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[...] Out of the cradle
onto dry land

here it is standing:
atoms with consciousness;

matter with curiosity.

Stands at the sea, wondering: I
a universe of atoms

an atom in the universe.

(Richard P. Feynman)

AÊ°n paØc âsti paÐzwn pesseÔwn˙ paidäc � basilhÐh

(Heraclitus of Ephesus, fragment DK B52)
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Introduction

The analysis and the results contained in this work are rooted in a first con-
tact between the quantum theory and the general theory of relativity. By
first contact it is meant that we are not considering candidates for “unified
theories", but rather we focus on aspects of the full quantum theory in chang-
ing geometric backgrounds: the analysis of such an interaction already had
important applications in cosmology, e.g. in the description of the evolution
of fields in inflationary scenarios. Another compelling – and still growing –
area of application is the study of thermodynamical properties of gravitional
systems, which covers the main bulk of this thesis.

Since the discovery of quantum black hole thermal radiance by Hawk-
ing [1], it became pretty clear that something remarkable concerning the
interface of gravity, quantum theory and thermodynamics was at work. In
the usual picture, a radiating black hole loses energy and therefore shrinks,
evaporating away to a fate which is still debated. Many new ideas came
out from the recognition that quantum field theory implied a thermal spec-
trum: the most impressive probably being ’t Hooft’s idea of a dimensional
reduction in quantum gravity and the associated holographic description (in-
dicating a drastic reduction in the counting of degrees of freedom in finite
regions, which scale with area rather than volume) [2, 3], and the princi-
ple of black hole complementarity aimed to reconcile the apparent loss of
unitarity implied by the Hawking process with the rest of physics as seen
by external observers [4]. But there were also other, more practical, issues
regarding these matters, some of which bewildered scientists since the very
beginning and that have been only partly resolved. A key issue is that the
original derivation of Hawking’s radiation applied only to stationary black
holes, while the picture above uses quasi-stationary arguments. Actually, an
evaporating black hole is non-stationary. Nevertheless, a surprising aspect of
the semi-classical result is that the radiation caused by the changing metric
of the collapsing star approaches a steady outgoing flux at large times, im-
plying a drastic violation of energy conservation. This certainly means that
one cannot neglect the back-reaction problem which, however, has not been
solved yet in a satisfactory way. A sample of other key issues have to deal
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with the final state of the evaporation process, the thermal nature and the
related information loss paradox, the Bekenstein–Hawking entropy and the
associated micro-states counting, the trans-Planckian problem, and so on. It
was to address some of these questions that some alternative derivations and
descriptions of Hawking’s emission process began to appear over the years,
one of these being the so-called tunnelling method, presented in Chapter 1.

As hinted before, the definition of particles in a changing metric turns
out to be non-trivial. Basically, the field quantization in Minkowski space-
time relies on the definition of a vacuum state as the first building block of
the “particle content” spectrum of the theory: in more general situations,
i.e. in the absence of a global time-like Killing vector, the vacuum state is
found to be in no way unique on a global context. The vacuum state defined
by an observer is a superposition of positive and negative-frequency modes
in another observer’s frame.1 An outline regarding the quantization of fields
in curved metrics is presented in the first part of Chapter 2. In view of this
ambiguity, we can choose to rely on a more pragmatic (and seemingly tauto-
logical) definition: a particle is a click in a particle-detector. This definition
implies the local character of the measurement process, which is the relevant
aspect from the point of view of different observers. The description and the
consequences of this approach are made clear in the rest of Chapter 2, where
the theory of Unruh-DeWitt detectors is outlined.

In Chapter 3 we shift our attention to the relationship between gravita-
tional systems and the laws of thermodynamics: through a simple thought
experiment (on the wake of the works by J.D. Bekenstein, H. Bondi and
others) we highlight the importance of tidal effects in general relativity in
order to comply with the laws of thermodynamics. It is a result that points
towards Penrose’s Weyl Curvature Hypothesis, which conjectures a relation-
ship between the Weyl tensor – responsible for tidal effects – and a possible
definition of entropy for the gravitational field.

The results presented in this thesis have been drawn from the following
published papers:

∙ Chapter 1: L. Vanzo, G. Acquaviva, R. Di Criscienzo, Tunnelling
Methods and Hawking’s radiation: achievements and prospects, Class.
Quant. Grav. 28 (2011) 183001.

∙ Chapter 2: G. Acquaviva, R. Di Criscienzo, M. Tolotti, L. Vanzo
and S. Zerbini, Unruh–DeWitt Detectors in Spherically Symmetric Dy-

1The same applies also to non-inertial observers in Minkowski spacetime: the resulting
effect is called Unruh effect.
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namical Space-Times, Int. J. Theor. Phys. 51 (2012) 0020-7748. R.

Casadio, S. Chiodini, A. Orlandi, G. Acquaviva, R. Di Criscienzo and
L. Vanzo, On the Unruh effect in de Sitter space, Mod. Phys. Lett. A
26 (2011) 2149.

∙ Chapter 3: Y. Gaspar and G. Acquaviva, A gedankenexperiment in
gravitation, Nuovo Cim. B 125 (2010) 1201.

The metric signature is (−,+, . . . ,+).
Unless explicitly stated, we let 𝑐 = 𝑘𝐵 = 𝐺 = ~ = 1.
Greek indices are used to denote space-time components of a tensor;
mid-Latin indices as 𝑖, 𝑗 are typically used to denote the 0,1 component;
late-Latin indices as 𝑚,𝑛 are typically used for purely spatial tensors part.
If not otherwise stated, an overdot will represent a time derivative, and a
prime a spatial derivative in the (case by case) relevant spatial coordinate.
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1 | Tunnelling method

The tunnelling method has to do with the particle interpretation of the
emission process, which would be the most natural way to explain the loss of
energy suffered by the radiating black hole, but also poses a problem: while
the original derivation of Hawking radiation used the theory of quantum free
fields propagating in a fixed gravitational background, for the case at hand
a particle interpretation in the near horizon region of a black hole space-
time was found to be far from unique and therefore inherently ambiguous.
This fact is deeply rooted into the physical nature of the problem, which
is that the general covariance of the physical laws allows many inequivalent
choices of time, as was explained several times (see, e.g. [6, 11]). It was
partly to overcome such difficulties that DeWitt launched in the Seventies
the “stress-energy-tensor program” aimed to compute the expectation values
of the stress tensor and other observables to better describe quantum effects
in a curved space-time [12]. Thus, it was found that it is not in general
possible to divide ⟨𝑇𝜇𝜈⟩𝑟𝑒𝑛 into a real particle contribution and a vacuum
polarisation part in an unambiguous way. However, it will always be possible
to choose any coordinate system, as long as it is regular across the horizon,
and use it to define an observer dependent vacuum relative to which a particle
definition is feasible. As we will see, with the tunnelling method we are only
concerned with the probability that such an observer dependent notion of
particle be emitted from the horizon of the black hole. If this probability
is a coordinate scalar it will not depend strongly on what particle concept
one employs. In fact, we can call it a click event in a particle detector
if we like, without committing ourselves with the particle concept; concept
which remains of great heuristic value however, and will find its realisation in
the choice of the particle action used to compute the tunnelling probability.
Such an observer dependent notion of particles has been advocated also by
Gibbons and Hawking in their treatment of de Sitter radiation [13], on the
ground that an observer independent definition of particles is not relevant
to what a given observer would measure with a particle detector.

The second aspect we would like to mention is the fact that, as it will be
seen, the tunnelling method uses only the classical action of a single mass-
less, spin-less particle and therefore appears to be state independent. It does
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what it does by relating the particle emission to an imaginary contribution to
the classical action localised at the horizon, which only comes from the local
geometry. This can be traced back to the work of Damour and Ruffini [14]
with contributions of Padmanabhan et al. [15–18], Massar and Parentani [19]
and Kraus and Wilczek, Parikh and Wilczek [20–22] (see also Kraus’s Ph.D.
thesis [23]). To what extent this is so was recently studied in [24] where, for
a large class of quantum states with Hadamard short distance singularity, it
was shown that the two-point correlation function, which is directly related
to the tunnelling probability, has a universal thermal appearance whose tem-
perature is, needless to say, the Hawking temperature.

Now all these important findings have the drawback that they have been
proved, and one can easily understand why, only for stationary black holes.
In that case the tunnelling picture has not much more to say than was already
known, at least for the simplest solutions, besides helping to understand
black hole radiation from a different viewpoint. Where exact calculations
can be done, it typically gives a less detailed picture of the radiation process
since it is mainly related to a semi-classical emission rate. The cases where
the method is more powerful have to do either with more intricate stationary
solutions or else with truly dynamical black holes. We can list here some of
its achievements and properties:

1. The estimation of the leading correction to the semi-classical emission
rate arising from back-reaction to the background geometry, whose
introduction by Kraus and Wilczek, Parikh and Wilczek [20–22] mo-
tivated the tunnelling method in a form that will be discussed soon;
its extension to Anti–de Sitter (AdS) [25], de Sitter (dS) [26–30] and
higher dimensional black holes; the existence of correlations among
successive emission events [31–33];

2. The original tunnelling method can be generalised to a Hamilton–
Jacobi variant, originated with the work of Padmanabhan and col-
laborators [15–18] and systematically applied either to stationary or
dynamical black holes (see e.g. [5, 34–39] for a sample of papers). For
dynamical black holes this was particularly important, since even ap-
proximate quantum calculations are notoriously hard. Moreover, in
this variant it manifestly preserves general covariance;

3. Supplemented with a more precise and more general mathematical def-
inition of a local horizon, the Hamilton–Jacobi variant can be applied
to any sort of horizon within this class, and in particular to cosmologi-
cal and weakly isolated horizons [40] (for definitions see below). It can
also be applied to past horizons and white holes, in which case a clear
notion of temperature emerges in complete analogy to black holes;
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4. The tunnelling method strengthens the connection of the semi-classical
rate with the surface gravity of the horizon even for dynamical black
holes, provided that opportune definitions of such quantities are em-
ployed. In this respect its application to extremal black holes should
have something to say;

5. The tunnelling picture can promptly give indications on what occurs
in other situations. One example is the WKB approach to Unruh’s
radiation, reviewed in [41]. It can also be applied to see whether naked
singularities are going to emit radiation, or to study the decay of un-
stable particles that in the absence of gravity would be stable by the
action of some conservation law. This is valuable given the great efforts
that are normally necessary to analyse quantum effects in the presence
of gravity.

It remains to explain how the tunnelling picture works and to what extent
it gives a consistent picture, at least from a logical point of view.

1.1 Stationary black holes

According to quantum field theory, the physical vacuum – the state with no
real particles – is in general a complex entity populated by virtual particles
which are constantly created, interact among themselves and are then an-
nihilated in this vacuum. In the absence of external fields, the vacuum is
usually stable in the sense that virtual particles are not able to survive long
enough to become real. However, it is now well proved that external fields
are able to convert short-living particles into real ones just supplying enough
energy to the process.

Considering particle creation by a static gravitational field endowed with
a Killing vector 𝜉𝛼 , the energy of a particle is 𝜔 = −𝑝𝛼𝜉𝛼, where 𝑝𝛼 is
the particle’s four-momentum. For massive (massless) particles, the momen-
tum 𝑝𝛼 is a future-directed time-like (null) vector. Thus, the energy 𝜔 of
a particle is always positive in the region where the Killing vector is also
future-directed and time-like. It follows that particle creation in a spacetime
region with 𝜉𝛼 future-directed and time-like is forbidden by energy conserva-
tion. Such considerations provide a heuristic argument [42] to conclude that
a static gravitational field can create particles only if the spacetime contains
a black hole. In fact, when a virtual particle pair is created just inside the
horizon, the positive energy virtual particle can tunnel outside – no classical
escape route existing – where it materializes as a real particle; in alterna-
tive, for a pair created just outside the horizon, the negative energy virtual
particle, forbidden outside the horizon, can tunnel inwards [43]. In either
cases, the negative energy particle is absorbed by the black hole, resulting
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in a black hole mass decrease, while the positive energy particle escapes to
infinity, visible to distant observers (Hawking’s radiation).

In 1974, Hawking [1] proved that indeed black holes are classically stable
objects that, due to quantum fluctuations, become unstable with respect
to particle emission. Nowadays, several methods are known for deriving
the Hawking radiation and calculating its temperature, but none of them
has been able to catch the intuitive picture above as the tunnelling method
proposed a decade ago by Parikh and Wilczek [22]: if it were not for the
inclusion of back-reaction, their method could be considered a semi-classical
version of Hartle–Hawking’s path integral derivation of black hole radiance
[44].

1.1.1 Null-geodesic method

The so called null geodesic method — as named by Kerner and Mann [36] —
derives black hole radiance from few reasonable assumptions, namely: energy
conservation, detailed balance and the use of non-singular coordinates across
the horizon.
Energy conservation requires fixing the total energy of the space-time before
and after particle emission. Since black hole mass and volume are linked
together, a mass reduction due to the emission of a particle translates into a
size contraction; so one might worry how to deal with quantum fluctuations of
the metric originating from such contraction. However, this is not a problem
as far as we consider transitions between zero-spin geometries. In this case in
fact, no graviton quantisation is involved or, said in other words, passing from
different spherically symmetric configurations does not produce gravitational
waves. As a consequence, the only degree of freedom remained in the problem
is the position of the emitted particle (actually, a thin shell). Thus, to keep
things as simple as possible, we can restrict to consider uncharged, static,
spherically symmetric black holes emitting neutral matter, referring to next
sections treatment of the most general case.

Because of Birkhoff’s theorem [45], we are dealing with Schwarzschild
geometry which, written in the Schwarzschild frame, reads

𝑑𝑠2 = −
(︁

1 − 𝑟𝑔
𝑟

)︁
𝑑𝑡2 +

(︁
1 − 𝑟𝑔

𝑟

)︁−1
𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2 𝜃 𝑑𝜑2) (1.1)

where the gravitational radius is 𝑟𝑔 = 2𝑀 . Computing the free fall acceler-
ation of a body initially at rest in the Schwarzschild frame, we get

𝑎 :=
√
𝑎𝑛𝑎𝑛 =

𝑀

𝑟2
√︀

1 − 𝑟𝑔/𝑟
. (1.2)

The geometry Eq. (1.1) becomes singular at the gravitational radius and
the acceleration Eq. (1.2) becomes infinite in the same limit. Nonethe-
less, near 𝑟𝑔 the space-time is regular (i.e. neither curvature singularities or

12



geodesic incompleteness): an indication of the fact that the Schwarzschild
frame ceases to be defined at 𝑟 = 𝑟𝑔 (For 𝑟 ≤ 𝑟𝑔 systems must be non-rigid in
the sense that the metric components 𝑔𝛼𝛽 must be functions of time, cf. [42]).
It is well-known that the gravitational radius 𝑟𝑔 represents the Killing event
horizon of Schwarzschild black hole [45]; thus, in order to deal with tun-
nelling of a particle across it, we need to cover the region 𝑟 ∼ 𝑟𝑔 with
regular coordinates. A possible choice, not the only one, is represented by
Painlevé–Gullstrand coordinates [46]. In order to construct this new regular-
across-the-horizon frame, we consider the geodesic equations of a family of
observers, freely falling (𝑑𝑟/𝑑𝜏 < 0) in the geometry Eq. (1.1), along a radial
trajectory (𝜃, 𝜑 constant):

𝑑𝑡

𝑑𝜏
=

�̃�

1 − 𝑟𝑔
𝑟

,

(︂
𝑑𝑟

𝑑𝜏

)︂2

+
(︁

1 − 𝑟𝑔
𝑟

)︁
= �̃�2 (1.3)

𝜏 representing observer’s proper time and �̃� = 𝐸/𝑚 is the observer’s con-
served energy per unit mass. The energy parameter is related to observer’s
physical three-velocity 𝑣2 = 𝑔𝑚𝑛𝑑𝑥

𝑚𝑑𝑥𝑛/(−𝑔00)𝑑𝑡2: in fact, given the Killing
vector 𝜉𝜇(𝑡) — generating the time-symmetry transformations of Eq. (1.1),
the energy reads

�̃� = −𝑢𝜇𝜉𝜇(𝑡) = −𝑢0 = −𝑔00 𝑢0 =

√
−𝑔00√

1 − 𝑣2
. (1.4)

We specialise to the case of observers starting at infinity with null initial
velocity so that �̃� = 1. For this family of observers, there exists a function
𝑡𝑝 such that

∇𝜇𝑡𝑝 = −𝑢𝜇 . (1.5)

Taking Eq. (1.3) into consideration, we get the Painlevé time 𝑡𝑝 in terms of
Schwarzschild coordinates

𝑡𝑝 = 𝑡+

∫︁ 𝑟

𝑑𝑟′
√︂
𝑟𝑔
𝑟′

(︁
1 − 𝑟𝑔

𝑟′

)︁−1
= 𝑡+ 2

√
𝑟𝑔𝑟 + 𝑟𝑔 ln

(︂√
𝑟 −√

𝑟𝑔√
𝑟 +

√
𝑟𝑔

)︂
. (1.6)

In terms of (𝑡𝑝, 𝑟, 𝜃, 𝜑), the Schwarzschild geometry is written as

𝑑𝑠2 = −
(︁

1 − 𝑟𝑔
𝑟

)︁
𝑑𝑡2𝑝 + 2

√︂
𝑟𝑔
𝑟
𝑑𝑡𝑝 𝑑𝑟 + 𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2 𝜃 𝑑𝜑2). (1.7)

At fixed time, the spatial geometry described by Eq. (1.7) is Euclidean;
while at any fixed radius, the boundary geometry is the same as that in Eq.
(1.1). Most importantly, the metric is no more singular at the gravitational
radius 𝑟𝑔; the space-time is stationary, but no more static. The 𝑡𝑝 coordinate
— being the time perceived by infalling observers who reach the curvature
singularity 𝑟 = 0 in finite time — remains a valid coordinate as far as it
remains finite.
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The geodesic for a null s-wave is given by

�̇� ≡ 𝑑𝑟

𝑑𝑡𝑝
= ±1 −

√︂
𝑟𝑔
𝑟
, (1.8)

with upper (lower) sign corresponding to outgoing (ingoing) geodesic. The
basic idea behind the approach by Parikh and Wilczek [22] is to study the
emission of such a null-radial thin shell from the black hole through quantum
tunnelling. Imposing energy conservation means that the total space-time
energy is fixed and one allows the black hole mass to fluctuate. As showed
in [20], the motion of a shell of energy 𝜔 emitted from a black hole of initial
mass 𝑀 is described by Eq.(1.8) in the space-time geometry of Eq.(1.7 with
𝑀 replaced by 𝑀 − 𝜔.

Differently by tunnelling in quantum mechanics, where two configura-
tions (classical turning points) separated by a potential barrier are connected
by a trajectory in imaginary time, here we have the perception that nothing
similar happens. In fact, the problem with black hole radiation is that, as
soon as a particle is displaced outside the horizon, it can escape along a
classical trajectory. It is worth to mention how the crucial ingredient of the
story here is played by energy conservation. As the black hole of mass 𝑀
and area 16𝜋𝑀2 emits a particle of energy 𝜔, its mass reduces to 𝑀 − 𝜔
and its horizon recedes to 2(𝑀 −𝜔) = 𝑟𝑔 − 2𝜔. This amount of contraction,
evidently, depends upon the mass of the emitted particle, so that quoting
Parikh “it is the tunnelling particle itself that secretly defines the tunnelling
barrier” [43].

Before evaluating the black hole emission rate, we can ask to what extent
is justified the point-particle approximation. Given that a distant observer
detects a wave with frequency Ω𝑜𝑏, this has been emitted with frequency
Ω𝑒𝑚 ∝ (1− 𝑟𝑔/𝑟)

−1/2Ω𝑜𝑏. In the limit of 𝑟 → 𝑟𝑔, where the emission process
occurs, the wavelength vanishes, making the point-particle (WKB) approxi-
mation fully reliable.

In the WKB approximation, the tunnelling probability rate Γ𝑒𝑚 turns
out to be equal to

Γ𝑒𝑚 ∼ exp(−2 Im 𝐼) (1.9)

where 𝐼 is the action for the tunnelling process evaluated to the appropriate
order. We shall derive later, in Subsection 1.1.6, the exact correspondence
between Γ𝑒𝑚 and the exp–function. Eventually, one would expect to be able
to read off the black hole radiation temperature from comparison of the the
probability rate Eq.(1.9) with the Boltzmann factor 𝑒−𝜔/𝑇 . The imaginary
part of the action for a null s-wave outgoing positive energy particle which
crosses the horizon outwards from 𝑟𝑖𝑛 to 𝑟𝑜𝑢𝑡 can be expressed as

Im 𝐼 = Im
∫︁ 𝑟𝑜𝑢𝑡

𝑟𝑖𝑛

𝑑𝑟 𝑝𝑟 = Im
∫︁ 𝑟𝑜𝑢𝑡

𝑟𝑖𝑛

𝑑𝑟

∫︁ 𝑝𝑟

0
𝑑𝑝′𝑟 (1.10)
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Changing the integration from momentum to energy thanks to Hamilton’s
equation �̇� = 𝑑𝐻/𝑑𝑝𝑟 and noting that 𝐻 = 𝑀 − 𝜔′ with constant 𝑀 and
0 ≤ 𝜔′ ≤ 𝜔, we have

Im 𝐼 = Im
∫︁ 𝑟𝑜𝑢𝑡

𝑟𝑖𝑛

𝑑𝑟

∫︁ 𝑀−𝜔

𝑀

𝑑𝐻

�̇�
= Im

∫︁ 𝑟𝑜𝑢𝑡

𝑟𝑖𝑛

𝑑𝑟

∫︁ 𝜔

0

(−𝑑𝜔′)

�̇�
. (1.11)

Using Eq.(1.8) and switching the order of integration,

Im 𝐼 = Im
∫︁ 𝜔

0
(−𝑑𝜔′)

∫︁ 𝑟𝑜𝑢𝑡

𝑟𝑖𝑛

𝑑𝑟
1

1 −
√︁

2(𝑀−𝜔′)
𝑟

. (1.12)

With the understanding that the particle starts at 𝑟𝑖𝑛 = 2𝑀 and materialises
at 𝑟𝑜𝑢𝑡 = 2(𝑀 − 𝜔), 𝑟𝑖𝑛 > 𝑟𝑜𝑢𝑡, the integral over 𝑟 is divergent and needs to
be appropriately regularised. A tunnelling process corresponds to an energy
which is not in the spectrum of the Hamiltonian. We need to continue the
energy 𝜔 to complex values, that is 𝜔′ → 𝜔′ + 𝑖𝜖, in order to ensure that
positive energy solutions decay in time:

Im 𝐼 = Im
∫︁ 𝜔

0
(−𝑑𝜔′)

∫︁ 𝑟𝑜𝑢𝑡

𝑟𝑖𝑛

𝑑𝑟

√
𝑟

√
𝑟 −

√︀
2(𝑀 − 𝜔′) + 𝑖𝜖

= −Im 𝑖𝜋

∫︁ 𝜔

0
(−𝑑𝜔′) 4(𝑀 − 𝜔′) = +4𝜋𝜔

(︁
𝑀 − 𝜔

2

)︁
. (1.13)

Of course, Hawking radiation can also be regarded as pair creation outside
the horizon, with the negative energy particle tunnelling into the black hole.
The calculation proceeds as above with slight change of signs due to the fact
that anti-particles travel back in time (cf. [22] for details). That both particle
and anti-particle channels contribute to black hole emission is something
which only affects the amplitude of the process, that is something which
enters the proportionality factor of Eq.(1.9). In conclusion, the emission
rate obtained is

Γ ∼ exp(−2 Im 𝐼) = 𝑒−8𝜋𝑀𝜔(1− 𝜔
2𝑀 ). (1.14)

The expected Boltzmann factor 𝑒−𝜔/𝑇𝐻 is recovered only to order 𝑂(𝜔): in
this order of approximation, the black hole temperature perfectly coincides
with standard Hawking’s result, 𝑇𝐻 = (8𝜋𝑀)−1. The 𝑂(𝜔2) correction
arising from the physics of energy conservation, makes higher the effective
temperature of the hole as it radiates in agreement with the well-known
negative thermal capacity of Schwarzschild black hole.
Neglecting the 𝜔(2𝑀)−1 term in Eq. (1.14) and invoking detailed balance1,
the Planck distribution is recovered.

1Consider an ensemble of many identical copies of the same quantum system. Let the
energy and the number of accessible states of the system be fixed. The probability that
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A note – It appears that by neglecting the back-reaction no member of a pair
of particles created just inside the event horizon can escape it, by reason of
causality. In the terminology to be used in Section 1.2 this correspond to a
type-II tunnelling path, the particles created just outside forming instead a
type-I path. The inclusion of the back-reaction is truly fundamental for the
existence of both possibilities. Since in the dynamical case we will mainly
ignore the back-reaction effect, only type-I path will be accessible to the
tunnelling probability.

1.1.2 Hamilton-Jacobi method

Despite the merits of the seminal work by Parikh and Wilczek, we can-
not omit to point out a couple of unpleasant features of their null geodesic
method, as the fact that: (i) it strongly relies on a very specific choice of
(regular-across-the-horizon) coordinates; and (ii) it turns upside down the
relationship between Hawking radiation and back-reaction. As regard the
former point, it should be clear how irrelevant is, in the spirit of general rel-
ativity, the choice of coordinates: being physical observables invariant with
respect to the group of diffeomorphisms (the hole temperature is such an ob-
servable), there is no reason why Painlevé–Gullstrand coordinates should be
favourable with respect to other (equally well-behaved) coordinates. With
respect to the latter, we notice that, in the null geodesic description, appar-
ently there cannot be Hawking radiation without back-reaction: watching
carefully, however, it is the discovery of Hawking radiation that justifies back-
reaction and makes commendable the treatment of Hawking radiation’s self-
gravity. The so-called Hamilton–Jacobi method can cope with both issues.
The intent is to give a particle description of Hawking radiation, ignoring

a system randomly chosen out of the ensemble will be in state 𝑖 is denoted by 𝑝𝑖, with∑︀
𝑖 𝑝𝑖 = 1. The transition probability 𝜆𝑖→𝑗 denotes the conditional probability per unit

time of a system going from state 𝑖 to state 𝑗, i.e. 𝑝𝑖𝜆𝑖→𝑗𝑑𝑡 is the probability of a system
originally being in state 𝑖 and going to state 𝑗 within the time interval 𝑑𝑡 [47]. From this
definition,

∑︀
𝑗 𝑝𝑖𝜆𝑖→𝑗𝑑𝑡 represents the probability of transition from state 𝑖 to any other

possible state of the system in time 𝑑𝑡; and
∑︀

𝑗 𝑝𝑗𝜆𝑗→𝑖𝑑𝑡 represents the probability of
transition into state 𝑖 from any other possible state of the system in time 𝑑𝑡. It follows
that, �̇�𝑖 =

∑︀
𝑗(𝑝𝑗𝜆𝑗→𝑖 − 𝑝𝑖𝜆𝑖→𝑗) is the net rate of change of 𝑝𝑖. The detailed balance

condition requires that,

at equilibrium, 𝑝𝑗𝜆𝑗→𝑖 = 𝑝𝑖𝜆𝑖→𝑗 , ∀𝑖, 𝑗 . (*)

In the case at hand, the system is made of “black hole + radiation”. The initial state
𝑖 represents, for example, the black hole with 𝑁 − 1 particles (e.g. photons). Through
the physical mechanism described before, the black hole emits one more particle, so that
the state 𝑗 becomes “black hole + 𝑁 particles”. Neglecting back-reaction, the internal
degrees of freedom of the black hole do not change and by (*), we have that 𝜆𝑖→𝑗/𝜆𝑗→𝑖 ≡
Γ𝑒𝑚/Γ𝑎𝑏 = 𝑝𝑁/𝑝𝑁−1 = 𝑒−𝜔/𝑇 . This result combined with the classical constraint, Γ𝑎𝑏 ∓
Γ𝑒𝑚 = |𝑇𝑙(𝜔)|2, reproduces Planck (minus sign) and Fermi–Dirac (plus sign) distributions.
Here, 𝑇𝑙(𝜔) represents the transmission coefficient of the black hole barrier which in general
can depend on the energy 𝜔 and the angular momentum 𝑙 of the particle.

16



its self-gravitation, under the assumption that the emitted (scalar) particle’s
action does satisfy the Lorentzian Hamilton–Jacobi equation. Later we will
show that the null geodesic method can do the same job using instead the
reduced action.
As it will become clear later, this method applies to any well-behaved co-
ordinate system across the horizon; it generalises beyond the assumption
of spherical symmetry; it makes possible to include the study of tunnelling
by fermionic particles. Some sceptics about Hawking radiation contest the
fact that as soon as the black hole starts radiating, the same assumptions on
space-time stationarity drops down, invalidating the whole derivation. Given
that the departure from perfect stationarity is ridiculously small, nonethe-
less, as we shall show in Section 1.2, the Hamilton–Jacobi method can prove
black hole evaporation even for slowly varying, time dependent, space-times.
Finally, we wish to notice that since the methods of tunnelling are intimately
related to the physics of (some type of) horizons, we may apply them even to
space-times with multiple horizons. In standard computations of Hawking
radiation, this is typically a hard task, if not impossible. In fact, it is well
known that, as an example, Reissner–Nordström–de Sitter space does not
possess regular Euclidean section for general values of mass, electric charge
and cosmological constant [50]. This means that for arbitrary values of the
parameters, it is not possible to compute the Hawking temperature of event
or cosmological horizons by Euclidean continuation, simply because it could
be that no Euclidean section of the given Lorentzian space-time exists.

In its minimal formulation, the Hamilton–Jacobi method works according
to the following strategy [55]: (a) assume that the tunnelling particle’s action
satisfies the relativistic Hamilton–Jacobi equation,

𝑔𝜇𝜈 𝜕𝜇𝐼 𝜕𝜈𝐼 +𝑚2 = 0 (1.15)

where 𝑚2 represents the invariant mass; (b) reconstruct the whole action 𝐼,
starting from the symmetries of the problem and the partial derivatives 𝜕𝜇𝐼,
by means of

𝐼 =

∫︁
𝑑𝑥𝜇 𝜕𝜇𝐼 , (1.16)

where the integration is carried along an oriented, null, curve (like for ex-
ample

−→
𝑎𝑏𝑐 in Fig.(1.1)), to which we refer as the tunnelling path, with at

least one point on the horizon; (c) split the integration along the null path
in two pieces, one along the segment crossing the horizon (

−→
𝑎𝑏 in Fig.(1.1)),

the remaining contribution living in the outer domain of the space-time (
−→
𝑏𝑐

in Fig.(1.1)); (d) perform a near-horizon approximation in the first integral
and regularise its divergence according to Feynman’s 𝑖𝜖–prescription. Once
the procedure is done, the imaginary part of the classical action, relevant for
the tunnelling rate Eq. (1.9), reads

Im 𝐼 =
𝜋𝜔

𝜅
, (1.17)
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where 𝜅 and 𝜔 are the surface gravity and particle’s energy, respectively.

Figure 1.1: Carter–Penrose diagram of the eternal Schwarzschild black
hole. ℋ± denote future and past horizon; ℐ± future and past null infinity;
𝑟 = 0 the curvature singularity; 𝑣, 𝑢 represent advanced and retarded null
coordinates, respectively.

−→
𝑎𝑏𝑐 is a null piecewise continuous path from inside

to outside the hole, with
−→
𝑎𝑏 running backward in time (classically forbidden

trajectory).

As we have already stressed, Hawking radiation is a semi-classical result
of quantum field theory in curved space-time. In the spirit of tunnelling, we
allow particles to travel along classically forbidden trajectories by starting
just behind the horizon onward to infinity. Thus, particles must travel back
in time, since the horizon is locally to the future of the static external region.
For this reason, we must implement coordinates well defined through regions
𝐼 and 𝐼𝐼, a requirement which automatically discards Schwarzschild-like or
isotropic-like coordinates (it is easy to show that, in Schwarzschild space-
time, isotropic coordinates, (𝑡, 𝜌, 𝜃, 𝜑), defined through 𝑟(𝜌) := (1+𝑀/2𝜌)2𝜌,
cover regions 𝐼 and 𝐼𝑉 of Fig.(1.1)). The classical one-particle action be-
comes complex as an indication of the classical impossibility of the motion
and gives, in this way, an imaginary part to the emission rate of the hole. In
this sense, we can say that, of the actual path travelled by the tunnelling par-
ticle (e.g.

−→
𝑎𝑏𝑐), only the infinitesimal region across the horizon plays a crucial

role in the whole calculation. Even if null classically forbidden curves like−→
𝑎𝑏 do not have anything special with respect to other forbidden paths, their
choice is preferable to computational purposes. Also, it will become clearer
later the reason why we specifically regularise divergent integrals by Feyn-
man’s prescription rather than others. In consideration of our choices, the
mass term in Eq. (1.15) is irrelevant to the physics of the horizon (Hawking
radiation) but, as we shall show in Section 1.3, under quite general conditions
particles masses play an important role in relation to bulk particle creation
phenomena.
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To show in practice how the Hamilton–Jacobi method works, we are go-
ing to derive the emission rate Eq. (1.9) and prove the identity Eq. (1.17)
in the case of a scalar, uncharged, particle tunnelling from a Schwarzschild
black hole, in complete analogy with what we did in the previous subsec-
tion. This will give us the opportunity to unveil other debated points of
the method. Later on we shall free the derivation from any dependence by
special coordinate systems.

Painlevé–Gullstrand coordinates

In this case the space-time geometry is described by Eq. (1.7). Because
of Eq. (1.6, expressing the relation between Painlevé and Schwarzschild
times, the particle energy associated to a Killing observer is expressed by
𝜔 = −𝜕𝑡p𝐼 (according to Eq. (1.4), the particle energy is 𝜔 = −𝑝 · 𝜉 where
𝑝𝜇 = −𝜕𝜇𝐼 is the four-momentum). Since we are dealing with a spherically
symmetric space-time, we may neglect without fault the angular coordinates.
We consider a null direction (∆𝑡𝑝,∆𝑟), for which

−
(︁

1 − 𝑟g
𝑟

)︁
∆𝑡 2p + 2

√︂
𝑟g
𝑟

∆𝑡p · ∆𝑟 + ∆𝑟2 = 0 . (1.18)

In a neighbourhood of the event horizon (e.g.
−→
𝑎𝑏 in Fig. (1.1)), the relation

between ∆𝑡p and ∆𝑟 is uniquely fixed to be ∆𝑡p = −∆𝑟/2 since, in this limit,
the alternative solution ∆𝑡p = −(1 −

√︀
𝑟g/𝑟)

−1 ∆𝑟 diverges in contrast to
the physical meaning of the coordinate 𝑡p. It simply means that the segment
−→
𝑎𝑏 is part of null direction across the horizon. The reduced Hamilton–Jacobi
equation

− (𝜕𝑡p𝐼)2 + 2

√︂
𝑟g
𝑟
𝜕𝑡p𝐼 𝜕𝑟𝐼 +

(︁
1 − 𝑟g

𝑟

)︁
(𝜕𝑟𝐼)2 = 0 (1.19)

can be written as

− 𝜔2 − 2𝜔

√︂
𝑟g
𝑟
𝜕𝑟𝐼 +

(︁
1 − 𝑟g

𝑟

)︁
(𝜕𝑟𝐼)2 = 0 . (1.20)

The imaginary part of the action is

Im 𝐼 = Im
∫︁
𝑎→𝑏→𝑐

(︀
𝜕𝑟𝐼 𝑑𝑟 + 𝜕𝑡p𝐼 𝑑𝑡p

)︀
(1.21)

= Im
∫︁
𝑎→𝑏

𝑑𝑟

(︂
𝜕𝑟𝐼 +

1

2
𝜔

)︂
(1.22)

= Im
∫︁
↘ 𝑑𝑟 𝜕𝑟𝐼 . (1.23)

Passing from Eq. (1.21) to Eq. (1.22), we took into consideration that: (i)
only the classically forbidden part

−→
𝑎𝑏 of the whole null path

−→
𝑎𝑏𝑐 contributes
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to complexifying the action of the tunnelling particle; (ii) as far as we are
concerned with the infinitesimal region of intersection between the horizon
and the path

−→
𝑎𝑏, 𝑑𝑡p and 𝑑𝑟 are related to each other in the way specified

above; (iii) the particle’s energy goes as −𝜕𝑡p𝐼. Being 𝜔 a real positive con-
stant, the second term in the integrand of Eq. (1.22) does not enter the
imaginary part of the action so it drops down in passing to Eq. (1.23). From
now on, integration along the classically forbidden path (e.g.

−→
𝑎𝑏 or, by ex-

tension,
−→
𝑎𝑏𝑐) will be denoted simply by

∫︀
↘.

It is remarkable that also the integration over the “time” coordinate enters,
in general, the reconstruction process of the particle’s action. In this specific
case, we see that this “temporal” contribution — being manifestly real —
does not affect the result. The next subsection will show a coordinate sys-
tem where instead the “temporal” contribution vanishes exactly. It should
be clear that names such as “temporal” or “spatial” contributions are coordi-
nate dependent terms in no way fundamentally related to the physics of the
process, which must be covariant. The general covariance of the tunnelling
method will be continuously emphasised as one of the main themes of this
chapter.

Inserting the non-manifestly real solution of Eq. (1.20) into (1.23), we
get

Im 𝐼 = 2 Im
∫︁
↘ 𝑑𝑟

𝜔

1 − 𝑟g
𝑟

= 2 Im
∫︁
↘ 𝑑𝑟

𝜔 𝑟

𝑟 − 𝑟g
, (1.24)

and regularising the divergent integral according to Feynman’s 𝑖𝜖–prescription,
the imaginary part of the action becomes

Im 𝐼 = 2 Im
∫︁
↘ 𝑑𝑟

𝜔 𝑟

𝑟 − 𝑟g − 𝑖𝜖
= 4𝑀𝜋𝜔 . (1.25)

Strictly speaking 𝜔 should be computed on the horizon, because this is how
the method of residues works; however this is the same thing as the energy
measured at infinity since on the outgoing trajectory 𝜔 is conserved. That
said, after the known identification 𝜅 = 1/4𝑀 , the identity Eq. (1.17) is
fully recovered. Whether we had used the opposite prescription, 𝑟 → 𝑟+ 𝑖𝜖,
a corresponding change of sign of the imaginary part would have resulted.
Its meaning will be explained in Section 1.1.6.

Eddington–Finkelstein coordinates

Let us introduce another reference frame without singularities on 𝑟g orig-
inally constructed by Eddington (1924) and Finkelstein (1958), [51]. This
frame is fixed to radially moving photons. Since no observer can move to-
gether with photons, this new frame is not, strictly speaking, a reference
frame. Nevertheless, this system of test photons proves to be very con-
venient, [42]. According to Eq. (1.1), the equation of motion of a radial

20



incoming photon is 𝑑𝑟/𝑑𝑡 = −(1 − 𝑟g/𝑟). From the viewpoint of a distant
observer, the photon, starting from 𝑟1 at time 𝑡1, arrives in 𝑟 (𝑟g < 𝑟 < 𝑟1)
at time

𝑡 = 𝑟1 − 𝑟 − 𝑟g ln

(︂
𝑟 − 𝑟g
𝑟1 − 𝑟g

)︂
+ 𝑡1 . (1.26)

This expression can be opportunely re-written as 𝑣 = 𝑣1, where

𝑣 := 𝑡+ 𝑟* , 𝑟* := 𝑟 + 𝑟g ln

⃒⃒⃒⃒
𝑟

𝑟g
− 1

⃒⃒⃒⃒
(1.27)

𝑟* is the so-called tortoise coordinate with 𝑣1 a constant characterising the
initial data of the photon at (𝑡1, 𝑟1). Because of the logarithm in Eq. (1.26),
𝑟* is defined for any 𝑟 > 0. Chosen a set of photons at fixed 𝑡, we may label
each photon of the set through a number 𝑣, which will identify uniquely that
photon during its whole motion: 𝑣 rises to the role of a new null coordinate,
usually called advanced time. After differentiation of Eq. (1.27) and substitu-
tion in Eq. (1.1), the line element takes the so called Eddington–Finkelstein
form,

𝑑𝑠2 = −
(︁

1 − 𝑟g
𝑟

)︁
𝑑𝑣2 + 2 𝑑𝑣 𝑑𝑟 + 𝑟2(𝑑𝜃2 + sin2 𝜃 𝑑𝜑2) . (1.28)

Because of Eq. (1.27), the Killing vector field 𝜉𝜇 = 𝜕𝑡 transforms to 𝜉′𝜇 = 𝜕𝑣
and particle’s energy as measured by such (natural) observer is simply 𝜔 =
−𝜕𝑣𝐼. Favoured by the spherical symmetry of the problem, we may consider
only radial motions. Expanding the trajectory along a null direction in a
neighbourhood of the horizon (e.g.

−→
𝑎𝑏 in Fig. (1.1)), gives

0 = 2 ∆𝑣 · ∆𝑟 . (1.29)

However, along the null path
−→
𝑎𝑏, the 𝑣 coordinate is constant, so that

∆𝑣|↘ = 0 (1.30)

is the right solution. The Hamilton–Jacobi equation,

2 𝜕𝑣𝐼 𝜕𝑟𝐼 +
(︁

1 − 𝑟g
𝑟

)︁
(𝜕𝑟𝐼)2 = 0 (1.31)

can be re-written as (︁
1 − 𝑟g

𝑟

)︁
𝜕𝑟𝐼 = 2𝜔 . (1.32)

According to the reconstruction assumption,

Im 𝐼 = Im
∫︁
𝑎→𝑏→𝑐

(𝜕𝑟𝐼 𝑑𝑟 + 𝜕𝑣𝐼 𝑑𝑣) , (1.33)

and thanks to Eqs.(1.30) and (1.32),

Im 𝐼 = 2 Im
∫︁
↘ 𝑑𝑟

𝜔(︀
1 − 𝑟g

𝑟

)︀ +

∫︁
𝑏→𝑐

(. . . ) . (1.34)
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Neglecting the real contribution coming form the classically allowed path
−→
𝑏𝑐

and following the same procedure as in Eq. (1.24), we end with the same
result as in Eqs. (1.17) and (1.25).

Among the coordinate systems of a certain importance covering the
space-time region across the gravitational radius there is the so-called Lemaître
frame. In this frame the Schwarzschild space-time appears as truly dynami-
cal. We shall see how the Hamilton–Jacobi method deals with it in Section
1.2.2.

We end this section pointing out the role played by the local observer.
As discussed in [84], the particle’s energy 𝜔 = −𝜕𝑡𝐼 given in the two previous
examples is obviously the conserved energy as measured by an observer living
at infinity. It follows that the Hawking temperature of a Schwarzschild black
hole, 𝑇 = 1/8𝜋𝑀 , is actually the one measured by a Killing observer at in-
finity. The particle’s energy as detected by a Killing observer at position xob

is given instead by 𝜔ob = 𝜔/
√︀

−𝑔00(xob). Comparing the tunnelling proba-
bility derived from Eq. (1.17) with the thermal distribution as measured by
the observer 𝛽ob 𝜔ob = 2𝜋𝜔/𝜅, we obtain

𝑇ob
√︀

−𝑔00(xob) = 𝑇∞ = constant , (1.35)

which expresses the expected result given by Tolman years ago [52].

1.1.3 More general static solutions

Up to now we have only considered the Schwarzschild solution in order to
keep the discussion as simple as possible and to illustrate the principles
involved without unnecessary complications. However more general static
solutions are of interest for a variety of reasons. In order to include a broader
class, the metric can be written in a diagonal gauge as

𝑑𝑠2 = −𝑉 (𝑟)𝑑𝑡2 +
𝑑𝑟2

𝑊 (𝑟)
+ 𝐶(𝑟)2(𝑑𝜃2 + sin2 𝜃 𝑑𝜑2) , (1.36)

which describes what Visser [53] termed dirty black holes. Black hole so-
lutions are defined by functions 𝑉 (𝑟) and 𝑊 (𝑟) having simple and positive
zeroes. This is only a necessary condition to have a black hole; we must also
require that the domain of outer communication be “outside of the black
hole” i.e., it should correspond to values of the radial coordinate larger than
the horizon and extending up to spatial infinity. Interesting black holes de-
scribed by such metrics can be obtained in the Einstein–Maxwell–dilaton
coupled system. An example illustrating the feature is the following two-
parameter family of solutions

𝑑𝑠2 = −
(︁

1 − 𝑟+
𝑟

)︁
𝑑𝑡2 +

(︁
1 − 𝑟+

𝑟

)︁−1 (︁
1 − 𝑟−

𝑟

)︁−1
𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2 𝜃 𝑑𝜑2) .

(1.37)
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The dilaton is exp(2𝜙) = (1 − 𝑟−/𝑟)
−1/2; the hole has magnetic charge

𝑞m = 3𝑟+𝑟−/16, horizon radius 𝑟+ = 2𝑀 (which defines 𝑀) and can be
extended to a non singular, geodesically complete solution with horizons
and asymptotically flat infinities.

As long as 𝑉 ̸= 𝑊 in Eq. (1.36), it is possible to set 𝐶(𝑟) = 𝑟 by an
opportune radius redefinition. But for 𝑉 = 𝑊 , this is not always the case
as can be seen from the following example

𝑑𝑠2 = −1 − 2𝑀/𝑟√
∆

𝑑𝑡2 +

√
∆

1 − 2𝑀/𝑟
𝑑𝑟2 +

√
∆ 𝑟2(𝑑𝜃2 + sin2 𝜃 𝑑𝜑2) . (1.38)

Here 𝐶(𝑟) := ∆1/2𝑟 with ∆ = 1 + 2𝑀𝑟−1 sinh2 𝛾 and 𝛾 a real constant. The
metric is asymptotically flat with an event horizon at 𝑟 = 2𝑀 and an electric
field due to a charge 𝑄 = 𝑀 sinh 2𝛾/2. This solution can be obtained from
dimensional reduction of a boosted Schwarzschild solution in Kaluza–Klein
theory.

The metric Eq. (1.36) admits also a Painlevé–Gullstrand representation
associated with a redefinition of the time coordinate,

𝑡p = 𝑡±
∫︁
𝑑𝑟

√︃
1 −𝑊 (𝑟)

𝑉 (𝑟)𝑊 (𝑟)
. (1.39)

A simple computation leads to

𝑑𝑠2 = −𝑉 (𝑟)𝑑𝑡2p±2

√︃
1 −𝑊 (𝑟)

𝑊 (𝑟)
· 𝑉 (𝑟) 𝑑𝑟 𝑑𝑡p+𝑑𝑟2+𝐶(𝑟)2 (𝑑𝜃2+sin2 𝜃 𝑑𝜑2).

(1.40)
Turning our attention back to Eq. (1.36) with 𝐶(𝑟) ≡ 𝑟, by computing
the Einstein’s tensor one sees that the stress-energy tensor must have the
following form

𝑇𝜇𝜈 = diag (−𝜚(𝑟), 𝑃 (𝑟), 𝑆(𝑟), 𝑆(𝑟)). (1.41)

Thus, in general, the metric Eq. (1.36) has continuously distributed sources
and is not asymptotically flat. If the space-time we have in mind is such
that

𝑉 (𝑟) =
(𝑟 − 𝑟1) · · · (𝑟 − 𝑟𝑠)

𝑟𝑠
,

𝑊 (𝑟) =
(𝑟 − 𝑟1) · · · (𝑟 − 𝑟𝑞)

𝑟𝑞
, 𝑠 ≤ 𝑞 , (1.42)

where 𝑟1 ≤ 𝑟2 ≤ · · · ≤ 𝑟𝑠 ≤ 𝑟𝑞, then

𝑉 (𝑟) ·𝑊 (𝑟) > 0

{︂
∀𝑟 > 0 , 𝑠 = 𝑞 ,
∀𝑟 > 𝑟𝑞 , 𝑠 < 𝑞 ,

(1.43)
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which means that outside the outermost event horizon 𝑟 = 𝑟𝑞, 𝑉 (𝑟) and
𝑊 (𝑟) are both positive functions. In this case from Einstein’s equations it
is possible to prove that [55]

𝑉 (𝑟) = 𝑊 (𝑟) ⇐⇒ 𝜚+ 𝑃 = 0 through space-time (1.44)

which is satisfied only in vacuum space-times with cosmological constant.
This condition is completely equivalent to the fact that [54] in a static space-
time,

𝑔𝑡𝑡𝑔𝑟𝑟 = −1 ⇐⇒ 𝑇𝜇𝜈𝑛
𝜇𝑛𝜈 = 0 , (1.45)

for all radial null vectors 𝑛𝜇. Another important fact regarding such dirty
black holes is that as a consequence of the dominant energy condition and
the Einstein’s equations, if 𝑉 (𝑟) has a simple zero at some 𝑟 = 𝑟𝐻 then
𝑊 (𝑟) also has a simple zero at the same point (for a proof of this and other
properties see [55]).

The metric Eq. (1.36) is of interest also because it admits two in-
equivalent definitions of conserved energy: one is the Killing energy, 𝜔 =
−𝑝𝜇𝜉𝜇 = −𝜕𝑡𝐼; the other is the Kodama energy which uses the vector field
𝐾 =

√︀
𝑊/𝑉 𝜕𝑡. This vector field comes about because, in spherical symme-

try (as spelled out extensively in Section 1.2), it has the amazing property
that both 𝐾𝜇 as well as 𝐽𝜈 = −𝐾𝜇𝑇𝜇𝜈 are conserved: ∇𝜇𝐾

𝜇 = 0, ∇𝜇𝐽
𝜇 = 0.

As a consequence it is possible to define two different notions of temperature,
depending on which energy one is using.

As we shall prove in detail in Section 1.1.6, even if the metric Eq. (1.36) is
singular on the horizon, the tunnelling method works. Using for example the
Hamilton–Jacobi version, the massless Hamilton–Jacobi equation for radial
motion reads

− 1

𝑉 (𝑟)
(𝜕𝑡𝐼)2 +𝑊 (𝑟)(𝜕𝑟𝐼)2 = 0 . (1.46)

The classical action is given by (plus/minus sign corresponding to outgo-
ing/ingoing particles, respectively)

𝐼± = −𝜔𝑡±
∫︁
𝜔

𝑑𝑟√︀
𝑉 (𝑟)𝑊 (𝑟)

, (1.47)

where 𝜔 = −𝜕𝑡𝐼 represents the Killing energy. Assuming the near horizon
expansion (as noted above, the occurrence of the same zero in 𝑉 (𝑟) and
𝑊 (𝑟) is a theorem, given Einstein’s equations and some energy condition)

𝑉 (𝑟) = 𝑉 ′(𝑟H)(𝑟 − 𝑟H) + . . . , 𝑊 (𝑟) = 𝑊 ′(𝑟H)(𝑟 − 𝑟H) + . . . , (1.48)

and Feynman’s prescription, we readily obtain

Im

∫︁
𝑑𝐼+ − Im

∫︁
𝑑𝐼− =

𝜋𝜔

𝜅
(1.49)
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where
𝜅 =

1

2

√︀
𝑉 ′(𝑟H)𝑊 ′(𝑟H) (1.50)

is the Killing surface gravity. One may use the Kodama energy, 𝜔K =√︀
𝑊/𝑉 𝜔, which on the horizon takes the form 𝜔K =

√︀
𝑊 ′(𝑟H)/𝑉 ′(𝑟H)𝜔

via de l’Hôpital rule; in this case one obtains the so called Hayward’s surface
gravity

𝜅H =
1

2
𝑊

′
(𝑟H) (1.51)

and the corresponding temperature 𝑇H = 𝜅H/2𝜋. As we shall see in Section
1.2, this is the one that can be generalised naturally to dynamical situations,
where there are no more Killing vectors in general. Notice however that
𝜔/𝜅 = 𝜔K/𝜅H, so that the tunnelling probability is invariant.

1.1.4 Tunnelling of fermions

At this point of the discussion, one might ask what particles are to be found
in the Hawking radiation spectrum of a black hole. Since a black hole has a
well defined temperature, in principle it should radiate all the standard model
particles like a black body at that temperature (ignoring grey body factors).
The emission spectrum, therefore, is expected to contain particles of all spins,
in particular fermions as well. The basic reference here is the seminal paper
by Kerner and Mann [56], to which others followed for both stationary and
dynamical black holes [57–62]. The fact that massless fermions are emitted
with the same temperature as massless bosons is not a trivial result, given the
fact that fermionic and bosonic vacua are in general distinct. It is important
to mention that these expectations have been recently extended to include
spin-1 bosons; and that the Hawking temperature does not receive higher
order corrections in ~ beyond the semi-classical one [57, 63, 64] as originally
proposed in [65] (see also [66–69] for further extensions).

Now, what do we take as the action of fermionic particles? Undoubtedly
the most convenient choice would be to take the phase of the spinor wave
function which, as is well known, satisfies the Hamilton–Jacobi equation
as for spin-less particles. However, one may also consider the action from
another point of view. Virtually, all known variational formulations of the
motion of spinning particles have an action of the form [70–72]

𝐼f = 𝐼0 + (spin corrections)

where 𝐼0 is the kinetic term equal to the classical action of scalar parti-
cles as considered in previous sections, and the correction terms contain the
coupling of the spin degrees of freedom with the spin connection of the man-
ifold. These can either be derived from covariance considerations or more
directly by the semi-classical treatment of the Dirac equation itself. Some of
these terms give additive corrections to the particle four-momentum but in
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no case the remaining terms contain horizon singularities, as they are only
responsible for spin precession effects. In the following, therefore, we shall
ignore them. Next, we neglect any change of angular momentum of the black
hole due to the spin of the emitted particle. For zero-angular momentum
black holes with mass much larger than the Planck mass (𝑚Pl ∼ 10−5 gr)
this is a good approximation. Statistically, as many particles with spin in
one direction will be emitted as particles with spin in the opposite direction,
producing no net change in the black hole angular momentum (although
second-order statistical fluctuations will be present in general).

As an example, we consider the tunnelling of fermionic particles across
the event horizon of a spherically symmetric, uncharged, static black hole
described by the metric Eq. (1.36) with 𝐶(𝑟) = 𝑟; and compute the emission
rate in a singular Schwarzschild-like coordinate frame. We refer to the orig-
inal paper [56] for analogous discussions in generalised Painlevé–Gullstrand
and Kruskal–Szekeres coordinates.

Temporarily re-introducing ~, the Dirac equation in curved space-time
reads, (︁

𝛾𝜇𝐷𝜇 +
𝑚

~

)︁
Ψ(𝑡, 𝑟, 𝜃, 𝜑) = 0, (1.52)

where

𝐷𝜇 = 𝜕𝜇 +
𝑖

2
Γ𝛼𝜇

𝛽 Σ𝛼𝛽, (1.53)

Σ𝛼𝛽 =
𝑖

4
[𝛾𝛼, 𝛾𝛽]−. (1.54)

The 𝛾𝜇− matrices satisfy the Clifford algebra,

[𝛾𝛼, 𝛾𝛽]+ = 2𝑔𝛼𝛽I, (1.55)

where I is the (4 × 4)-identity matrix. For this case, we pick the 𝛾 matrices

𝛾𝑡 =
𝑖√︀
𝑉 (𝑟)

(︂
1 0
0 −1

)︂
𝛾𝑟 =

√︀
𝑊 (𝑟)

(︂
0 𝜎3

𝜎3 0

)︂
𝛾𝜃 =

1

𝑟

(︂
0 𝜎1

𝜎1 0

)︂
𝛾𝜑 =

1

𝑟 sin 𝜃

(︂
0 𝜎2

𝜎2 0

)︂
where 𝜎’s are the Pauli matrices satisfying usual relations,

𝜎i𝜎j = 1𝛿ij + i𝜀ijk𝜎k, i, j,k = 1,2,3 . (1.56)

The matrix for 𝛾5 is instead

𝛾5 = 𝑖𝛾𝑡𝛾𝑟𝛾𝜃𝛾𝜑 = 𝑖

√︃
𝑊 (𝑟)

𝑉 (𝑟)

1

𝑟2 sin 𝜃

(︂
0 −1
1 0

)︂
.
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For the spin-up (positive 𝑟-direction) Dirac field, we employ the ansatz

Ψ↑(𝑡, 𝑟, 𝜃, 𝜑) =

⎛⎜⎜⎝
𝐻(𝑡, 𝑟, 𝜃, 𝜑)

0
𝑌 (𝑡, 𝑟, 𝜃, 𝜑)

0

⎞⎟⎟⎠ exp

[︂
𝑖

~
𝐼↑(𝑡, 𝑟, 𝜃, 𝜑)

]︂
. (1.57)

We will only solve the spin-up case explicitly since the spin-down (negative
𝑟-direction) case is fully analogous. Employing the ansatz Eq. (1.57) into
the Dirac equation (1.52) results in

−

(︃
𝑖𝐻√︀
𝑉 (𝑟)

𝜕𝑡𝐼↑ + 𝑌
√︀
𝑊 (𝑟) 𝜕𝑟𝐼↑

)︃
+𝐻𝑚 = 0 (1.58)

−𝑌
𝑟

(︂
𝜕𝜃𝐼↑ +

𝑖

sin 𝜃
𝜕𝜑𝐼↑

)︂
= 0 (1.59)(︃

𝑖 𝑌√︀
𝑉 (𝑟)

𝜕𝑡𝐼↑ −𝐻
√︀
𝑊 (𝑟) 𝜕𝑟𝐼↑

)︃
+ 𝑌 𝑚 = 0 (1.60)

−𝐻
𝑟

(︂
𝜕𝜃𝐼↑ +

𝑖

sin 𝜃
𝜕𝜑𝐼↑

)︂
= 0 (1.61)

to leading order in ~. As we assume that the action takes the form

𝐼↑ = −𝜔 𝑡+ ℱ(𝑟) + 𝐽(𝜃, 𝜑) (1.62)

these yield the set of equations(︃
𝑖 𝜔 𝐻√︀
𝑉 (𝑟)

− 𝑌
√︀
𝑊 (𝑟)ℱ ′(𝑟)

)︃
+𝑚𝐻 = 0 (1.63)

−𝐻
𝑟

(︂
𝐽𝜃 +

𝑖

sin 𝜃
𝐽𝜑

)︂
= 0 (1.64)

−

(︃
𝑖 𝜔 𝑌√︀
𝑉 (𝑟)

+𝐻
√︀
𝑊 (𝑟)ℱ ′(𝑟)

)︃
+ 𝑌 𝑚 = 0 (1.65)

−𝐻
𝑟

(︂
𝐽𝜃 +

𝑖

sin 𝜃
𝐽𝜑

)︂
= 0 (1.66)

Regardless of 𝐻 and 𝑌 , Eqs. (1.64) and (1.66) result in 𝐽𝜃+𝑖(sin 𝜃)−1𝐽𝜑 = 0,
implying that 𝐽(𝜃, 𝜑) must be a complex function. The same solution for
𝐽 is obtained for both the outgoing and incoming cases. Consequently the
contribution from 𝐽 cancels out upon dividing the outgoing probability by
the incoming probability as in Eq. (1.91); and we can ignore 𝐽 from this
point. Eqs (1.63) and (1.65) (for 𝑚 = 0) have two possible solutions:

𝐻 = −𝑖 𝑌 , ℱ ′(𝑟) ≡ ℱ ′
out =

𝜔√︀
𝑉 (𝑟)𝑊 (𝑟)

𝐻 = 𝑖 𝑌 , ℱ ′(𝑟) ≡ ℱ ′
in(𝑟) = − 𝜔√︀

𝑉 (𝑟)𝑊 (𝑟)
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where ℱout,in corresponds to outward, inward solutions. The overall tun-
nelling probability is Γ ∼ exp−2Im (ℱout −ℱin), with

ℱout(𝑟) = −ℱin(𝑟) =

∫︁
↘ 𝑑𝑟

𝜔√︀
𝑉 (𝑟)𝑊 (𝑟)

. (1.67)

Let us remind readers that under the dominant energy condition and Einstein
equations, the functions 𝑉 , 𝑊 have the same zeroes. Therefore near 𝑟𝐻 we
have, to first order,

𝑉 (𝑟)𝑊 (𝑟) = 𝑉
′
(𝑟H)𝑊

′
(𝑟H)(𝑟 − 𝑟H)2 + · · ·

and we see that there is a simple pole with a determined coefficient. Using
the Feynman’s prescription we obtain

Im (ℱout −ℱin) = Im

∫︁
↘ 𝑑𝑟

2𝜔√︀
𝑉 (𝑟)𝑊 (𝑟)

=
𝜋𝜔

𝜅
(1.68)

where the surface gravity Eq. (1.50) is recovered, namely

𝜅 =
1

2

√︁
𝑉 ′(𝑟H)𝑊 ′(𝑟H) . (1.69)

Eq. (1.68) is a special case of a general identity we shall prove in Section
1.1.6. Following a procedure similar to what was done above, we obtain the
same result for the Hawking temperature as in the massless case. The spin-
down calculation is very similar to the spin-up case discussed here, apart
from some changes of signs For both the massive and massless spin-down
cases the Hawking temperature 𝜅/2𝜋, with 𝜅 provided by Eq. (1.69), is
obtained, implying that both spin-up and spin-down particles are emitted at
the same rate. This is consistent with the initial assumption that there are
as many spin-up as spin-down fermions emitted.

With this calculation, we basically end the whole story about tunnelling
in static, spherically symmetric black hole space-times. We have seen how
the tunnelling picture arose and developed in a variety of different propos-
als; in Section 1.1.6 we shall confront with more technical aspects as the
equivalence between so called null geodesic and Hamilton–Jacobi methods
and their mathematical foundations. For now, however, it seems us to be
more important to move on and see how the tunnelling method works in
conditions where, for example, time starts to play an active role.

1.1.5 Axis-symmetric stationary black holes

The generalisation to a less symmetric scenario than the spherical one has
not only obvious motivations, being the static spherically symmetric situ-
ation not so realistic, but also of fundamental relevance. Accretion pro-
cesses occurring naturally in astronomical stages are able to spin up a black
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hole [73, 74] as well as to determine the growth in time of the black hole
itself. In this subsection we are not concerned with the latter effect (being
substantially a non-stationary process, it will be treated in Section 1.2), but
rather we would like to point out some efforts that have been made to extend
the tunnelling approach to stationary black hole space-times.

The most immediate generalisation of the Schwarzschild spherical sym-
metry is the axis-symmetric one, i.e. the Kerr solution for a rotating body
with mass 𝑀 and specific angular momentum 𝑎 = 𝐽𝑀−1. The subsequent
inclusion of electric charge brings us to the Kerr–Newman solution, which
still observes the axial symmetry and can be seen as a rotating Reissner–
Nordström black hole. We will apply the tunnelling method in order to
retrieve the emission probability for scalar and fermionic particles in these
cases, highlighting some features that Kerr and Kerr–Newman solutions
show.

Kerr black hole

The Boyer–Lindquist form for the metric of a stationary rotating black hole
— corresponding to the choice of a time-independent reference frame which
is asymptotically a Lorentz frame at infinity — is given by

𝑑𝑠2 = −
(︂

1 − 2𝑀𝑟

Σ

)︂
𝑑𝑡2 − 4𝑀𝑟𝑎 sin2 𝜃

Σ
𝑑𝑡 𝑑𝜑+

Σ

∆
𝑑𝑟2 + Σ 𝑑𝜃2

+
(𝑟2 + 𝑎2)2 − 𝑎2∆ sin2 𝜃

Σ
sin2 𝜃 𝑑𝜑2 (1.70)

where we have defined,

Σ := 𝑟2 + 𝑎2 cos2 𝜃 , ∆ := 𝑟2 + 𝑎2 − 2𝑀𝑟 . (1.71)

The roots of the equation ∆(𝑟) = 0, 𝑟± = 𝑀±
√
𝑀2 − 𝑎2, identify the event

(outer, plus sign) horizon and the Cauchy (inner, minus sign) horizon.
In order to study the tunnelling process of massless particles from the ro-
tating black hole, however, we consider a metric where the world lines are
those of photons with energy 𝜔 moving at infinity with constant 𝜃 and whose
projection of the angular momentum on the rotation axis of the black hole
is 𝐿𝑧 = 𝑎𝜔 sin2 𝜃. In these Kerr ingoing coordinates [75], obtained from the
transformation

𝑑𝑣 = 𝑑𝑡+
(𝑟2 + 𝑎2)

∆
𝑑𝑟 , 𝑑𝜑 = 𝑑𝜑+

𝑎

∆
𝑑𝑟 (1.72)

the line element Eq. (1.70) reads

𝑑𝑠2 = −
(︂

1 − 2𝑀𝑟

Σ

)︂
𝑑𝑣2 + 2𝑑𝑣 𝑑𝑟 + Σ𝑑𝜃2 − 4𝑎𝑀𝑟 sin2 𝜃

Σ
𝑑𝜑 𝑑𝑣+

− 2𝑎 sin2 𝜃 𝑑𝜑 𝑑𝑟 +
(𝑟2 + 𝑎2)2 − 𝑎2∆ sin2 𝜃

Σ
sin2 𝜃 𝑑𝜑2 . (1.73)
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We recall that in a rotating black hole the static limit surface 𝑟st, that is
the external boundary of the ergosphere given by the equation 𝑔𝑡𝑡 = 0, does
not coincide with the event horizon. Some remarks regarding the validity
of the semi-classical approach have been raised [76] because the geometrical
optical approximation is reliable in proximity of 𝑟st, not the event horizon,
where the tunnelling is supposed to occur. In some works [76,77] the problem
is circumvented thanks to a co-rotating change of coordinates 𝜑→ 𝜑−ΩH 𝑡,
where ΩH = 𝑎/(𝑟2+ + 𝑎2) is the angular velocity of the horizon. In the
following we will show that this is not necessary and the right result is
recovered automatically.

As fully explained in the previous sections, in the semi-classical approx-
imation, the relevant quantity that plays a role in the calculation of the
transition probability through the horizon is the classical action 𝐼 satisfying
the relativistic Hamilton–Jacobi equation. Being the metric Eq. (1.73) in-
dependent of 𝑣 and 𝜑, a suitable ansatz for the form of the action is given by
𝐼 = −𝜔 𝑣 + 𝐽 𝜑+ ℱ(𝜃, 𝑟). We are going to see that the imaginary contribu-
tion is due to the 𝑟-dependent part of the action, which will produce a pole
in correspondence of the horizon. Expanding the Hamilton–Jacobi equation
with the ansatz for 𝐼 above, we obtain

𝑎2(𝑚 csc 𝜃 − 𝜔 sin 𝜃)2 + 2
[︀
𝑎2𝑚−

(︀
𝑎2 + 𝑟2

)︀
𝜔
]︀
ℱ𝑟+

+
[︀
𝑎2 + 𝑟(−2𝑚+ 𝑟)

]︀
ℱ2
𝑟 + ℱ2

𝜃 = 0 (1.74)

where subscripts 𝑟, 𝜃 are for 𝜕𝑟,𝜃. Solving for ℱ𝑟(𝜃, 𝑟), we immediately note
that the function to be integrated is also 𝜃-dependent:

ℱ𝑟(𝜃, 𝑟) = −𝑋(𝑟)

∆(𝑟)
±
√︀
𝑋(𝑟)2 − ∆(𝑟) [𝑎2(𝑀 csc 𝜃 − 𝜔 sin 𝜃)2 + ℱ𝜃(𝜃, 𝑟)2]

∆(𝑟)
(1.75)

where 𝑋(𝑟) ≡ 𝑎2𝑀 −
(︀
𝑎2 + 𝑟2

)︀
𝜔. A way to deal with this dependence is to

simply fix a constant value 𝜃 = 𝜃0 and show that eventually the result has
no effective dependence on the choice of 𝜃0 [36]. Actually there is no need to
fix 𝜃 because in order to apply the method we consider the regime in which
the tunnelling occurs near the horizon, ∆(𝑟+) = 0: in this situation the term
that brings the 𝜃-dependence drops out and the function depends only on 𝑟.
The root of this result is the complete separability of the Hamilton–Jacobi
equation in Kerr space-time. Recasting all the expressions in terms of 𝑟+ and
𝑟−, so that 𝑋(𝑟) = (𝑟+ + 𝑟−)𝑎2/2−𝜔(𝑟2+ +𝑎2) and ∆(𝑟) = (𝑟− 𝑟+)(𝑟− 𝑟−),
we get

Imℱ(𝜃, 𝑟) = −Im

∫︁
↘

𝑋(𝑟) +
√︀
𝑋2(𝑟) − (𝑟 − 𝑟+)(𝑟 − 𝑟−) (. . . )

(𝑟 − 𝑟−)

𝑑𝑟

(𝑟 − 𝑟+)
(1.76)

where (. . . ) contains the whole 𝜃-dependence. Regularising the integral by
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Feynman’s prescription,

Im 𝐼 = −2𝜋
𝑋(𝑟+)

𝑟+ − 𝑟−
= 𝜋

[︂
2𝜔

(𝑟2+ + 𝑎2)

(𝑟+ − 𝑟−)
− 𝑎2(𝑟+ + 𝑟−)

(𝑟+ − 𝑟−)

]︂
. (1.77)

Reintroducing 𝐽 = 𝑎(𝑟+ +𝑟−)/2 and the angular velocity of the horizon ΩH,
we can rearrange the terms and obtain the tunnelling probability rate:

exp [−2 Im 𝐼] = exp
[︀
−𝛽Kerr(𝜔 − ΩH𝐽)

]︀
(1.78)

where the inverse temperature is 𝛽Kerr = 4𝜋(𝑟2+ +𝑎2)/(𝑟+−𝑟−). In the limit
𝑎→ 0 we recover the result for the Schwarzschild black hole.

Kerr–Newman black hole

The tunnelling of scalar and fermionic, electrically charged, particles in the
family of Kerr–Newman space-times does not present new features with re-
spect to previous discussions, the black hole charge 𝑄 and specific angular
momentum 𝑎 parameters being treated on the same footing. In the follow-
ing, we are going to consider first the tunnelling process for a scalar particle
of charge 𝑞 and energy 𝜔, then for a fermion. In both the examples, we
implement singular Boyer–Lindquist coordinates (𝑡, 𝑟, 𝜃, 𝜑)

𝑑𝑠2 = −
(︂

∆ − 𝑎2 sin2 𝜃

Σ

)︂
𝑑𝑡2 − 2(𝑟2 + 𝑎2 − ∆) 𝑎 sin2 𝜃

Σ
𝑑𝑡 𝑑𝜑+

+
Σ

∆
𝑑𝑟2 + Σ 𝑑𝜃2 +

(𝑟2 + 𝑎2)2 − 𝑎2∆ sin2 𝜃

Σ
sin2 𝜃 𝑑𝜑2 (1.79)

where both incoming and outgoing trajectories are expected to contribute
to the emission rate, according to our master equation (1.89). The sym-
bols in Eq. (1.79) are only slightly changed with respect to above: ∆ :=
𝑟2 + 𝑎2 + 𝑄2 − 2𝑀𝑟. The static limit surface is now located at 𝑟st =

𝑀 +
√︀
𝑀2 −𝑄2 − 𝑎2 cos2 𝜃, while the event horizon, still the greater root of

∆(𝑟) = 0, is 𝑟+ = 𝑀 +
√︀
𝑀2 −𝑄2 − 𝑎2.

Tunnelling of scalar particles As in the previous case, the action can be
separated as 𝐼 = −𝜔𝑡+𝐽𝜑+ℱ(𝜃, 𝑟) and further separation of the last terms
occurs near the horizon. We explicit the metric functions inside Hamilton–
Jacobi equation

𝑔𝜇𝜈
(︁
𝜕𝜇𝐼 − 𝑞𝐴𝜇

)︁(︁
𝜕𝜈𝐼 − 𝑞𝐴𝜈

)︁
= 0 (1.80)

where the vector potential one-form is given by𝐴 = −𝑄𝑟Σ−1
(︁
𝑑𝑡−𝑎 sin2 𝜃𝑑𝜑

)︁
,

to obtain

−
[︀
(𝑟2 + 𝑎2)2 𝜕𝑡𝐼 + 𝑎 𝜕𝜑𝐼 − 𝑞𝑄𝑟

]︀2
2Σ∆

+

(︀
𝜕𝜑𝐼 + 𝑎 sin2 𝜃 𝜕𝑡𝐼

)︀2
2Σ sin2 𝜃

+

+
∆

2Σ
(𝜕𝑟𝐼)2 +

(𝜕𝜃𝐼)2

2Σ
= 0 (1.81)
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Making use of the ansatz for 𝐼 and after some manipulations, we solve for
ℱ𝑟(𝜃, 𝑟),

𝜕𝑟ℱin,out(𝜃, 𝑟) = ±

√︁[︀
(𝑎2 + 𝑟2)𝜔 − 𝑎2𝑀 − 𝑞𝑄𝑟

]︀2 − ∆(𝑟)(. . . )

∆(𝑟)
(1.82)

where the plus (minus) sign corresponds to outgoing (incoming) trajectories.
Again, the (. . . ) under the square root contains all the 𝜃-dependence and
near the horizon it will be negligible. Eq. (1.82) has to be integrated along
the path crossing the horizon, so let us write ∆(𝑟) = (𝑟 − 𝑟+)(𝑟 − 𝑟−) in
order to show explicitly the pole in the integrand and choose the plus sign
to select a path that comes out of the black hole. The imaginary part due
to the pole, rearranging a little bit the terms, is given by

𝜋

2

(︂
𝑟2+ + 𝑎2

𝑟+ −𝑀

)︂(︂
𝜔 − 𝑎

𝑟2+ + 𝑎2
𝑀𝑎− 𝑞𝑄𝑟+

𝑟2+ + 𝑎2

)︂
(1.83)

where we easily identify the angular velocity ΩH, the angular momentum
parameter 𝐽 and the term arising from the presence of a charge parameter:
this last term is expressible in terms of the electric potential Φ = 𝑄𝑟+/(𝑟

2
+ +

𝑎2) of the black hole. In order to retrieve the final expression, we take into
account also the contribution coming from the ingoing trajectory, which is
given by the very same procedure as before applied to the function Eq. (1.82)
with the minus sign. The imaginary contribution is found to be equal and
opposite in sign so the tunnelling probability will be given by

Γem

Γab
= exp [−2 Im (ℱout −ℱin)] = 𝑒−4 Imℱout . (1.84)

A more rigorous derivation of this formula will be given in the next section.
The final expression for the tunnelling probability can be written as

Γem ∝ exp
[︁
− 𝛽KN

(︀
𝜔 − ΩH𝐽 − 𝑞Φ

)︀ ]︁
(1.85)

from which the temperature can be read 𝛽−1
KN = 𝑇KN = (𝑟+−𝑟−)/4𝜋(𝑟2++𝑎2).

It is easy to see that two subsequent limits 𝑄 → 0 and 𝑎 → 0 lead us first
to the Kerr and then to the Schwarzschild solutions.

Tunnelling of fermions As a further extension, it is interesting to con-
sider the tunnelling of gravitinos (spin-3/2 fermions predicted in supergravity
theories [78]) in Kerr–Newman black hole space-times [60,61]. The result is
analogous to the scalar case, suggesting again evidence for the universality
of black hole radiation, and follows the same line of Section 1.1.4, where now
only little more shrewdness in the choice of the representation for the Dirac
matrices is needed.
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The equation of motion of spin-3/2 particles, namely the Rarita–Schwinger
equation, can be written as

𝑖 𝛾𝜈 (𝐷𝜈 + 𝑖𝑞𝐴𝜈) Ψ𝜇 +
𝑚

~
Ψ𝜇 = 0

𝛾𝜇 Ψ𝜇 = 0

where Ψ𝜇 ≡ Ψ𝜇 𝑏 is a vector valued spinor of charge 𝑞 and mass 𝑚; matrices
𝛾𝜇 satisfy the Clifford algebra; and the covariant derivative is defined as in
Eqs. (1.53) and (1.54). The Rarita–Schwinger equation presents as a Dirac
equation applied to every vector index of the field Ψ and a set of constraints
preventing ghosts propagation. In the present context, the anstatz for the
wave function is Ψ𝜇 = (𝑎𝜇, 𝑏𝜇, 𝑐𝜇, 𝑑𝜇)T 𝑒𝑖𝐼/~, where T is for transposition.
It turns out that the Dirac equation can be solved for the action 𝐼 inde-
pendently from the components 𝑎𝜇, ..., 𝑑𝜇; conversely, 𝛾𝜇Ψ𝜇 = 0 yields a set
of constraints for the components 𝑎𝜇, ..., 𝑑𝜇, independently by the action 𝐼.
Thus we may conclude that to calculate the Hawking temperature of grav-
itinos emitted from the Kerr–Newman black hole, we only need to solve for
the Dirac equation in precise the same way as in Section 1.1.4; and that,
being the action unaffected by the constraints, fermions with every spin will
be emitted at the same temperature. We refer the interested reader to the
original paper [60] for the precise form of the Dirac matrices suitable to the
geometry at hand.

1.1.6 Analytic continuation arguments

We have described the Hamilton–Jacobi strategy in a list of four steps, from
(a) to (d). It is clear, however, that, at least at first sight, not all of them stay
on equal footing: besides some irremissible (e.g. postulation of Hamilton–
Jacobi equation) or very natural requirements (e.g. trajectory splitting as
−→
𝑎𝑏𝑐 into

−→
𝑎𝑏+

−→
𝑏𝑐), we find other less tolerable points. Why, in fact, should it

be that particles traveling along classically forbidden trajectories from inside
the black hole to outside must follow null paths? And which fundamental
principle suggests us to regularise divergent integrals according to one pre-
scription rather than others? By the end of the day, we shall show that
— in contrast to the common sense — even the Hamilton–Jacobi equation
is an accessory requirement. A certain experience in the field tells us how
these points can result in some sense cryptic to the same experts. With the
purpose of clarifying some of the points mentioned above, we are going to
outline the foundations of the Hamilton–Jacobi method in order to point out
what is fundamental and what is only an additional assumption.

Foundation of Hamilton–Jacobi method Let us consider the motion
of a scalar particle from region 𝐼𝐼 to region 𝐼 in the eternal version of
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Figure 1.2: A section of the complexified 𝑈, 𝑉 plane of the eternal
Schwarzschild black hole. 𝜃, 𝜑 coordinates are suppressed.

−→
𝑎𝑏𝑐 is a path

from inside to outside the hole, with
−→
𝑎𝑏 a classically forbidden trajectory

and
−→
𝑎′𝑏 representing its reflected trajectory.

Schwarzschild black hole (
−→
𝑎𝑏 in Fig.(1.2)). This motion is classically for-

bidden since the particle should travel back in time to follow it. Notice that,
in general, nothing we can say about the causal nature of the forbidden path.
However, if the coordinates of the starting point 𝑎 are displaced to complex
values, then such an allowed path exists. Thus, the reader must think to
Fig.(1.2) as a section of the complexified Schwarzschild plane with coordi-
nates (𝜃, 𝜑) constant and suppressed. By analytically continuing the point
𝑎 in the complexified Schwarzschild space, the amplitude to propagate to 𝑐
from a real point 𝑎 in region 𝐼𝐼 can be related to the amplitude to propagate
to 𝑐 from a reflected point 𝑎′ in region 𝐼𝐼𝐼 [44]. This latter process is just
the time-reversed of absorption of a particle by the black hole. In this way,
the emission probability for a black hole is related to the probability for it
to absorb. All that we need in order to prove the case, is to take as a fun-
damental assumption the analyticity of the particle action in the complex
(𝑈, 𝑉 ) plane as a function of the space-time coordinates of point 𝑎 [82].

In region 𝐼𝐼 (𝐼𝐼𝐼), the Kruskal–Szekeres coordinates 𝑈, 𝑉 are both pos-
itive (negative) definite. So, let us rotate 𝑈 and 𝑉 from positive to negative
values by posing

�̃� = 𝑒𝑖𝜗 𝑈 , 𝑉 = 𝑒−𝑖𝜗 𝑉 , 𝜗 ∈ [0, 𝜋] , (1.86)

a choice which clearly preserves the invariant product 𝑈𝑉 = (1− 𝑟/𝑟𝑔)𝑒𝑟/𝑟𝑔 .
The integral of 𝑑𝐼 over the tunnelling path 𝑎 → 𝑏 → 𝑐 will now be replaced
by the integral over the path (say 𝛾) consisting of the semi-circle 𝑎→ 𝑎

′ with
𝜗 ranging from 0 to 𝜋 (over which |𝑈 |, |𝑉 | are constants) plus the integral
over the path 𝑎

′ → 𝑏 → 𝑐 which crosses the past horizon (over which 𝜗 is
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constant). In formulas

𝐼 ≡
∫︁
↘ 𝑑𝐼 =

∫︁
𝛾
(𝜕�̃�𝐼 𝑑�̃� + 𝜕𝑉 𝐼 𝑑𝑉 )

=

∫︁
↗ (𝜕𝑈𝐼 𝑑𝑈 + 𝜕𝑉 𝐼 𝑑𝑉 ) − 𝑖

∫︁ 𝜋

0
𝑑𝜗(𝑉 𝜕𝑉 − �̃� 𝜕�̃� )𝐼 , (1.87)

where, this time, the upward arrow denotes integration along the classically
allowed trajectory

−−→
𝑎′𝑏𝑐. Since in region 𝐼, 𝑈 = −𝑒−𝜅𝑢 and 𝑉 = 𝑒+𝜅𝑣, where

𝑢, 𝑣 are retarded and advanced time coordinates and 𝜅 is the horizon surface
gravity, 𝜅 = 1/4𝑀 , we have that 𝜕𝑡 = 𝜅(𝑉 𝜕𝑉 − 𝑈𝜕𝑈 ). Hence we obtain∫︁

↘ 𝑑𝐼 =

∫︁
↗ 𝑑𝐼 − 𝑖𝜋

𝜅
𝜕𝑡𝐼 =

∫︁
↗ 𝑑𝐼 +

𝑖𝜋𝜔

𝜅
, (1.88)

with 𝜔 = −𝑝 · 𝜉 = −𝜕𝑡𝐼 the conserved Killing energy of the emitted particle.
Taking into consideration only the imaginary part of the action, which is the
relevant part for tunnelling purposes, we get

− 2 Im
(︂∫︁
↘ 𝑑𝐼 −

∫︁
↗ 𝑑𝐼

)︂
= −2𝜋𝜔

𝜅
. (1.89)

Since the geometry is static, it is left invariant by time inversion 𝑇 :

Im
∫︁
↗ 𝑑𝐼 = 𝑇 Im

∫︁
↗ 𝑑𝐼 = Im

∫︁
𝑏→𝑎

𝑑𝐼 (1.90)

where 𝑏 → 𝑎 is the time inverse of the path 𝑎′ → 𝑏 (Fig.(1.2)). With a
justified abuse of terminology,

∫︀
↗ will denote also the integration along the

time-reversed path. From a physical point of view, this is the path followed
by an incoming particle absorbed by the black hole, so that exponentiating
Eq. (1.89), we can write

Γ𝑒𝑚 = Γ𝑎𝑏𝑠 𝑒
− 2𝜋𝜔

𝜅 , (1.91)

in agreement with the result of Hartle and Hawking [44] derived by path–
integral methods.
The rotation of the (𝑈, 𝑉 ) coordinates in the complex plane, Eq. (1.86), has
been chosen in the form given because it corresponds to a Wick-like rotation
of Schwarzschild time in the lower half complex plane, namely 𝑡→ 𝑡− 𝑖𝜗/𝜅,
which is the analyticity region of positive energy solutions of field equations.
In fact:

𝑒−2𝜅𝑡 =:
�̃�

𝑉

(1.86)
= 𝑒2𝑖𝜗

𝑈

𝑉
= 𝑒2𝑖𝜗 · 𝑒−2𝜅𝑡 = exp

[︂
−2𝜅

(︂
𝑡− 𝑖𝜗

𝜅

)︂]︂
. (1.92)

One might legitimately ask for the meaning of an anti-Wick rotation, 𝑡 →
𝑡+ 𝑖𝜗/𝜅. In this case, one rotates 𝑈 (𝑉 ) clockwise (counter-clockwise) with
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consequent change of signs in Eq. (1.86). In turn, Eq. (1.89) changes in
favour of

− 2 Im
(︂∫︁
↘ 𝑑𝐼 −

∫︁
↗ 𝑑𝐼

)︂
=

2𝜋𝜔

𝜅
. (1.93)

The plus sign at the right hand side of this equation, tells us that the ob-
ject we are talking about is not a black hole, but rather its time reverse
(white hole), for which absorption is exponentially suppressed with respect
to emission, Γ𝑎𝑏𝑠 = Γ𝑒𝑚 𝑒

− 2𝜋𝜔
𝜅 .

The present discussion can be easily generalized to cover also charged or
rotating black hole solutions, with consistent results.

Equivalence of null geodesic and Hamilton–Jacobi methods At this
point of the discussion, it seems natural to ask what relation exists between
the aforementioned null geodesic and Hamilton–Jacobi methods. In litera-
ture, (see for instance [36]) we find many specific examples suggesting the
essential equivalence between the two methods, but nothing resembling a
mathematical proof. To this aim, notice that in the null geodesic approach
one starts with

Im
∫︁
↘ 𝑝𝑟𝑑𝑟 (1.94)

which looks non covariant. However we can use the full Liouville one-form
𝜛 = 𝑝𝜇𝑑𝑥

𝜇 and write the more general expression,

Im
∫︁
↘ 𝜛 (1.95)

which, without the “ Im”, is nothing but the reduced action. We can perform
the analytic continuation of this integral just as we did for the complete
action, first by writing 𝜛 = 𝑝𝑈𝑑𝑈+𝑝𝑉 𝑑𝑉 , then rotating (𝑈, 𝑉 ) from zero to
𝜋 and finally integrating along the rotated curve. In this way, the imaginary
part will be 𝑖𝜋(𝑈𝑝𝑉 − 𝑉 𝑝𝑈 ): but this is −𝑖𝜋𝜔/𝜅, where 𝜔 = −𝑝𝑡 is the
Killing energy as measured at infinity. In all we get

Im
∫︁
↘ 𝜛 = Im

∫︁
↗ 𝜛 +

𝜋𝜔

𝜅
. (1.96)
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As another example we consider the line element of the Kerr–Newman solu-
tion,

𝑑𝑠2𝐾𝑁 =
𝐺2𝑎2 sin2 𝜃

4𝜅2+Σ

(𝑟 − 𝑟−)(𝑟 + 𝑟+)

(𝑟2 + 𝑎2)(𝑟2+ + 𝑎2)
·

·
[︂

Σ

𝑟2 + 𝑎2
+

Σ+

𝑟2+ + 𝑎2

]︂
(𝑈2 𝑑𝑉 2 + 𝑉 2 𝑑𝑈2)+

+
𝐺(𝑟 − 𝑟−)

2𝜅2+Σ

[︂
Σ2

(𝑟2 + 𝑎2)2
+

Σ2
+

(𝑟2+ + 𝑎2)2

]︂
𝑑𝑈 𝑑𝑉+

+
𝐺2𝑎2 sin2 𝜃

4𝜅2+Σ
· (𝑟 + 𝑟+)2

(𝑟2+ + 𝑎2)2
(𝑈 𝑑𝑉 − 𝑉 𝑑𝑈)2+

+
𝐺𝑎 sin2 𝜃

𝜅+Σ(𝑟2+ + 𝑎2)

[︀
Σ+(𝑟 − 𝑟−)+(𝑟2 + 𝑎2)(𝑟 + 𝑟+)

]︀
(𝑈𝑑𝑉 −𝑉 𝑑𝑈)𝑑𝜑+

+ Σ 𝑑𝜃2 +
[(𝑟2 + 𝑎2)2−𝑎2 sin2 𝜃∆] sin2 𝜃

Σ
𝑑𝜑+ , (1.97)

where 𝑈, 𝑉 are Kruskal-like null coordinates, defined as,

|𝑈 | = exp𝜅(𝑟* − 𝑡) , |𝑉 | = exp𝜅(𝑟* + 𝑡) , (1.98)

𝑑𝑟* = (𝑟2+𝑎2)𝑑𝑟/∆ and the surface gravity 𝜅 can refer to 𝜅+ or 𝜅− according
to the space-time region of interest. The co-rotating angular coordinate 𝜑+
is defined as

𝜑+ := 𝜑− Ω𝐻𝑡 (1.99)

with Ω𝐻 the horizon angular velocity and 𝐺 := (𝑟 − 𝑟+)/𝑈𝑉 . For all other
symbols, the reader is referred to Section 1.1.5 where a complete treatment
of axis-symmetric space-times has been given. This metric is particularly
important since in the appropriate limits it comprises the maximal analytic
extension of Kerr–Newman, Kerr, Reissner–Nordström and Schwarzschild
black holes [42].
The analytic continuation of the coordinates in the Euclidean section requires

𝑡→ 𝑡− 𝑖 𝜗/𝜅 𝑎𝑛𝑑 𝜑→ 𝜑− 𝑖Ω𝐻𝜗/𝜅 , 𝜗 ∈ [0, 𝜋] (1.100)

where from now on, we consider 𝜅 ≡ 𝜅+. We have 𝜛 = 𝑝𝑈𝑑𝑈+𝑝𝑉 𝑑𝑉 +𝑝𝜑𝑑𝜑
and therefore

Im
∫︁
↘ 𝜛 = Im

∫︁
↗ 𝜛 − 𝜋Ω𝐻

𝜅
𝑝𝜑 + 𝜋(𝑈𝑝𝑈 − 𝑉 𝑝𝑉 ) . (1.101)

But 𝑈𝑝𝑈 − 𝑉 𝑝𝑉 = −𝜅−1𝑝𝑡 = 𝜅−1𝜔 is the energy and 𝑝𝜑 = 𝐽 the conserved
angular momentum. We end with our main formula, Eq. (1.89),

2 Im
(︂∫︁
↘ 𝜛 −

∫︁
↗ 𝜛

)︂
=

2𝜋

𝜅

(︀
𝜔 − Ω𝐻 𝐽

)︀
(1.102)
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which proves the equivalence of a generalised null geodesic method with
Hamilton–Jacobi ansatz for all stationary, axis-symmetric, charged black
holes. In retrospect, this could not be otherwise because the Hawking effect
is an energy conserving process, so that the reduced action is all one needs
in a stationary geometry.

1.2 Extension to dynamical black holes

In the previous sections we saw that further insight into the Hawking’s effect
can be obtained by the use of the tunnelling methods. We showed that in
some circumstances it is even possible to recover exact results by analyti-
cally continuing the integral of the classical action from a tunnelling path to
a classical path, and how this possibility provided a foundation to the tun-
nelling method. But of course everything is strictly true only for stationary
black holes.

In this section we shall extend this work to what we shall aptly name
spherically symmetric dynamical black holes, epitomised by the Vaidya solu-
tion [85] and its generalisations by Bardeen [86] and York [87]. As a matter
of fact, it has long been felt that the usual semi-classical treatment of sta-
tionary black holes had to be extended to cover at least slowly changing black
holes. By this expression, we mean black holes that can be still described
in terms of few multipole moments such as mass, angular momentum and
the charges associated to local gauge symmetries, except that the param-
eters and the causal structure are allowed to change with time. Although
a technical definition of a “slowly varying black hole” can be given in some
cases, an example being the Booth–Fairhurst slowly evolving horizon [88], in
general this depends on the actual physical processes involved. For example,
in the case of Hawking’s evaporation, conditions for slowness in the presence
of a near-horizon viscous fluid have been given by Brevik [89] in an inter-
esting attempt to generalise ’t Hooft’s model of the self-screening Hawking
atmosphere (quantum corrections to this model can be found in [90]). In
general, it is understood that the black hole temperature has to be much
smaller than the Planck mass, while in order to study the effects of the ex-
pansion, the Hubble rate 𝐻−1 should be comparable with the black hole
emission/absorption rates.

Now, even for the case of a slow evolution, it was pointed out by Freden-
hagen and Haag long ago [91] that by letting the mass of the black hole to
change with time, the radiation would originate from the surface of the black
hole at all times after its formation. This poses the question: what and where
is the surface of a dynamical black hole? The issue baffled scientists since
the beginning of black hole physics and produced several reactions during
the Nineties, which eventually culminated with the notion of outer trapping
horizons by Hayward [92–94] and the isolated and dynamical horizons of
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Ashtekar and co-workers [95–98] (an extensive review is in [99]).
One is concerned to study at first the dynamical version of the event horizon
and to provide a mathematical definition which is able to capture a useful
local notion of it, encompassing the time-lasting textbook definition given in
Hawking–Ellis renowned book [45]. Armed with a precise notion of horizon,
we shall proceed to study the instabilities occurring near the horizon of the
changing black hole. This question looks non trivial since a changing horizon
is typically embedded in a dynamical space-time and it is not even expected
to be a null hyper-surface, though it is still one of infinite red-shift. Thus
we shall start by reviewing what has been done on this question for spheri-
cally symmetric metrics. We can anticipate that the arrival point will be the
very important local notion of future trapping horizons and their associated
surface gravity, as defined by Hayward.

1.2.1 Horizons and surface gravity

Not long after the classical definition of the event (EH) and the apparent
horizons (AH) (boundaries of trapped 3-dimensional space-like regions within
partial Cauchy surfaces), several quasi-local notions of dynamical horizons
were proposed in the literature (another nice review is in [100]), perhaps
starting with the notion of perfect horizon due to Hájiček [101]. But this
only applied to equilibrium black holes while the apparent horizon, being tied
to a partial Cauchy surface, only represents a localisation in time. Moreover,
it has proven not possible to formulate thermodynamic laws for AH similar
to those holding good for the event horizons.

The first successful attempt to go beyond the limitations imposed either
by the instantaneous character of apparent horizons or by the global, teleo-
logical nature of event horizons is due to Hayward. His concept of a future
outer trapping horizon (to be abbreviated as FOTH) then evolved either
into less constrained definitions, like the Ashtekar–Krishnan dynamical hori-
zons (DH), or more specialised ones, like the Booth-Fairhurst slowly evolving
FOTH. Although the horizon as defined by Hayward will be central in this
thesis, for sake of completeness we shall give an updated list of locally or
quasi-locally defined horizons which appeared over the years, each playing
some role in the problem of understanding dynamical black hole (more pre-
cise definitions will be given soon). At least four types of horizon have been
defined over the years:

1. non expanding and perfect horizons (Hájiček [101]);

2. trapping horizons (Hayward [92–94]);

3. dynamical horizons (Ashtekar and Krishnan [97,98]);

4. isolated and weakly isolated horizons (Ashtekar et al. [95, 96]);
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5. slowly evolving horizons (Booth and Fairhurst [88]).

Most of these newly defined horizons have very desirable properties: they do
not require a space-like hypersurface, no notion of interior and exterior and
no conditions referring to infinity, like asymptotic flatness for example (all
are non local conditions). Moreover, they are not endowed with teleological
features (they do not anticipate the future, so to speak) and, given a solution
of Einstein equations, one can find whether they exist or do not exist by
purely local computations. Finally, unlike EH they are related to regions
endowed by strong gravitational fields and are typically absent in weak field
regions.

We recall that the expansion 𝜃 of a bundle of null rays is the rate of
change of area transverse to the bundle

𝑑𝐴

𝑑𝑣
=

∫︁
𝜃 𝑑2𝑆

where 𝑣 is a parameter along the rays. All quasi-local horizons rely on the
local concept of trapped or marginally trapped surface: this is a space-like
closed two-manifold 𝑆 such that 𝜃+𝜃− ≥ 0; if ℓ± are the future-directed
null normals to 𝑆, normalised to 𝑔𝜇𝜈ℓ

𝜇
+ℓ

𝜈
− ≡ ℓ+ · ℓ− = −1, then 𝜃+, 𝜃−

are the respective expansions or optical scalars, that is the expansions of
the two bundles of null rays orthogonal to 𝑆. It is further assumed that
ℓ+ is associated to an outgoing null geodesic beam, so that in a region of
not too strong gravity 𝜃+ > 0 and the beam is expanding, as for example
within the exterior of a black hole at a safe distance. It follows then that
ℓ− is associated to an ingoing null geodesic beam, with 𝜃− < 0 and the
beam contracting along the way. It is always possible to choose double null
coordinates 𝑥± such that

𝜃± =
2

𝑟
𝜕±𝑟 (1.103)

where 𝑟 is the areal radius, defined so that a metric sphere has area 𝐴 = 4𝜋𝑟2.
To cover black holes rather than white holes it is further assumed that both
expansions are negative (or non positive) on a trapped (marginally trapped)
surface. If 𝜃+𝜃− < 0 the surface is untrapped and marginal if 𝜃+𝜃− = 0. In
spherical symmetry with radial coordinate 𝑟 this means the co-vector 𝑑𝑟 is
temporal, spatial or null respectively. A further subdivision may be made:
a trapped surface is future if 𝜃± < 0 and past if 𝜃± > 0. A marginal 𝑆 with
𝜃+ = 0 is future if 𝜃− < 0, past if 𝜃− > 0, bifurcating if 𝜃− = 0, outer if
𝜕−𝜃+ < 0, inner if 𝜕−𝜃+ > 0 and degenerate if 𝜕−𝜃+ = 0 [92, 94, 102, 103].
Equivalently, the vector field 𝑔𝑟𝜇𝜕𝜇 is future causal (it means non-space-like)
or past causal, respectively. For a better understanding of these terms we
may perhaps note that

𝜕𝑟 = 𝜕+𝑟𝜕+ + 𝜕−𝑟𝜕− =
𝑟

2
(𝜃+𝜕+ + 𝜃−𝜕−) .
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So, for example, on a future trapped surface with 𝜃± < 0 the radial increasing
vector is past directed, confirming the intuition that one cannot escape the
trapped surface without moving in the past.

So much far for black holes, using the mental picture that we, the ob-
servers, are outside it at some radius larger than the radius of the trapped
region. For white holes one encounters also marginally trapped surfaces with
𝜃− = 0 and 𝜃+ > 0. In cosmology one may encounter again both possibili-
ties, marginally trapped surfaces with either 𝜃− = 0 or 𝜃+ = 0, but we defer
their description to 1.3.

The abstract definitions will become much more simple and intuitive
when referred to spherically symmetric space-times in 1.2.2, where only few
of them will be actually used. Here we take the opportunity for few more
definitions. The optical scalars can also be defined as follows: the induced
metric on each 𝑆 is

𝑞𝜇𝜈 = 𝑔𝜇𝜈 + ℓ+𝜇ℓ−𝜈 + ℓ−𝜇ℓ+𝜈 (1.104)

for in fact 𝑞𝜇𝜈ℓ𝜈± = 0. Let 𝑞𝜇𝜈 = 𝑔𝜇𝜈 + ℓ𝜇+ℓ
𝜈
− + ℓ𝜈+ℓ

𝜇
−, not the inverse of 𝑞𝜇𝜈 .

Then 𝑞𝜇𝜈 is the projection tensor to 𝑇*(𝑆), the tangent space to 𝑆. Associ-
ated to the null vector fields ℓ± are the projected tensor fields (𝜃±)𝜇𝜈 =

𝑞𝛼𝜇𝑞
𝛽
𝜈∇𝛼𝑙±𝛽 and their decomposition into symmetric, anti-symmetric and

trace part. They are tensors on 𝑆 because (𝜃±)𝜇𝜈ℓ
𝜈
± = (𝜃±)𝜇𝜈ℓ

𝜈
∓ = 0. The

twists (anti-symmetric parts) vanish since the geodesic beams are normal to
𝑆 (we have to assume that 𝑆 is part of a continuous family of surfaces 𝑆𝑡).
The expansions are then given by the traces

𝜃+ = 𝑞𝜇𝜈∇𝜇ℓ𝜈+, 𝜃− = 𝑞𝜇𝜈∇𝜇ℓ𝜈− . (1.105)

Finally, the shear is the trace-free symmetric part (note that 𝑔𝜇𝜈𝑞𝜇𝜈 =
𝑞𝜇𝜈𝑞𝜇𝜈 = 2)

𝜎(±)
𝜇𝜈 = 𝜃±𝜇𝜈 −

1

2
𝑞𝜇𝜈𝜃± . (1.106)

As before, we indicate the Lie-derivative along a vector field 𝑋 by the
calligraphic symbol ℒ𝑋 and ℒ± = ℒℓ± . Thus, for example, ℒ−𝜃𝜇𝜈 =
ℓ𝛼−𝜕𝛼𝜃𝜇𝜈 +𝜕𝜇ℓ

𝛼
−𝜃𝛼𝜈 +𝜕𝜈ℓ

𝛼
−𝜃𝜇𝛼, while on scalars it acts as an ordinary partial

derivative. Let us describe the listed horizons in turn, adding comments
where appropriate. A black triangle down H will close the definitions.

Perfect and non-expanding horizons — A perfect horizon is a smooth
three-dimensional null sub-manifold 𝐻 of space-time with null normal ℓ𝜇

such that its expansion 𝜃ℓ = 0 on 𝐻 and which intersect space-like hyper-
surfaces in compact sets. H

If in the last clause 𝐻 is topologically R × S2 and moreover the stress
tensor 𝑇𝜇𝜈 is such that −𝑇𝜇𝜈 ℓ𝜈 is future causal for any future directed null
normal ℓ𝜇, then 𝐻 is called a non-expanding horizon .H
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All stationary horizons are perfect, but the converse is not true. These
horizons are not very relevant in the present context since they apply only
to equilibrium black holes.

Future outer trapping horizons — A future outer trapping horizon (FOTH)
is a smooth three-dimensional sub-manifold 𝐻 of space-time which is foliated
by closed space-like two-manifolds S𝑡, 𝑡 ∈ 𝑅, with future-directed null nor-
mals ℓ± such that: (i) the expansion 𝜃+ of the null normal ℓ+ vanishes; (ii)
the expansion 𝜃− of ℓ− is negative; (iii) ℒ−𝜃+ < 0. A future inner trapping
horizon (FITH) is as above except that on it ℒ+𝜃− > 0. H

This proved to be the most important definition since forms the basis
for almost all other definitions. Condition (i) requires strong fields since cer-
tainly 𝜃+ > 0 in weak fields. The condition (ii) is related to the idea that 𝐻
is of the future type (e. g. a black hole rather than a white hole); (iii) says
that 𝐻 is of the outer type2, since a motion of S𝑡 along ℓ− makes it trapped.
It also distinguishes black hole horizons from cosmological ones, which for an
expanding universe are FITH. Note that no reference is made to any space-
like hypersurface, nor to infinity. Trapping horizons are locally defined and
have physical properties such as mass, angular momentum and surface grav-
ity, satisfying conservation laws [97, 104]. They are a geometrically natural
generalisation of Killing horizons, which are stationary trapping horizons. A
non-stationary trapping horizon is not null, but still has infinite red-shift.
Unlike event and apparent horizon they do not require asymptotic flatness.

One can always find a scalar field 𝐶 on 𝐻 so that the vector fields

𝑉 𝜇 = ℓ𝜇+ − 𝐶ℓ𝜇− and 𝑁𝜇 = ℓ𝜇+ + 𝐶ℓ𝜇− , (1.107)

are respectively tangent and normal to the trapping horizon. Note that
𝑉 · 𝑉 = −𝑁 · 𝑁 = 2𝐶. Hayward [92, 94] showed that if the null energy
condition (abbr. NEC) holds then 𝐶 ≥ 0 on a FOTH. Thus, the horizon must
be either space-like or null, and it is null if and only if the shear 𝜎(+)

𝜇𝜈 and
𝑇𝜇𝜈ℓ

𝜇
+ℓ

𝜈
+ both vanish across 𝐻. Intuitively, 𝐻 is space-like in the dynamical

regime where gravitational radiation and matter are pouring into it and is
null when it reaches equilibrium. Conversely, on a FITH 𝑉 𝜇 is either null or
time-like.

It is worth mentioning that the second law of the mechanics of trapping
horizons follows quite easily from this apparatus. Taking the Lie-derivative
of √

𝑞, which is the area density corresponding to the metric 𝑞𝜇𝜈 on the
cross-sections of 𝐻, we get

ℒ𝑉
√
𝑞 = −𝐶√𝑞 𝜃− . (1.108)

By definition 𝜃− is negative on 𝐻 and we have just seen that, barring
violations of the null energy condition, 𝐶 also is non-negative. Since 𝑉 is

2For example the Cauchy horizon in the Reissner–Nordström solution is of inner type.

42



future directed we obtain the local form of the second law: If the null energy
condition holds, then the area element √

𝑞 on a FOTH is non-decreasing
along future directions.
Integrating over 𝑆𝑡 the same law applies to the total area of the trapped
sections. As long as the null energy condition is maintained it will be non-
decreasing, reaching a constant value if and only if the horizon becomes a
null hypersurface.

The main difference between an apparent horizon as defined in Hawking–
Ellis and the trapping horizon of Hayward is that the AH represents the
instantaneous surface of a black hole, i.e. it needs a (partial) Cauchy surface
Σ and it is very sensitive to the choice of Σ. To compute the AH one needs
only its metric and the second fundamental form of Σ, namely the initial data
for Einstein’s equations. Hayward’s horizon instead is a null hypersurface
𝐻 which is insensitive to a choice of Σ and does not refer to spatial infinity.
The trapping horizon is a foliation of 𝐻.

The causal character as well as the area law required the validity of the
NEC; an evaporating black hole violates NEC, therefore the area law will
also be violated and the horizon will be time-like. How it could be that
tunnelling along a classically forbidden path is still possible will be seen
soon and represents the real possibility of the radiation process even in the
temporary absence of a global event horizon.

Next come Ashtekhar and co-workers: they observe that key results, such
as the area increase, do not depend on the sign of ℒ−𝜃+. Hence the following
weaker notion was introduced:

Dynamical horizons — A smooth three-dimensional, space-like sub-manifold
𝐻 of space-time is a dynamical horizon (DH) if it can be foliated by closed
space-like two-manifolds 𝑆𝑡, with future-directed null normals ℓ± such that:
(i) on each leaf the expansion 𝜃+ of one null normal ℓ+ vanishes; (ii) the
expansion 𝜃− of the other null normal ℓ− is negative. A submanifold 𝐻 such
that 𝜃+ = 0 and 𝜃− < 0 is also called a marginally trapped tube (abbr. MTT)
H

Like FOTHs, a DH is a space-time notion defined quasi-locally, it is not
related to a space-like hypersurface, it does not refer to infinity, it is not
teleological. A space-like FOTH is a DH on which ℒ−𝜃+ < 0; a DH, which is
also a FOTH, will be called a space-like future outer horizon (SFOTH). The
precise properties of such horizons are fully discussed in [97, 98]. Suitable
analogues of the laws of black hole mechanics hold for both FOTHs and
DHs. We only note that DHs cannot describe equilibrium black holes since
they are space-like by definition. Likewise, DHs cannot describe evaporating
black holes since for them the trapping horizon is time-like, but are better
suited to describe how a black hole grows in general relativity. In general,
if a MTT is space-like it is a DH. If a MTT is time-like it is a time-like
membrane. It is of interest that in the Oppenheimer–Volkoff dust collapse
the unique MTT on which each marginally trapped surface (MTS) is spherical
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is time-like [105]! This shows that even in spherical symmetry the existence
of DH with spherical sections is far from obvious. However, for perfect fluid
collapse and spherical scalar field collapse the MTTs are space-like.

If 𝑋, 𝑌 are tangent to a non-expanding horizon we can decompose the
covariant derivative

∇𝑋𝑌 = 𝐷𝑋𝑌 +𝑁(𝑋,𝑌 )ℓ+ + 𝐿(𝑋,𝑌 )ℓ−

where 𝐷𝑋 is the projection of the vector ∇𝑋𝑌 onto the spheres 𝑆𝑡 in 𝐻.
If 𝑋 is tangent to the spheres then 𝐷𝑋 is the covariant derivative of the
induced metric 𝑞𝜇𝜈 , and if 𝑋 is tangent to 𝐻 one may regard the operator̂︀∇𝑋 = 𝐷𝑋 +𝑁(𝑋, ·)ℓ+, acting on vector fields, as a connection on 𝐻. If this
connection is “time independent” then the geometry of𝐻 is time independent
too and we have Ashtekar et al. notion of a horizon in isolation.

Isolated horizons — A non-expanding horizon with null normal ℓ𝜇 such
that [ℒℓ, ̂︀∇𝑋 ] = 0 along 𝐻.H

These horizons were intended to model black holes that are themselves
in equilibrium but possibly in a dynamical space-time. For a detailed de-
scription of their mathematical properties we refer the readers to Ashtekar–
Krishnan’s review [99].

Slowly evolving horizons — No matter or radiation can cross an isolated
horizon, so the meaning of the first law for them cannot be treated in full
generality. Booth and Fairhurst [88] established this law for slowly evolving
FOTHs as defined by Hayward by introducing dynamical notions of surface
gravity and angular momentum. For this purpose, the concept of a slowly
evolving FOTH was then defined.

All the horizons just introduced have their own dynamics governed by
Einstein equations. There are for them existence and uniqueness theorems
[106], formulation of the first and the second laws [92, 99, 107] and even
a “membrane paradigm” analogy. In particular, they carry a momentum
density which obey a Navier–Stokes-like equation generalising the classical
Damour’s equations of EHs, except that the bulk viscosity 𝜁𝐹𝑂𝑇𝐻 = 1/16𝜋 >
0 [108, 109]. The newly introduced horizons are also mostly space-like or
null, therefore the role they may play in the problem of black hole quantum
evaporation is unclear. In this connection the following notion can be useful.

Time-like dynamical horizon — A smooth three-dimensional, time-like
submanifold 𝐻 of space-time is a time-like dynamical horizon (TDH) if it
can be foliated by closed space-like two-manifolds 𝑆𝑡, with future-directed
null normals ℓ± such that: (i) on each leaf the expansion 𝜃+ of one null
normal ℓ+ vanishes, (ii) the expansion 𝜃− of the other null normal is strictly
negative.H

It must be recalled that a FOTH for which the NEC does not hold can
be time-like as well. What about non spherical MTS? The Vaidya metric
does not admit other, non spherical horizons which also asymptote to the
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non expanding one. This is general, so a DH is unique, that is a space-like
3-manifold cannot be foliated by two distinct families of MTS each endowed
with a structure of a DH. This should also hold for a TH but we do not know
whether there is a proof. According to Ashtekhar et al. a better control
of uniqueness is the most important open issue of the classical theory of
dynamical horizons, be trapped or in isolation.

Surface gravity The surface gravity associated to an event horizon is a
well known concept in black hole physics whose importance can be hardly
overestimated. Surprisingly, a number of inequivalent definitions beyond the
standard one appeared over the last 15 years or so in the field, with various
underlying motivations. We have collected the following (we rely on the
review of Nielsen and Yoon [110]):

1. the standard Killing surface gravity (Bardeen et al. [111], textbooks);

2. a first definition given by Hayward in [92];

3. the effective surface gravity appearing in Ashtekar–Krishnan [99];

4. the Fodor et al. definition for dynamical spherically symmetric space-
times [112];

5. the Visser [5] and Nielsen–Visser [39] surface gravity;

6. still one more definition by Hayward [94], using Kodama theory of
spherically symmetric space-times [113].

In addition there are some more technical definitions due to Mukohyama
and Hayward [114] and to Booth and Fairhurst, the latter related to their
notion of evolving horizons [88]. Except for the last item, which is what the
tunnelling method leads to, the remaining definitions will be less relevant in
this thesis, so we reserve to them only some brief considerations.

The Killing surface gravity is related to the fact that the integral curves
of a Killing vector are not affinely parametrized geodesics on the Killing
horizon 𝐻, where the norm 𝜉2 = 0. Hence

𝜉𝜇∇𝜇 𝜉𝜈 ∼= 𝜅 𝜉𝜈

defines the Killing surface gravity 𝜅 on 𝐻, where ∼= means evaluation on the
horizon. The Killing field is supposed to be normalised at infinity by 𝜉2 = −1.
The definition can be extended to EHs that are not Killing horizons, by
replacing 𝜉 with the null generator of the horizon. However there is no
preferred normalisation in this case, and this is one reason of the debating
question regarding the value of the surface gravity in dynamical situations.
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Hayward’s first definition was motivated by the desire to get a proof of
the first law for THs. It is defined for a future trapping horizon without
appeal to un-affinity of null geodesics, as

𝜅 ∼=
1

2

√︀
−𝑛𝜇∇𝜇𝜃ℓ . (1.109)

This quantity is independent on the parametrisation of the integral curves of
the vector field ℓ𝜇, since the evaluation is on a marginal outer surface where
𝑛 · ℓ = −1 and 𝜃ℓ = 0.

Given a weakly isolated horizon 𝐻, Ashtekar and Krishnan showed that
for any vector field 𝑡𝑎 along 𝐻 with respect to which energy fluxes across 𝐻
are defined, there is an area balance law that takes the form

𝛿𝐸𝑡 =
�̄�

8𝜋𝐺
𝛿𝐴𝑆 + work terms

with an effective surface gravity given by

�̄� =
1

2𝑅

𝑑𝑟

𝑑𝑅
.

𝑅 is the areal radius of the marginally trapped surfaces, i.e. 𝐴𝑆 = 4𝜋𝑅2,
the function 𝑟 is related to a choice of a lapse function and finally 𝐸𝑡 is
the energy associated with the evolution vector field 𝑡𝑎. For a spherically
symmetric DH a natural choice would be 𝑟 = 𝑅 so �̄� = 1/2𝑅, just the
result for a Schwarzschild black hole. To illustrate the naturalness of this
definition, consider a slowly changing spherically symmetric black hole with
mass 𝑀(𝑣), where 𝑣 is a time coordinate. Defining the horizon radius at
each time by 𝑅 = 2𝑀(𝑣) and 𝐴𝑆 = 4𝜋𝑅2, we can differentiate 𝑀

�̇� =
�̇�

2
=

1

2𝑅

�̇�𝑆
8𝜋

.

so as to obtain 𝛿𝑀 = �̄�𝛿𝐴𝑆/8𝜋. One recognises the usual area law in
differential form with surface gravity �̄� = 1/2𝑅 = 1/4𝑀 . Consider, however,
the more general possibility where the horizon is the solution of the implicit
equation 𝑅 = 2𝑀(𝑣,𝑅), as it happens for example in the Bardeen–Vaidya
metric. The same computation leads to �̇� = �̇�𝑆 (1− 2𝑀 ′)/(16𝜋𝑅), leading
to

𝜅 ∼=
1

4𝑀

(︀
1 − 2𝑀 ′)︀ (1.110)

a prime denoting the radial derivative. The surface gravity here deduced
does not conform to Ashtekar et al. definitions, suggesting that its value
depends on the definition of the black hole mass one is adopting.

The definition of Fodor et al. looks like the Killing form of the surface
gravity in that 𝜅ℓ𝜈 = ℓ𝜇∇𝜇ℓ

𝜈 , where now ℓ𝜇 is an outgoing null vector
orthogonal to a trapped or marginally trapped surface. This is because,
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as a rule, such null vectors are not affinely parametrized, although they
can always be parametrized so that 𝜅 = 0. Fodor et al. choose to fix the
parametrization so that

𝜅 = −𝑛𝜇ℓ𝜈∇𝜈ℓ𝜇

with 𝑛𝜇 affinely parametrized and normalised to 𝑛 · 𝑡 = −1 at space-like
infinity, where 𝑡𝑎 is the asymptotic Killing field. Note that this definition is
non local but looks like a natural generalisation of the Killing surface gravity.

As far as we know, the Visser and Visser–Nielsen surface gravity is only
defined in dynamical Painlevé–Gullstrand coordinates, so there is no guar-
antee that it is a geometrical invariant. Indeed, we shall see that for this
class of metrics it is different from the invariant surface gravity computed
within the general Hayward formalism.

The last item is a local geometrical definition of the surface gravity for
the trapping horizon of a spherically symmetric black hole [94], so we post-
pone a full discussion to Section 1.2.2. Basically, one introduces local null
coordinates 𝑥± in a tubular neighbourhood of a FOTH and for any sphere
of radius 𝑟 one defines the quantity

𝜅 =
𝑟

2

(︂
𝑔+−𝜕−𝜃+ +

1

2
𝑔+−𝜃+𝜃−

)︂
. (1.111)

Evaluated on a trapping horizon, 𝜃+ = 0, it will be positive precisely when
the horizon is of outer type (𝜕−𝜃+ < 0, recall that with our conventions
𝑔+− < 0) and 𝜅 = 0 if degenerate. The definition may look somewhat
artificial, but in fact it can be put in a form that strongly resembles the
Killing surface gravity of stationary black holes. To see this, we anticipate
a result of the next section according to which, following Kodama [113], any
spherically symmetric metric admits a unique (up to normalisation) vector
field 𝐾𝜇 such that ∇𝜈(𝐾𝜇𝐺𝜇𝜈) = 0, where 𝐺𝜇𝜈 is the Einstein tensor; for
instance, using the double-null form, one finds

𝐾 = −𝑔+−(𝜕+𝑟𝜕− − 𝜕−𝑟𝜕+) . (1.112)

The defining property of 𝐾 shows that it represents a natural generalisation
of the time translation Killing field of a static black hole. Now consider the
expression 𝐾𝜇∇[𝜈𝐾𝜇]: it is not hard to see that on H it is proportional to
𝐾𝜈 . So one defines the dynamical surface gravity as 𝐾𝜇∇[𝜈𝐾𝜇]

∼= −𝜅𝐾𝜈 .
For a Killing vector field ∇𝜈𝐾𝜇 is anti-symmetric so the definition reduces
to the usual one.

1.2.2 Spherically symmetric fields

In this section we discuss the general time-dependent spherically symmetric
metric that will be the arena of our dynamical tunnelling computations.
We have a twofold intent in doing this. If Hawking radiation proceeds by
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emission of discrete energy quanta, a continuous description of the changing
metric would only be possible when their number is so large so as to simulate
a continuous streaming of energy. In such a case, a dynamical excreting black
hole may be modelled by a continuously differentiable solution of Einstein’s
equations for most of its history. Given that, it would be quite ironic if there
were not evidence of a continuously operating quantum emission process. In
other words, if the tunnelling method only worked for the event horizons of
stationary black holes then there would be a problem with the use of such
dynamical metrics as models of black hole evaporation.

The second aspect has to do with the region where the radiation orig-
inates. The tunnelling calculation suggests the the outgoing radiation is
emitted from the trapping horizon, not the global event horizon. And it
further suggests that the semi-classical probability is related to the horizon
surface gravity as defined in Eq. 1.111 [94]. Thus we have first of all to learn
how to compute these things in a spherically symmetric, time dependent
metric.

Forms of the metric

The paradigm of a spherically symmetric metric is of course the Schwarzschild
vacuum solution of Eq. (1.1). To introduce dynamics one could think to
make the replacement 𝑀 → 𝑀(𝑡); however the resulting metric has a cur-
vature singularity at 𝑟 = 2𝑀(𝑡); for instance, the scalar curvature is

ℛ =
2𝑟(𝑟 − 2𝑀)�̈� + 4�̇�2

(𝑟 − 2𝑀)3

so only for special values of the mass function is ℛ = 0; other invariants will
diverge though. A more general “Schwarzschild gauge” can be written down

𝑑𝑠2 = −𝑒2Φ(𝑟,𝑡)

(︂
1 − 2𝑀(𝑟, 𝑡)

𝑟

)︂
𝑑𝑡2 +

(︂
1 − 2𝑀(𝑟, 𝑡)

𝑟

)︂−1

𝑑𝑟2+

+ 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜑) (1.113)

which was studied in depth by Visser in his classic “Dirty Black Holes” [53].
We shall not make use of his metric in the following.

It was discovered by Vaidya [115] that by taking the Schwarzschild met-
ric in advanced Eddington–Finkelstein coordinates (𝑣, 𝑟, 𝜃, 𝜑) (or retarded,
(𝑢, 𝑟, 𝜃, 𝜑) for other purposes)

𝑑𝑠2 = −
(︂

1 − 2𝑀

𝑟

)︂
𝑑𝑣2 + 2𝑑𝑣𝑑𝑟 + 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜑) (1.114)

and by making the replacement 𝑀 → 𝑀(𝑣), one obtains a regular solution
of Einstein’s equations except at the origin 𝑟 = 0, the shining star solution of
Vaidya. The metric is still not the most general one allowed by the symmetry:
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in fact a spherically symmetric metric can depend at most on two arbitrary
functions of the coordinates (𝑣, 𝑟). One form is due to Bardeen [86]

𝑑𝑠2 = −𝑒2Φ
(︂

1 − 2𝑀

𝑟

)︂
𝑑𝑣2 + 2𝑒Φ𝑑𝑣𝑑𝑟 + 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜑) (1.115)

where Φ and 𝑀 are functions of 𝑣, 𝑟. Another important form is obtained
by passing from Schwarzschild time to the proper time of a radially infalling
observer

𝑡𝑝 = 𝑡+ 2
√

2𝑀𝑟 + 4𝑀 log

(︃√
𝑟 −

√
2𝑀

√
𝑟 +

√
2𝑀

)︃
. (1.116)

The metric is the Painlevé–Gullstrand metric we encountered in Section 1.1

𝑑𝑠2 = −
(︂

1 − 2𝑀

𝑟

)︂
𝑑𝑡2𝑝+ 2

√︂
2𝑀

𝑟
𝑑𝑡𝑝𝑑𝑟+𝑑𝑟2 + 𝑟2 (𝑑𝜃2 + sin2 𝜃𝑑𝜑) . (1.117)

Taking now 𝑀 = 𝑀(𝑡𝑝) we get a dynamical black hole long studied by
Lindesay and Brown [116–118] and others [119]. There is a more general
form whereby 𝑀 can also depend on 𝑟 and a second function Φ(𝑡, 𝑟) is
introduced, say

𝑑𝑠2 = −𝑒2Φ(𝑡,𝑟)

(︂
1 − 2𝑀(𝑡, 𝑟)

𝑟

)︂
𝑑𝑡2 +2𝑒Φ(𝑡,𝑟)

√︃
2𝑀(𝑡, 𝑟)

𝑟
𝑑𝑡 𝑑𝑟+𝑑𝑟2 +𝑟2𝑑Ω2 ,

(1.118)
where 𝑑Ω2 := 𝑑𝜃2 + sin2 𝜃𝑑𝜑. This metric is locally diffeomorphic to the
metric Eq. (1.113) under a change of time 𝑡→ 𝑡(𝑡, 𝑟), with the mass treated
as a scalar field, i.e. 𝑀(𝑡, 𝑟) = 𝑀(𝑡(𝑡, 𝑟), 𝑟). It was thoroughly studied
by Visser and Nielsen in [39]. In this rather impressive work the dynamics
and decay of evolving horizons were investigated mainly using a dynamical
version of Painlevé–Gullstrand coordinates. The metric Eq. (1.118) is also
locally diffeomorphic to the metric Eq. (1.115), under a change 𝑣 → 𝑡(𝑣, 𝑟),
where now 𝑀(𝑡, 𝑟) = 𝑀(𝑣(𝑡, 𝑟), 𝑟).

All these spherically symmetric metrics (though not only these) are spe-
cial cases of metrics that can locally be expressed in the warped form

𝑑𝑠2 = 𝛾𝑖𝑗(𝑥
𝑖)𝑑𝑥𝑖𝑑𝑥𝑗 +𝑅2(𝑥𝑖)𝑑Ω2 , 𝑖, 𝑗 ∈ {0, 1} , (1.119)

where the two-dimensional metric

𝑑𝛾2 = 𝛾𝑖𝑗(𝑥
𝑖)𝑑𝑥𝑖𝑑𝑥𝑗 (1.120)

is referred to as the normal metric (in the space normal to the sphere of
symmetry), 𝑥𝑖 are associated coordinates and 𝑅(𝑥𝑖) is the areal radius, con-
sidered as a scalar field in the normal two-dimensional space. The two-
dimensional metric 𝛾𝑖𝑗 has only one degree of freedom and the function
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𝑅(𝑥𝑖) is the second one; however the two functions on which the metric de-
pends can be moved both to 𝑑𝛾2 using the coordinates freedom. That is we
can rename 𝑥1 = 𝑟 and put 𝑅(𝑥𝑖) = 𝑟. The coordinate 𝑟 is known as the
areal radius, and is a geometrical invariant being the quotient of the area
of space-like spheres by 4𝜋. This will be referred to as the 𝑟-gauge. Some-
times the normal metric can be further written, somewhat redundantly, in
the expanded form

𝑑𝛾2 = −𝐸(𝑟, 𝑡)𝑑𝑡2 + 2𝐹 (𝑟, 𝑡)𝑑𝑡𝑑𝑟 +𝐺(𝑟, 𝑡)𝑑𝑟2, 𝛾 = −(𝐸𝐺+ 𝐹 2) (1.121)

especially if one wants to discuss certain limits, but we will always try to get
metrics regular across the trapping horizons. If we wish, we can also locally
write the line element in a double-null form which is conformally flat

𝑑𝑠2 = −2𝑒𝑓𝑑𝑥+𝑑𝑥− + 𝑟2(𝑥+, 𝑥−)𝑑Ω2 (1.122)

with 𝑓 = 𝑓(𝑥+, 𝑥−). For instance, starting with Eq. (1.115) we can introduce
null coordinates via

𝑒𝑓𝑑𝑥− =
1

2

(︂
1 − 2𝑚(𝑟, 𝑣)

𝑟

)︂
𝑒2Φ𝑑𝑣 − 𝑒Φ𝑑𝑟, 𝑑𝑥+ = 𝑑𝑣

where 𝑓 is an integrating factor. The normal section of Eq. (1.115) then takes
the form Eq.(1.122). One may use one spatial and one temporal direction on
putting 𝑑𝑥+𝑑𝑥− = 𝑑𝑡2−𝑑𝑟2, but there is no unique choice of such directions.
The remaining coordinate freedom consists of conformal diffeomorphisms (in
the language of two-dimensional metrics)

𝑥± → �̃�±(𝑥±) .

The double-null form will be also referred to as the conformal gauge.
Another form we would like to describe is the metric in the so called syn-

chronous gauge. Let us consider the Schwarzschild space-time in coordinates
(𝑇, 𝑟, 𝜃, 𝜑) such that the line element can be expressed as

𝑑𝑠2 = −𝑑𝑇 2 +
𝑑𝑟2

𝐵
+ (𝑟𝑔𝐵)2𝑑Ω2 , (1.123)

where 𝑟𝑔 = 2𝑀 is the usual gravitational radius, and

𝐵(𝑇, 𝑟) :=

[︂
3

2𝑟𝑔
(𝑟 − 𝑇 )

]︂ 2
3

. (1.124)

We shall refer to these coordinates as the Lemaître–Rylov gauge. This is
indeed an interesting (time-dependent) gauge since, contrary for example to
isotropic coordinates, (𝑇, 𝑟) extend beyond the gravitational radius, 𝑟 < 𝑟𝑔.
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Now considering 𝐵(𝑇, 𝑟) as an arbitrary function and replacing 𝑟𝑔𝐵 with a
general function 𝑅(𝑟, 𝑇 ) we obtain the metric in synchronous gauge

𝑑𝑠2 = −𝑑𝑇 2 +
𝑑𝑟2

𝐵(𝑇, 𝑟)
+𝑅2(𝑇, 𝑟)𝑑Ω2 (1.125)

in which the metric is diagonal but the areal radius is a function of 𝑟 and 𝑇 .
The last form we would like to mention is the isotropic gauge in which

the spatial part of the metric is conformally flat

𝑑𝑠2 = −𝐴(𝑡, 𝜌)𝑑𝑡2 +𝐵(𝜌, 𝑡)(𝑑𝜌2 + 𝜌2𝑑Ω2) . (1.126)

An important example of this latter form is the McVittie solution describing
in author’s mind a point mass in a FRW flat cosmology [120]. It reads as in
Eq. 1.126 with

𝐴(𝜌, 𝑡) =

(︂
1 +

𝑀

2𝑎(𝑡)𝜌

)︂−2(︂
1 − 𝑀

2𝑎(𝑡)𝜌

)︂2

(1.127)

𝐵(𝜌, 𝑡) = 𝑎(𝑡)2
(︂

1 +
𝑀

2𝑎(𝑡)𝜌

)︂4

. (1.128)

When 𝑀 = 0 it reduces to a spatially flat FRW metric with scale factor
𝑎(𝑡); when 𝑎(𝑡) = 1 it reduces to the Schwarzschild metric with mass 𝑀
in isotropic coordinates. This solution had a strong impact on the general
problem of matching the Schwarzschild solution with cosmology, a problem
faced also by Einstein and Dirac. Besides McVittie, it has been extensively
studied by Nolan in a series of papers [121]. To put the metric in the general
𝑟-gauge form, the coordinate transformation

𝑟 = 𝑎(𝑡)𝜌

(︂
1 +

𝑀

2𝑎(𝑡)𝜌

)︂2

transforms the metric in the so called Nolan gauge, in which it reads

𝑑𝑠2 = −
(︀
𝐴𝑠 −𝐻2(𝑡)𝑟2

)︀
𝑑𝑡2 − 𝐻(𝑡)𝑟

2
√
𝐴𝑠

𝑑𝑟 𝑑𝑡+
𝑑𝑟2

𝐴𝑠
+ 𝑟2𝑑Ω2 (1.129)

where 𝐻(𝑡) = ˙𝑎(𝑡)/𝑎(𝑡) is the Hubble parameter and, for example, in the
charged four-dimensional case, 𝐴𝑠 = 1−2𝑀/𝑟+𝑒2/𝑟2. Unlike the Schwarzschild
case, 𝐴𝑠 = 0, or 𝑟 = 2𝑀 in the neutral case or 𝜌 = 𝑀/2𝑎(𝑡), is a curva-
ture singularity rather than a global event horizon. In fact, it represents a
Big Bang singularity very similar to 𝑟 = 0 in FRW models. When 𝐻 = 0
one recovers the Schwarzschild solution. For constant 𝐻, it reduces to the
Schwarzschild–de Sitter solution in Painlevé coordinates. As we shall see, the
McVittie solution possesses in general black hole and cosmological trapping
horizons, and the space-time is dynamical.
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Other coordinate systems which can be used to include dynamics in the
Schwarzschild metric are discussed in [122]. We may note that Eq. (1.125)
contains as a special case the FRW family of metrics. We stress that all
forms discussed above are completely equivalent ways to describe the space-
time structure of a spherically symmetric field, the use of any particular
form being dictated only by computational convenience. We also note that
in the warped form Eq. (1.119) the sphere of symmetry can be replaced by
anyone among the two-dimensional manifolds with constant curvature which
appear in the static topological black hole solutions embedded in Anti–de
Sitter space. Only, the rotational isometry group must be replaced by the
appropriate isometry group of the surface, which in the static case are torii
or compact Riemann surfaces with higher genus.

Trapping horizon

To compute the trapping horizons we shall start from the Bardeen–Vaidya
form Eq. (1.115). We can take the two null, future directed congruences
normal to spheres of constant radius as

ℓ+ =

[︂
1,

1

2
𝑒𝜓
(︂

1 − 2𝑀

𝑟

)︂
, 0, 0

]︂
, ℓ− = [0,−𝑒−𝜓, 0, 0] (1.130)

where as always ℓ+ ·ℓ− = −1. A simple computation gives the optical scalars

𝜃+ =
1

𝑟

(︂
1 − 2𝑀

𝑟

)︂
𝑒𝜓, 𝜃− = −2𝑒−𝜓

𝑟
. (1.131)

Trapped or marginally trapped spheres have 𝜃+𝜃− ≥ 0, therefore there are
no such surfaces in the region 𝑟 > 2𝑀(𝑟, 𝑣). We also see that 𝜃− < 0
along the surface defined by 𝜃+ = 0, which is therefore a trapping horizon
of the future type. Its defining equation is 𝑟 = 2𝑀(𝑟, 𝑣), which defines a
line 𝑟 = 𝑟(𝑣) in normal space and therefore a hyper-surface with topology
R1 × S2 in space-time.

Consider now 𝜕−𝜃+, where the symbol 𝜕− denotes the directional deriva-
tive along ℓ−. One obtains, using 𝑀 ′ = 𝜕𝑟𝑀 ,

𝜕−𝜃+ = − 1

𝑟2

(︂
2𝑀

𝑟
− 2𝑀 ′

)︂
.

On the trapping horizon 𝜕−𝜃+ ∼= −(1 − 2𝑀 ′)/4𝑀2 will be negative if and
only if𝑀 ′ < 1/2. As anticipated in 1.2.2, this is the condition which ensures
the positivity of the surface gravity. Thus in this case 𝑟 = 2𝑀 is a FOTH.
The areal radius of the horizon will be denoted by 𝑟𝐻 from now on. The signs
of 𝜃± are geometrical invariants, but their actual values are not because the
null directions are defined up to an overall scale. An invariant combination
is 𝜒 = 2𝑔±𝜃+𝜃− or, using Eq. (1.119),

𝜒 = 𝛾𝑖𝑗 𝜕𝑖𝑅𝜕𝑗𝑅 ≡ 𝑔𝜇𝜈 𝜕𝜇𝑅𝜕𝜈𝑅 . (1.132)
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𝜒 = 0 is then the condition for a trapping horizon in Hayward’s sense. For
example in any coordinate system where one coordinate is the areal radius
𝑅 = 𝑟, the condition is 𝑔𝑟𝑟 = 0. The trapping horizon of McVittie solution
can also be computed using Eq. 1.132: using Nolan form it is a solution of
the equation

√
𝐴𝑠 = 𝐻𝑟𝐻 , which in turn implies 1 − 2𝑀/𝑟𝐻 = 𝐻(𝑡)2𝑟2𝐻 .

As 𝑀 is a constant this a cubic algebraic equation with a priori more than
one real root and in any case at most two positive roots. The situation is
similar to de Sitter space, except that the horizon radius is here a function
of time, 𝑟𝐻(𝑡). For positive 𝐻 both horizons are of the future type, but as
a rule one is outer (meaning that there is a black hole) while the larger root
corresponds to an inner horizon, hence to a FITH, if and only if

𝑀

𝑟2𝐻
−𝐻2𝑟𝐻 − �̇�

2𝐻
> 0 . (1.133)

For 𝑀 = 0, i.e. for homogeneous cosmology, only the inner cosmological
horizon survives. This is the case, for example, in de Sitter space-time. We
will make use of these results in Section 1.3.

Misner–Sharp–Kodama energy

One special feature of spherically symmetric space-times is the absence of
gravitational radiation. This feature makes it possible the existence of a spe-
cial, privileged notion of energy, the Misner–Sharp mass, which for spheres
with areal radius 𝑟 is the same as the Hawking mass [123] (a general reference
for energy in GR is the review [124]). The energy may be defined by [103]
(we recall that 𝑟 is the areal radius)

𝐸 =
𝑟

2
− 𝑟𝑔+−𝜕+𝑟𝜕−𝑟 =

𝑟

2
− 𝑟3

4
𝑔+−𝜃+𝜃− (1.134)

and interpreted as the energy inside a sphere of radius 𝑟; so, by definition,
a metric sphere is trapped if and only if 𝐸 > 𝑟/2, marginal if and only if
𝐸 = 𝑟/2 and untrapped if and only if 𝐸 < 𝑟/2. Note that Eq. (1.134) is a
special case of the Hawking mass

𝐸(𝑆) =

√︂
𝐴𝑟𝑒𝑎(𝑆)

16𝜋

(︂
1 − 1

8𝜋

∮︁
𝑔−+𝜃+𝜃−𝑑

2𝑆

)︂
(1.135)

and is a geometrical invariant. Two very important properties of 𝐸 were
proved by Hayward [103]: in an asymptotically flat space-time, 𝐸 coincides
with the Bondi-Sachs scalar energy at null infinity, and with the Arnowitt–
Deser–Misner (ADM) mass at spatial infinity. Using Eq. (1.115) the energy
takes the implicit form

𝑔𝜇𝜈𝜕𝜇𝑟𝜕𝜈𝑟 = 𝑔𝑟𝑟 = 1 − 2𝐸

𝑟
(1.136)
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which shows the relation with the Schwarzschild mass. Then 𝐸 = 𝑀 and
the FOTH is at 𝑟 = 2𝐸. Many important properties of 𝐸 can be displayed
using also the Einstein gravitational field equations. We report two of them
which seem remarkable, leaving the interested reader to the literature. Us-
ing double-null coordinates the variation of 𝐸 as determined by Einstein’s
equations is

𝜕±𝐸 = 2𝜋𝑒−𝑓𝑟3(𝑇+−𝜃± − 𝑇±±𝜃∓) (1.137)

where we remember that 𝑒−𝑓 = −𝑔+−. These field equations can also be
written in the Bardeen–Vaidya form, using Eq. (1.115), where it is seen that
𝐸 = 𝑀 and

𝜕𝑣𝑀 = 4𝜋𝑟2𝑇 𝑟𝑣 , 𝜕𝑟𝑀 = −4𝜋𝑟2𝑇 𝑣𝑣 . (1.138)

Thus in vacuo 𝐸 is a constant. It can then be shown that the solution
is locally isometric to a Schwarzschild solution with energy 𝐸. This is an
improvement of Birkhoff’s theorem.

The second result is essentially the area law: if the NEC holds on a
FOTH then 𝐸 = 𝑟𝐻/2 is non-decreasing along the horizon.

The question arises naturally whether 𝐸 is the charge associated to a
conserved current. It was discovered by Kodama [113] that in spherical
symmetry there is a vector field 𝐾𝜇 such that ∇𝜇(𝐺𝜇𝜈𝐾

𝜈) = 0; by Einstein
equations it follows also the conservation equation

∇𝜇 (𝑇𝜇𝜈𝐾𝜈) = 0 (1.139)

and a corresponding charge. If we define the two-dimensional Levi–Civita
skew tensor

𝜖𝜇𝜈 = 𝜖𝜇𝜈𝛼𝛽 𝜏
𝛼
1 𝜏

𝛽
2

where 𝜏1, 𝜏2 are tangent vectors to constant radius spheres, then the Kodama
vector may be defined by

𝐾𝜇 = 𝜖𝜇𝜈𝜕𝜈𝑟 . (1.140)

It can easily be seen that
∇𝜇𝐾

𝜇 = 0 . (1.141)

Let us give few examples:

(a) for static, non-dirty, black holes it is the Killing field;

(b) for dirty black holes, Eq. 1.36, 𝐾 =
√︀
𝑊/𝑉 𝜕𝑡;

(c) in Bardeen–Vaidya gauge 𝐾 = 𝑒−Φ𝜕𝑣;

(d) for the metrics Eq. (1.117) and Eq. (1.118), 𝐾 = 𝜕𝑡𝑝 or 𝐾 = 𝑒−Φ𝜕𝑡 ,
respectively;

(e) for the metric Eq. (1.121) 𝐾 = (𝐸𝐹 +𝐺2)−1/2𝜕𝑡;
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(f) in conformal gauge 𝐾 = −𝑔+−(𝜕+𝑟𝜕− − 𝜕−𝑟𝜕+);

(g) in synchronous gauge 𝐾 =
√
𝐵(𝑅′𝜕𝜏 − �̇�𝜕𝑟);

(h) for FRW flat cosmology 𝐾 = 𝜕𝑡 −𝐻𝑟𝜕𝑟.

In every case it follows that

𝐾2 =
2𝐸

𝑟
− 1

so that 𝐾 is time-like, space-like or null if and only if 𝑟 > 2𝐸, 𝑟 < 2𝐸 or
𝑟 = 2𝐸, respectively. Let us also define the current

𝑗𝜇 = −𝑇𝜇𝜈𝐾𝜈 . (1.142)

We have just seen that ∇𝜇𝑗
𝜇 = 0, ∇𝜇𝐾

𝜇 = 0, and therefore there exist two
conserved charges

𝑄𝑗 = −
∫︁
Σ
𝐽𝜇𝑛𝜇𝑑

3𝑉 (1.143)

𝑄𝐾 = −
∫︁
Σ
𝐾𝜇𝑛𝜇𝑑

3𝑉 (1.144)

where Σ is a space-like three-dimensional surface with fixed boundary at
some constant 𝑟 and future pointing time-like normal 𝑛𝜇. Here “conserved”
means independent on the choice of Σ. The charges as defined will be positive
in regions where 𝑗𝜇, 𝐾𝜇 are both time-like. Using Eq. (1.137) one can easily
see that

𝑗 =
1

4𝜋𝑟2
(𝜕+𝐸𝜕− − 𝜕−𝐸𝜕+) . (1.145)

To compute the charges we pass to a synchronous gauge by choosing coor-
dinates (𝜏, 𝜁) adapted to Σ, with 𝜕𝜏 normal and 𝜕𝜁 tangent to Σ. In these
coordinates we can always write the metric in the form

𝑑𝑠2 = −𝑑𝜏2 + 𝑒𝜆𝑑𝜁2 + 𝑟2(𝜏, 𝜁)𝑑Ω2 . (1.146)

From Eqs. (1.140) and (1.142) we obtain

𝐾𝜇 = 𝑒−𝜆/2(𝑟′,−�̇�, 0, 0), 𝑗𝜇 =
𝑒−𝜆/2

4𝜋𝑟2
(𝐸′,−�̇�, 0, 0) (1.147)

where �̇� = 𝑑𝑟/𝑑𝜏 , 𝑟′ = 𝑑𝑟/𝑑𝜁. Following Hayward, we shall say that the point
𝑟 = 0 is a regular centre if it is a boundary point of the normal space and
𝐸/𝑟 → 0 as the centre is approached. Otherwise it is a central singularity.
We now assume that Σ extends from a regular centre to some 𝑟 > 0: from
Eq. (1.147) and the metric we have the normal 𝑛𝜇 = 𝛿𝜇0 and

−𝐾𝜇𝑛𝜇 = 𝑒−𝜆/2𝑟′, −𝑗𝜇𝑛𝜇 =
𝑒−𝜆/2

4𝜋𝑟2
𝐸′ .
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Therefore integrating over Σ with the invariant measure
𝑑𝑉 = 𝑒𝜆/2𝑟2 sin 𝜃𝑑𝜁𝑑𝜃𝑑𝜑, we finally obtain

𝑄𝐾 =
4𝜋

3
𝑟3, 𝑄𝑗 = 𝐸 . (1.148)

We conclude that 𝐸 is indeed the charge associated to a conserved current.
The charge 𝑄𝑗 is the definition of energy of Kodama. For static solutions
the Kodama vector coincides with the Killing field, the generator of the time
translation symmetry.

The surface gravity

The properties of the Kodama vector field discussed so far prompt for a
natural definition of the surface gravity of a trapping horizon. We have seen
that 𝐾 becomes null precisely on a trapping horizon and space-like within.
The time-like integral curves of 𝐾 are in general not contained within the
horizon. Consider the quantity 𝐾𝜇∇[𝜈𝐾𝜇]: it can be seen that on a trapping
horizon it is proportional to 𝐾𝜈

𝐾𝜇∇[𝜈𝐾𝜇]
∼= −𝜅𝐾𝜈 . (1.149)

The function 𝜅 is, by definition, the horizon surface gravity of Hayward.
For static black holes 𝐾 is the Killing field so ∇𝜇𝐾𝜈 is anti-symmetric and
the definition reduces to the usual one. A formula to compute 𝜅 efficiently
was found by Hayward [94]. Working in double-null coordinates we have
𝐾+ = −𝜕+𝑟, 𝐾− = 𝜕−𝑟 (see point (f) of the examples list) therefore

𝜕+𝐾− = −𝜕−𝐾+ = 𝜕−𝜕+𝑟 =
𝑔+−

2
2𝛾𝑟 (1.150)

where 2𝛾 = 2𝑔+−∇+∇− is the two-dimensional Klein–Gordon operator act-
ing on scalars. Computing the left hand side of Eq. (1.149) then gives the
wanted formula

𝜅 =
1

2
2𝛾𝑟 =

1

2
𝑟

(︂
𝑔+−𝜕−𝜃+ +

1

2
𝑔+−𝜃+𝜃−

)︂
, (1.151)

where the last form is obtained by using 𝜃± = 2𝑟−1𝜕±𝑟. That is, 𝜅 is the
“Box” of 𝑟; when evaluated on the trapping horizon, where 𝜃+ = 0, it is the
surface gravity and is positive if and only if 𝜕−𝜃+ < 0, that is if the horizon
is of outer type. Its invariant character is manifest. Let us give few examples
with comparison to other definitions. For the Bardeen–Vaidya metric one
obtains

𝜅 =
1

4𝑀
(1 − 2𝑀 ′) (1.152)

which is also the Visser dynamical surface gravity as defined in [5] in a
Painlevé–Gullstrand frame. The first Hayward’s definition (see the list in
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Section (1.2.1)), invoked without appeal to un-affinity, would give instead

�̃� =
1

4𝑀

√
1 − 2𝑀 ′

which is not even correct for the static Reissner–Nordström solution3. The
definition of Fodor et al. gives

�̂� =
𝑒Φ

4𝑀
(1 − 2𝑀 ′) + Φ̇ .

For the dynamic Painlevé–Gullstrand metric Eq. (1.117) with𝑀 = 𝑀(𝑡𝑝, 𝑟),
we obtain

𝜅 =
1

4𝑀
(1 − 2𝑀 ′ + 2�̇�) (1.153)

while the Visser and Visser–Nielsen surface gravity for this kind of metrics
would give the same formula without the time derivative term. Inciden-
tally, this shows that the dynamical Bardeen–Vaidya metric is not diffeo-
morphic to a dynamical Painlevé–Gullstrand metric Eq. (1.117) with the
same mass function, as it would happen in the stationary case, and therefore
represent physically different gravitational fields. For the dynamic Painlevé–
Gullstrand metric Eq. (1.118), with mass function 𝑚(𝑡, 𝑟), we obtain instead

𝜅 =
1

4𝑚
(1 − 2𝑚′ + 2�̇�𝑒−Φ) (1.154)

again different from the Visser–Nielsen surface gravity for the same mass
function, which has no time derivative terms. One may also mention the
“effective surface gravity”, 𝜅𝑒𝑓𝑓 = 1/2𝑟𝐻 discussed, for example, in [99] and
[125].

1.2.3 Tunnelling from trapping horizons

We now come to review what the tunnelling method has to say about dy-
namical, spherically symmetric black holes. We shall start by identifying the
dynamical version of the tunnelling path which was displayed and discussed
is Section (1.1), see 1.1. This will be accomplished by using a specific and
convenient form of the metric, which we start to review a little more than
already done. In absence of analytical techniques we shall make explicit
use of the Hamilton–Jacobi equation, the null geodesic method being quite
inconvenient to treat truly dynamical metrics (but see Clifton [119]). The
covariance of the method will be stressed throughout.

3For which 𝑀 ′ = 𝑞2/2(2𝑀2 − 𝑞2 + 2𝑀
√︀

𝑀2 − 𝑞2).
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Metrics to be used

We shall use for the time being the Bardeen–Vaidya (BV) metric Eq. (1.115),
which we recall here

𝑑𝑠2 = −𝑒2Φ(𝑟,𝑣)

(︂
1 − 2𝑀(𝑟, 𝑣)

𝑟

)︂
𝑑𝑣2 + 2𝑒Φ(𝑟,𝑣)𝑑𝑣𝑑𝑟 + 𝑟2𝑑Ω2 . (1.155)

The sphere of symmetry will not play any role here, though. To illustrate
the covariance of the results we shall occasionally make use of the metric in
Painlevé–Gullstrand (PG) form, either Eq. (1.117) or Eq. 1.118). Few things
about metric (1.155) will help with the understanding. The field equations
read

𝜕𝑀

𝜕𝑣
= 4𝜋𝑟2𝑇 𝑟𝑣,

𝜕𝑀

𝜕𝑟
= −4𝜋𝑟2𝑇 𝑣𝑣,

𝜕Φ

𝜕𝑟
= 4𝜋𝑟𝑒Φ𝑇 𝑣𝑟 , (1.156)

and the stress tensor can be written as

𝑇𝜇𝜈 =
�̇�

4𝜋𝑟2
∇𝜇𝑣∇𝜈𝑣 −

𝑀 ′

2𝜋𝑟2
∇(𝜇𝑟∇𝜈)𝑣 . (1.157)

If𝑀 only depends on 𝑣, it describes a null fluid obeying the dominant energy
condition for �̇� > 0. For the excreting black hole �̇� < 0 so the null energy
condition will also be violated. We already know that 𝑟 = 2𝑀(𝑟, 𝑣) is a
trapping horizon, that is a FOTH, if and only if 2𝑀 ′ < 1, which we shall
assume from now on. Putting 𝑟 = 2𝑀 into the metric gives

𝑑𝑠2 = 𝑒2Φ

(︃
4𝑒−Φ�̇�

1 − 2𝑀 ′ − 1

)︃
𝑑𝑣2

so we conclude that the horizon is certainly time-like if �̇� < 0; we know
from general results that it will be space-like or null if �̇� > 0, even if it is
not evident from this expression. The Hayward surface gravity is

𝜅 =
1

4𝑀
(1 − 2𝑀 ′) (1.158)

and is positive under our assumptions. As we extensively explained, the
Misner–Sharp mass, or energy for short, is the value 𝐸(𝑣) taken by 𝑀(𝑣, 𝑟)
on the trapping horizon, i.e.

𝐸(𝑣) = 𝑀(𝑣, 𝑟𝐻(𝑣)) =
𝑟𝐻(𝑣)

2
. (1.159)

Using Eq. (1.156) one can show that an observer at rest at 𝑟 ≫ 𝑟𝐻 sees a
quasi-static geometry with a luminosity 𝐿 = −𝑑𝐸/𝑑𝑣. We shall not assume,
initially, that 𝐿 has the Hawking form 𝐿 = ~𝒩𝐸−2, with 𝒩 a constant
proportional to the number of massless species radiated from the black hole.
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For sake of completeness, we note that a cosmological constant can be
introduced via

𝑑𝑠2 = −𝑒2Φ(𝑟,𝑣)

(︂
1 − 2𝑀(𝑟, 𝑣)

𝑟
− Λ𝑟2

3

)︂
𝑑𝑣2 +2𝑒Φ(𝑟,𝑣)𝑑𝑣𝑑𝑟+𝑟2𝑑Ω2 . (1.160)

We shall admit that Λ > 0; if 𝑀 is constant and Φ = 0 one recognises the
Schwarzschild–de Sitter metric in advanced coordinates. Let us call 𝐶 the
expression in round brackets above; the null normals and their expansions
are

ℓ+ =

[︂
1,

1

2
𝑒Φ𝐶, 0, 0

]︂
, 𝜃+ =

1

𝑟
𝑒Φ𝐶 (1.161)

ℓ− = [0,−𝑒−Φ, 0, 0], 𝜃− = −2𝑒−Φ

𝑟
. (1.162)

Hence the horizons are located in correspondence of the roots of the
equation 𝐶 = 0; the tractable case is𝑀 = 𝑀(𝑣). Then this becomes a cubic
equation which for 0 < 9Λ𝑀2 < 1, as is well known, admits precisely two
real positive roots 𝑟𝑐, 𝑟𝑏, with 𝑟𝑐 > 𝑟𝑏 by definition. We see that 𝜃+ vanishes
at both roots and 𝜃− < 0, therefore the horizon spheres 𝑟 = 𝑟𝑏, 𝑟 = 𝑟𝑐, are
marginally trapped surfaces of the future type which foliate a black hole and
a cosmological trapping horizon, respectively. One can easily show that

𝜕−𝜃+ = −1

𝑟
𝜕𝑟𝐶 .

Computing the radial derivatives at both horizons we see that this is negative
at 𝑟𝑏 and positive at 𝑟𝑐. The cosmological horizon is therefore an example of
a trapping horizon of inner type, the black hole horizon at 𝑟 = 𝑟𝑏 remaining
of the outer type.

Rays tracing

The most important features of a dynamical black hole of the kind discussed
here are: (i) the existence of the irremovable space-like singularity at the
origin 𝑟 = 0 of the coordinate system; (ii) the possible existence of a global
event horizon (ℋ in Fig. (1.3)); and (iii) the time-like future trapping horizon
(𝑇𝐻 in Fig. (1.3)).
We have seen that the BV form and the PG form are locally diffeomorphic
to each other with the mass function transforming as a scalar field, so the
causal structure of both solutions must be the same. A visual picture of the
trapping horizon for an evaporating black hole is displayed in Fig. (1.3).
The horizontal line represents the space-like singularity 𝑟 = 0. Consider the
radial outgoing null rays: in BV form they obey the differential equation

�̇� ≡ 𝑑𝑟

𝑑𝑣
=

1

2
𝑒Φ
(︂

1 − 2𝑀

𝑟

)︂
(1.163)
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Figure 1.3: Evaporating black hole: the trapping horizon is at points where
the radial outgoing rays have zero speed (dotted line). The event horizon ℋ
is represented by a dashed line. Red lines represent curves of constant 𝑟.

while ingoing rays simply are 𝑣 = 𝑣0, for some constant 𝑣0. For comparison,
in the PG form Eq. (1.117) the same equation takes the form

�̇� =

(︃
±1 −

√︂
2𝑚

𝑟

)︃
𝑒Φ (1.164)

where 𝑚(𝑡, 𝑟) = 𝑀(𝑣, 𝑟) and the plus (minus) sign referring to outgoing
(ingoing) rays. Returning to the BV form, the event horizon is an outgoing
null surface,

�̇�𝐸𝐻 =
1

2

(︂
1 − 2𝑀

𝑟𝐸𝐻

)︂
𝑒Φ < 0 (1.165)

so that 𝑟𝐸𝐻 < 𝑟𝐻 = 2𝑀 . The acceleration close to the trapping horizon is

𝑟 = −𝑒Φ �̇�

2𝑀
+

𝑒Φ

4𝑀
(1 − 2𝑀 ′)�̇� ≃ 𝑒Φ𝐻

𝑟𝐻
𝐿+

𝑒Φ

4𝑀
(1 − 2𝑀 ′)�̇� > 0 . (1.166)
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We see that in both cases at the TH, which we recall is the line 𝑟 = 2𝑀(𝑣, 𝑟)

for BV or 𝑟 = 2�̃�(𝑡, 𝑟) for PG, photons are only momentarily at rest, sub-
sequently escaping on a dynamical time scale 𝜅−1, where 𝜅 is the surface
gravity Eq. (1.158). Therefore outgoing photons (massless particles) have
�̇� < 0 before reaching the trapping horizon and 𝑟 must decrease on going
to the horizon. This can be seen from the lines of constant 𝑟 in Fig. (1.3).
Implicit in the Figure is also the idea that the Misner–Sharp mass has a
non zero limit as 𝑣 → −∞. More complicated dynamics are possible in
general depending on the mass function, including the possibility of horizon
formation at finite times (some of these are discussed in Kodama’s original
paper [113]).

The fact that �̇� = 0 at the trapping horizon and only there is one of
the most important facts at the root of the quantum tunnelling phenomenon.
Now we would like to consider the case where 𝑀(𝑟, 𝑣) goes to a constant
at very large negative advanced time and the trapping horizon extends to
past infinity, since this is the region when the black hole does not radiate
yet. In this case all radial null geodesics emerging from the trapping horizon
seem to do so at 𝑣 = −∞, because the speed vanishes at 𝑟 = 2𝑀 (or 2�̃�).
For particles with non zero angular momentum the trapping horizon is not
a surface of momentarily zero speed. For instance, in the equatorial plane
the velocity is given by

�̇� =
1

2

(︂
1 − 2𝑀

𝑟

)︂
𝑒Φ − 𝐽2

2𝑟2
(1.167)

where 𝐽 is the conserved angular momentum per unit mass. The essential
point is that �̇� < 0 at 𝑟 = 2𝑀 , so that for a rotating particle it will even
be harder to escape quantum mechanically than to a non rotating one. We
will see in the next section that the presence of angular momentum will
not affect the main conclusion that the radiation originates close to the
trapping horizon, not the global event horizon. Actually, the global event
horizon cannot even be computed without knowledge of the dynamics near
the evaporation end point. A practical definition was given by Bardeen [86]:
one looks for photons that can only reach large 𝑟 in a time comparable to
the evaporation time ∼ 𝐸/𝐿≫ 𝐸. Thus, the event horizon is located by the
unaccelerated photons with 𝑟 = 0. From Eqs. (1.163) and (1.166) it follows
then that

�̇�𝐸𝐻 ≃ −2𝐿/𝑟𝐻𝜅, 𝑟𝐸𝐻 ≃ 2𝐸

(︂
1 − 2𝐿

𝑟𝐻𝜅

)︂
≃ 2𝐸(1 − 4𝐿) (1.168)

should be a solution to Eq. (1.165) to first order in the black hole luminosity
𝐿 (which is very small for large black holes) and ignoring contributions due
to Φ and 𝑀 ′ which are known to be negligible to first order in 𝐿 [87]. This
is the result of Bardeen–York.
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Tunnelling paths

We propose now to compute the probability amplitude for a quantum particle
to cross a trapping horizon. We do this by making use of the Hamilton–
Jacobi method. Recall that, in the spherically symmetric dynamical case, it
is possible to introduce the Kodama vector field𝐾 such that (𝐾𝛼𝐺𝛼𝛽);𝛽 = 0,
actually its defining property. Given the metric Eq. (1.119), the Kodama
vector components are

𝐾𝑖(𝑥) =
1√
−𝛾

𝑒𝑖𝑗𝜕𝑗𝑅 , 𝐾𝜃 = 0 = 𝐾𝜑 . (1.169)

where 𝑒𝑖𝑗 is the numerical skew tensor with 𝑒01 = 1. The Kodama vector
gives a preferred flow of time and in this sense it generalises the flow of time
given by the Killing vector in the static case (see [126] for a detailed study
of the space-time foliation it determines). The conserved charges associated
to 𝐾, Eqs. (1.143) and (1.144), are respectively the volume and the Misner–
Sharp mass of space-time. We may also use the Kodama flow to define the
invariant energy associated with a particle by means of the scalar quantity
on the normal space

𝜔 = −𝐾𝑖𝜕𝑖𝐼 , (1.170)

where 𝐼 denotes the classical action of the massless particle, which we assume
to satisfy the reduced Hamilton–Jacobi equation

𝛾𝑖𝑗𝜕𝑖𝐼𝜕𝑗𝐼 = 0 . (1.171)

Thus, for example, 𝜔 = −𝑒−Φ𝜕𝑣𝐼 will be the particle energy on an extremal
in a BV gauge; we may note that this gauge is only fixed up to diffeo-
morphisms 𝑣 → 𝑣

′
= 𝑣

′
(𝑣), under which the field Φ(𝑣, 𝑟) transforms as a

conformal field, Φ(𝑣, 𝑟) → Φ
′
(𝑣

′
, 𝑟) = Φ(𝑣, 𝑟) + log |𝑑𝑣′

/𝑑𝑣|. Therefore 𝜔
will not depend on the choice of advanced time which respect to the BV
form of the metric. Similarly, in Painlevé–Gullstrand gauge the invariant
energy is 𝜔 = 𝑒−Φ𝜕𝑡𝐼, and is gauge invariant under time re-parametrisation
𝑡→ 𝑡 = 𝑡(𝑡).

To illustrate the method we shall work in s-wave and omit the angular
dependence of 𝐼. We stress the importance to have at disposal an invariant
definition of energy. Eq. (1.170) certainly satisfies this requirement if the
action is a scalar. In the following our aim will be to show that there is a
precise invariant prescription to deal with the imaginary part of the action,
in case there is one, which is valid for all solutions in all coordinate systems
which are regular across the horizon. The task is to compute

Im
∫︁
↘ 𝑑𝐼 (1.172)

along a tunnelling path, say 𝛾. A priori there are two types of such tun-
nelling paths, which we shall call type-I and type-II, because a pair may
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form on either sides of the trapping horizon. A type-I path corresponds to
a pair forming outside and therefore will be a backward null ray coming out
from the future singularity at 𝑟 = 0, crossing the trapping horizon and sub-
sequently escaping to infinity, as illustrated in Fig. (1.3). The figure is the
dynamical analogue of the corresponding figure in Schwarzschild space-time,
except that it is smooth at �̇� = 0, namely at the trapping horizon. A type-II
path corresponds to a pair forming in the trapped region, so we may take a
backward null ray crossing the event horizon from the singularity till some
interior point, which subsequently escapes to infinity along a null ray cross-
ing the trapping horizon at some other event. In some cases such a path
(namely an outgoing light ray emerging from the trapping horizon) seems
to emerge from the trapping horizon at 𝑣 = −∞ in advanced time, there-
fore in this case, type-II paths are those with exactly one point, the starting
point, lying on the horizon. Type-II paths are absent in static geometries,
since there is no region in between the two horizons. The segment of type-II
paths crossing the horizon outward seems nevertheless an allowed classical
path so one may wonder whether they can contribute to an emission ampli-
tude: does the pole disappear? We will see indeed that on such paths the
radial momentum vanishes, basically for the reason that the speed is zero on
the trapping horizon — and only there — so in fact they do not contribute
semi-classically.

We shall illustrate these results in some of the gauges we discussed above
for spherically symmetric space-times, having two main purposes: to illus-
trate the intrinsic covariance of the result and to display how contributions
to the tunnelling amplitude may or may not come from all terms in the
differential form 𝑑𝐼 = 𝜕𝑖𝐼𝑑𝑥

𝑖. We also have the opportunity to test the for-
malism and to see how different can be the prosaic description of the same
physical effect from the perspective of other coordinate systems, a fact well
known in special and general relativity.

The BV gauge

Here the metric is

𝑑𝑠2 = −𝑒2Φ𝐶𝑑𝑣2 + 2𝑒Φ𝑑𝑣𝑑𝑟 + 𝑟2𝑑Ω2 (1.173)

where 𝑀 = (1 − 𝐶)𝑟/2 is the Misner–Sharp mass discussed in 1.2.2. The
Kodama vector and the invariant particle energy assume the simple expres-
sions given by 𝐾 = (𝑒−Φ,0) and 𝜔 = −𝑒−Φ𝜕𝑣𝐼, while the invariant surface
gravity is just given by 𝜅𝐻 = 𝜕𝑟𝐶𝐻/2. As noted above Φ transforms as an
ordinary Liouville field, i.e. Φ → Φ + log |𝜕𝑣/𝜕𝑣|, under 𝑣 → 𝑣(𝑣), making
𝜔 invariant under re-parametrisation of the advanced time coordinate.

Type-II tunnelling paths are easily dispensed for: they cross the horizon
along a null direction which is outward with zero speed at the horizon, so
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�̇� = 0 at and in a neighbourhood of the horizon, or 𝑑𝑟 = 0 along the null
direction; therefore on a small segment crossing the trapping horizon we have∫︁

𝜕𝑟𝐼 𝑑𝑟 = 0 .

On a real trajectory the energy is real and finite everywhere, which shows
that the temporal 𝑣-contribution does not play any role, too, in what con-
cerns us at the moment (the evaluation of Im 𝐼). Thus Im 𝐼 = 0 on type-II
paths.

For a type-I path the ray crosses the horizon along a null ingoing ray
but in the backward direction; such a ray has 𝑣 = 𝑣0 (some constant) and
𝛿𝑣 = 0 exactly, therefore again the 𝜕𝑣𝐼𝑑𝑣 term will vanish at the horizon
and 𝛿𝑟 > 0. From the Hamilton–Jacobi equation we see that, for outgoing
modes of the kind we consider,

𝐶(𝜕𝑟𝐼) = 2𝜔 . (1.174)

Thus one has

Im 𝐼 = Im
∫︁
𝛾

(𝜕𝑟𝐼𝑑𝑟 + 𝜕𝑣𝐼𝑑𝑣) = Im
∫︁
𝛾
𝑑𝑟

2𝜔

𝐶

= 2 Im
∫︁
𝛾
𝑑𝑟

𝜔

𝜕𝑟𝐶
⃒⃒
𝐻

(𝑟 − 𝑟𝐻 − 𝑖𝜖)
=
𝜋𝜔𝐻
𝜅𝐻

, (1.175)

where 𝜔𝐻 is 𝜔 evaluated on the horizon, the quantity 𝐶 has been expanded
around the horizon pole, that is

𝐶(𝑣, 𝑟) = 𝜕𝑟𝐶
⃒⃒⃒
𝐻

∆𝑟 + . . . (1.176)

and Feynman’s 𝑖𝜖-prescription has been implemented in order to deal with
the simple pole. 𝜅𝐻 = 𝜕𝑟𝐶

⃒⃒
𝐻
/2 is the horizon surface gravity and coin-

cides with our geometrical expectations. Unlike the stationary black holes,
where 𝜔 is a constant of motion, here we get the local energy and temper-
ature as measured near the horizon, which are connected to the quantities
at infinity by the corresponding red-shift factors. We see that, in a BV co-
ordinate system, the temporal integration does not give any contribution to
the imaginary part of the action of particles tunnelling through the trapping
horizon.

It will be very important to discuss the physical meaning of this result
but we prefer to postpone this discussion to the end of the section, after we
will have shown that the tunnelling amplitude is not an artefact due to a
special coordinate system but holds as good as in any other.
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The conformal two-dimensional gauge

A coordinate system where the temporal contribution to the action plays an
essential role is the general diagonal form of a spherically symmetric metric,
which reads

𝑑𝑠2 = 𝑒𝜓(𝑡,𝑟)
(︀
−𝑑𝑡2 + 𝑑𝑟2

)︀
+𝑅2(𝑡, 𝑟)𝑑Ω2 . (1.177)

In this form, the normal metric is conformally related to the two-dimensional
Minkowski space-time. The 𝜒 function simply reads

𝜒 = 𝑒−𝜓
[︀
−(𝜕𝑡𝑅)2 + (𝜕𝑟𝑅)2

]︀
, (1.178)

If 𝑅(𝑡, 𝑟) is a monotonically increasing function of 𝑟 (the normal case) then
this leads to the future trapped horizon condition

(𝜕𝑡𝑅)𝐻 + (𝜕𝑟𝑅)𝐻 = 0 . (1.179)

If instead 𝑅(𝑟, 𝑡) is decreasing as a function of 𝑟, then we have to take
the opposite relative sign, because we expect that an evaporating horizon
should have a negative time derivative, (𝜕𝑡𝑅)𝐻 < 0. A computation of
the expansion scalars will confirm this fact. The Kodama vector and the
associated invariant energy are

𝐾 = 𝑒−𝜓 (𝜕𝑟𝑅,−𝜕𝑡𝑅, 0, 0) , (1.180)

𝜔 = 𝑒−𝜓 (−𝜕𝑟𝑅𝜕𝑡𝐼 + 𝜕𝑡𝑅𝜕𝑟𝐼) . (1.181)

The dynamical surface gravity reads

𝜅𝐻 =
1

2
𝑒−𝜓𝐻

(︀
−𝜕2𝑡𝑅+ 𝜕2𝑟𝑅

)︀ ⃒⃒⃒
𝐻
. (1.182)

Due to conformal invariance, the Hamilton–Jacobi equation is the same as
in two-dimensional Minkowski space-time, namely using double null coordi-
nates 𝜕+𝐼𝜕−𝐼 = 0, and for the outgoing particle we may take

𝜕+𝐼 = 𝜕𝑡𝐼 + 𝜕𝑟𝐼 = 0 , (1.183)

since the radial momentum 𝑝𝑟 = 𝜕𝑟𝐼 > 0 and 𝜕𝑡𝐼 < 0 for a real outgoing
particle. Given that for a type-II path the null expansion condition leads to
𝛿𝑥− = 𝛿𝑡 − 𝛿𝑟 = 0, we get 𝑑𝐼 = 𝜕+𝐼𝑑𝑥

+ + 𝜕−𝐼𝑑𝑥
− = 0 on account of the

Hamilton–Jacobi equation, and there is no imaginary part. On reflection,
this result seems to violate our basic tenet that there is no amplitude because
the photon speed vanishes at the horizon. In fact, the coordinate speed
�̇� = ±1 everywhere in conformal gauge and it never vanishes. However, the
speed of the wave front is

�̇� = 𝜕𝑟𝑅 �̇� + 𝜕𝑡𝑅
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and this vanishes on 𝐻 for an outgoing photon with �̇� = 1, on account of the
horizon equation Eq. (1.179). Thus, what really matters is that the speed
of the areal radius should vanish at the horizon.

But there are also the type-I tunnelling paths, for which the null expan-
sion gives 𝛿𝑥+ = 𝛿𝑡+ 𝛿𝑟 = 0. Therefore in this case

𝐼 =

∫︁
𝛾

(𝑑𝑟 𝜕𝑟𝐼 + 𝑑𝑡 𝜕𝑡𝐼) = 2

∫︁
𝛾
𝑑𝑟 𝜕𝑟𝐼 . (1.184)

Furthermore, due to Eqs. (1.181) and (1.183), one has

𝜕𝑟𝐼 =
𝜔

𝑒−𝜓(𝜕𝑟𝑅+ 𝜕𝑡𝑅)
. (1.185)

and we have a pole at the horizon. Making use of near horizon approximation
along the null direction, from Eqs. (1.179) and (1.182), one has (𝜕𝑟𝑅)𝐻 +
(𝜕𝑡𝑅)𝐻 = 0, 𝛿𝑡 + 𝛿𝑟 = 0, thus with the understanding that we shall put
𝛿𝑟 = 𝑟 − 𝑟𝐻 , we get

𝑒−𝜓[𝜕𝑟𝑅+ 𝜕𝑡𝑅] = 𝑒−𝜓𝐻
(︀
𝜕2𝑟𝑟𝑅− 𝜕2𝑟𝑡𝑅− 𝜕2𝑡𝑡𝑅+ 𝜕2𝑡𝑟𝑅

)︀ ⃒⃒⃒
𝐻

(𝑟 − 𝑟𝐻) + . . .

= 2𝜅𝐻(𝑟 − 𝑟𝐻) + . . . (1.186)

and the imaginary part follows. If 𝑅(𝑡, 𝑟) is a decreasing function of 𝑟 then
we shall have to take 𝑝𝑟 = 𝜕𝑟𝐼 < 0 but again 𝜕𝑡𝐼 < 0 so the Hamilton–Jacobi
equation implies now 𝜕−𝐼 = 0 along the tunnelling path. Moreover since 𝑟
is decreasing as 𝑅 increases (i.e. toward infinity), on an outgoing (ingoing)
null direction we have 𝛿𝑡 + 𝛿𝑟 = 0 (𝛿𝑡 − 𝛿𝑟 = 0) and the horizon condition
becomes

(𝜕𝑡𝑅− 𝜕𝑟𝑅)
⃒⃒⃒
𝐻

= 0

instead of Eq. (1.179). It is now simple to see that a tunnelling type-II path
gives no amplitude at all, but that a type-I does produce an imaginary part
with the right magnitude and sign. In fact in this case we obtain first

𝜕𝑟𝐼 = − 𝜔

𝑒−𝜓(𝜕𝑟𝑅− 𝜕𝑡𝑅)
.

then, recalling 𝜕−𝐼 = 0,

𝑑𝐼 = 𝜕+𝐼𝑑𝑥
+ = 2𝜕𝑟𝐼𝑑𝑟 = −2

𝜔

𝑒−𝜓(𝜕𝑟𝑅− 𝜕𝑡𝑅)
𝑑𝑟 ∼= −2

𝜔

𝜅𝐻(𝑟 − 𝑟𝐻)
𝑑𝑟 .

The integral of 𝑑𝐼 has to be done on the segment of the path crossing the
horizon along decreasing 𝑟, say from 𝑟2 to 𝑟1 with 𝑟1 < 𝑟2, and this is of
course minus the usual integral in increasing order; reversing the orientation
gives back the usual result

Im
∫︁
↘ 𝑑𝐼 =

𝜋𝜔

𝜅𝐻
.
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The synchronous gauge

Another coordinate system where the coordinate speed does not vanish at
the trapping horizon is described by the line element

𝑑𝑠2 = −𝑑𝑡2 +
1

𝐵(𝑟, 𝑡)
𝑑𝑟2 +𝑅2(𝑟, 𝑡)𝑑Ω2 = 𝑑𝛾2 +𝑅2(𝑟, 𝑡)𝑑Ω2 , (1.187)

in which the metric is diagonal, but 𝑅 is a function of 𝑟 and 𝑡. In this case,
one has

𝜒 = −(𝜕𝑡𝑅)2 +𝐵(𝜕𝑟𝑅)2 , (1.188)

If 𝑅(𝑟, 𝑡) is an increasing function of 𝑟, the horizon 𝜒𝐻 = 0 should be defined
by

(𝜕𝑡𝑅)𝐻 = −
√︀
𝐵𝐻(𝜕𝑟𝑅)𝐻 , (1.189)

in which we are assuming again a regular coordinate system on the horizon,
namely that 𝐵𝐻 and the partial derivatives are non-vanishing. For 𝑅 de-
creasing with 𝑟 one should change the sign to the right of Eq. (1.189). The
Kodama vector reads

𝐾 = (
√
𝐵𝜕𝑟𝑅,−

√
𝐵𝜕𝑡𝑅, 0, 0) , (1.190)

and the invariant energy

𝜔 =
√
𝐵(𝜕𝑟𝑅𝜕𝑡𝐼 − 𝜕𝑡𝑅𝜕𝑟𝐼) . (1.191)

The dynamical surface gravity is evaluated to be

𝜅𝐻 =
1

4

(︂
−2𝜕2𝑡𝑅𝐻 + 2𝐵𝐻𝜕

2
𝑟𝑅𝐻 +

1

𝐵𝐻
𝜕𝑡𝑅𝐻𝜕𝑡𝐵𝐻 + 𝜕𝑟𝑅𝐻𝜕𝑟𝐵𝐻

)︂
.

(1.192)
Making use of the horizon condition, we may rewrite it

𝜅𝐻 =
1

4

(︂
−2𝜕2𝑡𝑅𝐻 + 2𝐵𝐻𝜕

2
𝑟𝑅𝐻 − 1√

𝐵𝐻
𝜕𝑟𝑅𝐻𝜕𝑡𝐵𝐻 + 𝜕𝑟𝑅𝐻𝜕𝑟𝐵𝐻

)︂
.

(1.193)
In this case, the Hamilton–Jacobi equation reads simply

− (𝜕𝑡𝐼)2 +𝐵(𝜕𝑟𝐼)2 = 0 (1.194)

and for an outgoing particle we have to choose the root with 𝜕𝑟𝐼 > 0. There-
fore, in a type-II path crossing the trapping horizon we have

√
𝐵𝐻𝛿𝑡 = 𝛿𝑟,

in a neighbourhood of TH, because �̇� =
√
𝐵. As a consequence the outgoing

temporal contribution will cancel the radial one. Type-II paths will then give
no tunnelling amplitude. On reflection, this happens because although the
coordinate speed is non vanishing at the trapping horizon, the areal velocity
indicating the speed of the wave front

�̇� = 𝜕𝑟𝑅 �̇� + 𝜕𝑡𝑅
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does vanish on TH for an outgoing photon, which has �̇� =
√
𝐵, on account

of Eq. (1.189). On a type-I path instead
√
𝐵𝐻∆𝑡 = −∆𝑟, and the two

contributions add so that
𝐼 = 2

∫︁
𝛾
𝑑𝑟𝜕𝑟𝐼 . (1.195)

The Hamilton–Jacobi equation and the expression for the invariant energy
lead to

𝜕𝑟𝐼 =
𝜔

𝐵𝜕𝑟𝑅+
√
𝐵𝜕𝑡𝑅

. (1.196)

Making the expansion along the null curve, for which
√
𝐵𝐻∆𝑡+ ∆𝑟 = 0, in

the near-horizon approximation, one gets

Im 𝐼 = 2 · Im
∫︁
𝛾
𝑑𝑟

𝜔

2𝜅𝐻(𝑟 − 𝑟𝐻 − 𝑖𝜖)
=
𝜋𝜔𝐻
𝜅𝐻

, (1.197)

leading to the desired amplitude. But notice that in this gauge, the temporal
contribution is essential in order to obtain the correct result.

The 𝑟-gauge

The fact that type-II paths never contributed to the tunnelling amplitude
suggest that it is a general fact. Our last example will use a general metric
in the 𝑟-gauge to confirm this. The normal metric here is non-diagonal, but
as in BV gauge 𝑅 = 𝑟. We have

𝑑𝑠2 = 𝑑𝛾2 + 𝑟2𝑑Ω2 , (1.198)

where the reduced normal metric is now taken in the (redundant) form

𝑑𝛾2 = −𝐸(𝑟, 𝑡)𝑑𝑡2 + 2𝐹 (𝑟, 𝑡)𝑑𝑡𝑑𝑟 +𝐺(𝑟, 𝑡)𝑑𝑟2 , 𝐹 ̸= 0 . (1.199)

The horizon is located at the zeroes of

𝜒(𝑡, 𝑟) = 𝛾𝑖𝑗 𝜕𝑖𝑅𝜕𝑗𝑅 = 𝛾𝑟𝑟(𝑡, 𝑟) =
𝐸

𝐸𝐺+ 𝐹 2
= 0 (1.200)

i.e. at 𝐸𝐻 = 𝐸(𝑡, 𝑟𝐻) = 0, provided 𝐹𝐻 ̸= 0. The Misner–Sharp mass inside
a sphere of radius 𝑟 is

𝑀 =
𝑟

2

(︂
1 − 𝐸

𝐸𝐺+ 𝐹 2

)︂
(1.201)

and its value on the horizon is the black hole mass by definition, 𝑀 = 𝑟𝐻/2.
The other ingredient, the Kodama vector, reads

𝐾 =

(︂
1√

𝐹 2 + 𝐸𝐺
, 0, 0, 0

)︂
, (1.202)
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and the invariant particle energy follows

𝜔 = − 𝜕𝑡𝐼√
𝐹 2 + 𝐸𝐺

. (1.203)

The dynamical surface gravity is computed to be

𝜅𝐻 =
1

2
2𝛾𝑟

⃒⃒⃒
𝐻

=

[︂
1

2𝐹 3

(︂
𝐸′𝐹 − 1

2
�̇�𝐺

)︂]︂ ⃒⃒⃒
𝐻
, (1.204)

where an overdot and a prime denote differentiation with respect to 𝑡 and
𝑟, respectively. Now the horizon will be future and of outer type provided
𝐹 > 0 and 𝜅𝐻 > 0. We expect the mass within the sphere to be a decreasing
function of 𝑟; also, for an excreting black hole the time derivative �̇� should
be negative as well. From Eq. (1.201) this will be true if 𝐸′ > 0 and
�̇� > 0, although these are only sufficient conditions. It follows that for
𝐹 < 0, 𝜅𝐻 > 0 always but the horizon is foliated by past marginally trapped
surfaces (𝐺 > 0 of course), while for 𝐹 > 0 it is future and outer if the
inequality

𝐸′
⃒⃒⃒
𝐻
>

(︃
�̇�𝐺

2𝐹

)︃ ⃒⃒⃒
𝐻

(1.205)

is true, which we shall assume from now on. The outgoing null rays at the
horizon satisfy either �̇� = 0 or, if 𝐹 < 0, �̇� = −2𝐹/𝐺. Only the first type will
concern us, since photons from the past horizon should always be allowed
classically. In fact, from the Kodama energy expression (1.203) and Eq.
(1.200) as well, the Hamilton–Jacobi equation reads

𝜒(𝜕𝑟𝐼)2 − 2
𝜔𝐹√

𝐸𝐺+ 𝐹 2
𝜕𝑟𝐼 − 𝜔2𝐺 = 0 , (1.206)

Solving this, one sees that 𝜕𝑟𝐼 has no pole at 𝐻 (which is past for 𝐹 < 0) and
therefore no imaginary part is found. Returning to our case with 𝐹 > 0, on a
type-II path �̇� = 0 at the horizon therefore, as before, the radial momentum
vanishes and no imaginary term can come from

∫︀
𝜕𝑟𝐼 𝑑𝑟.

It remains to consider type-I paths. From the metric the null radial
expansion across the segment crossing the horizon outward gives
𝛿𝑡 = −(𝐺/2𝐹 )|𝐻𝛿𝑟, now with 𝐹 > 0, so we can expand the 𝜒 function along
this ingoing null direction to first order in 𝛿𝑟 = 𝑟 − 𝑟𝐻 . We obtain easily

𝜒 ∼= �̇�𝛿𝑡+𝜒′𝛿𝑟 =

(︂
𝜒′ − 𝐺

2𝐹
�̇�

)︂ ⃒⃒⃒
𝐻

(𝑟−𝑟𝐻)+· · · = 2𝜅𝐻(𝑟−𝑟𝐻)+𝑂
(︀
(𝑟 − 𝑟𝐻)2

)︀
(1.207)

where ∼= means evaluation on the horizon and Eq. (1.204) has been used.
Also, 𝜕𝑡𝐼 = −𝐹𝐻𝜔 from definition Eq. (1.203) and the horizon condition

69



𝐸 = 0. Hence we end up with 𝐼 given by the sum of a real term and a
possibly imaginary part coming from the horizon:

𝐼 =

∫︁
𝛾
(𝑑𝑟𝜕𝑟𝐼 + 𝑑𝑡𝜕𝑡𝐼) =

∫︁
𝛾
𝑑𝑟

[︂
𝜕𝑟𝐼 +

1

2
𝐺𝐻𝜔𝐻

]︂
. (1.208)

What is remarkable is that in this gauge the temporal part is present but, be-
ing regular, it does not contribute to the imaginary part of the action. From
the Hamilton–Jacobi equation Eq. (1.206) we get, choosing the solution with
positive radial momentum,

𝜕𝑟𝐼 =
𝜔𝐹√

𝐸𝐺+ 𝐹 2 𝜒
(2 +𝑂(𝜒)) . (1.209)

and we see that this has a pole at 𝜒 = 0. Making use of this equation,
Feynman’s prescription and Eq. (1.207), one has once more

Im 𝐼 = Im
∫︁
𝛾
𝑑𝑟 𝜕𝑟𝐼 = Im

∫︁
𝛾
𝑑𝑟

𝜔𝐹√
𝐹 2 + 𝐸𝐺

·
1 +

√︀
1 +𝑂(𝜒)

2𝜅𝐻 (𝑟 − 𝑟𝐻 − 𝑖𝜖)
=
𝜋𝜔𝐻
𝜅𝐻

.

(1.210)
We have shown in general that type-II paths will not contribute a tunnelling
amplitude to future trapping horizons (𝐹 > 0), because 𝛿𝑟 = 0 to first order
in 𝜒 and we are assuming the energy to be real and finite. As to type-I
paths the situation also is clear, they give a amplitude fully controlled by
the value of the geometrical surface gravity 𝜅𝐻 . This example also shows
the possibility of a quantum tunnelling through past trapping horizons of
outer type, as for 𝐹 < 0 there is an amplitude for a photon to cross with
negative radial momentum, i.e. for a photon to be absorbed (we are using
the mental picture of a past horizon as one from which it is impossible to
enter but very easy to escape). The fact that there is no imaginary part on
type-II paths either because the coordinate speed of a photon vanishes or
because the temporal contribution cancels the radial one was the source of
much confusion in the past literature. For instance, Belinski ventured to say
that there is no Hawking radiation from black holes just from this fact [127],
since he apparently forgot about the existence of type-I paths.

We end this section by noticing once more the special role of the trapping
horizon. The imaginary part being produced on crossing it, it should be
natural to think that this is the place where most of radiation forms. This has
been confirmed in [119], where it is shown that asymptotic observers register
a radiation flux that starts increasing at a time they see the collapsing shell
crosses the surface 𝑟 = 2𝑀 of the model used (a special case of Painlevé-
Gullstrand model with a time dependent mass, see Eq. (1.117)). The stress-
tensor for Vaidya space-time has been considered in [128,129] and should be
consistent with this result.

A note — In the previous computations various choices of signs have
been applied in such a way that it may seem they were chosen somewhat
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ad hoc in order to get the wanted result. This is not so. Once the future
sheet of the trapping horizon has been chosen, and the sign of the Kodama
vector determined so that it is future directed, no other sign uncertainties
will occur for either outgoing or ingoing particles if one uses consistently
the Hamilton–Jacobi equation for outgoing particles on every segment of the
tunnelling path; furthermore, questions such as the right form of the equa-
tions determining the horizon, the orientation of the space-time coordinates
and the sign of the metric coefficients are carefully established once for all.

On the other hand, if there exists a past sheet in the trapping horizon
then using the tunnelling picture we may as well compute the action along
an inward directed curve at the horizon (the ambiguity inherent in this and
analogous terms is easily resolved if the manifold is asymptotically flat).
Then there will be again a non-vanishing imaginary part, but we can interpret
it as a small absorption probability, as we did for the static case in relation
to white holes.

1.3 Cosmological horizons, decays, naked singular-
ities

In this section we review the formalism of horizon tunnelling as applied to
cosmological horizons, decay of unstable particles that in the absence of
gravity would be otherwise stable and radiation from naked singularities.
Especially the subject of horizon tunnelling in cosmology attracted much
interest recently, leading to a related stream of papers. A sample of these
articles which seemed relevant to us can be found in [130–132], although
we rely mainly on the papers [55, 133] and the references cited therein. We
shall follow mainly the Hamilton–Jacobi version of the tunnelling picture, al-
though the null geodesic method can be still applied. Results in this direction
appeared recently in [134], where the Parikh–Wilczek and Hamilton–Jacobi
methods are compared and showed to agree. An early study of the evolution
of evaporating black holes in inflationary cosmology is in [135].

1.3.1 The FRW space-time

Consider a generic FRW space-time, namely one with constant curvature
spatial sections. Its line element can be written as

𝑑𝑠2 = −𝑑𝑡2 +
𝑎2(𝑡)

1 − 𝑘𝑟2
𝑑𝑟2 + [𝑎(𝑡)𝑟]2𝑑Ω2 (1.211)

where 𝑟 is measured in units of the curvature radius and, as usual, 𝑘 =
0,−1,+1 labels flat, open and closed three-geometries, respectively. In this
gauge, the normal reduced metric is diagonal and the horizon is implicitly
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given by the equation 𝜒 = 0, where

𝜒(𝑡, 𝑟) = 1 − [𝑎(𝑡)𝑟]2
[︂
𝐻2(𝑡) +

𝑘

𝑎2(𝑡)

]︂
, (1.212)

namely

𝑅𝐻 := 𝑎(𝑡)𝑟𝐻 =
1√︁

𝐻2(𝑡) + 𝑘
𝑎2(𝑡)

, with 𝐻(𝑡) =
�̇�(𝑡)

𝑎(𝑡)
, (1.213)

provided the space-time energy density 𝜚(𝑡) is positive. As always it corre-
sponds to the vanishing of the wave front velocity whose radius is 𝑅 = 𝑎(𝑡)𝑟.
The surface 𝑅𝐻(𝑡) coincides also with the Hubble radius as defined by as-
tronomers for vanishing curvature, but we shall call it Hubble radius in any
case. The important case 𝑘 = 0 deserves special attention. The horizon is
the surface 𝑟�̇�(𝑡) = 1; substituting into the metric reveals the causal charac-
ter of the horizon: it will be null if and only if either 𝑝 = 𝜚/3 (radiation) or
𝜚 = −𝑝 (vacuum energy), 𝜚 and 𝑝 being the energy density and pressure, re-
spectively. It will be time-like or space-like according to whether |(𝜚+3𝑝)/2𝜚|
is less or greater than one. In the former case −𝜚 < 𝑝 < 𝜚/3, which covers
almost the totality of cosmological models, while the space-like character
can only be achieved if 𝑝 < −𝜚 (dubbed phantom energy) or 𝑝 > 𝜚/3, which
includes stiff matter. These results actually hold for non zero curvature too.
In Section 1.2.1 we defined future outer trapping horizons. The situation in
flat cosmology is easily spelled out: the horizon is a surface with 𝜃− = 0,
𝜃+ > 0 that for −𝜚 < 𝑝 < 𝜚/3 satisfies also 𝜕+𝜃− > 0. In the terminology
of Section 1.2.1 it can be classified as a past inner trapping horizon (abbr.
PITH), because all metric spheres at larger radii are trapped with 𝜃± > 0.
It means that given a comoving observer, a spherical light beam approach-
ing him from cosmic distance will have increasing area due to cosmological
expansion. One has to be careful here that the areal radius is 𝑅 = 𝑎(𝑡)𝑟, not
𝑟, so the area of the wave front is 4𝜋𝑅2 and the horizon can be written as
the condition 𝐻𝑅𝐻 = 1. Examples of a FITH are provided by the de Sitter
horizon and the collapsing Vaidya solution in de Sitter space, Eq. (1.160).

The dynamical surface gravity reads

𝜅𝐻 =
1

2
2𝛾 [𝑎(𝑡)𝑟] = −

(︂
𝐻2(𝑡) +

1

2
�̇�(𝑡) +

𝑘

2𝑎2(𝑡)

)︂
𝑅𝐻(𝑡) < 0 , (1.214)

and the minus sign refers to the fact the Hubble horizon is of the inner type.
Similarly, the Kodama vector is

𝐾 =
√︀

1 − 𝑘𝑟2(𝜕𝑡 − 𝑟𝐻(𝑡)𝜕𝑟) (1.215)

so that the invariant Kodama energy of a particle is equal to

𝜔 =
√︀

1 − 𝑘𝑟2(−𝜕𝑡𝐼 + 𝑟𝐻(𝑡)𝜕𝑟𝐼) ≡
√︀

1 − 𝑘𝑟2 �̃� . (1.216)
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Notice that 𝐾 is space-like for 𝑟𝑎 > (𝐻2 + 𝑘/𝑎2)−1/2, i.e. beyond the
horizon, so that particles will eventually tunnel from outside to the inner
region, 𝑟 < 𝑟𝐻 .

The next ingredient will be the reduced Hamilton–Jacobi equation for a
relativistic particle with mass parameter 𝑚, which reads

− (𝜕𝑡𝐼)2 +
(1 − 𝑘𝑟2)

𝑎2(𝑡)
(𝜕𝑟𝐼)2 +𝑚2 = 0 . (1.217)

Solving Eqs. (1.216) and (1.217) for 𝜕𝑟𝐼 and 𝜕𝑡𝐼 we obtain

𝜕𝑡𝐼 = −�̃� + 𝑟𝐻𝜕𝑟𝐼 (1.218)

𝜕𝑟𝐼 = −
𝑎𝐻�̃�(𝑎𝑟) ± 𝑎

√︁
𝜔2 −𝑚2 +𝑚2

(︀
𝐻2 + 𝑘

𝑎2

)︀
(𝑎𝑟)2

1 −
(︀
𝐻2 + 𝑘

𝑎2

)︀
(𝑎𝑟)2

, (1.219)

with the sign chosen according to which direction we think the particle is
propagating. The effective mass here defines two important and complemen-
tary energy scales: if one is interested in the horizon tunnelling then only
the pole matters (since the denominator vanishes), and we may neglect to all
the extents the mass parameter setting 𝑚 = 0 (since its coefficient vanishes
on the horizon). On the opposite, in investigating other effects in the bulk
away from the horizon, such as the decay rate of composite particles, the role
of the effective mass becomes relevant as the energy of the particle can be
smaller than the energy scale settled by 𝑚, and the square root can possibly
acquire a branch cut singularity. Eq. (1.219) will be the starting point of
our considerations since it embraces all semi-classical quantum effects we are
interested in.

1.3.2 Cosmic horizon tunnelling

Using Eq. (1.219) we may derive, following [55], the cosmic horizon tun-
nelling rate. To this aim, as we have anticipated, the energy scale is such
that near the horizon, we may neglect the particle’s mass, and note that ra-
dially moving massless particles follow a null direction. The horizon region
being a region with strong gravity we expect indeed some “particle creation”.
To a pair created near the horizon in the inner region 𝑟 < 𝑟𝐻 corresponds
a type-I path, one segment crossing the horizon backward in cosmological
time. To a pair created outside the horizon corresponds a type-II path, the
segment crossing the horizon inward being classically allowed. As in Section
1.2.3 only type-I paths will contribute to horizon tunnelling.

Take then a null radial direction crossing the horizon to the inner region:
we have

𝛿𝑡 =
𝑎(𝑡)√

1 − 𝑘𝑟2
𝛿𝑟 . (1.220)
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The action for particles coming out of the horizon towards the inner region
is to be integrated on a type-I path: then we must choose the solution with
negative radial momentum, 𝜕𝑟𝐼 < 0 and we obtain

𝐼 =

∫︁
𝑑𝑡 𝜕𝑡𝐼 +

∫︁
𝑑𝑟 𝜕𝑟𝐼 = 2

∫︁
𝑑𝑟𝜕𝑟𝐼 , (1.221)

upon solving the Hamilton–Jacobi equation (1.217) with zero mass and using
Eq. (1.220). Note that the time derivative of the action contributes to
the total imaginary part which, as we have seen, is a general feature of the
tunnelling method. For 𝜕𝑟𝐼 we use now Eq. (1.219), which exhibits a pole at
the vanishing of the function 𝐹 (𝑟, 𝑡) := 1−(𝑎2𝐻2+𝑘)𝑟2, defining the horizon
position. Expanding 𝐹 (𝑟, 𝑡) again along the null direction Eq. (1.220) we
obtain

𝐹 (𝑟, 𝑡) ≈ +4𝜅𝐻𝑎(𝑡)(𝑟 − 𝑟𝐻) + . . . , (1.222)

where 𝜅𝐻 given in Eq. (1.214) represents the dynamical surface gravity
associated with the horizon. In order to deal with the simple pole in the
integrand, we implement Feynman’s 𝑖𝜖 – prescription. In the final result,
beside a real (irrelevant) contribution, we obtain the following imaginary
part

Im 𝐼 = −𝜋𝜔𝐻
𝜅𝐻

. (1.223)

This imaginary part is usually interpreted as arising because of a non-
vanishing tunnelling probability rate of massless particles across the cos-
mological horizon,

Γ ∼ exp (−2Im 𝐼) ∼ 𝑒
− 2𝜋

(−𝜅𝐻 )
·𝜔𝐻 . (1.224)

Notice that, since 𝜅𝐻 < 0 and 𝜔𝐻 > 0 for physical particles, (1.223) is
positive definite. Due to the invariant character of the quantities involved,
we may interpret the scalar 𝑇 = −𝜅𝐻/2𝜋 as the dynamical temperature
parameter associated to FRW space-times. In particular, this gives naturally
a positive temperature for de Sitter space-time, a long debated question years
ago, usually resolved by changing the sign of the horizon’s energy. It should
be noted that in literature, the dynamical temperature is usually given in
the form 𝑇 = 𝐻/2𝜋 (exceptions are the papers [136]). Of course this is the
expected result for de Sitter space in inflationary coordinates, but it ceases
to be correct in any other coordinate system. In this regard, the �̇� and 𝑘
terms are crucial in order to get an invariant temperature. The horizon’s
temperature and the ensuing heating of matter was foreseen several years
ago in the interesting paper [137].

1.3.3 Decay rate of unstable particles

We consider the decay rate of a composite particle in a regime where the en-
ergy of the decaying particle is lower than the proper mass 𝑚 of the decayed
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products. A crucial point is to identify the energy of the particle before the
decay with the Kodama energy. We also denote 𝑚 the effective mass param-
eter of one of the decay products (recall it may contain a curvature terms).
The relevant contribution to the action comes from the radial momentum
given by Eq. (1.219). If we introduce the instantaneous radius 𝑟0 by

[𝑎(𝑡)𝑟0]
2 = 𝑅2

0 :=

(︂
1 − 𝜔2

𝑚2

)︂
𝑅2
𝐻 , (1.225)

where 𝑅𝐻 is the horizon radius given by Eq. (1.213), then the classically
forbidden region is 0 < 𝑟 < 𝑟0. From Eq. (1.219), we see that for the
unstable particle sitting at rest at the origin of the comoving coordinates,
one has an imaginary part of the action as soon as the decay product is
tunnelling into this region to escape beyond 𝑟0,

Im 𝐼 = 𝑚𝑅𝐻

∫︁ 𝑅0

0
𝑑𝑅

√︀
𝑅2

0 −𝑅2

𝑅2
𝐻 −𝑅2

. (1.226)

The integral can be computed exactly at fixed 𝑡, and the result is

Im 𝐼 =
𝜋

2
𝑅𝐻 (𝑚− 𝜔) > 0 , (1.227)

leading to a rate which, assuming a two-particle decay, takes the form

Γ = Γ0𝑒
−2𝜋 𝑅𝐻 (𝑚−𝜔) , (1.228)

where Γ0 is an unknown pre-factor depending on the coupling constant of
the interaction responsible of the decay (for instance, for a 𝜆𝜑3 interaction
one should have Γ0 ∼ 𝜆2). Of course, each newly produced particle will
itself decay, leading possibly to the instability mechanism first discussed
by Myhrvold [139] in de Sitter space. Since the tunnelling process locally
conserves energy one should put 𝜔 = 𝑚/2, so that the tunnelled particle
will emerge in the classical region at 𝑟 = 𝑟0 with vanishing momentum.
Furthermore, the result is again invariant against coordinate changes, since
both 𝜔 and 𝑅𝐻 are invariantly defined quantities.

A particularly interesting case is represented by de Sitter space. Taking
for example the line element in the static patch

𝑑𝑠2 = −(1 −𝐻2
0𝑟

2)𝑑𝑡2 +
𝑑𝑟2

(1 −𝐻2
0𝑟

2)
+ 𝑟2𝑑Ω2 , (1.229)

for the imaginary part (1.228) we obtain

Im 𝐼 =
𝜋

2𝐻0
(𝑚− 𝜔) (1.230)

75



a result actually independent of the coordinate system in use. Putting 𝜔 =
𝑚/2, the above result has been obtained by Volovik [138] using the so-called
“fluid” static form of de Sitter space

𝑑𝑠2 = −𝑑𝑡2 + (𝑑𝑅−𝐻0𝑅𝑑𝑡)
2 +𝑅2𝑑Ω2 . (1.231)

in agreement with the asymptotic approximation of the exact result due
to [140].

1.3.4 Particle creation by black holes singularities

One may also use the tunnelling formalism to investigate whether particle
creation in the bulk of space-time is possible due to the presence of space-
time singularities, for example due to static black holes. With regard to this,
we consider the exterior region of a spherically symmetric static black hole
space-time and repeat the same argument. Quite generally, we can write the
line element as

𝑑𝑠2 = −𝑒2Φ(𝑟)𝐶(𝑟)𝑑𝑡2 + 𝐶−1(𝑟)𝑑𝑟2 + 𝑟2𝑑Ω2. (1.232)

From the Hamilton–Jacobi equation, the radial momentum turns out to be∫︁
𝑑𝑟 𝜕𝑟𝐼 =

∫︁
𝑑𝑟

√︀
𝜔2 −𝑚2𝐶(𝑟)𝑒2Φ(𝑟)

𝐶(𝑟)𝑒Φ(𝑟)
. (1.233)

If we are interested in particle creation we should set 𝜔 = 0: in fact, ac-
cording to the interpretation of the Kodama energy we gave before, this
approximation simulates the vacuum condition. Then∫︁

𝑑𝑟 𝜕𝑟𝐼 = 𝑚

∫︁ 𝑟2

𝑟1

𝑑𝑟
1√︀

−𝐶(𝑟)
, (1.234)

where the integration is performed in every interval (𝑟1, 𝑟2) in which 𝐶(𝑟) >
0. Eq. (1.234) shows that, under very general conditions, in static black
hole space-times there could be a production rate whenever a region where
𝐶(𝑟) > 0 exists.

As a first example, let us analyse the Schwarzschild black hole. For the
exterior (static) solution, one has 𝐶(𝑟) = 1 − 2𝑀/𝑟 > 0 and Φ(𝑟) = 0,
thus the imaginary part diverges since the integral has an infinite range.
We conclude that the space-like singularity does not create particles in the
semi-classical regime. In the interior the Kodama vector is space-like, thus
no energy can be introduced. A similar conclusion has been obtained also
for the Big Bang cosmic singularity, the only scale factor leading to particle
emission being 𝑎(𝑡) ∼ 𝑡−1. This is like a big rip in the past.

The situation is different when a naked singularity is present. Consider a
neutral particle in the Reissner–Nordström solution with mass𝑀 and charge
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𝑄 > 0 (for definiteness) given by the spherically symmetric line element

𝑑𝑠2 = −(𝑟 − 𝑟−)(𝑟 − 𝑟+)

𝑟2
𝑑𝑡2 +

𝑟2

(𝑟 − 𝑟−)(𝑟 − 𝑟+)
𝑑𝑟2 + 𝑟2𝑑Ω2 . (1.235)

Here 𝑟± = 𝑀 ±
√︀
𝑀2 −𝑄2 are the horizon radii, connected to the black

hole mass and charge by the relations

𝑀 =
𝑟+ + 𝑟−

2
, 𝑄 =

√
𝑟+𝑟− . (1.236)

The Kodama energy coincides with the usual Killing energy and

𝐶(𝑟) =
(𝑟 − 𝑟−)(𝑟 − 𝑟+)

𝑟2
. (1.237)

The metric function 𝐶(𝑟) is negative in between the two horizons, where the
Kodama vector is space-like, so there the action is real. On the other hand, it
is positive within the outer communication domain, 𝑟 > 𝑟+, and also within
the region contained in the inner Cauchy horizon, that is 0 < 𝑟 < 𝑟−. Thus,
because of Eq. (1.234) and assuming the particles come created in pairs, we
obtain

Im 𝐼 = −𝑚
∫︁ 𝑟−

0

𝑟√︀
(𝑟− − 𝑟)(𝑟+ − 𝑟)

𝑑𝑟 = 𝑚𝑞 − 𝑚𝑀

2
ln

(︂
𝑀 +𝑄

𝑀 −𝑄

)︂
.

(1.238)
Modulo the pre-factor over which we have nothing to say, with the usual
interpretation there is a probability

Γ ∼ exp(−2𝐼𝑚 𝐼) =

(︂
𝑀 −𝑄

𝑀 +𝑄

)︂𝑚𝑀
𝑒−2𝑚𝑄 . (1.239)

Pleasantly, Eq. (1.239) vanishes in the extremal limit 𝑀 = 𝑄. Being com-
puted for particles with zero energy, we can interpret this as an effect of
particle creation by the strong gravitational field near the singularity. Since
the electric field is of order 𝑄/𝑟2 near 𝑟 = 0, there should be also a strong
Schwinger’s effect. In that case one should write the Hamilton–Jacobi equa-
tion for charged particles.

The processes just discussed should bear a bit on the question of the
stability of the Cauchy horizons. Due to infinite blue-shift of perturba-
tions coming in from the asymptotically flat exterior regions both sheets
of the Cauchy horizon (𝐻𝐹 and 𝐻𝑃 in Fig. (1.4)) are believed to be clas-
sically unstable. Of course, if the naked singularity is formed from col-
lapse of charged matter, one asymptotically flat region (say, the left one)
disappears. Taking into account particle creation, it can be easily seen
that escaping particles will reach the future portion 𝐻𝐹 of the inner hori-
zon with infinite blue-shift, or infinite Kodama energy, as measured by an
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observer on a Kodama trajectory. Hence, the future sheet will probably
become unstable, this time by quantum effects. On the other hand, the
particle reaching the singularity will do so with infinite red-shift, that is
with zero energy, giving a negligible back-reaction and substantially not
changing the nature of the singularity (its time-like character, for example).

Figure 1.4: A pair of particles is cre-
ated in the compact region inside the inner
horizon.

Thus, the only process poten-
tially capable of modifying the
singularity would be its conjec-
tured screening by absorption
of charged particles. Of course
the mass inflation phenomenon
is an issue here but, in the con-
text of perfect spherical sym-
metry, exact solutions of the
Einstein–Maxwell system exist
having both event and Cauchy
horizons and describing collapse
of spherical shells. For these
what we said should apply. The
present formalism also predicts
the absence of particle creation

in the region in between the two horizons, despite the metric there is dy-
namical. The possibility that the naked singularity itself radiates away its
mass will be taken up in the next section.

1.3.5 Naked singularities

A general reference on the physics of naked singularities is [141]. Particle
emission from naked singularities in higher dimensions has been studied also
in [142]. Sticking to two-dimensional models for simplicity, consider the
following metric [143]

𝑑𝑠2 = 𝜎−1𝑑𝑥+𝑑𝑥−, 𝜎 = 𝜆2𝑥+𝑥− − 𝑎(𝑥+ − 𝑥+0 )Θ(𝑥+ − 𝑥+0 ) (1.240)

where 𝜆 is related to the cosmological constant by Λ = −4𝜆2. This metric
arises as a solution of two-dimensional dilaton gravity coupled to a bosonic
field with stress tensor 𝑇++ = 2𝑎𝛿(𝑥+−𝑥+0 ), describing a shock wave. A look
at Fig. (1.5) reveals that 𝜎 = 0 is a naked singularity partly to the future of a
flat space region, usually named the linear dilaton vacuum. The heavy arrow
represents the history of the shock wave responsible for the existence of the
time-like singularity. The Hamilton–Jacobi equation implies either 𝜕+𝐼 = 0
or 𝜕−𝐼 = 0, 𝐼 being the action. To find the ingoing flux we integrate along
𝑥+ till we encounter the naked singularity, using 𝜕−𝐼 = 0, so that

𝐼 =

∫︁
𝑑𝑥+𝜕+𝐼 =

∫︁
𝜔
𝑑𝑥+

2𝜎
=

∫︁
𝜔 𝑑𝑥+

2(𝜆2𝑥− − 𝑎)(𝑥+ + 𝑎𝑥+0 /𝐶 − 𝑖𝜖)
(1.241)
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Figure 1.5: The naked singularity formed by the shock wave.

where 𝐶 = 𝐶(𝑥−) := (𝜆2𝑥− − 𝑎) and 𝜔 = 2𝜎𝜕+𝐼 is the familiar Kodama’s
energy. The imaginary part immediately follows on using (𝑥− 𝑖𝜖)−1 = 𝑃 1

𝑥 +
𝑖𝜋𝛿(𝑥), giving the absorption probability as a function of retarded time

Γ(𝜔) = Γ0 𝑒−2𝐼𝑚 𝐼 = Γ0 𝑒−𝜋𝜔/𝐶(𝑥−) , (1.242)

Γ0 being some pre-factor of order one. The flux is computed by integrating
the probability over the coordinate frequency (that is, the variable conju-
gated to the coordinate time) �̂� = 𝜔/𝜎, with the density of states measure
𝑑�̂�/2𝜋, which gives

𝑇++ =
Γ0

2𝜋

∫︁
Γ(𝜎�̂�) �̂� 𝑑�̂� = Γ0

(𝜆2𝑥− − 𝑎)2

2𝜋3𝜎2
. (1.243)

Similarly, in order to find the outgoing flux we integrate along 𝑥− starting
from the naked singularity, this time using 𝜕+𝐼 = 0. A similar calculation
gives

Im𝐼 =
𝜋𝜔

2𝜆2𝑥+
, (1.244)

then, integrating the probability over the coordinate frequency, we obtain

𝑇−− = Γ0
𝜆4(𝑥+)2

2𝜋3𝜎2
. (1.245)

The outgoing flux is 2(𝑇++ − 𝑇−−). The conservation equations

𝜎𝜕+𝑇−− + 𝜕−(𝜎𝑇+−) = 0, 𝜎𝜕−𝑇++ + 𝜕+(𝜎𝑇+−) = 0 (1.246)
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determine the components only up to arbitrary functions 𝐵(𝑥−) and 𝐴(𝑥+),
something which corresponds to the freedom in the choice of a vacuum. For
instance, requiring the fluxes to vanish in the linear dilaton vacuum fixes
them uniquely. As it is well known, 𝑇+− is given by the conformal anomaly:
𝑇 = 4𝜎𝑇+− = 𝑅/24𝜋 (for one bosonic degree of freedom). Matching to the
anomaly gives the pre-factor Γ0 = 𝜋2/24, of order one indeed. These results
agree with the one-loop calculation to be found in [143]. Note that the
stress tensor diverges while approaching the singularity, indicating that its
resolution will not be possible within classical gravity but requires quantum
gravity instead [144,145].

We return now to the Reissner–Nordström solution. Could it be that the
naked singularity emits particles? In the four-dimensional case one easily sees
that the action has no imaginary part along null trajectories either ending
or beginning at the singularity. Formally this is because the Kodama energy
coincides with the Killing energy in such a static manifold and there is no
infinite red-shift from the singularity to infinity. Even considering the metric
as a genuinely two-dimensional solution, this would lead to an integral for 𝐼

𝐼 =

∫︁
𝜔

(𝑟 − 𝑟+)(𝑟 − 𝑟−)

𝑟2
𝑑𝑥+ (1.247)

where 𝑥± = 𝑡± 𝑟*, with

𝑟* = 𝑟+
𝑟2+

𝑟+ − 𝑟−
ln

(︂
𝑟+ − 𝑟

𝑟+

)︂
−

𝑟2+
𝑟+ − 𝑟−

ln

(︂
𝑟− − 𝑟

𝑟−

)︂
=
𝑥+ − 𝑥−

2
. (1.248)

But close to the singularity

𝑟2 =

[︂
3𝑟+𝑟−

2
(𝑥+ − 𝑥−)

]︂2/3
+ · · · (1.249)

not a simple pole, rather, an integrable singularity. It is fair to say that the
Reissner–Nordström naked singularity will not emit particles in this approx-
imation. This seems to be coherent with quantum field theoretical results.
With the customary 𝑢 = 𝑥− and 𝑣 = 𝑥+, there is a map 𝑢 → 𝑣 = 𝐺(𝑢)
which gives the family of ingoing null geodesics, characterised by constant
values of 𝑣, which after reflection in the origin emerge as the the family of
outgoing null geodesics with constant 𝑢. According to [146], the radiated
s-wave power of a minimally coupled scalar field is given in terms of the map
𝐺(𝑢) by the Schwarzian derivative

𝒲 =
1

24𝜋

[︃
3

2

(︂
𝐺′′

𝐺′

)︂2

− 𝐺′′′

𝐺′

]︃
. (1.250)

The (𝑢, 𝑣) section of the Reissner–Nordström metric is conformally flat, hence
the above map is trivial (i.e. linear) and 𝒲 = 0.
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2 | Unruh-DeWitt detectors

2.1 Quantized fields in curved metrics

As a foreword to this chapter we shall introduce some concepts regarding
the quantization of fields living in generic curved metric. The topic has been
extensively covered in the literature (see e.g. [6]), hence we will recall only
the aspects that will be useful later.

In order to quantize a field in a generic 1+3 curved metric we will follow
the standard procedure used in Minkowski spacetime, then we will highlight
the features of gravity that impose a different interpretation for the particle
content of the field. The first step in translating the formalism from flat to
curved metrics involves the substitutions

𝜂𝜇𝜈 → 𝑔𝜇𝜈

𝜕𝜇 → ∇𝜇

It has to be noted, however, that the covariant derivative of a scalar
field coincides with the usual derivative. Making use of these tools, we can
construct the generalization of the Lagrangian density for the real scalar field
𝜑(𝑥) with mass 𝑚 coupled to a metric 𝑔𝜇𝜈 ,

ℒ(𝑥) =
1

2
√
−𝑔

[︀
𝑔𝜇𝜈 𝜑,𝜇 𝜑,𝜈 −

(︀
𝑚2 + 𝜉 𝑅

)︀
𝜑2
]︀

(2.1)

𝑅 is the Ricci scalar and the term 𝜉𝑅𝜑2 is the coupling between the scalar
field and the metric: a choice of 𝜉 = 0 corresponds to a minimal coupling ;
the case 𝜉 = 1/6 instead is called conformal coupling because, if𝑚 = 0 and if
the field transforms as 𝜑→ Ω−1(𝑥)𝜑, then the action and the field equation
are invariant under the conformal transformation

𝑔𝜇𝜈 → Ω2(𝑥)𝑔𝜇𝜈 (2.2)

where Ω(𝑥) is a continuous and non-vanishing real function.
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Keeping 𝜉 generic, the vanishing variation of the action obtained from
Eq.(2.1) gives the field equation

1√
−𝑔

𝜕𝜇
(︀√

−𝑔 𝑔𝜇𝜈𝜕𝜈𝜑
)︀

+
(︀
𝑚2 + 𝜉𝑅

)︀
𝜑 = 0 (2.3)

The mode solutions 𝑢𝑖 of Eq.(2.3) satisfy orthonormality conditions on con-
stant spacelike hypersurfaces Σ, so that every solution 𝜑 can be expanded in
terms of this orthonormal set as

𝜑(𝑥) =
∑︁
𝑖

(︁
𝑎𝑖 𝑢𝑖(𝑥) + 𝑎†𝑖 𝑢

*
𝑖 (𝑥)

)︁
(2.4)

where 𝑎𝑖 and 𝑎
†
𝑖 are creation and annihilation operators for the set of quan-

tities labeled by 𝑖. The quantization procedure itself involves then the im-
position of commutation relations between these operators,[︀

𝑎𝑖, 𝑎
†
𝑗

]︀
= 𝛿𝑖𝑗

[︀
𝑎𝑖, 𝑎𝑗

]︀
=
[︀
𝑎†𝑖 , 𝑎

†
𝑗

]︀
= 0 (2.5)

and the subsequent definition of the vacuum state of the Fock space as the
state annihilated by 𝑎𝑖, ∀𝑖. The complications due to the fact that spacetime
is curved arise here: in order to understand why, let’s analyze the two cases.

Minkowski spacetime. The group that leaves the Minkowski line element
unchanged is the Poincaré group, which naturally selects the rectangular co-
ordinate system (𝑡, 𝑥, 𝑦, 𝑧). In particular, Minkowski spacetime has a Killing
vector 𝜕

𝜕𝑡 which is everywhere orthogonal to the spacelike hypersurfaces of
constant 𝑡. The modes that satisfy the flat-space version of Eq. (2.3) are
always positive frequency with respect to 𝑡, i.e. are eigenfunctions of the
Killing vector:

𝜕

𝜕𝑡
𝑢𝑘 = −𝑖 𝜔 𝑢𝑘 , 𝜔 > 0 (2.6)

The vacuum state in this case is invariant under Poincaré transformations
or, equivalently, this is the vacuum on which all inertial observers agree.

Curved spacetime. Poincaré group is not a symmetry of the line element
if spacetime is generically curved: specifically, the general-relativistic request
of diffeomorphism invariance is translated in the physical irrelevance of coor-
dinate systems. In this case no general Killing vector can be found1 in order
to define positive frequency solutions of Eq.(2.3) and 𝜑 has no “natural”
decomposition: this ineherent ambiguity in the choice of mode decomposi-
tion leads to the non-uniqueness of annihilation operators and hence to the
non-uniqueness of the vacuum state.

1One can find particular spacetimes whose symmetries allow a definition of Killing
vectors and hence a coordinate system naturally associated to them. On the other hand
general covariance reminds us that the coordinate system in question is not to be consid-
ered special.
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2.2 Modelling a detector

A way to deal with this intrinsic ambiguity is to face it in a more pragmatic
way, following Unruh and DeWitt’s definition of particle as something de-
tected by a particle detector (see [6] and [149,150]).

The basic idea of a Unruh-DeWitt detector is fairly simple and involves
two ingredients:

1. a real scalar field 𝜑(𝑥0,x);

2. a localized detector, i.e. a two-level quantum system, endowed with
a trajectory (𝑥0(𝜏),x(𝜏)) and a set of eigenstates {|𝐸0⟩, |𝐸1⟩} with
eigenvalues 𝐸0 < 𝐸1.

Both the field and the detector live in a generic metric 𝑔𝜇𝜈 . All the dynamics
will be parametrized by the proper time 𝜏 along the trajectory.
The detector’s Hamiltonian of interaction with the scalar field is

�̂�𝐼 = 𝜆 �̂�(𝜏)𝜑(𝜏) (2.7)

where 𝜆 is a small coupling constant and �̂�(𝜏) is the monople moment of
the detector, whose evolution is given by �̂�𝑑, the detector’s Hamiltonian:

�̂�(𝜏) = 𝑒𝑖 �̂�𝑑 𝜏 �̂�(0) 𝑒−𝑖 �̂�𝑑 𝜏 (2.8)

Let the initial state of the system at time 𝜏0 be given by the product
|0⟩|𝐸0⟩, where |0⟩ is the vacuum state for the field: we want to know the
probability for the detector to be found in the state |𝐸1⟩ at a subsequent
time 𝜏1 > 𝜏0, irrespective of the state of the field 𝜑. In order to calculate
this quantity we make use of the interaction picture: we let operators evolve
according to the free Hamiltonian, while states will evolve according to the
interaction Hamiltonian. The transition amplitude we are interested in is
given by

⟨𝜑,𝐸1|0, 𝐸0⟩ = ⟨𝜑,𝐸1|𝑇 exp

[︂
−𝑖
∫︁ 𝜏1

𝜏0

�̂�𝐼 𝑑𝜏

]︂
|0, 𝐸0⟩ (2.9)

where 𝑇 is the time-ordering operator. We then expand to first order in 𝜆
the right-hand side of Eq.(2.9):

⟨𝜑,𝐸1 |̂I|0, 𝐸0⟩ − 𝑖 𝜆 ⟨𝜑,𝐸1|
∫︁ 𝜏1

𝜏0

𝑒𝑖 �̂�𝑑 𝜏 �̂�(0) 𝑒−𝑖 �̂�𝑑 𝜏 𝜑(𝜏) 𝑑𝜏 |0, 𝐸0⟩ =

= −𝑖 𝜆 ⟨𝐸1|�̂�(0)|𝐸0⟩
∫︁ 𝜏1

𝜏0

𝑒−𝑖 (𝐸1−𝐸0)𝜏 ⟨𝜑|𝜑(𝜏)|0⟩ (2.10)
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In order to obtain the probability for the detector to make the transition
|𝐸0⟩ → |𝐸1⟩, we square Eq.(2.10) and sum over all possible final states of
the field:∑︁

𝜑

|⟨𝜑,𝐸1|0, 𝐸0⟩|2 =

= 𝜆2 |⟨𝐸1|�̂�(0)|𝐸0⟩ |2
∫︁ 𝜏1

𝜏0

𝑑𝜏

∫︁ 𝜏1

𝜏0

𝑑𝜏 ′ 𝑒−𝑖 (𝐸1−𝐸0)(𝜏 ′−𝜏)⟨0|𝜑(𝜏)𝜑(𝜏 ′)|0⟩

The term in front of the integrals depends on the details of the detector.
In the following analysis we will need to focus only on the so-called response
function, which is universal, in the sense that it does not depend on the
internal structure of the particular detector:

𝐹𝜏0,𝜏1 (𝐸) =

∫︁ 𝜏1

𝜏0

𝑑𝜏

∫︁ 𝜏1

𝜏0

𝑑𝜏 ′ 𝑒−𝑖 𝐸(𝜏 ′−𝜏)⟨0|𝜑(𝜏)𝜑(𝜏 ′)|0⟩ (2.11)

where 𝐸 = 𝐸1 − 𝐸0 is the energy gap of the detector (it can be positive or
negative, depending on whether we take into account excitations or decays).
Now change variables of integration to 𝑢 = 𝜏 and 𝑠 = 𝜏 − 𝜏 ′ if 𝜏 > 𝜏 ′,
or 𝑢 = 𝜏 ′ and 𝑠 = 𝜏 ′ − 𝜏 if 𝜏 ′ > 𝜏 : using the fact that ⟨0|𝜑(𝜏)𝜑(𝜏 ′)|0⟩ =

⟨0|𝜑(𝜏 ′)𝜑(𝜏)|0⟩*, the response function can be recast in the form

𝐹𝜏0,𝜏1 (𝐸) = 2

∫︁ 𝜏1

𝜏0

𝑑𝑢

∫︁ 𝑢−𝜏0

0
𝑑𝑠Re

[︁
𝑒−𝑖 𝐸 𝑠⟨0|𝜑(𝜏)𝜑(𝜏 − 𝑠)|0⟩

]︁
(2.12)

This equation can be differentiated with respect to 𝜏1,

�̇�𝜏0,𝜏1 (𝐸) = 2

∫︁ 𝜏−𝜏0

0
𝑑𝑠Re

[︁
𝑒−𝑖 𝐸 𝑠⟨0|𝜑(𝜏)𝜑(𝜏 − 𝑠)|0⟩

]︁
(2.13)

where again 𝑢 = 𝜏 . Eq.(2.13) is the transition rate of the detector.

The quantity𝑊 (𝜏, 𝑠) = ⟨0|𝜑(𝜏)𝜑(𝜏−𝑠)|0⟩, the positive frequency Wight-
man function, is calculated by solving the equation of motion Eq.(2.3) and
expanding the field on the modes as schematically shown in Eq.(2.4). In the
following sections we will deal with conformally flat metrics2, obtained in
general by defining a conformal time 𝜂

𝑔𝜇𝜈 = Ω2(𝑥)
(︀
−𝑑𝜂2 + 𝑑x2

)︀
(2.14)

so that a comfortable choice will be a conformally coupled (𝜉 = 1/6) massless
scalar field. In this case the Wightman function is related to the Minkowskian
one simply through the conformal factor:

𝑊 (𝜏, 𝑠) =
1

Ω(𝜏)Ω(𝜏 − 𝑠)
· 1/4𝜋2

|x(𝜏) − x(𝜏 − 𝑠)|2 − |𝜂(𝜏) − 𝜂(𝜏 − 𝑠)|2
(2.15)

2In the case of non-conformally flat metrics, however, the choice of radial trajectories
in spherical symmetry allows to reduce the dimensionality of the problem from 1 + 4 to
1 + 1.
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Our last effort before analyzing some specific examples regards the reg-
ularization of this quantity, which has a double pole in the coincidence limit
𝑠 → 0. The 𝑖𝜖 prescription in this case has been shown by Takagi [7] and
Schlicht [8] to lead to unphysical results with regard to instantaneous proper-
time rate in Minkowski spacetime, so that a better choice would be [9, 10]

𝑊 (𝜏, 𝑠) =
1

Ω(𝜏)Ω(𝜏 − 𝑠)
· 1/4𝜋2

(𝑥(𝜏) − 𝑥(𝜏 − 𝑠))2 − 𝑖𝜖(�̇�(𝜏) − �̇�(𝜏 − 𝑠))2
(2.16)

which involves also the four-velocity �̇� along the trajectory. Although the
covariant 𝑖𝜖 prescription is necessary in order to deal with the second order
pole, one may try to avoid the awkward limit 𝜖→ 0+ by omitting the 𝜖-terms
and subtracting the leading pole at 𝑠 = 0. In this way Louko and Satz [9]
give the following expression for the transition rate:

�̇�𝜏 (𝐸) = − 𝐸

4𝜋
+

1

2𝜋2∆𝜏
+

1

2𝜋2

∫︁ Δ𝜏

0

(︁cos(𝐸𝑠)

𝜎2(𝜏, 𝑠)
+

1

𝑠2

)︁
𝑑𝑠 (2.17)

where 𝜎2(𝜏, 𝑠) = Ω(𝜏)Ω(𝜏 − 𝑠) (𝑥(𝜏) − 𝑥(𝜏 − 𝑠))2. It’s easy to see that
this expression will be different from zero even for an inertial detector in
Minkowski spacetime: the first term on the right-hand side represents the
spontaneous emission contribution.

A more suitable form can be obtained, from eq.(2.17), by simple manip-
ulations:

�̇�𝜏 (𝐸) = − 𝐸

4𝜋
+

1

2𝜋2𝜏
+

+
1

2𝜋2

[︂∫︁ ∞

0
cos(𝐸𝑠)

(︁ 1

𝜎2(𝜏, 𝑠)
+

1

𝑠2

)︁
𝑑𝑠−

∫︁ ∞

0

cos(𝐸𝑠) − 1

𝑠2

]︂
+

− 1

2𝜋2

{︂∫︁ ∞

𝜏

cos(𝐸𝑠)

𝜎2(𝜏, 𝑠)
𝑑𝑠+

∫︁ ∞

𝜏

𝑑𝑠

𝑠2

}︂
= − 𝐸

2𝜋
𝜃(−𝐸) +

1

2𝜋2

∫︁ ∞

0
cos(𝐸𝑠)

(︁ 1

𝜎2(𝜏, 𝑠)
+

1

𝑠2

)︁
𝑑𝑠 +

− 1

2𝜋2

∫︁ ∞

Δ𝜏

cos(𝐸𝑠)

𝜎2(𝜏, 𝑠)
𝑑𝑠 (2.18)

This is the transition rate that will be used in the following: in the last
expression, the first term contributes only for 𝐸 < 0 (spontaneous emission
term) and it will be discarded in the following; the second term is an integra-
tion over infinite time and it’s therefore an asymptotic contribution (simply
�̇� in the following); the last term instead takes into account that a realistic
detector has a “switch-on” and “switch-off” time, so it constitutes a finite-
time tail (𝐽𝜏 in the following) which vanishes in the limit ∆𝜏 → ∞ and, as
we will see, in the case of asymptotically stationary situations controls how
fast the thermal equilibrium is reached.
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2.3 Stationary metrics

2.3.1 Static black hole

The general metric for a static black hole reads

𝑑𝑠2 = −𝑉 (𝑟)𝑑𝑡2 +
𝑑𝑟2

𝑊 (𝑟)
+ 𝑟2𝑑Ω2 , (2.19)

where, for sake of simplicity, we shall assume 𝑊 (𝑟) = 𝑉 (𝑟), with 𝑉 (𝑟)
having just simple poles in order to describe what we might call a nice
black hole (suggested by Hayward). Let 𝑟𝐻 be the (greatest) solution of
𝑉 (𝑟) = 0, the general formalism tells us that the horizon is located at 𝑟 =
𝑟𝐻 ; the Kodama vector coincides with the usual Killing vector (1,0); and
the Hayward surface gravity is the Killing surface gravity, namely 𝜅𝐻 =
𝜅 = 𝑉 ′

𝐻/2. We now introduce the Kruskal-like gauge associated with this
static black hole solution. The first step consists in introducing the tortoise
coordinate

𝑟*(𝑟) =

∫︁ 𝑟 𝑑𝑟

𝑉 (𝑟)
. (2.20)

One has −∞ < 𝑟* <∞ and

𝑑𝑠2 = 𝑉 (𝑟*)[−𝑑𝑡2 + (𝑑𝑟*)2] + 𝑟2(𝑟*)𝑑Ω2
(2) . (2.21)

The Kruskal-like coordinates are

𝑅 =
1

𝜅
𝑒𝜅𝑟

*
cosh(𝜅𝑡) , 𝑇 =

1

𝜅
𝑒𝜅𝑟

*
sinh(𝜅𝑡) , (2.22)

so that
− 𝑇 2 +𝑅2 =

1

𝜅2
𝑒2𝜅𝑟

*
, (2.23)

and the line element becomes

𝑑𝑠2 = 𝑒−2𝜅𝑟* 𝑉 (𝑟*)[−𝑑𝑇 2 + 𝑑𝑅2] + 𝑟2(𝑇,𝑅)𝑑Ω2

≡ 𝑒Ψ(𝑟*)(−𝑑𝑇 2 + 𝑑𝑅2) + 𝑟2(𝑇,𝑅)𝑑Ω2 (2.24)

where now the coordinates are 𝑇 and𝑅, 𝑟* = 𝑟*(𝑇,𝑅), 𝑒Ψ(𝑟*) := 𝑉 (𝑟*)𝑒−2𝜅𝑟* .
The key point to recall here is that in the Kruskal gauge (2.24) the

normal metric – the important one for radial trajectories – is conformally
related to two dimensional Minkoswki space-time. The second observation
is that Kodama observers are defined by the integral curves associated with
the Kodama vector, thus the areal radius 𝑟(𝑇,𝑅) and 𝑟* are constant. As a
consequence, the proper time along Kodama trajectories reads

𝑑𝜏2 = 𝑉 (𝑟*)𝑑𝑡2 = 𝑒Ψ(𝑟*)(𝑑𝑇 2 − 𝑑𝑅2)

= 𝑎2(𝑟*)(𝑑𝑇 2 − 𝑑𝑅2) (2.25)
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so that 𝑡 = 𝜏/
√︀
𝑉 (𝑟*) and

𝑅(𝜏) =
1

𝜅
𝑒𝜅𝑟

*
cosh

(︃
𝜅

𝜏√︀
𝑉 (𝑟*)

)︃

𝑇 (𝜏) =
1

𝜅
𝑒𝜅𝑟

*
sinh

(︃
𝜅

𝜏√︀
𝑉 (𝑟*)

)︃
. (2.26)

The geodesic distance reads

𝜎2(𝜏, 𝑠) = 𝑒Ψ(𝑟*)
[︁
− (𝑇 (𝜏) − 𝑇 (𝜏 − 𝑠))2 +

+ (𝑅(𝜏) −𝑅(𝜏 − 𝑠))2
]︁
, (2.27)

and one gets, using (2.26),

𝜎2(𝜏, 𝑠) = −4𝑉 (𝑟*)

𝜅2
sinh2

(︃
𝜅 𝑠

2
√︀
𝑉 (𝑟*)

)︃
. (2.28)

Since 𝜎2(𝜏, 𝑠) = 𝜎2(𝑠) = 𝜎2(−𝑠), we can use eq.(2.18) in the limit when ∆𝜏
goes to infinity:

�̇� =
𝜅

8𝜋2
√
𝑉 *

∫︁ ∞

−∞
𝑑𝑥𝑒−

2𝑖
√
𝑉 *𝐸𝑥
𝜅

[︂
− 1

sinh2 𝑥
+

1

𝑥2

]︂
. (2.29)

The integral can be evaluated using the contour as in fig.(2.1) and by the
theorem of residues the final result is

Figure 2.1: The periodic poles
(×) of the regularized integrand in
eq.(2.29) in the complex 𝑥-plane
and the contour of integration: the
dashed path is sent to infinity.

�̇� =
1

2𝜋

𝐸

exp
(︁
2𝜋

√
𝑉 *𝐸
𝜅

)︁
− 1

.

(2.30)
Since the transition rate ex-

hibits the characteristic Planck
distribution, it means that the
Unruh–DeWitt thermometer in the
generic spherically symmetric black
hole space-time detects a quantum
system in thermal equilibrium at
the local temperature

𝑇 =
𝜅

2𝜋
√
𝑉 *

. (2.31)

With regard to the factor
√
𝑉 * =√

−𝑔00, recall Tolman’s theorem
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which states that, for a gravitational system at thermal equilibrium,
𝑇
√
−𝑔00 = constant. For asymptotically flat black hole space-times, one

obtains the “intrinsic” constant temperature of the Hawking effect, i.e.

𝑇𝐻 =
𝜅

2𝜋
=
𝑉 ′
𝐻

4𝜋
. (2.32)

We would like to point out that this is a quite general result, valid for
a large class of nice black holes, as for example Reissner-Nordström and
Schwarzschild-AdS black holes. On the other hand, the Schwarzschild-dS
black hole cannot be included, due to the presence of two horizons. However,
as an important particular case, we may consider the static patch of de Sitter
space, with a metric defined by

𝑉 (𝑟) = 1 −𝐻2
0𝑟

2 , 𝐻2
0 =

Λ

3
. (2.33)

The unique horizon is located at 𝑟𝐻 = 𝐻−1
0 and the Gibbons–Hawking tem-

perature is [13] 𝑇𝐻 = 𝐻0/2𝜋. In the next Section, we will present a derivation
of this well known result in another gauge.

We conclude this subsection making some remarks on de Sitter and anti-
de Sitter black holes. First, we observe that in a static space-time, namely
the one corresponding to a nice black hole, the Killing–Kodama observers
with 𝑟 = 𝐾 constant have an invariant acceleration

𝐴2 = 𝑔𝜇𝜈𝐴
𝜇𝐴𝜈 =

𝑉 ′2(𝐾)

4𝑉 (𝐾)
, (2.34)

where 𝐴𝜇 = 𝑢𝜈∇𝜈𝑢
𝜇, 𝑢𝜇 being the observer’s four-velocity, that is the (nor-

malized) tangent vector to the integral curves of the Kodama vector field.
In the case of de Sitter black hole, one has

𝐴2 =
𝐻4

0𝐾
2

1 −𝐻2
0𝐾

2
. (2.35)

As a result,

𝐴2 +𝐻2
0 =

𝐻2
0

1 −𝐻2
0𝐾

2
, (2.36)

and the de Sitter local temperature felt by the Unruh detector,

𝑇𝑑𝑆 =
𝐻0

2𝜋

1√︀
1 −𝐻2

0𝐾
2

(2.37)

can be re-written as [151,170]

𝑇𝑑𝑆 =
1

2𝜋

√︁
𝐴2 +𝐻2

0 =
√︁
𝑇 2
𝑈 + 𝑇 2

𝐺𝐻 . (2.38)
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A similar result was also obtained for AdS in [151], and it reads

𝑇𝐴𝑑𝑆 =
1

2𝜋

√︁
𝐴2 −𝐻2

0 . (2.39)

We would like to show that it is a particular case of our general formula
(2.31). In fact, it is sufficient to apply it to the four-dimensional topological
black hole with hyperbolic horizon manifold found in [80,81,153,154], which
is a nice black hole with

𝑉 (𝑟) = −1 − 𝐶

𝑟
+𝐻2

0𝑟
2 , (2.40)

where 𝐶 is a constant of integration related to the black hole mass. The
space-time is a solution of Einstein equation with negative cosmological con-
stant Λ = −3𝐻2

0 , which is asymptotically Anti-de Sitter. When the constant
of integration goes to zero, one has still a black hole solution, and calculation
similar to the one valid for de Sitter space-time gives

𝑇𝐴𝑑𝑆 =
𝐻0

2𝜋

1√︀
−1 +𝐻2

0𝐾
2

=
1

2𝜋

√︁
𝐴2 −𝐻2

0 , (2.41)

which is Deser et al. result [151]. Thus, for spherically symmetric space-
times with constant curvature one has that the local temperature felt by the
Kodama–Unruh–DeWitt detector can be written as

𝑇 =
√︁
𝑇 2
𝑈 + 𝛼𝑇 2

𝐺𝐻 , (2.42)

where 𝑇𝑈 is the Unruh temperature associated with the acceleration of the
Kodama observer, 𝑇𝐺𝐻 is the Gibbons–Hawking temperature and 𝛼 = 1
for the de Sitter space-time, 𝛼 = 0 for Minkowski space-time (this is the
original Unruh effect) and 𝛼 = −1 for the “massless" AdS topological black
hole. This formula may help to understand better the relation between the
Unruh-like effects and the genuine presence of a thermal bath and shows that,
in general, the Kodama–Unruh detector gives an intricate relation between
Killing–Hayward temperature and other invariant temperatures such as the
Unruh’s one. Note that 𝑇 in Eq. (2.31) is greater than 𝑇𝑈 = 𝐴(𝑟)/2𝜋 for
𝑟 > 𝑟𝐻 , where 𝐴 is the local acceleration of an observer following a Killing
trajectory in the black hole space-time, a fact that has been interpreted as a
violation of the equivalence principle [152]. We prefer to interpret this effect
as due to the additional presence of the Hawking radiation over the vacuum
thermal Unruh’s noise.

2.3.2 de Sitter spacetime

To apply the Unruh–DeWitt detector formalism to cosmology we consider a
generic FRW spatially flat space-time. This case has been investigated also
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in [156] (see also [158]). Recall that here the areal radius is 𝑅 = 𝑟𝑎(𝑡). Thus,
for the Kodama observer, one has

𝑟(𝑡) =
𝐾

𝑎(𝑡)
, (2.43)

with constant 𝐾. For a radial trajectory, the proper time in FRW is

𝑑𝜏2 = 𝑎(𝜂)(𝑑𝜂2 − 𝑑𝑟2) . (2.44)

As a function of the proper time, the conformal time along a Kodama tra-
jectory is

𝜂(𝜏) = −
∫︁
𝑑𝜏

1

𝑎(𝜂)
√︀

1 −𝐾2𝐻2(𝜏)

≡ −
∫︁
𝑑𝜏

1

𝑎(𝜏)
√︀
𝑉 (𝜏)

, (2.45)

𝐻(𝜏) being the Hubble parameter as a function of proper time. In general,
we may use Eq. (2.18) in which, for radial Kodama observer, one has

𝑥(𝜏) = (𝜂(𝜏), 𝑟(𝜏), 0, 0)

=

(︃
−
∫︁

1

𝑎(𝜏)
√︀
𝑉 (𝜏)

𝑑𝜏,
𝐾

𝑎(𝜏)
, 0, 0

)︃
. (2.46)

As a warm up, we first revisit the well known example of FRW space
is the stationary flat de Sitter expanding (contracting) space-time, which in
the FRW context is defined by considering 𝑎(𝑡) = 𝑒𝐻0𝑡. Thus,

𝑑𝑠2 = −𝑑𝑡2 + 𝑒2𝐻0𝑡(𝑑𝑟2 + 𝑟2𝑑Ω2) . (2.47)

Here 𝐻(𝑡) = 𝐻0 is constant as well as 𝑉 = 𝑉0 = 1 − 𝐻2
0𝐾

2. For Kodama
observers

𝜏 =
√︀
𝑉0 𝑡 , 𝑎(𝜏) = 𝑒

𝐻0√
𝑉0
𝜏
, (2.48)

and

𝜂(𝜏) = − 1

𝐻0
𝑒
− 𝐻0√

𝑉0
𝜏
, 𝑟(𝜏) = 𝐾 𝑒

− 𝐻0√
𝑉0
𝜏
, (2.49)

thus, the geodesic distance is

𝜎2𝑑𝑆(𝜏, 𝑠) = −4𝑉0
𝐻2

0

sinh2

(︂
𝐻0 𝑠

2
√
𝑉0

)︂
. (2.50)

This result is formally equal to the one obtained for the generic static black
hole (2.28). Since again 𝜎2(𝜏, 𝑠) = 𝜎2(𝑠) = 𝜎2(−𝑠), for 𝐸 > 0 and in the
infinite time limit

�̇� =
𝐻0

8𝜋2
√
𝑉0

∫︁ ∞

−∞
𝑑𝑥 𝑒

− 2𝑖
√

𝑉0𝐸𝑥

𝐻0

[︂
1

𝑥2
− 1

sinh2 𝑥

]︂
(2.51)
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Again, we arrive at

𝑑𝐹𝑑𝑆
𝑑𝜏

=
1

2𝜋

𝐸

exp
(︁
2𝜋

√
𝑉0𝐸

𝐻0

)︁
− 1

, (2.52)

which shows again that the Unruh–DeWitt thermometer in the FRW de
Sitter space detects a quantum system in thermal equilibrium at a temper-
ature 𝑇 = 𝐻0/2𝜋

√
𝑉0. Here, the Tolman factor takes the form a Lorentz

𝛾-factor, which represents the Unruh acceleration part. In fact, we recall
that the four-acceleration of a Kodama observer in a FRW space-time has
the expression

𝐴2 = 𝐴𝜇𝐴𝜇 = 𝐾2

[︃
�̇�(𝑡) + (1 −𝐻2(𝑡)𝐾2)𝐻2(𝑡)

(1 −𝐻2(𝑡)𝐾2)
3
2

]︃2
. (2.53)

As a result, for dS space in a time dependent spatially flat patch we have

𝐴2 =
𝐾2𝐻4

0

1 −𝐾2𝐻2
0

, (2.54)

showing that
𝐻0√︀

1 −𝐻2
0𝐾

2
=
√︁
𝐻2

0 +𝐴2 , (2.55)

in agreement with the dS static calculation. When 𝐾 = 0, that is when the
detector is co-moving, one has 𝑉0 = 1 and the classical Gibbons–Hawking
result 𝑇𝑑𝑆 = 𝐻0/2𝜋 is recovered.

Finite-time effects. We now present a brief discussion of finite-time ef-
fects which will be relevant to the following discussion on asymptotic be-
haviour: how is the thermal distribution of the response function reached in
the limit of very large times? In the case of non inertial particle detector in
Minkowski space-time, see [155], and for de Sitter FRW space see [157].

To answer this, we consider the finite time contribution due to the tail
𝐽𝜏 in Eq. (2.18) for de Sitter or black hole cases compared to the thermal
value given by the time-independent part. A direct calculation of 𝐽𝜏 for both
black holes and dS and using the fact that

csch2(𝑥) = 4

∞∑︁
𝑛=1

𝑛 𝑒−2𝑛𝑥 (2.56)
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gives

𝐽𝜏 =
𝜅2𝑙
8𝜋2

∫︁ ∞

Δ𝜏
𝑑𝑠

cos(𝐸 𝑠)

sinh2
(︀
𝜅𝑙𝑠
2

)︀
=

𝐸

2𝜋2

∞∑︁
𝑛=1

𝑛𝑒−2𝜋𝑛𝑇𝐻Δ𝜏

𝑛2 + 𝐸2/4𝜋2𝑇 2
𝐻

×

×
(︂

2𝜋𝑇𝐻
𝐸

𝑛 cos(𝐸∆𝜏) − sin(𝐸∆𝜏)

)︂
(2.57)

where 𝜅𝑙 is the rescaled surface gravity and 𝑇𝐻 = 𝜅𝑙/2𝜋 ≡ 𝜅/2𝜋
√
𝑉 the

local Hawking temperature. We recall that 𝜅 = 𝐻0 for de Sitter space and
𝜅 = 𝑉 ′(𝑟𝐻)/2 for the black hole: these quantities in fact determine the
characteristic time-scales the thermalization time has to be compared to.

We consider as before the peculiar Kodama observer for which 𝑉 = 1, so
that 𝑇𝐻 = 𝜅/2𝜋. As a general feature, the fluctuating tail term drops out
exponentially for large ∆𝜏 , that is for long proper time intervals in which
the detector stays on. In order to analyze the approaching to an equilibrium
condition of the response function, we consider the ratio between the finite-
time expression – the sum of �̇� and the tail 𝐽𝜏 – and �̇� alone, with the
agreement that equilibrium is attained whenever

𝑅𝑒𝑞 =
�̇� + 𝐽𝜏

�̇�
∼ 𝑂(1) .

Looking at (2.57) one easily sees that the equilibrium value, 𝑅𝑒𝑞 = 1, is
reached sooner if 𝐸/𝜅≪ 1. To be more precise, irrespective of the absolute
value of 𝜅, a detector that is switched on for a time much shorter than the
characteristic time-scale ∆𝜏 ≪ 𝜅−1, detects a thermal bath only with particles
whose energies are 𝐸 ≪ 𝜅; on the other hand, a thermal equilibrium for
particles with energies 𝐸 ≫ 𝜅 is registered only if the detector lifetime is
∆𝜏 ≫ 𝜅−1, which is the age of the universe. The Hubble scale corresponds
to an extremely small energy scale of order 10−42Gev, therefore 𝐸 ≫ 𝜅 is
the physical region.

It easy to see that if the factor 𝑉 < 1, the thermalization time decreases
for every energy scale.

Stability of Kodama trajectories. It is easy to see that a detector mov-
ing along a Kodama trajectory in an expanding de Sitter universe, has the
same dynamics of a particle which moves along the separatrix in the potential
of an inverted harmonic oscillator. From the equation of motion Eq.(2.43),
we can therefore introduce the effective Lagrangian

𝐿𝑖ℎ𝑜 = 𝑚

(︃(︂
𝑑𝑟

𝑑𝑡

)︂2

+𝐻2 𝑟2

)︃
(2.58)
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where 𝑚 is a parameter with mass dimension whose relation with physical
quantities will be clarified later. Our detector is initially (at 𝑡 = 0) repre-
sented by a Gaussian wave packet of size 𝑏 peaked around 𝑟 = 𝐾,

𝜓(0, 𝑟) =

exp

[︂
−𝑖𝐻 𝐾𝑚𝑟

~
− (𝑟 −𝐾)2

2 𝑏2

]︂
√︀
𝑏
√
𝜋

(2.59)

which is then propagated to later times by the propagator obtained from the
Lagrangian Eq.(2.58) (see, e.g., [147]),

𝐺(𝑡, 𝑟; 0, 𝑟′) =

√︃
𝑖𝐻 𝑚

2𝜋 ~ sinh(𝐻 𝑡)
exp

[︃
𝑖
𝐻 𝑚

[︀
(𝑟2 − 𝑟′2) cosh(𝐻 𝑡) − 2 𝑟 𝑟′

]︀
2 ~ sinh(𝐻 𝑡)

]︃
(2.60)

The complete expression of the detector’s propagated wavefunction is
rather cumbersome, however we notice that its square modulus reads

|𝜓(𝑡, 𝑟)|2 ≃ exp

[︂
− 2 𝑏2𝐻2𝑚2 (𝑟 −𝐾 𝑒−𝐻 𝑡)2

𝑏4𝐻2𝑚2 − ~2 + (~2 + 𝑏4𝐻2𝑚2) cosh(𝐻 𝑡)

]︂
(2.61)

which represents a Gaussian wave-packet peaked along the classical trajec-
tory Eq.(2.43) and spreading in time. The classical behaviour is properly
recovered in the limit ~ → 0 followed by 𝑏→ 0 [147], in which the detector’s
wavefunction 𝜓(𝑟, 𝑡) reproduces the usual Dirac 𝛿-function peaked on the
classical trajectory.

Now, in order to study the probability for the detector to absorb a scalar
quantum and make a transition between two different trajectories (parame-
terized by different 𝑚𝑖 and 𝐾𝑖), one needs to compute the transition ampli-
tude for finite 𝑏 and ~ (otherwise the result would automatically vanish, the
response function involving the product of two Dirac 𝛿’s peaked on differ-
ent trajectories). The detector also interacts with the quantized scalar field
𝜙 = 𝜙(𝑡, 𝑟) according to

ℒint =
1

2
𝑄 (𝜓*

2 𝜓1 + 𝜓2 𝜓
*
1)𝜙 (2.62)

where 𝑄 is a coupling constant and 𝜓𝑖 = 𝜓𝑖(𝑡, 𝑟) two possible states of
the detector corresponding to different trajectories 𝑟𝑖 = 𝐾𝑖 𝑒

−𝐻 𝑡 and mass
parameters 𝑚𝑖.3 We assume the difference between the two states is small,⎧⎨⎩

𝐾1 = 𝐾 − 1
2 𝛿𝐾

𝐾2 = 𝐾 + 1
2 𝛿𝐾

,

⎧⎨⎩
𝑚1 = 𝑚− 1

2 𝛿𝑚

𝑚2 = 𝑚+ 1
2 𝛿𝑚 ,

(2.63)

3A fundamental difference with respect to the Unruh effect analyzed in Ref. [148] is that
the acceleration parameter 𝐻 is not varied here, since it is a property of the background
space-time. A change 𝛿𝐾 implies a change in the detector’s acceleration.
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and expand to leading order in 𝛿𝐾 and 𝛿𝑚 and, subsequently, for short times
(𝐻 𝑡 ∼ 𝐻 𝑡′ ≪ 1), keeping ~ and 𝑏 finite. In particular, one obtains

𝜓*
2 𝜓1(𝑡)𝜓

*
1 𝜓2(𝑡

′) ≃ exp

[︂
−𝑖 𝐻

2𝐾2

~
𝛿𝑚 (𝑡− 𝑡′) +𝑂(𝑏)

]︂
(2.64)

in which we have evaluated the phase (in the saddle-point approximation)
with 𝑟 along the average trajectory between 𝑟1 and 𝑟2 [148].

Like the Unruh detector in [148], the above exponential does not contain
a real (quadratic in 𝛿𝐾) part, contrary to the case of a geodetic observer,
which implies that the transition amplitude will not vanish in the point-like
limit 𝑏 → 0. Upon comparing with the result obtained for the point-like
case, we immediately recognize that

𝐻2𝐾2𝑚 = 𝐸
√︀

1 −𝐻2𝐾2 (2.65)

where 𝐸 is the detector’s proper energy and

𝜓*
2 𝜓1(𝑡)𝜓

*
1 𝜓2(𝑡

′) ≃ exp

[︂
− 𝑖

~
𝛿𝐸
√︀

1 −𝐻2𝐾2 (𝑡− 𝑡′) +

+
𝑖

~
2 − 3𝐻2𝐾2

𝐾
√

1 −𝐾2𝐻2
𝐸 𝛿𝐾 (𝑡− 𝑡′) + 𝒪(𝑏)

]︂
(2.66)

We can now take the limit 𝑏 → 0, as part of the point-like limit in which
one would not expect the second term in the above exponential. In [148],
the analogue of the second term above was required to vanish and the equa-
tion of motion for a uniformly accelerated detector in Minkowski space-time
was obtained, namely 𝑚𝑎 = 𝑓 and constant. Following the same line of
reasoning, we now obtain the equation of motion

𝛿𝐾 = 0 (2.67)

This can be interpreted as meaning the Kodama trajectory is stable against
thermal emission of scalar quanta in the de Sitter background.

2.4 Non-stationary metric

Let us come to consider the more realistic scenario of a truly dynamical
space-time of cosmological interest. From previous considerations, our basic
formulas for the transition rate of the detector Eq.(2.18) are manageable –
in the sense that we can extract quantitative information – only in the few
highly symmetrical circumstances mentioned in Sec. 2.3. As it will be clear
at the end of this section, any departure from those models is responsible for
significant difficulties.
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For instance, let us take on the case of homogeneous, spatially flat, uni-
verse dominated by cold matter and cosmological constant. The scale factor
is (see e.g. [159])

𝑎(𝑡) = 𝑎0 sinh2/3

(︂
3

2

√︀
ΩΛ𝐻0𝑡

)︂
(2.68)

where 𝑎0 = (Ω𝑚/ΩΛ)1/3 and Ω𝑚 + ΩΛ = 1; 𝐻0 =
√︀

8𝜋𝜌𝑐𝑟/3 and Ω𝐴 repre-
sents the relative density of matter (if 𝐴 = 𝑚) or cosmological constant(if
𝐴 = Λ). Setting ℎ ≡

√
ΩΛ𝐻0 for simplicity, its current value is of order

ℎ ≈ 2 × 10−18𝑠𝑒𝑐−1. Upon integration the conformal time becomes

𝜂(𝑡) =
1

𝑎0ℎ

{︃
Γ
(︀
1
6

)︀
Γ
(︀
4
3

)︀
√
𝜋

− sech2/3
(︂

3

2
ℎ𝑡

)︂
×

× 2𝐹1

(︂
5

6
,
1

3
,
4

3
; sech2

(︂
3

2
ℎ𝑡

)︂)︂}︂
(2.69)

where 2𝐹1(𝑎, 𝑏, 𝑐; 𝑧) is a hypergeometric function and the constant has been
opportunely chosen so that at the Big Bang 𝜂(𝑡 = 0) = 0. The detector’s
proper time is related to the cosmic time through a manageable expres-
sion only if we limit ourselves to consider co-moving detectors: 𝜏(𝑡) − 𝜏0 =∫︀
𝑑𝑡
√︀

1 −𝐻2(𝑡)𝐾2 so that for 𝐾 = 0, ∆𝜏(𝑡) = 𝑡, ∆𝜏 being the proper time
interval during which the detector is turned on. Unlike the stationary cases
analyzed previously, this model presents a Big Bang singularity at the origin
of the time coordinate, so that the detector must be switched on at some
𝜏0 > 0. In particular, the Big Bang prevents taking the limit as 𝜏0 → −∞.
By the same reason, the scale factor Eq.(2.68) is defined only for positive
values of the argument: a new feature with respect to what we have seen in
the previous Sections. As a consequence, 𝑎(𝑡 − 𝑠) is defined as in Eq.(2.68)
only for 𝑡 − 𝑠 > 0 and trivially continued outside the interval in order to
make well defined the transition rate Eq.(2.18).

We obtain the following response function

�̇�𝜏 = �̇�𝑑𝑆 + 𝐽𝑑𝑆,𝜏+

− ℎ2

2𝜋2

∞∑︁
𝑛=1

3𝑛−1∑︁
𝑘=1

𝑔(𝑛, 𝑘) 𝑒−3𝑛ℎΔ𝜏×

𝑒ℎ𝑘Δ𝜏
(︁
ℎ𝑘 cos(𝐸∆𝜏) + 𝐸 sin(𝐸∆𝜏)

)︁
− ℎ𝑘

ℎ2𝑘2 + 𝐸2
(2.70)

in which �̇�𝑑𝑆 is the De Sitter 𝜏 independent contribution given by Eq.(2.52)
but with effective Hubble constant ℎ =

√
ΩΛ𝐻0 and 𝐽𝑑𝑆,𝜏 is the related tail

given by Eq.(2.57). The numerical coefficients 𝑔(𝑛, 𝑘) can in principle be
computed but enter in a tail which decays exponentially fast in the switch-
ing time and which also contains oscillating terms. We may take the limit
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∆𝜏 → ∞ and observe that every 𝜏 dependent term of this expression goes
to zero.

To summarize, we may say that the detector clicks close to a de Sitter
response and reaches thermalization (possibly, through decaying oscillations)
as ∆𝜏 is sufficiently large. In fact, as far as the regime ℎ∆𝜏 ≫ 1 is concerned,
de Sitter space-time is recovered. We may think of this as describing a de
Sitter thermal noise continuously perturbed by the expansion (or contrac-
tion) of the universe. In particular, insofar as we can speak of temperature,
in this large-time regime the detector registers the de Sitter temperature
ℎ/2𝜋, equal to the large-time limit of the horizon temperature parameter
given by the surface gravity, which in the present case has the exact but
slow long-time evolution

𝑇𝐻 =
ℎ

2𝜋
[coth(3ℎ𝑡/2) − 3/4 sech(3ℎ𝑡/2)csch(3ℎ𝑡/2)]

It is worth noting that, while in the stationary phase ℎ∆𝜏 ≫ 1 the limiting
result is consistent with the limiting value of the surface gravity, in the
non-stationary regime it seems less trivial to compare the results of the
two methods, because it has not been possible to extract a temperature
parameter from the transition rate of the detector, but asymptotically.
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3 | Gedankenexperiment
in gravity

In [163] Einstein imagined an ideal experiment (the Einstein light-box) in
order to probe the consistency of quantum mechanics: in this experiment a
box full of light is placed in a gravitational field and his goal was to show
that in such a system a violation of the uncertainty principle occurs. Niels
Bohr, making use of the equivalence principle, ultimately showed that there
is no violation of the tenets of quantum mechanics. Thought experiments
continue to play an important guiding role in theoretical physics: the ideal
experiment conceived by J. Bekenstein [164] in order to elucidate black hole
entropy or the thought experiment imagined by S. Hawking to tackle the
problem of unitarity violation in black hole space-times are some examples.
F. Dyson [163] argues that if no conceivable thought experiment can show
effects of quantum gravity, then the latter looses its physical meaning. Thus
the search for ideal experiments analysing the features of new fundamental
physics theories is of great relevance.

The thought experiments that we consider here are formulated in the
context of classical general relativity. An interesting link between thermo-
dynamics and gravitation is shown and as a consequence a relation might
exist with the Weyl Curvature Hypothesis of R. Penrose [165]. All the argu-
ments presented throughout the Chapter have a heuristic nature, typical of
thought experiment analysis, and will need further rigorous developments.
The following physical principles are assumed to be true:

1. The positivity of mass and the equivalence between mass and energy,
as predicted by special relativity, 𝐸 = 𝑚𝑐2

2. the existence of single photons having energy proportional to frequency,
𝐸 = ℎ𝜈 and carrying momentum 𝑝 = 𝐸/𝑐

3. the equivalence between inertial and gravitational mass

4. Newton’s theory of gravitation for weak fields, Einstein’s general theory
of relativity and in particular the phenomenon of gravitational redshift
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5. The principles of thermodynamics.

In particular, as a consequence of these principles, we assume that light rays
can be bended in a gravitational field and that photons have a weight.

In Sec. 3.1 we will explain the construction of the thought experiment
and show how it violates the principles of thermodynamics if tidal effects of
gravity are not included and that this violation would occur if one performs
the experiment in a linearly accelerated frame.

In Sec. 3.2 the experiment is analysed under a minimal requirement of
the presence of tidal effects.

3.1 The thought experiment

3.1.1 The structure

Consider the system represented in Fig.(3.1), namely a tall tower supporting
a wide and frictionless scale or balance.
The tilting part of the balance has the following properties:

1. it is made of a perfectly reflecting optical fiber structured as a closed
path. Perfect reflection is also considered by H. Bondi in his thought ex-
periments [166], which shows how to avoid a violation of the first prin-
ciple of thermodynamics when considering photons interacting with
atoms in a gravitational field

2. a small aperture (A) near the fulcrum of the balance allows incoming
photons to enter the fiber and begin to travel through it;

3. the structure of the balance is such that the time spent by these photons
in the terminals (C and D) is greater than the time spent in the straight
central part (B); this can be achieved, for example, by coiling a long
portion of the fiber inside the external loops. Another way to achieve
this could be to build the terminals as perfectly reflecting cavities, so
that the photon will enter and will remain inside for a (statistically)
long time before it finds the way out again;

4. the masses of the terminal parts are equal and very large compared to
the mass of the straight central part.

Now let a sufficiently localized wave packet (photon) enter the fiber through
the aperture A and start to travel in it. The structure allows the wave packet
to travel back and forth inside the fiber, from a coil to the other. Note that
the ideal optical properties of the fiber prevent any dispersion that might
occur to the wave packet during its journey.

Let the photon travel along B in a time 𝑡1 and inside the coil D in a time
𝑡2 ≫ 𝑡1. Because of the equivalence between mass and energy and because
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of the equivalence between inertial and gravitational mass, the presence of a
photon in coil D increases the gravitational mass of that portion of the bal-
ance: as a result, the balance will undergo a tilt towards D and a consequent
torque around the fulcrum. After the time 𝑡2, the situation is as represented
in Fig.(3.2).

Waiting a period of time 2𝑡1 after the run inside coil D, we would find the
photon entering the coil C and spend another 𝑡2 travelling in it, such that
the gravitational mass of the C-portion will be increased and as a result, the
system will undergo a movement towards the side of the C coil (see Fig.(3.3)).
Once out again, the photon can start a new cycle.

Figure 3.1: structure of the bal-
ance. (A) a small aperture, which
allows photons to enter the (B)
straight segments of the optical
fiber, towards (C and D) the exter-
nal loops containing coiling of opti-
cal fiber.

Figure 3.2: After a time 𝑡1 + 𝑡2,
the coil D is heavier than coil C
due to the presence of the photon
traveling inside D.

3.1.2 Thermodynamics

Let us now examine what happens if the experiment is performed in a lin-
early accelerated frame. The equivalent gravitational field perceived by an
observer in this frame has no tidal effects. The scale or balance seems to
be able to describe an infinity of oscillations around the fulcrum: indeed the
cycle described so far in the previous section can repeat itself ad infinitum.
This leads to the possibility to extract an infinite amount of energy from the
movement of the balance. In fact, introducing a friction needed to extract
energy, one initially observes a decrease in the amplitude of the oscillations,
but there would be no continuous damping of the oscillations of the struc-
ture: after each cycle, the photon looses no energy. This implies that the
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Figure 3.3: After a time 3𝑡1 + 2𝑡2, the coil C is heavier than coil D due to
the presence of the photon traveling inside C.

first principle of thermodynamics is violated. A similar violation occurs in
the thought experiment conceived by H. Bondi [165]: in this case the in-
consistency with the principle of energy conservation was resolved by taking
into account the redshift of the photon when travelling upwards in a gravita-
tional field. In our thought experiment, the redshift that the photon would
undergo when travelling back, say from D to C in Fig.(3.2), would cause
only a finite reduction of the photon energy. After each cycle, when the
photon returns to the lowest part D of the balance, it regains the reshifted
energy. Additionally, one can restrict the gravitational redshift by limiting
the rotation angle around the fulcrum of the balance suitably.

3.1.3 Photon redshift

For a spherical body of mass M, such as our fictious planet, we find the
following relation between the shift in frequency of the photon and the grav-
itational potential difference during the travel:

𝜈𝑟 − 𝜈𝑒
𝜈𝑒

= −𝐺𝑁𝑀
𝑐2

(︂
1

𝑟𝑟
− 1

𝑟𝑒

)︂
Suppose that the altitude and the width of the balance have the same value
as the planet radius 𝑅. A quick calculation, considering a planet with the
mass of the Sun (𝑀 ≃ 1.98874 · 1030 𝑘𝑔) but with the radius of the Earth
(𝑅 ≃ 6371 𝑘𝑚) and non-rotating, leads to

𝜈𝑟 − 𝜈𝑒
𝜈𝑒

=
𝐺𝑁 1.98874 · 1030

𝑐2

(︂
1

14246
− 1

10073

)︂
so that

1 − 𝜈𝑟
𝜈𝑒

= 0.0429476
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In an ideal system as the one described above, such a non-zero ratio
between frequencies signals a periodic variation of the gravitational mass
distribution in the scale, leading to an oscillation of the same.

Therefore, it appears that gravitational redshift is not sufficient to pre-
vent violation of the first principle of thermodynamics. Furthermore, a vi-
olation of the second principle of thermodynamics occurs when the scale is
placed in a linearly accelerated frame. Imagine that some sufficiently hot
body looses heat by emitting light. A given scale could absorb a single pho-
ton. The possibility to observe complete oscillations of the balance shows
that all the absorbed heat has as unique effect the production of work. Thus
one has a contradiction with Kelvin’s formulation of the second law of ther-
modynamics.

3.2 Tidal effects

Let us now examine what would happen if the scale were placed in a gravi-
tational field characterised by non-vanishing tidal components. If we assume
that the scale is at a given instant of time in the configuration depicted
in Fig.(3.2), and that the gravity is sufficiently weak to allow the use of a
Newtonian approximation in an almost Euclidean space. Tidal effects can
prevent oscillations of the balance if the gravitational acceleration at the
lower level D is greater than the acceleration at the higher level C, even if
the latter part of the balance contains the travelling photon and possesses a
greater total gravitational mass. If 𝑚𝐷 and 𝑚𝐶 are respectively the gravita-
tional masses of part D and C of the scale and if 𝑔𝐶 and 𝑔𝐷 are respectively
the gravitational accelerations at the levels of C and D, then the oscillation
will not occur if

𝑚𝐷𝑔𝐷 > 𝑚𝐶𝑔𝐶 (3.1)

Since the coil C contains the photon, its mass can be expressed as:

𝑚𝐶 = 𝑚𝐷 +
ℎ𝜈

𝑐2

with 𝜈 being the photon frequency. Rewriting the acceleration 𝑔𝐷 as 𝑔𝐷 =
𝑔𝐶 + ∆𝑔, with ∆𝑔 = 𝑔𝐷 − 𝑔𝐶 , the inequality becomes

𝑚𝐷(𝑔𝐶 + ∆𝑔) >

(︂
𝑚𝐷 +

ℎ𝜈

𝑐2

)︂
𝑔𝐶

which leads to
𝑚𝐷∆𝑔 >

(︂
ℎ𝜈

𝑐2

)︂
𝑔𝐶 (3.2)

The frequency can be expressed as 𝜈 = 1/𝑇 , with 𝑇 being the period, and
the acceleration 𝑔𝐶 can be written as

𝑔𝐶 =
𝐺𝑀

𝑅2
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where 𝑀 is the mass of the body that generates the gravitational field and
𝑅 is the distance from the coil C to the center of the body.
As a result the inequality Eq.(3.2) becomes

∆𝑔 𝑇 >
ℎ𝐺

𝑐2
1

𝑅2

𝑀

𝑚𝐷

The Planck area is defined as 𝐴𝑝𝑙 = 𝐺ℎ
2𝜋𝑐3

, and 𝑅2 can be expressed in terms
of the area A of the surface of a sphere of radius 𝑅 as 𝑅2 = 𝐴/4𝜋. With
these notations the above inequality becomes

∆𝑔 𝑇 > 8𝜋2
𝐴𝑝𝑙
𝐴

𝑀

𝑚𝐷
𝑐 (3.3)

Therefore, according to Eq.(3.3), given the photon period, the distance
from the lowest part of the balance to the centre of a gravitation-generating
body and given the masses of the coils of the scale and of the source of the
gravitational field, the relative gravitational acceleration between the levels
of two coils of the balance can not be arbitrarily small, otherwise a violation
of the principles of thermodynamics might occur. Furthermore, from the
occurrence of the constants ℎ, 𝐺 and 𝑐 in the inequality Eq.(3.3), it appears
that the origin of this constraint on the value of tidal effects might be linked
to quantum effects in a gravitational field. More precisely, Eq.(3.3) is reflect-
ing a quantum gravity effect, in the same sense that Hawking’s black hole
entropy formula [167] reflects properties of quantum gravity, because of the
simultaneous occurrence of the constants h, G and c. Indeed, if the factor
ℎ𝐺/𝑐3 tends to zero, then the minimal tidal effect requirement would not be
applicable and the result would break down in this limit, which includes:

∙ special relativity (G and h tend to zero)

∙ classical general relativity (h tends to zero)

∙ classical Newtonian gravity (h tends to zero and c tends to infinity)

∙ relativistic quantum physics (only G tends to zero, while h remains
non-zero and c finite)

∙ non-relativistic quantum mechanics in a Newtonian gravitational field
(c tends to infinity).
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4 | Conclusions

The first part of this thesis dealt with the description of the mechanism of
tunnelling through horizons: we list here the results which seem to us more
robust and have a chance to last longer.
Results that were obtained in Sec.1.1 comprise:

1. The ability of the method to include first order back-reaction effects
in order to comply with energy conservation and the predicted corre-
lations among successive emission events is one of the key results.

2. In the stationary case, it is possible to provide a foundation of tun-
nelling methods using analytic continuation of the classical action alone,
avoiding in this way the seemingly impossible task of crossing the hori-
zon. The analytic continuation could be extended to cover white holes
and to associate with them a well defined geometric temperature, a
point not always appreciated in literature.

3. In the same vein, one can prove the complete equivalence of the null
geodesic method with the Hamilton–Jacobi method for stationary fields.
We also gave a “covariantised” version of the null geodesic method,
which allows to avoid questions such as covariance or canonical invari-
ance.

4. Many special cases have been considered, including rotating black
holes, Gödel space-times, higher dimensional solutions, de Sitter and
anti–de Sitter spaces, Taub and Taub–NUT solutions; also, we con-
sidered some supergravity solutions and fermion tunnelling, including
gravitinos. The temperature of these solutions were computed and
showed to agree with those obtained by geometric methods, confirm-
ing the universal character and kinematics of the Hawking effect. It
should also be noticed that the Hawking temperature computed from
the tunnelling method does not receive higher order corrections in ~,
contrary to past suggestions.

In Sec.1.2, using a local notion of horizon and dynamical surface gravity
for time varying spherically symmetric black holes, the main results comprise:
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1. The application of the tunnelling method to non stationary, spherically
symmetric black holes and the fact that it naturally selects a trapping
horizon of the future non degenerate type, either inner or outer. It
can also be applied to past horizons under the same condition and
by interchanging emission with absorption. In the limiting situation
where the surface gravity vanishes it is consistent with the idea that
extremal black holes have zero temperature.

2. One of the principal consequences of the tunnelling method is the ob-
servation that the radiation seems to originate near the local trapping
horizon, not the global event horizon.

3. Using the Kodama–Hayward theory of spherically symmetric space-
times, and noting that one can possibly associate an observable tem-
perature to a black hole only if it is a coordinate scalar, we showed
that the tunnelling probability depends on the ratio, 2𝜋𝐸/𝜅, of the
Kodama invariant charge taken as energy and the geometrical surface
gravity as defined by Hayward.

4. One can include non interacting fermions in the formalism, as demon-
strated in several papers. Also noticeable is the fact that any mass
term gets strongly suppressed by the horizon pole, which dominates
the rate well over mass contributions.

5. The time-like nature of the trapping horizon of an excreting black hole
is consistent with the physical interpretation of the formalism. It is
true that it can be crossed either ways, but it remains the fact that
there is a class of paths for which an imaginary part exists, and these
paths precisely correspond in Feynman diagram language to particle
creation.

In Section 1.3 we addressed other themes – cosmology, decays and naked
singularities. Since FRW spaces are spherically symmetric, the general the-
ory outlined in Section 1.2.2 applies. We showed that, with obvious modifi-
cations, the tunnelling picture works equally well. In particular the type-II
paths never contribute, while type-I paths do. We may consider these find-
ings for cosmological horizons as a generalisation of the well known facts
discovered for de Sitter space-time, in complete analogy with the paral-
lel extension of the theory from stationary to dynamical black holes. We
also considered the decay of particles which in the absence of gravity would
not occur, and find that the Hamilton–Jacobi equation can manage them
through the presence of a branch point singularity in the radial momentum,
that would not be present in absence of an external field. From this point of
view the tunnelling method has universally valid features. Again, its value
is to be found where it provides approximate results when exact calculations
are in general impossible, at the same time being consistent with the exact
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calculations when available. Such is the case of de Sitter space. We showed
also that the presence of strong fields in a certain space-time region, even
in the absence of horizons, can result in particle production by means of a
tunnelling process “from nothing”. It can be considered as the gravitational
analogue of the Schwinger effect in a strong external electric field. Finally,
it is of interest that the tunnelling method can also be applied to naked
singularities, although in this case there is nothing to tunnel through, the
singularity being the boundary of space-time. We showed nevertheless that
the emerging picture is quite in agreement with quantum field theory in
two-dimensional models, making one confident of its general validity.

As regard the drawbacks, even if there is little doubt that the method is
correct, still it remains of a hypothetical nature. However, we think that also
in case of a failure due to some internal inconsistency, that should be nonethe-
less an important message. In fact, tunnelling processes are predictions of
quantum theory, so a failure of them in gravity theory would certainly signal
something interesting. The tunnelling method is and remains an essentially
semi-classical procedure carrying along with it all the limitations inherent to
its nature. In particular, it applies only to free particles while in principle
quantum field theory methods certainly have a wider scope.

The tunnelling method is not a closed subject. For instance, in striking
contrast with the stationary case, an important missing point of the dy-
namical case is the absence of an extension of Kodama–Hayward’s theory
to dynamical axis-symmetric black holes, to be used as a tool for studying
tunnelling. We mention here the papers [168, 169] where a tentative theory
is developed. We feel that this is perhaps the most important missing point.
The first back-reaction corrections are also of great interest, as they are not
so well developed in dynamical situations. Processes where small black holes
are emitted by large ones should also be within the range of problems where
the tunnelling picture could work, and that also is an important “to do”.

In cosmology, the physical interpretation of Hayward’s dynamical sur-
face gravity as a temperature is not as clear as in de Sitter or black hole
case, but it is strongly favoured by the tunnelling picture. In particular, an
Unruh–DeWitt detector moving in de Sitter or black hole space-time always
thermalises at the corresponding Gibbons–Hawking temperature even if it is
not on a geodesic path, while for cosmology there is not an analogous result.

This leads us to the comparison with the results of Sec.2. For black holes
and pure de Sitter space the QFT analysis is consistent with the tunnelling
picture and even predicts the dependence of the temperature on position
or acceleration. Moreover, the analysis of the finite-time oscillating tail has
been extended to stationary black holes.

For cosmology and away from de Sitter space the thermal interpretation,
strictly speaking, is lost but the detector still gets excited by the expansion of
the universe. By accepting the surface gravity versus temperature paradigm
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we would expect a quasi-thermal excitation rate of the form

�̇� ∼ 𝐸 exp(−𝐸/𝑇𝐻(𝑡))

That is, although in a generic FRW space-time the thermal interpretation
breaks down in most of the cases because of the time-dependence of the
background, still this time dependence of the transition rate could be ex-
pected to mainly reside in an effective temperature parameter. But using
a comoving detector this is not what we have found. For instance, in the
Einstein-de Sitter regime there seems to be excitations of non-thermal type
and we showed that the scale factor of the flat ΛCDM-cosmology has no
other temperatures in action than the de Sitter one.

It remains to see whether there is any non trivial (quasi-)thermal effect
on more general Kodama trajectories. In the affirmative case, that would
mean that the horizon surface gravity and temperature should be associ-
ated more likely to vacuum correlations than to particle creation and this
forces, in our view, a different interpretation of the tunneling picture. In
this respect, the classical Parker’s papers on particle creation [160, 161] are
certainly relevant. One possibility is that the horizon surface gravity could
represent an intrinsic property of the horizon itself, leading to some kind of
holographic description, while the detector in the bulk simply clicks because
it is embedded in a changing geometry. In fact, we would expect the clicks
in almost any changing geometry, even for those lacking a trapping horizon.

As regards the last part of this thesis, in Chapter 3 we considered a
thought experiment which generalises an ideal experiment discussed by H.
Bondi [166]. The connection between thermodynamical concepts and gravity
is tackled in a somewhat different perspective: in a system that comprises the
simultaneous validity of thermodynamic principles and (special and general)
relativistic tenets, one is lead to contradictions unless specific features are
supposed to arise.

It appears, as far as our ideal experiment is concerned and differently
from the original analysis by Bondi, that gravitational redshift is not suffi-
cient to prevent the violations of the first and the second principles of ther-
modynamics. In particular, these contradictions can occur if the experiment
is performed in a linearly accelerated frame. On the other hand, if minimal
tidal effects inherent to a gravitational field are taken into account, then the
contradictions with the principles of thermodynamics can be avoided.

The heuristic analysis of the tidal effect in a gravitational field shows
through inequality (3.3) that the necessary existence of a minimal non-
vanishing relative gravitational acceleration might be related to quantum
gravitational effects.

An interesting point is that the arguments developed might also be re-
lated to the Weyl Curvature Hypothesis (WCH) of R. Penrose [165]. The
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Weyl curvature essentially describes the tidal effects of a gravitational field,
and if some invariant function constructed with the components of the Weyl
tensor is linked to the gravitational entropy, then the WCH states that the
Weyl curvature associated to a cosmological space-time should have a very
small value initially, close to the Big Bang singularity, whereas at late-times
in the far future the solution ought to be characterised by a large value of
the Weyl curvature. The cosmological space-time solution exhibits in this
way a time-asymmetric evolution, compatible with the second principle of
thermodynamics.

Our analysis suggests that tidal effects are necessary and essential fea-
tures of gravity, which guarantee compatibility with the principles of ther-
modynamics. Thus the evolution of cosmological space-time solutions pos-
sessing such features will exhibit a time-asymmetric evolution implied by
the second principle of thermodynamics. As R. Penrose argues [165], this
time-asymmetry might ultimately be related to quantum gravity.
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