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Chapter 1Introdution
Disorder is ubiquitous in nature and a�ets the properties of many physial systems.A deep understanding of its e�ets is therefore of fundamental importane. Thisis partiularly true for quantum systems, where disorder an in�uene dramatiallythe transport properties of eletrons leading to a phenomenon that today is knownas Anderson loalization [1℄. This type of loalization is a subtle e�et that arisesfrom an interferene proess due to oherent multiple sattering from the disorder.It leads to a omplete absene of di�usion and to exponentially loalized single-partile wavefuntions [2℄. Anderson's disovery represented a breakthrough in thestudy of transport properties of quantum partiles, sine it introdued a ompletelynew approah to the problem. Previous theories of transport onsidered disorderjust as a weak perturbation, prediting a di�usive motion determined by inoherentsattering [3℄.Shortly after the disovery of Anderson loalization it has been shown that, inone dimensional systems, loalization takes plae for all quantum states [4, 5℄. Thisis ounterintuitive espeially when the energy of a given state is muh larger thanthe typial energy �utuations assoiated to the disorder. A proper understandingof loalization in higher dimensions required more time, but nowadays it is �nallyaepted that also in two dimensional systems all states are loalized, while in threedimensions a metal-insulator transition an our, as already suggested by Andersonin his original paper [6, 7℄.The phenomenon of Anderson loalization has been originally introdued in theontext of eletrons propagating in disordered solid state materials. Only later it hasbeen realized that the same type of loalization also ours with lassial waves, suhas light or sound [8, 9℄. This led to the �rst observations of Anderson loalizationin optis [10, 11℄ and aoustis [12℄.Nowadays the study of Anderson loalization is still a very ative researh �eld.Sine its disovery many issues have been disussed and understood, but there arealso several important questions that are still open. Few years ago a new boost tothe study of Anderson loalization and the related open problems have been givenby experiments with ultraold atoms. Sine the realization of the �rst Bose-Einsteinondensate with dilute and old gases [13, 14, 15℄, the experimental tehniques aimedto manipulating and observing these quantum gases in di�erent geometries have beenenormously improved; at present, ultraold atoms an be onsidered as a benhmarkfor the study of many phenomena in the realm of quantum physis. Among the�rst examples of remarkable results obtained in this �eld are the observation ofinterferene fringes in the expansion of two overlapping Bose-Einstein ondensates



2 Chapter 1. Introdution[16℄ and the formation of quantized vorties [17℄. More reently a great interestis foused on properties of many-body systems, where new quantum phases anemerge. Examples are the observation of a Tonks-Girardeau gas in one dimension[18, 19℄ or the transition from super�uid to Mott insulator [20℄.The great suess of ultraold atoms is mostly due to the high degree of ontrolthat an be reahed in experiments [21℄. Both bosoni and fermioni atoms anbe ooled down to degeneray and external trapping potentials an be used toontrol the dimensionality of the system. Feshbah resonanes are used to tune theinteration between atoms and many di�erent observables an be deteted rangingfrom the atomi density to the momentum distribution. Laser light an be usedto design di�erent kind of potentials for the atoms, suh as perfet periodi optiallatties in di�erent dimensionalities [22℄.Reently optial potentials have been used also for the generation of ontrolledrandom potentials [23℄ and a new �eld of study started with the �rst diret ob-servation of Anderson loalization of matter waves in two di�erent researh groups[24, 25℄. This observation represented a remarkable result and showed that ultra-old atoms an represent a powerful experimental tool for exploring a number ofproblems related to the theory of loalization [26, 27, 28℄.In this thesis we will onentrate on two main issues, namely the interplay be-tween loalization and interation in disordered systems and the problem of loal-ization in orrelated random potentials. The former is a long standing problemthat has been raised shortly after the disovery of Anderson loalization [29℄, be-ause of its fundamental importane in eletron transport in disordered solids, whereCoulomb interation between eletrons an not be negleted. One naively expetsthat interation ats against loalization, but a detailed study of this interplay ishighly nontrivial. The study of the role played by orrelations in the loalizationproess is also of great interest, sine, stritly speaking, in real world unorrelatedpotentials do not exist. It is known that orrelations an lead to deloalization ef-fets, however, a full understanding is still missing and one of the most hallengingquestions is whether or not they an introdue a metal-insulator transition alreadyin one dimension, where the e�et of disorder is known to be the strongest [30℄. Thepossibility to design di�erent kind of disordered potentials and to ontrol the inter-atomi interations are the two key features that makes ultraold atoms partiularlysuitable to takle these two problems.1.1 Outline of the thesisThe main objetive of this thesis is to give a ontribution to the understandingof the physis of disordered systems studying, from a theoretial and numerialpoint of view, problems and models that an be diretly investigated in feasibleexperiments with ultraold atoms. As we have previously antiipated the main twotopis that we will investigate are the role played by interations and orrelationsin the determination of the loalization properties of disordered quantum systems.



1.1. Outline of the thesis 3The outline of the thesis is the following :
◦ In hapter 2 we present the basi onepts of the theory of loalization ofquantum partiles in disordered systems. We introdue the phenomenon ofAnderson loalization and the onept of mobility edge in three dimensionalsystems. We disuss the role played by the dimensionality in relation to theproblem of loalization with speial fous to the one dimensional ase, that isthe most relevant for this thesis. We introdue di�erent models of disorder anddisuss their implementations with ultraold atomi gases. Finally we reviewthe experimental observations of Anderson loalization.
◦ In hapter 3 the problem of loalization in quasiperiodi systems is disussed.After introduing the Aubry-André model and explaining in detail itsonnetion with ultraold atoms in bihromati optial latties, we reviewits loalization properties. We then onsider the spreading of an initiallyloalized wavepaket, both in real and momentum spae, as a possible tool tostudy the loalization properties of the Aubry-André model. Speial attentionis given to properties whih are observable in experiments. Part of the resultspresented in this hapter are published in:M. Larher, F. Dalfovo, and M. Modugno, �E�ets of interation onthe di�usion of atomi matter waves in one-dimensional quasiperiodi poten-tials�, Physial Review A, 80, 053606 (2009) [31℄.M. Larher, M. Modugno, and F. Dalfovo, �Loalization in momentum spaeof ultraold atoms in inommensurate latties�, Physial Review A, 83, 013624(2011) [32℄
◦ Chapters 4 is devoted to the study of the e�ets of interation on thespreading of an ultraold atomi gas in a bihromati optial lattie. This isdone by onsidering a disretized mean-�eld equation, whih generalizes theAubry-André model by adding a nonlinear term that inludes the interationbetween atoms. This model is also known as disrete nonlinear Shrödingerequation (DNLS). We solve this equation numerially and analyze theinterplay between two ompeting e�ets of the interation, namely, self-trapping and destrution of Anderson loalization. Finally we ompare thenumerial results that an be extrated from this model with experimentalmeasurements performed in Florene. The results of this hapter have beenpublished in the �rst paper mentioned above as well as in:E. Luioni, B. Deissler, L. Tanzi, G. Roati, M. Zaanti, M. Modugno,M. Larher, F. Dalfovo, M. Ingusio, and G. Modugno, �Observation ofsubdi�usion in a disordered interating system�, Physial Review Letters,106, 230403 (2011) [33℄.
◦ The fous of hapter 5 is still on the interplay between loalization andinteration. We use again the DNLS model to takle this problem, but here



4 Chapter 1. Introdutionmore attention is devoted to the investigation of the spreading behaviour ofwavepakets, that were loalized in the noninterating ase. We haraterizein detail the phenomenon of destrution of Anderson loalization and theresulting subdi�usive expansion indued by the interation, identifyingdi�erent spreading regimes and prediting the assoiated spreading laws.Finally an extensive numerial analysis is performed and the results areompared with the theoretial expetations. The ontent of this hapter hasbeen published in:M Larher, T. Laptyeva, J. Bodyfelt, F. Dalfovo, M. Modugno and S.Flah, �Subdi�usion of nonlinear waves in quasiperiodi potentials�, NewJournal of Physis, 14, 103036 (2012) [34℄.
◦ In hapter 6 we propose a model of disorder that an be realized ex-perimentally using dipolar ultraold gases and that presents orrelationproperties that leads to interesting deloalization e�ets. The model is �rstintrodued and its statistial properties are haraterized. In partiularwe show that both short and long orrelations are naturally present in thedisordered system that we propose. We then study its loalization propertiesalulating the loalization length of the eigenstates by means of an exatrenormalization-deimation tehnique. Using these results, we disuss therole of short and long range orrelations and their interplay. The material inthis hapter is the basis for a paper whih will be soon submitted:M. Larher, C. Menotti, B. Tanatar and P. Vignolo, �A metal-insulatortransition indued by random dipoles�, in preparation [35℄.



Chapter 2Loalization properties indisordered quantum systems
It was �rst realized by Anderson that disorder an have a dramati impat on thetransport properties of a quantum partile. More preisely, by studying the on-dutane of eletrons in solids, he disovered that disorder an lead to a ompleteabsene of di�usion and a onsequent metal-insulator transition. This phenomenonis known as Anderson loalization [1℄. Sine the revolutionary disovery by An-derson a huge ativity on the physis of quantum disordered system has startedand nowadays it is still an ative researh �eld that involves many areas of physis[36, 26℄.This hapter is devoted to the introdution of the loalization problem in dis-ordered quantum systems. We will review some basi onepts that will form thebakground for the understanding of the results presented in the others haptersof this thesis. In setion 2.1 we outline the main ahievements of the theory ofloalization for noninterating quantum partiles and lassial waves. In setion 2.2we speialize to the loalization properties of one dimensional systems, whih is thedimensionality that we will onsider for the rest of this thesis. In setion 2.3 wereview the experimental observations of Anderson loalization with a speial fouson the loalization of matter waves and ultraold atomi systems.2.1 Disorder indued loalizationIn this setion we present some of the key results of the quantum theory of loaliza-tion. There are a number of interesting introdutions to this �eld that an be foundin the sienti� literature (see for instane [37, 3, 38, 36, 39℄).In partiular we �rst introdue the problem of quantum transport in disorderedsystems from a omparison with the lassial ase. We then present the oneptsof Anderson loalization and of mobility edge and disuss the role played by thedimensionality of the system starting from the results of the saling theory ofloalization. Finally we introdue some models of disorder in onnetion with the�eld of ultraold atomi gases.Classial vs. QuantumWe start to deal with the problem of the behaviour of a quantum partile in adisordered potential onsidering a omparison with the lassial ase. This an



6 Chapter 2. Loalization properties in disordered quantum systems

Figure 2.1: Loalization properties of a lassial partile in a disordered potentialdepending on the value of its energy. If the energy of the partile is smaller thanthe highest barriers of the potential (E1 < E) the motion of the partile is restritedto a �nite region of spae. Conversely if the energy of the partile is larger than thehighest barriers of the potential (E2 > E0) the motion of the partile is unboundedand it will propagate through the disordered potential. Figure taken from Ref. [2℄.give an intuition of why the study of Anderson loalization is highly nontrivial andintrodues the two main e�ets that play a key role for the determination of thetransport behaviour of a quantum partile.Let us onsider a lassial partile in a disordered potential V (x) (we onsideredthe one dimensional ase for simpliity) like the one that is depited in Fig. 2.1and let us onsider the situation where the potential is upper bounded by a max-imum value that we all E0. The behaviour of the lassial partile an be easilydetermined by a simple omparison of the energy of the partile with the maximumvalue assumed by the potential. In partiular if the energy of the partile is smallerthan E0 the motion will be bounded in a �nite region of spae between two barriersof the potential, transport over long distanes is suppressed and loalization takesplae. On the ontrary if the energy is larger than E0 the partile will �y above thebarriers of the disordered potential and on average the motion will be ballisti.For a quantum partile, where the wave nature of matter omes into play, thissimple piture is ompletely modi�ed. On the one hand a quantum partile antunnel through potential barriers and therefore we do not expet that a disorderedpotential an bound and freeze its motion. This deloalization due to tunnelingis what happens, for instane, in periodi potentials, where, no matter how highare the potential barriers, but the partile will always propagate ballistially [40℄.On the other hand, even if a quantum partile has an energy muh larger than thetypial potential barriers, we know that there will always be a �nite re�etion andtransmission probability. This an lead to nontrivial interferene e�ets that tendto loalize partiles. We will see that an example of loalization due to interferene



2.1. Disorder indued loalization 7is Anderson loalization [1, 2℄.Anderson loalizationThe e�ets of disorder on the propagation of quantum partiles has been ini-tially studied in the ontext of ondensed matter physis for the desription of thepropagation of eletrons in solids. The natural starting point for the analysis ofthis problem is a perfet rystal, whose properties are well known and are governedby the Bloh theorem. In partiular the eigenstates of the system are extendedBloh waves that an propagate through the rystal [40℄.The traditional view, before the disovery of Anderson loalization, onsideredas a starting point for the study of the e�ets of disorder the extended waves of aperfet rystal [36℄. As a onsequene in the semilassial theory of eletroni trans-port, eletrons are still onsidered as waves whose wavefuntion remains extendedthroughout the sample but the propagation is modi�ed by inoherent satteringdue to the presene of disorder in the system. The result of these ollisions ausesa loss of the phase oherene of the waves on the length of the mean free path ℓ.This leads to a di�usive motion of eletrons through the disordered potential, whihallows eletrons to propagate to in�nity and results in a �nite ondutane of thesample. An inrease of the strength of the disorder leads to a derease of the meanfree path ℓ and to a onsequent derease of the di�usion onstant and of the on-dutane of the sample. This turns out to be true when interferene e�ets an benegleted.The �rst to understand that interferene e�ets play a key role for the deter-mination of the transport behaviour of a quantum partile was Philip Anderson in1958. He showed that the onsequene of these destrutive interferene proessesbetween di�erent sattered waves is not a simple redution of the ondutivity buta omplete absene of di�usion [1℄.In his seminal paper he onsidered the transport of a partile (spin) in a dis-retized lattie that an tunnel via quantum jumps between di�erent sites and disor-der is introdued by requiring that the on-site energies assoiated with the di�erentlattie sites varies randomly. More preisely Anderson introdued the followingmodel for the desription of the propagation of the partile (spin)
i
∂ψj

∂t
= εjψj −

∑

k 6=j

Jj,kψk (2.1)where ψj is the probability amplitude that a partile is on site j, Jj,k desribes thehopping amplitude between di�erent sites and εj are the random on-site energiesharaterized by a probability distribution P (ε).He onsidered the transport problem of an initially loalized probability distri-bution |ψj(0)| that oupies just a �nite region of spae and he tried to answer thefollowing question: �how fast, if at all, does the probability distribution di�use awayfrom its initial position?� He found that if the hopping amplitude Jj,k falls o� faster



8 Chapter 2. Loalization properties in disordered quantum systemsthan 1/|j−k|3 and if the disorder W is strong enough if ompared with the averagevalue of the hopping amplitude J then there will be a omplete absene of di�usion.The initial amplitude |ψj(0)| stays loalized around the initially oupied sites andfalls o� exponentially with the distane.This absene of di�usion is assoiated with the fat that the single-partile eigen-states of a disordered system are exponentially loalized if disorder is strong enough[3℄. More preisely, this means that, on the average, the envelopes of their ampli-tudes are exponentially deaying in spae at in�nity
|φ(~r)| ∼ e−|~r−~ro|/Lloc (2.2)where ~r0 is the loalization enter and Lloc is the loalization length. Partiledesribed by these kind of states annot ontribute to transport sine they oupya �nite region of spae in opposition to partiles in extended states that an esapeto in�nity. Therefore the main two manifestations of Anderson loalization, whihare losely onneted, are the absene of di�usion and the fat that the singlepartile eigenstates are exponentially loalized.Mobility edgeAnderson already understood that omplete loalization takes plae only if the dis-order is strong enough [1℄. In this situation all the single partile eigenstates areloalized. Below a ertain disorder strength, instead, loalization takes plae onlyfor a fration of states while the remaining states are extended.Ten years after the publiation of the paper by Anderson, Mott introdued theonept of mobility edge [6℄ whih represents an energy whih separates loalizedand extended states. He understood that no loalized states an exist in an energyregion of extended states with the following argument. Assume that it is possible to

Figure 2.2: Shemati representation of the onept of mobility edge. The statesare loalized in energy regions where the density of states is small E < Ec and
E > E′

c. Conversely they are extended in energy regions where the density of statesis large. The two energies Ec and E′
c represent the mobility edges of the system.



2.1. Disorder indued loalization 9

Figure 2.3: Phase diagram for the three dimensional Anderson model as a funtionof the disorder stength W and of the energy of the states E. The states in thespetrum of the system are divided in two regions and an be extended or loalized.The points and the thik solid line represents the mobility edge, i.e. the ritial energythat separates these two regions of the spetrum. More preisely the points are theresult of an exat numerial alulation, while the thik solid line is the outome ofthe self onsistent theory of loalization. The thin line indiates the position of theupper edge of the spetrum, only the region on the left of this line belongs to thespetrum. Figure taken from Ref. [41℄.�nd a loalized state and an extended state with in�nitely lose energies for a givenon�guration of disorder, then an in�nitesimal hange of the on�guration wouldhybridize them, forming two extended states. Hene, for a given energy, almost allstates should be either loalized or extended.In Fig. 2.2 we show a pitorial view of the onept of mobility edge for a tightbinding model similar to Eq. (2.1). The vertial dashed lines represent the positionof the two mobility edges Ec and E′
c while the solid line represents the density ofstates of the system. The regions with the loalized states are those where thedensity of states is small. As the disorder strength is inreased the mobility edgesmove towards the band enter and eventually, for a ritial value of the disorderstrength, they meet at the enter of the band. Above this ritial value of disorderthere are no more extended states in the system.In Fig. 2.3 we instead show a quantitative alulation of the mobility edgefor the model onsidered by Anderson in its original paper. The phase diagramreported in Fig. 2.3 shows the loalized or extended nature of the states de-pending on their energy E and on the strength of the disorder W . The pointsare extrated from an exat numerial alulation and represent the mobilityedge, i.e. the energy that divide extended and loalized states. The thik line isthe result for the mobility edge given by an approximate theory. The thin line



10 Chapter 2. Loalization properties in disordered quantum systemsindiates instead the upper bound of the spetrum. This quantitative alulationon�rms the qualitative piture that we have just desribed. One an see thatas the disorder strength is inreased the loalized states appear at the edge ofthe spetrum and then move gradually towards the enter of the band. Above
W/J ≈ 16, whih represents the ritial disorder strength for the three dimensionalAnderson model under onsideration, there are only loalized states in the spetrum.Role of dimensionality: saling theoryThe dimensionality of the system, d, plays a rather important role for thedetermination of the loalization properties of a quantum disordered system. Inpartiular one of the main results of the theory of loalization is that in one dimen-sional (1D) and two dimensional (2D) systems all the single partile eigenstates areexponentially loalized while in three dimensions (3D) both extended and loalizedstates an exist.This result has been �rst suggested by Abrahams, Anderson, Liiardello andRamakrishnan who gave a �rst formulation of the so alled one-parameter salingtheory of loalization [7℄. A saling theory desribes the relevant properties of aphysial system under a hange of size L → bL (b > 1).In partiular Abrahams et al. introdued a dimensionless ondutane g =

G~/e2 by noting that the ondutane G of a sample is dimensionless one is ex-pressed in units of e2/~. They desribed the behaviour of the dimensionless on-

Figure 2.4: The saling funtion β(g) in dimensions d = 1, 2, 3. The dimension-less ondutane g grows with the size of the system L if β > 0 but dereases for
β < 0. For d = 3 a ritial point exists where β = 0; this orrespond to the preseneof a transition from a loalized regime to an extended regime.



2.1. Disorder indued loalization 11dutane of a hyperube of size Ld as a funtion of the system size L by de�ning itslogarithmi derivative
β =

d ln g

d lnL
. (2.3)and assuming that it depends only on the dimensionless ondutane itself and noton the other mirosopi properties of the sample. This is the main assumption atthe basis of the theory and it is known as the one parameter saling hypothesis.The behaviour of β(g) is qualitatively obtained by Abrahams et al. starting fromthe two limiting behaviours for strong and weak disorder. In partiular for weakdisorder the lassial (i.e. without interferene) behaviour of the ondutane g isassumed. This orresponds to the Ohm's law namely the ondutane depends onthe surfae A = Ld−1 of the sample and on its length L aording to

g ∼ σ
A

L
= σLd−2 (2.4)where σ is the ondutivity of the sample, whih is an intensive quantity independenton the system size. In the opposite limit of strong disorder, exponential loalizationis assumed in all dimensions and therefore ondutivity is also expeted to deayexponentially with the system size

g ∼ e−L/Lloc . (2.5)From Eqs. (2.4) and (2.5) one obtains
β(g) ∼

{

d− 2 weak disorder
ln g + const. strong disorder (2.6)Interpolating between the two limiting behaviours and assuming that β(g) is aontinuous and monotonially inreasing funtion one obtains the result depited inFig. (2.4). If β(g) > 0 the value of the dimensionless ondutane inreases withthe system size, one is therefore in the extended/onduting regime. Converselyfor β(g) < 0 the ondutane dereases with the system size and one ends up inthe loalized/insulating regime where g → 0. The presene of a �xed point gcwhere β(gc) = 0 signals the presene of a transition from an extended to a loalizedregime. One an see from Fig. (2.4) that suh a transition exits in the 3D ase.This is onsistent with the results on the presene of a mobility edge in the generalthree dimensional ase that we have previously disussed earlier in this hapter. Inthe 1D and 2D ase the theory does not predit the presene of �xed points and

β(g) is always smaller than zero. This means that no extended regime an existfor d = 1, 2 and one has always Anderson loalization, no matter how small is thedisorder strength.The qualitative shape of the diagram �rst proposed by Abrahams et al. andthat we presented in Fig. (2.4) was on�rmed quantitatively few years later by anextrapolation from the weak disordered limit [42℄.



12 Chapter 2. Loalization properties in disordered quantum systemsModels of disorderDisorder an be introdued in a variety of di�erent ways in a physial sys-tem. Here we just mention few models of disorder that are losely related with theHamiltonians that an be experimentally realized using ultraold atoms.In the most general ase, let us assume that a single partile is governed by theHamiltonian
H = − ~

2

2m
∇2 + V (~r) (2.7)where V (~r) is a quenhed disordered potential, i.e. a stati disordered potentialthat does not evolve in time. The random potential is de�ned by a probabilitydistribution P (V ) and by a set of orrelation funtions 〈V (~r1)V (~r2) . . . V (~rn)〉. Herewe indiated with 〈. . . 〉 an average over many di�erent disorder realizations. Adisorder realization is a partiular outome of the proess of hoosing the potentialvalue V (~r) for all the values of ~r. The disordered potential is usually assumed tobe spatially homogeneous in the sense that its statistial properties do not dependon the spei� position in the system. As a onsequene the average value of thepotential 〈V 〉 does not depend on ~r and in general the n-point orrelation funtiondepends only on n− 1 relative oordinates only Cn(~r1, ~r2, . . . , ~rn). In partiular thetwo point orrelation funtion, whih we simply indiate with C(~r), depends onlyon one variable:

C(~r) = 〈V (~r0 + ~r)V (~r0)〉. (2.8)In atomi gases Hamiltonian (2.7) an be realized using an optial spekle poten-tial [43, 44, 45, 24℄. Optial potentials an be reated using laser light that induesan atomi dipole moment and a onsequent dipolar fore on the atoms whih isproportional to the intensity of the laser �eld [21, 22℄. The spekle pattern, in par-tiular, is produed by shining a oherent laser beam through a ground-glass platewhih is then foused on the atoms using a onverging lens. The ground-glass platetransmits the laser light without altering the intensity, but imprints a random phasepro�le on the emerging light. Then, the eletri �eld E(~r) on the foal plane resultsfrom the oherent superposition of many independent waves with equally distributedrandom phases. This result is a random pattern of the transmitted light that di-retly translates in a disordered potential V (~r) for the atoms. Both the modulusand sign of V (~r) an be ontrolled experimentally by hanging the light intensityand the detuning of the laser frequeny with respet to the atomi transition. Adetailed analysis of the statistial properties of a typial spekle potentials used forultraold gases experiments an be found in [46, 47℄Disorder an be also introdued in a natural way by using a perfet lattie asa starting point. A typial example of a lattie Hamiltonian with ompositionaldisorder is provided by
H =

∑

j

εj | j〉〈j | +
∑

j,k

Jj,k | j〉〈k | (2.9)



2.1. Disorder indued loalization 13where εj are the on-site energies while Jj,k desribe the hopping between di�erentsites of the lattie. The diagonal part of the Hamiltonian orresponds to the po-tential energy and the non-diagonal part to the kineti energy in the ontinuousspae desription (2.7). Let us note that the time dependent Shrödinger equationassoiated to Hamiltonian (2.9) orresponds to the model onsidered by Andersonin his original paper (2.1) [1℄. Disorder an be introdued by taking the site energiesor the hopping terms at random. Also in this ase one haraterizes the disorderby means of a probability distribution and a set of orrelation funtions. A typialhoie in the study of disordered system is
P (ε) =

{

1/W if |ε| < W/2

0 otherwise (2.10)and onstant hopping J restrited just to nearest neighbouring sites. In this aseHamiltonian (2.9) is indiated as the Anderson model.A disretized spae for ultraold atoms an be produed again using an optial�eld [21, 22℄. In this ase, two ounterpropagating laser beams are used. Due tothe interferene between the two laser beams, an optial standing wave is formed, inwhih atoms an be trapped. In this way the atoms feel the presene of a perfet onedimensional optial lattie. Adding a pair of lasers also in the other diretions givesthe possibility to reate optial latties in 2D and 3D. If the laser �eld is strongenough one reates a deep optial lattie and enters the so alled tight bindingregime. In this regime the spae an be disretized and the atoms are governed byan Hamiltonian whih is very similar to (2.9) but with ontant on site energies εj = εand typially the hopping term is approximated to be onstant and di�erent fromzero only on nearest neighbouring sites Jj,k = J 1 [21, 48℄. At this point disorderan be introdued by randomly shifting the on-site energies. This might be doneby superimposing a spekle potential to the optial lattie. Another possibility isto introdue another optial lattie with a di�erent lattie spaing with respet tothe �rst one [49, 25℄. This realizes a bihromati optial lattie and introdues ashift of the on-site energy whih is not fully random but still very interesting fromthe point of view of the loalization properties. We will disuss more in detail thesekind of systems, whih are alled quasiperiodi, in hapter 3.Another interesting proposal for the reation of a disordered potential for ul-traold atoms is to use a mixture of two di�erent atomi speies (or two di�erentinternal states of the same atom) [50, 51℄. The atoms of one of the two speiesare trapped at random positions in the wells of a very deep optial lattie. As aonsequene their dynami is frozen and they annot tunnel between di�erent sites.These trapped atoms play the role of �impurities�. The other speies instead feelsthe presene of a weaker optial lattie or it does not feel the lattie at all and itis therefore free to move. This atomi speies play the role of �test partile�. Dueto the interation between the two atomi speies, the test partiles feel a random1A detailed derivation of a tight binding Hamiltonian similar to (2.9) starting from a deepperiodi potential will be given in setion 3.1.



14 Chapter 2. Loalization properties in disordered quantum systemspotential formed by the impurities whih are trapped in the optial lattie. Thismodel an be desribed with a free spae Hamiltonian similar to (2.7) if the testpartiles do not feel the optial lattie. Conversely if also the test partile feel thepresene of the lattie (although muh shallower that the lattie felt by the impuri-ties) a tight binding Hamiltonian (2.9) is used for the desription of the system. Adetailed analysis of an impurity model will be given in hapter 6.2.2 One dimensional disordered systemsOne dimensional systems play a key role in the understanding of the physis of dis-order [52, 53, 2℄. First of all, it is the dimensionality where disorder have strongere�ets, moreover many properties of the eigenstates and related to transport an bedisussed rigorously. Finally numerial alulations are faster and easier to imple-ment.In 1D loalization is always expeted no matter how strong the random poten-tial is. Mott and Twose [54℄ were the �rst who suggested that all the single partileeigenstates might be exponentially loalized in 1D but they just provided a qualita-tive argument to support their statement. The �rst rigorous proof of this result hasbeen given by Borland [5℄ few years later. Nowadays the onlusion that all singlepartile states are loalized in a 1D random potentials is well established as it hasbeen obtained with a variety of di�erent methods.A standard way to prove loalization in 1D is to use random matrix tehniquesdeveloped by Oselede and Furstenberg in the sixties for the alulation of theLyapunov exponent, whih is the inverse of the loalization length
Λ =

1

Lloc
(2.11)Consider the eigenvalue problem assoiated to the one dimensional Anderson model(2.9)

− J(ψj+1 + ψj−1) + εjψj = Eψj (2.12)with ψj = 〈j | ψ〉. Equation (2.12) is equivalent to
Ψj =MjΨj−1, (2.13)where Ψj represents a two omponent vetor and Mj a 2×2 matrix

Ψj =

(

ψj

ψj+1

)

Mj =

(

0 1

−1 (εj − E)/J

)

. (2.14)By using this relation reursively, one an show that the vetor Ψj , for large valuesof j, is determined by a produt of a series of random matries Mj similar to theone that we have de�ned in (2.14), that is Ψj = Mj . . .M2M1Ψ0. Two theoremsby Furstenberg [55℄ and Oselede [56℄ are used to determine the behaviour of theprodut of the random matries. They state that, for almost all realizations of the
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Figure 2.5: Loalized eigenstates of the one dimensional Anderson model obtainedby diret numerial diagonalization. In the left panel we show an example of statewith energy lose to the enter of the band E ≈ 0 for W = 4. The state has atypial exponentially deaying pro�le. The loalization length obtained numeriallyis in agreement with the one obtained with the approximate expression (2.16) (blakdashed line). In the right panel we show the ground state of the system for inreasingdisorder strength W .random potential, an initial vetor Ψj grows or deays asymptotially as e±Λ(E)j ,where Λ(E) is a positive, non-random quantity that is known as the Lyapunovexponent. The solution at energy E is an exponentially loalized solution of thespetrum only when there are two vetors Ψ±
0 that deay respetively for j → +∞and j → −∞ and that oinide at some site. This assures the existene of a solutionof energy E that deays exponentially on both sides of the system with loalizationlength Lloc(E) = 1/Λ(E). If these two vetors do not exist for a given energy E,this energy does not belongs to the spetrum of the system.The eigenvalue problem de�ned by Eq. (2.14) an also be solved numerially bydiret diagonalization. The result of a numerial diagonalization of Eq. (2.12) withon-site energies given by (2.10) is shown in Fig. 2.5. In partiular in the left panelof the �gure we show the shape of a typial loalized eigenstate lose to the enterof the band for a disorder strength W = 4. The linear deay of the envelope of thewavefuntion in semi-log sale is a lear signature of the exponential loalization.In the right panel one an see how the ground state of the system hanges as thedisorder strength is inreased. With a olor density plot we show that already forvery small values of the disorder strength the ground state has a loalized pro�lethat deays exponentially on both sides of the system. As the disorder strengthW isinreased the loalization beomes stronger, the loalization length beomes smallerand onsequently the regions of spae oupied by the ground state is redued.A very useful relation that onnets the spetral properties of a 1D system to



16 Chapter 2. Loalization properties in disordered quantum systemsthe loalization properties of the eigenstates was �rst derived by Herbert and Jones[57℄ in the ase of the Anderson model and subsequently it has been generalized byThouless [58℄. This relation is
Λ(E) =

∫ ∞

−∞
ln(E − E′)ρ(E′) dE′ (2.15)where Λ(E) is the Lyapunov exponent and ρ(E) the density of states. When appliedto Eq. (2.12) with εl uniformly distributed in [−W/2,W/2] and in seond orderperturbation theory, Eq. (2.15) gives [59℄

Λ(E) =
(W/J)2

24[4 − (E/J)2]
. (2.16)This relation is valid for small W and results in a loalization length at the enterof the band equal to Lloc(E = 0) = 96J2/W 2. States situated at the enter of theband, i.e. with energy E = 0, are thus loalized on longer length sales.The result of the perturbation theory an be ompared with the diret numerialdiagonalization. This is done in Fig. 2.5 where the two blak dashed lines representan exponential deay with loalization length given by (2.16). The result that theloalization length diverges asW−2 for smallW is a general result in one dimensionalsystem and does not apply only to the ase of the Anderson model.2.3 Experimental observations of Anderson loalizationAnderson loalization was initially introdued for noninterating quantum partiles[1℄, but its observation remained elusive for many years. It was lately realized thatAnderson loalization is atually ubiquitous in wave physis, and therefore it an beapplied also to lassial waves suh as light or sound [9, 36℄. This paved the way forthe �rst observations of Anderson loalization. Loalization of lassial waves hasbeen reported so far for ultrasounds [12, 60℄, for eletromagneti waves propagatingin �free spae� in the mirowaves regime [10, 61℄ as well as in the optial regime[11, 62, 63℄ and for light in photoni rystals [64, 65, 66℄.The �rst diret observation of Anderson loalization of matter waves in realspae has been reported in experiments with ultraold gases [24, 25℄. These systemshave some important advantages. In most of the experiments with lassial waves,for instane, absorption mehanisms are almost unavoidable, produing deay pro-esses whose e�ets are hardly separable form the e�ets of Anderson loalization.Moreover the propagation of lassial waves usually takes plae in solid materialswhih have to be engineered in order to ontain a ontrolled amount of disorder. Inpratie, this is often ompliate and signi�antly redues the possibility to hangethe relevant parameters, suh as the strength of the disorder, at will. Conversely, ul-traold atoms o�er the advantage that light an be used to reate optial disorderedpotentials for the atoms, with almost negligible absorption e�ets. In addition thedisorder strength an be easily hanged on a wide range of values simply varying
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Figure 2.6: (a) Shemati representation of the expansion of an ultraold atomigas in a bihromati optial lattie, as realized in Ref. [25℄. The ondensate isinitially on�ned in a �nite region of spae (left) and then its released along thequasiperiodi potential. As the strength of the seondary lattie (whih plays the roleof disorder strength) is inreased the size of the ondensate after a �xed expansiontime is redued (right). (b) Axial size of the ondensate after 700 ms of expansion asa funtion of the strength of the seondary lattie for di�erent values of the tunnelingenergy J . Inset: typial exponentially deaying pro�le of the atomi loud in theregime of loalization. Figure taken from Ref. [27℄.the intensity of the laser �eld whih produes the external potential for the atoms.The use of Feshbah resonanes allows one to ontrol the interatomi interationby applying an external magneti �eld. Another advantage is that one an diretlymeasures di�erent observables: in situ absorption imaging gives the possibility todiretly detet the square modulus of the wavefuntion, orrelations measurementsan be performed and the momentum distribution of the atoms an be observedthanks to time of �ight measurements. Finally the dimensionality of the system anbe ontrolled using strong on�nements in one or two diretions.As said before, ultraold atoms lead to the �rst observation of Anderson loal-
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Figure 2.7: (a), (b) Cartoon of the typial experimental proedure of Ref. [24℄. Theatomi loud is initially on�ned by an harmoni on�nement and then it is sud-denly released into the spekle potential. () Density pro�les of the loalized atomiloud one seond after its release, the exponential nature of the loalization is learlyobserved. (d) Loalization length Lloc �tted from the measured pro�les as a funtionof the disorder strength. The shaded area represents the theoretial predition withthe relative unertainty deriving from the estimation of the experimental parameters.Figure taken from Ref. [24℄ization of matter waves. In partiular the �rst experiments onsidered a one dimen-sional setup and introdued disorder using a bihromati lattie [25℄ or a speklepotential [24℄. In both experiments, one of the key elements was the study of theexpansion of an initially loalized loud. The ondensate is initially reated intoan harmoni trap that on�nes the atoms in a limited region of spae. Then theharmoni on�nement is suddenly swithed o� and the atoms are let free to expandin the disordered potential. These two stages of the experimental proedure areshematially represented in Fig. 2.6 (a) for a bihromati optial latties and inFig. 2.7 (a), (b) for a spekle potential. The expansion of the atomi loud alonga given diretion an be monitored by in situ absorption imaging. In Fig. 2.6 (b)



2.3. Experimental observations of Anderson loalization 19we show a typial experimental measure of the width of the expanding ondensateafter a �xed expansion time as a funtion of the disorder strength. One an seethat for large values of the disorder strength the expansion is ompletely frozen andthe absene of di�usion predited by Anderson is observed. Another key feature ofAnderson loalization is the exponential shape of single partile eigenstates. Thisre�ets in an exponential shape of the atomi loud that an also be observed with insitu absorption imaging. In the inset of Fig 2.6 (b) and in Fig. 2.7 () two examplesof measured exponentially loalized pro�les are shown. Fitting the exponentiallyloalized pro�les one an also obtain a measure of the loalization length as shownin Fig. 2.7 (d).In hapters 3, 4 and 5 of this thesis we will extensively fous on the experimentalsetup realized in Ref. [25℄, namely a one dimensional bihromati optial lattie.This hoie is motivated by the fat that in this experiment, not only the disorderstrength an be ontrolled at will, but also the interatomi interation an be tuned,making this on�guration partiularly suitable for the study of the interplay betweeninteration and disorder indued loalization [67, 68, 33, 69℄.More reently Anderson loalization of matter waves has been reported also in3D with both fermions [70℄ and bosons [71℄ using a similar proedure with respetto the one that has been used in 1D.Let us �nally mention that using old atoms it has been possible to realizethe kiked rotor and observe dynamial loalization, whih an be onsidered as amapping of Anderson loalization in momentum spae. In partiular both the 1D[72, 73℄ and the 3D ase [74, 75, 76℄ have been onsidered.





Chapter 3Noninterating partiles inquasiperiodi potentials
Quasiperiodi systems are a speial lass of non-periodi systems. They possess twoor more periodiities whose periods are inommensurate with eah other. Althoughthese systems are not random in the usual sense, they lak of translational symmetrysine there exist no translations whih will leave the periods of all the periodistrutures invariant. Nevertheless, there exist translations that leave the system�almost invariant�. This leads to quite unusual behaviours in quasiperiodi systems.It is well known that in a perfetly periodi system all the eigenfuntions areextended Bloh waves [40℄ while for a one dimensional random potential all theeigenfuntions are exponentially loalized [53, 2℄. These properties are stritly on-neted with the spreading behaviour of an initially loalized wavepaket, in theformer ase it expands ballistially while in the latter it remains loalized.In between these two extreme ases we �nd quasiperiodi systems that showan intermediate behaviour between the two [77, 78℄. In partiular it is known thatquasiperiodi systems an have both extended and loalized states already in onedimension. Furthermore �ritial� states whih may be regarded as being intermedi-ate between loalized and extended an appear. As a onsequene the dynamis ofa wavepaket an range from loalization to ballisti expansion and also anomalousdi�usion an be observed [79, 80℄. These quantum properties are often related tothe quite anomalous transport properties of quasirystals [81, 82, 83℄.The loalization properties in quasiperiodi systems are often studied onsider-ing tight binding Hamiltonians similar to (2.9), where the on site energies are hosenin order to introdue one or more additional periodiities to the system, whih areinommensurate with respet to the underlying periodiity of the model, given bythe disretization of the spae [78℄. In this ontext the most studied model is prob-ably the Aubry-André or Harper model, [84, 85℄ where one an observe extended,ritial or loalized states, as the strength of the on-site quasiperiodi modulationis inreased. Another well-studied example is the Fibonai model [86, 87℄ wherethe states are always ritial, leading to anomalous transport properties [80℄. Aspei� feature of these two models is that they have a �pure� spetrum, namelyall the states of the system are of the same nature: extended, loalized and ritialstates do not oexist in the spetrum. Notably, there are also models where thespetrum is not pure and one an have one or more mobility edges separating statesof di�erent nature. An example is provided by the Generalized Harper model [88℄.Other examples of quasiperiodi system with non-pure spetrum an be found also



22 Chapter 3. Noninterating partiles in quasiperiodi potentialsonsidering models in ontinuous spae [89℄.Due to their peuliarity, the loalization properties of quasiperiodi systems havealways reeived a lot of attentions, espeially after the disovery of quasirystals[81, 82℄ and the observation of their anomalous transport properties [83℄. However,few years ago, a new boost has been given to the study of this topi after that twoexperiments with ultraold atoms have reported the �rst observation of Andersonloalization of matter waves. In fat one of the two experiment have been performedusing a 1D quasiperiodi potential and realized an experimental implementation ofthe Aubry-André model [25℄. One year later another experimental implementationof the Aubry-André model has been realized using photoni rystals [65℄. For thisreason in this hapter we will fous on the loalization properties of the Aubry-Andrémodel and on its onnetion with atomi gases experiments.This hapter is organized as follows. In setion 3.1 we explain how the Aubry-André model an be realized experimentally using ultraold atoms in bihromatioptial latties. In setions 3.2 and 3.3 we disuss the loalization properties of themodel, �rst onsidering the nature of the eigenstates, as originally done by Aubryand André, and then studying the dynamis of an initially loalized wavepaket.This seond method reprodues the typial expansion experiment that is performedwith ultraold atoms. For this reason we fous on two questions whih an berelevant from the experimental point of view, namely the role played by the initialshape of the wavepaket and the di�erene between the inommensurate and theommensurate ase. Finally in setion 3.4 we disuss the loalization propertiesof the Aubry-André model in momentum spae and we propose a possible way todetet the transition from extended to loalized regime in a feasible experiment withultraold atoms by measuring the momentum distribution of the atoms.3.1 From bihromati optial latties to the Aubry-André modelOne-dimensional bihromati latties are realized in experiments with Bose-Einstein ondensates by superimposing two optial latties of di�erent wavelengths
[89, 90, 49, 25], produing an external potential ating on the atoms in this form:

Vb(x) = V1(x) + V2(x)

= s1ER1 sin
2(k1x) + s2ER2 sin

2(k2x+ ϕ) , (3.1)where kj = 2π/λj (j = 1, 2) is the wavenumber of the laser light that reates theoptial lattie, ERj
= ~

2k2j/(2m) is the reoil energy, sj is the dimensionless lattiestrength and ϕ is an arbitrary phase shift between the two latties. One of thetwo latties is typially used as the main periodi potential (primary lattie) anddetermines the main separation of the single-partile states in di�erent Bloh bands.It is hosen to be strong enough (s1 ≫ 1) to apply the tight-binding approximation.This means that the primary lattie indues a disretization of the system withperiod d = λ1/2, i.e., the atoms oupy only the wells of the primary lattie and
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Vb(x)=s1ER1
sin2(k1x1)+s2ER2

sin2(k2x2)

V1(x)=s1ER1
sin2(k1x1)                        Primary lattice

V2(x)=s2ER2
sin2(k2x2)                        Secondary lattice

dd/α~Figure 3.1: Representation of a bihromati optial lattie. The superposition ofa deep primary lattie (blue line) and of a shallower seondary lattie (green line)produes the quasiperiodi potential represented by the red line. The blak dots in-diate the on-site energies within a disretized desription of the system. The blakline shows that the modulation introdued by the seondary lattie has a osinusoidalform. The two blak arrows represent the two key length sales of the system: thelattie spaing introdued by the primary lattie, d, and the periodiity of the modu-lation introdued by the seondary lattie, d/α̃.an tunnel from one site to the other with a given tunneling rate J [91℄. The seondlattie is signi�antly shallower (s2 ≪ s1) and perturbs weakly the struture formedby the primary lattie; in pratise, the presene of the seondary lattie does notmodify signi�antly the position of the minima of the potential but produes only ashift of the on site energies, introduing a �deterministi" disorder, or quasi-disorder[25, 90, 49℄.Noninterating atoms in the presene of a one-dimensional bihromati optiallattie are desribed by the Hamiltonian
H = − ~

2

2m

∂2

∂x2
+ Vb(x) (3.2)In �rst approximation, let us onsider the situation in whih s2 = 0 and we are



24 Chapter 3. Noninterating partiles in quasiperiodi potentialsleft with a simple periodi system, where the spetrum is haraterized by bands ofallowed energies and energy gaps and the eigenstates are Bloh funtions deloalizedover the whole lattie [40℄. In the tight binding regime the energy gap betweenthe lowest band and the �rst exited band, EG, is so large that the physis of thesystem an be well desribed by onsidering only the lowest energy band. This is agood approximation as long as all the energy sales involved in the problem underonsideration are muh smaller than EG. Let us introdue a set of Wannier states
| wj〉 labelled by the site index j (see appendix A for an introdution on Wannierfuntions). Eah of them, onsidered in real spae, 〈x | wj〉 = wj(x) = w(x − xj)represents a funtion entered around the lattie site j, at position xj = jd. Inpartiular, as previously mentioned one an onsider as a basis of the system justthe Wannier funtions assoiated to the lowest energy band. One an thereforeexpress wavefuntions and operators projeting on the basis of Wannier states

| ψ〉 =
∑

j

ψj | wj〉,

H =
∑

i,j

| wi〉Hi,j〈wj |, (3.3)where Hi,j = 〈wi | H | wj〉, ψj = 〈wj | ψ〉 and nj = |ψj |2 represents the probabilityof �nding a partile in the lattie site j. Let us evaluate expliitly the matrixelements Hi,j:
Hi,j =

∫

w∗
i (x)Hwj(x) dx

=

∫

w∗
i (x)H

(0)wj(x) dx +

∫

w∗
i (x)H

(1)wj(x) dx, (3.4)where H(0) = − ~2

2m
∂2

∂x2 + s1ER1 sin
2(k1x) is the part of the Hamiltonian formed bythe kineti term and by the primary lattie, while H(1) = s2ER2 sin

2(k2x+ϕ) is justformed by the seondary lattie. Negleting the overlap between Wannier funtionsbeyond nearest neighbours for H(0) and retaining only the on-site ontribution for
H(1) one �nds that the only non-zero matrix elements are

Hi,j = E0δi,j − Jδi,j±1 + δi,j

∫

|wi(x)|2H(1) dx (3.5)where
E0 =

∫

w∗
i (x)H

(0)wi(x) dx ; J = −
∫

w∗
i (x)H

(0)wi+1(x) dx. (3.6)The �rst term in equation (3.5) represents a onstant on-site term that plays the onlyrole of shifting the energies of the system by a onstant value E0, therefore in thefollowing we will drop it. The seond term is the one that onnets neighbouring sitesand its proportional to the tunneling energy J . Finally the last term desribes thequasiperiodi shift of the on-site energies indued by the seondary lattie. This term



3.1. From bihromati optial latties to the Aubry-André model 25an be written in a muh simpler form using the trigonometri relation sin2(k2x+

ϕ) = [1− cos(2k2x+2ϕ)]/2. Using the symmetry of the Wannier funtions one anshow that
∫
[

−s2ER2

2
cos(2k2x+ 2ϕ)

]

|wi(x)|2 dx = ∆cos(2παi + ϕ′) (3.7)where we have used the fat that xi = id = iπ/k1, we have rede�ned the phase ϕand introdued α = k2/k1 = λ1/λ2 and
∆ =

s2ER2

2

∫

cos(2k2y)|w(y)|2 dy. (3.8)Finally negleting all onstant terms one ends up with the following simple expres-sion for the matrix elements
Hi,j = −Jδi,j±1 + δi,j∆cos(2παi + ϕ). (3.9)Substituting this expression in (3.3) and expressing all the energies in units of J one�nds the Aubry-André Hamiltonian

H = −
∑

j

(| wj〉〈wj+1 | + | wj+1〉〈wj |) + λ
∑

j

cos(2παj + ϕ) | wj〉〈wj | (3.10)where λ = ∆/J . In this last expression we expliitly see that the modulationintrodued by the seondary lattie has a osinusoidal form and it an be seen as apotential in the disrete spae:
Vj = λ cos(2παj + ϕ). (3.11)Let us notie that the disrete potential is quasiperiodi as long as the parameter

α, whih is the ratio between the wavelengths of the two latties, is an irrationalnumber. In fat, only when α is irrational the potential Vj adds a seond periodiitywhih is inommensurate with respet to the underlying periodiity given by thedisreteness of the system. Let us notie that Vj is invariant under a shift of αby an integer number and therefore, without any loss of generality, one an hoose
α < 1.In �gure 3.1 we show an example of a bihromati optial lattie and we shemat-ially illustrate the disretization proedure. We onsidered α = (

√
5 − 1)/2 and aprimary lattie muh deeper than the seondary one. One an notie that the posi-tion of the wells of the bihromati potential are determined by the primary lattiewhile the seondary lattie introdues just a modulation of the on-site energy. Theblak dots shows the value of the on-site energies within a disretized desriptionof our system while the blak line stresses the fat that this modulation has anosillating form. The period of the modulation is given by d/|α̃| (or 1/α̃ in units oflattie sites) where α̃ is obtained by shifting the value of α by an integer numberso that it lies in the interval [−0.5, 0.5]. In the spei� ase shown in �gure 3.1,
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α̃ = (

√
5 − 3)/2 and therefore we enounter a minimum in the lattie modulationapproximately every 2.62 lattie sites.Writing down the time independent Shrödinger H | ψ〉 = E | ψ〉 equation forthe tight binding Hamiltonian (3.10) one obtains

− ψj+1 − ψj−1 + λ cos(2παj + ϕ)ψj = Eψj . (3.12)This equation is the one whih is usually alled Aubry-André or Harper model [85℄.This model is of partiular importane beause, despite its simpliity, is very rihfrom the point of view of the loalization properties and those are known exatly.The key parameter that determines the loalization properties, when α is irrational,is λ whih quanti�es how strong is the quasi-disorder ompared to the tunnelingenergy. In the following with a slight abuse of notation we will sometimes all λ thedisorder strength.3.2 Loalization properties of the Aubry-André modelThe loalization properties of model (3.12) have been disussed for the �rst time byAubry and André [85℄. Later a number of numerial and analytial studies on�rmedtheir results [77, 86, 92, 79, 88, 93℄. Here, following the original alulation of Aubry-André, we show how one an derive the loalization properties of the model usingthe self-duality of Eq. (3.12) and the Thouless formula for the Lyapunov exponent(2.15).The self-duality property of equation (3.12) an be found by introduing thefollowing transformations
ψj = eiθj

∞
∑

l=−∞
dle

il(2παj+ϕ)

dl = e−iϕl
∞
∑

j=−∞
ψje

−ij(2παl+θ). (3.13)Using these transformations in equation (3.12) one an show that the new variable
dl satis�es the dual equation

− dl+1 − dl−1 +
4

λ
cos(2παl + θ)dl =

2E

λ
dl , (3.14)whih has exatly the same form as equation (3.12) if we set

4

λ
→ λ , dl → ψj ,

2E

λ
→ E , θ → ϕ . (3.15)The symmetry of Eqs (3.12) and (3.14) has an important onsequene. One annote that, if ψn is a loalized solution of (3.12), that is

∞
∑

j=−∞
|ψj |2 <∞,



3.2. Loalization properties of the Aubry-André model 27then dl will be an extended solution solution of (3.14), that is
∞
∑

l=−∞
|dl|2 = ∞,and vie versa. This tell us that the dual transformations (3.13) exhanges theloalization properties of the eigenfuntions. However, a priori we ignore whiheigenfuntions are loalized and whih are extended. To go further we need touse the Thouless formula (2.15) whih relates the Lyapunov exponent Λ(E) to thedensity of states ρ(E) [58℄. This formula was originally introdued for randomsystems but it an be used without any hange also for non-random models suh as(3.12). Whenever α is an irrational number, making use of the dual property, onean relate the integrated density of states of the Aubry-André model Nλ,α(E) tothe one of its dual ounterpart N 4

λ
,α(E) [85℄. The same an be done for the densityof states ρ(E) = ∂

∂EN (E) and one �nds
Nλ,α(E) = N 4

λ
,α

(

2E

λ

)

; ρλ,α(E) = ρ 4
λ
,α

(

2E

λ

)

2

λ
. (3.16)Using these expressions and the Thouless formula one obtains the dual transform ofthe Lyapunov exponent

Λλ,α(E) = Λ 4
λ
,α

(

2E

λ

)

+ ln

(

λ

2

)

. (3.17)Starting from this expression it is now possible to infer the loalization propertiesof the Aubry-André model with few simple onsiderations. First of all, we notethat the Lyapunov exponent Λ(E) assoiated to a given eigenstate is neessarily apositive number and that Λ(E) vanishes only whenever this state is extended. Letus also reall the result that we have derived earlier in this setion that the dualtransformation inverts the loalization properties; therefore whenever Λλ,α(E) isnon-zero it follows that Λ 4
λ
,α

(

2E
λ

) is zero and vie-versa. Therefore assuming that
Λ 4

λ
,α

(

2E
λ

)

= 0 it follows that
Λλ,α(E) = ln

(

λ

2

)and the positivity of the Lyapunov exponent implies that λ > 2. Conversely, when
Λλ,α(E) = 0

Λ 4
λ
,α

(

2E

λ

)

= ln

(

2

λ

)and λ < 2.We an therefore onlude that the Aubry-André model (3.12) undergoes a tran-sition from extended to loalized eigenstates at λ = 2. All eigenstates are extendedfor λ < 2 and exponentially loalized for λ > 2. Moreover all the eigenstates havethe same loalization length
Lloc = 1/Λ =

1

ln(λ/2)
. (3.18)
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Figure 3.2: Numerial study of of the loalization properties of the Aubry-Andrémodel. In the left panel we show that the ground state of the system is extendedfor λ = 1 (green line) and λ = 1.9 (blue line) while it is exponentially loalized for
λ = 2.1 (magenta line) and λ = 2.5 (red line). In the loalized regime we also showthe loalization length predited by the analytial formula (3.18) (blak dashed lines).In the right panel a olor density plot shows the ground state as a funtion of thedisorder strength. The transition from the extended to the loalized regime at λ = 2is learly visible.The opposite properties holds for the dual model (3.14). The simple derivation thatwe presented here does not give any information about the nature of the eigenstatesfor λ = 2. It is known that they are neither plane waves nor exponentially loalized.It is onjetured that they are dereasing funtions with a power law [85℄.The exponential loalization that takes plae for λ > 2 has been identi�ed byAubry and André [85℄ as Anderson loalization in a quasiperiodi potential, analogto Anderson loalization in a purely random potential. A di�erent interpretation,based on a semilassial analysis, has been reently proposed in Ref. [94℄.In �gure 3.2 we present a numerial alulation that on�rms the results thatwe have already obtained on the loalization properties of the Aubry-André model.We show the behaviour of the ground state of the system for di�erent values of thepotential strength, λ. In the right panel it is learly observed that for λ = 1 and
λ = 1.9 the ground state is an extended plane wave whih follows the quasiperiodimodulations of the potential. Conversely for λ = 2.1 and λ = 2.5 the ground stateis exponentially loalized with a loalization length whih is in agreement with thetheoretial expression (3.18), whih in the �gure is represented by the blak dashedlines. In the left panel, a olor density plot shows the ground state of the systemaross the transition point. The transition at λ = 2 is learly visible. Here weshowed our results for the ground state of the system but similar density pro�lesare obtained also for the exited states.
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Figure 3.3: Expansion of a noninterating loud of atoms in the Aubry-Andrémodel with α = (
√
5− 1)/2. The time evolution of the width of the wavepaket w(t)is shown for di�erent values of the disorder strength, λ = 1.5, 1.7, 1.9, 2, 2.1, 3. Inthe left panel, the starting wavepaket is a δ-funtion loalized in a single site. Inthe right panel we use an initial Gaussian wavepaket of width σ = 5. In both ases,one learly observes the transition from extended to loalized states that ours at

λ = 2.3.3 Spreading of wavepakets in the Aubry-André modelIn this setion we disuss the problem of quantum di�usion of an initially loalizedwavepaket in the Aubry-André model. This is of partiular relevane for exper-iments with ultraold atoms where the expansion of an atomi loud is the maintool used for the detetion of Anderson loalization [24, 25℄. Both the width of theexpanding loud and its shape are of great interests.The expansion of a noninterating wavepaket is desribed by the time dependentShrödinger equation i~ ∂
∂t | ψ〉 = H | ψ〉 that in the ase of Hamiltonian (3.10) takesthe following form

i
∂ψj

∂t
= −ψj+1 − ψj−1 + λ cos(2παj + ϕ)ψj , (3.19)where we have absorbed the Plank onstant ~ in the time variable so that t beomesa dimensionless quantity. The atual time in seonds an be obtained by multiplyingthe dimensionless parameter t by ~/J .We investigate the evolution starting from two di�erent lasses of initial ondi-tions, namely a δ-funtion loalized in a single lattie site,

ψj(0) = δj,0 , (3.20)



30 Chapter 3. Noninterating partiles in quasiperiodi potentialsand a Gaussian wavepaket of width σ,
ψj(0) = Ce−

j2

2σ2 , (3.21)where C is a normalization fator that has to be determined in order to have a normof the wavepaket equal to one ∑j |ψj |2 = 1. The hoie of Gaussian wavepaketsis onvenient if one wants to simulate realisti experimental on�gurations; it alsoallows one to explore the behavior of sharp to broad wavepakets in a ontinuousmanner. Owing to arbitrariness of the phase ϕ, here we have hosen, without anyloss of generality, to plae the initial wavepaket around the lattie site j = 0.As a measure of the loalization we onsider two quantities: the width of thewavepaket measured as the square root of the seond moment of the spatial distri-bution |ψj(t)|2,
w(t) =

√

m2(t) =

√

∑

j

(j −X)2|ψj(t)|2 , (3.22)and the partiipation number
P (t) =

1
∑

j |ψj(t)|4
, (3.23)whih measures the number of signi�antly oupied lattie sites [95℄. The quantity

X represents the average position of the wavepaket, de�ned as X =
∑

j|ψj |2.The loalization transition of the Aubry-André model at λ = 2, whih hasbeen introdued in the previous setion, an be deteted in the dynamis (quantumdi�usion), by looking for example at the width of the wavepaket as a funtion oftime [79℄. In partiular the asymptoti spreading of the wavepaket width w(t) anbe parametrized as w(t) ∼ tγ , and one �nds three di�erent regimes as the value of
λ is varied:(i) λ < 2: ballisti regime, γ = 1(ii) λ = 2: subdi�usive regime, γ ∼ 0.5(iii) λ > 2: loalized regime, γ = 0 .We solve Eq. (3.19) by using a standard fourth order Runge-Kutta (RK4) algo-rithm for the numerial integration. The auray of the integration is heked bymonitoring the onservation of the norm of the wavepaket and of the energy ofthe system. A standard hoie for the value of α onsists of hoosing the inversegolden mean α = (

√
5 − 1)/2 [95℄. Our results for this value of α are shown inFig. 3.3. In the ase of an initial δ-funtion wavepaket (left panel), we �nd perfetagreement with previous alulations [79℄. The right panel shows our results for thease of an initial Gaussian wavepaket. By omparing the two ases, one an seethat the asymptoti behaviour is not a�eted by the hoie of the initial shape ofthe wavepaket. Similar results are obtained for the partiipation number P (t).
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λFigure 3.4: Loalization length of the wavepaket Lloc as a funtion of the disorderstrength λ in the loalized regime. We measure the loalization length by �tting thetails of the loalized wavepaket after the expansion. We ompare the values of theloalization length extrated from the �tting (red points) with the analyti predition
Lloc =

1
ln(λ/2) (blak line).As regards the shape of the wavepaket we fous on the loalized regime λ > 2where spreading stops after a transient time. Sine, for a given disorder strength λ,all eigenstates are exponentially loalized with the same loalization length we ex-pet that also the wavepaket, whih is formed by a linear superposition of di�erenteigenstates, has exponentially deaying tails with the same harateristi loaliza-tion length. By �tting the density pro�les of the wavepaket after the expansionwe extrat a value of the loalization length. In Fig. 3.4 we show the result of our�ts as a funtion of the disorder strength λ (red points) and we ompare them withthe theoretially expeted value Lloc = 1/ log (λ/2) (blak line) showing a perfetagreement.3.3.1 Inommensurate vs. ommensurate aseIt is worth stressing that a truly quasiperiodi potential an not be realized in anyrealisti experiment, sine the wavelengths of the lasers are always known with a�nite number of digits and therefore their ratio will always be a rational number.Moreover real experiments have always a �nite size. It is thus important to larifyto whih extent the preditions of the Aubry-André model are relevant for thedesription of experiments with ultraold atoms in bihromati optial latties.To this purpose it is useful to ompare the ase of a quasiperiodi potential withan irrational value of α with the ase of a periodi potential obtained by using a
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Figure 3.5: Time evolution of the width of the wavepaket w(t) of noninteratingpartiles, starting from a single-site δ-funtion, for λ = 2 and for di�erent orders,
n, of the approximants in the Fibonai sequene. The blak arrows represent thevalues of t at whih we observe the transition from the behaviour predited for aquasiperiodi potential (inommensurate lattie) to the di�usion expeted in a peri-odi potential.rational approximation αn of order n of the irrational number. In partiular weonsider a sequene of rational numbers αn, that onverges to the irrational value
α as n→ ∞ [96, 78℄. The sequene of approximants αn an be found by suessivetrunations of the ontinued-fration expansion of α. For the ase of the goldenmean α = (

√
5 − 1)/2 [95℄ the approximants are given by αn = pn/qn, where pnand qn = pn+1 are two onseutive terms of the Fibonai sequene (p1 = p2 = 1,

pn = pn−1 + pn−2 for n > 2).It turns out that the inommensurate ase an thus be onsidered as the limitof a sequene of ommensurate Hamiltonians, whose eigenvalues Eξ,m and eigen-funtions φξ,mj an be labelled by the quasi-momentum ξ and the band index m,sine the spatial periodiity of the system, with period qn, permits to use the Blohwave deomposition. One �nds that, for su�iently large n and for λ > 2, theeigenfuntions are indeed haraterized by periodi replia of exponentially loal-ized funtions within eah period of the potential, that in the limit n→ ∞ tend toa single loalized funtion [91℄.Let us now onsider the same problem from the point of view of the dynamialproperties. The time evolution for α = (
√
5 − 1)/2 has to be ompared to theone obtained using the approximant of order n in the Fibonai sequene. For any�nite value of n the system is periodi, with wavelength qn, and the di�usion of aninitially loalized wavepaket is expeted to be ballisti (w(t) ∼ t). However, in the
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Figure 3.6: Modulus square of the wavefuntion |ψj |2 for di�erent values of n,plotted at a �xed evolution time t = 1000, for λ = 7 and β = 0. The initialwavepaket at t = 0 is a δ-funtion loalized at j = 0. The vertial arrows are drawnat the positions qn/2.limit n→ ∞ one must reover the results of the Aubry-André model, with a ritialbehaviour for λ = 2 and loalized states for λ > 2. The approah to this limit innontrivial and involves the harateristi time and length sales of the system.In Fig. 3.5 we �rst show our results for the di�usion of a δ-like wavepaket ina lattie with the ritial value λ = 2. For any �nite n the wavepaket exhibits asubdi�usive spreading (w(t) ∼ tγ with γ ≈ 0.5), as in the inommensurate ase,within an initial time interval. Then, at time τ , the width starts growing as in aballisti expansion in a periodi lattie. The transition between the two regimesturns out to our when the width of the wavepaket beomes of the same order ofthe spatial periodiity of the lattie. The transition time, τ , indiated by the arrowsin Fig. 3.5, inreases with the order n of the approximants and the orrespondingwidth, w(τ) exhibits a linear dependene on the periodiity of the system, qn1.The role of the spatial periodiity is even more evident if one plots the densitydistribution in the regime of loalization, as shown in Fig. 3.6 for λ = 7 and t = 1000.In this �gure the arrows are drawn at the positions qn/2. As one an see, the1A linear �t of the width w(τ ) at the transition time τ , as a funtion of the spatial periodiity,gives [w(τ )](qn) = aqn+ b, with a = 0.547(4) and b = 0.8(2). The times τ 's and the relative widths
w(τ )'s have been determined by �tting the subdi�usive behaviour of the inommensurate ase andthe linear behaviours of the ommensurate ases and �nding the intersetion points between thesetwo �ts.
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Figure 3.7: Time evolution of the width of the wavepaket w(t) of noninteratingpartiles, starting from a single-site δ-funtion, for λ = 3 and for di�erent values of
n.deviations from the density distribution of the inommensurate ase (n → ∞) areaused by the spreading of the lateral omponents of the distribution, i.e., those ata distane of the order of, or larger than qn/2. The asymptoti behaviour (t→ ∞)is always ballisti. However, for a �nite t and for λ > 2 the entral part of thedensity distribution (within a width of order qn) exhibits an exponential loalization,independent of n, and is almost indistinguishable from the one predited for theinommensurate lattie. The spreading of the low density tails a�ets the behaviourof the width de�ned in Eq. (3.22). An example is shown in Fig. 3.7. For short timesthe ontribution of the expanding tails is negligible, while for later times the widthinreases as in a ballisti expansion. It is worth stressing, however, that these e�etsof the low density tails are expeted to be hardly detetable in atual experiments,due to the �nite resolution in the measurement of the density distribution.Given the typial timesale and optial resolution of the experiments with ultra-old gases in optial latties, our analysis on�rms that the transition from di�usionto loalization observed in Ref. [25℄ an orretly be interpreted in terms of thepreditions of the Aubry-André model.3.4 Loalization of ultraold atoms in momentum spaeIn the literature the evolution of wavepakets in the Aubry-André model has been in-vestigated mainly in real spae, looking for signatures of the transition from ballistispreading to subdi�usion and loalization, both in theory [79, 31℄ and experiments[25, 66℄. Here we fous on the dynamis of the momentum distribution and iden-



3.4. Loalization of ultraold atoms in momentum spae 35tify measurable e�ets of the transition from di�usion to loalization in momentumspae. This is relevant for urrent experiments with ultraold atoms, where themomentum distribution is aessible via time of �ight measurements and, typially,with an higher auray than in real spae. In addition, our results provide omple-mentary information for a better understanding of the key role played by duality ofthe Aubry-André model.In the following we �rst introdue the Aubry-André model in momentum spae,show its onnetion with the dual spae and disuss its loalization properties. Wethen disuss the presene of periodi osillations in the dynamis of wavepaketsin the Aubry-André model, both in momentum and in real spae and we interpretthese osillations in terms of a simple theoretial model. Finally we identify anobservable quantity that ould be used in a feasible experiment for the observationof the Aubry-André transition in momentum spae.In this setion we will fous on the ase of a rational value of α whih an bewritten as the ratio of two integer numbers α = p/q. In this situation the solutionof Eq. (3.19) an be restrited to a region of size N = q, whih oinides with thespatial periodiity of the system. As we have desribed in Setion 3.3.1 the ase ofirrational α an be obtained as a limit of a ontinued fration approximation.3.4.1 Aubry-André model in momentum spaeLet us �rst explain how one an introdue the momentum distribution starting froma disrete desription as the one given by Eq. (3.19). The ontinuous wavefuntionassoiated to our disrete system is given by
ψ(x) =

∑

j

ψjwj(x) (3.24)where wj(x) = w(x − j) are the Wannier funtions of the primary lattie and wehave expressed the distanes in units of lattie spaing. The momentum distribution
|ψ̃(k)|2 an be alulated by taking the Fourier Transform of wavefuntion (3.24)and one �nds

ψ̃(k) =
√
Nfkw̃(k) (3.25)where w̃(k) is the Fourier transform of the Wannier funtion entered on the lattiesite j = 0 and we have introdued fξ whih is the disrete Fourier Transform (DFT)of ψj

fξ =
1√
N

∑

j

ψje
−iξj. (3.26)Here we use ξ to indiate the quasi-momentum. From a physial point of view per-forming the DFT orresponds to a projetion of the disrete wavefuntion on thebasis of quasi-momentum eigenstates. The allowed values of ξ in our system aregiven by ξ = (2π/N)k and are restrited to the �rst Brillouin zone, ξ ∈ [−π, π]. Inthe following we will perform our analysis onsidering the quasi-momentum distri-bution |fξ|2, then its easy to extend our results to the momentum spae using this



36 Chapter 3. Noninterating partiles in quasiperiodi potentialssimple relation that relates the momentum distribution with the quasi-momentumdistribution
|ψ̃(k, t)|2 = N |fk(t)|2|w̃(k)|2. (3.27)By applying the transformation (3.26) to the Aubry-André model one �nds [91℄

i
∂

∂t
fξ = −2 cos(ξ)fξ +

λ

2

(

e−iϕfξ+2πα + eiϕfξ−2πα

) (3.28)whih is the equation desribing the evolution in quasi-momentum spae. Let usnote that the DFT exhanged the potential and the tunneling term with respet toEq. (3.19) and that the tunneling no longer takes plae between nearest neighbouringsites but between momentum omponents di�ering by |∆ξ| = 2πα.In order to have an insight on the loalization properties in the quasi-momentumspae let us reall that Aubry-André showed that the following transformation
dl =

1√
N

∑

j

ψje
ij[2παl+θ]e−iϕl (3.29)maps Eq. (3.19) into an equation for the new variable dl exatly of the same form asEq. (3.19) but with disorder strength 4/λ. This is alled the duality of the Aubry-André model (fr. setion 3.2). Let us note that transformation (3.29) orrespondsto a projetion on a basis of quasi-momentum eigenstates with eigenvalues ξ =

2παl + θ. As a onsequene one an see that there is a strit onnetion betweenthe quasi-momentum spae and the dual spae introdued by (3.29). More preiselythe quasi-momentum ξ an be alulated by multiplying the index l by 2πα andintroduing a phase shift θ. Therefore the amplitudes fξ in quasi-momentum spaean be obtained from the amplitudes dl in dual spae simply with a re-labellingproedure. We an say that (3.26) is related to the dual transformation (3.29) byan arbitrary shift θ and a permutation [97℄. This suggests that the loalizationproperties in quasi-momentum spae are the same of the loalization propertiesof the dual Aubry-André model, exept for the fat that disorder ouples modesdi�ering by |∆ξ| = 2πα instead of neighboring ones.In order to verify our predition on the loalization properties in quasi-momentum spae we will study numerially the evolution of the quasi-momentumdistribution |fξ|2 by �rst solving Eq. (3.19) in real spae using a RK4 algorithmand then mapping the result in quasi-momentum spae by performing the DFT.As initial ondition we hoose a Gaussian wavepaket, ψj(0) = C exp{−j2/2σ2}.The limiting ase of vanishing width σ = 0 will orrespond to a δ-funtion initialondition.Aording to the previous disussion, the loalization properties in momentumspae are opposite with respet to the one of the Aubry-André model in real spae,namely loalization ours for λ < 2, where the wavepaket instead spreads inreal spae. In this regime one thus expets to see only one or few momentumomponents signi�antly populated. Conversely, for λ > 2 the regime is di�usivein momentum spae and loalized in real spae, and one should see a momentum
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Figure 3.8: Quasi-momentum distribution |fξ(t)|2 obtained from the DFT of thesolution of Eq (3.19). Here we use α = 0.2282... and ϕ = 0. The initial wavepaketin real spae is a Gaussian of width σ = 10. Time is given in dimensionless units.Top panel: λ = 1, only few modes are involved and a periodi osillation of theentral and side peaks is observed. The side peaks are at a distane ±2πα from theentral peak. Bottom panel: λ = 5, the evolution is a�eted by the oupling of manymodes and the periodi osillations are no more visible.distribution with many modes oupled together during the evolution of the system.This is indeed on�rmed by our numerial simulations, as shown in Fig. 3.8 for
α = 1064.4/866.6−1 = 0.2282... . This value of the ratio between the wavelength ofthe two latties α has been hosen in order to model the bihromati lattie of theexperiment of Ref. [67℄. For λ < 2, as expeted, we observe loalization in the sensethat just few momentum omponents are populated during the evolution. A strikingfeature is that the quasi-momentum omponents |fξ|2 exhibit periodi osillations,ourring among the entral peak at ξ = 0 and two side peaks at ξ = ±2πα. For
λ > 2 instead many modes are populated and no periodi osillations are observed.3.4.2 Periodi osillations in the Aubry-André modelLet us now haraterize and interpret the periodi osillations that we have observedin the time evolution of the quasi-momentum distribution.We �rst perform a systemati study of these osillations from a numerial pointof view as the disorder strength λ is hanged (always remaining in the regime λ < 2where it is possible to observe the periodi behaviour). We extrat the osillation
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j = 1, 2, 3. The initial ondition is fξ(0) =∑3

j=1 γjgξ,j , where the oe�ients γj aregiven by the standard rules of quantum mehanis. Under these assumptions onehas γj=3 ≡ 0, and the time evolution takes the form
|fξ(t)|2 = (γ1gξ,1)

2 + (γ2gξ,2)
2 + γ1γ2gξ,1gξ,2 cos [(E2 − E1)t] . (3.30)This expression desribes a time-periodi osillation of the relative intensity of theentral and side peaks, with frequeny ν(λ < 2) = |E2 − E1|/2π, given by

ν(λ < 2) = π−1
√

[1− cos(2πα)]2 + λ2/2 . (3.31)
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Figure 3.10: Spatial distribution |ψn|2 obtained from the solution of Eq (3.19)using a single site initial ondition ψj = δj,0. As in Fig. 3.8, we use α = 0.2282...and ϕ = 0. Time is given in dimensionless units. Top panel: λ = 1, the initiallyloalized wavepaket spreads ballistially and there are no visible periodi osillations.Bottom panel: λ = 5, the wavepaket is loalized and a periodi osillation of theentral peak and its nearest neighbors is learly visible.It is worth stressing that, one α is �xed, this frequeny depends only on the dis-order strength λ, but not on the phase ϕ or on the width of the initial wavepaket
σ. This three-mode approximation provides a reasonable desription of the nu-merial results, as shown by the solid line for λ < 2 in Fig. 3.9. The three-modeapproximation beomes inaurate when approahing λ = 2, where more modesare oupled during the evolutions. In order to hek this e�et, one an go onestep further and onsider a �ve-mode approximation in whih the time evolutionouples the quasi-momentum omponents at ξ = 0, ξ = ±2πα, and ξ = ±4πα.This is a straightforward generalization of the three-mode approximation, exeptfor the fat that the di�erential equations for the oe�ients γj(t) do not yield sim-ple analytial expressions and, moreover, the solutions ontain several osillationfrequenies. The red dashed line in the λ < 2 part of Fig. 3.9 is our numerial resultfor the dominant omponent of the frequeny spetrum, solution of the �ve-modeapproximation, whih mostly determines the time evolution of the entral peak. Asexpeted we get a better agreement with the full integration of Eq (3.19) omparedto the three-mode approximation, espeially in the region lose to the transitionpoint λ = 2.In the region λ > 2 the few-mode approximation is expeted to fail in the
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Figure 3.11: Visibility of the osillations in real and quasi-momentum spae as afuntion λ, for ϕ = 0. The numerial points are ompared with the three-mode ap-proximation (full lines). Bottom panel: only few modes have been initially populatedby using a δ-funtion initial wavepaket in real spae and a Gaussian with σ = 10 inmomentum spae. Top panel: many modes have been initially populated by invertingthe initial onditions with respet to the bottom panel.quasi-momentum spae, where the wavepaket is no more loalized. Indeed, in thisregime, we do not see any signi�ant evidene of periodi behaviors in the quasi-momentum distribution (see the bottom panel of Fig. 3.8). Conversely, owing tothe duality of the Aubry-André model, one expets periodi osillations to takeplae in real spae, where the wavepaket is loalized. This is on�rmed by ournumerial integration of Eq. (3.19), as shown in Fig. 3.10. In the top panel the wavepaked spreads ballistially and one annot detet any signi�ant periodi behaviour;onversely in the bottom panel the wavepaket is loalized, while the entral peakand its nearest neighbours osillate periodially. By assuming that the initial densitydistribution is loalized in a single lattie site, j = 0, whih is oupled with thenearest neighboring sites, j = ±1, we obtain a three-mode approximation analogousto the one used before in quasi-momentum spae, but desribing osillations inthe spatial distribution. The senario in real spae is more ompliated beauseone generally observes osillations with several frequeny omponents, whih alsodepend on the phase ϕ. However, in the speial ase ϕ = 0, one �nds just a singlefrequeny, given by
ν(λ > 2) = (2π)−1

√

λ2[1− cos(2πα)]2 + 8 , (3.32)whih is shown as the solid line for λ > 2 in Fig. 3.9. In the same �gure we also plotthe frequeny obtained from the full numerial integration of Eq. (3.19) (blue dots



3.4. Loalization of ultraold atoms in momentum spae 41in the λ > 2 region); in this alulation we have used a Gaussian of width σ = 10as initial shape of the wavepaket, but we have also heked that the frequeny νdoes not depend on σ, exept lose to λ = 2. The dashed line is the result of astraightforward semi-analyti extension to �ve modes, as in the λ < 2 region. It isworth stressing that the ondition for the validity of the few-mode approximationfor the osillations in real spae (ψj = δj,0 or, equivalently, σ . 1) is muh moreonstraining than the one in momentum spae (1/σ . 2πα) from the point of viewof experimental realization.The amplitude of the osillations in both real and momentum spae also hangeswith λ, a�eting its visibility. The latter an be alulated from the frequenyspetrum of the numerial solution of Eq. (3.19), as the ratio between the modulusof the Fourier omponent of frequeny ν(λ) and the modulus of the omponent atzero frequeny. In a onsistent way, one an de�ne the visibility in the three-modeapproximation; for the osillations in momentum spae for λ < 2, the visibility anbe written as
V =

1

2

γ1γ2g0,1g0,2
(γ1g0,1)2 + (γ2g0,2)2

. (3.33)A similar de�nition an be given in real spae for λ > 2. In Fig. 3.11 we showthe visibility of the osillations as a funtion of λ. The points are the numerialresults, while the lines represent the three-mode approximation. We have used twovalues for the width of the initial Gaussian wavepaket, namely σ = 0 (i.e., a δ-funtion) and σ = 10. In the upper panel, the two values of σ are used for λ < 2and λ > 2, respetively. They orrespond to a broad initial wavepaket both inmomentum spae for λ < 2 and real spae for λ > 2. In the bottom panel we useagain the same values of σ, but in the opposite regions, so to have a narrow initialwavepaket in both spaes 2. One an see that the visibility depends signi�antlyon both σ and λ. Again, the three-mode approximation is qualitatively orret,exept near λ = 2. We observe that the three-mode approximation gives a betteragreement for a narrow initial distribution (lower panel), as in the opposite ase ofa broad distribution many modes are initially exited and this approximation is notexpeted to be aurate. Another interesting feature is the e�et of the duality ofthe Aubry-André model. Indeed, in both panels, the results in the region λ < 2almost oinide with those in the region λ > 2 under the hange of variable λ→ 4/λ,provided the initial distributions are broad (upper panel) or narrow (lower panel) inboth momentum and real spaes; this duality also implies the ontinuity at λ = 2.3.4.3 Deteting the Aubry-André transition in momentum spaeSo far we have seen that the time evolution of a wavepaket in the Aubry-Andrémodel exhibits interesting periodi behaviors both in momentum spae, for λ < 2,and in real spae, for λ > 2. Let us stress few di�erenes between our analysisin momentum and real spae. First, in momentum spae the frequeny of the2For σ = 10, the momentum width 1/σ is muh smaller than the distane between oupledmodes, ∆ξ = 2πα.
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Figure 3.12: Phase-averaged intensity of the entral peak in momentum spae,
|f0(t)|2, as a funtion of time and disorder strength λ for a wavepaket with σ = 10.The intensity is given in arbitrary units.osillations does not depend on the relative phase ϕ of the two latties or, in otherterms, on the initial position of the wavepaket, while this is not the ase for realspae. Getting rid of the phase dependene is positive sine it is a parameter whihwould be hardly ontrollable in typial experiments. Seond, the ondition for theappliability of the few-mode approximation is less restritive in momentum spae,sine the width of the initial wavepaket an be easily made smaller than the ouplingdistane between modes.This observations suggest that the osillations of the entral and side peaks inthe momentum distribution an be e�iently used to probe the transition fromdi�usion to loalization in the Aubry-André model. A possible strategy onsists ofmeasuring the intensity of the entral peak as a funtion of time for di�erent valuesof λ, exploiting the fat that for λ > 2 the osillations are phase dependent, while for
λ < 2 they are not. Atually, in typial experiments with ultraold atoms, the phase
ϕ varies at random at eah realization, so that performing an average over manyrealizations at �xed λ is equivalent to an average over numerial simulations withdi�erent ϕ. Thus one expets that the osillations vanish for λ > 2 (phase sensitiveregime), but remain learly visible for λ < 2 (phase independent regime). This isshown in Fig. 3.12, where the average has been done over 50 di�erent values of thephase ϕ for eah value of λ. Indeed the behavior of |f0(t)|2 exhibits a transition at
λ = 2. From the same �gure one an also extrat the frequeny ν(λ < 2). By usingthe experimental parameters of Ref. [67℄, with α = 1064.4/866.6 and λ = 1, theosillation period turns out to be of the order of 5 ms. This is a time of the orderof the duration of typial experiments with ultraold atoms and that an therefore
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Chapter 4Weakly interating bosons inquasiperiodi potentials
In the previous hapter we have disussed the di�usion and the loalization prop-erties of noninterating partiles in a 1D quasiperiodi potential. Now we want toproeed further by onsidering the more general ase of interating partiles, havingin mind the appliation to ultraold gases. Whether and in whih way interationbetween partiles an a�et the loalization and di�usion properties of the system isa longstanding issue, whih was raised at the very beginning of the story of Andersonloalization [29℄. This is, for instane, a natural question if one wants to study theondutane of eletrons in a disorder material where interations are intrinsiallypresent and annot be removed.Ultraold gases represent a powerful tool for the study of this interplay. Infat both the strength of the interation and of the disorder an be easily tunedin experiments. The former using Feshbah resonanes, the latter ating on theintensity of the laser light that produes the optial disorder [27, 28, 98, 67, 68, 33℄.From the theoretial point of view, various approahes an be used to study aweakly interating Bose gas in a 1D disordered system. For instane, a possiblemethod onsists of onsidering the transmission of a Bose-Einstein ondensate ina disorder region of �nite extent [99, 100, 101℄. Another possibility orresponds toonsider the properties of a Bose gas at equilibrium whih is on�ned in a box of�nite size [102, 103, 104, 105, 106℄. In this hapter, instead, we will study this inter-play by onsidering the expansion of a Bose-Einstein ondensate into a disorderedpotential. The experimental on�guration that we have in mind is similar to theone that has been used for the observation of Anderson loalization [24, 25℄ but thistime ontrolling also the interation between atoms. More preisely we treat theinteration within a mean �eld approah, whih is known to be very e�etive for thedesription of weakly interating Bose gases [107℄, and we onsider a bihromatioptial lattie that introdues the exponential loalization in absene of interationamong partiles. This problem an be e�iently modelled using the disrete nonlin-ear Shrödinger equation as we will show in setion 4.1. Our hoie of this model of(quasi-)disorder is motivated by its lose relation with the experimental setup usedin Ref. [25℄ for the observation of Anderson loalization, whih is partiularly suit-able for the inlusion of interations [67, 68, 33℄. Notably, this approah is relevantalso for experiments with light propagation in photoni latties, where a nonlinearinteration term an be introdued using a Kerr media [65, 66℄.The main result that we obtain is that the spreading behaviour is determined



46 Chapter 4. Weakly interating bosons in quasiperiodi potentialsby the ompetition between two di�erent e�ets introdued by the interation: onthe one hand it favours loalization through the self-trapping mehanism, on theother hand it destroys the loalization indued by disorder leading to a subdi�usiveexpansion of wavepakets. These two e�ets will be disussed in setions 4.2.1 and4.2.2 respetively. We also investigate the role played by the initial shape of theondensate in the dynamis of the system. Our alulations show that, if the on-densate initially oupies a single lattie site, the dynamis of the gas in the lattie isdominated by self-trapping in a wide range of parameters, even for weak interation.Conversely, if the di�usion starts from a ondensate with Gaussian shape, extendedover several lattie sites, self-trapping is signi�antly suppressed and the destrutionof loalization by interation is more easily observable. Finally in setion 4.3, weompare the results of our numerial simulations with an experimental study of thespreading of a weakly interating Bose-Einstein ondensate in a bihromati optiallattie [33℄.4.1 Disrete nonlinear Shrödinger equationIn this setion we show that a gas of weakly interating ultraold bosons, in thepresene of a one dimensional bihromati optial lattie and a tight harmoni on-�nement in the radial diretion, an be desribed by means of a disrete nonlinearShrödinger equation (DNLS).It is known that a Bose-Einstein ondensate of weakly interating bosons at zerotemperature an be onveniently desribed by the Gross-Pitaevskii (GP) equation[107, 108, 109, 110, 111℄
i~
∂Ψ(~r, t)

∂t
= − ~

2

2m
∇2Ψ(~r, t) + V (~r)Ψ(~r, t) + g|Ψ(~r, t)|2Ψ(~r, t), (4.1)where Ψ(~r, t) is a omplex funtion that represents the ondensate wavefuntion.Its modulus square is the density of partiles and the total number of partiles isgiven by
∫

|Ψ(~r, t)|2 d~r = N. (4.2)The quantity g is a oupling onstant whih aounts for the interation betweenatoms and is determined by the s-wave sattering length as by
g =

4π~2as
m

. (4.3)For the external potential V (~r) let us onsider a tight harmoni on�nementin the transverse plane and a one dimensional bihromati optial lattie in theaxial diretion. If the radial on�nement is strong enough one an assume that theradial motion is ompletely frozen and that all the dynamis takes plae in the axialdiretion. In this ase the ondensate wavefuntion an be written as Ψ(~r, t) =√
Nψ(x, t)Φ⊥(~r⊥) where the wavefuntions ψ(x, t) and Φ⊥(~r⊥) are normalized tounity. This fatorization is a good approximation as long as the separation between



4.1. Disrete nonlinear Shrödinger equation 47the ground state and the �rst exited state of the radial harmoni on�nement ~ω⊥ islarge ompared to the other energy sales of the system suh as the thermal energyor the mean �eld interation energy.Integrating out the radial diretion and dropping some onstant terms Eq. (4.1)an be redued to a one dimensional Gross-Pitaevskii equation with a renormalizedoupling onstant [112, 113℄
i~
∂ψ(x, t)

∂t
= − ~

2

2m

∂2

∂x2
ψ(x, t) + Vb(x)ψ(x, t) +Ng1D|ψ(x, t)|2ψ(x, t), (4.4)where Vb(x) is the one-dimensional bihromati optial lattie de�ned by Eq (3.1)and g1D is an e�etive one-dimensional oupling onstant given by
g1D = g

∫

|Φ(~r⊥)|4 d~r⊥. (4.5)At this point one an follow a disretization proedure similar to the one thatwe have desribed in setion 3.1. By deomposing the wavefuntion on the basis ofWannier states of the primary lattie, ψ(x) =∑j ψjwj(x), one �nds that Eq. (4.4)transforms into an equation for the evolution of the oe�ients ψj , that is
i~
∂ψj

∂t
= −J(ψj+1 + ψj−1) + ∆cos(2παj + ϕ)ψj +NG|ψj |2ψj (4.6)where the tunneling energy J and the strength of the potential ∆ are given byEq. (3.6) and Eq. (3.8) respetively while G is related to g1D through

G = g1D

∫

|wj(x)|4 dx. (4.7)Finally, by expressing energy in units of J and time in units of ~/(JER1), we obtainthe disrete nonlinear Shrödinger equation
i
∂ψj

∂t
= −ψj+1 − ψj−1 + Vjψj + β|ψj |2ψj (4.8)with Vj = λ cos(2παj + ϕ), λ = ∆/J and

β = NG/J. (4.9)This equation is a disretized version of the usual GP equation and is of great impor-tane for what follows sine it will be studied in detail in this and in the next hapterof this thesis. Similar versions of a disretized Gross-Pitaevskii equation have beenalready used to investigate the dynamis of ondensates in di�erent situations (seefor instane Ref. [114℄). Within this mean-�eld desription the interatomi intera-tion is inluded just by adding a nonlinear term in the equation of motion, thereforein the following we will use the terms interation and nonlinearity interhangeably.Let us stress that the dimensionless parameters λ and β whih represent thestrength of the quasi-disorder and of the mean-�eld interation, respetively, are



48 Chapter 4. Weakly interating bosons in quasiperiodi potentialsthe two key parameters that determine the properties of Eq. (4.8). We note thatthere are two onserved quantities assoiated to Eq. (4.8), the �rst is the norm Nof the one dimensional ondensate wavefuntion ψj

N =
∑

j

|ψj |2, (4.10)that in our ase is always equal to 1, and the seond is the energy of the system
H =

∑

j

−(ψj+1ψ
∗
j + ψ∗

j+1ψj) + Vj|ψj |2 +
1

2
β|ψj |4. (4.11)The �rst two terms in this expression represent the linear part of the energy, inpartiular the �rst is the kineti energy while the seond is the potential energy.The third term represents the nonlinear part and it is often alled the mean-�eldinteration energy [107℄.4.2 E�ets of the interationWe study the e�ets introdued by the interation mainly by studying the timeevolution of an initially loalized wavepaket as done for the noninterating ase insetion 3.3. We solve Eq. (4.8) using a RK4 algorithm and as initial ondition we useboth single site δ-funtion wavepakets and Gaussian wavepakets of initial width σ(fr. setion 3.3). Let us reall that in the ase of noninterating partiles (β = 0)the evolution is governed by the Aubry-André Hamiltonian and a transition oursat λ = 2 from an extended regime (λ < 2), where wavepakets expand ballistially,to a loalized regime (λ > 2), where wavepakets remain loalized after a transientinitial expansion.In the following we disuss two e�ets introdued by the interation, namely self-trapping, whih tends to loally trap part of the wavepaket, and the destrution ofAnderson loalization, whih indues spreading. These two ompeting e�ets haveto be arefully analysed in order to orretly interpret the expansion of a wavepaket.4.2.1 Self-TrappingSelf-trapping is a loalization phenomenon, di�erent from Anderson loalization,that ours when the interation is stronger than a ritial value βc. It is a quitegeneral phenomenon that takes plae also for a purely periodi system withoutdisorder [114, 115, 116, 117℄ and double-well potentials [118, 119, 120, 121, 122℄.An intuitive understanding of the origin of the self-trapping in a lattie is based onenergy onservation arguments [123℄. Let us onsider separately the ontributionto the energy that omes from the kineti and potential terms together and theontribution that omes from the interating term, H = H0(t) +Hint(t) where

H0(t) =
∑

j

−(ψj+1ψ
∗
j + ψ∗

j+1ψj) + Vj|ψj |2 and Hint(t) =
∑

j

1

2
β|ψj |4. (4.12)
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Figure 4.1: Width w(t), partiipation number P (t), and density distribution
|ψj(t = 1000)|2 for two values of the interation strength β, below (β = 1.4, redlines) and above (β = 1.6, blak lines) the transition from di�usion to self-trapping.Here the initial state is a single-site δ-funtion with ϕ = 0 and λ = 0.8.If the gas is subjet to a periodi potential in the tight-binding approximation and itsdynamis is restrited to the lowest Bloh band, as supposed in deriving Eq. (4.11),the term H0 in the Hamiltonian is upper bounded. Let us all this upper bound
Emax

0
1. Whenever the energy of the interating system is larger than this upperbound, H > Emax

0 , one an prove that the system annot reah a situation where
Hint(t) = 0, at any t > 0, without violating energy onservation. This meansthat, under these onditions, part of the interation energy must be trapped inthe system in the form of a loalized peak that does not spread. In other words,whenever H > Emax

0 an initially loalized wavepaket annot spread to zero in thewhole spae. This argument, in general, does not provide a preise quantitativeestimate of the ritial value βc, but it gives a reasonable upper bound.Self-trapping of partiles in the ontext of the disrete nonlinear Shrödingerequation has been studied for di�erent types of external potentials suh as periodipotentials [116℄, quasiperiodi [116, 124, 125℄ potentials and random potentials [123,126℄. In partiular a 1D quasiperiodi potential of the same type as (3.11) for λ ≤ 2has been already disussed in Ref. [116, 124℄. Here we provide a more systematialulation of βc and we ompare the di�usion from a single-site to the one from aGaussian wavepaket.A signature of the presene of self-trapping is a saturation of the partiipation1Due to the symmetry of the problem the upper bound of the spetrum is given by the widthof the full spetrum, ∆, divided by two, Emax
0 = ∆/2,



50 Chapter 4. Weakly interating bosons in quasiperiodi potentialsnumber P (t) that, for β > βc, reahes an asymptoti �nite value, due to the trappingmehanism ourring at the enter of the wavepaket, while the width w(t) keepsinreasing owing to the expanding tails [116, 123℄. An example of self-trapping tran-sition is shown in Fig. 4.1, where we show the results obtained by solving Eq. (4.8)for di�usion from a single-site in a quasiperiodi potential with α = (
√
5− 1)/2 and

λ = 0.8. In the �gure one an see the typial hange of behaviour that ours when
β rosses the ritial value βc that for the example shown in �gure is approximatelyequal to 1.5. The same �gure shows also the di�erene in the density distributionsat t = 1000. For β = 1.4 (red lines), below the ritial value βc both the widthand the partiipation number grows ballistially and no signatures of self-trappingan be deteted in the shape of the paket. Instead for β = 1.6 (blak lines), abovethe ritial value βc, the presene of a strongly loalized self-trapped peak is learlyobservable in the entral part of the wavepaket. This leads to a strong di�erene inthe behaviour of the partiipation number that saturates to a onstant value after atransient time. The lateral, low density tails of the wavepaket are instead similarin the two ases resulting in a similar behaviour of the width.Let us stress here that self-trapping, even if it is a phenomenon that leads toloalization, is ompletely di�erent from Anderson loalization. First of all theruial point for the ourrene of self-trapping is the presene of interations andof an upper bounded spetrum. Therefore, it an be observed in a variety of di�erentsystems, regardless of the presene of disorder. Conversely, Anderson loalizationtakes plae in presene of disorder and for noninterating partiles. Seondly self-trapping leads only to a partial loalization sine the entral part of the wavepaketremains loalized while its tails keep expanding. Again this is ompletely di�erentfrom Anderson loalization where a omplete stop of the expansion takes plae andthe tails derease exponentially to zero.We now study in detail the self-trapping transition within the quasiperiodimodel de�ned by Eq. (4.8) when the disorder strength is varied aross the transitionpoint at λ = 2 onsidering a single site-initial ondition and di�erent values of thephase of the potential ϕ. By systematially looking at the numerial results for w(t),
P (t), |ψj(t)|2 in the β vs. λ plane, we an identify the set of parameters for whihself-trapping takes plae and obtain the diagram shown in Fig. 4.2. The values of
βc are represented by red irles and blue squares for ϕ = π and 0, respetively.We have identi�ed three di�erent regions orresponding to three di�erent be-haviours in the diagram. In region I, above the red irles, all points orrespond toself-trapped states. For λ < 2 we �nd that the value of βc is pratially independentof the phase ϕ and dereases as λ is inreased. In region II, we observe di�usion,often aompanied by solitoni strutures and disrete breathers eventually spread-ing. Similar strutures in the numerial solutions of Eq. (4.8), for di�usion from asingle-site and for λ = 0, have been already found in Ref. [116℄. For λ > 2 we �ndthat βc is strongly ϕ-dependent. In the �gure we show the results for the two lim-iting values ϕ = 0 and ϕ = π; in partiular, in region III, we �nd that all states areself-trapped for ϕ = 0 while they are di�usive for ϕ = π. The semi-axis λ > 2 and
β = 0 orresponds to the regime of disorder indued loalization for noninterating
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Figure 4.2: Critial value of the interation strength for the transition to self-trapping, βc, as a funtion of the disorder strength, λ, for di�usion from a singlelattie site and for ϕ = π (red irles) and ϕ = 0 (blue squares). The red and bluedashed lines are the orresponding upper bounds for βc obtained by alulating thebandwidth of the single-partile spetrum and using energy onservation arguments.The diagram is shematially divided in three regions I, II and III. All states in Iare self-trapped; in II, one �nds di�usion, with soliton-like strutures and disretebreathers; in III, the transition from di�usive states to self-trapping strongly dependson the value of the phase ϕ (i.e., the position of the initial wavepaket). The semi-axis λ > 2 and β = 0 orresponds to the regime of disorder indued loalization fornoninterating partiles.partiles.The phase dependene of βc for λ > 2 an be qualitatively explained by the en-ergy onservation arguments already mentioned above. In partiular, we numeriallyalulate the maximum energy, Emax
0 , in the lowest Bloh band of the noninterat-ing single-partile spetrum and we ompare this value to the initial energy of theinterating system, whih is given by H = λ cos(ϕ)+β/2. The upper bound for thetransition to self-trapping is then given by the ondition H = Emax

0 , whih implies
β = 2(Emax

0 ± λ)where the plus and the minus signs holds for ϕ = π and ϕ = 0, respetively. Thesetwo upper bounds are represented by the blue and red dashed lines in Fig. 4.2.Fig. 4.2 shows that, in the ase of di�usion from a single-site, the self-trappingmehanism plays a rather important and nontrivial role, leaving almost no spae
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Figure 4.3: Time evolution of the width of the wavepaket w(t) (a) and of thepartiipation number (b) for λ = 2.5 and for an initial Gaussian wavepaket with
σ = 5. We ompare the noninterating ase, β = 0, with three interating ases:
β = 1, 10, 50. The blak dashed lines represent a guide to the eye. Their slope is
0.2, 0.3 and 0.34 and is the same in (a) and (b).to the observability of the interplay between disorder and interation. The regionwere this interplay might be observed, namely for λ > 2 and small β, where oneexpets to see the destrution of loalization due to interation, it is also the regionwhere the dependene on the phase ϕ is the largest. Unfortunately, in typial exper-imental situations with Bose-Einstein ondensates, the phase ϕ is not ontrollable.Moreover, in the experiments the initial distribution of atoms in the lattie sites ismore similar to a Gaussian than a δ-funtion. This suggests that, while the single-site di�usion is oneptually important and widely investigated from the theoretialviewpoint, the di�usion from a Gaussian is also interesting and worth exploring.4.2.2 Destrution of Anderson loalizationLet us now onsider the e�ets of the interation on the expansion of a wavepaket,in a regime where all the single partile eigenstates are loalized (λ > 2). Wehoose the system parameters in order to rule out self-trapping so that the interplaybetween interation and disorder indued loalization an be investigated. As initialwavepaket we use a Gaussian distribution with a size that is larger than the typialsize of the eigenstates of the linear system. This hoie is onvenient sine it stronglysuppresses the dependene of the dynamis of the system on the lattie phase ϕ.This leads to a simpler analysis of the interplay between the two key parameters λand β.



4.2. E�ets of the interation 53The main result of our observations is that, as the interation is turned on, awavepaket that was loalized for β = 0 starts to expand subdi�usively. We observean asymptoti growth of both the width w(t) and the partiipation number P (t),aording to the following laws:
w(t) ∼ tγ1 P (t) ∼ tγ2 (4.13)with γ1 and γ2 in the range 0 − 0.5. Let us reall that ballisti expansion wouldorrespond to γ = 1 and normal di�usion to γ = 0.5. In the absene of self-trappingwe �nd that the oe�ients γ1 and γ2 are nearly equal, therefore in the followingwe will use γ ≈ γ1 ≈ γ2. A typial example of the observed deloalization proess isshown in Fig. 4.3. The e�et of the interation is studied onsidering the di�usionof an initial Gaussian wavepaket with σ = 5 and a disorder strength just above theloalization transition λ = 2.5. The noninterating ase, whih remains loalized,is ompared with three di�erent values of the interation parameter, β = 1, β = 10and β = 50. Already for β = 1 there is an evident deloalization and this e�etinreases as β is inreased in the sense that γ beomes larger and the deloalizationtakes plae earlier. The three blak dashed lines represent a guide for the eyes. Theyrepresent an asymptoti spreading law of the type desribed by (4.13) with spreadingexponents γ equal to 0.2 (β = 1), 0.3 (β = 10) and 0.34 (β = 50) and they are thesame in panel (a) and in panel (b). The presene of these lines stresses the fatthat the exponent hanges as the value of the interation strength is inreased andsuggests the equality between the spreading exponents for w(t) and P (t). A verysimilar behaviour is obtained also for the di�usion from a single-site, provided thephase ϕ and the interation β are hosen in suh a way to avoid self trapping (e.g.,in region III of Fig. 4.2 with ϕ = π). When the disorder strength λ is inreased theloalization gets more robust, in the sense that the onset of subdi�usive spreadingtakes plae for later times and γ beomes smaller. For large λ we reah a situationwhere the deloalization proess is no longer observable within our simulation time.This is shown in Fig. 4.4, where we ompare the time evolution of a Gaussianwavepaket for �xed β and for inreasing values of the disorder strength λ.Similar results on the dynamis of wavepakets in presene of Anderson loal-ization have been reently reported for purely random systems [127, 128, 126, 129℄.In these studies they onsidered the disrete nonlinear Shrödinger equation withon site energies that are given by an unorrelated random sequene distributed a-ording to a square distribution Vj ∈ [−W/2,W/2]. They numerially observed asubdi�usive expansion similar to the one that we have desribed in this setion andsuggested that the asymptoti value of the spreading exponent, in the ase of arandom potential, is universal and approximately equal to 1/6. A theoretial modelthat interpret the origin of the subdi�usive spreading as due to the presene ofresonant modes inside the paket has been developed in [126, 129℄ and provides avalue of the spreading exponent that agrees very well with the numerial one. Morereently it has been shown that for large values of the nonlinear parameter a fastertransient expansion an be observed where γ = 1/4 [130, 131, 132℄.
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Figure 4.4: Time evolution of the width of a Gaussian wavepaket with σ = 5, for
β = 10 and di�erent values of the disorder strength λ.As we have seen in this setion, the results that we extrat from Fig. 4.3 forthe spreading exponents γ in a quasiperiodi potential are signi�antly larger thanthose found for purely random systems. In partiular for the highest values of βhere onsidered, the values of γ are larger than both 1/6 and 1/4. This suggeststhat the omparison of our results with those obtained for random systems is notso trivial and deserves a more detailed study. This issue will be addressed in thenext setion, as well as in the next hapter. In partiular, in the next setionwe disuss the omparison between our theoretial preditions for the spreadingexponent and the experimental results, while in the next hapter we will fous onthe long-time asymptoti behaviour, making a bridge between the numerial resultsand the models of Refs. [126, 129, 130℄ applied to quasiperiodi systems.4.3 Experimental observation of subdi�usionIn this setion we introdue the experiment realized in Florene on the expansionof a loud of interating ultraold atoms in a bihromati optial lattie [33℄ andompare the experimental results with the numerial ones obtained with the one-dimensional disrete nonlinear Shrödinger equation.4.3.1 Experimental setupThanks to the great ontrollability of the relevant parameters in experiments withultraold atomi systems, it has been possible to observe the expansion of a loud ofatoms in a ontrolled disorder and with a tunable interatomi interation. The setup



4.3. Experimental observation of subdi�usion 55is the same of previous experiments [24, 25℄: the ondensate is �rst produed andkept on�ned within a three dimensional harmoni trap; it is then loaded into an ad-ditional one-dimensional disordered potential; �nally, by swithing o� the harmonion�nement along the axial diretion, it is let free to expand into the disorderedpotential. The strength of the disorder an be ontrolled by ating on the intensityof the lasers that produe the potential, while the strength of the interatomi inter-ation is ontrolled by means of an external magneti �eld, thanks to a Feshbahresonane. Using these two experimental �knobs�, it is possible to hange the twokey parameters of the problem, thus allowing a detailed investigation of the interplaybetween interation and disorder indued loalization.Let us now disuss more in detail the experimental proedure. A Bose-Einsteinondensate of 39K atoms is produed in an optial trap whih gives a radial on-�nement of 2π × 50 Hz and an axial on�nement of 2π × 70 Hz and ontains about
N = 5× 104 atoms. The disordered potential is experimentally realized using a onedimensional bihromati optial lattie that an be desribed by Eq. (3.1)

V (x) = s1ER1 sin
2(k1x) + s2ER2 sin

2(k2x+ ϕ) . (4.14)It is formed by superimposing two simple optial latties of di�erent wavelengths(λ1 = 1064.4 and λ2 = 859.6), eah of them reated by a laser �eld in the standingwave on�guration. This potential is haraterized by a lattie spaing d = λ1/2,a tunneling energy J and a disorder strength ∆. The lattie beams provide anadditional radial on�nement of ω⊥ = 2π × 50 Hz.The ondensate is �rst loaded into a quasiperiodi lattie with a onstant ∆ = 3Jand the sattering length is �xed at as = 280a0. At a given time t = 0 the optialtrap is suddenly swithed o� letting the interating atomi loud free to expandalong the bihromati optial lattie. At the same time, the disorder strength, ∆and the sattering length as are suddenly hanged and tuned to their �nal valuesthat will stay �xed for the rest of the expansion. The time evolution of the radially-integrated spatial distribution n(x) of the atomi loud is then monitored by insitu absorption imaging up to t = 10 s. The spreading is quanti�ed by measuringthe width of the atomi loud whih is alulated as the square root of the seondmoment of the spatial distribution
σ(t) =

√

∫

x2n(x) dx, (4.15)where the spatial distribution n(x) has been normalized to one. The strength of theinteration is experimentally quanti�ed by an estimation of the interation energyper partile Eint of the loud at t = 0, whih is given by
Eint = g

Ns

2

∫

|φ(~r)|4 d~r (4.16)where g = 4π~2as/m is the oupling onstant, Ns is the mean atom number per siteand φ(~r) is a Gaussian approximation of the single site wavefuntion.
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Figure 4.5: Time evolution of the width σ of the expanding loud for di�erent initialinteration energies: Eint = 0 (squares), Eint = 1.8J (triangles), and Eint = 2.3J(irles). The ontinuous lines are the �t with Eq.(1). The dashed lines show the�tted asymptoti behavior, while the dash-dotted line shows the expeted behavior fornormal di�usion. The lattie parameters are s1 = 5, ∆/J = 5.The initial wavepaket is always reated in the same experimental onditions,sine it is independent from the �nal parameters of the expansion and it has beenestimated to oupy on average Ns = 20 ± 7 lattie sites. The typial disorderstrength that is used in the experiment is λ = ∆/J ≈ 5. Let us note that weare in a regime where the size of the initial wavepaket is muh larger than theloalization length of the single-partile eigenstates Lloc. As a onsequene we knowthat the behaviour of the wavepaket will be determined just by the disorder andthe interation strength and we an forget about the value of the phase ϕ betweenthe two latties.In Fig. 4.5 we show a typial example of a set of experimental runs that mea-sure the time evolution of the width of the expanding atomi loud for λ = 5. Weompare the noninterating ase Eint = 0 (blue squares) with two ases where theinteration is di�erent from zero, Eint = 1.8 (green triangles) and Eint = 2.3J (redirles). In absene of interation the system is loalized and the width essentiallydoes not hange in time. Only an extremely slow expansion an be deteted, pre-sumably due to tehnial noise. The noise is mostly provided by the vibrations ofthe retrore�eting mirrors used to reate the two latties that re�ets in a disorderpotential that hanges with time. The introdution of a repulsive interation allowsthe wavepaket to expand signi�antly: the expansion is however not ballisti sine
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Figure 4.6: Spreading exponent γ vs the initial interation energy Eint in theexperiment (triangles and squares) and simulations (grey irles). The experimentaldata are for ∆/J ≈ 5 and two di�erent values of the depth of the main lattie:
s1 = 7 (red triangles) and s1 = 5 (blue squares). The vertial bars are the �ttingerror of Eq.(1) to the data, while the horizontal bars indiate the statistial error.its veloity dereases during the time evolution, as the width of the loud inreases.In order to haraterize the spreading more in detail and lassify the type ofspreading behaviour, the experimental urves for the width σ are �tted with thefollowing funtion

σ(t) = σ0

(

1 +
t

t0

)γ (4.17)with three �tting parameters σ0, to and γ. Here σ0 represents the initial width ofthe atomi loud, t0 is an �ativation time� and γ is the exponent that haraterizethe type of spreading behaviour. We note that Eq. (4.17) reprodues the asymptotibehaviour σ ∼ tγ that we have introdued with Eq. (4.13) and it has the additionaladvantage to extrat information also from the measurements at short times. Thisallows to derease the unertainty on the parameters extrated from the �ttingproedure. Notably Eq. (4.17) gives a good desription of the behaviour of theatomi loud also for short times.The values of γ extrated from the �tting proedure are always smaller than
0.5 and are larger for inreasing interation strength. This indiates a subdi�usiveexpansion and on�rms qualitatively the results presented in setion 4.2.2. Morepreisely the values of the spreading exponent for Eint 6= 0 are in the range γ ≈
0.2 − 0.4. The results of a systemati investigation of the value of the spreadingexponent are shown in Fig. 4.6 as a funtion of the interation energy Eint and for



58 Chapter 4. Weakly interating bosons in quasiperiodi potentialsa �xed value of the disorder strength λ = 5. One an see a lear inrease of γ with
Eint up to γ ≈ 0.4. The two set of points orrespond to di�erent values of thedepth of the primary lattie s1 = 5 (blue squares) and s1 = 7 (red triangles). Thefat that the two datasets lie approximately on the same urve indiates that thebehavior of the system does not depend on the spei� value of s1 but just on theratio between the two tight binding parameters ∆ and J . This on�rms that a tightbinding formalism provides a good desription of the experiment.4.3.2 Comparison with the disrete nonlinear Shrödinger equa-tionLet us now ompare the values of γ extrated from the experiment and those thatan be obtained from the disrete nonlinear Shrödinger equation. In setions 3.1and 4.1 we disussed how it is possible to onnet a loud of expanding atoms ina one dimensional bihromati optial lattie to the disrete nonlinear Shrödingerequation and we gave a set of expressions (3.6), (3.8), (4.9) that allows to onnetthe experimental parameters to the one of the theoretial model.We now write down the expliit expressions that we have used to onnet thetheoretial parameters with those of the experiment. Let us start onsidering thetunneling energy J . At present we know that J an be alulated using expression(3.6) and an estimation of the Wannier funtion w(x). Anyway there is also anotherway to obtain the value of the tunneling energy using the fat that, in absene ofan external potential, J is proportional to the bandwidth of the lowest band ofthe system. In partiular an exat formula for the bandwidth, whih is valid when
s1 ≫ 1, yields J = (4/

√
π)ER1s

3/4
1 exp(−2

√
s1) [133℄. An even more preise formulaan be obtained by numerially solving the band struture and performing a �t tothe alulated urves [134℄

J = 1.43ER1s
0.98
1 e−2.07

√
s1 (4.18)An estimation of the intensity of the quasiperiodi modulation ∆ an be alulatedby solving the integral in Eq. (3.8) using a Gaussian approximation for the Wannierfuntions, |w(x)|2 = (k1/

√
π)s

1/4
1 exp(−√

s1k
2
1x

2) (see appendix A for more details);following this proedure one obtains ∆ = (s2ER2/2)e
−α2/

√
s1 . Also in this ase amore aurate result an be obtained from a numerial alulation. More preisely,by replaing the Gaussian approximation of w(x) with the numerially alulatedWannier funtions one �nds [91℄

∆ =
s2ER2

2
e−2.18/s0.61 . (4.19)Finally the interation parameter β is alulated starting from the experimental esti-mation of Eint. Within the disrete nonlinear Shrödinger equation, the interationenergy per partile in units of J is given by Eint/J = (β/2)

∑

j |ψj |4. Realling thatthe partiipation number gives an estimation of the lattie sites whih are signi�-antly oupied, nsite ≈ P = 1/
∑

j |ψj |4 we obtain an expression of β as a funtion
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Figure 4.7: Time evolution of the width of the expanding atomi loud obtainedsolving the disrete nonlinear Shrödinger equation for λ = 5 and Eint ≈ 1.8 (greypoints). We also show the result of two di�erent �tting proedures. The �rst isperformed using Eq. (4.17) as a �tting funtion (red solid line). The seond isthe result of a linear �t in log-log sale done onsidering only the last part of thesimulation.of Eint

β = 2nsite
Eint

J
. (4.20)Expressions (4.18), (4.19) and (4.20) reate a diret and expliit onnetion betweenthe experimental parameters and the theoretial ones and represent the equationsthat we use for the mapping from theory to experiment.The initial wavefuntion for the expansion is alulated solving a stationaryversion of the DNLS equation

− ψj+1 − ψj−1 + Vjψj + β|ψj |2ψj = µψj (4.21)where Vj ontains a ontribution from the one dimensional bihromati optial lat-tie and a ontribution from the harmoni on�nement along the axial diretion.In Fig. 4.6 we show the values of γ extrated from the numerial simulations (greyirles). The spreading exponent inreases for inreasing value of the interationenergy Eint and approahes a saturation value around 0.35. The alulation of γhas been done following the same proedure that has been used for the experimentaldata. First we ompute the width of the wavepaket using Eq. (3.22) and then we �tthe urve of the width as a funtion of time using Eq. (4.17) as a �tting funtion. Atypial example of a numerial simulation for the width of the expanding wavepaketexpressed in µm is shown in Fig. 4.7. The result of the �t is also shown (red solidline) in the �gure. Typially the numerial simulations for w(t) have been averagedover 40 di�erent realizations (orresponding to di�erent values of the phase shift ϕ)



60 Chapter 4. Weakly interating bosons in quasiperiodi potentialsbefore performing the �t. We also extrated the spreading exponents γlin by �ttingthe data points only for large times with the asymptoti expression (4.13) and weveri�ed that the two �tting proedures give a good agreement. In Fig. 4.7 the blakdashed line shows the result of the �tting with the asymptoti expression and thevalues of the two exponents are reported.The numerial exponents shown in Fig. 4.6 are in qualitative agreement withthe experimental ones. Note that the experimental measurements give a nonzerovalue of the spreading exponent γ ≈ 0.06 even for Eint ≈ 0. This is probably theresult of a weak tehnial noise on the quasiperiodi potential, due to variationsin the laser wavelengths and to vibrations of the retrore�eting mirror that reatesthe standing waves. If we would assume that this value represents a onstant biasfor all measurements with interation then we would �nd an improved quantitativeagreement between theory and experiment. A detailed analysis of quantum di�usionin presene of disorder, noise and interation has been reently performed in [69℄and seems to support the assumptions of an inrease of γ due to the presene of theexperimental noise.There is however a disagreement on the typial interation energy at whih thesaturation regime for the exponents γ is reahed in the experiment and in the theory.Furthermore we observe that the ativation time is muh longer in the numerialsimulations than in the experiment and this implies the need of a longer simulatedexpansions in order to get a numerial spreading omparable with the experimentalone. These di�erenes are mainly due to �nite temperature e�ets and to a featureof the experimental setup whih is not inluded in the disrete nonlinear Shrödingerequation that is the radial degrees of freedom. The use of the DNLS model impliesthat the radial degrees of freedom has to be ompletely frozen during the dynamisof the system. This is not the ase for the experiment where many radial statesare populated and play a role during the expansion. The situation is di�erent fornoninterating samples where the di�erent degrees of freedom an be ompletelydeoupled and the radial dynamis does not in�uene the axial one. In presene ofinteration the �nite temperature and the presene of the radial degrees of freedomin�uenes the dynamis and in partiular leads to a faster expansion and to a smallerativation time [33℄.Finally as regards a omparison of the spreading exponents obtained for thequasiperiodi ase with those obtained for unorrelated random potentials we on-�rm the observation of setion 4.2.2. The exponents γ for the quasiperiodi ase,extrated both from the simulations and from the experiment, are larger than themaximum value of the exponent that have been observed and theoretially pre-dited for random systems, that is 1/4. In the next hapter we will ontinue andonlude this disussion on the omparison with the random ase and we will studythe spreading exponent γ for asymptoti times, orders of magnitudes larger thanthe times that an be reahed in present experiments with ultraold atoms.



Chapter 5Subdi�usion of nonlinear wavesin quasiperiodi potentials
The topi of this hapter is again the interplay between interation and Anderson lo-alization in quasiperiodi systems. We still onsider the dynamis of a wavepaket,but now our fous will be on the haraterization of the subdi�usive spreading in-trodued by the interation.We have already seen in the previous hapters that exponential loalization ofnoninterating quantum partiles (or linear waves) an our in quasiperiodi sys-tems and that the inlusion of interation between partiles hanges loalization intosubdi�usive spreading. Theoretially, the interplay between interation and Ander-son loalization, has been more often studied by onsidering wavepakets propagat-ing in purely random potentials [123, 127, 128, 126, 129, 135, 130, 136, 137, 131, 132℄.Also in this ase, numerial simulations showed that the presene of nonlinearity in-deed destroys loalization and leads to a subdi�usive growth of the width of thewavepaket in time as w(t) ∼ tγ [127, 128, 126, 129, 135, 136, 131, 132℄. In parti-ular it was predited that at large t, the oe�ient γ should onverge to 1/6 in aregime of so-alled �weak haos�, as opposed to normal di�usion where γ = 0.5. Atransient regime of �strong haos� was also identi�ed, where γ = 1/4 [130, 131, 132℄.A omparison between the values of γ for the random ase with those disussedin setions 4.2.2 and 4.3.2 for the quasiperiodi ase learly indiates that in thequasiperiodi ase the typial spreading exponents are signi�antly larger, at leastat �nite spreading times.The purpose of this hapter is to larify the details of the spreading meha-nism and address the di�erenes and similarities between quasiperiodi and purelyrandom potentials. We extend and re�ne our previous numerial investigations bypushing the simulations to muh longer times, thus allowing for the identi�ationof the strong and weak haos regimes in quasiperiodi systems and ompare thesituation with known properties of purely random systems. For this purpose, weuse two di�erent models, namely the disrete nonlinear Shrödinger equation, thatwe have already introdued in setion 4.1, and a quasiperiodi version of the quartiKlein-Gordon lattie model.We antiipate here that a regime of weak haos is indeed observed in the longtime spreading of nonlinear wavepakets propagating in quasiperiodi systems; inpartiular we �nd that the asymptoti value of the spreading oe�ient γ is 1/6as in purely random systems, thus showing that this behaviour is rather generaland model independent. Another similarity with purely random systems is the



62 Chapter 5. Subdi�usion of nonlinear waves in quasiperiodipotentialsourrene of self-trapping (fr. setion 4.2.1): when the nonlinear interation islarge enough to shift the mode frequenies so strongly that they are tuned out ofresonane with all non-exited neighbouring modes, a part of the wavepaket remainsspatially loalized [123, 126, 31℄. However as opposed to the random system, in thequasiperiodi ase partial self-trapping is also possible for weaker nonlinearities.This is due to the omplexity of the linear wave spetrum whih exhibits a fratalgap struture of sub-bands. Self-trapping gives rise to transient spreading regimesharaterized by an intermediate large exponent γ; we all this e�et �overshooting�.Finally, we have also observed signatures of strong haos, but detetion of this regimeis di�ult in quasiperiodi systems, sine it is often masked by overshooting andpartial self-trapping, whih our on the same temporal sales.In setion 5.1 we formulate the DNLS model in normal mode spae. In setion5.2 we disuss the relevant energy sales for the predition of the spreading behaviourof a wavepaket. In setion 5.3 we summarize the di�erent spreading regimes anddisuss the spreading laws assoiated to eah regime. In setions 5.4 and 5.5 wepresent and disuss the results of long time numerial simulations within the DNLSmodel. Finally in 5.6 we introdue the Klein-Gordon model and we show that theobserved numerial results an be interpreted on the basis of the same theoretialmodel that it has been developed for the DNLS model.5.1 DNLS in normal mode spaeLet us start from the DNLS model with a quasiperiodi potential. The key equation,already introdued in setion 4.1, is
i
∂ψj

∂t
= −(ψj+1 + ψj−1) + Vlψj + β|ψj |2ψj , (5.1)where Vj = λ cos(2παj + ϕ). From now on we hoose α = (

√
5 − 1)/2 and λ > 2,sine we fous on the interplay between loalization and nonlinearity.The normal modes assoiated to Eq. (5.1) are de�ned by negleting the nonlinearterm and solving the following eigenvalue problem

−Aν,j+1 −Aν,j−1 + λ cos(2παj + ϕ)Aν,j = EνAν,j . (5.2)where the index ν labels the di�erent normal modes Aν,j and the orrespondingeigenvalues Eν . Equation (5.2) is the Aubry-André model [85℄ that we introduedin setions 3.1 and 3.2. We have already disussed extensively the loalizationproperties of this model. Here we just remind that in the loalized regime (λ > 2)all the eigenstates are exponentially loalized in the form Aν,j ∼ e−|j−jν |/Lloc, where
jν is the loalization enter and Lloc = 1/ ln(λ/2) is the loalization length.In order to quantify the spatial extent of a given eigenstate, we an onvenientlyde�ne a loalization volume Vν = 1+

√

12m
(ν)
2 , where m(ν)

2 =
∑

j(Xν − j)2|Aν,j|2 isthe seond moment of |Aν,j|2 and Xν =
∑

j j|Aν,j |2 is its enter of norm [138℄. Theloalization volume Vν is an important quantity sine we will use it as an estimate of



5.1. DNLS in normal mode spae 63

Figure 5.1: a) Pitorial interpretation of loalization volume. A given eigenstate
ν (blak line in the enter of the box) is assumed to interat only with those eigen-states (blue lines) that lie in a region of size Vν around his mean position. The redlines represent the orresponding on-site energies. b) Average loalization volume ofeigenstates V as a funtion of the potential strength λ. ) Eigenenergies Eν of thelinear system obtained from numerial diagonalization of Eq. (5.2), as a funtion of
λ.the number of modes whih interat with a given mode ν. Its meaning is shemat-ially shown in Fig. 5.1a. The modes that interat with a given referene mode νare those whose enter of norm lies in an area Vν around it. The quantity that willbe relevant for our analysis is an average value of the loalization volume at a givenvalue of the disorder strength λ that we indiate with V . The average is performedover the di�erent eigenstates of the spetrum and over di�erent realizations of thequasiperiodi potential. Di�erent realizations of the potential orrespond in ourase to di�erent values of the phase shift ϕ. The average loalization volume V anbe found numerially by diret diagonalizing of the linear system. A plot of thisquantity as a funtion of the potential strength λ is shown in Fig. 5.1b.We an onveniently use the normal modes of the linear Aubry-André modelas a deomposition basis of the wave funtion ψj , ψj =

∑

ν φνAν,j . In this way,



64 Chapter 5. Subdi�usion of nonlinear waves in quasiperiodipotentialsEq. (4.8) an be rewritten for the evolution of the normal mode amplitudes φν :
i
∂φν
∂t

= Eνφν + β
∑

ν1,ν2,ν3

Iν,ν1,ν2,ν3φ
∗
ν1φν2φν3 (5.3)where Iν,ν1,ν2,ν3 is an overlap integral involving four normal modes:

Iν,ν1,ν2,ν3 =
∑

j

Aν,jAν1,jAν2,jAν3,j . (5.4)In the previous hapter we haraterized the spreading of wavepakets mainly byonsidering the time evolution of the partile density nj = |ψj |2, whih is desribedby Eq. (5.1). We basially follow the same approah also in this hapter. However, itis worth stressing that the evolution of wavepakets an be equivalently desribed inthe spae of normal modes. This an be done by assigning a position to eah normalmode through its enter of normXν , and following the evolution of the normal modesamplitudes φν given by Eq. (5.3); we an therefore introdue a density also in normalmode spae nν = |φν |2.By performing a numerial study of the time evolution of nν and nj , one anshow that, after a short transient time and after averaging over many realizations,the two densities are very similar, leading to a time evolution in the two spaes thatis almost idential. In the rest of our analysis, we will mainly onsider the evolutionof the density of partiles nj , but we will also use the normal mode spae for sometheoretial onsiderations.5.2 Relevant energy salesInteresting information on the spreading of initially loalized wavepakets an beobtained from a omparison of two energy sales of the noninterating spetrumassoiated to Eq. (5.1) and of an energy sale assoiated to the nonlinear term. Inthis setion we will introdue these three energy sales (d, ∆, δ) and explain theirmeanings.The spetrum for λ > 2 is purely dense-point, haraterized by the presene ofan in�nite number of gaps and bands. A plot of the Aubry-André model's spetrumas a funtion of λ is shown in Fig. 5.1c. In this �gure, one learly sees the preseneof two major gaps dividing the spetrum in three parts, eah of them divided in turnin three smaller parts, and so on. An intuitive understanding of this band struturean be given, following an heuristi argument. The wavelength assoiated to thepotential Vj is 1/|α̃| = (
√
5 + 3)/2 ≈ 2.62 (see setion 3.1 for more details). Ane�etive wavelength equal to an integer number q would orrespond to a separationin exatly q bands. Our value of 1/|α̃| lies between two and three, so that the bandstruture has neither two nor three bands, but three main bands with an internalstruture of sub-bands. In the following we will all these portions of spetrumseparated by the largest gaps �mini-bands�. For our purposes, it is enough to onsider



5.2. Relevant energy sales 65a division of the spetrum inM = 3 or at most inM = 9 mini-bands. Smaller mini-bands have vanishingly small e�ets on the time evolution of wavepakets.Let us introdue two energy sales assoiated with the linear system [126, 138℄.The �rst one, ∆, is the full width of the spetrum, de�ned as the di�erene betweenthe largest and the smallest eigenvalues: ∆ = max{Eν} − min{Eν}. The seondone, d, is the mean spaing of eigenvalues within a single mini-band and within therange of a loalization volume. Let us explain how we alulate this quantity. Weonsider a given mini-band and all the eigenstates that lie in it. For eah eigenstate
ν, we alulate its loalization volume Vν and then we form the subset of the othereigenstates, {µ}, belonging to the same mini-band and interating with it, namely,those ful�lling the ondition |Xν − Xµ| < Vν/2. The average number of states inthe subset an be estimated as V/M . Then we alulate the energy spaings withinthis subset. This proedure is repeated for eah eigenstate in the band and thenaveraging over all the eigenstates and di�erent disorder realizations gives the meanspaing d.The number of mini-bands M to be used in the alulations of d depends on λ.For a given λ we hooseM in suh a way that the loalization volume V satis�es theondition V/M > 2. This implies that, on average, there are at least two eigenstateswithin the subset {µ} that we an use to alulate the average energy spaings. Wealways onsider λ > 2.1; therefore it is enough to divide the spetrum at most in ninemini-bands. As λ is inreased the average loalization volume of the eigenstates Vdereases � therefore at some point we have to onsider the spetral separation intosmaller mini-bands. In pratie we onsider M = 9 mini-bands for 2.1 . λ . 2.2,
M = 3 mini-bands for 2.2 . λ . 2.75 and just one band (i.e., the full spetrum)for λ & 2.75. A plot of the energy sales ∆ and d as a funtion of λ is shownin Fig. 5.2. These two quantities have been alulated numerially diagonalizingEq. (5.2). The dashed vertial lines represent the values of λ where the number ofmini-bands hanges in the alulation of d.We note that in the present setting, where we have set ~ = 1 and we are dealingwith spreading of nonlinear wavepakets, all the energies an also be interpreted asfrequenies. For instane the eigenenergies of the system Eν an also be interpretedas the osillation frequenies of the normal modes. In the following we will thereforeuse the terms energy and frequeny interhangeably.Let us now introdue the energy sale assoiated to the nonlinearity, δ, we willall it nonlinear frequeny shift following the notation introdued in [126℄. In orderto explain the onept of nonlinear frequeny shift let us �rst onsider a single siteproblem with an on-site potential V . The time evolution of this system is desribedby the following equation of motion iψ̇ = V ψ + β|ψ|2ψ and an be viewed as theevolution of an osillator that experienes a nonlinear frequeny shift δ = β|ψ|2away from its linear frequeny V . The evolution desribed by Eq. (5.1), whihinvolves many lattie sites, an be viewed as a set of oupled osillators and it ismore onvenient to approah the problem in normal mode spae. From Eq. (5.3)one an see that the frequeny shift an be estimated as δ ∼ βn, where n is aharateristi average density n = n̄ν ≈ n̄j whih is approximately equal in real and



66 Chapter 5. Subdi�usion of nonlinear waves in quasiperiodipotentialsmode spae, as we have disussed in the previous setion.5.3 Expeted spreading regimesEquation (5.3) indiates that the presene of nonlinearity in the DNLS model in-trodues a oupling between eigenstates of the underlying linear spetrum. Wealready disussed in the previous hapter that this leads to a subdi�usive spread-ing of wavepakets, i.e. its width grows asymptotially as w ∼ tγ with γ < 0.5.This behaviour has been observed both numerially and experimentally. However,a systemati investigation of the behaviour of the exponent γ in di�erent regimes ofstrong and weak haos, and self-trapping, have not been done so far. In this setion,we approah this issue by �rst omparing the nonlinear frequeny shift δ = βn withthe energy sales ∆ and d, in suh a way as to introdue the di�erent spreadingregimes expeted to be observed in the subsequent numerial simulations.Let us onsider an initial wavepaket with density n and loalization volume Llarger than the average loalization volume of the eigenstates of the linear spetrum,
L ≥ V . If δ > ∆, nonlinearity is so strong that all the partiipating normal modeswithin the wavepaket are shifted out of resonane with respet to the non-exitedneighbourhood; therefore spreading is largely suppressed and a signi�ant part of thewavepaket remains self-trapped. In setion 4.2.1 we introdued this phenomenonfollowing an energy onservation argument while here we presented it from a di�erentperspetive, as an exited mode whih is o�-resonant with the other neighbouringmodes. We note that both analysis lead to the same onlusion that the relevantenergy sale for the determination of the self-trapping transition is the width of thelinear spetrum ∆.If instead δ < ∆, we are no longer in the self-trapping regime and two sub-asesan be distinguished: on one hand, when δ > d, strong haos is realized, the modefrequenies are strongly shifted and all the modes in the paket are resonantly inter-ating with eah other, thus produing an e�ient spreading. On the other hand,when δ < d, the mode frequenies in the wavepaket are only weakly shifted andweak haos is obtained: only a fration of modes interat resonantly, the loalizationis still destroyed, but spreading is slower.If L < V the estimate of the self-trapping transition is done as before, that is byomparing δ = βn with the spetrum width ∆. If self-trapping is avoided, however,the wavepaket initially spreads also in absene of nonlinearity, eventually �lling theloalization volume V . Consequently the initial density n is redued to ñ ≈ nL/V ,due to linear time evolution, the relevant nonlinear frequeny shift must now bealulated by using this redued density ñ. Apart from this detail, whih originatesfrom the initial dynamis at short times, the asymptoti spreading regimes are thesame as before. Note that the strong haos regime an only exist as a transientregime: as the wavepaket spreads, its norm density n(t) dereases, and eventuallywill reah a situation where βn(t) < d. At this point, a rossover from strong to
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Figure 5.2: Energy sales ∆ (top blue line) and d (bottom red line) plotted asa funtion of the potential strength λ. The empty (downward) and full (upward)triangles orrespond to the values of δ that we have used for the simulations with theDNLS model and with the KG model respetively. Comparing the nonlinear frequenyshift δ with the energy sales ∆ and d one an predit the di�erent spreading regimesof weak haos (δ < d), strong haos (d < δ < ∆) and self-trapping (δ > ∆). Theseparation between the three regimes should not be interpreted as a sharp boundary,but as a smooth rossover.weak haos is expeted to our during the time evolution [131℄. To summarize
βn > ∆ self-trapping (5.5)

d < βñ < ∆ strong haos (5.6)
βñ < d weak haos (5.7)where ñ = n if L ≥ V and ñ = nL/V if L < V .Let us �nally stress that the �transition lines� that we have introdued by om-paring the nonlinear frequeny shift with the typial energy sales of the linearspetrum do not de�ne sharp phase transitions between di�erent spreading regimes.Instead, we may expet to see a relatively smooth rossover, suh that the regimesof self-trapping, strong haos and weak haos should be learly identi�ed only farfrom the transition lines.



68 Chapter 5. Subdi�usion of nonlinear waves in quasiperiodipotentials5.3.1 Spreading lawsIn the previous setion we disussed how to predit the di�erent spreading regimesstarting from energy sale arguments, but this method does not provide informationon the spreading laws assoiated to the di�erent regimes. Here we disuss this issueby making a link with the onepts of strong and weak haos.We follow the theory whih has been �rst introdued by Flah, Skokos, Krimerand Komineas in Refs. [126, 129℄ and then developed further in Ref. [130℄. Morereently Mihaely and Fishman [139℄ disussed more in detail some assumptionson whih the theory is based. So far, the theory has been applied to a purelydisordered system where the potential Vj is a random variable uniformly distributedin the interval [−W/2,W/2]. However, it an be applied also to the quasiperiodiase desribed by Eq. (5.1). In fat the theory an be used when (i) the equationassoiated to the linear system yields Anderson loalization, (ii) the loalizationlength Lloc is upper bounded, (iii) the nonlinearity is ompat in real spae anddoes not indue long range interations between normal modes of the linear system.The starting point is the equation of motion in normal mode spae (5.3). Let usrewrite this equation by removing the trivial time evolution whih is given by thelinear term. This an be done by substituting
φν(t) = χν(t)e

−iEν t (5.8)into Eq. (5.3). One obtains
i
∂χν

∂t
= β

∑

ν1,ν2,ν3

Iν,ν1,ν2,ν3 χ
∗
ν1χν2χν3 e

i(Eν+Eν1−Eν2−Eν3 ). (5.9)Let us de�ne the right hand side of this equation as a generi funtion F (t). Thetheory now onsiders the spreading from the region oupied by the wavepaket,where the modes ν1, ν2, ν3 lie, to the exterior non-exited region, where the mode νis loalized. Moreover it is assumed that all the modes inside the paket are exitedto the same density n [126, 129℄, in partiular
|χν1 |2 ≈ |χν2 |2 ≈ |χν3 |2 ≈ n |χν |2 ≪ n. (5.10)The key assumption of the theory, whih is sometimes referred to as the �randomphase ansatz� [140℄, is that F (t) behaves as a random noise. This ansatz ombinedwith (5.10) suggests that the right hand side of Eq. (5.9) an be written in thefollowing form [130, 139℄

F (t) ≈ Cβn3/2P(βn)f(t) (5.11)where P(βn) is the number of resonant modes in the paket, i.e. those who stronglya�ets the dynamis of ν, f(t) is a random noise suh that 〈f(t)f(t′)〉 = δ(t−t′)1 and
C is a onstant that does not depend on β and n. For purely random systems the1here 〈. . . 〉 indiates an average over the disordered potential.



5.3. Expeted spreading regimes 69resonane probability has been estimated to be P(βn) = (1−e−C0βn) [126, 129, 138℄while for the quasiperiodi model under onsiderations we will present a alulationof this quantity in the next setion. The validity of the random phase ansatz andof the relation 〈f(t)f(t′)〉 = δ(t− t′) has been reently veri�ed numerially in [139℄.Combining Eqs. (5.9) and (5.11) one �nds
i
∂

∂t
χν ≈ Cβn3/2P(βn)f(t), (5.12)and therefore

χν ≈ −iCβn3/2P(βn)

∫ t

0
f(t′) dt′. (5.13)Taking the modulus square and averaging over the disorder yields

〈|χν |2〉 ≈ Cβ2n3[P(βn)]2t. (5.14)From this equation it is possible to estimate a momentary di�usion rate, D,whih is proportional to the inverse of the equilibration time T , i.e. the time neededto exite the exterior mode ν to the paket level n
T =

1

Cβ2n2[P(βn)]2
and D ∼ 1

T
(5.15)The equilibrium time T varies slowly with t, this an be veri�ed by heking that

∂T
∂t → 0 for t→ ∞. In other words, there is a separation of timesales: on the salegiven by T the system seems to equilibrate by a di�usion proess and the paketpopulates the region oupied by ν; on a longer timesale there is an even longerequilibration proess assoiated to a slower di�usion. We will omment more on thispoint at the end of the setion. Thus, for times muh larger than T the spreadingis governed by a di�usion equation and in partiular

w(t) ∼
√
Dt1/2. (5.16)Sine the width of the wavepaket is of the order of the inverse of the density w ∼ 1/nwe an rewrite Eq. (5.16) as follows

1

n
∼ β1/2[P(βn)]1/2t1/4. (5.17)What we have disussed so far is general and applies both to the random and thequasiperiodi ase. For the remaining part of this setion we ontinue the disussionfousing on random systems and we will use P(βn) = (1 − e−C0βn). In the nextsetion we will alulate P(βn) and disuss the spreading laws for the quasiperiodiase.For large values of the nonlinear frequeny shift, δ = βn, it is easy to verifythat P(βn) = (1 − e−C0βn) → 1. In this situation strong haos is realized andall the modes are resonantly interating. From Eq. (5.17) one obtains that theorresponding spreading law is

w(t) ∼ t1/4. (5.18)
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Figure 5.3: Comparison between the probability density funtion W(Rν, ~ν0) of thequasiperiodi DNLS model and of the random DNLS model. For the quasiperiodiase, λ = 2.5, while for the random ase, we hoose a disorder strength that gives asimilar loalization length.Conversely, for small values of the nonlinear frequeny shift P(βn) → βn, thepaket is in the weak haos regime and only a fration of the modes is resonant. Asa onsequene a slower spreading is obtained
w(t) ∼ t1/6. (5.19)Eqs. (5.18) and (5.19) de�nes the expeted spreading laws for the weak haos andstrong haos regimes for the random ase. Numerial simulations are in very goodagreement with these theoretial expetations [126, 129, 131, 132℄.Starting from the spreading laws (5.18) and (5.19) one an derive the asymptotitime evolution also for n(t) and T (t) [139℄. One an therefore observe that ∂T

∂t and
∂n
∂t tends both to zero for large times. This justi�es the separation of timesales thatwe mentioned previously. Moreover ∂n

∂t ≪ ∂T
∂t for t→ ∞, therefore the fat that weonsidered a onstant density n in the derivation of the equilibration time T and ofthe di�usion rate D is justi�ed in the long time limit [139℄.5.3.2 Resonane probabilityLet us estimate the number of resonant modes in the paket P(βn) for the quasiperi-odi model under onsideration (5.1). As we have seen in the previous setion thisis a key quantity for the determination of the spreading behaviour. Aording to



5.3. Expeted spreading regimes 71Eq. (5.9), due to nonlinearity, the evolution of a given normal mode is a�eted byany three (triplet) modes. The oupling is the largest if the triplet modes havelarge amplitudes and if the overlap integrals are large, i.e., if the triplet modes arelose enough in spae to the given normal mode. Some of these triplet modes maya�et the dynamis of the hosen mode ν strongly, some weakly. To distinguishthese triplet groups, we apply perturbation theory to Eq. (5.9) [126, 141℄. We use aperturbation expansion of the oe�ients χν in powers of β
χν = χ(0)

ν + χ(1)
ν + χ(2)

ν + ... = c(0)ν + βc(1)ν + β2c(2)ν + ... (5.20)At �rst order and assuming (5.10) one �nds
χ(1)
ν = −βn3/2

∑

ν1,ν2,ν3

Iν,ν1,ν2,ν3
Eν + Eν1 − Eν2 −Eν3

ei(Eν+Eν1−Eν2−Eν3)t (5.21)It follows that the amplitude of a normal mode ν is hanged by a given triplet ofother wavepaket modes ~ν = {ν1, ν2, ν3} (we onsider just the ontribution of asingle triplet to the sum of Eq. (5.21)) as
|χ(1)

ν | = β
n3/2

Rν,~ν
(5.22)where

Rν,~ν =

∣

∣

∣

∣

Eν + Eν1 − Eν2 − Eν3

Iν,ν1,ν2,ν3

∣

∣

∣

∣

. (5.23)The perturbation approah breaks down and resonanes set in when √
n < |χ(1)

ν |[126, 138℄. Substituting
Rν,~ν < βn. (5.24)This expression tells us that the resonane ondition, for a given normal mode ν, isful�lled if there is at least one triplet of modes ~ν that satis�es inequality (5.24).The probability for the onset of a resonane an therefore be alulated with thefollowing statistial numerial analysis [126, 138℄. For a given normal mode ν, wede�ne Rν,~ν0 = min~ν{Rν,~ν}. Colleting Rν,~ν0 for many modes and many values of thephase ϕ, we �nd the probability density distribution W(Rν, ~ν0). From this quantitywe an alulate the probability P for a mode, whih is exited to a norm density

n, to be resonant with at least one triplet of other modes at a given value of theinteration parameter β. This is obtained by integrating W(Rν, ~ν0) from zero to βn
P =

∫ βn

0
W(R) dR. (5.25)An example of probability density W(Rν, ~ν0) for λ = 2.5 is shown in Fig. 5.3 (redline). For omparison we also show the same quantity for the random DNLSmodel (blak line), as disussed in [126, 138℄, whih is approximately given by

W(R) ≈ C0e
−C0R. Exept for �ne strutures, like small sharp peaks appearing



72 Chapter 5. Subdi�usion of nonlinear waves in quasiperiodipotentialsin the quasiperiodi ase, the overall behaviour is qualitatively very similar in thetwo ases. In partiular, in both ases, the probability density W(R) tends to a�nite onstant value C0 when R→ 0 and then tends rapidly to zero for large valuesof R.As a onsequene we expet the same spreading behaviour in the quasiperiodiand in the random ase. More preisely, for small values of the nonlinear frequenyshift δ = βn, a non-zero fration of modes in the paket is resonant. The probabilityto be resonant is given by P(βn) ∼ βn, thus we are in the weak haos regime. Forlarge values of βn, instead all the modes interat resonantly and P = 1; we arethen in the strong haos regime. Following the reasoning presented in the previoussetion, this implies that also in the quasiperiodi ase, as in disordered systems,we may expet to �nd w(t) ∼ t1/6 in the weak haos regime and w(t) ∼ t1/4 in thestrong haos regime.5.4 Numerial observationsWe perform extensive numerial simulations solving Eq. (4.8) for di�erent sets ofparameters {λ, β}. For eah hoie of parameters we average over N di�erent re-alizations of the quasiperiodi potential obtained by randomly hanging the phaseshift ϕ. As initial onditions, we use ompat wavepakets that lie in the enter ofour omputational box, taking are that during the time evolution the wavepaketnever reahes the box boundaries. The number of realizations onsidered varies be-tween 100 and 500 and the number of lattie sites between 200 and 2000. To solvethe equations of motion, we use sympleti integration shemes of the SABA family[142, 129℄ that allow us to reah large integration times with good auray2.In order to quantify the type of subdi�usive behaviour, we alulate the exponent
γ by onsidering the logarithm of the width log10w for di�erent realizations of thepotential. We ompute the average value 〈log10 w〉 and its statistial error, givenby the standard deviation divided by the square root of the number of realizations
N . Then the value of γ at a given time t is alulated by applying a linear �ttingproedure to the urve 〈log10w〉 within a �xed time interval around log10 t. Byrepeating this proedure at di�erent t, we extrat the behaviour of γ as a funtionof time and its relative statistial error. In order to detet the self-trapping transition(as we have done in setion 4.2.1) we also alulate the average partiipation number,
〈log10 P 〉. Finally we also quantify the sparsity of the wavepaket by alulating theompatness index [129℄

ξ =
P 2

w2
=
P 2

m2
. (5.26)This de�nition follows from the fat that the width w (and also the seond moment

m2) is sensitive to the spreading of the tails of the distribution while the partiipation2The numerial auray of our alulation is ontrolled by heking the onservation of theenergy H and the norm N of the expanding wavepaket (hek Eqs. (4.11) and (4.10)). The erroris always kept smaller than 10−2.5. For the integration we used time steps between 0.1 and 0.05.



5.4. Numerial observations 73number P is a measure of the inhomogeneity of the distribution, being insensitiveto any spatial orrelation. For this reason a ombination of these two quantitiesgives a measure of the sparsity of a distribution. In partiular smaller values of ξorrespond to more sparse wavepakets.5.4.1 Results for square wavepaketsLet us �rst show our results for initial wavepakets that has a square shaped distri-bution whih populates L lattie sites with equal density nj = |ψj |2 = 1/L. In thispartiular ase the alulation of the nonlinear frequeny shift is straightforwardsine the average density is simply given by n = 1/L and δ = β/L. In Fig. 5.4 wepresent a representative set of simulations for λ = 2.5. We hoose L = 13, whihgives an initial loalization volume larger than V . The di�erent panels show the timeevolution of the width 〈log10 w〉, the spreading exponent γ, the partiipation ratio
〈log10 P 〉, and the ompatness index 〈ξ〉. The width of the urves for 〈log10 w〉,
〈log10 P 〉 and γ orresponds to the statistial error. The values of the nonlinearfrequeny shift δ indued by the initial wavepakets used in these simulations areshown in Fig. 5.2 (empty downward triangles) in order to ompare them to therelevant energy sales ∆ and d.In all simulations we observe that nonlinearity auses the wavepaket to spread.The spreading starts earlier when β is larger. We �nd that the spreading is alwayssubdi�usive (γ < 0.5), on�rming the result of previous setions 4.2.2 and 4.3.2.Subdi�usion is seen both in the width w and in the partiipation number P , exeptfor the largest value of β (yellow urves in Fig. 5.4). In the latter ase, P saturatesto a onstant value after a transient time, a lear signature of self-trapping. Thisobservation of self-trapping only for β = 100 is onsistent with the energy salearguments shematially represented in Fig. 5.2. In the absene of self-trapping, theompatness index ξ saturates to a onstant value, indiating that the wavepaketspreads but does not beome more sparse. Conversely, in the presene of self-trapping the entral part of the wavepaket remains spatially trapped while its tailskeep expanding, thus resulting in a wavepaket that beomes more sparse during theevolution, niely quanti�ed by the ompatness index whih dereases to zero. Wenotie that the portion of paket that is expanding is haraterized by a value of γlarger than 1/4. After an initial inrease, γ reahes a maximum and then dereasesto smaller values. In this regime, the evolution is rather omplex and the theorypresented in setion 5.3.1 does not apply sine ondition (5.10) is not satis�ed. Asimilar behaviour was previously obtained also in random systems [131, 132℄. Thetransient large values of γ may be due to a nontrivial interating mehanism thattakes plae between the expanding part and the self-trapped portion, resulting infaster spreading, an e�et that we all �overshooting�.For the lowest values of β the energy sale arguments suggest the ourrene ofweak haos. Indeed for β = 0.5 and 1 the exponent saturates asymptotially aroundthe theoretial value γ = 1/6 (red and green urves in Fig. 5.4), as expeted. Itis worth mentioning that this asymptoti exponent is the same as in random sys-
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Figure 5.4: Numerial results obtained by integrating the DNLS equations of motion(4.8). The time evolution of 〈log10 w〉 (left panel, top), γ (right panel, top), 〈log10 P 〉(left panel, bottom), and 〈ξ〉 (right panel, bottom) is shown versus log10 t for di�erentvalues of the nonlinear parameter β = 0.5, 1, 5, 10, 100. The initial wavepaket inall simulations is a square distribution with L = 13 and the potential strength is
λ = 2.5. In the top right panel the two dashed lines orrespond to theoretiallypredited power laws γ = 1/6 and γ = 1/4. The width of the lines for the quantities
〈log10 w〉, 〈log10 P 〉 and γ represents the statistial error, whih depends on time andon the number of realizations. In most ases the statistial error is smaller than theresolution of the �gure.tems [130, 131℄; meaning that the mehanism leading to destrution of exponentialloalization is rather universal.In di�erene to the random ase, here during the time evolution, the value of γtemporarily inreases above 1/6, eventually reahing its asymptote only at longertimes. This is an overshooting similar to the one that we have disussed above forthe self-trapping regime, but ourring also for weaker nonlinearities. This e�et isunique to the quasiperiodi system and is likely due to the presene of an in�nitenumber of mini-bands and gaps in the linear spetrum of the Hamiltonian, whih
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Figure 5.5: Average logarithm of the width of the expanding wavepaket, 〈log10 w〉and spreading exponent, γ for λ = 2.2 (left plots) and λ = 3.5 (right plots).For
λ = 2.2, the initial wavepaket has width L = 31 and we onsider β = 0.18 (lowerred urves),1 (mid green urves) and 6.5 (upper blue urves). For λ = 3.5, the initialwavepaket has width L = 5 and we onsider β = 5.5 (lower red urves), 15 (midgreen urves), and 50 (upper blue urves). The width of the lines represents thestatistial error as in Fig. 5.4. Insets: average ompatness index of the expandingwavepaket 〈ξ〉 for the same sets of simulations.auses a temporary self-trapping of portions of the expanding wavepaket in oneor more energy gaps between mini-bands. This partial self-trapping is di�erentfrom the self-trapping that ours when δ > ∆, where all the paket modes aresimultaneously shifted out of resonane. For this reason partial self-trapping is notdetetable as a saturation of the partiipation number P and an only be seenindiretly as an overshooting in the exponent γ.The two simulations for β = 5 and 10 lie in a range of energy were we expetto see strong haos (blue and magenta urves in Fig. 5.4). As already said in the



76 Chapter 5. Subdi�usion of nonlinear waves in quasiperiodipotentialsprevious setion, the strong haos regime is transient: one should �nd a value of
γ around 1/4 for a few deades of time, eventually dereasing towards the asymp-toti value 1/6. The two orresponding urves in Fig. 5.4 indeed exhibit a behaviourwhih qualitatively agrees with this expetation. The value of γ �rst rises up to 1/4,osillates around this value and then starts to derease as predited. However, espe-ially for large β, we also observe values of γ larger than 1/4. As in the weak haosregime, this overshooting again is evidene of partial self-trapping. Its mehanism isalso transient and ours in the same time intervals where strong haos is expeted.For this reason, while weak haos is learly observed in our simulations, strong haosand partial self-trapping tend to overlap, thus produing a more omplex evolutionof the wavepaket in quasiperiodi systems than in random systems.In Fig. 5.5 we show the results of simulations for λ = 2.2 and λ = 3.5; theorresponding values of nonlinear frequeny shift are reported as triangles in Fig. 5.2.The values of L are L = 31 for λ = 2.2 and L = 5 for λ = 3.5, both larger than
V . For {λ, β} = {2.2, 0.18} and {λ, β} = {3.5, 5.5} energy sale arguments preditweak haos. We indeed �nd a spreading exponent whih approahes asymptotiallythe value 1/6. For {λ, β} = {2.2, 1}, {λ, β} = {2.2, 6.5} and {λ, β} = {3.5, 15} thepredited behaviour is either strong haos or a regime in between strong and weakhaos. What we observe numerially is a growth of the spreading exponent γ up to
1/4 and even to larger values, followed by a derease towards 1/6. In most ases, oursimulations show a signi�ant overshooting due to partial self-trapping. It is worthmentioning that this e�et is larger for weaker disorder strength λ, onsistent withthe fat the linear spetrum exhibits larger mini-gaps in this regime (see Fig. 5.1).Finally for {λ, β} = {3.5, 50}, we observe self-trapping, as expeted.In onlusion, from the analysis of the results of the DNLS model for di�erentvalues of λ we �nd that the energy sale arguments and the model disussed insetion 5.2 orretly explain the overall trend of the numerial simulations and theseparation between di�erent spreading regimes in the parameter spae.5.4.2 Role of the shape of the initial wavepaketIn this setion we show that the results disussed so far do not depend on the shapeof the initial wavepaket. Besides its theoretial interest, this issue is also relevantfrom the point of view of experiments, where it is not always possible to design thewavepakets at will.In the previous setion, we have used a square distribution as initial wavepaket.Now, inspired by the experiments with ultraold atoms, we onsider initial wavepak-ets with the shape of a Gaussian distribution (as we have done in setion 4.2.2) or aThomas-Fermi (TF) distribution. In this ase of inhomogeneous initial wavepaketsthe average value of the density is estimated as the inverse partiipation number at
t = 0, n =

∑

j |ψj |4. Therefore the nonlinear frequeny shift is given by β∑j |ψj |4,whih is also idential (up to a prefator) with the mean-�eld interation energy.Let us reall the de�nition of Gaussian wavepaket (fr. setion 3.3) whih is
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Figure 5.6: Average logarithm of the width of the expanding wavepaket, 〈log10 w〉and spreading exponent, γ as a funtion of time for di�erent nonlinearities β =

0.5, 1, 5, 10, 100. The disorder strength is λ = 2.5 in all simulations. As an initialondition, we have used a Gaussian wavepaket with σ = 5 (left plots) and a TF dis-tribution with R = 7.50 (right plots). The width of the lines represents the statistialerror as in Fig. 5.4. Insets: average ompatness index of the expanding wavepaket
〈ξ〉 for the same sets of simulations.given by

ψj(0) = C1e
− j2

2σ2 , (5.27)where σ is a parameter ontrolling the width of the paket while C1 is a onstantfator that an be determined by using the normalization ondition ∑j |ψj |2 = 1.A Thomas-Fermi wavepaket is instead de�ned by
ψj(0) = C2

√

1− j2

R2
(5.28)



78 Chapter 5. Subdi�usion of nonlinear waves in quasiperiodipotentialsin the region where |j| < R and ψj = 0 otherwise. The parameter R is the Thomas-Fermi radius haraterizing the width of the distribution, while the onstant C2 isa normalization fator. These two distributions are of interest when onsideringultraold bosons initially released from an harmoni trap in the Gross-Pitaevskiiregime [107℄.In Fig. 5.6 we show the time evolution of the width of the expanding wavepaket,
〈log10 w〉 (top row) and of the spreading exponent, γ (bottom row), using initiallya Gaussian (left olumn) and a TF (right olumn) wavepaket distribution. In theinsets we also show the ompatness index 〈ξ〉, in order to identify the self-trappingregime. We hoose the width of the initial distributions (σ and R) so that thenonlinear frequeny shift is similar to the one already used for the simulations inFig. 5.4. In partiular we use σ = 5 and R = 7.5, yielding a nonlinear frequenyshift δ ≈ β/13. The values of β used in Fig. 5.6 are the same as those previouslyonsidered.From the omparison between the results of Fig. 5.6 and Fig. 5.4, we an onludethat the shape of the initial wavepaket does not a�et the overall behaviour of thetime evolution, nor its interpretation in terms of regimes of weak and strong haos,self-trapping, and overshooting. This suggests the results that we have obtained arerather general and that the nonlinear frequeny shift δ is the only key parameterontrolling the dynamis of the wavepaket.5.5 Appliation to old atomsLet us now disuss the relation of the analysis performed in this hapter with theresults presented in setion 4.3.2 where we measured the spreading exponent γ fortimes of the order of the duration of typial experiments with ultraold atoms.We an say that the results presented here are onsistent with the observationsof 4.3.2 where we observed spreading exponents larger than 1/6 already for weaknonlinearities and even larger than 1/4 for larger nonlinearities. In fat in ourdimensionless units, the experimental expansion is of the order of 104 and the widthof the atomi loud inreases up to 50 − 100 lattie sites. Considering Figs. 5.4and 5.5 we an see that the typial experimental timesale is of the same order ofmagnitude of the timesale for ourrene of partial self-trapping. In onlusion ourwork suggests that suh large values of γ an be explained in terms of a transientovershooting aused by partial self-trapping in mini-bands.We would like also to omment on the validity of the DNLS equation for thedesription of experiments with ultraold atomi gases. Let us reall that the DNLSequation orresponds to a disretized version of the Gross-Pitaevskii equation forthe dynamis of a Bose-Einstein ondensate in the single-band approximation. Thevalidity of this mean-�eld theory is not ensured for those dynamial regimes whereGross-Pitaevskii equation predits haos, whih an be viewed as a signature of alarge depletion of the ondensate [143, 144, 145, 146, 147, 148, 149℄. For this rea-son, in the presene of disorder the theory fails to predit the long time evolution



5.6. Klein-Gordon model 79of observables diretly related to small sale �utuations and long-range oherene.However, for oarse-grained observables, like the width of the wavepaket in realand momentum spae, or the partiipation number, the preditions of the theoryremain very good even in regimes where the depletion is expeted to be large, longafter the random �utuations prevent the predition of �ne sale strutures. Thishas been reently shown in Ref. [149℄ by omparing the preditions of the Gross-Pitaevskii equation with one beyond mean-�eld theory in numerial simulationswithin timesales of the order of typial experiments with old atoms and longenough to observe the e�ets of depletion and haoti dynamis. Indeed our anal-ysis is essentially based on oarse-grained observables. In addition, for eah set ofparameters we also average over many realizations and this extends the validity ofthe present approah even for longer times, as any residual dependene on smallsale �utuations is further suppressed by the averaging proedure.5.6 Klein-Gordon modelIn order to show the generality of our results we onsider a di�erent quasiperiodimodel where one an observe the interplay between Anderson loalization and non-linearity; this model is a quasiperiodi version of the quarti Klein-Gordon (KG)lattie.The Hamiltonian of this model is given by
HKG =

1

2

∑

j

[

p2j + Ṽju
2
j +

1

2
u4j +

1

2λ
(uj+1 − uj)

2

]

, (5.29)where uj and pj are the generalized oordinates and momenta on the site j and
Ṽj = 1 + (1/2) cos(2παj + ϕ). This Hamiltonian desribes a set of lassial ou-pled osillators. Eah osillator has a linear part with a frequeny that hangesquasiperiodially along the lattie and a nonlinear part. The oupling between thedi�erent osillators is restrited to neighbouring sites. The energy assoiated withlattie site j is

Ej =
p2j
2

+
Ṽju

2
j

2
+
u4j
4

+
(uj+1 − uj)

2

8λ
+

(uj−1 − uj)
2

8λ
. (5.30)The equations of motion are generated by ∂2uj/∂t2 = −∂H/∂uj , yielding

∂2uj
∂t2

= −Ṽjuj − u3j +
1

2λ
(uj+1 + uj−1 − 2uj) . (5.31)This set of equations onserve the total energy of the system H =

∑

j Ej whihis a quantity that is stritly positive H > 0. Note that in the DNLS model theonserved quantities are two, the norm of the wavepaket and the energy of thesystem; this represents a signi�ant di�erene between the two models. The Klein-Gordon model has been extensively studied, sine it an give a simple desription ofthe non-dissipative dynamis of anharmoni optial lattie vibrations in moleular



80 Chapter 5. Subdi�usion of nonlinear waves in quasiperiodipotentialsrystals [150℄. The total energy of the system H serves as a ontrol parameter ofnonlinearity, analogous to β for the DNLS model.The oe�ient 1/(2λ) in Eq. (5.29) is hosen so that the linear parts of theHamiltonians of the KG and of the DNLS model orrespond to the same eigenvalueproblem. In fat, negleting the nonlinear term and using uj = Aj,νe
iων t reduesEq. (5.31) to the Aubry-André model (5.2) with Eν = 2λ(ω2

ν − 1/λ − 1). As aonsequene the loalization properties assoiated to the linear part of the KG modelare again those of the Aubry-André model, the parameter λ represents the disorderstrength also in this ase and the two energy sales assoiated to the linear spetrum
d and ∆ are alulated in the same way.For the Klein-Gordon model we measure the spreading of wavepakets by trak-ing the normalized energy density εj = Ej/H whih plays the same role of nj in theDNLS ase. All the quantities that we have used for the study of the spreading ofwavepakets within the DNLS model (w, γ, P , x) an be de�ned also for the KGmodel simply by replaing nj with εJ .For small amplitudes the equation of the KG hain an be approximately mappedonto a DNLS model [151, 152, 153℄ using βN ≈ 6λH where N is the norm of thewavepaket within the DNLS model and in our ase is set equal to one. Thereforethe nonlinear frequeny shift within the KG model an be alulated from the smallamplitude mapping and is given by δ ∼ 6λE where E is an average harateristienergy assoiated to the initial wavepaket. Moreover, following this small amplitudemapping, all the analytis that we have disussed in the previous setions an beapplied applied also to the KG model.5.6.1 Numerial observations for the Klein Gordon modelDue to the existene of a mapping between KG and DNLS, we expet to observethe same spreading regimes in the two models. This has been already proven inpurely random systems where the two models reveal similar qualitative results ina wide range of parameters [126, 129, 130, 131, 132℄. Despite this similarity, thestudy of the KG model remains interesting for at least two reasons. On one hand,it allows for testing the generality of the results in a ase where there is just oneonserved quantity. This is highly nontrivial, espeially for self-trapping, for whihthe argument based on norm and energy onservation annot be applied in the KGmodel [123℄. On the other hand, the KG model is advantageous from a numerialpoint of view. The fat that there is just one onserved quantity results in twoorders of magnitude faster integration speed within the same integration error. Forthe numerial integration we use again a sympleti integration sheme of the SABAfamily [142, 129℄.Similarly to what was done for the DNLS model, we initially set the ompatwavepakets to span a width L = 13 (unless otherwise stated) entered in the lattie,suh that eah site has equal energy Ej = E = H/L. This is implemented by settinginitial momenta of p = ±

√
2E with randomly assigned signs and zero oordinates.The values of initial energy densities E are hosen to give expeted spreading regimes
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Figure 5.7: Numerial results obtained by integrating the KG equa-tions of motion (5.31). The time evolution of 〈log10 w〉 (left panel,top), γ (right panel, top), 〈log10 P 〉 (left panel, bottom), and 〈ξ〉 (rightpanel, bottom) is shown versus log10 t. The parameters are {λ, E} =

{2.5, 0.005} , {2.5, 0.01} , {2.5, 0.055} , {2.5, 0.075} , {2.5, 1.0}. We used an initialwavepaket with width L = 13 for E = 0.005, 0.01, 0.075, 1 and L = 11 for
E = 0.075. The width of the lines for the quantities 〈log10 w〉, 〈log10 P 〉 and γrepresents the statistial error as in Fig. 5.4. In the top right panel the two dashedlines orrespond to theoretially predited power laws γ = 1/6 and γ = 1/4.of asymptoti weak haos, intermediate strong haos, and dynamial rossover fromstrong haos to the slower weak haos subdi�usive spreading [130℄.The results of the time simulations are shown in Fig. 5.7, while the expetedspreading regimes are given in Fig. 5.2 (full upward triangles). As one an see byomparing Fig. 5.7 with Fig. 5.4, the qualitative behaviour of the two models israther similar. After initial transients, whih inrease with dereasing nonlinearity,all KG simulations reveal subdi�usive growth of the width w aording to power law
w ∼ tγ with γ < 0.5. If self-trapping is avoided, all simulations show a similar sub-di�usive behaviour for the partiipation number; moreover, the wavepakets remain



82 Chapter 5. Subdi�usion of nonlinear waves in quasiperiodipotentialsompat as they spread, sine the ompatness index at the largest omputationaltimes saturates around a onstant value. For the two smallest values of initial en-ergy density E = 0.05 and E = 0.01, the harateristis of the weak haos regimeare observed, namely, the exponent γ saturates around 1/6 (red and green urves inFig. 5.7) after a transient time. We stress that the only di�erene from the purelyrandom systems is the overshooting phenomenon at transient times. This e�et isan inherent property of quasiperiodi systems whih inevitably manifests itself inall spreading regimes, while in the disordered ase it was shown to our only in theregime of self-trapping [131, 132℄.For the two energy densities E = 0.055 and 0.075 we suggest strong haos,with harateristis similar to the DNLS ase. The simulation with E = 0.055(blue urves in Fig. 5.7) indeed exhibits the typial behaviour of the strong haossenario: the harateristi exponent γ inreases up to predited value 1/4 andremains so for about two time deades, followed by a rossover with γ dereasingto the weak haos dynamis. There is also another possibility for larger E = 0.075,when intermediate strong haos is masked due to partial self-trapping (magentaurves in Fig. 5.7). Thus, γ shows values larger then 1/4 but still with subsequentdeay to slower subdi�usion. Here, we would like to strongly emphasize that none ofthe simulations exhibit pronouned deviations from strong or weak haos regimes ofspreading, i.e. long-lasting overshooting with γ > 1/4, or signi�ant slowing downto values γ < 1/6.Finally, for E = 1.0 the dynamis enters the self-trapping regime, as our theorypredits. There, a major part of the initial wavepaket stays loalized, while theremainder spreads (yellow urves in Fig. 5.7). The partiipation number, therefore,does not grow signi�antly and 〈log10 P 〉 starts to level o� at large times (Fig. 5.7,left panel, bottom, yellow urve). In ontrast, the small spreading portion yields aontinuous inrease of the width w (Fig. 5.7, left panel, top, yellow urve), whihinitially is haraterized by large values of γ > 1/4 (howbeit, for larger time γdereases). Consequently, the ompatness index 〈ξ〉 (Fig. 5.7, right panel, bottom,yellow urve) drops down to small values indiating deep self-trapping regime. Notethat a similar behaviour has been observed before in purely random systems [131,132℄. Unusually large values of γ an be explained by loal trapping-detrappingproesses in the evolving wavepaket. The orresponding dynamis is in strongnon-equilibrium and its theoretial desription has yet to be developed.The results disussed in this setion reveal that the evolution of wavepakets inthe KG model an be interpreted in terms of the spreading regimes disussed insetion 5.3 and show the generality of our theoretial interpretation.



Chapter 6Deloalization phenomena in 1Dmodels with orrelated disorder
Interferene e�ets indued by random potentials deeply modify the transport prop-erties of quantum partiles and an lead to a very surprising e�et: a ompleteabsene of di�usion [1℄. As we have seen in hapter 2, the onset of loalizationruially depends on the dimensionality of the system [7℄. In partiular it is knownthat Anderson loalization always ours in one and two dimensions, no matter howweak is the disorder, while in three dimensions loalization takes plae dependingon the disorder strength and on the energy of the partile. In partiular in 1D thee�et of disorder is known to be the strongest and several proofs of loalization havebeen given [4, 5, 53℄.These statements are true as long as the disordered is unorrelated. A naturalquestion is to what extent these results still holds if the unorrelation ondition isrelaxed. This is the main topi of this hapter.In nature, stritly speaking, unorrelated disorder does not exist, and this iswhy this topi attrated a lot of attention in the last deades [30℄. Very often thepotential is assumed to be unorrelated beause mathematial proofs are muh easierin this ase. In some ontexts, like ondensed matter physis, the replaement ofthe real potential with an unorrelated one is not the strongest approximation andtherefore is somehow justi�ed. In some other ases this replaement represents agood approximation sine one is interested only in waves with a typial wavelengthlarger than the orrelation length of the potential [39℄. However there are alsosituations where the role of orrelations an be relevant. For instane experimentalevidenes of deloalization e�ets produed by orrelations have been deteted insemiondutor superlatties [154℄ or using mirowaves propagating in disorderedwaveguides [155℄.E�ets of orrelations are also observable with ultraold atoms. On the onehand bihromati optial latties provide a realization of a quasiperiodi systemwhih exhibits a transition from extended to loalized states already in 1D; thissystems represent a limiting ase where the potential is not random and orrelationsdo not deay in spae [25℄. On the other hand, remaining in the ontext of non-deterministi random systems, experiments in spekle potentials show the existeneof states whose loalization length is signi�antly enhaned by orrelations [156, 24℄.From the theoretial side great attention has been given to the role played byorrelations in the determination of the loalization properties of 1D systems. It iswell established that quasiperiodi systems an exhibit loalized or extended states



84 Chapter 6. Deloalization phenomena in 1D models with orrelateddisorderdepending on the parameters of the potential (fr. hapter 3). As regards trulyrandom one dimensional systems, instead, the fat that orrelations have a deloal-ization e�et is widely aepted, though the presene of a band of metalli statesand of a mobility edge introdued by orrelations is still an open problem.The �rst evidenes of extended states in 1D systems were found in modi�edversions of the Anderson model [157, 158℄. These papers onsidered on-site energiessuh to form dimeri strutures whih present no baksattering for ertain resonantmodes. This leads to a disrete set of extended/metalli states but not to a truemobility edge, sine an entire band of extended states is missing. Neverthelessorrelations have a strong e�et on the transport properties of the system and induea superdi�usive spreading of initially on�ned wavepakets. Among these modelsthe most well known examples are the random dimer model and its dual ounterpart[158, 159℄. They are haraterized by random potentials with short-range spatialorrelations: the two point orrelation funtion, C(ℓ), deays exponentially on atypial length ℓ̄ with π/kmax < ℓ̄≪ L, L being the system size and kmax the largestwavevetor allowed by the system.The role played by orrelations has been extensively studied also for disorderedpotentials that present a spetral funtion S(k), whih is the Fourier transform of
C(ℓ), that vanishes in a �nite k-region. It was initially laimed that these kind ofpotentials might give rise to bands of extended states in 1D [160℄, but later it hasbeen reognized that those states are not really extended; they exhibit an abruptinrease of the loalization length mimiking the presene of a mobility edge in�nite-size systems [161℄. This is, for instane, the ase of spekle potentials [162, 47℄that we mentioned before.Another interesting lass of disordered potentials are those whih exhibit longrange orrelations. In this ase both C(ℓ) and S(k) are nonzero over the whole realand k spae. There are no length sales haraterizing the disorder and typiallythe orrelation funtion is assumed to deay as a power law C(ℓ) ∝ ℓ−β. In thisase, it has been observed that orrelations an have di�erent e�ets depending onthe region of the spetrum under onsideration. In partiular, for disrete models,a redution of the loalization length has been observed at the band edges whilean enhanement has been reported at the band enter [163℄. In this ontext alsothe presene of mobility edges has been laimed [164℄, although these results stirredsome ontroversy [165, 166℄.Finally, let us mention that the presene of a mobility edge in 1D has beenreently reported for deterministi non-quasiperiodi potentials [167℄.Very often, espeially in the ase of long range orrelations, these studies re-lies on toy models haraterized by ad-ho orrelation funtions, reating almost noonnetion with possible experimental implementations. In this hapter we proposea physial model for a random potential where long-range and short-range orrela-tions arise naturally from the system itself and whih is also realizable using dipolarultraold gases.The model onsiders a series of dipoles pinned at random positions in the min-ima of a deep optial lattie. Due to the repulsive interations among these dipoles



6.1. Dipolar interation 85
Figure 6.1: Shemati representation of the physial model. A set of dipoles (greenspheres) are trapped at random positions in the minima of a deep optial lattie andplay the role of impurities. One test dipole (red sphere) is exited to another internallevel and feels a shallower external potential. The test dipole an tunnel through thelattie subjet to the random potential originating from the dipolar interation withthe impurities.there will be a orrelation in the way in whih they are positioned in the lattie andin partiular they will have the tendeny to sit far away from eah other. This set oftrapped dipoles, referred as impurities, is assumed to reate a disordered potentialfor another dipole, the test dipole, whih is exited to another internal level and isassumed to be free to move through the lattie (see Fig. 6.1). Short range orrela-tions arises from the distribution of the impurities, while long range orrelations aredue to the dipolar interation between the test dipole and the impurities.In the following we study the loalization properties of the test dipole in theorrelated potential realized by the impurities, highlighting the role played by shortand range orrelations. In partiular, as the parameters of the model are hanged,we observe that short range orrelations an introdue a disrete set of extendedstates in the system, while long range orrelations tend to restore loalization andlead to ounterintuitive e�ets on the loalization length of the system.The hapter is organized as follows. First of all in setion 6.1 we give a brief intro-dution on the dipole-dipole interation. The model is presented in detail in setion6.2 and the Hamiltonian desribing the properties of the test dipole is derived. Insetion 6.3 we haraterize the statistial properties of the random potential formedby the impurities. Then, in setion 6.4 we study the loalization properties of themodel by using a renormalization-deimation sheme for the alulation of the lo-alization length. Finally a detailed disussion of the role played by short and longorrelations is presented in setion 6.5.6.1 Dipolar interationLet us onsider two partiles with dipole moments pointing in the diretions identi-�ed by the two unit vetors ~e1 and ~e2 and whose relative position is ~r. The potentialenergy assoiated to the dipole-dipole interation between the two partiles is givenby

Udd(~r) =
Add

4π

(~e1 · ~e2)|~r|2 − 3(~e1 · ~r)(~e2 · ~r)
|~r|5 , (6.1)
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Figure 6.2: Interation between polarized dipoles (a). Two polarized dipoles plaedside by side repel eah other (b) while dipoles in a �head to tail� on�guration attrateah other (). Figure taken from ref. [168℄.where the oupling onstant Add quanti�es the strength of the dipolar interationand is given by di�erent expressions depending on the physial origin of the dipolefore. For partiles having a permanent magneti moment, µ, the oupling onstant
Add is µ0µ2, where µ0 is the permeability of vauum; for partiles having a perma-nent eletri dipole moment, p, Add is given by p2/ε0, where ε0 is the permittivityof vauum. For a polarized sample, where all dipoles point in the same diretion,the dipolar interation takes a simpler form [168℄:

Udd(~r) =
Add

4π

1− 3 cos2(Θ)

|~r|3 . (6.2)where Θ is the angle between the relative position ~r and the dipole orientation(Fig. 6.2). The main property of the dipole-dipole interation is yo be long rangeand anisotropi. The long range harater of the interation is due to the fatthat it dereases with the ube of the distane Udd ∼ 1/|~r|3. The anisotropy isinstead given by its angular dependene. As Θ is varied from 0 to π/2 the funtion
(

1− 3 cos2(Θ)
) hanges sign and the dipole-dipole interation hanges from positiveto repulsive. In Fig. 6.2 we show the two limiting situations of partiles sitting sideby side where the interation is maximally repulsive (b) and of dipoles in a �head-to-tail� on�guration where the interation is maximally attrative (). For the speialvalue ΘM = arccos(1/

√
3) ≈ 54.7◦, the so-alled �magi-angle�, the dipole-dipoleinteration vanishes.There are several andidates to experimentally realize a dipolar quantum gas:moleules having a permanent eletri dipole moment p, Rydberg atoms, whihan have very large indued eletri dipole moments, or ground state atoms havinga large magneti moment µ [169℄. So far quantum degeneray has been reahedonly in the last ase with three di�erent atomi speies: Chromium (µ = 6µB ,where µB is the Bohr magneton), Dysprosium (µ = 10µB) and Erbium (µ = 7µB).Chromium was ondensed in 2005 [170℄ and, sine then, it allowed for the �rstexperimental investigations of the unique properties of dipolar quantum gases [171,169℄. More reently a Bose-Einstein ondensate [172℄ and a degenerate Fermi gas



6.2. The physial model 87[173℄ of Dysprosium have been produed. The last speies that has been ondensedis Erbium [174℄.6.2 The physial modelLet us onsider a very dilute ultraold dipolar gas in a deep one dimensional optiallattie, whih forbids tunneling between sites. The gas feels also the presene of astrong harmoni on�nement plaed in the diretions perpendiular to the lattiethat redues the e�etive dimensionality of the system to 1D.We assume that the dipoles are trapped at random positions at the minima ofthe lattie and that they are polarized perpendiularly with respet to the lattieaxis, so that dipole-dipole interation is repulsive. In this way, for small densitiesand large dipole-dipole interation, there are no double oupanies, and moreoverwe an assume that the dipoles will oupy sites far away from eah other. Inpartiular the interation is taken to be strong enough so that eah dipole has to bepreeded and followed by at least two empty sites. In the following we refer to thisset of trapped dipoles as impurities.One dipole, that we refer to as the test dipole, is exited to another internal state,so that, unlike the impurities [50, 51℄, it feels a shallower optial lattie and it is freeto hop between di�erent sites. In this situation we an desribe the test dipole as asingle partile that feels the presene of a random potential that originates from thedipolar interation with the impurities pinned in the lattie. This random potentialis haraterized by the presene of both short range and long range orrelations andits statistial properties will be haraterized in detail in setion 6.3. The physialmodel that we have just desribed is shematially represented in Fig. 6.1.Assuming that the motion of the dipolar impurities is frozen and that the radialon�nement is so strong that all the atoms lie in the lowest level of the radialharmoni trap, the motion of the test partile of mass m along the lattie axis z anbe desribed using the following Hamiltonian
H = − ~

2

2m

∂2

∂z2
+ s(T )ER sin2(kz) + Vd(z), (6.3)where k = 2π/λ is the wavenumber of the laser generating the optial lattie ofspaing d = λ/2, ER = ~

2k2/2m is the reoil energy and s(T ) is the dimensionlesslattie strength felt by the test partile. The potential Vd(z) represents the ran-dom potential resulting from the dipolar interation of the test partile with theimpurities trapped in the lattie and it an be written as follows
Vd(z) =

∫

dz′ρ(z′)U1D
dd (z − z′). (6.4)Here we have introdued the funtion ρ(z) whih desribes the density distributionof the impurities along the z diretion. The potential U1D

dd (z) is the e�etive onedimensional dipolar interation obtained after integration of the dipolar interationin the radial diretion. In our model we do not inlude ontat interations, with



88 Chapter 6. Deloalization phenomena in 1D models with orrelateddisorderthe underlying idea that they an be swithed o� by exploiting Feshbah resonanes[168, 175, 169℄. The density funtion ρ(z) an be alulated assuming that in the
z diretion eah impurity oupies a Wannier state w(I)(z) and therefore the fulldensity is given by a sum of Wannier funtions loalized around the sites oupiedby the impurities, that we label with l̄:

ρ(z) =
∑

l̄

|w(I)(z − l̄d)|2. (6.5)The Wannier states of the impurities are alulated imposing that they feel an optiallattie whih is muh deeper than the one felt by the test partile s(I) >> s(T ).The e�etive one dimensional potential U1D
dd (z) is obtained assuming that boththe test partile and the impurities oupy the lowest radial state of the harmonion�nement

φω(~r⊥) =
1√
πσω

e−r2
⊥
/2σ2

ω with σω =

√

~

mω
(6.6)and is given by the following expression

U1D
dd (z) =

∫

d~r′⊥d~r⊥|φω(I)(~r′⊥)|2|φω(T )(~r⊥)|2Udd(~r − ~r′). (6.7)where ω(I) and ω(T ) are the frequenies of the radial harmoni trapping felt by theimpurities and by the test dipole respetively. Solving the integral in Eq. (6.7) oneobtains [176℄
U1D
dd (z) =

Add

4πσ3⊥
(1− 3 cos2 α)×

×
{

−2

3
δ

(

z

σ⊥

)

+
1

2

√

π

2
e

1
2

z2

σ2
⊥

[(

z2

σ2⊥

)

+ 1

]

Erfc

( |z|√
2σ⊥

)

− |z|
2σ⊥

}

.

(6.8)where σ⊥ =
√

(σ2
ω(I) + σ2

ω(T ))/2, α is the angle between the diretion of the dipoleand the z axis, that in our ase is equal to π/2, and Erfc(z) is the omplementaryerror funtion
Erfc(z) =

2√
π

∫ ∞

z
e−t2 dt. (6.9)Note that U1D

dd (z) is omposed by two parts: a Dira delta term that is stronglypeaked around z = 0 and a slowly deaying part formed by the seond and thethird term. One an show that at large distanes |z| ≫ σ⊥ the slowly deaying partreprodues the typial behaviour of a dipolar interation, namely it dereases withthe ube of distane U1D
dd (z) ∼ Add(1− 3 cos2 α)/|z|3.A tight binding form of Hamiltonian (6.3) is obtained by using a set of Wan-nier states wn(z) as a basis for the states of the test partile (see appendix A foran introdution on Wannier funtions) and by following a disretization proedure



6.2. The physial model 89similar to the one illustrated in setion 3.1. For the ase of a single dipolar impuritypinned at site l the Hamiltonian of the test partile is
H(1) =− J

∑

n

(| wn〉〈wn+1 | + | wn+1〉〈wn |)

− Jd (| wl〉〈wl±1 | + | wl±1〉〈wl |) +
∑

n

uddn−l | wn〉〈wn | . (6.10)In Eq. (6.10) we have inluded the standard nearest neighbour tunneling term J(fr. Eq (3.6) of setion 3.1) and two ontributions due to the dipolar interation;the �rst represents a nearest neighbour dipolar assisted hopping Jd, the seond isthe on-site energy uddn−l at site n. They an be alulated as follows
J = −

∫

w∗
n(z)

[

− ~
2

2m

d2

dz2
+ sER sin2(kz)

]

wn+1(z) dz,

Jd = −
∫

wl(z)wl+1(z)|w(I)
l (z′)|2U1D

dd (z − z′) dz dz′, (6.11)
uddn−l =

∫

|wn(z)|2|w(I)
l (z′)|2U1D

dd (z − z′) dz dz′.Note that the funtion uddn an be interpreted as the dipolar interation between asingle impurity and the test partile in the disretized formalism. In fat the on-siteenergy simply depends on the distane |n − l| between the test partile and theimpurity.In Fig. 6.3 we show the behaviour of the quantities θ = (J + Jd)/J and λn−l =

uddn−l/J for |n − l| = 0, 1, 2 as a funtion of σ⊥ for the ase of Add = 0.49~2λ/m,
s(T ) = 6 and s(I) = 30. This value of Add orresponds to the dipolar moment ofDysprosium atoms trapped in an optial lattie generated by a laser of wavelength
λ = 570 nm.We note that, for this hoie of parameters, we an reasonably set θ = 1 (Jd = 0)and the on site energies for |n − l| ≥ 2 an be approximated with the asymptotiexpression λn−l = λ/|n − l|3 with λ = (Add/Jd

3). They are therefore independenton the value of σ⊥. Also λ1 does not depend signi�antly on the radial on�nement.Conversely the value of λ0 strongly depends on σ⊥ and it an even vanish andbeome negative. This is due to the fat that the dipolar interation hanges signdepending on the relative position of the two dipoles and therefore the integral forthe alulation of udd0 has both positive and negative ontributions.In presene of several, randomly plaed impurities the on-site energies have tobe alulated summing over all the di�erent ontributions. The on-site energies aretherefore given by
εn =

∑

l̄

uddn−l̄ =
∑

l

ρlu
dd
n−l (6.12)where the index in the �rst summation, l̄, runs only over the sites oupied by animpurity. This summation an be onveniently rewritten by summing over all sites
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Figure 6.3: Site energies λ0, λ1 and λ2, and hopping energy θ as funtion of σ⊥in units of λ/(2π), for the dipolar oupling of Dysprosium atoms orresponding to
Add = 0.49 × ~

2λ/m, λ = 570, s(T ) = 6, s(I) = 30 and α = π/2. The oloredvertial lines labelled by di�erent letters represent the set of values that we used forthe alulation of the loalization properties of the system.and introduing a disretized impurity density ρl, whih is equal to 1 for oupiedsites and 0 otherwise. The �nal Hamiltonian takes the following form
H = −J

∑

n

(| wn〉〈wn+1 | + | wn+1〉〈wn |) +
∑

n

εn | wn〉〈wn | . (6.13)6.3 Statistial properties of the random potentialWe haraterize the random potential generated by the dipolar impurities by alu-lating its average value 〈εn〉 and the two point orrelation funtion Cε(ℓ) = 〈εnεn+ℓ〉.To start with, let us study separately the properties of the density ρn and of thedipolar interation uddn .The density ρn is a stohasti variable and we an introdue its average valueand the two point orrelation funtion:
〈ρn〉 = C (6.14)

〈ρnρn+ℓ〉 = Cρ(ℓ) (6.15)where C de�nes the impurity onentration. Note that, if we impose that the mini-mum distane between impurities is two sites, then the maximum value allowed for



6.3. Statistial properties of the random potential 91the onentration is C = 1/3. We an also introdue two quantities assoiated tothe shape of the interation potential between the test dipole and a single impurity,
uddn :

udd =
∑

n

uddn (6.16)
Cu(ℓ) =

∑

n

uddn u
dd
n+ℓ (6.17)whih an be thought as an average value and a two point orrelation funtion.The statistial properties of the full potential an be derived from those of ρnand from the shape of uddn . In partiular one an prove that

〈εl〉 = Cudd (6.18)
Cε(ℓ) =

∑

j

Cρ(ℓ− j)Cu(j). (6.19)Therefore the average value of the full potential is simply given by the produt ofthe impurity onentration and the average value of the interation potential udd,while the two point orrelation funtion is given by the onvolution of Cu(ℓ) and
Cρ(ℓ). For the full potential let us also introdue the redued orrelation funtion,de�ned as

cε(ℓ) =
〈εlεl+ℓ〉 − 〈εl〉2
〈ε2l 〉 − 〈εl〉2

(6.20)and the assoiated spetral density
S(k) =

∑

ℓ

cε(ℓ)e
ikℓ. (6.21)In the following we will use the square root of the variane of the full potential toquantify the potential strength W =

√

〈ε2n〉 − 〈εn〉2.For our spei� ase, where the random impurities have a minimum distanewhih is equal to two sites, the quantity Cρ(ℓ) satis�es the following reursive rela-tion:
Cρ(ℓ) =

1

1− 2C [CCρ(ℓ− 3) + (1− 3C)Cρ(ℓ− 1)] . (6.22)Solving this equation with the assumption that Cρ(0) = C, Cρ(1) = 0, Cρ(2) = 0one obtains
Cρ(ℓ) = C2 +

( C
1− 2C

)ℓ/2

[A cos(κℓ) +B sin(κℓ)] , (6.23)with
κ = π − atan

(

√

(4− 9C)/C
)

A = C − C2 (6.24)
B = −[

√

C3(1− 2C) + (C − C2) cos(κ)]/ sin(κ).



92 Chapter 6. Deloalization phenomena in 1D models with orrelateddisorderEq. (6.23) represents an osillating funtion whose envelope deays exponentially.For large values of ℓ it tends to the value whih is expeted for unorrelated sites,i.e., C2.As regards Cu(ℓ), its form depends on the spei� parameters of the system.However, as a general result, by approximating the sum in (6.17) with an integral,one an show that at large distanes its behaviour is determined by the typialshape of the dipolar interation, i.e., Cu(ℓ) deays with the ube of the distane,
limℓ→∞Cu(ℓ) ∝ 1/ℓ3.Thus we an onlude that the impurity distribution introdues short-range or-relations, while the shape of the interation uddn is responsible for long-range orre-lations. The role and the ompetition between these two e�ets will be extensivelydisussed in the next setions.6.4 Nature of the spetrumWe study the nature of the test dipole spetrum by evaluating the Lyapunov ex-ponent Λ(E), whih is equal to the inverse of the loalization length Lloc(E), bymeans of a renormalization-deimation sheme (see appendix B for an introdutionon the method). The method allows us to redue the original system omposedby N lattie sites to an e�etive dimer omposed by just two sites. This is donewith a renormalization proedure that removes one site of the hain and desribesthe remaining sites with an e�etive Hamiltonian. A reursive appliation of thisrenormalization proedure permits to remove all the internal sites of the hain andto desribe the whole system with a single dimer formed by the �rst and the lastsite of the hain, with on-site energies that we indiate with ε̃1 and ε̃N , and therelative e�etive hopping between those two sites J̃1,N .The Lyapunov exponent an be alulated as

Λ(E) = [Lloc(E)]−1 = lim
N→∞

1

N
ln

∣

∣

∣

∣

GN,N (E)

G1,N (E)

∣

∣

∣

∣

(6.25)
= − lim

N→∞
1

N
ln
∣

∣

∣
J̃1,N (E)

∣

∣

∣
, (6.26)where G(E) = (E −H)−1 is the Green's funtion assoiated to H at energy E, and

Gi,j(E) = 〈i|G(E)|j〉 are the orresponding matrix elements. The �rst expressionfor Λ(E) is a general expression [58℄, while the seond one, whih gives a diret on-netion between the e�etive hopping amplitude J̃1,N and the Lyapunov exponent,applies within the renormalization-deimation approah [177℄.The results for the loalization length Lloc(E) of our model, obtained with anumerial implementation of the renormalization-deimation approah, are shownin the top row of Fig. 6.4. We onsider inreasing values of σ⊥, orresponding tothe vertial lines in Fig. 6.3 (we use a olor ode among �gures and moreover orre-sponding simulations are labelled by the same letters (a), (b), (c) and (d)). Here andin the following we �x C = 1/4, average over 100 on�gurations and onsider system
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Figure 6.4: Top panel: loalization length Lloc in units of the lattie spaing d asa funtion of the energy in units of J for Hamiltonian (6.13). The blak dotted linesorrespond to the loalization length alulated in Born approximation L(2)
loc. Bottompanel: re�etion oe�ient R of the single impurity as funtions of the energy inunits of J . The vertial dashed lines indiates the energies for whih the re�etionoe�ient vanishes R(E) = 0. From left to right, di�erent plots refers to inreasingvalues of σ⊥, orresponding to the vertial lines in Fig. 6.3.sizes up to 107. As the value of σ⊥ is inreased we observe very di�erent loalizationregimes. Notably for ertain values of σ⊥ we observe divergenes of the loalizationlength, orresponding to the appearane of metalli states in the spetrum. Thissuggests the presene of deloalization e�ets indued by the orrelations of thephysial model under onsideration.More preisely, for large positive values of λ0 all states are learly loalizedsine the loalization length is always �nite (�rst panel, (a)). By inreasing σ⊥, forvanishing values of λ0 the loalization length exhibits two well de�ned peaks in tworegions of the spetrum (seond panel, (b)). Inreasing σ⊥ further, orresponding tonegative values of λ0, we observe the disappearane �rst of one of the two divergenes(third panel, (c)), and then of both of them (fourth panel, (d)). In this last panelno divergenes of the loalization length are observed but there are still peaks atthe band edges, that reall the diverging behaviour previously observed.The dotted blak lines orrespond to the loalization length L

(2)
loc evaluated in



94 Chapter 6. Deloalization phenomena in 1D models with orrelateddisorderBorn approximation, whih orresponds to a seond order perturbative alulationin the disorder strength [178, 160, 30℄. This alulation gives a diret onnetionbetween the spetral funtion S(k) and the Lyapunov exponent
Λ(2)(E) = [L

(2)
loc(E)]−1 =

W 2

J2

S (2k(E))

8 sin2 (k(E))
(6.27)where the onnetion between k(E) and the energy is given by the following re-lation E = 〈εn〉 + 2J cos(k). Let us note that the Born approximation gives, byonstrution, a symmetri loalization length around the average value of the disor-der 〈εn〉. In fat the spetral density S(k) assoiated to c(ℓ) is always a symmetrifuntion of k. Despite this fat, there is a notieable agreement between the Bornapproximation and the exat numerial results.6.5 Role of orrelationsWith the aim to understand why we are observing the appearane and the disap-pearane of metalli states in the spetrum by varying the radial on�nement (andthus the 1D dipolar interation) we analyse separately the e�ets due to short-rangeorrelations and long-range orrelations.6.5.1 Short range orrelationsIn order to isolate the role of short range orrelations in our model, we alulate there�etion oe�ient for the ase of a single impurity as in Eq. (6.10) and moreoverwe neglet the on-site ontributions beyond nearest neighbour. Therefore we assumethat a single dipolar impurity modi�es just a trimer of on-site energies {λ1, λ0, λ1}and moreover we generally assume that it an modify also the hopping with nearestneighbouring sites θ.In general, the transport properties of a system of N sites desribed by anHamiltonian H are obtained by embedding it in an in�nite perfet lattie with on-site energies ε and hopping energies J (see appendix B for details). This leads to anew extended Hamiltonian that we all Hext. The sattering of an inoming wave

|q〉 with energy E = ε + 2J cos(q) results in a re�etion amplitude r that an beexpressed as
r = G0

1,1T1,1 +G0
N,1T1,N +G0

1,NT1,N +G0
1,1T1,1e

+2iq(N−1), (6.28)
T being the sattering matrix de�ned by

T = HI
(

1−G0HI
)−1

, (6.29)with HI = Hext −H0, H0 =
∑

n−J(| wn〉〈wn+1 | + | wn+1〉〈wn |) and G0 is theGreen's funtion assoiated to H0. From an operational point of view, sine we needto know the matrix elements of the sattering matrix T in the subspae ξ = {1, N},we use again the renormalization proedure to evaluate them. One has to apply the



6.5. Role of orrelations 95renormalization-deimation approah separately on Hext and H0 and then alulatethe renormalized HI subtrating the two. Therefore one redues to the alulationof the re�etion and transmission properties of an e�etive dimer.In our spei� ase we are onsidering a single dipolar impurity and we assume itmodi�es just the on-site energy, the nearest neighbouring energies and the tunnelingwith the nearest neighbours. We have therefore a system of size N = 3 and we anredue to an e�etive dimer with just one iteration of the renormalization proedureand this an be done analytially.Applying the renormalization-deimation sheme and using Eq. (6.28) one ob-tains the following analytial formula for the re�etion oe�ient R = |r|2 of thesingle dipolar impurity
R =

{λ1
(

E
J

)2 − E
J [1− θ2 + λ21 + λ1λ0]− 2θ2λ1 + λ0 + λ21λ0}2

{λ1
(

E
J

)2 − E
J [1− θ2 + λ21 + λ1λ0]− 2θ2λ1 + λ0 + λ21λ0}2 + θ4

[

4−
(

E
J

)2
] .(6.30)In the bottom row of Fig. 6.4 we plot R = |r|2 for the same parameters usedfor the alulation of the loalization length, i.e. θ = 1 and λ0 and λ1 taken fromthe urves in Fig. 6.3. We observe that the alulation of the re�etion oe�ientof the single impurity provides a very good understanding of the behaviour of theloalization length: the energies where R tends to zero are exatly those wherethe loalization length exhibits very large anomalous values. There is therefore adiret onnetion between the appearane of metalli states in the spetrum andthe sattering properties of the single impurity. It has been previously shown byDunlap et al. [158℄ that this kind of single impurity analysis an be used to interpretthe transport properties of a system of size N where there are several randomlyplaed impurities. More preisely they proved that in suh systems the numberof single-partile states that show a metalli behaviour, being extended over thefull system, is of the order of √N . Notably this number of deloalized states islarge enough to indue transport in the system and initially loalized wavepaketsshow a superdi�usive spreading in the disordered potential. This means that thistype of extended states are detetable in typial expansion experiments that an beperformed with ultraold atomi gases [24, 25℄.It is remarkable that making use of the simple analytial expression (6.30) we anpredit the loalization properties of a rather omplex system and the ourrene ofmetalli states in the spetrum. Studying the solutions of the equation

R(E) = 0 (6.31)as a funtion of λ0 and λ1, one an extrat the �phase� diagram in Fig. 6.5. Weidentify four di�erent regions in the diagram depending on the number of solutions ofEq. (6.31) and on their values. More preisely, if the solutions are both imaginary, nodivergenes are expeted and all the states are exponentially loalized (red region).If the solutions are real divergenes are expeted, but we need to hek whether theyare inside or outside the single impurity spetrum E = 2J cos(q). In other words,



96 Chapter 6. Deloalization phenomena in 1D models with orrelateddisorder

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2
λ0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

λ 1

(b) (a)
(c)

(d)

Figure 6.5: �Phase� diagram indued by short range orrelations extrated fromthe re�etion oe�ient, Eq. (6.30), for the single impurity ase. Di�erent oloursorrespond to di�erent loalization regimes obtained from the solution of Eq. (6.31).No real solutions of Eq. (6.31) orrespond to the red region. If Eq. (6.31) has realsolutions we an distinguish three ases: no solutions are in the single partile spe-trum (yellow region), one solution is in the spetrum (green region), two solutionsare in the spetrum (blue region). The four points in the diagram orrespond to thesimulations presented in Fig. 6.4 and to the values of σ⊥ indiated by vertial linesin Fig. 6.3.one observes real divergenes only when the roots satisfy the additional ondition
|E| < 2J . Therefore, when the solutions are real, we an identify three additionalsenarios: both solutions lie outside the spetrum (yellow region), one lies inside andone outside the spetrum (green region), both lie inside the spetrum (blue region).In the diagram we also identify with points the values of λ0 and λ1 orrespondingto the di�erent plots of Fig. 6.4. In Fig. 6.4 the dashed vertial lines mark theenergies whih verify the ondition R(E) = 0. In partiular the square in the redregion (a) of Fig. 6.5 orresponds to the �rst plot of Fig. 6.4 where all states areloalized; the irle in the blue region orresponds to the seond plot (b) where weobserve two resonanes; the triangle in the green region (c) orresponds to the thirdplot where we observe one resonane; and the diamond in the yellow region (d)orresponds to the last plot where there are no resonanes but the peak on the rightshows a tendeny to diverge due to the fat that the resonane lies just outside thesingle impurity spetrum.



6.5. Role of orrelations 97Let us reall that, in our single impurity analysis, we onsidered the ase whereone isolated dipole indues just a trimer of site energies {λ1, λ0, λ1} and we negletedbeyond nearest neighbour ontributions. In other words, we negleted the e�et oflong range orrelations. Nonetheless the single impurity analysis desribes very wellthe position of the resonanes alulated with numerial simulations that aountfor the full dipolar interation.In the next setion we study in detail the role played by the dipolar tails thatwe negleted in this simpli�ed alulation and we highlight the role played by longrange orrelations.6.5.2 Long range orrelationsIn order to understand the role played by long range orrelations and plae thedipolar ase in a wider ontext, we investigate the loalization properties of a setof disordered potentials generated by impurities that interat with the test partilewith an e�etive interation with tails deaying as uβn ∼ 1/|n|β where β ≥ 1.This is done plaing the impurities exatly as done in the dipolar ase, keeping�xed the values of λ0 and λ1 and hoosing λn = uβn/J = λ/|n|β for n ≥ 2. The ase
β = 3 (u3n = uddn ) reovers our physial model with dipolar interations. Moreover,one we reated the potential with this proedure, we shift and normalize the on-siteenergies in order to obtain the same average value 〈εn〉 and disorder strength Wthat we had in the dipolar ase. Following this proedure we an really analyze thee�et of long range orrelations keeping �xed the disorder strength W . In partiularwe onsidered values of β ranging from 1 up to 5 and we also onsidered the ase of
β = ∞ that orresponds to λn = 0 for n ≥ 2.The potential generated with this proedure has Cρ(ℓ) whih is unhanged anddeays exponentially as previously disussed. This is due to the fat that the im-purities are plaed exatly in the same way as before. The orrelation funtion as-soiated to the interation potential Cu(ℓ) is instead modi�ed and using Eq. (6.17)one an show that it deays at large distanes as Cu(ℓ) ∼ 1/ℓβ for β > 1 and as
Cu(ℓ) ∼ log(ℓ)/ℓ for β = 1. This asymptoti expression determines also the shapeof the tails of the redued orrelation funtion assoiated to the full potential cε(ℓ).The e�ets played by long range orrelations are again studied by alulatingnumerially the loalization length with the renormalization-deimation approah.In Fig. 6.6 we show the loalization length Lloc alulated for di�erent values of β.In partiular we show a omparison between the two limiting ases of β = ∞ and
β = 1 and the physial ase under onsideration, i.e. the dipolar ase β = 3. Weonsidered also other values of β but we do not show the results here sine they arenot partiularly instrutive. They just show an intermediate behaviour between thetwo limiting ases reported here.The two panels in Fig. 6.6 orrespond to two di�erent set of parameters takenfrom Fig. 6.3, in the left panel we onsidered the ase where the loalization lengthis always �nite while in the right panel the ase where there are two resonanes inthe spetrum. Therefore the two urves for β = 3 are exatly the same urves whih
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Figure 6.6: Loalization length Lloc in units of lattie spaing as a funtion of theenergy in units of J for di�erent type of long range orrelations identi�ed by theasymptoti deay of the tails of the two point orrelation funtion C(ℓ) ∼ 1/ℓβ . Thetwo di�erent panels orrespond to two di�erent loalization regimes indued by shortrange orrelations (see text for more details).are shown in the upper row of Fig. 6.4 and those are ompared with the ase ofomplete absene of long range orrelations (β = ∞) and the ase of very slowlydeaying orrelations (β = 1).There are two main features of Fig. 6.6 that we would like to disuss here. The�rst is the e�et introdued by long range orrelations on the divergenes that wehave disussed in the previous setion. We observe that they tend to be beveled.In fat in the β = ∞ ase the loalization length takes values of the order of thesystem size N = 107 signalling the presene of real metalli states in the systemwhih extend over the full lattie. As the value of β is dereased the peaks in theloalization length are still there but their height is dereased and they are shiftedtowards the band edges. This behaviour is somehow expeted, sine the perfetresonane ondition, obtained with the single impurity alulation presented in theprevious setion, was negleting the slowly deaying tails. When those tails aretaken into aount they tend to restore interferene e�ets in the sattering proessand reintrodue loalization in the system. However, let us stress that the e�etof the short range orrelations remain learly visible also in presene of long rangeorrelations.



6.5. Role of orrelations 99The seond feature that we would like to highlight is the ounterintuitive be-haviour of Lloc introdued by long range orrelations at the enter of the band. Infat depending on the set of parameters under onsideration long range orrelationshave an opposite e�et on the loalization length. In the left panel they introdue aderease of the loalization length while in the right panel they have the tendeny toenhane it. This observation shows the highly nontrivial role played by long rangeorrelations in determining the loalization properties of a disordered system andindiates a riher behaviour with respet to what has been observed so far in theliterature [163℄.These features that we extrated from the numerial simulations reported inFig. 6.6 are also aptured within the Born approximation. We do not report theurves for L(2)
loc alulated in Born approximation, we just omment that the agree-ment between those urves and the exat numerial results is good, similar to whatobserved in Fig. 6.4.Finally we would like to omment that we do not �nd the presene of mobilityedges indued by long range orrelations as suggested in [164, 167℄.





Chapter 7Conlusions
The observation of Anderson loalization in ultraold atomi gases [24, 25℄ repre-sented a turning point for the study of disordered quantum systems and providedthe route for takling a number of open questions of the theory of loalization.Stimulated by this remarkable result, in this thesis we have investigated theproperties of a Bose gas in presene of quasiperiodi and random potentials. Speialfous has been given to the interplay between loalization and interation and to thedeloalization e�ets indued by the orrelations of the disorder. The main resultsof this work are the following.In hapter 3 we introdued quasiperiodi potentials and their implementationwith bihomati optial latties ating on a gas of noninterating partiles. We lar-i�ed the onnetion of this physial problem with the disrete Aubry-André modeland reviewed its loalization properties showing that a transition from extendedto loalized states ours already in one dimension at a ritial disorder strength.One of the main goals was to �ll the gap between the well known properties of theAubry-André model and what an be atually observed in realisti experiments withultraold gases. As a �rst step in this diretion, we studied the di�usion of noninter-ating wavepakets in a ommensurate (periodi) lattie and we ompared it withthe ase of an inommensurate (quasiperiodi) lattie. We showed that the spatialperiodiity of the ommensurate lattie plays a key role in determining the type ofapproah to the quasiperiodi limit in a sequene of ommensurate approximants.This part of our analysis on�rmed that the transition from di�usion to loalizationobserved in Ref. [25℄ an orretly be interpreted in terms of the preditions of theAubry-André model. As a seond step we onsidered the properties of the samemodel but in momentum spae. We showed the ourrene of interesting periodiosillations in the time evolution of the momentum distribution of an expandingwavepaket. We numerially alulated the frequeny and visibility of these osilla-tions and we introdued a simple few-mode approximation that gives a onsistentinterpretations of this behavior. Our analysis suggests that the osillations of theentral and side peaks in the momentum distribution an be used e�iently to probethe transition from di�usion to loalization in the Aubry-André model. Our resultsare relevant for feasible experiments with ultraold atoms, where the momentumdistribution an be deteted with good resolution by performing time-of-�ight mea-surements.In hapters 4 and 5 we onsidered a weakly interating Bose gas in a bihromatioptial lattie and dealt with the problem of the interplay between disorder induedloalization and deloalization aused by repulsive interations. In hapter 4 we



102 Chapter 7. Conlusionsintrodued the method whih is used to study the expansion of an initially loalizedwavepaket, namely a disrete nonlinear Shrödinger equation whih generalizesthe Aubry-André model by introduing the interation at the mean-�eld level. Wenumerially simulated the dynamis of matter waves starting from either a δ-funtionloalized in a single lattie site or a Gaussian wavepaket. In the former ase, wefound that the dynamis is dominated by self-trapping proesses in a wide range ofparameters even for weak interation. Conversely, in the latter ase, self-trappingis signi�antly suppressed and the destrution of loalization by interation is moreeasily observable. In partiular, we found that Gaussian wavepakets, whih remainloalized for noninterating partiles, start to spread subdi�usively (i.e., the width ofthe wavepaket grows as w(t) ∼ tγ with γ < 0.5) in the presene of interation. Wealso ompared the results extrated from our theoretial model with an experimentalstudy performed in Florene [33℄ that onsiders the expansion of a Bose-Einsteinondensate with tunable interations in a bihromati optial lattie. Notably, adestrutive e�ets of interations on loalization is observed also experimentally.The measured values of the spreading exponent γ indiate a subdi�usive expansionof the loud, onsistently with our numerial observations. The values of γ observedboth in the numerial and experimental data show a lear deviation from thoseobtained for random systems and, in partiular, larger values of γ are deteted inthe quasiperiodi ase, indiating a nontrivial role played by the orrelations of thepotential.In hapter 5 we foused on the phenomenon of destrution of loalization inquasiperiodi systems and we haraterized in detail the subdi�usive spreading forlarge asymptoti times. We gave partiular attention to the omparison with therandom ase. We interpreted the spreading proess in terms of resonanes in themode-mode oupling. In partiular, by omparing the frequeny shift indued bythe interation (nonlinearity) with the energy sales extrated from the spetrum ofthe underlying noninterating (linear) system, we predited the ourrene of threedi�erent spreading regimes. In addition to the regime of self-trapping, we identi-�ed the regimes of strong haos and weak haos. We also predited the spreadingexponents γ = 1/6, for weak haos, and γ = 1/4, for strong haos. We performednumerial simulations whih last for muh longer times than the simulations pre-sented in the previous hapter 4, and we averaged our results over many realizations.This gave us the possibility to aurately alulate the spreading exponent γ andobserve the weak haos regime. A key di�erene with respet to random systems isthe ourrene of transient overshooting regimes that we interpreted as due to thepeuliar struture of the linear spetrum of the quasiperiodi system, whih is sep-arated into mini-bands. These mini-bands are responsible for peuliar mehanismsof partial self-trapping. Signatures of strong haos have also been observed, butthe temporal overlap of strong haos and partial self-trapping makes the analysisof the spreading more omplex than for random systems. We also veri�ed that ourmain results do not depend on the details of the shape of the initial wavepaket.This suggests that the nonlinear frequeny shift is the only parameter that ontrolsthe dynamis. Finally we ompared the results obtained with the disrete nonlinear



103Shrödinger equation with those obtained with a quasiperiodi version of the quartiKlein-Gordon lattie model. The results of the two models are quite similar andthis supports the generality of our preditions.In hapter 6 we onsidered the problem of loalization of noninteration partilesin a orrelated random disorder. To fae this issue we proposed a novel model whihis relevant both from a theoretial and an experimental point of view. From thetheoretial side it presents a nontrivial interplay between the role played by shortand long range orrelations. From the experimental side it an be realized using a gasof ultraold dipolar atoms. We onsidered a set of dipolar impurities pinned in thewells of a deep optial lattie that ats as a random potential for another atom (testpartile) in another internal state that feels a weaker optial lattie. An analysis ofthe statistial properties of the model showed that short-range orrelations are dueto the fat that the oupation of neighboring sites are forbidden beause of repulsivedipolar interations between impurities, while long-range orrelations are due to thedipolar interation between the test dipole and the impurities. The loalizationproperties of the model were alulated by means of a renormalization-deimationtehnique whih allowed us to alulate properties of very large systems and studythe extended or loalized nature of the states. We found that the presene of shortrange orrelations an give rise to di�erent regimes of loalization. In partiular,as the parameter of the system are hanged, we observed regimes where all thestates are exponentially loalized and regimes where one or more disrete sets ofextended states appear in the spetrum. The ourrene of the di�erent regimesan be predited starting from an analytial expression obtained from the satteringof a single impurity. Notably, the di�erent loalization regimes ould be exploredexperimentally simply by hanging the strength of the radial harmoni on�nement.Long range orrelations were studied not only for the dipolar ase but also for amore general two point orrelation funtion deaying as C(ℓ) ∼ 1/ℓβ (the ase
β = 3 orrespond to the dipolar ase). We saw that long range orrelations tend torestore loalization in the spetrum and lead to ounterintuitive behaviours of theloalization length. More preisely, depending on the loalization regime that areonsidered, they an enhane or redue the loalization length at the enter of theband.OutlooksAfter the �rst observations of 1D Anderson loalization of matter waves, the ex-perimental ativity in ultraold atoms aimed to better understand the physis ofdisordered systems has grown signi�antly. Part of the ommunity foused on theproblem of the ombined e�ets of disorder and interation. Some experiments on-sidered the equilibrium properties of a Bose gas, looking for the transition fromsuper�uid to Bose glass [67, 98, 67℄. Others onsidered the dynamial propertiesfousing on the expansion of an initially loalized wavepaket [33, 69℄. Other groupsinvestigated the role of dimensionality onsidering two dimensional and three dimen-



104 Chapter 7. Conlusionssional disorder. In the two dimensional ase, the regime of Anderson loalizationhas not yet been reahed [179℄, but reently the observation of oherent baksatter-ing of ultraold atoms has been reported [180℄. This phenomenon is responsible forthe so alled weak loalization, whih an be onsidered as a preursor of Andersonloalization. In the three dimensional ase two di�erent experiments managed toobserve Anderson loalization of matter waves with noninterating bosons [71℄ andfermions [70℄.As suggested by this stimulating senario there are several diretions that anbe investigated from the theoretial point of view. A diret extension of the in-vestigation of the interplay between interation and loalization would onsists ofomparing our results for the expansion of an initially loalized wavepaket withthose that an be found by using di�erent approahes like, for instane, the inves-tigation of the properties of a Bose gas at equilibrium in a box of �nite size in thepresene of a quasiperiodi potential and of interation between atoms. Alterna-tively one may look for signatures of the destrutive e�et of the interations onloalization by onsidering the time evolution in momentum spae. Another impor-tant task would be the development of beyond-mean-�eld theories, allowing for theinvestigation not only of weakly interating, but also strongly interating gases.As regards the role of the orrelations, there are several extensions that anbe onsidered. Remaining in the one dimensional ase, the study of the dynamisof wavepakets would provide another possible way to detet the deloalizationindued by the orrelations. We expet that the di�erent loalization regimes thatwe have predited an lead to loalization of wavepakets but also to di�usive andsuperdi�usive expansions. A detailed haraterization of these dynamial regimeswould omplement our analysis and provide another input on how to detet thedi�erent regimes in feasible experiments. Another possibility is the extension of ouranalysis to higher dimensions. The model that we proposed an indeed be extendedto 2D and 3D and, in this sense, it may serve as a powerful tool to shed light on therole played by orrelations in these systems.



Appendix AWannier funtions
In this appendix we give a brief introdution to the onept of Wannier funtionsand we explain some of their properties.Let us onsider a single partile in a one dimensional periodi potential V (x) ofperiod d, V (x) = V (x+jd). This problem is desribed by the following Hamiltonian

H = − ~
2

2m

∂2

∂x2
+ V (x).The Bloh theorem [40℄ states that the eigenstates assoiated toH have the followingform

ψn,k(x) = eikxun,k(x) (A.1)where k is the quasi-momentum, n is the band index and un,k(x) is a funtion withthe same periodiity of the potential, un,k(x+ jd) = un,k(x). The quasi-momentumis restrited to the �rst Brillouin zone k ∈ [−π/d, π/d] and, in a �nite system, itan assume N di�erent values, where N is the number of periodi repetitions of thepotential. One an easily verify that
ψn,k(x+ jd) = eijndψn,k(x). (A.2)Any Bloh funtion, ψn,k(x), onsidered as a funtion of k and for a �xed value of

x, represents a periodi funtion with period 2π/d. It therefore has a Fourier seriesexpansion in plane waves with wavevetors in real spae. For a �xed value of x wean write:
ψn,k(x) =

1√
N

∑

j

wn,j(x)e
ikjd. (A.3)The oe�ients wn,j(x), depend on x, on the lattie site j and on the band index nand are alled Wannier funtions. They an be alulated by the inversion formula

wn,j(x) =
1√
N

∑

k

ψn,k(x)e
−ijkd (A.4)where the sum inludes all the values of k in the Brillouin zone. When N is largeone an substitute the sum in equation (A.4) with an integral over k.The Wannier funtions obey the following properties:1. Their shape does not depend separately on j and x separately but only on thedi�erene x− jd. This an be expressed as

wn,j+l(x+ ld) = wn,j(x) (A.5)
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Figure A.1: Wannier funtion of the lowest band w(x) for a periodi potential ofthe form V (x) = sER sin2(kx) for di�erent values of s. The exat numerial result(red lines) is ompared with the Gaussian approximation (blak lines) desribed byEq. (A.10)and it is a diret onsequene of Eq. (A.4) and of the Bloh theorem. Thereforewe an introdue the following notation
wn,j(x) = wn(x− ja). (A.6)2. They form a omplete orthonormal set. The ompleteness follows from thefat that we expressed the basis of the Bloh funtions as a linear ombinationof the Wannier funtions. The orthogonality is given by

∫

w∗
j,n(x)wj′,n′(x) dx = δn,n′δj,j′ . (A.7)This relation an be veri�ed using Eq. (A.4) and the orthogonality of the Blohfuntions.3. The Wannier funtions of the lowest band are entered around the lattie site

jd. Moreover hoosing appropriate phases for the Bloh funtions they arereal, symmetri around jd and they rapidly go to zero away from jd [181℄.Let us now onsider the spei� ase where the potential is an optial lattie de-sribed by
V (x) = sER sin2(kx) (A.8)where k = π/d, ER = ~

2k2/2m is the reoil energy and s is the dimensionlesslattie strength. Moreover we fous on the Wannier funtions of the lowest bandthat we indiate removing the band index wn=0,j(x) = wj(x). In Fig. A.1 we show anumerial alulation of the Wannier funtion of the lowest band w(x) for di�erentvalues of the strength of the optial lattie s (red solid lines). We note that w(x)is symmetri and loalized around the lattie site j = 0. As the lattie strength sis inreased the Wannier funtion beomes more and more loalized. An analytial



107estimation of w(x) an be obtained approximating the wells of the optial lattiewith an harmoni potential
V (x) ≈ 1

2
mω2x2 (A.9)of frequeny w =

√
s~k2/m. The ground state of the harmoni on�nement providesA Gaussian approximation of w(x) and has the following form

w(x) ≈
(√

sk2

π

)1/4

exp

(−√
sk2

2
x2
)

. (A.10)In Fig. A.1 we ompare this analytial expression (blak dashed lines) with the exatnumerial result. We observe a general good agreement between the two urves thatimproves for large values of s. It is important to note, anyway, that the tails of theGaussian approximation gives always a poor desription of the tails of the Wannierfuntions. In fat w(x) deays exponentially rather than in a Gaussian manner andalways has nodes in order to satisfy the orthogonality ondition (A.7) [21℄.





Appendix BRenormalization-deimationapproah
This appendix is devoted to an introdution to the renormalization-deimationmethod. This method represents a powerful tool for the alulation of the Green'sfuntion operator based on the entral idea of lowering the number of degrees offreedom of a physial system, reduing to a smaller renormalized subspae. This isdone in an exat way eliminating the part of the system we are not interested in.This renormalization approah has been applied in di�erent �elds of physis as forinstane the alulation of the band struture of rystals and mirostrutures (e.g.[182, 183℄) or to the problem of loalization of quantum partiles in disordered orquasiperiodi systems (e.g. [184, 177℄). Exhaustive introdutions on this topi anbe found in the literature (see for instane [185℄ and referenes therein).This appendix is organized as follows: �rst we introdue the theoretial for-malism of the renormalization-deimation approah. We then apply it to a spei�problem whih is the analysis of the loalization properties of a one-dimensionaltight binding Hamiltonian, fousing on the alulation of the density of states, ofthe Lyapunov exponent and of the transmission and re�etion oe�ients.B.1 Renormalization sheme: the theoretial frameworkLet us disuss the renormalization sheme in the ase of a generi Hamiltonian Hwith N degrees of freedom. We indiate with | φi〉 an orthonormal basis assoiatedto this Hamiltonian

H =
∑

i,j

Hi,j | φi〉〈φj |, (B.1)where Hi,j = 〈φi | H | φj〉, and with G(E) the Green's funtion, or resolvent,assoiated with H
G(E) =

1

E −H
. (B.2)Suppose now, without any loss of generality, that H an be written as the sum oftwo operators

H = H ′ +W (B.3)and indiate with G the Green's funtion of the full system and with G′ the Green'sfuntion of H ′. Then one an apply the Dyson equation
G = G′ +G′WG (B.4)



110 Appendix B. Renormalization-deimation approahwhih is an exat relation onneting G, G′ and W .We partition now the spae where H is de�ned into two arbitrary omplementaryparts that we indiate with A and B and we introdue the projetion operatorsassoiated to these subspaes
PA =

∑

i∈A
| φi〉〈φi | (B.5)

PB =
∑

i∈B
| φi〉〈φi |= 1− PA (B.6)Using the projetor operators one an rewrite the Hamiltonian as follows

H = HAA +HBB +HAB +HBA (B.7)where HI,J = PIHPJ . Let us now hoose expliitly the operators H ′ and W asfollows
H ′ = HAA +HBB and W = HAB +HBA. (B.8)The projetion proedure (B.7) an be applied also to the Green's funtion G and

G′. Note that in the G′ ase the ross terms (AB and BA) are zero beause theHamiltonian H ′ does not inlude any mixing between the two subspaes A and B.Starting from the Dyson equation and using the expression for W one an showthat
GAA = G′

AA +G′
AAHABGBA (B.9)

GBA = G′
BBHBAGAA. (B.10)Combining these two equations one obtains

[

(G′
AA)

−1 −HABG
′
BBHBA

]

GAA = 1. (B.11)At this point writing the expliit expressions for G′
AA and G′

BB we �nd
GAA(E) =

1

E − H̃AA

(B.12)where we have introdued H̃AA whih an be interpreted as a renormalized Hamil-tonian and has the following form
H̃AA = HAA +HAB

1

E −HBB
HBA. (B.13)Eqs. (B.12) and (B.13) represent an exat result whih is the heart of the renor-malization approah. The physial meaning is that we have eliminated one of thetwo subspaes of the system (B) and this allow us to desribe the physis of theremaining subspae (A, whih is the subspae whih we are interested in) with anew renormalized Hamiltonian. The prie to pay is that this new Hamiltonian isenergy dependent.



B.2. Appliation to tight binding Hamiltonians: the deimationtehnique 111B.2 Appliation to tight binding Hamiltonians: the de-imation tehniqueLet us now apply the renormalization method to a tight binding Hamiltonian of form(2.9). In partiular we onsider the one dimensional ase and we restrit hoppingjust to nearest neighbouring sites
H =

∑

j

εj | j〉〈j | +J
∑

j

| j〉〈j + 1 | + | j + 1〉〈j | (B.14)with j = 0, 1, . . . , N . Here, for simpliity, we have hosen, a site independenthopping energy, J , but the formalism an be easily generalized to the ase where
J is site dependent. The on-site energies εn an be hosen at will, usually themethod is applied when εn are randomly or quasiperiodially distributed so thatthe loalization properties beomes interesting.The renormalization method that we introdued in the previous setion an bee�iently applied if one hooses the system B in suh a way that G′

BB is expliitlyknown so that the alulation of the renormalized Hamiltonian beomes straightfor-ward. In our spei� ase we hoose a single site of the hain. Doing this we reduethe dimensionality of the problem by one degree of freedom. Let us start removingthe seond site of the hain j = 1. In this ase the renormalized Hamiltonian de-sribing the system A is unhanged a part from three terms: the on-site energies ofthe sites j = 0 and j = 2 and the hopping energy onneting those two sites. Usingthe fat that G′
BB = 1

E−ε1
| 1〉〈1 | and Eq. (B.13) we obtain

ε
(1)
0 = ε0 + J

1

E − ε1
J

ε
(1)
2 = ε2 + J

1

E − ε1
J (B.15)

J
(1)
0,2 = J

(1)
2,0 = J

1

E − ε1
Jwhere the supersript (1) indiates that we are in the �rst iteration of therenormalization-deimation proedure. The idea is now to repeat this proedureremoving sites 2, 3, . . . and reduing to an e�eting dimer after N − 1 iterations.The reursive equations that onnet the renormalized quantities at the step (i− 1)of the proedure with those at step (i) are given by

ε
(i)
0 = ε

(i−1)
0 + J

(i−1)
0,i

1

E − ε
(i−1)
i

J
(i−1)
0,i

ε
(i)
i+1 = εi + J

1

E − ε
(i−1)
i

J (B.16)
J
(i)
0,i+1 = J

(i)
i+1,0 = J

(i−1)
0,i

1

E − ε
(i−1)
i

J,



112 Appendix B. Renormalization-deimation approahwhile the Hamiltonian of the e�etive dimer obtained after N − 1 iterations an bewritten as
H̃(E) =

(

ε
(N−1)
0 (E) J

(N−1)
0,N (E)

J
(N−1)
0,N (E) ε

(N−1)
N (E)

)

. (B.17)Using this e�etive Hamiltonian, whih is very easy to handle sine it is a simple
2 × 2 matrix, it is now possible to extrat many interesting physial quantitiesrelated to the loalization properties of the system. In the following we brie�yexplain how to alulate the density of states, the Lyapunov exponent and thetransmission properties.Density of statesThe density of states of a system ρ(E) for a non-degenerate Hamiltonian an bealulated as

ρ(E) =
∑

n

δ(E − En). (B.18)where En is an energy that belongs to the spetrum of the system. It an be relatedto the Green's funtion of the system by the following relation
ρ(E) = − 1

π
lim
ε→0+

Im {Tr [G (E + iε)]} , (B.19)The onnetion between Eqs. (B.18) and (B.19) an be established starting fromEq. (B.19) and writing the trae on the basis of the eigenstates of the system, where
H is diagonal. One gets

ρ(E) =
∑

n

lim
ε→0+

1

π

ε

(E − En)2 + ε2
. (B.20)This expression represents a sum of many Lorentzian funtions L(E−En; ε). Usingthat L(x; ε) → δ(x) for ε → 0 one has shown the equivalene of Eqs. (B.18) and(B.19). In the ase of a tridiagonal Hamiltonian one an also show that

∂

∂E
ln [G0,N (E + iε)] = −Tr [G(E + iε)] . (B.21)Combining this equation with (B.20) we obtain an expression for the density ofstates whih is extremely useful for our purposes [186℄:

ρ(E) =
1

π
lim
ε→0+

Im{ ∂

∂E
ln [G0,N (E + iε)]

}

. (B.22)This relation requires the knowledge of just one matrix element of the Green'sfuntion G0,N and this an be easily alulated form a diret inversion of therenormalized Hamiltonian (B.17).



B.2. Appliation to tight binding Hamiltonians: the deimationtehnique 113Lyapunov exponentFor a 1D disordered disordered system as (B.14), a general expression of the Lya-punov exponent in terms of the Green's funtion matrix elements is given by[58, 177℄:
Λ(E) = lim

N→+∞
1

N
ln

∣

∣

∣

∣

GN,N (E)

G0,N (E)

∣

∣

∣

∣

, (B.23)whih is valid as long as the limit is well de�ned. This equation an be rewritten ina muh more e�etive form substituting the expliit expressions for GN,N and G0,N ,obtained inverting H̃
Λ(E) = lim

N→+∞
1

N
ln

∣

∣

∣

∣

∣

∣

E − ε
(N−1)
0 (E)

J
(N−1)
0,N (E)

∣

∣

∣

∣

∣

∣

. (B.24)In an energy region where loalized states are present, this expression an befurther simpli�ed by noting that the numerator is �nite, while the denominator
J
(N−1)
0,N (E) → 0

Λ(E) = − lim
N→+∞

1

N
ln
∣

∣

∣
J
(N−1)
0,N (E)

∣

∣

∣
, (B.25)this relation reates a diret and intuitive relation between the Lyapunov exponentand the e�etive tunneling assoiated to the e�etive dimer that represents oursystem.Re�etion and Transmission oe�ientsIn order to disuss the transmission properties of a �nite size system as (B.14) weneed to desribe, not only the system itself, but also the inoming and the outgoingwaves that are involved in the sattering proess.In our ase this an be done by extending the system under onsideration (formedby N+1 sites, form 0 to N) on the left and on the right with two semi-in�nite perfetlatties. Let us therefore add at the edges of the system desribed by the Hamilto-nian (B.14), H, two in�nite series of sites with on-site energies ε and tunneling J , asillustrated in Fig. B.1 a). The new extended Hamiltonian, Hext, is then deomposedin two parts: i) an in�nite perfet lattie, that we indiate with H0 ii) the remainingpart of the Hamiltonian, that we indiate with HI and is given by the di�erene of

Hext and the perfet lattie H0

Hext = H0 +HI (B.26)This proedure is shematially illustrated in Fig. B.1.The transmission and re�etion oe�ients are then alulated using standardsattering theory. If one onsiders an inoming Bloh wave | k〉, eigenstate of H0,of the form
〈n | k〉 = eikn, (B.27)
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Figure B.1: Shemati representation of the proedure used for the omputationof the transmission oe�ient. (a) The system under study, whih extends fromsite 0 to site N , is onneted to two semi-in�nite perfet latties on both sides. (b)This new system is formally deomposed into a perfet lattie and a perturbationresponsible for the sattering of the inoming wave.labelled by k and with energy E = ε + 2J cos(k), then the sattering of this stateprodued by HI yields the wavefuntion
| ϕ〉 =

(

1 +G0T
)

| k〉, (B.28)where G0 is the Green's funtion operator assoiated to the perfet lattie H0 andits matrix elements are given by [187℄
G0

n,m(E) =

(

1

2|J |

)|n−m|
[

−(E − ε) +
√

(E − ε)2 − 4J2
]|n−m|

√

(E − ε)2 − 4J2
(B.29)and T is the sattering matrix, whih is given by

T = HI
(

1−G0HI
)−1

. (B.30)We an now ombine this formalism with the renormalization-deimation ap-proah, whih allows to redue an arbitrary Hamiltonian to an e�etive dimer. Thee�etive dimer assoiated to HI an be alulated by applying the renormalization-deimation proedure separately on Hext and H0 and then subtrating the tworesults.At this point we are left with the alulation of the transmission and re�etionoe�ients of a single dimer, we an restrit our analysis to the subspae formedby the sites [0, N ] and HI and T are simple 2× 2 matries. Combining expressions(B.28), (B.29) and (B.30) one an show that the sattered wavefuntion takes theform 〈n | ϕ〉 = τe+ikn in the forward diretion (n ≥ N), where τ is the transmissionamplitude
τ = 1 +G0

0,0T0,0 +G0
0,NT0,N +G0

N,0TN,0e
−2iNk +G0

N,NTN,N . (B.31)
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Figure B.2: Density of states (left panel) and loalization length (right panel) forthe one dimensional Anderson model for di�erent values of the disorder strength W .The solid lines are the numerial results obtained with the renormalization-trunationapproah, while the dashed lines in the right panel represent a perturbative alulationfor the loalization length given by (2.16).Similarly, in the bakward diretion (n ≤ 0), 〈n | ϕ〉 = e+ikn + re−ikn, r being there�etion amplitude
r = G0

0,0T0,0 +G0
N,0T0,N +G0

0,NTN,0 +G0
N,NTN,Ne

+2iNk. (B.32)The transmission and the re�etion oe�ients are then given by T = |τ |2 and
R = |r|2.An example of appliation of the renormalization-deimation approah to theone dimensional Anderson model is shown in Fig. B.2. In this ase εn are randomvariables uniformly distributed in the interval [−W/2,W/2], whereW represents thedisorder strength. We show the results of numerial alulations where we appliedreursively Eqs. (B.16) and then we used expressions (B.18) and (B.23) for thealulation of the density of states ρ(E) and of the loalization length Lloc(E) =

1/Λ(E) respetively. We also ompare the numerial results for the loalizationlength with the analytial expression (2.16) obtained in seond order perturbationtheory. The agreement between the two urves is very good espeially where theperturbation theory is expeted to give aurate results, i.e. for small values of Wand lose to the enter of the band.





RingraziamentiEoi giunti alla �ne della tesi e del mio dottorato. Guardandomi indietro possodire di ritenermi �ero e soddisfatto del lavoro svolto e dei risultati ottenuti. A voltenon è stato faile, mi sono imbattuto in ostaoli e di�oltà, ma quello he più ontaè essere arrivati alla �ne. Ci tengo però a sottolineare he, senza il supporto e l'aiutodi una serie di persone, non sarebbe stato possibile arrivare �n qui.Grazie al mio supervisor, Frano Dalfovo, per essere stato sempre presente e peravermi seguito on ostanza e dedizione. La sua esperienza in ambito aademio miha insegnato tanto sul mondo della riera e su ome diventare un buon rieratore.Grazie a Mihele Modugno per la fruttuosa ollaborazione di questi anni, he èstata fondamentale per la realizzazione di questo lavoro di tesi.Grazie a Patrizia Vignolo he si è rivelata essere una preziosa ollaboratrie, manon solo: mi ha anhe aiutato al di fuori dell'ambito lavorativo on i suoi inorag-giamenti e il suo ottimismo.Grazie a tutto il gruppo BEC, sia ai membri attutali, sia alle persone he sonopassate da Trento durante il mio dottorato. L'atmosfera amihevole e ospitale,unita alla ompetenza e alla qualità dei suoi omponenti, lo rendono un ambienteottimale e stimolante per fare riera e disutere di �sia. Un grazie speiale adAlessio, Chiara e Iaopo.Grazie agli amii del LENS per l'ospitalità he mi hanno sempre o�erto nellemie visite a Firenze e per la ollaborazione di questi anni. In partiolare vorreiringraziare Giovanni Modugno, Eleonora, Maro, Giaomo, Lua e Chiara.Grazie ai miei genitori, Sandra e Lino, per avere sempre reduto in me e peravermi sostenuto in ogni momento del mio perorso universitario, a partire dai primianni �no ad arrivare al termine del dottorato. Il loro a�etto e la loro presenza nonsono mai manati e mi hanno permesso di superare momenti di stress e di di�oltà.Senza di loro il raggiungimento di questo traguardo non sarebbe stato possibile.Grazie al mio �fratellone�, Roberto, on il quale ho ondiviso moltissimo duranteil mio preorso universitario. Lo ringrazio per essere stato un fratello e anhe unamio e per essere sempre stato disponibile a darmi un aiuto o un onsiglio. Graziealla mia �ognatina�, Vale Pa., per essersi presa mio fratello e per averlo reso osìfelie.Grazie a nonna Emilia per il grande orgoglio dimostrato per ogni piolo suessoraggiunto dai suoi nipoti.Grazie agli amii �sii e matematii on i quali ho iniziato la mia avventurauniversitaria; grazie perhè, nonostante siano passati nove lunghi anni e nonostantela ompagnia abbia subito svariati ambiamenti, la nostra amiizia dura anora,ed è sempre un piaere ritrovarsi per passare una serata insieme. In partiolaregrazie a Stefano, Cri, Lara, Dalbo, Vale Pu., Maro, Laura e Erik. Grazie anhealle persone he sono arrivate un po' più tardi nella nostra ompagnia, ma on lequali ho ondiviso molto; grazie in partiolare a Poli, Benetti, Ema e Giaomino.



118 RingraziamentiUn ringraziamento speiale volevo dediarlo a Chiara, amia sempre presente, unpo' bahettona, ma i ui onsigli mi sono stati sempre preziosi. Amihe ome leinon si trovano tutti i giorni.Grazie a Rota e Tenga per portare spensieratezza e ilarità nelle mie giornatelavorative e per essere i più onvinti sostenitori del Paganella basket. Menzionespeiale a Rota per il supporto he mi ha fornito durante la stesura di questa tesi,il suo aiuto è stato molto apprezzato.Grazie a Simone perhè le amiizie, quelle vere, sopravvivono anhe a 300 Kmdi distanza.Grazie a Valentina per l'entusiasmo e la aria he mi trasmette quotidiana-mente. Avere lei al mio �ano mi rende felie e mi riempie di positività. La ringrazio,in partiolare, per essermi stata viina e avermi fatto sentire il suo sostegno durantegli ultimi mesi di dottorato. Si è sempre dimostrata disponibile ad asoltarmi e pren-dersi ura di me nei momenti di�ili e inoraggiarmi quando più ne avevo bisogno.Le persone speiali si rionosono anhe da questi pioli gesti.



Bibliography[1℄ P. Anderson, �Absene of di�usion in ertain random latties�, Physial Re-view, 109, 1492 (1958).[2℄ B. Kramer and A. MaKinnon, �Loalization: theory and experiment�, Reportson Progress in Physis, 56, 1469 (1993).[3℄ P. Lee and T. Ramakrishnan, �Disordered eletroni systems�, Reviews of Mod-ern Physis, 57, 287 (1985).[4℄ N. F. Mott and W. Twose, �The theory of impurity ondution�, Advanes inPhysis, 10, 107 (1961).[5℄ R. Borland, �The Nature of the Eletroni States in Disordered One-Dimensional Systems�, Proeedings of the Royal Soiety of London. Series A,Mathematial and Physial Sienes, 274, 529 (1963).[6℄ N. F. Mott, �Metal-Insulator Transition�, Review of Modern Physis, 40, 677(1968).[7℄ E. Abrahams, P. Anderson, D. Liiardello and T. Ramakrishnan, �Salingtheory of loalization: Absene of quantum di�usion in two dimensions�, Phys-ial Review Letters, 42, 673 (1979).[8℄ S. John, �Eletromagneti absorption in a disordered medium near a photonmobility edge�, Physial Review Letters, 53, 2169 (1984).[9℄ P. Anderson, �The question of lassial loalization A theory of white paint?�,Philosophial Magazine B, 52, 505 (1985).[10℄ R. Dalihaouh, J. Armstrong, S. Shultz, P. Platzman and S. MCall, �Mi-rowave loalization by two-dimensional random sattering�, Nature, 354, 53(1991).[11℄ D. Wiersma, P. Bartolini, R. Righini and A. Lagendijk, �Loalization of lightin a disordered medium�, Nature, 390, 671 (1997).[12℄ R. Weaver, �Anderson loalization of ultrasound�, Wave motion, 12, 129(1990).[13℄ M. Anderson, J. Ensher, M. Matthews, C. Wieman and E. Cornell, �Observa-tion of Bose-Einstein Condensation in a Dilute Atomi Vapor�, Siene, 269,14 (1995).[14℄ K. Davis, M. Mewes, M. Andrews, N. Van Druten, D. Durfee, D. Kurn andW. Ketterle, �Bose-Einstein ondensation in a gas of sodium atoms�, PhysialReview Letters, 75, 3969 (1995).



120 Ringraziamenti[15℄ C. Bradley, C. Sakett, J. Tollett and R. Hulet, �Evidene of Bose-Einsteinondensation in an atomi gas with attrative interations�, Physial ReviewLetters, 75, 1687 (1995).[16℄ M. Andrews, C. Townsend, H. Miesner, D. Durfee, D. Kurn and W. Ketterle,�Observation of interferene between two Bose ondensates�, Siene, 275, 637(1997).[17℄ M. Matthews, B. Anderson, P. Haljan, D. Hall, C. Wieman and E. Cornell,�Vorties in a Bose-Einstein ondensate�, Physial Review Letters, 83, 2498(1999).[18℄ T. Kinoshita, T. Wenger and D. Weiss, �Observation of a one-dimensionalTonks-Girardeau gas�, Siene, 305, 1125 (2004).[19℄ B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cira, G. Shlyap-nikov, T. Hänsh and I. Bloh, �Tonks�Girardeau gas of ultraold atoms in anoptial lattie�, Nature, 429, 277 (2004).[20℄ M. Greiner, O. Mandel, T. Esslinger, T. Hänsh, I. Bloh et al., �Quantumphase transition from a super�uid to a Mott insulator in a gas of ultraoldatoms�, Nature, 415, 39 (2002).[21℄ I. Bloh, J. Dalibard and W. Zwerger, �Many-body physis with ultraoldgases�, Reviews of Modern Physis, 80, 885 (2008).[22℄ R. Grimm, M. Weidemüller and Y. Ovhinnikov, �Optial dipole traps forneutral atoms�, Advanes in atomi, moleular, and optial physis, 42, 95(2000).[23℄ L. Fallani, C. Fort and M. Ingusio, �Bose�Einstein ondensates in disorderedpotentials�, Advanes In Atomi, Moleular, and Optial Physis, 56, 119(2008).[24℄ J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambreht, P. Lugan, D. Clément,L. Sanhez-Palenia, P. Bouyer and A. Aspet, �Diret observation of Ander-son loalization of matter waves in a ontrolled disorder�, Nature, 453, 891(2008).[25℄ G. Roati, D. Chiara, L. Fallani, M. Fattori, C. Fort, M. Zaanti, G. Modugno,M. Modugno and M. Ingusio, �Anderson loalization of a non-interatingBose-Einstein ondensate�, Nature, 453, 895 (2008).[26℄ A. Aspet and M. Ingusio, �Anderson loalization of ultraold atoms�, Physistoday, 62, 30 (2009).[27℄ G. Modugno, �Anderson loalization in Bose�Einstein ondensates�, Reportson Progress in Physis, 73, 102401 (2010).



Ringraziamenti 121[28℄ L. Sanhez-Palenia and M. Lewenstein, �Disordered quantum gases underontrol�, Nature Physis, 6, 87 (2010).[29℄ P. Anderson, Nobel Letures in Physis 1971-1980, vol. 1, (World Sienti�Publishing Company Inorporated, 1992).[30℄ F. Izrailev, A. Krokhin and N. Makarov, �Anomalous loalization in low-dimensional systems with orrelated disorder�, Physis Reports, 512, 125(2012).[31℄ M. Larher, F. Dalfovo and M. Modugno, �E�ets of interation on the dif-fusion of atomi matter waves in one-dimensional quasiperiodi potentials�,Physial Review A, 80, 053606 (2009).[32℄ M. Larher, M. Modugno and F. Dalfovo, �Loalization in momentum spae ofultraold atoms in inommensurate latties�, Physial Review A, 83, 013624(2011).[33℄ E. Luioni, B. Deissler, L. Tanzi, G. Roati, M. Zaanti, M. Modugno,M. Larher, F. Dalfovo, M. Ingusio and G. Modugno, �Observation of sub-di�usion in a disordered interating system�, Physial Review Letters, 106,230403 (2011).[34℄ M. Larher, T. Laptyeva, J. Bodyfelt, F. Dalfovo, M. Modugno and S. Flah,�Subdi�usion of nonlinear waves in quasiperiodi potentials�, New Journal ofPhysis, 14, 103036 (2012).[35℄ M. Larher, C. Menotti, B. Tanatar and P. Vignolo, �A metal-insulator tran-sition indued by random dipoles�, In Preparation (2012).[36℄ A. Lagendijk, B. van Tiggelen and D. Wiersma, �Fifty years of Andersonloalization�, Physis Today, 62, 24 (2009).[37℄ E. Akkermans and G. Montambaux, Mesosopi physis of eletrons and pho-tons, (Cambridge University Press, 2007).[38℄ B. Kramer and A. MaKinnon, �Loalization: theory and experiment�, Reportson Progress in Physis, 56, 1469 (1999).[39℄ C. Mueller and D. Delande, �Disorder and interferene: loalization phenom-ena�, Les Houhes 2009 - Session XCI: Ultraold Gases and Quantum Infor-mation (2010).[40℄ N. Ashroft and N. Mermin, Solid State Physis, (Harourt College Pub-lisher, 1976).[41℄ D. Vollhardt and P. Wöl�e, �Self-onsistent theory of Anderson loalization�,Eletroni phase transitions, 1 (1992).



122 Ringraziamenti[42℄ D. Vollhardt and P. Wöl�e, �Saling equations from a self-onsistent theory ofAnderson loalization�, Physial Review Letters, 48, 699 (1982).[43℄ J. E. Lye, L. Fallani, M. Modugno, D. S. Wiersma, C. Fort and M. Ingusio,�Bose-Einstein Condensate in a Random Potential�, Physial Review Letters,95, 070401 (2005).[44℄ D. Clément, A. Varon, M. Hugbart, J. Retter, P. Bouyer, L. Sanhez-Palenia,D. Gangardt, G. Shlyapnikov and A. Aspet, �Suppression of transport ofan interating elongated Bose-Einstein ondensate in a random potential�,Physial Review Letters, 95, 170409 (2005).[45℄ C. Fort, L. Fallani, V. Guarrera, J. Lye, M. Modugno, D. Wiersma and M. In-gusio, �E�et of optial disorder and single defets on the expansion of aBose-Einstein ondensate in a one-dimensional waveguide�, Physial ReviewLetters, 95, 170410 (2005).[46℄ L. Sanhez-Palenia, D. Clément, P. Lugan, P. Bouyer and A. Aspet,�Disorder-indued trapping versus Anderson loalization in Bose�Einstein on-densates expanding in disordered potentials�, New Journal of Physis, 10,045019 (2008).[47℄ P. Lugan, A. Aspet, L. Sanhez-Palenia, D. Delande, B. Grémaud, C. Müllerand C. Miniatura, �One-dimensional Anderson loalization in ertain orre-lated random potentials�, Physial Review A, 80, 023605 (2009).[48℄ D. Jaksh, C. Bruder, J. Cira, C. Gardiner and P. Zoller, �Cold bosoni atomsin optial latties�, Physial Review Letters, 81, 3108 (1998).[49℄ L. Fallani, J. Lye, V. Guarrera, C. Fort and M. Ingusio, �Ultraold atoms ina disordered rystal of light: Towards a Bose glass�, Physial Review Letters,98, 130404 (2007).[50℄ P. Vignolo, Z. Akdeniz and M. Tosi, �The transmittivity of a Bose�Einsteinondensate on a lattie: interferene from period doubling and the e�et ofdisorder�, Journal of Physis B: Atomi, Moleular and Optial Physis, 36,4535 (2003).[51℄ U. Gavish and Y. Castin, �Matter-wave loalization in disordered old atomlatties�, Physial Review Letters, 95, 20401 (2005).[52℄ I. M. Lifshitz, S. A. Gredeskul and L. A. Pastur, Introdution to the Theoryof Disordered Systems, (Wiley, New York, 1988).[53℄ K. Ishii, �Loalization of eigenstates and transport phenomena in the one-dimensional disordered system�, Progress of Theoretial Physis Supplement,53, 77 (1973).



Ringraziamenti 123[54℄ N. Mott and W. Twose, �The theory of impurity ondution�, Advanes inPhysis, 10, 107 (1961).[55℄ H. Furstenberg, �Nonommuting random produts�, Transations of the Amer-ian Mathematial Soiety, 377�428 (1963).[56℄ V. Oselede, �A multipliative ergodi theorem. Lyapunov harateristi num-bers for dynamial systems�, Transations of the Mosow Mathematial Soi-ety, 19, 197 (1968).[57℄ D. Herbert and R. Jones, �Loalized states in disordered systems�, Journal ofPhysis C Solid State Physis, 4, 1145 (1971).[58℄ D. Thouless, �A relation between the density of states and range of loaliza-tion for one dimensional random systems�, Journal of Physis C: Solid StatePhysis, 5, 77 (1972).[59℄ D. Thouless, R. Balian, R. Maynard and G. Toulouse, �Letures on AmorphousSystems�, Les Houhes 1979 - Session XXXI (1979).[60℄ H. Hu, A. Strybulevyh, J. Page, S. Skipetrov and B. van Tiggelen, �Loal-ization of ultrasound in a three-dimensional elasti network�, Nature Physis,4, 945 (2008).[61℄ A. Chabanov, M. Stoythev and A. Genak, �Statistial signatures of photonloalization�, Nature, 404, 850 (2000).[62℄ F. She�old, R. Lenke, R. Tweer and G. Maret, �Loalization or lassialdi�usion of light?�, Nature, 398, 206 (1999).[63℄ M. Störzer, P. Gross, C. Aegerter and G. Maret, �Observation of the CritialRegime Near Anderson Loalization of Light�, Physial Review Letters, 96,63904 (2006).[64℄ T. Shwartz, G. Bartal, S. Fishman and M. Segev, �Transport and Andersonloalization in disordered two-dimensional photoni latties�, Nature, 446, 52(2007).[65℄ Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. Christodoulidesand Y. Silberberg, �Anderson loalization and nonlinearity in one-dimensionaldisordered photoni latties�, Physial Review Letters, 100, 13906 (2008).[66℄ Y. Lahini, R. Pugath, F. Pozzi, M. Sorel, R. Morandotti, N. Davidson andY. Silberberg, �Observation of a loalization transition in quasiperiodi pho-toni latties�, Physial Review Letters, 103, 13901 (2009).[67℄ B. Deissler, M. Zaanti, G. Roati, C. D'Errio, M. Fattori, M. Modugno,G. Modugno and M. Ingusio, �Deloalization of a disordered bosoni systemby repulsive interations�, Nature Physis, 6, 354 (2010).



124 Ringraziamenti[68℄ B. Deissler, E. Luioni, M. Modugno, G. Roati, L. Tanzi, M. Zaanti, M. In-gusio and G. Modugno, �Correlation funtion of weakly interating bosons ina disordered lattie�, New Journal of Physis, 13, 023020 (2011).[69℄ C. D'Errio, M. Moratti, E. Luioni, L. Tanzi, B. Deissler, M. Ingusio,G. Modugno, M. Plenio and F. Caruso, �Quantum di�usion with disorder,noise and interation�, e-print arXiv:1204.1313 (2012).[70℄ S. Kondov, W. MGehee, J. Zirbel and B. DeMaro, �Three-dimensional An-derson loalization of ultraold matter�, Siene, 334, 66 (2011).[71℄ F. Jendrzejewski, A. Bernard, K. Mueller, P. Cheinet, V. Josse, M. Piraud,L. Pezzé, L. Sanhez-Palenia, A. Aspet and P. Bouyer, �Three-dimensionalloalization of ultraold atoms in an optial disordered potential�, NaturePhysis, 8, 398 (2012).[72℄ F. Moore, J. Robinson, C. Bharuha, P. Williams and M. Raizen, �Observationof dynamial loalization in atomi momentum transfer: A new testing groundfor quantum haos�, Physial Review Letters, 73, 2974 (1994).[73℄ F. Moore, J. Robinson, C. Bharuha, B. Sundaram and M. Raizen, �Atomoptis realization of the quantum δ-kiked rotor�, Physial Review Letters, 75,4598 (1995).[74℄ J. Chabé, G. Lemarié, B. Grémaud, D. Delande, P. Szriftgiser and J. Garreau,�Experimental observation of the Anderson metal-insulator transition withatomi matter waves�, Physial Review Letters, 101, 255702 (2008).[75℄ G. Lemarié, H. Lignier, D. Delande, P. Szriftgiser and J. Garreau, �Critialstate of the Anderson transition: between a metal and an insulator�, PhysialReview Letters, 105, 90601 (2010).[76℄ M. Lopez, J. Clément, P. Szriftgiser, J. Garreau and D. Delande, �Experimen-tal Test of Universality of the Anderson Transition�, Physial Review Letters,108, 95701 (2012).[77℄ B. Simon, �Almost periodi Shrödinger operators: a review�, Advanes inApplied Mathematis, 3, 463 (1982).[78℄ H. Hiramoto and M. Kohmoto, �Eletroni Spetral and Wavefuntion Prop-erties of One-Dimensional Quasiperiodi Systems: a Saling Approah�, In-ternational Journal of Modern Physis B, 6, 281 (1992).[79℄ H. Hiramoto and S. Abe, �Dynamis of an Eletron in Quasiperiodi Systems.II. Harper's Model�, Journal of the Physial Soiety of Japan, 57, 1365 (1988).[80℄ H. Hiramoto and S. Abe, �Dynamis of an eletron in quasiperiodi systems.I. Fibonai model�, Journal of the Physial Soiety of Japan, 57, 230 (1988).



Ringraziamenti 125[81℄ D. Shehtman, I. Bleh, D. Gratias and J. Cahn, �Metalli phase with long-range orientational order and no translational symmetry�, Physial ReviewLetters, 53, 1951 (1984).[82℄ D. Levine and P. J. Steinhardt, �Quasirystals: A New Class of Ordered Stru-tures�, Physial Review Letters, 53, 2477 (1984).[83℄ Z. Stadnik, Physial properties of quasirystals, vol. 126, (Springer, 1998).[84℄ P. Harper, �Single Band Motion of Condution Eletrons in a Uniform Mag-neti Field�, Proeedings of the Physial Soiety. Setion A, 68, 874 (1955).[85℄ S. Aubry and G. Andrè, �Analytiity breaking and Anderson loalization ininommensurate latties�, Annals of the Israel Physial Soiety, 3, 133 (1980).[86℄ M. Kohmoto, L. Kadano� and C. Tang, �Loalization problem in one dimen-sion: Mapping and esape�, Physial Review Letters, 50, 1870 (1983).[87℄ S. Ostlund, R. Pandit, D. Rand, H. Shellnhuber and E. Siggia, �One-dimensional Shrödinger equation with an almost periodi potential�, PhysialReview Letters, 50, 1873 (1983).[88℄ H. Hiramoto and M. Kohmoto, �Saling analysis of quasiperiodi systems:Generalized Harper model�, Physial Review B, 40, 8225 (1989).[89℄ R. B. Diener, G. A. Georgakis, J. Zhong, M. Raizen and Q. Niu, �Transitionbetween extended and loalized states in a one-dimensional inommensurateoptial lattie�, Physial Review A, 64, 033416 (2001).[90℄ J. Lye, L. Fallani, C. Fort, V. Guarrera, M. Modugno, D. Wiersma and M. In-gusio, �E�et of interations on the loalization of a Bose-Einstein ondensatein a quasiperiodi lattie�, Physial Review A, 75, 061603 (2007).[91℄ M. Modugno, �Exponential loalization in one-dimensional quasi-periodi op-tial latties�, New Journal of Physis, 11, 033023 (2009).[92℄ J. Sokolo�, �Unusual band struture, wave funtions and eletrial ondu-tane in rystals with inommensurate periodi potentials�, Physis Reports,126, 189 (1985).[93℄ S. Jitomirskaya, �Metal-insulator transition for the almost Mathieu operator�,Annals of Mathematis-Seond Series, 150, 1159 (1999).[94℄ M. Albert and P. Leboeuf, �Loalization by bihromati potentials versus An-derson loalization�, Physial Review A, 81, 013614 (2010).[95℄ G. Ingold, A. Wobst, C. Aulbah and P. Hänggi, �Deloalization and Heisen-berg's unertainty relation�, The European Physial Journal B-CondensedMatter and Complex Systems, 30, 175 (2002).



126 Ringraziamenti[96℄ C. Tang and M. Kohmoto, �Global saling properties of the spetrum for aquasiperiodi shrödinger equation�, Physial Review B, 34, 2041 (1986).[97℄ C. Aulbah, A. Wobst, G. Ingold, P. Hänggi and I. Varga, �Phase-spae vi-sualization of a metal�insulator transition�, New Journal of Physis, 6, 70(2004).[98℄ M. Pasienski, D. MKay, M. White and B. DeMaro, �A disordered insulatorin an optial lattie�, Nature Physis, 6, 677 (2010).[99℄ T. Paul, P. Shlaghek, P. Leboeuf and N. Pavlo�, �Super�uidity versus An-derson loalization in a dilute Bose gas�, Physial Review Letters, 98, 210602(2007).[100℄ T. Paul, M. Albert, P. Shlaghek, P. Leboeuf and N. Pavlo�, �Andersonloalization of a weakly interating one-dimensional Bose gas�, Physial ReviewA, 80, 033615 (2009).[101℄ M. Albert, T. Paul, N. Pavlo� and P. Leboeuf, �Breakdown of the super�uidityof a matter wave in a random environment�, Physial Review A, 82, 11602(2010).[102℄ P. Lugan, D. Clément, P. Bouyer, A. Aspet, M. Lewenstein and L. Sanhez-Palenia, �Ultraold bose gases in 1d disorder: From lifshits glass to bose-einstein ondensate�, Physial Review Letters, 98, 170403 (2007).[103℄ G. Falo, T. Nattermann and V. Pokrovsky, �Loalized states and interation-indued deloalization in Bose gases with quenhed disorder�, EPL (Euro-physis Letters), 85, 30002 (2009).[104℄ L. Fontanesi, M. Wouters and V. Savona, �Super�uid to Bose-glass transitionin a 1D weakly interating Bose gas�, Physial Review Letters, 103, 30403(2009).[105℄ L. Fontanesi, M. Wouters and V. Savona, �Mean-�eld phase diagram of theone-dimensional Bose gas in a disorder potential�, Physial Review A, 81,053603 (2010).[106℄ I. Aleiner, B. Altshuler and G. Shlyapnikov, �A �nite-temperature phase tran-sition for disordered weakly interating bosons in one dimension�, NaturePhysis, 6, 900 (2010).[107℄ F. Dalfovo, S. Giorgini, L. Pitaevskii and S. Stringari, �Theory of Bose-Einsteinondensation in trapped gases�, Reviews of Modern Physis, 71, 463 (1999).[108℄ C. Pethik and H. Smith, Bose-Einstein ondensation in dilute gases, (Cam-bridge university press, 2001).



Ringraziamenti 127[109℄ L. Pitaevskii and S. Stringari, Bose-einstein ondensation, vol. 116, (OxfordUniversity Press, 2003).[110℄ E. Gross, �Struture of a quantized vortex in boson systems�, Il Nuovo Cimento(1955-1965), 20, 454 (1961).[111℄ L. Pitaevskii, �Vortex lines in an imperfet Bose gas�, Soviet Physis JETP,13, 451 (1961).[112℄ M. Olshanii, �Atomi sattering in the presene of an external on�nementand a gas of impenetrable bosons�, Physial Review Letters, 81, 938 (1998).[113℄ D. Petrov, D. Gangardt and G. Shlyapnikov, �Low-dimensional trapped gases�,Journal de Physique IV (Proeedings), 116, 5 (2004).[114℄ A. Trombettoni and A. Smerzi, �Disrete solitons and Breathers with DiluiteBose-Einstein Condensates�, Physial Review Letters, 100, 2353 (2001).[115℄ T. Anker, M. Albiez, R. Gati, S. Hunsmann, B. Eiermann, A. Trombettoniand M. Oberthaler, �Nonlinear self-trapping of matter waves in periodi po-tentials�, Physial Review Letters, 94, 20403 (2005).[116℄ M. Johansson, M. Hörnquist and R. Riklund, �E�ets of nonlinearity on thetime evolution of single-site loalized states in periodi and aperiodi disretesystems�, Physial Review B, 52, 231 (1995).[117℄ M. Rosenkranz, D. Jaksh, F. Lim and W. Bao, �Self-trapping of Bose-Einsteinondensates expanding into shallow optial latties�, Physial Review A, 77,063607 (2008).[118℄ A. Smerzi, S. Fantoni, S. Giovanazzi and S. Shenoy, �Quantum CoherentAtomi Tunneling between Two Trapped Bose-Einstein Condensates�, Physi-al Review Letters, 79, 4950 (1997).[119℄ S. Raghavan, A. Smerzi, S. Fantoni and S. Shenoy, �Coherent osillationsbetween two weakly oupled Bose-Einstein ondensates: Josephson e�ets, πosillations, and marosopi quantum self-trapping�, Physial Review A, 59,620 (1999).[120℄ F. Meier and W. Zwerger, �Josephson tunneling between weakly interatingBose-Einstein ondensates�, Physial Review A, 64, 033610 (2001).[121℄ M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani and M. Oberthaler,�Diret observation of tunneling and nonlinear self-trapping in a single bosoniJosephson juntion�, Physial Review Letters, 95, 10402 (2005).[122℄ S. Levy, E. Lahoud, I. Shomroni and J. Steinhauer, �The a and d Josephsone�ets in a Bose�Einstein ondensate�, Nature, 449, 579 (2007).



128 Ringraziamenti[123℄ G. Kopidakis, S. Komineas, S. Flah and S. Aubry, �Absene of Wave PaketDi�usion in Disordered Nonlinear Systems�, Physial Review Letters, 100,84103 (2008).[124℄ G. Ng and T. Kottos, �Wavepaket dynamis of the nonlinear Harper model�,Physial Review B, 75, 205120 (2007).[125℄ Z. Zhang, P. Tong, J. Gong and B. Li, �Wave paket dynamis in one-dimensional linear and nonlinear generalized Fibonai latties�, Physial Re-view E, 83, 056205 (2011).[126℄ S. Flah, D. Krimer and C. Skokos, �Universal spreading of wave pakets indisordered nonlinear systems�, Physial Review Letters, 102, 24101 (2009).[127℄ A. Pikovsky and D. Shepelyansky, �Destrution of Anderson Loalization bya Weak Nonlinearity�, Physial Review Letters, 100, 94101 (2008).[128℄ I. Garía-Mata and D. Shepelyansky, �Deloalization indued by nonlinearityin systems with disorder�, Physial Review E, 79, 026205 (2009).[129℄ C. Skokos, D. Krimer, S. Komineas and S. Flah, �Deloalization of wavepakets in disordered nonlinear hains�, Physial Review E, 79, 056211 (2009).[130℄ S. Flah, �Spreading of waves in nonlinear disordered media�, ChemialPhysis, 375, 548 (2010).[131℄ T. Laptyeva, J. Bodyfelt, D. Krimer, C. Skokos and S. Flah, �The rossoverfrom strong to weak haos for nonlinear waves in disordered systems�, EPL(Europhysis Letters), 91, 30001 (2010).[132℄ J. Bodyfelt, T. Laptyeva, C. Skokos, D. Krimer and S. Flah, �Nonlinear wavesin disordered hains: Probing the limits of haos and spreading�, PhysialReview E, 84, 016205 (2011).[133℄ W. Zwerger, �Mott�Hubbard transition of old atoms in optial latties�, Jour-nal of Optis B: Quantum and Semilassial Optis, 5, S9 (2003).[134℄ F. Gerbier, A. Widera, S. Fölling, O. Mandel, T. Gerike and I. Bloh, �In-terferene pattern and visibility of a Mott insulator�, Physial Review A, 72,53606 (2005).[135℄ H. Veksler, Y. Krivolapov and S. Fishman, �Spreading for the generalizednonlinear Shrödinger equation with disorder�, Physial Review E, 80, 037201(2009).[136℄ C. Skokos and S. Flah, �Spreading of wave pakets in disordered systems withtunable nonlinearity�, Physial Review E, 82, 016208 (2010).



Ringraziamenti 129[137℄ J. Bodyfelt, T. Kottos and B. Shapiro, �One-Parameter Saling Theory forStationary States of Disordered Nonlinear Systems�, Physial Review Letters,104, 164102 (2010).[138℄ D. Krimer and S. Flah, �Statistis of wave interations in nonlinear disorderedsystems�, Physial Review E, 82, 046221 (2010).[139℄ E. Mihaely and S. Fishman, �E�etive noise theory for the nonlinearShrödinger equation with disorder�, Physial Review E, 85, 046218 (2012).[140℄ T. Laptyeva, J. Bodyfelt and S. Flah, �Do nonlinear waves in random mediafollow nonlinear di�usion equations?�, e-print arXiv:1206.6085 (2012).[141℄ S. Fishman, Y. Krivolapov and A. So�er, �Perturbation theory for the non-linear Shrödinger equation with a random potential�, Nonlinearity, 22, 2861(2009).[142℄ J. Laskar and P. Robutel, �High order sympleti integrators for perturbedHamiltonian systems�, Celestial Mehanis and Dynamial Astronomy, 80, 39(2001).[143℄ Y. Castin and R. Dum, �Instability and depletion of an exited Bose-Einsteinondensate in a trap�, Physial Review Letters, 79, 3553 (1997).[144℄ S. Gardiner, D. Jaksh, R. Dum, J. Cira and P. Zoller, �Nonlinear matter wavedynamis with a haoti potential�, Physial Review A, 62, 023612 (2000).[145℄ C. Weiss and N. Teihmann, �Di�erenes between mean-�eld dynamis and N-partile quantum dynamis as a signature of entanglement�, Physial ReviewLetters, 100, 140408 (2008).[146℄ J. Reslen, C. Cre�eld and T. Monteiro, �Dynamial instability in kiked Bose-Einstein ondensates�, Physial Review A, 77, 043621 (2008).[147℄ I. B°ezinová, L. Collins, K. Ludwig, B. Shneider and J. Burgdörfer, �Wavehaos in the nonequilibrium dynamis of the Gross-Pitaevskii equation�, Phys-ial Review A, 83, 043611 (2011).[148℄ M. Heimsoth, C. Cre�eld, L. Carr and F. Sols, �Orbital Josephson e�et andinterations in driven atom ondensates on a ring�, New Journal of Physis,14, 075023 (2012).[149℄ I. B°ezinová, A. Lode, A. Streltsov, O. Alon, L. Cederbaum and J. Burgdörfer,�Wave haos as signature for depletion of a Bose-Einstein ondensate�, PhysialReview A, 86, 013630 (2012).[150℄ A. Ovhinnikov, N. Erikhman and K. Pronin, Vibrational-Rotational Exita-tions in Nonlinear Moleular Systems, (Springer, 2001).



130 Ringraziamenti[151℄ Y. Kivshar and M. Peyrard, �Modulational instabilities in disrete latties�,Physial Review A, 46, 3198 (1992).[152℄ Y. Kivshar, �Loalized modes in a hain with nonlinear on-site potential�,Physis Letters A, 173, 172 (1993).[153℄ M. Johansson, �Disrete nonlinear Shrödinger approximation of a mixedKlein�Gordon/Fermi�Pasta�Ulam hain: Modulational instability and a sta-tistial ondition for reation of thermodynami breathers�, Physia D: Non-linear Phenomena, 216, 62 (2006).[154℄ V. Bellani, E. Diez, R. Hey, L. Toni, L. Tarrione, G. Parraviini,F. Domínguez-Adame and R. Gómez-Alalá, �Experimental evidene of de-loalized states in random dimer superlatties�, Physial Review Letters, 82,2159 (1999).[155℄ U. Kuhl, F. M. Izrailev and A. A. Krokhin, �Enhanement of Loalization inOne-Dimensional Random Potentials with Long-Range Correlations�, PhysialReview Letters, 100, 126402 (2008).[156℄ L. Sanhez-Palenia, D. Clément, P. Lugan, P. Bouyer, G. Shlyapnikov andA. Aspet, �Anderson loalization of expanding Bose-Einstein ondensates inrandom potentials�, Physial Review Letters, 98, 210401 (2007).[157℄ J. Flores, �Transport in models with orrelated diagonal and o�-diagonal dis-order�, Journal of Physis Condensed Matter, 1, 8471 (1989).[158℄ D. H. Dunlap, H.-L. Wu and P. W. Phillips, �Absene of loalization in arandom-dimer model�, Physial Review Letters, 65, 88 (1990).[159℄ J. Sha�, Z. Akdeniz and P. Vignolo, �Loalization-deloalization transitionin the random dimer model�, Physial Review A, 81, 041604 (2010).[160℄ F. Izrailev and A. Krokhin, �Loalization and the mobility edge in one-dimensional potentials with orrelated disorder�, Physial Review Letters, 82,4062 (1999).[161℄ L. Tessieri, �Deloalization phenomena in one-dimensional models with long-range orrelated disorder: a perturbative approah�, Journal of Physis A:Mathematial and General, 35, 9585 (2002).[162℄ E. Gurevih and O. Kenneth, �Lyapunov exponent for the laser spekle po-tential: A weak disorder expansion�, Physial Review A, 79, 063617 (2009).[163℄ C. A., C. P. and S. M., �Anderson loalization in 1D systems with orrelateddisorder�, European Physial Journal B, 82, 107 (2011).[164℄ F. de Moura and M. Lyra, �Correlation-indued metal-insulator transition inthe one-dimensional Anderson model�, Physia A: Statistial Mehanis andits Appliations, 266, 465 (1999).



Ringraziamenti 131[165℄ J. Kantelhardt, S. Russ, A. Bunde, S. Havlin and I. Webman, �Commenton: Deloalization in the 1D Anderson Model with Long-Range CorrelatedDisorder�, Physial Review Letters, 84, 198 (2000).[166℄ F. de Moura and M. Lyra, �de Moura and Lyra reply on: Deloalization in the1D Anderson Model with Long-Range Correlated Disorder�, Physial ReviewLetters, 84, 199 (2000).[167℄ A. M. Garía-Garía and E. Cuevas, �Di�erentiable potentials and metallistates in disordered one-dimensional systems�, Physial Review B, 79, 073104(2009).[168℄ C. Menotti, M. Lewenstein, T. Lahaye, T. Pfau et al., �Dipolar interation inultra-old atomi gases�, in �AIP Conferene Proeedings�, vol. 970 (2008).[169℄ T. Lahaye, C. Menotti, L. Santos, M. Lewenstein and T. Pfau, �The physis ofdipolar bosoni quantum gases�, Reports on Progress in Physis, 72, 126401(2009).[170℄ A. Griesmaier, J. Werner, S. Hensler, J. Stuhler and T. Pfau, �Bose-Einsteinondensation of hromium�, Physial Review Letters, 94, 160401 (2005).[171℄ Q. Beau�ls, R. Chiireanu, T. Zanon, B. Laburthe-Tolra, E. Maréhal,L. Verna, J. Keller and O. Goreix, �All-optial prodution of hromiumBose-Einstein ondensates�, Physial Review A, 77, 061601 (2008).[172℄ M. Lu, N. Burdik, S. Youn and B. Lev, �Strongly dipolar Bose-Einstein on-densate of dysprosium�, Physial Review Letters, 107, 190401 (2011).[173℄ M. Lu, N. Burdik and B. Lev, �Quantum degenerate dipolar Fermi gas�,Physial Review Letters, 108, 215301 (2012).[174℄ K. Aikawa, A. Frish, M. Mark, S. Baier, A. Rietzler, R. Grimm and F. Fer-laino, �Bose-Einstein Condensation of Erbium�, Physial Review Letters, 108,210401 (2012).[175℄ T. Koh, T. Lahaye, J. Metz, A. G. B. Fröhlih and T. Pfau, �Stabilization ofa purely dipolar quantum gas against ollapse�, Nature Physis, 4, 218 (2008).[176℄ S. Sinha and L. Santos, �Cold dipolar gases in quasi-one-dimensional geome-tries�, Physial Review Letters, 99, 140406 (2007).[177℄ R. Farhioni, G. Grosso and G. Parraviini, �Eletroni struture in inom-mensurate potentials obtained using a numerially aurate renormalizationsheme�, Physial Review B, 45, 6383 (1992).[178℄ J. M. Luk, �Cantor spetra and saling of gap widths in deterministi aperi-odi systems�, Physial Review B, 39, 5834 (1989).



132 Ringraziamenti[179℄ M. Robert-De-Saint-Vinent, J. Brantut, B. Allard, T. Plisson, L. Pezzé,L. Sanhez-Palenia, A. Aspet, T. Bourdel and P. Bouyer, �Anisotropi 2ddi�usive expansion of ultraold atoms in a disordered potential�, Physial Re-view Letters, 104, 220602 (2010).[180℄ F. Jendrzejewski, K. Müller, J. Rihard, A. Date, T. Plisson, P. Bouyer, A. As-pet and V. Josse, �Coherent Baksattering of Ultraold Atoms�, PhysialReview Letters, 109, 195302 (2012).[181℄ W. Kohn, �Analyti properties of Bloh waves and Wannier funtions�, Phys-ial Review, 115, 809 (1959).[182℄ R. Graft, D. Lohrmann, G. Parraviini and L. Resa, �Renormalization for-malism in the theory of the eletroni struture of superlatties: Appliationto silion superlatties�, Physial Review B, 36, 4782 (1987).[183℄ P. Giannozzi, G. Grosso and G. Parraviini, �Theory of eletroni states inlatties and superlatties�, La Rivista del Nuovo Cimento (1978-1999), 13, 1(1990).[184℄ H. Aoki, �Real-spae renormalization-group theory for Anderson loalization:Deimation method for eletron systems�, Journal of Physis C, 13, 3369(1980).[185℄ G. Grosso and G. Pastori Parraviini, �Memory Funtion Methods in SolidState Physis�, Advanes in Chemial Physis: Memory Funtion Approahesto Stohasti Problems in Condensed Matter, 62, 133 (2007).[186℄ P. Kirkman and J. Pendry, �The statistis of one-dimensional resistanes�,Journal of Physis C Solid State Physis, 17, 4327 (1984).[187℄ E. Eonomou, Green's funtions in quantum physis, vol. 7, (SpringerBerlin, 1979).


