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The Large Hadron Collider (LHC)

The Large Hadron Collider (LHC)

• Largest particle collider ever built

• Near Geneva, underneath the

swiss/french border

• Total ring length of about 27 Km

• First started in 2008

• The official physics program

started in 2009

Basic machine parameters

• Proton or Lead Ion collisions

• Nominal proton energy of 7 TeV

(per beam)

• Bunch spacing of 25 ns

• Design luminosity 1034 cm−2s−1

Physics program

• Discovery of new particles/theories

• Particles collide inside the four experiments

• ATLAS and CMS: general purpose

• ALICE: study lead ions collision

• LHCb: specialized in b-physics
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General purpose experiments

A Toroidal LHC ApparatuS (ATLAS)

Basic parameters

• 45 meters long

• 25 meters in diameter

• weights about 7000 tons

Structure (inside-out)

1. Inner detector

2. Calorimeters

3. 2 Tesla solenoid magnets

4. Muon spectrometers

The inner detector

• Several layers of silicon detectors and one layer of straw tube detectors

• Needed to reconstruct the particle interaction point

• Required to be very fast

• Operates in extremely harsh conditions
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The current ATLAS silicon tracker

Barrel cross-section

• Total radius of roughly 1 m

• Pixel detector: 3 layers of n-in-n pixel sensors

• Strip detector: 4 layers of p-in-n strip sensors

• Transition Radiation Tracker: straw tubes interleaved

with scintillating fibers

The pixel detector

• Three barrel layers at radiuses 50.5, 88.5, 122.5 mm

• 6 end-caps (three on each side)

• Pixel size 50×400 µm2

• Covers an area of ∼1.7 m2

• Approximately 67 million channels

• Designed to withstand a fluence of

1×1015 1 MeV neqcm−2
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The ATLAS Insertable B-Layer (IBL)

Planned installation during the first long shutdown (2013-2014)

CURRENT PIXEL DETECTOR

RENDERING OF THE IBL

Addition of a fourth pixel layer close to

the beam pipe

Motivations

• Maintain the event pile-up under

control as LHC luminosity increases

• Add redundancy to recover partial

failure of modules in the other pixel

layers

• Increase tracking and reconstruction

accuracy

Main design parameters

• Need to reduce the beam pipe radius

by 4mm

• Placed at 33.25 mm from the center of

the beam pipe

• Will need to withstand a fluence of

5×1015 neq cm−2

[M. Capeans, (The ATLAS Collaboration), ATLAS-TDR-019]
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The ATLAS Insertable B-Layer (IBL)

Sensor requirements

Parameter Value unit

Total number of staves 14 -

Pixel size (Φ, z) 50, 250 µm

Dead edge extension 200 µm

Sensor thickness <250 µm

NIEL dose tolerance 5×1015 neq /cm2

Hit efficiency in active area >97% -

Operating bias voltage <1000 V

Operating temperature -15 ◦
C

• Reduced pixel size in the z direction

(250 µm) to increase the spatial

resolution

• No tilt possible in the z direction →

need for reduced dead area at the

edges

[A. Clark, et al., (The ATLAS IBL collaboration),

(2012) JINST 7 P11010]

NEED FOR ADVANCED RADIATION HARD DETECTORS
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Radiation damage in silicon (summary)

Bulk damage

• Due to Non Ionizing Energy Loss (NIEL)

• Displacement of atoms in the Silicon lattice

• Built-up of crystal defects

Consequences

• Change in effective doping concentration

(higher depletion, under-depletion)

• Increase of leakage current

(shot noise, thermal runaway)

• Increase of charge trapping

(charge losses)

Surface damage

• Due to Ionizing Energy Loss (IEL)

• Radiation generates carriers in SiO2

• Electrons can escape while holes get trapped at the

Si/SiO2 interface

Consequences

• Accumulation of charge at the SiO2 /Si interface

(inter-pixel capacitance and isolation and

breakdown behavior)

• Increased charge trapping at the Si/SiO2

• Increased surface recombination velocity

LOWERING OF THE S/N RATIO!
[Michael Moll - MC-PAD Network Training, Ljubljana, 27.9.2010]
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Countermeasures

Material engineering

Deliberate incorporation of impurities or defects into the

silicon bulk to improve radiation tolerance of the

detectors

• Oxygen rich Silicon (FZ, DOFZ, Cz, MCZ)

• Pre-irradiated Silicon

New Materials

• Silicon carbide (SiC)

• Amorphous Silicon

• Diamond

Surface isolation

• Important to assure inter-electrode isolation

• Typically achieved using p-spray, p-stop or a

combination of the two

Device engineering

• p-type silicon detectors (n-in-p)

• Thin detectors

• 3D detectors

[Michael Moll - MC-PAD Network Training, Ljubljana, 27.9.2010]
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Full 3D detectors

Original idea - PROS and CONS

Features of 3D detectors

• First proposed by S. Parker and

collaborators in the mid ’90s

[NIMA 395 (1997), 328]

• Decouple the active volume from the

inter-electrode distance

• Low full depletion voltage (<10 V)

• Short collection distances (∼50 µm)

• Low trapping probability after

irradiation

• Small dead area along the edges

Disadvantages of 3D detectors

• Columns are partially dead regions

• Non uniform response (low field

regions are present)

• Higher capacitance (higher noise)

• Fabrication process complex and more

expensive
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The ATLAS 3D sensor collaboration

Institutes and processing facilities

• 18 Institutes

• 4 processing facilities:

◮ SNF (Stanford, USA)
◮ SINTEF (Oslo, Norway)
◮ CNM (Barcelona, Spain)
◮ FBK (Trento, Italy)

Available 3D technologies

• Full 3D with active-edges

(SNF and SINTEF)

• 3D-DDTC with slim-edges (FBK, CNM)

• Full 3D-DDTC with slim-edges (FBK)

Main targets

1. Speed-up the test and industrialization of 3D silicon sensors

2. Production and testing of 3D sensors for the IBL

[C. Da Vià, et al., NIMA694 (2012), 321]
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3D technology for the IBL developed at FBK

Main geometrical features

• Double-type column approach

• Fully double-sided

• Columns etched from both wafer sides

• Fully passing through columns

• Empty electrodes (no polysilicon filling)

• Surface isolation by means on p-spray

implantations on both wafer sides

SEM cross-section

• Very good etching uniformity

• Columns are all passing through

• Slight shrinking of the column tip (not

affecting device behavior)

[G. Giacomini, et al., to appear in IEEE TNS (2013)]
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3D technology for the IBL developed at FBK

The common wafer layout and pixel layout

Common wafer layout

• 4 inches wafers

• 8 ATLAS FE-I4 pixel detectors

• 9 FE-I3 pixel detectors

• 3 CMS pixel detectors

• 4 strip detectors (80µm pitch)

• Several planar and 3D test structures

−→ z direction

Single pixel layout

• Pixel size: 50×250 µm2

• 2E configuration: 2 n+ columns per pixel

• Inter-electrode distance (d): ∼67 µm

• With field-plate

[C. Da Vià, et al., NIMA694 (2012), 321]
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Motivation for FE-I4 pixel layout

Results from previous technologies

!

Previous 3D-DDTC technology at FBK

• Non-passing through columns

• Pixel size 50×400 µm2 (FE-I3)

• Three pixel layouts (2E, 3E, 4E)

Best performances from 3E devices (71 µm)

• Noise ∼205 e−

• Good CCE up to 1×1015 neq /cm2

• Tracking efficiency >98% at 1×1015 neq /cm2

Φeq =1×1015 neq /cm2

[A. Micelli, NIMA650 (2011), 150]

Φeq =1×1015 neq /cm2
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Edge termination (SLIM-EDGE)

Motivation and design

Slim-edges in the z direction

• Requirement: 6200 µm in the beam (z) direction

• Motivation: not possible to tilt modules in the z

direction due to space constrains

• Fence of ohmic columns to prevent the depletion

region to reach the scribe line

• Designed with the aid of numerical simulations

Computer aided design

• Simulation of a structure including the last junction

column and the ohmic fence

• Simulation domain highlighted with the dashed

rectangle

• Scribe line model with a low lifetime region (<1 ns)

• Monitor the current of the last junction column

• No avalanche models
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Edge termination (SLIM-EDGE)

Motivation and design

[M. Povoli, et al.,

JINST 7 (2012) C01015]
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[G.-F. Dalla Betta, et al., NSS10 Conf. Record, pp. 382-387]

Simulation results

• Different bulk doping concentrations tested

• No signs of current increase up to 500 V (well above

expected operation voltage)

• The depletion region extends outside the active area by

about 75 µm at 300 V

• Safe device operation with a 200 µm slim-edge

• Note: conservative design!
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On wafer selection

Motivation and procedure

BUMP-BONDING

1.

2.

3.

4.

[G. Giacomini, et al., to appear in IEEE TNS (2013)]

On-wafer sensor selection

• The bump-bonding is complex and very expensive

• Assemble only good sensor tiles

• Wafer with more than 3 good sensors are sent for bump-bonding

Temporary metal layer

• Deposited on top of the frontside passivation

• Strip-like metalization

• 80 strips connecting 336 pixels each

• Automatic current measurements

• The sum of all strip currents gives the total sensor current
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On wafer selection

Example test results

GOOD WAFER (ATLAS12)
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[C. Da Vià, et al., NIMA694 (2012), 321]

Parameter Symbol Value

Operation temperature Top 20-24◦
C

Depletion voltage Vdepl <15 V

Operation voltage Vop >Vdepl +10 V

Leakage current at Vop I(Vop) <2 µA

Breakdown voltage Vbd >25 V

Current "slope" I(Vop )/I(Vop -5V) <2

Wafer/sensor selection

• Good sensors always have currents much lower than the

set limit

• Breakdown voltages are typically higher than 30 V for

good detectors

• Confirmation of the selection method comparing current

pre/after bump-bonding

• Yield of IBL production at FBK: 56.82%

NOTE: further investigation needed on some aspects

• The breakdown is lower than for standard planar detectors

(can be critical after irradiation)

• In some cases the behavior is not very uniform

• Necessary to perform a thorough electrical

characterization
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Detailed electrical characterization

3D diodes

FE-I4 with field-plate FE-I4 80 µm pitch
CMS - 1E

3D diode

• Two terminal device having an area of roughly 10 mm2

• Electrodes of the same type are shorted together

• All the geometries of larger detectors are reproduced

• Eases the characterization

Performed tests

• I-V and C-V measurements as a function of the temperature

• Numerical simulations to confirm the findings and gain a deeper understanding of

the device behavior

[M. Povoli, et al., NIMA699, (2013), 22]

FE-I4 (backside)
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IV measurements with variable temperature

IV Curves
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Setup

• Devices coming from wafer

W20 of the ATLAS09 batch

• Devices were diced and wire

bonded on small PCBs

• Wire bonding contribution is

negligible

• Temperature variation

between −20◦C and 35◦C

inside a climatic chamber

• Measurements performed

with HP4145

Preliminary results

• Each type of device has its own characteristic behavior

• Breakdown voltages between 40 and 50V

• Different current slope for different devices

• More details in the next slide...
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Data analysis

Intrinsic electric behavior

Breakdown voltages (all devices)
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• Breakdown between 40 and 50V

• Linear increase with temperature

• The increase is between ∼ 50 and

∼ 80mV/◦C

• In agreement with the expectation

[Crowell, C. R. and S. M. Sze, Appl. Phys. Lett. 9, 6 (1966)

242-244.]
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Results

• TR=293.15 ◦
K

• Very good agreement at low biases

• The agreement is lost as breakdown

approaches
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Investigation through numerical simulations

Simulated structure

• A quarter of elementary cell (thanks to symmetry)

• Bulk doping: 7×1011 cm−3 (p-type, measured)

• One columnar electrode per type

• Measured p-spray profiles

• Measured n+ and p+ surface implantations

• Device layout fully reproduced

Incremental addition of the layout details

• Used to estimate the contribution of each component of

the device capacitance

• Allows discriminate between inter-electrode and surface

capacitance

Simulation of the full structure

• Estimation of the expected breakdown voltage and

current levels

• Analysis of the distribution of electrical quantities (e.g.

Electric field and Electrostatic potential)
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C-V measurements vs. C-V simulations

FE-I4 diode with field-plate
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Results

• Electrodes contribution: ∼ 51.4pF (constant)

• p-spray causes an increase of ∼ 30pF (basically constant)

• P+ implantation and metal on the back side do not cause much increase

• N+ implantation and metal on the front side cause an increase of ∼ 63pF at a bias voltage of 20V

• At higher biases the contribution of front side saturates to a value similar to the one obtained only with electrodes

and p-spray (∼ 103pF)

• Measured capacitance does not fully saturate at 40V (instrument limitations)
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Distribution of electrical quantities

FE-I4 diode - Electric field

FE-I4 with FP FE-I4
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• Large field peaks on both the upper

and lower surfaces

• Peaks are placed at the n+ to

p-spray junction

• Particularly critical due to the high

dose p-spray implantation

• Both structures have similar

field-peaks on the backside

• The field-plate redistributes and

lowers the field on the frontside
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Front-side surface irradiation

X-Rays - 2 Mrad (60 minutes irradiation)

P-spray compensation to increase the breakdown voltage

How large is the increase?
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• Two different FE-I4 diodes with field-plate

• Current increase do to surface generation

• Limited breakdown increase

• Pre-irradiation trend maintained after

• Confirm that the breakdown occurs on the

backside
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Functional characterization of FE-I4 pixel detectors

Readout chip and measurement setups

[A. Clark, et al., (The ATLAS IBL collaboration),

(2012) JINST 7 P11010]

ATLAS FE-I4 readout chip

• Designed to withstand a TID of 250 Mrad

• Leakage compensation

• Double stage charge amplifier with constant current

discharge

• Discriminator after charge amplifier

• Operates in Time Over Threshold (ToT) mode

• The ToT is representative of the collected charge

The USBPix system
[http://icwiki.physik.uni-

bonn.de/twiki/bin/view/Systems/UsbPix]

The EUDET Telescope
[D. Haas, EUDET-Report-2007-07]
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Functional characterization of FE-I4 pixel detectors

Radioactive source scans (90Sr, Lab)
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• Comparison between FBK and CNM detectors

• Calibration: 10 ToT at 20 ke−
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• FBK → charge saturation before 10 V

• CNM → charge saturation at roughly 25 V

• Numerical simulations (dashed line) confirm the

measurement results
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POST-irradiation

• Lowering of charge collection due to trapping

• FBK detector irradiated at 5×1015 neq /cm2 (red)

shows a hint of charge saturation at roughly 150 V

• Confirmed by numerical simulations (red dashed

line)

• Measurement not available for 2×1015 neq /cm2 but

simulations can be trusted (violet dashed line)

• Satisfactory performances

[G.-F. Dalla Betta, et al., VERTEX2012, submitted to POS]
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Functional characterization of FE-I4 pixel detectors

Test-beam results (tracking efficiency)

[P. Grenier, et al., "IBL TestBeam Results", presented at the

IBL Sensor Review, CERN, 4-5 July 2011]

Beam tests during 2011-2012

• CERN - SPS: 120 GeV pions

• DESY: 4 GeV positrons

• EUDET Telescope

• Both un-irradiated and irradiated samples

• IBL operating conditions

• Planar sensor always used as reference

(b) PRE-irrad. efficiency map

• Good tracking efficiency (98.8%)

• Electrodes appear as less efficient regions

• Possible to obtain higher efficiency by tilting the

device with respect to the beam

(c,d) POST-irrad. efficiency map

• FBK90 (2×1015 neq /cm2) shows great efficiency

(99.2%) at 60 V of bias when tilted by 15◦

• FBK87 (5×1015 neq /cm2) exhibits not sufficient

efficiency (95.6%) at the chosen bias (140 V)

• NOTE: when the proper bias is used (e.g. 160 V)

the efficiency is back within IBL requirements

(98.2%)
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Proton irradiated 3D diodes

80µm pitch
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• Irradiation performed at Los Alamos with 800 MeV protons

(thanks to Martin Hoeferkamp)

• Only half of the requested fluence was delivered

• Increase in breakdown between few volts and ∼100 V

Important!

• Devices were selected prior to irradiation

• The FE-I4 diode irradiated at 2×1015 neq /cm2 shows a

breakdown voltage of roughly 125 V

• A proper sensor selection will assure optimal

operating voltages after irradiation!
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SLIM-EDGE characterization

Electrical tests

Performed test

• Several cuts performed by means of a

diamond saw

• Each cut is closer to the active area

• I-V measurement after each cut

[M. Povoli, et al., JINST 7 (2012) C01015]

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

 0  10  20  30  40  50  60  70  80  90  100

C
u

rr
e
n

ts
 [

A
]

Reverse voltage [V]

scribe line
cut #1
cut #2
cut #3
cut #4
cut #5
cut #6

Results

• Intrinsic device behavior is equal to

roughly 60 V

• No increase in reverse current up to

the fourth cut

• Possible to reduce the total edge

extension to roughly 100 µm

• NOTE: critical only before irradiation
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SLIM-EDGE characterization

Functional tests (FE-I4 diode)

Laser scan Vb=15 V

Layout

Numerical simulation

[M. Povoli, et al., JINST 7 (2012) C01015]

Edge efficiency

(Test beam data, 2 × 1015 neq/cm2)

[G.-F. Dalla Betta, et al., VERTEX2012, submitted to POS]

Laser scan (Lab)

• Laser: λ=1060 nm

• Readout: CSA + 20 ns shaper

• Very good agreement with simulations

Edge efficiency after irradiation (test beam)

• Full efficiency inside the active-area

• Roughly 25 µm of the slim-edge are active
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Possible technological improvements

Investigation through numerical simulations

• The high field region on the backside can be critical!

• It is of paramount importance to use large operating

voltages!

• Lifting the n+ column tip will eliminate the critical

region on the backside

• At the same time the fabrication will be easier and

faster

[M. Povoli, et al., IEEE NSS12 Conf. Record, pp. 1334-1338]

• Important to also improve the field distribution on

the frontside

• The field-plate is important

• Some of the designed structures include a floating

n+ ring which is intended to interrupt the

electrostatic potential of the p-spray

• The design is performed by means of numerical

simulations
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Simulation results
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Effect of the floating ring

• The potential of the inner p-spray is lower

• The field at the main junction is lower and the

field-plate works properly

• Large peak on the outer ring junction → causes

breakdown

• The ring placement is critical due to space

constrains

Simulated I-Vs

• All devices show larger breakdown than in the

previous technology

• The floating ring limits the performances but could

act as additional shielding from surface currents

• Raising the n+ column should deliver breakdown

voltages larger than 100 V
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New SLIM-EDGE implementation

Pixel detectors slim-edge

• Reduced by 50 µm following the indications obtain from

previous tests

• Conservative design to avoid problems

New slim-edge implementation for some 3D diodes

• Double row of short trenches (mimicking the active-edge)

• Dead area of roughly 50µm

• Maintains the mechanical integrity and does not require support

wafer

• Simulation results at 50 V of bias show how this solutions does

not allow the depletion region to reach the scribe line

[G.-F. Dalla Betta, et al., NSS11 Conf. Record, pp. 1334-1340]
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Fabricated devices

Preliminary electrical characterization

Available devices

• 4 FE-I4 pixel detectors (2 versions)

• 26 CMS pixel detectors (8 versions)

• 2 MEDIPIX-II detectors

• 3D diodes in several different flavors
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Preliminary results

• Batch completed in mid October 2012

• A few IV measurements on 3D diodes

here reported

• Leakage current higher than expected

but acceptable

• Sizable increase of breakdown voltage

[M. Povoli, et al., IEEE NSS12 Conf. Record, pp. 1334-1338]
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The ATLAS Forward Physics (AFP)

Motivation and requirements

• Measure protons scattered from the collision

• Located at roughly 200 m both upstreams and

downstreams

• Requires reduced edge extension

• FE-I4 modules are investigated

[The ATLAS Collaboration, CERN-LHCC-2011-012]

Performed tests

• The edge of interest is the one not "IBL-like"

• Same cut and measure tests were performed

• Proper operation up to the 6th cut (75 µm edge)

Aspect to investigate...

• Very un-uniform irradiation

• Tests are being performed on CNM devices

[S. Grinstein, RESMDD12, submitted to NIMA]
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Planar detectors with active-edges

Standard vs. Active Edge detectors

Standard detectors

• In standard detectors a dead border

region must be present

• In a good design cracks and damages

on the edges should be at least at a

few hundreds of micrometers away

from the depleted region

• Total dead region a + d > 500µm

How to limit dead region?

• Cut lines not sawed but etched with

Deep Reactive Ion Etching (DRIE) and

doped

[C. Kenney, et al., IEEE TNS 48-6 (2001) 2405]

Problems

• Process is more complicated

• Need for support wafer

• Finding the correct "d" to limit early

break-down phenomena
[M. Povoli, NIMA658 (2011), 103]
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Planar detectors with active-edges

Device and wafer layout

Single-sided p-in-n devices

(support wafer)

General device layout (test diode)

1. Distance between n+ and

p+ doping (GAP)

2. Field-plate

3. Bias pad (connected to the

doped trench)

4. Floating p+ ring

Trench etching

• Designed to be 4 µm

• Not well defined at first

• Optimized etching in the

second part of the batch

(roughly 10 µm width)

• Partial polysilicon filling

needed to restore the

surface planarity

Wafer layout

• Strip detectors with

inter-strip pitches of 50, 80

and 100 µm (AC or DC

coupled)

• Pixel detectors compatible

with the readout chips of

the ALICE experiment

• Several test diodes in many

different flavors

• Standard planar test

structures
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Planar detectors with active-edges

Electrical and functional characterization
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[G.-F. Dalla Betta, et al., NSS11 Conf. Record, pp. 1334-1340]

Electrical characterization (I-V)

• Good reverse current values and uniformity

• Clear trend with GAP size

• Once again the field-plate proves its

effectiveness

Functional tests

• Bi-dimensional X-Ray scan performed at

Diamond Light Source, Didcot, UK.

• 15 keV X-rays, spot size ∼3 µm FWHM

• Very good signal efficiency up to less than

20 µm away from the edge
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[M. Povoli, et al., NIMA (2012)

http://dx.doi.org/10.1016/j.nima.2012.09.035]
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Thin 3D detectors with built-in charge multiplication

Evidence and exploitation of this effect
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Charge multiplication (CM)

• Evidence of CM was found in irradiated planar and

3D detectors

• CM was observed in older generations of both FBK

and CNM 3D detectors

[A. Zoboli, et al., NSS08 Conf. Record, 2721]

[M. Köhler, et al., NIMA659 (2011), 272]

• Triggered by high electric field at the tip of the

junction columns

• Confirmed by numerical simulations

[G. Giacomini, et al., VERTEX2011, POS]

• Can charge multiplication be exploited?!?

Motivation

• Increasing interest in reducing the total material

budget

• Reduction of the sensor thickness

• Lower thickness → less detection volume

• Reduction in available charge for particle detection

Idea and investigation through numerical simulations

• A shrinking of all geometries by a factor of ∼3 will

allow to also reduce inter-electrode spacing and

column diameter

• Bulk thickness: ∼70 µm

• Column diameter: ∼4 µm

• Higher field at lower voltages

[M. Povoli, et al., submitted to NIMA (2013)]

40 / 46 Marco Povoli



Thin 3D detectors with built-in charge multiplication

Simulation results
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Gain before irradiation

• All investigated structures show CM

• The onset of CM changes with

geometry

• Lower operating voltages for structures

having trench ohmic electrodes

• A good gain uniformity was found

within the entire investigated cell
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Gain after HEAVY irradiation

• Results reported only for the

rectangular cell

• Bulk radiation damage modeled with a

3 level trap model

• Reduction of the collected charge due

to trapping (expected)

• No change in CM onset voltage

• Completely recover charge trapping
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Thin 3D detectors with built-in charge multiplication

Surface isolation and electrode efficiency
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Final sensor geometry

• Rectangular cell shape

• P-spray and ∼4 µm field-plate

• Raise the n+ column to avoid critical regions on the

backside

• Modification of the tip shape in order to avoid early

breakdown phenomena

• Extracted 1D electric field profiles show that the

surface and tip field are under control

• Possible to operate in CM mode
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Electrode response

• Crucial to have polysilicon filling and sufficiently

large lifetimes in it

• Lifetimes calibrated to match the electrode

efficiency found for Stanford detectors

Full 3D MIP simulation (proposed shaping time of 10 ns)

• Three hit points investigated (bulk and both

electrode types)

• CM properties similar to the simplified structure

• p+ electrode is fully efficient and show good CM

• n+ electrode is less efficient and shows lower CM

• Multiplication of the charge generated under the tip
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HYbrid DEtectors for neutrons (HYDE)

Neutron detection

• Bare silicon is not able to detect neutrons

• Need for a converting material

• The most used converter is LiF

• Most of the commercial devices are able to only

detect thermal neutron

Neutron detectors produced with 3D technology

• Purposely designed cavities

• Cavities are filled with the converter

• Increased interaction probability between

reaction products and silicon

The HYDE project (INFN)

• Innovative polysiloxane converter

• Detects both thermal and fast neutrons

• Reaction products: recoil protons and light in the

blue to red range

Realized detectors

• The cavities are connected through columnar pillars

• Both with an without polysilicon filling

• Good leakage currents and breakdown voltages

• The converter is deposited at Laboratori Nazionali di

Legnaro
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HYbrid DEtectors for neutrons (HYDE)

SEM pictures

• Fabricated cavity with connecting pillars (LEFT)

• The same after filling with converter (RIGHT)

α-particle measurements

• Measurements from both sides of the sensors

• Main peak correspond to 241Am alphas (except for

the energy loss in air)

• Lower peak from the trench side: geometrical

motivations

Neutron beam measurements

• Calibration with radioactive sources (α,γ)

• Bare sensor as comparison and two sensors with

converter

• Indication of increased statistics in the range from

0.5 to 1.25 MeV (VERY PRELIMINARY)
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CONCLUSIONS

• An enhanced 3D-DDTC sensor concept with fully passing

through columns was designed at University of Trento and

fabricated at FBK

• All the performed studies allowed to gain a better

understanding of the behavior of 3D detectors both from the

electrical and the functional point of views

• 3D Pixel detectors compatible with the FE-I4 readout chip

proved to operate efficiently in IBL operating conditions

• These devices were chosen, together with CNM 3D detectors

and planar 3D detectors, to populate the ATLAS Insertable

B-Layer which will be installed during the first long shutdown

of the LHC (2013-2014)

• The large amount of activities performed in the framework of

the ATLAS 3D sensor collaboration triggered new ideas that

are currently being investigated and will be soon tested
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Thank you!
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