is that the estimate of energy does not depend so strongly on the quality

of the trial wave function. In practice, the optimization of the wave function

reduces the variance of the energy estimate, but it has almoust no in�uence

on its value. Unfortunately, for fermionic systems DMC is not able to provide

an exact estimate of the ground-state energy, it gives only an upper bound.

The treatment of fermionic systems is discussed in the next section in more

details.

We are interested in the stationary solution of the Schroedinger's equation

− ı~
∂Ψ(R, t)

∂t
= ĤΨ(R, t). (3.41)

The formal solution of (3.41) can be written as the expansion on eigenstates
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{Φn(R)} of Ĥ

Ψ(R, t) =
∞∑
n=0

cnΦn(R) exp (−ıEnt) , (3.42)

where En are the eigenvalues of Ĥ, and cn are some constants. The oscillatory

behavior of Eq. (3.42) becomes an exponential decay if the real time t is

substituted by the imaginary time τ
~ . So, the Schroedinger's equation (3.41)

is rewritten as

− ∂Ψ(R, τ)

∂τ
= ĤΨ(R, τ), (3.43)

which has the solution

Ψ(R, τ) =
∞∑
n=0

cnΦn(R) exp (−τEn) . (3.44)

For large imaginary times τ only the ground state eigenfunction contributes to

Eq. (3.44), because it has the smallest eigenvalue E0 and Eq. (3.44) becomes

Ψ(R, τ → ∞) = c0Φ0(R) exp (−τE0) . (3.45)

The stationary solution of Schroedinger's equation can be found from the large

τ limit in imaginary time of its non stationary solution.

Let us explore the analogy between the imaginary time Schroedinger's

equation (3.43) and a classical di�usion equation Eq. (3.43) is explicitly writ-

ten as
∂Ψ(R, τ)

∂τ
= D∇2Ψ(R, τ) + (ET − V (R))Ψ(R, τ), (3.46)

whereD = ~2
2m

is the so called "di�usion constant" and ET is a reference energy

which is introduced to stabilize the algorithm. Without the second term on

the right-hand part, Eq. (3.46) coincides with the classical di�usion equation.

On the contrary, without the �rst term Eq. (3.46) becomes a �rst-order

branching equation whose "rate constant" is ET − V . The imaginary time

Schroedinger's equation can be simulated by a combined stochastic process

consisting of di�usion in con�guration space plus branching process, which

means the change of the number of walkers (called "population") during the

simulation.

Equation (3.46) has a disadvantage for simulating the branching process

because the branching rate can become too small or too large, depending on

the value V (R), that would lead to large �uctuations of the population. The

importance sampling technique, discussed in Section 3.2, is used to avoid this

problem. In this approach the following substitution is used

f(R, τ) = ΨT (R)Ψ(R, τ), (3.47)
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where ΨT (R) is a trial wave function which is used to bias the random walk

to produce the distribution f(R, τ). The trial wave function is usually con-

structed based on the available knowledge about the physical system under

consideration. Eq. (3.46) than becomes

∂f(R, τ)

∂τ
= D∇2(f(R, τ)FQ(R)) + (ET − EL(R))f(R, τ), (3.48)

where the local energy EL(R) = ĤΨT (R)
ΨT (R)

and the quantum force FQ(R) =

2∇ΨT (R)
ΨT (R)

are the same quantities introduced already when discussing the VMC

method. The meaning of the quantum force is the e�ective velocity of the

walkers. It is directed away from the regions where ΨT (R) is small. In classical

Brownian motion the same role is played by the gradient of the external �eld.

Another important property of Eq. (3.48) is the appearance of the term

ET −EL(R) instead of ET −V (R). The local energy EL(R) is much smoother

that the potential energy V (R), because EL(R) has contributions both from

potential and kinetic energy operators. Therefore, the branching process is

much more stable, than without the use of the importance sampling technique.

The main goal of the DMC technique is the evaluation of f(R, τ) according

to Eq. (3.48) up to large enough imaginary time such that the contributions

from the exited states in Eq. (3.44) would die out. For that purpose the

di�erential equation (3.48) should be rewritten as an integral equation using

the Green's function formalism.

Let us de�ne the operator Ô such that

Ô = K̂ ′ + EL(R)− ET , (3.49)

where K̂ ′ = −D∇2 +D (∇FQ(R) + FQ(R)∇) is the modi�ed kinetic energy

operator. Using the operator Ô the equation (3.48) becomes

− ∂f(R, τ)

∂τ
= Ôf(R, τ) (3.50)

and the formal solution can be written as

f(R′, τ) =

∫
G(R′,R, τ)f(R′, 0)dR. (3.51)

Here G(R′,R, τ) is the Green's function of the operator Ô de�ned as

G(R′,R, τ) = 〈R′| exp
(
−Ôτ

)
|R〉. (3.52)

The exact form of the Green's function is not normally known, but a reli-

able approximation at small time-step can be obtained. The propagation in

imaginary time can be performed as follows:

f(R′, τ +∆τ) =

∫
G(R′,R,∆τ)f(R′, τ)dR (3.53)
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We discuss now the approximate form of the Green's function that is used

in the DMC method. For pedagogical purpose we �rstly consider the Green's

function corresponding to Eq. (3.46) which is denoted as G0(R
′,R,∆τ). It is

de�ned as

G0(R
′,R, τ) = 〈R′| exp

(
−K̂ − (V̂ − ET )τ

)
|R〉, (3.54)

where K̂ = D∇2

2m
is the usual operator of the kinetic energy. The main obstacle

in �nding the exact form of the Green's function G0(R
′,R, τ) is the non-

commutativity of the operators K̂ and V̂ . For small times ∆τ the function

G0(R
′,R,∆τ) approximately becomes

G0(R
′,R,∆τ) ' GK(R

′,R,∆τ)GV (R
′,R,∆τ) +O(∆τ 2), (3.55)

where GK(R
′,R,∆τ) = exp

(
−K̂τ

)
and GV (R

′,R,∆τ) = exp
(
−V̂ τ

)
. So,

in order to construct G0(R
′,R,∆τ) one needs to know only the Green's func-

tion of the operators of kinetic and potential energy separately. Namely

GK(R
′,R,∆τ) =

exp ((R′ −R)2/2D∆τ)

(4πD∆τ)−3N/2
, (3.56)

where N is the number of particles, and

GV (R
′,R,∆τ) = exp (−(1/2[V (R) + V (R′)]− ET )∆τ) , (3.57)

The Green's function G(R′,R,∆τ) of the Eq. (3.48) can be constructed

analogously to G0(R
′,R, τ). More precisely, if ∆τ is small it can be written

as

G(R′,R,∆τ) ' GK′(R′,R,∆τ)GB(R
′,R,∆τ) +O(∆τ 2), (3.58)

where GK′(R′,R, τ) is the Green's function of the modi�ed kinetic energy op-

erator K̂ ′ which governs the di�usion process and GB(R
′,R, τ) is the Green's

function responsible for the branching of walkers. The last part can be ob-

tained simply by the change of V (R) with EL(R) in Eq. (3.57) which gives

GB(R
′,R,∆τ) = exp

(
−
[
EL(R) + EL(R

′)

2
− ET

]
∆τ

)
. (3.59)

The Green's function GK′(R′,R, τ) can be found assuming that FQ remains

constant during the random move R′ → R and it takes the form

GK′(R′,R,∆τ) =
exp ((R′ −R−D∆τFQ)

2/4D∆τ)

(4πD∆τ)−3N/2
. (3.60)

The above assumption is satis�ed better and better as ∆τ → 0. Therefore an

extrapolation to ∆τ = 0 is required.
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The ground-state energy E0 can be estimated using the following mixed

matrix element:

E0 =

∫
Ψ∗

T (R)ĤΦ0(R)dR∫
Ψ∗

T (R)Φ0(R)dR
. (3.61)

The above expression can be rewritten in the suitable form for the Monte

Carlo method as

E0 =

∫
EL(R)ρDMC(R), (3.62)

where the local energy is exactly the same as in the VMC method, but the

probability distribution ρDMC(R) is di�erent

ρDMC(R) =
ΨT (R)Φ0(R)∫
ΨT (R)Φ0(R)dR

=
f(R, τ → ∞)∫
f(R, τ → ∞)dR

. (3.63)

The last equality is based on (3.47) and (3.45). Finally, Eq. (3.62) can be

estimated as the mean of the local energies EL(R) calculated for the set of

con�gurations {Ri} distributed according to the stationary probability distri-

bution f(R, τ → ∞):

E0 =
1

Nw

Nw∑
i=1

EL(Ri), (3.64)

where Nw is the number of statistically independent walkers Ri.

As it was discussed in Section 3.3, the transition probability function for a

Markov process must satisfy the detailed balance condition in order to guaran-

tee the existence of a stationary distribution. It is clear that GK′(R′,R,∆τ)

violates this condition because

GK′(R′,R,∆τ) 6= GK′(R,R′∆τ). (3.65)

In order to compensate for it, a Metropolis step is introduced with the accep-

tance probability

A(R′,R,∆τ) = min(1, q(R′,R,∆τ)), (3.66)

where

q(R′,R,∆τ) =
|ΨT (R

′)|2G(R,R′, τ)

|ΨT (R)|2G(R′,R, τ)
. (3.67)

It is worth noticing here that the e�ective time step changes when some num-

ber of proposed moves are rejected. Therefore it is necessary to determine the

proper time step to use in Eq. (3.67).

At the end of this section let us write schematically our implementation

of the DMC algorithm.

1. Choose the trial wave function ΨT (R).
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2. Do the optimization of the variational parameters in ΨT (R) using VMC.

3. Using the optimized parameters of ΨT (R) perform a short VMC run

in order to prepare the starting con�guration {R} for DMC evolution.

Usually it contains approximately 200 walkers.

4. Calculate the energy of the initial con�guration averaged over all starting

walkers. This energy is used as the reference energy ET for the �rst

iteration of DMC evolution.

5. Start the loop over all walkers i = 1, . . . , Nw, where Nw is the total

number of walkers (which will change during the time evolution).

i) Gaussian jump + drift move

For walker i choose the new position R′ based on Eq. (3.60). More

precisely, for every particle j from walker i

r′j = rj +D∆τFj
Q(R) + ξj, (3.68)

where ξj is sampled from the Gaussian distribution
exp(−ξ2j/4Dδτ)

(4πDδτ)3N/2 .

ii) Metropolis test

Do the Metropolis test according to Eq. (3.66). It is worth stressing

here that in the present implementation of DMC the Metropolis step

is performed after the move of all particles of a given walker. Another

possibility is to do it after moving each of the particles.

iii) Branching

If the random move is accepted calculate the number of sons nsons for

each walker according to Eq. (3.59) as

nsons = Integer (exp (ET − [EL(R) + EL(R
′)])∆τeff ) + χ) , (3.69)

where χ is a random number sampled from the uniform distribution,

∆τeff is the e�ective time step corrected by the acceptance rate A as

∆τeff = ∆τ ∗ A. For the �rst iteration ∆τeff = ∆τ . Number of sons

can be equal to 0, 1, 2, .... Pass the con�guration R′ and the energy to

all sons of the walker. If nsons = 0 it means that the walker is killed.

6. At the end of the loop over all walkers calculate the average energy and

update the value of ET .

7. Proced to the new iteration. The new number of walkers is

f i
w =

Nw(i−1)∑
j=1

nsons(j). (3.70)
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The value of energy can be biased by the �nite time step ∆τ and by

the average number of walkers 〈Nw〉. In order to get an unbiased value of the

energy it is necessary to make the extrapolation to ∆τ = 0 and to 〈Nw〉 → ∞.

Another important issue is that the sampling of random numbers must

not be correlated during the whole simulation. The standard function of

C programming language, such as rand(), does not satisfy this condition.

Therefore, more sophisticated algorithms such as ran2 or ran3 from [86] must

be used in the code.

The above discussed implementation of the DMC algorithm can be rela-

tively easily parallelized (usually each processor makes calculation for some

number of walkers). In this case it is important to be sure that the sampling

of random numbers realized by di�erent processors are not correlated between

each other.

Finally let us mention that one can choose the approximate Green's func-

tion accurate up to O(τ 3) [96] as

Gquad(R
′,R,∆τ) = (4πDτ)−3N/2 exp (−(1/2(EL(R) + EL(R

′))− ET )τ)

× exp
(
(R′ −R−Dδτ(FQ(R)FQ(R

′)))2/4Dτ
)
det{Î −DδτĤ(R′)},

where Î is the unity matrix and Ĥ is the matrix constructed from derivatives

of the quantum force FQ as

Hpq =
∂2

∂Fp
Q∂F

q
Q

(2 lnΨT (R)) .

3.6 Di�usion Monte Carlo for fermions

As it was already discussed in the previous section the product

ΨT (R)Φ0(R), which plays the role of a probability distribution, must always

be positively de�ned in the DMC method. For bosons this requirement is eas-

ily satis�ed, because Φ0(R) is always positively de�ned. It is then enough to

choose ΨT (R) positively de�ned. For fermionic systems instead the famous

"sign problem" immediately arises from the fact, that the ground state of

fermions has nodes, meaning that the product ΨT (R)Φ0(R) can be negative.

Nevertheless there is possibility to use the DMC method for fermions us-

ing the �xed-node approximation, which was introduced in [61], [97]. Below

we discuss this approximation, but two important de�nitions should be intro-

duced before. The "nodal surface" is the region in con�guration space where

the trial wave function ΨT (R) is equal to zero. A "nodal pocket" is a region

where ΨT (R) has a well-de�ned sign. The main problem is that the nodal

surface of Φ0(R) is usually unknown.
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The main idea of the �xed-node approximation is to use ΨT (R)ΦFN
0 (R)

instead of ΨT (R)Φ0(R) where the nodal surface of ΦFN
0 (R) is equal to the

nodal surface of the trial wave function. In practice, it means that if for a

given walker ΨT (R) is positive (negative) at the beginning of the simulation,

then it always remains positive (negative). So, one gets the following estimate

of the ground-state energy

EFN
0 =

∫
EL(R)ρFN

DMC(R), (3.71)

where the probability distribution ρFN
DMC(R) is

ρFN
DMC(R) =

ΨT (R)ΦFN
0 (R)∫

ΨT (R)ΦFN
0 (R)dR

. (3.72)

This approximation can be implemented very easily in the algorithm, because

the action of the quantum force is such that a walker is always pushed away

from the boundary of a pocket. Therefore, for small enough time step the

walker never crosses it.

Fixed-node DMC is a variational method with respect to the nodal surface

of the many-body wave function, which means that EFN
0 is an upper bound

to the ground-state energy.

3.7 Trial wave functions

In this section we discuss the basic trial wave functions that are usually

used in QMC simulations.

Trial wave functions for bosons are usually chosen to be of the Jastrow

form [54]

ΨJ(R) =
∏
i<j

f(rij), (3.73)

where f(rij) is a non-negative two-body correlation term.

For fermions a Jastrow wave function alone can not be used because the

many-body wave function must be antisymmetric with respect to particle

exchange [90]. The way to construct such a wave function is based on the

use of Slater matrices [98]. For two-dimensional non-interacting fermions in a

square with size L Slater determinant is given by

∆S =


eık1r1 eık1r2 · · · eık1rN

eık2r1 . . .
...

...
. . .

...

eıkNr1 · · · · · · eıkNrN


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Here kα = (2π/L)(nx
α, n

y
α) with n

x,y
α = 0,±1,±2, ... are the wave vectors com-

plying with periodic boundary conditions. According to Fermi liquid theory

[99], [100] a one-to-one mapping is assumed between the low-lying excita-

tions of interacting and noninteracting fermions. Therefore the use of ∆S is

possible for interacting systems also. Nevertheless, in order to take into ac-

count interactions between fermions a product of a Slater determinant and

a Jastrow wave function is used. Such an expression is called Slater-Jastrow

wave function and within QMC calculations it was introduced in [56]. For

VMC calculations the optimization of the orbitals of the Slater determinant

and of the Jastrow term is crucial in order to get the lower energies. For

FNDMC simulations only nodal surface is important. The nodal surface of

the non-interacting Slater determinant is the zeroth order approximation for

an interacting Fermi gas. In many cases this approximation is enough to get

good QMC results that agree with experiments [71], [102]. However, in some

strongly correlated systems such as 3He, it is necessary to introduce back-�ow

corrections to the orbitals in the determinant to improve the nodal surface.

Such corrections were used in the content of cold atoms in Ref. [103].

3.8 Correlation functions

Quantum Monte Carlo methods can be used to calculate not only the

ground-state energy of the system, but also other important one- and two-

body quantities such as the pair-distribution function, the one-body density

matrix, the static structure factor and the momentum distribution. All of

them can be written in a way suitable for Monte-Carlo integrals as

OMC =

∫
OL(R)π(R)dR, (3.74)

where OMC is the Monte-Carlo estimate of the expectation value of the op-

erator Ô, OL(R) = ÔΨT (R)
ΨT (R)

is the local value of the operator Ô, π(R) is

a probability distribution. In case of the Di�usion Monte Carlo method at

τ → ∞ the probability distribution π(R) approaches the limit provided by

Eq. (3.63). In this case Eq. (3.74) corresponds to the mixed estimator

〈Ô〉DMC =

∫
Φ0(R)ÔΨT (R)dR∫
Φ0(R)ΨT (R)dR

=

∫
Φ0(R)ΨT (R)Oloc(R)dR∫

Φ0(R)ΨT (R)dR
. (3.75)

In general, the mixed estimator 〈Ô〉DMC is biased by the trial wave function

ΨT used for importance sampling. Only in case, when the operator Ô is the

Hamiltonian or commutes with the Hamiltonian Eq. (3.75) gives the exact
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expectation value of Ô, which is called a pure estimator

〈Ô〉p =
∫
Φ0(R)ÔΦ0(R)dR∫
Φ0(R)Φ0(R)dR

. (3.76)

The standard way [104] to correct this bias is to calculate also the VMC

estimator

〈Ô〉VMC =

∫
ΨT (R)ÔΨT (R)dR∫
ΨT (R)ΨT (R)dR

, (3.77)

and to use the extrapolation

〈Ô〉extr = 2〈Ô〉DMC − 〈Ô〉VMC . (3.78)

The equation (3.78) can be easily obtained by the following procedure. Sup-

pose, that the trial wave function ΨT is a good approximation of the ground

state Φ0. In this case one can write Φ0 = ΨT + δΨ and the pure estimator

(3.76) can be written as

〈Ô〉p =
∫
(ΨT + δΨ) Ô (ΨT + δΨ) dR∫
(ΨT + δΨ)(ΨT + δΨ)dR

' 2〈Ô〉DMC − 〈Ô〉VMC = 〈Ô〉extr.

(3.79)

Finally, let us mention that the pure estimator (3.76) for local operators can be

calculated directly in the DMC algorithm using the forward walking technique

[105].

Let us discuss the details of the MC calculation of the correlation func-

tions that were mentioned above for an one-component system (which means

that we do not consider spin degrees of freedom). We consider only mixed

estimators, since variational estimators can be easily obtained from the mixed

ones by replacing Φ0 by ΨT . An important quantity, which contains a welth

of information about the ground state, is the pair-correlation function g(x).

This function describes the density �uctuations in the gas and is proportional

to the probability of having two particles at the distance x between them. In

the second quantization formalism it is de�ned as

g(x) =
1

n2
〈Ψ̂+(r)Ψ̂+(r+ x)Ψ̂(r+ x)Ψ̂(r)〉, (3.80)

where Ψ̂+ and Ψ̂(r) are the standard creation and annihilation �eld operators

and n is the density. The expression (3.80) describes the process of removing

two particles from position r and r+x, returning back to the same state after

replacing the particles in the same positions.
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It is more convenient for MC calculations to write Eq. (3.80) in terms of

wave functions as

g(x) =
2

n2Ωd

∑N
i<j

∫
dΩx

∫
ΨT (ri, rj = ri + x,R)Φ0(ri, rj = ri + x,R)dR∫

ΨT (R)Φ0(R)dR
,

(3.81)

where Ωx is the solid angle which corresponds to the displacement vector x, Ωd

is the total solid angle in dimension d, n is the density. Using the homogeneity

of the system, it is possible to eliminate the integration over the solid angle

Ωx in the expression (3.81) which can be rewritten as

g(x) =
2

NnΩdxd

∑N
i<j

∫
δ(x− |ri − rj|)ΨT (ri, rj,R)Φ0(ri, rj,R)dR∫

ΨT (R)Φ0(R)dR
=

=
2

NnΩdxd

N∑
i<j

∫
δ(x− |ri − rj|)ρDMC(R)dR. (3.82)

The calculation of g(x) is very easy to implement in the MC code. At every

iteration and for every walker the distance between all pairs of particles should

be calculated. Then we need to count the number of distances which lie

between x and x + dx. Averaging this number over all walkers gives us (in

the three dimensional case) an estimate of (N/2n4πx2dx) g(x). Usually, the

pair-correlation function is normalized in such a way that it is equal to 1 for

x→ ∞.

The one-body density matrix (OBDM) has the physical meaning of the

amplitude of a process where one particle is removed from position r and

the same quantum many-body state is recovered by replacing the particle at

position r′. In terms of �eld operators Ψ̂ and Ψ̂+ it reads

%DMC(r, r
′) = 〈Ψ̂+(r)Ψ̂(r′)〉. (3.83)

For homogeneous systems where r′ = r+ x the expression (3.83) becomes

%DMC(x) = 〈Ψ̂+(0)Ψ̂(x)〉. (3.84)

Analogously to the case of the pair-correlation function the expression

(3.84) can be rewritten as

%DMC(x) =
1

NΩd

∑N
i=1

∫
dΩx

∫
dRΦ0(r1...ri...rN)ΨT (r1...ri + x...rN)∫
Φ0(R)ΨT (R)dR

=

=
1

NΩd

N∑
i=1

∫
dΩx

∫
dRρDMC(R)%locDMC(R,x), (3.85)
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where %locDMC(R,x) =
ΨT (r1...ri+x...rN)
ΨT (r1...ri...rN)

, ρDMC(R) is the DMC probability distri-

bution (3.63), Ωx is the solid angle corresponding to the displacement vector

x, Ωd is the total solid angle in dimension d and N is the number of particles.

The MC calculation of the OBDM was �rst performed by McMillan in Ref.

[54] for a system of liquid 4He. Below we describe the main steps of McMillan

algorithm. All the steps are supposed to be performed at each iteration.

1) Choose randomly the vector x

2) Choose randomly the index i and displace the i-th particle by the vector

x such that ri → ri + x.

3) Calculate the value quoc = ΨT (r1...ri+x...rN)
ΨT (r1...ri...rN)

, i. e. the ratio between

the wave function that corresponds to the con�guration before and after the

displacement.

4) Add quoc to the bin dr of %loc corresponding to the modulus of the

vector x.

5) Repeat all steps 1-4 for a large enough number of iterations (around

100). It allows to perform the integration over Ωx and average over all N

particles.

The OBDM is connected with the momentum distribution n(k) by a

Fourier transform

n(k) =

∫
x%(x) exp(ıkx). (3.86)

Using the expression for the OBDM (3.85) the momentum distribution can

be written as

n(k) =
1

NΩd

∫
dRρDMC(R)

N∑
i

∫
dΩk

∫
dx%locDMC(R,x) cos(kx), (3.87)

where Ωk is the solid angle which corresponds to the vector k. In the QMC

algorithm the calculation of the momentum distribution can be done simul-

taneously with the calculation of the OBDM. More precisely, every time the

value quoc is calculated it should be multiplied by cos(kx). The vector k is

usually compatible with PBC's and is taken as k = 2π
L
(nx, ny, nz), where L is

the size of the simulation box, nx, ny, nz are integer numbers.

Another important quantity is the static structure factor S(k), which has

the meaning of the correlation between density �uctuations in momentum

space. It is de�ned as the Fourier transform of g(x)

S(k) = 1 + n

∫
x(g(x)− 1)eıkx. (3.88)

One way to calculate S(k) is to perform a Fourier transformation of g(x).

However, this method does not work properly in the case when S(k) has a
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very sharp structure as, for example, for crystals. This happens because in MC

simulations g(x) can be calculated only up to half the size of a simulation box

and this cut-o� distance in real space leads to errors in momentum space. It

is useful to calculate S(k) directly in the MC algorithm. The static structure

factor can be de�ned as the product of density �uctuation operators χk as

S(k) = 〈χkχ−k〉 = 〈
∑
i,j

eık(ri−rj)〉. (3.89)

Here χk =
∑

q a
+
q aq+k, where â

+ and â are the standard creation and annihila-

tion operators in momentum space k. The expression (3.89) can be rewritten

in a form suitable for MC calculations as

S(k) =
1

N

∫
dΩk

∫
ρDMC(R)Sloc(k,R)dR, (3.90)

where Sloc(k,R) =
∑

i,j e
ık(ri−rj) and dΩk is the solid angle which corresponds

to the vector k.

As an example, let us consider the correlation functions discussed above,

for a two dimensional noninteracting Fermi gas. The pair-correlation function

is given by

g(x) =
1

n2V 2

∑
k,k′

〈â+k â
+
k′ak′ak〉(1− eı(k−k′)x) = 1− | 1

nV

∑
k

nke
ıkx|2

= 1− | 1

n4π2

∫ π

−π

dθ

∫ kF

0

keıkx cos(θ)dk|2 = 1− 4

k2Fx
2
J2
1 (kFx), (3.91)

where nk is the momentum distribution, kF is the modulus of the Fermi wave

vector and J1(x) is the Bessel function of the �rst kind. The pair-correlation

function is shown in Fig. 5.10(a), where the line shows the expression (3.91)

and the points are calculated using the MC method. One can see that corre-

lations rapidly decay as a function of x, but for a distance smaller than 1/kF
the probability to �nd two fermions close to each other is greatly suppressed.

This e�ect is called anti-bunching and it has purely quantum mechanical ori-

gin. More precisely, this e�ect is the direct consequence of the Pauli exclusion

principle.

The static structure factor can be straightforwardly calculated using the

de�nition (3.88) and the explicit form of g(x) from Eq. (3.91). The result is

plotted in Fig. 5.10(b) and compared with direct VMC evaluation.

The one-body density matrix for a two-dimensional non-interacting Fermi

gas is given by

%(x) =
1

nV

∑
k

〈â+k ak〉e
ıkx =

1

nV

∑
k

nke
ıkx

=
1

n4π2

∫ π

−π

dθ

∫ kF

0

keıkx cos(θ)dk =
2

kFx
J1(kFx). (3.92)
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The result (3.92) is plotted in Fig. 5.7(c) with a line and the points show the

results of a McMillan VMC calculation of the OBDM.

The momentum distribution for a noninteracting gas calculated using a

MC simulation is shown in Fig. 3.1(d). As it is expected, it has the shape of

a step function with a jump at kF .

The above discussed correlation functions of a non-interacting Fermi gas

are important for the study of interacting Fermi systems presented in Sec-

tion 4.7. Also, it is worth noticing here, that for a noninteracting gas VMC

calculations are exact.
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Figure 3.1: Correlation functions for a 2D noninteracting Fermi gas: pair-

distribution function 5.10(a), static structure factor 5.10(b), one-body density

matrix 5.7(c) and momentum distribution 3.1(d). The line is the result of

analytical calculations; points are obtained from MC calculations, the error

bars are smaller than symbol size.





Chapter 4

Liquid and Crystal Phases of

Dipolar Fermions in Two

Dimensions

In this chapter the liquid and crystal phase of a single-component Fermi

gas with dipolar interactions are investigated using the FNDMC method in

two spatial dimensions and at zero temperature. The dipoles are oriented by

an external �eld perpendicular to the plane of motion, resulting in a purely

repulsive 1/r3 interaction. In the liquid phase we calculate the equation of

state as a function of the interaction strength and other relevant properties

characterizing the Fermi-liquid behavior: e�ective mass, discontinuity at the

Fermi surface and pair correlation function. In the high density regime we

calculate the equation of state of the Wigner crystal phase and the critical

density of the liquid to solid quantum phase transition. Close to the freezing

density we also search for the existence of a stripe phase, but such a phase

is never found to be energetically favorable. This chapter shares the main

results with Ref. [9].

4.1 Introduction

The single-layer and multi-layer con�gurations of two-dimensional

fermions are particularly intriguing because of the competing interplay, de-

pending on the strength of the dipolar interaction and on the distance be-

tween layers, between Fermi liquid behavior, super�uid pairing, crystal order

and density-wave instabilities [106, 39, 40, 43, 107, 108, 109, 110, 36]. As

it was discussed in Section 1.1, the fermionic molecules of 40K87Rb, which

can have a strong electric dipole moment, have been created using coherent

transfer of weakly bound molecules to their rovibrational ground state [20]

and have been brought toward the quantum degenerate regime [21]. Other

fermionic molecules are now being actively studied experimentally [24, 23].

Atomic species with a large magnetic moment, such as dysprosium, o�er a

di�erent possibility of realizing degenerate Fermi gases of dipoles that was
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Figure 4.1: 2D system of one-component fermions with dipolar momentum oriented per-

pendicular to the plane

successfully pursued, although for the moment only in the weakly interacting

regime, in the experiment of Ref. [18].

A particularly simple geometrical arrangement of a single-component dipo-

lar Fermi gas in 2D is when the dipoles are oriented perpendicular to the plane

of motion by means of a su�ciently strong external �eld. This con�guration

has been proven to greatly suppress the chemical reaction rate of molecules,

thereby enhancing their lifetime [22]. Here particles at distance r interact

via a purely repulsive, rotationally symmetric and long range 1/r3 potential.

Still the phase diagram at zero temperature is expected to be quite rich: in-

terlayer dimers and a novel BCS-BEC super�uid crossover are predicted in

bilayer systems [43], while in-plane and out-of-plane density ordered phases

are predicted in multilayer systems [107, 108]. In the case of a single layer, a

Fermi liquid with peculiar scattering properties is stable at low density [36]

and a Wigner crystal emerges at high density, where the classical potential

energy of dipoles largely exceeds their kinetic energy. For intermediate values

of the interaction strength an instability at �nite wave vector is predicted to

set in [39, 40, 110], driving the system to a stripe phase that breaks both

rotational and translational symmetry (in the direction perpendicular to the

stripes). A similar scenario, involving microemulsion phases (e.g. stripes or

bubbles) is expected for the melting of the Wigner crystal at T = 0 in a 2D

Coulomb gas [111]. These results are derived within a mean-�eld approach:

an important question concerns the quantitative determination of the phase

diagram using more accurate theoretical tools, such as quantum Monte Carlo

(QMC) techniques. In this chapter we examine a 2D system of N identical

fermionic particles of mass m (Fig. 4.1) that interact with the Hamiltonian

H = − ~2

2m

∑
i

∇2
i +

∑
i<j

d2

r3ij
, (4.1)

where rij is the distance between particle i and j and d is the intensity of the

electric (or magnetic) dipole moment. The strength of the dipolar interaction

is conveniently expressed in terms of the dimensionless parameter kF r0, where
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r0 = md2/~2 is the characteristic length of the dipole-dipole force and kF =√
4πn is the Fermi wave vector of the 2D gas determined by the density

n. Also, instead of kF r0, we use the dimensionless density nr20. Energy is

expressed in units of the Hartree-Fock energy

EHF =
EF

2
(1 +

128kF r0
45π

), (4.2)

where EF =
~2k2F
2m

is the Fermi energy of a 2D noninteracting Fermi gas.

Sometimes it is convenient to use ~2
mr20

(nr20)
3/2 as units for energy. The above

result is derived [36] using �rst order perturbation theory.

4.2 Calculation of the potential energy

In this section we discuss the details of the calculation of potential energy,

which requires a careful treatment. The dipolar potential Vd = d2

r3
in two

dimensions is strictly speaking not longranged, because the integral over all

space
∫
S
Vd d

2r converges. But still Vd decays relatively slow with r which leads

to some complications in numerical simulations. Monte-Carlo simulations are

performed in a box of volume V = LxLy, where we always take Lx ≤ Ly. The

density is n = N/V and we use periodic boundary conditions (for a detailed

discussion of boundary conditions see Appendix A) in both spatial directions.

The potential energy contribution to the Hamiltonian, given by the second

term in Eq. (4.1), is written as

Vdd =
1

2

∑
nx,ny

(
N∑
i=1

N∑
j=1

d2

|~ri − (~rj + ~nL)|3

)
, (4.3)

where nx, ny are the integer numbers, ~n = (nx, ny). Here i and j label particles

in the simulation cell and the vectors ri(j)+~nL correspond to the positions of

all images of particle i(j) in the array of replicas of the simulation cell. At nx =

ny = 0 the expression (4.3) gives the energy without any replicas. At i = j Eq.

(4.3) gives a self-energy which has the meaning of the energy contribution due

to the interaction of a particle with its own images. The inclusion of the self-

energy term is necessary in order that all replicas of the simmulation cell have

the same density n, which provides a good approximation of the homogeneous

medium.

In the case of the Coulomb potential the summation in Eq. (4.3) is carried

out by means of the Ewald method [62]. In this method one can replace

the sum of potential energy in real space with the sum in momentum space

which converges much faster. For dipolar systems this technique was used,
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Figure 4.2: Estimation of potential energy at the example of a system con-

taining 3 particles with Lcut = L.

for example, in [46]. But the use of Ewald summation requires the calculation

of some special functions (such as the error function), which, in practice,

makes the simulation more time consuming. Therefore we use an alternative

technique, where the mean interaction energy is evaluated using the simpler

formula

〈V 〉 = Σ+ Etail , (4.4)

here Σ denotes the sum (4.3) with the constraint |ri − rj − R| ≤ Lcut and

Etail is the contribution from distances larger than Lcut assuming an uniform

distribution of particles. Fig. 4.2 illustrates the calculation of one of the terms

in the sum (4.3) for i = 1, N = 3 and m = Lcut

L
= 1. The blue square in

the center is the simulation box, and the surrounding squares are its replicas.

The cut-o� distance for the calculation of potential energy is taken here equal

to L (black circle). Lines show all terms in sum (4.3) over j. The tail energy

can be calculated using the following formula:

Etail(m)

N
=

1

2

∫ ∞

mLx

d2

r3
g(r)n2πr dr, (4.5)

where g(r) is the pair distribution function. An approximate value of the

integral (4.5) can be obtained by replacing g(r) by its average value in the

bulk g(r) = 1, so Eq. (4.5) becomes

Etail

~2
mr20

N
= (nr20)

3/2 π

m
√
Nρ

, (4.6)

where ρ = Lx

Ly
.

Fig. 4.3 shows the dependence of the energies Σ and Σ + Etail on cut-

o� distance m for a Fermi liquid at kfr0 = 40.11. It can be seen that if

one performs only the summation (which means calculation of Σ) the cut-o�

distance should be around 40L. But it is possible to signi�cantly reduce the
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Figure 4.3: The dependence of the direct sum of potential energy Σ (the red

points) on cuto� m (Lcut = mL); the black points on the main �gure and on

the inset show Σ + Etail.

cut-o� by adding Etail. In such case m = 2 is already enough for the correct

estimate of the potential energy within a typical statistical uncertainty. In

this chapter the cut-o� m = 2 is usually used.

4.3 Fermi liquid phase

4.3.1 General physical properties of a Fermi liquid and

the Slater-Jastrow wave function

According to Landau Fermi-liquid theory [99, 100, 101] the energy of a

Fermi-system can be written as an energy functional of occupation numbers

of quasiparticles, which behaves like an ideal Fermi gas:

E = E0 +

∫
δnke(k) dk+

∫
δnkδnk′ dkdk′f(k,k′) + ... (4.7)

where δnk is the deviation of the quasiparticle occupation from the ground

state, and e(k) and f(k,k′) are quasiparticle energy functionals. The pertur-

bative calculations of the ground-state properties of two-dimensional dipolar

Fermi gases were performed in [36], but they are limited by the regime of weak

interaction strength.

Our �rst goal is to obtain the ground-state energy for an arbitrary strength

of interaction by means of FNDMC. The trial wave function describing the

FL phase is assumed of the Jastrow-Slater form

ψT (r1, ..., rN) =
∏
i<j

f(rij) det[eikα·ri ] . (4.8)
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Here kα = (2π/L)(nx
α, n

y
α) with nx,y

α = 0,±1,±2, ... are the wave vectors

complying with periodic boundary conditions in the square box (Lx = Ly = L)

and f(r) is a non-negative function satisfying the boundary condition f ′(r =

L/2) = 0. The short-range (r ≤ Rp, where Rp is a variational parameter)

behavior of f(r) is of the form f(r) ∝ K0(2
√
r0/r), where K0 is the modi�ed

Bessel function. It also ful�lls the cusp condition of the atomic potential.

At large distance (r > Rp) collective behavior (phonons) is expected, so the

long-range part of the wave function decays as f(r) ∝ exp(−const/r) [45].

4.3.2 Optimization of the variational parameter Rp

Before performing DMC calculations it is important to optimize the wave

function using the VMC technique, because the better the wave function the

smaller the variance of the energy. But, how it was already discussed in Section

3.6, the value of the FNDMC energy is a�ected only by the nodal surface. In

the present case only the Jastrow term contains a variational parameter which

does not change the nodal surface and therefore the VMC energy minimization

can lead just to the decrease of the variance. The example of such optimization

is shown below at large and small densities for di�erent numbers of particles.

Fig. 4.4 presents the direct E1 and the force E2 VMC energy estimates for

25 particles at nr20 = 0.01989. One can see that the VMC energy as a function

of Rp has a clear minimum at Rmin
p ≈ 0.03. It is worth noticing that E1 and

E2 agree within error bars which is a good check that the wave function and

the quantum force are implemented correctly in the VMC algorithm.
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Figure 4.4: The direct E1 and the force E2 VMC estimates of the energy

for 25 particles at density here is nr20 = 0.01989. The energy is in units of
~2
mr20

(nr20)
3/2.

Fig. 4.5 shows similar VMC studies but at the larger density nr20 = 32 for

25, 49 and 61 particles. VMC energy has the minimum at Rmin
p ≈ 0.15 for

25 particles and at Rmin
p ≈ 0.1 for 49 and 61 particles. So, we can conclude

that Rmin
p becomes larger for larger densities but is not very sensitive to the
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Figure 4.5: The direct E1 and the force E2 VMC estimates of the energy for

25 particles (a), for 49 particles (b) and 61 particles (c). The density here is

nr20 = 32, the energy is in ~2
mr20

(nr20)
3/2 units.

number of particles.

4.3.3 Optimization of DMC parameters: time step and

number of walkers

As it was mentioned in Chapter 3, the energy calculated by the DMC

method is biased by the averaged number of walkers Nw, the time step dt and

the system size. All these issues require a careful treatment. In this section

we discuss the optimization of the average number of walkers and of the time

step. Fig. 4.6 presents the energy dependence on the average number of

walkers. This dependence can be �tted by a linear function in order to �nd

the extrapolated value of the energy for an in�nite number of walkers. One can

see that the DMC energy for 200 walkers already agrees with the extrapolated

value within statistical uncertainty.

The following Fig. 4.7 contains the energy dependence on time step. In the

DMC algorithm we use a Green's function which is accurate up to O(t2) ( see

Eqs. (3.59), (3.60)), therefore the linear dependence on time step is expected

[94]. But the use of the Metropolis acceptance Eq. (3.66) can lead to a non-

linear dependence at large time step. However, at small dt the dependence

can be �tted by a linear function. It is seen from the Fig. 4.7 that the DMC
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energy at dt = 0.01 (for nr20 = 0.01989) and dt = 5 ·10−6 (for nr20 = 32) agrees

with the extrapolated value within the statistical uncertainty. The acceptance

rate of the Metropolis check depends on dt, and here it equals approximately

99.95% in both cases. In order to choose an appropriate time step at a given

density the following criterium is used: the acceptance rate should be around

99.95% − 99.98%, but not smaller (otherwise one needs much longer runs to

get statistically satisfactory results). Finally, it is worth to comment here,

that the use of the Metropolis check was found to be necessary, even for very

high acceptance rate ≤ 99.95%. Without it an instability was observed in the

DMC algorithm, because occasionally the number of walkers has increased

too much due to the large �uctuations in the local energy.
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4.3.4 Extrapolation to the thermodynamic limit

In this section we discuss the extrapolation to the thermodynamic limit

(TL) which appears to be the most delicate issue related to QMC calculations

of the equation of state. In the FL phase apart from the size dependence

a�ecting the potential energy contribution, which we treated using the proce-

dure discussed in Section 4.2, signi�cant shell e�ects are present in the kinetic

energy contribution. We consider closed-shell con�gurations corresponding to

25 ≤ N ≤ 81 for which the relative error |∆TN |/E(0)
TL = |E(0)

N /E
(0)
TL − 1| in

the energy of the non-interacting gas compared to the TL can be as large as

∼ 1%. As it was already discussed in Section 4.3.1, in the Fermi liquid phase

the energy of the system can be written as an energy functional (4.7) of quasi-

particle occupation numbers, which behave just like an ideal Fermi gas. Size

corrections of the kinetic energy for interacting systems are expected to be

proportional to the size corrections of the corresponding noninteracting sys-

tem. An extrapolation method based on FL theory is provided by the �tting

formula [60]

EN = ETL +
m

m∗
∆TN +

a

N
, (4.9)

which involves the parameter m/m∗, determining the inverse e�ective mass

of the particles, and the coe�cient a of the residual size dependence assumed

to be linear in 1/N analogously to the case of Coulomb systems [112]. Here

EN is the QMC output energy of the N -particle system with the potential

contribution evaluated using Eq. (4.4). The values of EN −∆TN are shown as

red symbols in Fig. 4.8. Their scattered dependence on 1/N is considerably

suppressed if one accounts for the e�ective mass, as it is shown by the green

symbols corresponding to EN − (m/m∗)∆TN . A more reliable convergence to

the TL is obtained using the method of twist-averaged boundary conditions

(TABC) [113] (for a detailed discussion of TABC see Appendix A). Here the

PBC wave vectors of the plane waves in the Slater determinant of Eq. (4.8)

are replaced by kα(θ) = (2π/L)(nx
α+ θx, n

y
α+ θy), where θx, θy are continuous

variables in the interval [0, 1]. In the grand canonical implementation of TABC

described in Refs. [113, 114] the wave vectors are constrained by |kα(θ)| < kF
and di�erent values of the twist θ can correspond to di�erent numbers of

particles. The number of particles N̄ and the energy EN̄ are obtained from

averages over all possible twist angles. With our use of TABC (where for each

twist we keep �xed not the volume of the simulation box, but the density) we

still �nd a residual size e�ect ∆TN̄ which is much smaller than in the PBC

case. The extrapolation to the TL is performed using Eq. (4.9) both for PBC

and TABC, where the coe�cient in front of ∆TN̄ gives a reliable estimate of

the e�ective mass only in the case of PBC (see Appendix A for more details).



58
Chapter 4. Liquid and Crystal Phases of Dipolar Fermions in Two

Dimensions

 0.9832

 0.9834

 0.9836

 0.9838

 0.984

 0.9842

 0.9844

 0.9846

 0.9848

 0.985

 0  0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

E
/E

H
F

1/N

PBC - m
PBC - m*

TABC

Figure 4.8: Finite size e�ects in a Fermi liquid at the density kF r0 = 0.22.
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symbols and line correspond to PBC energies EN − (m/m∗)∆TN and linear

�t. Red symbols correspond instead to PBC energies EN −∆TN . The values

extrapolated to the TL are shown with the corresponding error bars.

We obtain statistical agreement in ETL between PBC and TABC for all values

of the density (see Fig. 4.8).

4.3.5 Equation of state, e�ective mass and renormaliza-

tion factor

In this section we discuss the FNDMC results in thermodynamic limit at

small interaction strength, which were obtained using the techniques discussed

in the previous sections of this chapter.

The results are shown in Fig. 4.9 using black points. Blue and red lines are

the ground state energy Epe perturbatively calculated up to the �rst (which

gives the Hartree-Fock energy EHF ) and the second order in kF r0, correspond-

ingly. More precisely Epe has the following form [36]:

Epe

N
=

~2k2F
4m

(
1 +

128

45π
kF r0 +

1

4
(kF r0)

2 ln(ukF r0)

)
, (4.10)

here N is the number of particles, u = 1.43 is a constant. It can be seen from

the inset of Fig. 4.9 that the Hartree-Fock term is quantitatively accurate

only up to kF r0 ≈ 0.1. Taking into account the second order term makes

Epe accurate up to kF r0 ≈ 0.3. For larger interaction strengthes, kF r0 > 0.5,
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Figure 4.9: Dependence of FL energy in thermodynamical limit on strength
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deviations are visible between QMC results and the perturbation expantion

Epe.

From the �t of EMC (black line in Fig. 4.9) we have obtained higher order

corrections to Epe:

EMC

N
=
Epe

N
+
EF

2

(
a ∗ (kF r0)3 + b ∗ (kF r0)4 + c ∗ (kF r0)5

)
, (4.11)

where a = −0.413(14), b = 0.177(16), c = −0.031(4). The results for the EOS

for large values of kF r0 are presented in Section 4.6.

Now lets discuss the results for the e�ective mass that were obtained from

the �t (4.9) of the QMC energies calculated using PBC. The results of the

weakly interacting regime are presented at Fig. 4.10. The e�ective mass

decreases with the increase of the dipolar interaction. A similar behavior is

predicted from perturbative calculations [36]:

(
m∗

m
)pe =

(
1 +

4

3π
kF r0 + 0.25(kF r0)

2 ln(0.65kF r0)

)−1

. (4.12)

One can see that, similarly to the case of the ground-state energy, the �rst

order correction is quantitatively valid only for kF r0 < 0.1, while the second-

order correction is accurate for kF r0 < 0.5. We can conclude that at weak

coupling our results reproduce the perturbation expansion well. The e�ective

mass in the strong-coupling regime is shown in Fig. 4.11. One can see that

the reduction of m∗ is less pronounced than the perturbative prediction and



60
Chapter 4. Liquid and Crystal Phases of Dipolar Fermions in Two

Dimensions

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

m
*/

m

kF r0

(m*/m)MC
(m*/m)1st
(m*/m)2nd

Figure 4.10: Dependence of the e�ective mass m/m∗ on strength of dipolar

interaction kF r0 at the weakly interacting regime. Black points are QMC

results, dashed blue line is the perturbative expansion up to the �rst order,

red line is the perturbative expansion up to the second order.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20

R
en

or
m

al
iz

at
io

n 
fa

ct
or

 Z
 a

nd
 m

*/
m

kFr0

Z
m*/m

Figure 4.11: E�ective mass and renormalization factor in the liquid phase as a

function of the interaction strength. The line corresponds to the perturbation

expansion for m∗/m of Ref. [36].



4.3. Fermi liquid phase 61

m∗/m approaches the value 0.4 for kF r0 close to freezing. In Fig. 4.11 we

also present the results for the renormalization factor Z, which is extracted

from the discontinuity at kF of the momentum distribution parametrized by

nk = Zθ(kF−k)+g(k), where θ(x) is the step function and g(k) is a continuous
function of k.

Finally it is worth discussing here the validity of the procedure to extract

m∗ simply as the coe�cient in Eq. (4.9). In the case of a Coulomb gas the

�tting procedure Eq. (4.9) works well for the FL phase but the coe�cient in

front of ∆TN does not give a good estimate of m∗/m. This fact can be un-

derstood from the arguments below. In order to de�ne m∗/m from Eq. (4.9)

all other parameters of the FL phase should not change when the system size

changes. But for a Coulomb gas at least one parameter, namely the renor-

malization factor, has a strong dependence on the number of particles [115].

Therefore the calculation of the e�ective mass of a Coulomb gas requires the

use of more sophisticated techniques. In the case of a 2D dipolar Fermi gas the

situation is di�erent, because Z does not show any signi�cant dependence on

the system size (for details see Section 4.7). So, we believe that the coe�cient

in front of ∆TN in Eq. (4.9) indeed gives a reliable estimate of the e�ective

mass.

4.3.6 Chemical potential and compressibility

The equation of state allows one to easily calculate important quantities

related to the system such as chemical potential µ = ∂E
∂N

, where N is the

number of particles and inverse compressibility κ−1 = n2 ∂µ
∂n
. These quantities

were also calculated perturbatively [36]:

µpe

EF

= 1 +
32

9π
kF r0 +

3

8
(kF r0)

2 ln(1.68kF r0),

κ−1
pe

EF (N/S)
= 1 +

16

3π
kF r0 +

3

4
(kF r0)

2 ln(2.16kF r0). (4.13)

The comparison of µ and κ with the predictions of Eqs. (4.11) and (4.13)

is presented in Fig. 4.12. The �t of µ and κ is shown below:

µMC

EF

=
µpe

EF

− 0.723 ∗ (kF r0)3 + 0.354 ∗ (kF r0)4 − 0.0698 ∗ (kF r0)5,

κ−1
MC

EF (N/S)
=

κ−1
pe

EF (N/S)
− 1.807 ∗ (kF r0)3 + 1.062 ∗ (kF r0)4 − 0.244 ∗ (kF r0)5.
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Figure 4.12: Dependence of the chemical potential (a) and compressibility (b)

on strength of dipolar interaction kF r0. Red line presents the results obtained

using (4.11) and dashed green line shows perturbative expansion (4.13).

4.4 Crystal phase

4.4.1 Wave function

As it was discussed in the last chapter two-dimensional dipolar system

can be well described in terms of FL theory at relatively small kF r0. But

this description should be broken at some value of kF r0 when the system

becomes a crystal. For two dimensional dipolar Bose gas this question was

addressed in [45]. It was found that at zero temperature the triangular crystal

becomes energetically preferable at density nr20 = 290(30), which corresponds

to kF r0 = 60(3). A FNDMC study of the triangular crystal phase for fermionic

systems is performed in order to �nd a quantitatively reliable estimate of the

freezing density. Below sometimes the term "Wigner crystal" (WC) is used

in analogy with the Coulomb gas case.

To describe the WC phase we make use of the following trial wave function

ψT (r1, ..., rN) =
∏
i<j

f(rij) det[e−α(ri−Rm)2 ] , (4.14)

where the Jastrow correlation term f(r) is the same as in the FL phase and

the single-particle orbitals in the determinant are constructed with Gaussians,

whose width α is a variational parameter, centered at the lattice points Rm of

the triangular Bravais lattice. Fig. 4.13 shows the details of the construction

of the triangular lattice. It is convenient to consider a pseudo-elementary cell

(Fig. 4.13.a) which contains two atoms. It has dimensions ax and ay such that

ay = 3
√
ax. In order to enforce PBC, both the number of particles N and the

box sizes Lx and Ly must be multiples of this primitive cell. Moreover, we

choose the combinations of primitive cells such that the simulation box is as

close as possible to the square one, because the spherical constraint for dipolar
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potential is used. These conditions leads these "magic" numbers of particles:

30, 56 and 90 that are always used in the following. Fig. 4.13.b shows an

example of the triangular lattice used for the simulation of 30 particles at the

density nr20 = 256. The aspect ratio between the sizes of the simulation box

for 30 particles is Lx

Ly
= 0.96225.

(a)
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 0.25

 0.3

 0.35

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

y

x

(b)

Figure 4.13: (a) The pseudo-elementary cell of triangular lattice which con-

tains two atoms. (b) The example of triangular lattice for 30 particles, black

circles are positions of lattice points Rm.

4.4.2 Optimization of the variational parameter α

Before performing FNDMC calculations it is necessary to �nd an optimal

value for the variational parameter α in Eq. (4.14). Fig. 4.14 contains an

example of such optimization. VMC energies are �tted by a quadratic function

which gives a minimum at α = 295. The variational parameter of the Jastrow

part is kept �xed (Rp = 0.15) for all values of α. Such optimization of α was

performed for all densities considered in the WC phase.

4.4.3 Finite size scaling

In the case of the WC phase the issue of �nite size scaling should also be

addressed carefully. We use a linear �t in 1/N :

EN = ETL +
a

N
, (4.15)

where ETL is the energy in the thermodynamic limit and a is a �tting constant.

It is worth to notice that in contrast to the case of FL (Eq. (4.11)) there is

no �nite size correction for the kinetic energy in Eq. (4.15). Fig. 4.15 shows
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Figure 4.14: Dependence of VMC energy on the value of variational parameter

α for N = 30 at nr20 = 96. Red points are VMC energies, black line is a

quadratic �t. The energy is in ~2
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(nr20)
3/2 units.

an example of �nite size scaling at the density nr20 = 128. For every value of

the density we perform this extrapolation procedure in order to get ETL.
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Figure 4.15: Finite size scaling of WC crystal energy. Filled red points are

FN DMC energies for 30, 56 and 90 particles, black line is the linear �t and

empty black point is the the energy in thermodynamical limit. The energy is

in units of ~2
mr20

(nr20)
3/2.

4.5 Stripe phase

4.5.1 The model

A stripe (or density-wave) phase was predicted by several authors [106,

39, 40, 43, 107, 108, 109, 110, 36] as an intermediate phase between FL and

WC which breaks both rotational and translational symmetry. But most of

those studies were made at the level of mean-�eld theories. Here we use the

FNDMC method in order to check these predictions. We consider stripes as

a "melted crystal", which means that the localization around some equally
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Figure 4.16: Stripes along y direction, L is the size of simulation box, ysi is

the position of the i-th stripe.

spaced points in the y direction is preserved but in the x direction the system

behaves like a FL. This assumption leads to use the Gaussian localization

terms (as for the WC) in the y direction and to use plane waves (as for FL)

in the x direction (Fig. 4.16). For this pattern of equally spaced stripes in

the y-direction the corresponding trial wave function has the following general

form:

ψT (r1, ..., rN) =
∏
i<j

f(rij) det[eikαxxi−γ(yi−ym)2 ] , (4.16)

where the Jastrow factor is the same as in the FL and WC phase, ym denotes

the y coordinate of them-th stripe, kαx = 2πnαx/Lx are the PBC wave vectors

in the x-direction and γ is a variational parameter. It is convenient to use

cos kαxxi and sin kαxxi instead of ekαxxi for the single-particle orbitals, so the

Slater determinant in Eq. (4.16) becomes:

∆S =



e−γ(y1−yS1 )
2
cos knmaxx1 · · · · · · e−γ(yN−yS1 )

2
cos knmaxxN

...
. . .

...

e−γ(y1−yS1 )
2
cos k1x1 · · · · · · e−γ(yN−yS1 )

2
cos k1xN

e−γ(y1−yS1 )
2 · · · · · · e−γ(yN−yS1 )

2

e−γ(y1−yS1 )
2
sin k1x1 · · · · · · e−γ(yN−yS1 )

2
sin k1xN

...
. . .

...

e−γ(y1−yS1 )
2
sin knmaxx1 · · · · · · e−γ(yN−yS1 )

2
sin knmaxxN

...
. . .

...
...

. . .
...

e−γ(y1−ySNs
)2 cos knmaxx1 · · · · · · e−γ(yN−ySNs

)2 cos knmaxxN
...

. . .
...

e−γ(y1−ySNs
)2 sin knmaxx1 · · · · · · e−γ(yN−ySNs

)2 sin knmaxxN


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Here Ns is the number of stripes, which is also equal to the number of particles

per stripe; nmax = (Ns−1)
2

, N is the total number of particles (N = Ns ×Ns).

4.5.2 VMC results

Here we discuss the optimization of the trial wave function in Eq. (4.16).

Firstly the width γ of the Gaussian localization term was optimized. It was

found that usually γ has roughly the same value as the parameter α for the

crystal wave function (4.14). Then we optimize the stripe separation a =

|ym+1 − ym|. Here the overall density in the simulation box with area S =

Lx×Ly is �xed. So in order to change the distance a between stripes we change

the ratio ρ = Lx/Ly. Fig. 4.17 contains the energy as function of the stripe

separation a for 25 particles, which corresponds to 5 stripes each containing

�ve particles; asq is the stripe separation for a square simulation box. It is

important to notice here that the tail energy changes with the change of Lcut,

so one should compare not bare VMC energies but instead EVMC +Etail as it

is done in Fig. 4.17. It is clearly seen that an optimal value of a is asq which

corresponds to kFasq =
√
4π.
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Figure 4.17: Dependence of VMC energy (with added Etail) on stripes sep-

aration a at kF r0 = 20.053. Energy is in ~2
mr20

(nr20)
3/2 units. Error bars are

smaller than symbol size.

4.5.3 Finite size scaling

In order to �nd the energy in the thermodynamic limit we perform simu-

lations for 25 (5×5), 49 (7×7) and 81 (9×9) particles at every density. Such

numbers are chosen because one needs odd numbers of particles per stripe in

order to have �lled one-dimensional Fermi liquid shells. Fig. 4.18 contains the

example of �nite size scaling for stripes at kF r0 = 20.053. FNDMC energies

are �tted using a linear �t which allows one to perform extrapolation to the

thermodynamic limit.
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4.6 Quantum phase transition liquid-crystal

In this section we discuss the main results for the equation of state (4.19).

Exact data are presented in Table 4.1. FNDMC energies for FL and WC can

Table 4.1: Data for the equation of state. Here EFL, EWC and EST are energies

of Fermi liquid, Wigner crystal and stripes in units of EHF ; σFL, σWC , σST are

corresponding standard errors.

kF r0 EFL σFL EWC σWC EST σST

14.17963 0.6365 0.0002 0.6387 0.0003 0.64265 0.00004

20.05303 0.60941 0.00009 0.6104 0.0002 0.6134 0.0001

28.35926 0.5857 0.0001 0.58515 0.00006 0.587689 0.000003

34.73286 0.5732 0.0001 0.57231 0.00009

40.10605 0.56499 0.00006 0.56396 0.00006

50.13257 0.55299 0.00009 0.5517 0.0001

61.39960 0.54318 0.00006 0.5415 0.0001

70.89815 0.536731 0.000004 0.53445 0.00007

be �tted by the following function:

E/EHF = (a ∗ kF r0 + b ∗
√
kF r0 +

c

kF r0
)/(1 +

128

45π
∗ kF r0). (4.17)

The best parameters of the �t are a = 0.3985(2), b = 0.796(2) and c = 2.3(1)

for the Fermi liquid phase and a = 0.3940(6), b = 0.817(4) and c = 2.5(2) for

the Wigner crystal.
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Figure 4.19: Equation of state of the liquid and solid phase in units of the

Hartree-Fock energy (4.2). Circles refer to the liquid and triangles to the solid.

The red dashed line corresponds to the second-order expansion in Ref. [36].

The purple dashed horizontal and solid line correspond respectively to the

classical energy of the Wigner crystal and to the result of Ref. [46] including

the �rst correction arising from the zero-point motion of phonons. Inset:

Energy di�erence between the solid and the liquid (blue circles) and between

the stripe phase and the liquid (black circles). The blue solid line is obtained

from a best �t to the equation of state of the liquid and solid phase. Error

bars are smaller than the symbols size and are comparable in the three phases.

The Fermi liquid equation of state was already discussed in details so here

we concentrate on the results for the crystal and the stripe phase. The results

for the WC equation of state are reported in Fig. 4.19 by green triangles.

It is worth noticing that the antisymmetric constraint imposed in the wave

function (4.14) for particle exchange has negligible e�ect on the energy. In fact,

statistically compatible results are obtained with a nodeless wave function of

distinguishable boltzmannons in agreement with the �ndings of Ref. [45]. This

behavior is expected at large density, where the energy of the WC phase is

given by the result [46]

EWC = N
εF
2

kF r0
4

(
1.597 +

2.871√
kF r0

)
, (4.18)

obtained by including the contribution from the zero-point motion of phonons

to the purely classical interaction energy of a system of dipoles arranged in

a triangular Bravais lattice. The above expansion, holding for large kF r0,

is shown in Fig. 4.19 and is indeed approached by our QMC results. The
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di�erence between the ground-state energy of the WC and the FL phases is

shown in the inset of Fig. 4.19. From the �t to the equation of state of the two

phases (Eq. 4.17) we can determine the intersection point at kF r0 = 25 ± 3.

This value is more than a factor two smaller compared to the critical density

kF r0 ∼ 60 [45, 47, 46] of an equivalent system of bosons having the same mass,

density and dipolar strength. This can be understood if one considers that the

equation of state of the crystal is practically independent of statistics, while

the energy of the fermionic �uid is signi�cantly larger than the bosonic one.

From the equation of state of the FL and WC phase in the vicinity of the

freezing density one can also estimate the width of the region where phase

separation occurs driving the �rst-order liquid to solid transition. This can

be performed using the Maxwell double tangent construction as it is done for

example for 4He [57]. This method means that one imposes the equilibrium of

pressure and chemical potential in the two phases, which gives a coexistence

region of width δ(kF r0) ∼ 0.01, a very small value consistent with a similar

�nding in the bosonic case [46].

Near the phase transition point the search for stripes was performed. The

FNDMC results are shown in the inset of Fig. 4.19, where we report the

energy di�erence between the stripe and the FL phase (black points). For

values of kF r0 in the vicinity of the freezing density the stripe phase is never

energetically favorable compared to neither the FL nor the WC phase (the

exact values of stripes energy are shown in Table 4.1. The very small region

of phase coexistence in the present system is an evidence of the fact that

melting of the WC does not involve the appearance of microemulsion phases.

Finally, it is worth to mention that a QMC search for stripes (similar to ours)

in the 2D Coulomb gas [111] does not indicate the existence of such stable

phase at T = 0.

4.7 Correlation functions

To complete the analysis of the properties of the system it is important

to calculate not only the energy of the ground state, but also correlation

functions such as the pair-distribution function, the static structure factor

and the momentum distribution.

Let us start from the radial pair-distribution function g(r) giving the prob-

ability of �nding two particles at a distance r. Results for di�erent values of

kF r0 in the FL phase are shown in Fig. 4.20. One should notice that by

increasing the interaction strength the short-range repulsion increases and a

shell structure starts to appear when approaching the freezing density. Fig.

4.20 contains also g(r) deep in the crystal phase. The existence of long-range
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Figure 4.20: Pair correlation function in the liquid (for 49 particles) and in

the crystal (for 56 particles) phase. The pair correlation function of the non-

interacting gas is also shown.

ordering can be seen from the oscillating behavior of g(r) at large r.

Furthermore, it is possible to study the dependence on x and y in the

pair-distribution function. An example of the DMC estimate of such two-

dimensional distribution function is shown in Fig. 4.21 for FL, WC and stripe

phases. One can easily see the absence of any long-range correlations in the

FL phase and a clear triangular lattice structure for the WC phase. For the

stripes g(x, y) shows long-range ordering only along the y-direction as it was

imposed by construction from the trial wave function.

The Fourier transform of g(r) yields the static structure factor S(k) =

1 + n
∫
dreik·r[g(r) − 1]. This quantity can also be calculated directly in

the FNDMC algorithm by evaluating the average of the product of density

�uctuation operators NS(k) = 〈ρkρ−k〉 = 〈
∑

i,j e
ik·(ri−rj)〉 (for more details

see Chapter 3). Results are reported in Fig. 4.22 for both estimators. For large

values of kF r0 the direct estimator exhibits a more pronounced peak compared

to the smoother Fourier transform at the wave vector corresponding to the

lowest non-zero reciprocal lattice vector of the triangular lattice.

Fig. 4.23.a shows the momentum distribution directly calculated in the

FNDMC algorithm at di�erent values of the interaction strength for the liquid

and crystal phase. One can see the typical behavior for Fermi liquid: the

discontinuity of n(k) at k = kF decreases with the increase of kF r0, but always

stays �nite even very close to the phase transition point. On the contrary,

the momentum distribution for the crystal does not have any discontinuity,

meaning that when the phase transition occurs the Fermi system completely

looses any memory about the Fermi surface. Fig. 4.23.b presents an example
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Figure 4.21: Two dimensional pair-distribution function g(x, y) in the liquid

(a), crystal (b) and striped phase (c). Here kF r0 = 20.05303 for FL and stripes

and 49 particles are used; for WC kF r0 = 34.73 and 56 particles are used.

of the dependence of n(k) on the system size near the phase transition point.

It is clear from Fig. 4.23.b that there is no essential dependence of n(k) on

the system size. This fact is a peculiar property of 2D dipolar Fermi systems,

since, for example, in a 2D Coulomb gas the momentum distribution has a

very strong dependence on the number of particles [116]. Another important

characterystic of the system is the one-body density matrix which is shown in

Fig. 4.24 for the FL and WC phases.
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Figure 4.23: Momentum distribution for liquid (for 49 particles) and for crys-

tal (for 56 particles) at di�erent kF r0 5.10(a); momentum distribution for FL

for di�erent system size at kF r0 = 20.053 5.10(b).
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Chapter 5

The impurity problem

In this chapter we study 2D dipolar fermions in a bilayer con�guration,

where the dipole moments are polarized perpendicular to the planes. We

consider an extreme case of the population imbalance when the top layer

contains only one particle and the bottom layer has many particles. The

dipolar interaction between particles in the bottom layer has a purely repulsive

character, but the interlayer interaction has an attractive part. Therefore, this

system represents an interesting impurity problem with long-range anisotropic

interactions. We consider the bottom layer fermions to be in the weakly

interacting regime, therefore they are in the Fermi liquid phase. The partially

attractive interaction between the impurity and fermions of the bottom layer

leads to an e�ective mass of the impurity larger than its bare mass. Using the

FNDMC method we calculate the chemical potential of the impurity, as well

as its e�ective mass, as a function of the intralayer interaction strength. Also,

the pair-correlation function for the impurity and the bottom layer particles

is obtained.

5.1 Introduction

We consider two 2D layers (Fig. 5.1), where the bottom layer B contains

N identical fermionic particles of mass m and the top layer A has only one

fermion of the same type, which is further called the "impurity". The fermions

in both layers have electric or magnetic dipole moment d, which is oriented

perpendicular to the plane of motion by an external �eld. The interaction

potential of the impurity p and a particle i from the layer B is

Vimp(rpi) =
d2(1− 3 cos2(90o − θ))

R3
=
d2(r2pi − 2λ2)

(r2pi + λ2)5/2
, (5.1)

where R is the distance between particles p and i, rpi is the inlayer distance

between particle i and the projection of particle p to the layer B, θ is the angle

between the direction R and the layer B, λ is the distance between layers A

and B. The Hamiltonian of the system is

H = − ~2

2m

N+1∑
i=1

∇2
i +

j=N∑
i<j

d2

r3ij
+

N∑
i=1

Vimp(rpi) , (5.2)
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Figure 5.1: Two 2D layers of one-component fermions with the dipolar moment oriented

perpendicular to the plane.

where rij is the distance between the particles i and j which belong to the

layer B.

The strength of the intra- and inter- layer dipolar interaction is conve-

niently expressed in terms of the dimensionless parameter kF r0 and kFλ, re-

spectively. Here r0 = md2/~2 is the characteristic length of the dipole-dipole

force and kF =
√
4πn is the Fermi wave vector of the 2D gas determined by

the density n in layer B.

Our main goal is to calculate the chemical potential µ of the impurity and

its e�ective mass m∗ at zero temperature by means of the FNDMC method

(Chapter 3). The chemical potential is de�ned as

µ = EN+1 − EN , (5.3)

where EN+1 is the ground state energy of the present bilayer system and EN

is the ground state energy of a 2D dipolar Fermi liquid (see Chapter 4).

The energies are expressed in units of the Hartree-Fock energy (4.2) per

particle

εHF =
EHF

N
=
EF

2
(1 +

128kF r0
45π

), (5.4)

where EF =
~2k2F
2m

is the Fermi energy of a 2D noninteracting Fermi gas.

Sometimes we also use the units of energy ~2
mr20

.

5.2 Two-body problem

In this section we consider the two-body problem for the potential Vimp(r).

We are interested in the bound state solutions. In polar coordinates the
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Figure 5.2: Potential Vpol(r) at λ = 0.5.

corresponding Schroedinger's equation is(
−~2

m
4+Vimp(r)

)
Ψ(r, φ) = EbΨ(r, φ), (5.5)

where Ψ(r, φ) is a two-body wave function, r ≡ rpi, φ is the polar angle and

Eb is the energy of the bound state. After the usual substitution Ψ(r, φ) =

χ(r)Φ(φ) the equation (5.5) becomes

− d2χ(r)

dr2
− dχ(r)

rdr
+ Vimp(r)χ(r) = Ebχ(r), (5.6)

where r and λ are in units of r0, Eb and Vimp(r) are in units of ~2
mr20

. Here only

the s-wave scattering is taken into account, therefore there is no dependence

on the angle φ.

The potential Vimp(r) is attractive at small r and repulsive at large r

(Figure 5.2). Also it satis�es the following condition∫
Vimp(r)rdr = 0. (5.7)

In Ref. [117] it was shown that the potential (5.1) always has at least one

bound state. In the regime of λ >> 1 the Schroedinger's equation (5.6) has

only one shallow bound state, whose energy was approximately calculated in

Ref. [118]

Eb1 ≈
~2

mr20
exp

(
−8λ2 + 8.533333λ− 6.75662 +O(1/λ)

)
(5.8)

In the limit λ << 1 the potential (5.1) has many bound states [118]. The

energy of the lowest one was obtained in Ref. [118]

Eb2 =
~2

mr20

2

λ3
(1−

√
6λ). (5.9)
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In order to determine numerically the ground-state eigenfunction and

eigenenergy of the Schroedinger's equation one can use the well-known tech-

nique called the shooting method [119]. In the following we give a brief de-

scription of it.

First, let us de�ne the boundary conditions which the solution of the

Schroedinger's equation (5.6) should satisfy. We require χ be everywhere

�nite and also that χ′(0) = 0. In order to determine the eigenfunctions and

eigenvalues, we need a boundary condition at r → ∞. Numerically, of course,

one needs to use a cut-o� value rmax of the coordinate r. Since we are in-

terested in a bound state solution, which decays exponentially at large r,

where Vimp(r) in Eq. (5.6) can be neglected. Therefore, one can simply take

χ(rmax) = 0. It is important to notice that the accuracy and stability of the

results must be checked by varying the value of rmax.

Then we need to guess a value Eb for the ground state energy and numer-

ically integrate Eq. (5.6) from r = rmax towards the origin r = 0. Fig. 5.3.a

shows an example of the solutions of Eq. (5.6) for a set of values of Eb. Then

we need to plot the corresponding values of χ′(0) versus Eb, as it is done in

Fig. 5.3.b. The point where the curve crosses the axis of Eb de�nes the value

of the ground-state energy.

0.5 1.0 1.5 2.0 2.5 3.0
r
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-100 000
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HdΧ�drLr=0
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Figure 5.3: The details of the shooting method: the solutions of Eq. (5.6)

χ(r) for a set of values of Eb (a), the dependence of χ′(0) on Eb (b). The

bound state energy is de�ned as the point where χ′(0) = 0.

Fig. 5.4 shows the dependence of the bound state energy of the

Schroedinger's equation (5.5) on λ (the black points), which was calculated

by the shooting method. They are in perfect agreement with the numerical

results for Eb which are obtained in Ref. [120]. The above mentioned ana-

lytical expressions for the binding energy Eb1 and Eb2 are plotted in Fig. 5.4

with lines.
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5.3 Perturbative calculation of the impurity

chemical potential.

Before going to the details of the FNDMC calculation, we discuss the

perturbative calculation of the chemical potential of the impurity µ in the

limit of large distance λ. The prediction of the perturbative expansion is a

good benchmark for the FNDMC results. We base this section on Ref. [121],

where the chemical potential of the impurity was calculated up to second order

on the small parameter 1
λ
. In the following we brie�y review this calculation.

The property (5.7), due to the partially attractive and partially repulsive

character of the impurity potential Vimp, leads to the vanishing of the �rst

order term in the perturbative expansion on 1
λ
. The second order term can

be calculated as

µ2 =
2m

~2V
∑
p

fp
∑
q6=0

(1− fp+q)|V (q)|2

p2 − (p+ q)2 − q2
, (5.10)

where fp denotes the Fermi-distribution at zero temperature, p is the momen-

tum of a particle of layer B and V (q) is the Fourier transform of the impurity

potential (5.1). The above equation comes from standard perturbation theory

for the second-order correction to the ground-state energy

E0
2 =

∑
n6=0

|V0n|2

E0 − En

, (5.11)
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where V0n is the matrix element 〈0|Vimp|n〉 and En are the exited-states ener-

gies.

In Eq. (5.10) the summation goes over the states where the impurity is

transferring momentum q to a fermion of the layer B which carries momentum

p. Due to the Pauli exclusion principle, the �nal momentum should lie outside

the Fermi sphere, hence the factor 1 − fp+q. The denominator in Eq. (5.10)

is the energy di�erence between the ground and excited states: E0 − En =
~2
2m

(p2 − (p+ q)2 − q2).

We rewrite Eq. (5.10) in the form of an integration over q and p in polar

coordinates

µ2 = − 2m

~2V
· V 2

(2π~)4

kF∫
0

π∫
−π

p dp dθ1

∞∫
qmin

π∫
−π

q dq dθ2
|V (q)|2

2p q cosα− 2q2
, (5.12)

where α = π − θ2, and qmin is the minimal value of |q|, such that |p + q| >
kF , see Fig. 5.5. Substituting the Fourier transform of Eq. (5.1), V (q) =

Figure 5.5: Fermion in layer B receiving the momentum q.

2πd2qe−λq, and integrating over θ1 one obtains

µ2 =
~2

mr20
· V
2π

kF∫
0

p dp

π∫
−π

dα

∞∫
qmin

dq
q2e−2λq

p cosα− q
. (5.13)

The integral over q can be done analytically, while the integrations over α and

p are performed numerically. We compare the results of this calculation to

the ones obtained with the FNDMC method in Section 5.6.

It is worth noticing here that the above calculation of the chemical poten-

tial is expected to be valid only in the wealky interecting regime kF r0 < 1.

For larger values of kF r0 the Fermi-distribution fp should be replaced with the
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momentum distribution for the Fermi liquid containing the renormalization

factor Z and the e�ective mass of quasiparticles m∗ should be used instead of

the bare mass m. Both Z and m∗ were calculated in Chapter 4.

5.4 Trial wave function and its optimization

The trial wave function for the impurity problem is chosen as a Slater-

Jastrow wave function of the form

ΨT =
N∏
i=1

h(rpi)ΨFL. (5.14)

Here ΨFL is the trial wave function (4.8), which is used in Chapter 4 to

calculate the ground state properties of the FL phase, rpi is the same as in

Eq. (5.1) and h(rpi) is a Jastrow correlation term which accounts for the

interlayer interaction. We choose it as (see Fig. 5.6)

R1 R2 L�2
r

hHrL

Figure 5.6: Two-body wave function h(r) for the intralayer interaction.

h(r) =


h1 = e−γr2 r < R1

h2 =
C
2
(e−α(r−R2) + eα(r−R2)) R1 < r < R2

C r > R2

(5.15)

with the matching conditions

h1(r = R1) = h2(r = R1)

h′1(r = R1) = h′2(r = R1). (5.16)

Here C, R1, R2, γ, α are parameters. Two of them (α and R1) are determined

by the conditions Eq. (5.16), and the three others (γ, C and R2) should be

optimized by the VMC method. This optimization is done using the iteration
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method. Its essence is to minimize a wave function with respect to only one

parameter at the time keeping the others as constants. After a minimum

on this parameter is found, the minimization is performed on the second

parameter. This procedure is repeated untill the algorithm converges. Fig. 5.7

shows an example of the optimization. The disadvantage of this minimization

procedure is that the algorithm can �nd a local minimum instead of the global

one.
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Figure 5.7: Three iterations of the VMC optimization of h(r) at kF r0 = 0.5

and λ = 0.5: the minimization on γ at C = 0.7, R2 = 0.15L
2
(a), then on R2

at γ = 7, C = 0.7 (b) and again on γ at C = 0.066 and R2 = 0.12L
2
(c).

5.5 Calculation of the potential energy

The intralayer potential energy (the second term in Eq. 5.2) is calculated

using the same technique discussed in Section 4.2. The only di�erence is the

use of Lcut = 0.5L instead of Lcut = 2L. We checked that Lcut = 0.5L is large

enough once the di�erence EN+1 − EN is taken.

The interlayer potential energy (the third term in Eq. 5.2) is also treated

using the same technique and the tail energy for the impurity potential is
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given by
Eimp

tail (m)

N
=

1

2

∫ ∞

mLx

d2(r2 − 2λ2)

(r2 + λ2)5/2
gimp(r)n2πr dr, (5.17)

where Lx is the smallest size of the simulation box,m is an integer number and

gimp(r) is the pair-correlation function between the impurity and the fermions

of layer B. After the replacment of gimp(r) by its average value in the bulk

gimp(r) = 1, Eq. (5.17) becomes

Eimp
tail =

~2

mr20

2πm2N

(λ2 + m2N
nr20

)3/2
. (5.18)

We use m = 2 for the calculation of the interlayer potential energy and we

checked that the use of larger values of m gives the same estimate of the

chemical potential within statistical uncertainty.

5.6 Chemical potential of the impurity

In this section the main results for the chemical potential of the impurity

are discussed. Using the FNDMC technique (Chapter 3) we calculate the

ground state energy EN+1 of the system which contains N = 29 particles

in layer B and the impurity in layer A. The trial wave function was already

discussed in Section 5.4 (see Eq. (5.14)). We use the same time-step dt,

average number of walkers Nw and variational parameter Rp of the Jastrow

part as it is done for the study of the pure FL phase. The chemical potential

µ is calculated using Eq. (5.3), where EN is the ground-state energy of 29

fermions in the FL phase (discussed in Chapter 4). It was checked that the

calculation with N = 49 and N = 61 particles in layer B gives the same

estimate of µ within statistical uncertainty.

Fig. 5.8 reports the FNDMC results for the chemical potential of the

impurity at kF r0 = 0.5 (red points) and at kF r0 = 2.5 (green points) as a

function of the interlayer distance kFλ. The logarithmic scale is used for the

y-axis. The solid lines show the energy of the two-body bound state Eb (see

Section 5.2) in units of εHF (5.4): the red one corresponds to kF r0 = 0.5

and the green one to kF r0 = 2.5. The dashed lines are the results of the

perturbative calculation of the chemical potential Eq. (5.13). One can see that

at small λ the chemical potential of the impurity approaches Eb meaning that

the impurity forms a bound state with one fermion from layer B. At large λ the

chemical potential of the impurity approaches instead the perturbative result.

Surprisingly, we still �ng the agreement with the perturbation expantion (5.13)

at kF r0 = 2.5. At the intermediate interlayer distance the FNDMC values of

µ deviate both from tEb and from Eq. (5.13).
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Figure 5.8: Chemical potential of the impurity µ at kF r0 = 0.5 (the red points) and at
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The results for the pair-correlation function gimp(r) at di�erent interlayer

distances are shown in Fig. 5.9 for kF r0 = 2.5. They are obtained from the

VMC and DMC estimates of gimp(r) using the usual extrapolation technique

(see Chapter 3). One can see from Fig. 5.9 that the peak in gimp(r) becomes

higher by decreasing λ, which re�ects the increase of the attraction between

the impurity and the fermions of layer B closer to it.

5.7 E�ective mass of the impurity

In this section the e�ective mass of the impurity m∗ is discussed. The

e�ective mass is obtained in the FNDMC calculation from the di�usion coef-

�cient of the impurity in imaginary time, as it was done in Ref. [122], where

the calculation of the e�ective mass of one 3He atom in super�uid 4He was

performed. More precisely, m∗ can be de�ned in the following way

m

m∗ = lim
τ→∞

〈|rimp(τ)− rimp(0)|2〉
4Dτ

. (5.19)

Here τ is the imaginary time, D = ~2
2m

is the di�usion constant (see Section

3.5), rimp(τ) is the vector of the impurity displacement. Fig. 5.10 shows the

dependence of the mean square impurity displacement 〈∆r2imp〉 = 〈|rimp(τ)−
rimp(0)|2〉 on τ for kF r0 = 0.5 (a) and for kF r0 = 2.5 (b). This dependence

can be �tted using the following function

s(τ) = a1 +
a2
τ
(1− e−a3τ ), (5.20)

where a1, a2, a3 are �tting constants and 1
a1

= m∗/m. The black lines in Fig.

5.10 correspond to the �ts using Eq. (5.20).

The results for the e�ective mass, which are extracted from Fig. 5.10, are

shown in Fig. 5.11. One can see that the e�ective mass rapidly increases

starting from a critical value of kFλ which depends on kF r0.

5.8 Conclusion

We considered the impurity problem of a 2D dipolar bilayer Fermi gas in

the weakly interacting regime. The chemical potential of the impurity, its

e�ective mass and the pair-correlation function were calculated at di�erent

interlayer distances. We found that the chemical potential of the impurity

agrees with the results of the perturbation expansion at large distances and it

approaches the energy of the two-body bound state at small distances. The

rapid increase of the e�ective mass starting from a critical value of kFλ was
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also observed. An interesting extension of the following work is to consider

the strongly interacting regime and in particular the crystal phase, where the

impurity is coupled to the phonon modes of the crystal.



Appendix A

Twist-averaged boundary

conditions

The choice of boundary conditions is very important for the simulation

of an in�nite system, because the appropriate boundary conditions can sim-

plify the extrapolation to the thermodynamic limit. The periodic boundary

condition (PBC) means that the wave function keeps the same phase when a

particle crosses the border of the simulation box and its image particle enters

the simmulation box on the opposite side. For a Fermi liquid using PBC,

the convergence of energy to the thermodynamic limit is quite slow, as it

can be easily demonstrated for an ideal gas. One of the ways to improve

the convergence to the in�nite system size is to use twist-averaged boundary

conditions (TABC), which means that the wave function should get a phase

when a particle wraps around the boundaries. As it was shown in Ref. [113],

the �nite-size shell e�ects are greatly reduced for a degenerate Fermi liquid

if one averages over twist angles. Further, we will discuss the details of the

calculation of energy using TABC in an example of the ideal 2D gas.

Let us consider a 2D ideal Fermi gas in a square box of size L. If one

applies PBC the single-particle states have wave vectors kn = 2πn
L

(the circles

in Fig. A.1). One can consider another set of single-particle states qn =
2πn+θ

L
, which satisfy the twist boundary conditions (the triangles in Fig. A.1).

Each component of twist vector θ belongs to the interval −π, π. Figure A.1

schematically shows the momenta of �ve fermions with PBC (red �lled circles)

and for one twist vector (red triangles). In this case the number of particles

is conserved corresponding to the canonical ensemble description. For each

twist angle the �ve fermions will �ll the �ve lowest states. So, after the average

over many twist vectors the Fermi surface will be almost �lled leading to the

reduction of �nite-size errors in kinetic energy.

Fig. A.2 illustrates the convergence of the relative error in energy ∆E =

|EN

Eth
− 1|, where EN is the energy for N particles and Eth is the energy for an

in�nite system. The red (green) points are ∆E for PBC (TABC). It can be

clearly seen that using TABC the averaged energy converges much faster to

the thermodynamic limit.

Another way of using TABC is to work in the grand-canonical ensemble

(GCE TABC), which in practice means that the number of occupied states
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Figure A.1: Momenta of �ve fermions with PBC and for canonical ensemble TABC (one

given twist angle). Red (black) circles are �lled (empty) states for PBC and red (black)

triangles are �lled (empty) states for TABC. The large circle shows the Fermi surface for

an in�nite system.
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Figure A.2: Relative error ∆E = |EN

Eth
− 1| for an ideal gas energy for PBC (red points)

and canonical ensemble TABC (green points).
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can be di�erent for the di�erent twist vectors. In this case the procedure

of choosing single-particle states for each twist is di�erent from the canoni-

cal TABC. More exactly only states which lay within the Fermi surface are

occupied.

In Fig. A.3 GCE TABC states of �ve particles are schematically shown

for three di�erent twist vectors.

There is a possibility to reduce the numbers of twists in GCE TABC [114].

The trial wave function can be written as:

ΨT (r1, . . . , rN , θ) = exp

(
np∑
i=1

(ıθxxi + ıθyyi)Ψ{kp}(r1, . . . , rN)

)
, (A.1)

where {kp} are the PBC wave vectors before applying the shift θ = (θx, θy).

For each set of {kp} there is a region (in the following it is called "pocket")

of values of θx, θy such that only the momenta belonging to {kp} lay within

the Fermi surface after the twist vector addition.The energy dependence on θ

is trivial within each pocket, so the average over all θx, θy can be performed:

Ep =
∑
θx,θy

Eθx,θy

Nx, Ny

= E{kp} + (< θ2x > + < θ2y >)np −

−ı
np∑
i=1

(kxpi < θx > +kypi < θy >), (A.2)

where Ep is the average energy for a given pocket, E{kp} is the energy calcu-

lated using only Ψ{kp}(r1, rN), Nx, Ny are the number of the twist points θx, θy
and np is the number of states in a given pocket. Here it is worth mention-

ing that E{kp} has a nonzero imaginary part, but after the average over large

enough number of con�gurations this becomes vanishingly small. Finally the

GCE TABC energy E is given by

E =

Npock∑
i=1

Ei
pW

i, (A.3)

where Npock is the number of pockets for a given number of particles N , W i

is the weight of a pocket i (the relative area in θx, θy space). It is important

to notice that due to the projection and rotational symmetries pockets can

be de�ned only for twist components θx, θy that belong to the interval [0, π]

(not the whole region −π, π). Therefore the total number of pockets can be

reduced four times.

The change of occupied states for di�erent pockets leads to the change of

the size of the simulation box L (if the density n is kept �xed) or to the change
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Figure A.3: Momenta of �ve fermions in GCE TABC for three di�erent twist angles (the

arrows are twist shifts of the initial PBC states, the red points are the �lled states, the red

points are the empty states).

of n (if L is �xed). In the last case the average over all densities (using the

same formula (A.3)) becomes approximately equal to the background density.

For noninteracting systems at a �xed L GCE TABC gives the exact ETL in

the limit of an in�nite number of twists. In the �rst case (n is the same for

any twists) GCE TABC does not give the exact ETL, but shows a behavior

similar to the case of canonical ensemble TABC (Fig. A.2). More precisely,

the di�erence from ETL always remains �nite even if pockets are de�ned using

a very �ne grid (more than 30000 in every direction).

The use of TABC for the dipolar fermions is similar to the noninteracting

case, because there is no dependence on θ in the Jastrow part of the wave

function. So, for each number of particles N the pockets can be de�ned as for

an ideal gas and then the QMC calculation of Ep for the interacting fermions

can be performed using the trial function Ψ{kp}(r1, rN) as the Slater part. So,

only one QMC run is su�cient for each pocket. The potential energy can be

treated using the same technique discussed in Section 4.2. The tail energy is

de�ned as

Etail =

Npock∑
i=1

Ei
tailW

i, (A.4)

where Ei
tail is the tail energy for i-th pocket calculated using Eq. (4.5) with

the corresponding density and number of particles.

Fig. A.4 shows the �nite size scaling of GCE TABC energies. Black points
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Figure A.4: GCE TABC energies for the implementation with �xed L and

with �xed n. Here kF r0 = 1.1.

are the energies for the �xed density implementation with added corrections

to the kinetic energy ∆TN . The extrapolation to the thermodynamic limit

can be done using Eq. (4.9), but ∆TN is much smaller here than for the PBC

case, and the e�ective mass can not be determined reliably. The result for

ETL can be obtained using a linear �t E = ETL + a/N , which is shown by

the black line. Blue circles are the �xed density GCE TABC energies without

any correction ∆TN . Red triangles show instead the GCE TABC energies

for the case of �xed L. No corrections are added here. Red dashed line is a

�t by constant function which agrees with ETL for �xed density case. The

advantage of the �xed L implementation is that even using a small number of

particles one can get a good estimate of ETL. But there is a disadvantage: it is

not clear which �tting function should be used, because the use of a constant

does not look completely reliable. Due to this reason we use the �xed density

implementation of GCE TABC.

Finally, it is important to notice, that the use of TABC makes the simula-

tions at least twice more time consuming because one needs to use a complex

wave function.
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