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Summary

Through a second-order homogenization procedure, the explicit relation is
obtained between the non-local parameters of a second gradient elastic ma-
terial and the microstructure of a composite material. This result is instru-
mental for the definition of higher-order models, to be used for the analysis
of mechanics at micro- and nano-scale, where size-effects become important.

The obtained relation is valid for both plane and three-dimensional prob-
lems and generalizes earlier findings by Bigoni and Drugan (Analytical deriva-
tion of Cosserat moduli via homogenization of heterogeneous elastic materials.
J. Appl. Mech., 2007, 74, 741753) from several points of view:

i) the result holds for anisotropic phases with spherical or circular ellipsoid
of inertia;

ii) the displacement boundary conditions considered in the homogenization
procedure is independent of the characteristics of the material;

iii) a perfect energy match is found between heterogeneous and equivalent
materials (instead of an optimal bound).

From the obtained solution it follows that the equivalent second-gradient
Mindlin elastic solid:

a) is positive definite only when the discrepancy tensor is negative defined;

b) the non-local material symmetries are the same of the discrepancy tensor;

c) the non-local effective behaviour is affected by the shape of the RVE, which
does not influence the first-order homogenized response.

Finally, explicit derivations of non-local parameters from heterogeneous
Cauchy elastic composites are obtained in particular cases.
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Chapter 1

Introduction

In the last century composite materials have become fundamental for advanced
applications in aerospatial, bio-mechanical and nano-mechanical engineering.
Since size-effects have been experimentally evidenced in the mechanics at the
micro- or nano-scale, the local constitutive models are unsuitable for the design
of high performance composites.

Despite the formulation of many nonlocal models (Cosserat, 1909; Koiter,
1964; and Mindlin, 1964), the nonlocal constitutive parameters are usually
introduced in a phenomenological way and the explicit evaluation between
the microstructure and the nonlocal effects has been scarcely investigated.1

The main goal of this thesis is to provide through an analytical approach
the explicit evaluation of the constitutive non-local parameters (length-scales)
from the microstructural description.

In Chapter 2 the kinematic primary quantities and the conjugate statical
quantities are introduced for the higher-order material considered, namely, the
Second Gradient Elastic material (Mindlin, 1964). Through the principle of
virtual work, the governing equations and boundary conditions are obtained
and within linear theory, the constitutive response is defined by means of the
local C and non-local A constitutive tensors.

The second-order homogenization procedure is presented in Chapter 3.
While standard (or first-order) homogenization procedures lead to effective ho-
mogeneous Cauchy material equivalent only when linear displacement bound-

1Theoretical considerations were developed by Wang and Stronge, 1999; Achenbach and
Hermann, 1968; and Beran and McCoy, 1970; Pideri and Seppecher, 1997; numerical ap-
proaches were given by Forest, 1998; Ostoja-Starzewski et al. 1999; Bouyge et al. 2001;
experiments were provided by Anderson and Lakes, 1994; Buechner and Lakes, 2003; Lakes,
1986; Gauthier, 1982.
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2 Introduction

ary conditions are considered (Fig. 1.1), the proposed procedure extends the
energy equivalence to the case of generic quadratic displacement boundary
conditions, by taking an higher-order solid as effective material material (Fig.
1.2).

Heterogeneous Cauchy material

matrix - inclusionC(1) C(2)

First-order equivalent

homogeneous Cauchy material Ceq

=

=

P

O

Figure 1.1: Standard (or first-order) homogenization procedure leading to effective homo-
geneous Cauchy material equivalent only when linear displacement boundary conditions are
considered.

Through the second-order homogenization procedure, the equivalent non-
local constitutive tensor A

eq is explicitly evaluated in Chapter 4 in the case
of dilute suspension as

A
eq
ijhlmn = −f

ρ2

4

(

C̃ihlnδjm + C̃ihmnδjl + C̃jhlnδim + C̃jhmnδil

)

,

where ρ is the radius of the sphere (or circle in 2D) of inertia of the RVE
cell, and C̃ is introduced to define (at first-order in f) the difference between
the local constitutive tensors for the effective material Ceq (known from first-
order homogenization) and the matrix C

(1), so that

C
eq = C

(1) + f C̃.

Properties of positive definiteness, nonlocal symmetries and influence of the
volume and shape of the RVE are derived from the obtained solution.
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Heterogeneous Cauchy material

matrix - inclusionC(1) C(2)

Second-order equivalent

homogeneous SGE material C ,eq Aeq

=

=

P

P

Figure 1.2: The proposed second-order homogenization procedure based on effective
higher-order solid. The equivalence between the heterogeneous and the homogeneous mate-
rial holds for a generic quadratic displacement boundary conditions.

The explicit evaluation of the equivalent nonlocal constitutive tensor A
eq

is exploited in Chapter 5 to obtain the non-local parameters in specific appli-
cation cases. The following cases are considered: (i.) isotropic matrix with
spherical elastic inclusions and voids in three-dimensional deformations (Fig.
1.3), (ii.) isotropic matrix with circular elastic inclusions, regular n-polygonal
and circular holes in plane strain and (iii) orthotropic matrix with circular
holes in plane strain.

Conclusions of this thesis are finally reported in Chapter 6.

The results presented in this thesis have been published in (Bacca et al.
2013, a;b), while complementary results on propagation of elastic waves in
periodic composites have been published by Gei et al. (2011; 2013).



4 Introduction

Figure 1.3: Higher-order equivalent constants a2 and a4 of the Second Gradient Elas-
tic material equivalent to a composite made up of an isotropic matrix containing a dilute
suspension of spherical voids. The constants are made dimensionless through division by
parameter fρ2µ1 and are reported as a function of the matrix Poisson’s ratio ν1.



Chapter 2

Preliminaries on Second-Gradient

Elasticity

Kinematic variables, principle of virtual work, equilibrium equations and bound-
ary conditions are introduced for a Second-Gradient Elastic material. Within
a linear theory, the local C and non-local A constitutive tensors are introduced
together with the positive definiteness condition (for the case of isotropic ma-
terials).

2.1 Governing equations

The governing equations for the nonlocal material model employed in the
homogenization procedure are briefly presented. In particular, the second-
gradient elasticity (SGE) model considered is a restriction of the nonlocal
model proposed by Mindlin (1964), in which the relative deformation [his eqn
(1.11), and therefore also his stress σij, eqn (3.4)2] and the coupling between
the stress and the curvature [expressed by his fifth-order tensor fijkpq, eqn
(5.3)1] are both assumed to be null.

Considering a quasi-static deformation process, defined by the displace-
ment field u (function of the position x ), the primary kinematical quantities
of the SGE are defined as

εij =
ui,j + uj,i

2
, χijk = uk,ij, (2.1)

where a comma denotes differentiation, the indices range between 1 and N

5



6 Preliminaries on Second-Gradient Elasticity

(equal to 2 or 3, depending on the space dimensions of the problem consid-
ered), and ε and χ are the (second-order) strain and the (third-order) curva-
ture tensor fields, respectively, satisfying the following symmetry properties

εij = εji, χijk = χjik. (2.2)

Defining the statical entities Cauchy stress σij=σji and double stress τijk=τjik,
respectively work-conjugate to the kinematical entities ε and χ, eqn (2.1), the
principle of virtual work can be written for a solid occupying a domain Ω, with
boundary ∂Ω and set of edges Γ (Fig. 2.1), in the absence of body-force as

∫

Ω
(σijδεij + τijkδχijk) =

∫

∂Ω
(tiδui + TiDδui) +

∫

Γ
Θiδui, (2.3)

where repeated indices are summed, t represents the surface traction (work-
conjugate to u), whileT andΘ denote the generalized tractions on the surface
∂Ω and along the set of edges Γ (work-conjugate respectively to Du and u),
and D = nl∂l represents the derivative along the outward normal direction
to the boundary, n (definite only on ∂Ω but not on Γ). Through integration

Figure 2.1: Volume region Ω enclosed by the surface ∂Ω with the set of edges Γ.

by parts, the equilibrium conditions [Mindlin (1964), his eqns (9.30) with null
inertia terms], holding for points within the body Ω, can be obtained as

∂j (σjk − ∂iτijk) = 0, in Ω, (2.4)

while for points on the boundary ∂Ωp and along the set of edges Γp, (where
statical conditions are prescribed in terms of t , T and Θ) as







njσjk − ninjDτijk − 2njDiτijk + (ninjDlnl −Djni) τijk = tk,

ninjτijk = Tk,
on ∂Ωp,

(2.5)
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and
[[ emljnismnlτijk ]] = Θk, onΓp, (2.6)

where emlj is the Ricci ‘permutation’ tensor, Dj = (δjl − njnl) ∂l, s is the
unit vector tangent to Γ and [[·]] represents the jump of the enclosed quantity,
computed with the normals n defined on the surfaces intersecting at the edge
Γ. Finally, kinematical conditions1 are prescribed for points on the remaining
boundary ∂Ωu ≡ ∂Ω\∂Ωp as







ui = ui,

Dui = Dui,
on ∂Ωu. (2.7)

2.2 Linear constitutive response

Introducing the strain energy density wSGE = wSGE(ε,χ), the σ and τ fields
can be obtained as

σij =
∂wSGE

∂εij
, τijk =

∂wSGE

∂χijk

, (2.8)

so that, within a linear theory (with the above-mentioned assumptions of null
relative deformation and no-coupling in the strain energy between strain and
curvature), it follows that

wSGE(ε,χ) =
1

2
Cijhkεijεhk
︸ ︷︷ ︸

wSGE,L(ε)

+
1

2
Aijklmnχijkχlmn

︸ ︷︷ ︸

wSGE,NL(χ)

, (2.9)

where C and A are the local (fourth-order) and non-local (sixth-order) con-
stitutive tensors, each generating respectively a strain energy density contri-
bution, say ‘local’, wSGE,L (corresponding to the energy stored in a Cauchy
material, wSGE,L = wC) and ‘non-local’, wSGE,NL. Therefore, the linear con-
stitutive equations for the stress and double stress quantities are obtained
as

σij = Cijhkεhk, τijk = Aijklmnχlmn, (2.10)

which, from eqns (2.1) and (2.8), have the following symmetries

Cijhk = Cjihk = Cijkh = Chkij, Aijklmn = Ajiklmn = Aijkmln = Almnijk.
(2.11)

1In the proposed homogenization procedure only kinematical boundary conditions will
be imposed (∂Ωp ≡ ∅, so that ∂Ωu ≡ ∂Ω).
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In the case of isotropic response, the constitutive elastic tensors C and A can
be written in the following form

Cijhk = λδijδhk + µ(δihδjk + δikδjh),

Aijhlmn =
a1
2

[δij (δhlδmn + δhmδln) + δlm (δinδjh + δihδjn)]

+
a2
2

[δih (δjlδmn + δjmδln) + δjh (δilδmn + δimδln)]

+2 a3 (δijδhnδlm) + a4 (δilδjm + δimδjl) δhn

+
a5
2

[δin (δjlδhm + δjmδhl) + δjn (δilδhm + δimδhl)] ,

(2.12)

where δij is the Kronecker delta, λ and µ are the usual Lamé constants, defin-
ing the local isotropic behavior, while ai (i = 1, ..., 5) are the five material
constants (with the dimension of a force) defining the nonlocal isotropic be-
havior. Considering the constitutive isotropic tensors (5.3), the strain energy
density (2.9) becomes

wSGE(ε,χ) =
λ

2
εiiεjj + µεijεij

︸ ︷︷ ︸

wSGE,L(ε)

+
5∑

k=1

akIk(χ)

︸ ︷︷ ︸

wSGE,NL(χ)

, (2.13)

where the invariants Ik(χ) are

I1(χ) = χiik χjkj(= χiik χkjj),

I2(χ) = χiki χjkj(= χkii χjkj = χkii χkjj = χiki χkjj),

I3(χ) = χiik χjjk,

I4(χ) = χijk χijk(= χjik χijk = χjik χjik = χijk χjik),

I5(χ) = χijk χkji(= χjik χkji = χjik χjki = χijk χkji),

(2.14)

so that the linear constitutive relations (2.10) reduce to

σij = λεllδij + 2µεij ,

τijk =
a1
2

(χlliδjk + 2χkllδij + χlljδik) + a2 (χillδjk + χjllδik) + 2a3χllkδij

+2a4χijk + a5 (χkji + χkij) .
(2.15)
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Since the invariants defined by eqns (2.14) satisfy the following inequalities

2I1(χ) + I2(χ) + I3(χ) ≥ 0, I2(χ) ≥ 0, I3(χ) ≥ 0,

I4(χ) ≥ 0, I4(χ) + I5(χ) ≥ 0,
(2.16)

the positive definiteness condition for the isotropic strain energy density wSGE ,
eqn (2.13), corresponds to the usual restraints for the local parameters (given
by the positive definiteness of wSGE,L(ε))

3λ+ 2µ > 0, µ > 0, (2.17)

which are complemented by the following conditions (Mindlin and Eshel, 1968)
on the nonlocal constitutive parameters (given by the positive definiteness of
wSGE,NL(χ))

−a4 < a5 < 2a4, e1 > 0, e2 > 0, 5e23 < 2e1e2, (2.18)

where

e1 = −4a1 + 2a2 + 8a3 + 6a4 − 3a5, e2 = 5(a1 + a2 + a3) + 3(a4 + a5),

e3 = a1 − 2a2 + 4a3.
(2.19)
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Chapter 3

The second-order homogenization

procedure

The second-order homogenization procedure is presented, based on the annihi-
lation of the strain energy mismatch between the heterogeneous Cauchy mate-
rial and the equivalent Second Gradient Elastic material. Assumptions about
geometrical properties of matrix and inclusion phases are introduced.

3.1 Description of the homogenization procedure

The proposed homogenization procedure follows Bigoni and Drugan (2007).
In particular, the same1 (linear and quadratic) displacement is applied on the
boundary of both the representative volume element RVE and the homoge-
neous equivalent SGE material. Then, the equivalent local Ceq and non-local
A

eq tensors are obtained imposing the vanishing of the elastic energy mis-
match between the two materials. Since the strain energy in the homogeneous
SGE material is given only by the local contribution when linear displacement
boundary condition are applied (because no strain gradient arises), the equiva-

1Bigoni and Drugan (2007) impose a linear and quadratic displacement field on the
boundaries of the RVE and of the homogeneous equivalent material, which quadratic part
depends on the Poisson’s ratio of the material to which the displacement is applied, so
that the applied displacements are not exactly equal. Furthermore, the equivalent material
considered by Bigoni and Drugan is a non-local Koiter material (1964), which does not
permit the annihilation, but only a minimization of the elastic energy mismatch between
the RVE and the equivalent material.

11



12 The second-order homogenization procedure

lent local tensor Ceq corresponds to that obtained with usual homogenization
procedures. Thus, the remaining unknown of the equivalent SGE material
(namely, the non-local equivalent constitutive tensor Aeq) can be obtained by
imposing the vanishing mismatch in strain energy when (linear and) quadratic
displacement are considered. A chief result in the current procedure is that
a perfect match in the elastic energies is achieved, while Bigoni and Drugan
(2007) only obtained an ‘optimality condition’ for the mismatch.

The homogenization procedure is described in the following three steps.

Step 1. Consider a RVE made up of a heterogeneous Cauchy material (C),
Fig. 3.1 (left), occupying a region

ΩC
RV E ≡ ΩC

1 ∪ ΩC
2 ,

where an inclusion, phase ‘2’ (occupying the region ΩC
2 and with elastic

tensor C(2)), is fully enclosed in a matrix, phase ‘1’ (occupying the region
ΩC
1 and with elastic tensor C

(1)), so that the constitutive local tensor
C(x ) within the RVE can be defined as the piecewise constant function

C(x ) =







C
(1)

x ∈ ΩC
1 ,

C
(2)

x ∈ ΩC
2 ,

(3.1)

and the volume fraction f of the inclusion phase can be defined as

f =
ΩC
2

ΩC
RV E

. (3.2)

The equivalent material is a homogeneous SGEmaterial, Fig. 3.1 (right),
occupying the region ΩSGE

eq

ΩSGE
eq = ΩC

RV E , (3.3)

and constitutive elastic tensors Ceq (local part) and A
eq (nonlocal part).

Since the region ΩSGE
eq of the equivalent SGE material corresponds by

definition to the region ΩC
RV E of the heterogeneous RVE, in the following

both these domains may be identified as Ω.

Step 2. Impose on the RVE boundary the following second-order (linear and
quadratic) displacement field u , Fig. 3.2 (left)

u = u , on ∂ΩC
RV E , (3.4)
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Heterogeneous Cauchy material

matrix - inclusionC(1) C(2)

Homogeneous SGE material

C ,eq Aeq

WRVE

C Weq

SGE

Figure 3.1: Heterogeneous Cauchy material (left) and homogeneous equivalent SGE ma-
terial (right).

with
ui = αijxj

︸ ︷︷ ︸

uαi

+βijkxjxk
︸ ︷︷ ︸

uβi

, (3.5)

where αij and βijk are constant coefficients, the latter having the sym-
metry βijk=βikj.

Impose on the equivalent homogeneous SGE boundary again the dis-
placement (3.5), but together with its normal derivative,2 Fig. 3.2
(right), so that







u = u ,

Du = Du ,
on ∂ΩSGE

eq . (3.6)

The imposition of the boundary conditions (3.4) on the RVE and (3.6) on
the equivalent SGE corresponds, respectively, to the two strain energies

WC
RV E =

∫

ΩC
1

wC
∣
∣
C

(1)+

∫

ΩC
2

wC
∣
∣
C

(2) , WSGE
eq =

∫

ΩSGE
eq

wSGE
∣
∣
C

eq
,A

eq ,

(3.7)
so that for a generic quadratic displacement field, eqn. (3.5), an energy
mismatch (or ‘gap’) G between the two materials arises as a function of
the unknown equivalent constitutive tensor Aeq

G
(

C
(1),C(2),Ceq,Aeq

)

= WC
RV E −WSGE

eq . (3.8)

2It is shown that imposing Du = Du is equivalent (in energetic terms at first-order in
f) to impose Du = DuRV E (Appendix C).
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Heterogeneous Cauchy material

matrix - inclusionC(1) C(2)

Homogeneous SGE material

C ,eq Aeq

Figure 3.2: Imposition of the same linear (top) and quadratic (bottom) boundary dis-
placement conditions on the heterogeneous Cauchy RVE (left) and on the homogeneous
equivalent SGE (right).

Step 3. Find the unknown equivalent constitutive tensor Aeq by imposing a
null energy mismatch G

G
(

C
(1),C(2),Ceq,Aeq

)

= 0. (3.9)

Note that in the case of purely linear displacements (β = 0) the en-
ergy mismatch G is null by definition of Ceq. On the other hand, when
quadratic displacements are considered, an energy mismatch G is differ-
ent to zero and it can be tuned to vanish by changing the value of the
unknown tensor Aeq. This gives also a null mean stress mismatching as
shown in Appendix D.

The above-procedure is valid for arbitrary concentration (although sub-
sequent calculations will be referred to the dilute approximation) and is a
generalization of Bigoni and Drugan (2007) since (i.) the inclusions are of ar-
bitrary shape and, more interestingly, (ii.) the comparison material, a Mindlin
elastic second-gradient material, allows a perfect match of the energies (while
Bigoni and Drugan (2007) did consider only cylindrical or spherical inclusions
and were only able to provide a minimization of energy gap).
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3.2 Assumptions about geometrical properties of

matrix and inclusion phases

Henceforth the following geometrical properties for both the subsets ΩC
1 and

ΩC
2 will be assumed:3

GP1) The centroids of the matrix and of the inclusion coincide and corre-
spond to the origin of the xi–axes, so that both the static moments of
the inclusion and of the matrix are null

S(ΩC
1 ) = 0, S(ΩC

2 ) = 0. (3.12)

GP2) The xi–axes are principal axes of inertia for both the matrix and the
inclusion and the ellipsoids of inertia are a sphere (or a circle in 2D)

E(ΩC
1 ) =

[

ρ(1)
]2

ΩC
1 I , E(ΩC

2 ) =
[

ρ(2)
]2

ΩC
2 I , (3.13)

where I is the identity second-order tensor and the second-order Euler
tensor of inertia E relative to the xi–axes, defined for a generic solid
occupying the region V as

Eij(V ) =

∫

V

xi xj , (3.14)

while ρ(1) = ρ(ΩC
1 ) and ρ(2) = ρ(ΩC

2 ) are the radii of the spheres (or
circles in 2D) of inertia of the matrix and the inclusion.

GP3) The radius of the sphere of inertia for the inclusion phase vanishes in
the limit of null inclusion volume fraction

lim
f→0

ρ(2)(f) = 0, (3.15)

3Note that, by definition of static moment vector S and Euler tensor of inertia E , eqn
(3.14), the geometrical properties GP1, eqn (3.12) and GP2, eqn (3.13), of the subsets
ΩC

1 and ΩC
2 are also necessarily satisfied by ΩC

RV E , so that

S(ΩC
RV E) = 0, E (ΩC

RV E) = ρ2ΩC
RV EI , (3.10)

where the radius ρ = ρ(ΩC
RV E) is related to the radii of the matrix ρ(1) and the inclusion

ρ(2) as follows

ρ2 = (1− f)
[

ρ(1)
]2

+ f
[

ρ(2)
]2

. (3.11)
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or, equivalently, all the dimensions of the inclusion (and therefore the
radius of the smallest ball containing the inclusion) are zero for f = 0.

Examples of two-dimensional RVE, characterized by the geometrical prop-
erties GP1-GP2 and GP3 are reported in Figs. 3.3 and 3.4, respectively.

Figure 3.3: Some examples of two-dimensional RVE with the geometrical properties GP1,
eqn (3.12), and GP2, eqn (3.13), for plane strain condition.

decreasing inclusion volume fraction  f

decreasing inclusion volume fraction  f

P Satisfying

GP3

Not satisfying

GP3

Figure 3.4: Examples of two-dimensional RVE satisfying (upper part) or not (lower part)
the geometrical property GP3, eqn (3.15).



Chapter 4

Explicit evaluation of the non-local

constitutive tensor

The explicit evaluation of the equivalent non-local constitutive tensor is ob-
tained under the geometrical assumptions introduced in Chapter 3 and the di-
lute approximation. Properties of positive definiteness and non-local symme-
tries for the equivalent SGE material are derived from the obtained solution.

4.1 Equivalent non-local properties in the dilute

case

Homogenization proposition. For a dilute concentration of the inclusion
phase (f ≪ 1) and assuming the geometrical properties GP1 - GP2 - GP3
for the RVE (Section 3.2), the nonlocal sixth-order tensor Aeq of the equivalent
SGE material is evaluated (at first-order in f) as

A
eq
ijhlmn = −f

ρ2

4

(

C̃ihlnδjm + C̃ihmnδjl + C̃jhlnδim + C̃jhmnδil

)

+ o(f), (4.1)

where ρ is the radius of the sphere (or circle in 2D) of inertia of the RVE cell,
and C̃ is introduced to define (at first-order in f) the difference between the
local constitutive tensors for the effective material Ceq and the matrix C

(1),
so that

C
eq = C

(1) + f C̃, (4.2)

17
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which is assumed to be known from standard homogenization, performed on
linear displacement boundary conditions.

Eqn (4.1) represents the solution of the homogenization problem and is
obtained by imposing the vanishing of the energy mismatch G, eqn (3.9), when
the same second-order displacement boundary conditions are applied both on
the heterogeneous Cauchy material and on the homogeneous equivalent SGE
material, eqns (3.4) and (3.6), respectively.

From the solution (4.1), in agreement with Bigoni and Drugan (2007), it
can be noted that:

• the equivalent SGE material is positive definite if and only if C̃ is nega-
tive definite;

• the constitutive higher-order tensor Aeq is linear in f for dilute concen-
tration.

This properties are treated in Section 4.2.

Proof of the homogenization proposition

i) Consider the second-order (linear and quadratic) displacement boundary
condition (3.6) applied on the boundary of a homogeneous SGE material
with constitutive tensors C and A. In the absence of body force, b = 0, let
us consider the extension within the body of the quadratic displacement
field u , eqn (3.5), applied on the boundary

ui = αijxj
︸ ︷︷ ︸

uαi

+βijkxjxk
︸ ︷︷ ︸

uβi

, x in Ω, (4.3)

providing the following deformation ε and curvature χ fields

εij =
αij + αji

2
+ (βijk + βjik)xk, χijk = 2βkij , (4.4)

and the following stress σ and double-stress τ fields,

σij = Cijhkαhk + 2Cijhkβhklxl, τijk = 2Aijklmnβnlm. (4.5)

The stress field (4.5) follows from the displacement field (4.3) and satisfies
the equilibrium equation (2.4) if and only if 1

Cijhkβhkj = 0, (4.6)

1Note that the constraint (4.6) arises independently of whether the material is Cauchy
or SGE.
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which for isotropic homogeneous materials reduces to the condition ob-
tained by Bigoni and Drugan (2007)

βjji = −(1− 2ν)βikk, (4.7)

(with Poisson’s ratio ν = λ/2(λ + µ)). Henceforth it is introduced the
notation that, when the components of β satisfy eqn (4.6) or (4.7) for
isotropy, these will be denoted with the superscript ⋄.2

ii) Consider an auxiliary material with local constitutive tensor C∗, defined
as a first-order perturbation in f to the equivalent local constitutive tensor
C
eq, namely,

C
∗ = C

eq + f
(

Ĉ− C̃

)

, (4.8)

(where Ĉ remains for the moment unspecified together with C
∗), so that

using eqn (4.2) we can write

C
∗ = C

(1) + f Ĉ. (4.9)

By definition, the displacement field

u∗i = αijxj
︸ ︷︷ ︸

uαi

+β⋄∗

ijkxjxk
︸ ︷︷ ︸

uβ
⋄∗

i

, x in Ω. (4.10)

is equilibrated [in other words satisfies eqn (4.6)] in a homogeneous ma-
terial characterized by the constitutive tensor C

∗ and it corresponds to
the following quadratic displacement field on the boundary

u∗i = αijxj
︸ ︷︷ ︸

uαi

+β⋄∗

ijkxjxk
︸ ︷︷ ︸

uβ
⋄∗

i

, x on ∂Ω. (4.11)

iii) Apply on the boundary ∂ΩC
RV E of the heterogeneous Cauchy material

(RVE) the displacement boundary condition (4.11),

u
RV E = u

∗, on ∂ΩC
RV E. (4.12)

2Following this rule, whenever the third-order tensor β is considered and the equilibrium
is satisfied, eqn (4.6), the tensor β and the arising displacement uβ fields are denoted as β⋄

and u
β⋄

.
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According to Lemma 1 (Section 4.1.1), the strain energy in the RVE is
at first-order in f the sum of a strain energy due to the linear (α) and
nonlinear (β) fields, and the mutual strain energy, say, the ‘α−β energy
term’ is null,3 so that

WC
RV E (u∗) = WC

RV E (uα) +WC
RV E

(

u
β⋄∗

)

+ o(f). (4.14)

iv) Apply on the boundary ∂ΩSGE
eq of the homogeneous SGE material the

same displacement boundary condition u
∗, eqn (4.11), imposed to the

RVE and complemented by the higher-order boundary condition in terms
of displacement normal derivative taken equal4 to Du

∗







u
SGE = u

∗,

Du
SGE

= Du
∗,

on ∂ΩSGE
eq . (4.15)

According to the result presented in Lemma 2 (Section 4.1.1), the α−β

energy term is null and the strain energy in ΩSGE
eq is

WSGE
eq (u∗,Du

∗) = WSGE
eq (uα,Du

α) +WSGE
eq

(

u
β⋄∗

,Du
β⋄∗

)

, (4.16)

where Du
α and Du

β⋄∗

are the contributions of the imposed normal
derivative depending on α and β terms in Du

∗, respectively.

v) The energy minimization procedure, eqn (3.9), can be performed using the
energy stored in the heterogeneous Cauchy material WC

RV E , eqn (4.14),

3Considering that the RVE satisfies geometrical symmetry conditions, in addition to the
geometrical properties GP1 and GP2, it can be proven that the mutual energy is identically
null even in the case of non-dilute suspension of inclusion

WC
RV E (u∗) = WC

RV E (uα) +WC
RV E

(

u
β⋄∗

)

, ∀ f. (4.13)

4The displacement field eqn (4.10) is the solution for a homogeneous SGE when bound-
ary conditions (4.15) are imposed. It can be easily proven that the result of the pro-
posed homogenization procedure holds when the higher-order boundary condition changes

as Du
SGE

= Du
RV E since the strain energy developed in the SGE material is the same at

the first order

WSGE
eq

(

u
∗, Du

RV E
)

= WSGE
eq (u∗, Du

∗) + o(f).
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and in the homogeneous SGE material WSGE
eq , eqn (4.16), so that the

energy mismatch is given by

G
(

C
(1),C(2),Ceq,Aeq

)

= Gα
(

C
(1),C(2),Ceq,Aeq

)

+Gβ⋄∗

(

C
(1),C(2),Ceq,Aeq

)

,
(4.17)

where

Gα
(

C
(1),C(2),Ceq,Aeq

)

= WC
RV E (uα)−WSGE

eq (uα,Du
α) ,

Gβ⋄∗

(

C
(1),C(2),Ceq,Aeq

)

= WC
RV E

(
u
β⋄∗
)
−WSGE

eq

(
u
β⋄∗

,Du
β⋄∗
)
.

(4.18)
Since only the local contribution (depending on C

eq) arises in the SGE
strain energy when the linear boundary displacement condition (β⋄∗ =

0 and u
SGE = u

α, Du
SGE

= Du
α) is imposed (while the non-local

contribution depending on A
eq is identically null because higher-order

stress and curvature are null), the energy mismatch Gα due to the α
terms is null by definition of Ceq (which is known from the first-order
homogenization procedure)

Gα
(

C
(1),C(2),Ceq,Aeq

)

= Gα
(

C
(1),C(2),Ceq

)

= 0. (4.19)

Therefore, the proposed energy minimization procedure, based on lin-
ear and quadratic displacement boundary condition and leading to the
definition of Aeq, can be performed referring only to the β⋄∗ terms,

G
(

C
(1),C(2),Ceq,Aeq

)

= Gβ⋄∗

(

C
(1),C(2),Ceq,Aeq

)

. (4.20)

vi) Keeping into account the results presented in Lemma 3 (Section 4.1.1)
and Lemma 4 (Section 4.1.1), the energy mismatch (4.20) is given by
the difference of the following two terms

WC
RV E(u

β⋄∗

) = 2ρ2ΩC
(1)
ijhkβ

⋄∗

ijlβ
⋄∗

hkl + o(f). (4.21)

and

WSGE
eq (uβ⋄∗

,Du
β⋄∗

) = 2Ω
(

ρ2Ceq
ijhkδlm + A

eq
jlikmh

)

β⋄∗

ijlβ
⋄∗

hkm + o(f).

(4.22)
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vii) Therefore, from eqns (4.2), (4.21) and (4.22), the annihilation of the strain
energy gap G, eqn (4.20) (between the real heterogeneous Cauchy and the
equivalent homogeneous SGE materials) is represented by the condition

(

fρ2C̃ijhkδlm + A
eq
jlikmh

)

β⋄∗

ijlβ
⋄∗

hkm + o(f) = 0. (4.23)

viii) The energy annihilation (4.23) has been obtained for a nonlinear displace-
ment field β⋄∗, in equilibrium within a homogeneous material with local
constitutive tensor C∗. But, since this tensor is arbitrary, it follows

(

fρ2C̃ijhkδlm + A
eq
jlikmh

)

βijlβhkm + o(f) = 0, (4.24)

where the components of β are unrestricted, except for the symmetry
βijk=βikj. Eventually, the annihilation of energy mismatch G, eqn (4.24),
defines the non-local constitutive tensor Aeq for the equivalent SGE ma-
terial as in eqn (4.1). �

4.1.1 Proofs of lemmas 1-4

Lemma 1: Null mutual α–β energy term for the RVE at the first-
order in concentration f

Statement. When a quadratic displacement u∗, eqn (4.11), is applied on
the boundary of a RVE satisfying the geometrical property GP1 and GP3,
the strain energy at first-order in f is given by eqn (4.14).

Proof. By the superposition principle, the fields originated by the applica-
tion of u∗ = u

α+u
β⋄∗

are given by the sum of the respective fields originated
from the boundary conditions uα and u

β⋄∗

ε(x ) = εα(x ) + εβ
⋄∗

(x ), σ(x ) = σα(x ) + σβ⋄∗

(x ), (4.25)

(the latter calculated through the constitutive eqn (2.10)1) so that the strain
energy (3.7)1 becomes

WC
RV E(u

∗) = WC
RV E(u

α) +WC
RV E(u

β⋄∗

) +WC
RV E(u

α;uβ⋄∗

)
︸ ︷︷ ︸

mutual energy

(4.26)
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where

WC
RV E(u

α) =
1

2

∫

ΩR

εαij(x )Cijhk(x )ε
α
hk(x ),

WC
RV E(u

β⋄∗

) =
1

2

∫

ΩR

εβ
⋄∗

ij (x )Cijhk(x )ε
β⋄∗

hk (x ),

WC
RV E(u

α;uβ⋄∗

) =

∫

ΩR

εαij(x )Cijhk(x )ε
β⋄∗

hk (x ).

(4.27)

Through two applications of the principle of virtual work5 the mutual
energy (4.27)3 can be computed as

WC
RV E(u

α;uβ⋄∗

) = αij

∫

ΩR

σβ⋄∗

ij (x ), (4.29)

which, using the constitutive relation (2.10)1 and the symmetries of the local
constitutive tensors C

(1) and C
(2), can be decomposed as the sum of two

contributions

WC
RV E(u

α;uβ⋄∗

) = αijC
(1)
ijhk

∫

ΩR

uβ
⋄∗

h,k (x ) + αij

(

C
(2)
ijhk − C

(1)
ijhk

) ∫

ΩR2

uβ
⋄∗

h,k (x ).

(4.30)

Through two further applications of the divergence theorem and using the
geometrical property GP1 for the RVE,6 the first term on the right-hand-side

5In the first application, the fields corresponding to the solution (4.25) are considered

∫

ΩR

εαij(x )σ
β⋄∗

ij (x ) =

∫

∂ΩR

uα
i (x )t

β⋄∗

i (x ), (4.28)

while in the second application, the kinematical field generated by the admissible displace-
ment uα (4.10) within the RVE is considered so that the mutual energy (4.29) is obtained.

6In the first application of the divergence theorem, uβ⋄∗

= uβ⋄∗

, eqn (4.11), is considered
on the boundary ∂ΩR, so that

∫

ΩR

uβ⋄∗

h,k (x ) = β⋄∗

hlm

∫

∂ΩR

nkxlxm, (4.31)

while, in the second application, the kinematically admissible displacement field uβ⋄∗

, eqn
(4.10), is considered within the RVE, yielding

β⋄∗

hlm

∫

∂ΩR

nkxlxm = 2β⋄∗

hlk

∫

ΩR

xl, (4.32)

so that the geometrical property GP1 for the RVE leads to eqn (4.33).
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of eqn (4.30) results to be null

αijC
(1)
ijhk

∫

ΩR

uβ
⋄∗

h,k (x ) = 0. (4.33)

Introducing the mean value over a domain Ω of the function f(x ) as

〈f(x )〉|Ω =
1

Ω

∫

Ω
f(x ), (4.34)

the second term on the right-hand-side of eqn (4.30) can be rewritten as

αij

(

C
(2)
ijhk − C

(1)
ijhk

)

ΩR2

〈

uβ
⋄∗

h,k (x )
〉∣
∣
∣
ΩR2

. (4.35)

Assuming the geometrical property GP3 for the RVE, the displacement field
in the presence of the inclusion is given by the asymptotic expansion in the
volume fraction f

uβ
⋄∗

i = β⋄∗

ijkxjxk + f q ũβ
⋄∗

i + o(f), (4.36)

subject to the constraint
0 < q ≤ 1, (4.37)

and considering the geometrical property GP1 for the RVE, together with
the definition of volume fraction f , eqn (3.2), expression (4.35) becomes

f q+1Ωαij

(

C
(2)
ijhk − C

(1)
ijhk

) 〈

ũβ
⋄∗

h,k (x )
〉∣
∣
∣
ΩR2

, (4.38)

from which, considering the restriction on the power q (C.11), the second term
on the right-hand-side of eqn (4.30) is null at first-order in f

αij

(

C
(2)
ijhk − C

(1)
ijhk

) ∫

ΩR2

uβ
⋄∗

h,k (x ) = o(f). (4.39)

Considering results (4.33) and (4.39), the mutual energy in the RVE (4.27)3
is null at first-order in f and proposition (4.14) follows. �

Lemma 2: Null mutual α–β energy term for the SGE

Statement. When a quadratic displacement u
∗, eqn (4.11), and the nor-

mal component of its derivative Du
∗ are applied on the boundary of a SGE

satisfying the geometrical property GP1, the strain energy is given by eqn
(4.16).
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Proof. By the superposition principle, the fields originated by the applica-
tion of the boundary conditions (u∗ = u

α + u
β⋄∗

, Du
∗ = Du

α + Du
β⋄∗

)
can be obtained as the sum of the respective fields arising from the boundary
conditions (uα, Du

α) and (uβ⋄∗

, Du
β⋄∗

) in the forms

ε(x ) = εα(x ) + εβ
⋄∗

(x ), χ(x ) = χα(x ) + χβ⋄∗

(x ),

σ(x ) = σα(x ) + σβ⋄∗

(x ), τ (x ) = τα(x ) + τ β⋄∗

(x ),
(4.40)

(the latter calculated through the constitutive eqn (2.10)) so that the strain
energy (3.7)2 becomes

WSGE
eq (u∗,Du

∗) = WSGE
eq (uα,Du

α) +WSGE
eq (uβ⋄∗

,Du
β⋄∗

)
︸ ︷︷ ︸

direct energy

+WSGE
eq (uα,Du

α;uβ⋄∗

,Du
β⋄∗

)
︸ ︷︷ ︸

mutual energy

(4.41)

where

WSGE
eq (uα,Du

α) =
1

2

∫

Ωeq

[

εαij(x )C
eq
ijhkε

α
hk(x )

+χα
ijl(x )A

eq
ijlhkmχ

α
hkm(x )

]

,

WSGE
eq (uβ⋄∗

,Du
β⋄∗

) =
1

2

∫

Ωeq

[

εβ
⋄∗

ij (x )Ceq
ijhkε

β⋄∗

hk (x )

+χβ⋄∗

ijl (x )A
eq
ijlhkmχ

β⋄∗

hkm(x )
]

,

WSGE
eq (uα,Du

α;uβ⋄∗

,Du
β⋄∗

) =

∫

Ωeq

[

εαij(x )C
eq
ijhkε

β⋄∗

hk (x )

+χα
ijl(x )A

eq
ijlhkmχ

β⋄∗

hkm(x )
]

.

(4.42)

Application of the boundary condition (uα,Du
α) on ∂Ωeq leads to the

displacement field u
α(x ), eqn (4.10), so that χα(x ) = 0 and, considering the

symmetries of the equivalent local constitutive tensor Ceq, the mutual energy
simplifies in the local contribution

WSGE
eq (uα,Du

α;uβ⋄∗

,Du
β⋄∗

) = αijC
eq
ijhk

∫

Ωeq

uβ
⋄∗

h,k (x ). (4.43)

Through two applications of the divergence theorem and using the geomet-
rical property GP1 of the SGE, the mutual energy (4.43) is null and then
proposition (4.16) follows. �
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Lemma 3: β term in the strain energy WC
RV E

Statement. When a quadratic displacement u
β⋄∗

, eqn (4.11) with α =
0, is applied on the RVE boundary, the strain energy at first-order in the
concentration f is given by eqn (4.21).

Proof. The strain energy WC
RV E(u

β⋄∗

) stored in the RVE, when a quadratic
displacement field u

β⋄∗

(4.11) is applied on its boundary ∂ΩRV E, is bounded
by (Gurtin, 1972)

∫

∂ΩRV E

σSA
ij niu

β⋄∗

j − UC
RV E(σ

SA) ≤ WC
RV E(u

β⋄∗

) ≤ WC
RV E(ε

KA), (4.44)

where εKA is a kinematically admissible (satisfying the kinematic compatibil-
ity relation (2.1)1 and the imposed displacement boundary conditions) strain
field, σSA is a statically admissible (satisfying the equilibrium condition, eqn
(2.4) with τ = 0) stress field, while UC

RV E(σ
SA) and WC

RV E(ε
KA) are respec-

tively the following stress and strain energies

UC
RV E(σ

SA) =
1

2

∫

ΩR

σSA
ij (x )C−1

ijhk(x )σ
SA
hk (x ),

WC
RV E(ε

KA) =
1

2

∫

ΩR

εKA
ij (x )Cijhk(x )ε

KA
hk (x ).

(4.45)

Considering the kinematically admissible strain field

εKA
ij = (β⋄∗

ijk + β⋄∗

jik)xk, (4.46)

and assuming the geometrical properties GP2 and GP3, an estimate for the
upper bound in eqn (4.44) is the strain energy WC

RV E given by eqn (A.5)1
(Appendix A.1), so that

WC
RV E(u

β⋄∗

) ≤ 2ρ2ΩC
(1)
ijhkβ

⋄∗

ijlβ
⋄∗

hkl + o(f). (4.47)

Considering now the statically admissible stress field

σSA
ij = 2C∗

ijhkβ
⋄∗

hklxl, (4.48)

where C
∗ is a first-order perturbation in f to the material matrix C

(1), eqn
(4.9), and assuming the geometrical property GP2, the stress energy UC

RV E
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is given by eqn (A.5)2 (Appendix A.1). Moreover, since the application of the
divergence theorem yields

∫

∂ΩR

σSA
ij niu

β⋄∗

j = 4ρ2Ω
(

C
(1)
ijhk + f Ĉijhk

)

β⋄∗

ijlβ
⋄∗

hkl, (4.49)

an estimate is obtained for the lower bound in eqn (4.44) as

WC
RV E(u

β⋄∗

) ≥ 2ρ2ΩC
(1)
ijhkβ

⋄∗

ijlβ
⋄∗

hkl + o(f), (4.50)

which, together with the upper bound (4.47), leads to eqn (4.21). �

Lemma 4: β term in the strain energy WSGE
eq

Statement. When a quadratic displacement u
β⋄∗

, eqn (4.11) with α = 0,
and the normal component of its gradient Du

β⋄∗

are imposed on the boundary
of the homogeneous SGE equivalent material, the strain energy at first-order
in the concentration f is given by eqn (4.22).

Proof. The strain energy WSGE
eq (uβ⋄∗

,Du
β⋄∗

) stored in the SGE, when a

quadratic displacement field u
β⋄∗

(4.11) and the normal component of its
gradient Du

β⋄∗

are imposed on its boundary ∂Ωeq, is bounded as (Appendix
B)

∫

∂Ωeq

(

tSAi uβ
⋄∗

i + T SA
i Duβ

⋄∗

i

)

+

∫

Γeq

ΘSA
i uβ

⋄∗

i − USGE
eq (σSA, τSA) ≤

≤ WSGE
eq (uβ⋄∗

,Du
β⋄∗

) ≤ WSGE
eq (εKA,χKA),

(4.51)
with







tSAk =njσ
SA
jk − ninjDτSAijk − 2njDiτ

SA
ijk

+ (ninjDlnl −Djni) τ
SA
ijk ,

T SA
k =ninjτ

SA
ijk ,

on ∂Ωeq, (4.52)

and
ΘSA

k = [[ emljnismnlτ
SA
ijk ]] , onΓeq, (4.53)

where εKA and χKA are kinematically admissible strain and curvature fields
(satisfying the kinematic compatibility relation (2.1) and the imposed dis-
placement boundary conditions), σSA and τSA are statically admissible stress
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and double-stress fields (satisfying the equilibrium equation (2.4)), while USGE
eq

and WSGE
eq are respectively the stress and the strain energies given by

USGE
eq (σSA, τSA) = 1

2

∫

Ωeq
σSA
ij (x )Ceq−1

ijhk σ
SA
hk (x )

+1
2

∫

Ωeq
τSAijh (x )A

eq−1

ijhklmτ
SA
klm(x ),

WSGE
eq (εKA,χKA) = 1

2

∫

Ωeq
εKA
ij (x )Ceq

ijhkε
KA
hk (x )

+1
2

∫

Ωeq
χKA
ijh (x )A

eq
ijhklmχ

KA
klm(x ).

(4.54)

Considering the kinematically admissible strain εKA (4.46) and curvature
field

χKA
ijk = 2β⋄∗

kij , (4.55)

and assuming geometrical property GP2, an estimate for the upper bound in
eqn (4.51) is the strain energy WSGE

eq given by eqn (A.8)1 (Appendix A.2) as

WSGE
eq (uβ⋄∗

,Du
β⋄∗

) ≤ 2Ωβ⋄∗

ijlβ
⋄∗

hkm

(

ρ2Ceq
ijhkδlm + A

eq
jlikmh

)

. (4.56)

Considering the statically admissible stress σSA (4.48) and double-stress field

τSAjli = 2Aeq
jlikmhβ

⋄∗

hkm, (4.57)

where C
∗ is a first-order perturbation in f to the material matrix C

eq, eqn
(4.8) and assuming the geometrical property GP2, the stress energy USGE

eq is
given by eqn (A.9) (Appendix A.2). Moreover, since the application of the
divergence theorem yields

∫

∂Ωeq

(

tSAi uβ
⋄∗

i + T SA
i Duβ

⋄∗

i

)

+

∫

Γeq

ΘSA
i uβ

⋄∗

i

= 4ρ2Ω
[

C
eq
ijhk + f

(

Ĉijhk − C̃ijhk

)]

β⋄∗

ijnβ
⋄∗

hkn,

(4.58)

an estimate is obtained for the lower bound in eqn (4.51) as

WSGE
eq (uβ⋄∗

,Du
β⋄∗

) ≥ 2Ωβ⋄∗

ijlβ
⋄∗

hkm

(

ρ2Ceq
ijhkδlm + A

eq
jlikmh

)

+ o(f), (4.59)

which, together with the upper bound (4.56), leads to eqn (4.22). �



4.2 Some properties of the effective SGE solid 29

4.2 Some properties of the effective SGE solid

Some properties of the effective SGE solid are obtained below from the defi-
nition of the effective higher-order constitutive tensor Aeq, eqn (4.1).

4.2.1 Heterogeneous Cauchy RVE leading to positive definite

equivalent SGE material

Statement. For constituents characterized by a positive definite strain en-
ergy, a positive definite equivalent SGE material is obtained if and only if the
first-order discrepancy tensor C̃ is negative definite.

Proof. For constituents characterized by a positive definite strain energy,
the first-order homogenization always leads to a positive definite equivalent
fourth-order tensor C

eq, so that a positive strain energy (see eqn (9) in Part
I) is stored within the equivalent SGE material if and only if

A
eq
ijhlmnχijhχlmn > 0 ∀χ 6= 0 with χijk = χjik, (4.60)

where the summation convention over repeated indices is used henceforth.
Considering the form (4.1) of Aeq (note the ‘−’ sign), a positive definite equiv-
alent SGE material is obtained when

C̃ijhkχlijχlhk < 0 ∀χ 6= 0 with χijk = χjik. (4.61)

Since the discrepancy tensor has the minor symmetries, C̃ijhk = C̃jihk = C̃ijkh,
the condition (4.61) can be written as

C̃ijhk(χlij + χlji)(χlhk + χlkh) < 0 ∀χ 6= 0 with χijk = χjik, (4.62)

which corresponds to the negative definite condition for the fourth-order con-
stitutive tensor C̃, because χlij + χlji = 0 if and only if χ = 0.7 �

7The last statement can be proven as follows. With reference to a third-order tensor ςijk,
symmetric with respect to the first two indices (ςijk = ςjik), we define the tensor γijk as

γijk = ςijk + ςikj , (4.63)

resulting symmetric with respect to the last two indices (γijk = γikj). Relation (4.63) is
invertible, so that

ςijk =
γijk + γjki − γkij

2
, (4.64)

and therefore γ = 0 if and only if ς = 0.
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4.2.2 Higher-order material symmetries for the equivalent SGE

solid

Statement. The higher-order material symmetries of the equivalent SGE
solid coincide with the material symmetries of the first-order discrepancy ten-
sor C̃.

Proof. A class of material symmetry corresponds to indifference of a con-
stitutive equations with respect to application of a class of orthogonal trans-
formations represented through an orthogonal tensor Q.

An higher-order material symmetry for the equivalent SGE material occurs
when

A
eq
ijhlmn = QipQjqQhrQlsQmtQnuA

eq
pqrstu, (4.65)

that, with reference to the form (4.1) for A
eq and through the property of

orthogonal transformations (QQT = I), is equivalent to the corresponding
symmetry condition for the first-order discrepancy tensor,

C̃ijhk = QipQjqQhrQksC̃pqrs, (4.66)

so that the higher-order material symmetries for the equivalent SGE solid
coincide with the material symmetry of C̃. �

4.2.3 Influence of the volume and shape of the RVE on the

higher-order constitutive response

In addition to the dependence on the shape of the inclusion, typical of first-
order homogenization, the representation (4.1) of Aeq shows that the higher-
order constitutive response in the dilute case depends on the volume and the
shape of the RVE through its radius of inertia ρ. This feature distinguishes
second-order homogenization from first-order, since in the latter case C

eq in
the dilute case is independent of the volume and shape of the RVE. There-
fore, two composite materials M and N differing only in the geometrical
distribution of the inclusions correspond to the same equivalent local ten-
sor C

eq(M) = C
eq(N ), but lead to a different higher-order equivalent tensor

A
eq(M) 6= A

eq(N ).
An example in 2D is reported in Fig. 4.1 where the hexagonal RVE (N )

compared to the squared RVE (M) yields

A
eq(M) =

3
√
3

5
A
eq(N ) ∼ 1.039Aeq(N ), (4.67)
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while in the 3D example reported in Fig. 4.2 a truncated-octahedral RVE (N )
is compared to a cubic RVE (M) yielding

A
eq(M) =

16 3
√
2

19
A

eq(N ) ∼ 1.061Aeq(N ). (4.68)

M N

Figure 4.1: Two composite materials M (squared RVE) and N (hexagonal RVE) differing
only in the geometrical distribution of the inclusions, therefore leading to the same equivalent
local tensor, Ceq(M) = C

eq(N ), but to different higher-order equivalent tensors, Aeq(M) 6=
A

eq(N ), see eqn (4.67).

M N

Figure 4.2: Similarly to Fig. 4.1, two composite materials M (cubic RVE) and N
(truncated-octahedral RVE) leading to the same equivalent local tensor, Ceq(M) = C

eq(N ),
but to different higher-order equivalent tensors, Aeq(M) 6= A

eq(N ), see eqn (4.68).
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Chapter 5

Application cases

The explicit expression for the non-local constitutive tensor Aeq is exploited to
evaluate the non-local parameters in the following cases: (i.) isotropic matrix
with spherical elastic inclusions and voids for three-dimensional deformations,
(ii.) isotropic matrix with circular elastic inclusions, regular n- polygonal and
circular holes in plane strain and (iii) orthotropic matrix with circular holes
in plane strain.

Cases where the homogenized material results isotropic are first consid-
ered and finally some cases of anisotropic behaviour are presented (cubic and
orthotropic symmetries).

5.1 Equivalent isotropic SGE

For an isotropic composite, the first-order discrepancy tensor C̃ is

C̃
iso

ijhk = λ̃δijδhk + µ̃(δihδjk + δikδjh), (5.1)

so that the equivalent sixth-order tensor Aeq, eqn (4.1), is given by

A
eq
ijhlmn = −f

ρ2

4

{

λ̃ [δih (δjlδmn + δjmδln) + δjh (δilδmn + δimδln)]

+µ̃ [2 (δilδjm + δimδjl) δhn + δin (δjlδhm + δjmδhl)

+δjn (δilδhm + δimδhl)]} ,

(5.2)

33
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which is a special case of isotropic sixth-order tensor

A
iso
ijhlmn =

a1
2

[δij (δhlδmn + δhmδln) + δlm (δinδjh + δihδjn)]

+
a2
2

[δih (δjlδmn + δjmδln) + δjh (δilδmn + δimδln)]

+2 a3 (δijδhnδlm) + a4 (δilδjm + δimδjl) δhn

+
a5
2

[δin (δjlδhm + δjmδhl) + δjn (δilδhm + δimδhl)] ,

(5.3)

with the following constants

a1 = a3 = 0, a2 = −f
ρ2

2
λ̃, a4 = a5 = −f

ρ2

2
µ̃. (5.4)

The related strain energy is positive definite when parameters ai (i =
1, ..., 5) satisfy eqn (18) of Part I, which for the values (5.4) implies

K̃ < 0, µ̃ < 0, (5.5)

where K̃ is the bulk modulus, equal to λ̃+2µ̃/3 in 3D and λ̃+µ̃ in plane strain,
and corresponding to the negative definiteness condition for C̃, according to
our previous results (Section 4.2.1).

An explicit evaluation of the constants (a2, a4 = a5) is given now, in the
case when an isotropic fourth-order tensor C̃ is obtained from homogenization
of a RVE with both isotropic phases, matrix denoted by ‘1’ (with Lamé con-
stants λ1 and µ1) and inclusion denoted by ‘2’ (with Lamé constants λ2 and
µ2), having a shape leading to an isotropic equivalent constitutive tensor

C
eq
ijhk = λeqδijδhk + µeq(δihδjk + δikδjh), (5.6)

where
λeq = λ1 + fλ̃, µeq = µ1 + fµ̃, Keq = K1 + fK̃. (5.7)

In particular, the following forms of inclusions are considered within an isotropic
matrix.

• For 3D deformation:

– spherical elastic inclusions.

• For plane strain:

– circular elastic inclusions;
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– regular n-polygonal holes with n 6= 4 (the case n = 4 leads to an
orthotropic material and is treated in the next section).

For all of the above cases it is shown that a positive definite equivalent
SGE material, eqn (5.5), is obtained only when the inclusion phase is ‘softer’
than the matrix in terms of both shear and bulk moduli,

µ2 < µ1, K2 < K1, (5.8)

which is always satisfied when the inclusions are voids. The positive defi-
niteness condition (5.8) can be written in terms of the ratio µ2/µ1 and the
Poisson’s ratio of the phases ν1 and ν2 [where νi = λi/(2(λi + µi))] as

µ2

µ1
< min

{

1;
1− 2ν2
1− 2ν1

}

, (5.9)

for the case of plane strain, and

µ2

µ1
< min

{

1;
(1 + ν1)(1 − 2ν2)

(1 + ν2)(1 − 2ν1)

}

, (5.10)

for three-dimensional case. The regions where a positive definite SGE material
is obtained, eqns (5.9) - (5.10), are mapped in the plane µ2/µ1 – ν1 for different
values of the inclusion Poisson’s ratio ν2 (Fig. 5.1, plane strain on the left and
3D-deformation on the right).

Cylindrical elastic inclusions The elastic constants Keq and µeq of the
isotropic material equivalent to a dilute suspension of parallel isotropic cylin-
drical inclusions embedded in an isotropic matrix have been obtained by
Hashin and Rosen (1964), in our notation

K̃ =
(K2 −K1)(K1 + µ1)

K2 + µ1
, µ̃ =

2µ1(µ2 − µ1)(K1 + µ1)

2µ1µ2 +K1(µ1 + µ2)
. (5.11)

Exploiting equation (5.4), the equivalent higher-order constants ai (i =
1, ..., 5) can be obtained from the first-order discrepancy quantities, eqn (5.11),
so that the non-null constants are evaluated as

a2 = f
ρ2

2

[
(K1 −K2)(K1 + µ1)

K2 + µ1
− µ1(µ1 − µ2)(K1 + µ1)

2µ1µ2 +K1(µ1 + µ2)

]

,

a4 = a5 = f
ρ2

2

µ1(µ1 − µ2)(K1 + µ1)

2µ1µ2 +K1(µ1 + µ2)
.

(5.12)
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Figure 5.1: Regions in the plane µ2/µ1 – ν1 where the higher-order effective constitutive
tensor A

eq is positive definite (for different values of ν2). The regions for the plane strain
case, eqn (5.9), are reported on the left, while the case of three-dimensional deformations,
eqn (5.10), is reported on the right.

The higher-order equivalent constants a2 and a4 given by eqn (5.12) are re-
ported in Figs. 5.2 and 5.3 as a function of the ratio µ2/µ1 and for different
Poisson’s ratios of matrix and inclusion. In all the figures, a red spot denotes
the threshold for which the strain energy of the equivalent material looses
positive definiteness. The dashed curves refer to regions where this positive
definiteness is lost.

With reference to Fig. 5.2, we may note that a2 → ∞ in the limit ν1 →
1/2. Furthermore, a4 is not affected by the Poisson’s ratio of the inclusion ν2,
except that the threshold for positive definiteness condition for the equivalent
material strain energy of the changes, eqn (5.9).

Spherical elastic inclusions The equivalent elastic constants Keq and µeq

of the isotropic material equivalent to a dilute suspension of isotropic spherical
inclusions within an isotropic matrix have been obtained by Eshelby (1957)
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and independently by Hashin (1959), in our notation

K̃ =
(3K1 + 4µ1)(K2 −K1)

3K2 + 4µ1
,

µ̃ =
5µ1(µ2 − µ1)(3K1 + 4µ1)

µ1(3K1 + 4µ2) + 2(3K1 + 4µ1)(µ2 + µ1)
,

(5.13)

so that, through equation (5.4), the non-null equivalent higher-order constants
are given by

a2 = f
ρ2

2

[
(3K1 + 4µ1)(K2 −K1)

3K2 + 4µ1

−2

3

5µ1(µ2 − µ1)(3K1 + 4µ1)

µ1(3K1 + 4µ2) + 2(3K1 + 4µ1)(µ2 + µ1)

]

,

a4 = a5 = f
ρ2

2

5µ1(µ2 − µ1)(3K1 + 4µ1)

µ1(3K1 + 4µ2) + 2(3K1 + 4µ1)(µ2 + µ1)
,

(5.14)

which are reported in Fig. 5.4 and Fig. 5.5 as a function of the shear stiffness
ratio µ2/µ1 and for different Poisson’s ratios of the phases. In these figures
the curves become dashed when the strain energy of the equivalent material
looses positive definiteness. Moreover, the higher-order constants are reported
in Fig. 5.6 as a function of the matrix Poisson’s ratio ν1 in the particular case
of spherical voids.

Similar to the case of cylindrical elastic inclusions, a2 → ∞ in the limit
ν1 → 1/2 and a4 is not affected by the Poisson’s ratio of the inclusion ν2,
except for the threshold of strain energy’s positive definiteness, eqn. (5.10).

Regular n-polygonal holes (n 6=4) The elastic constants µeq and Keq of
the isotropic material equivalent to a dilute suspension of n-polygonal holes
(n 6=4) in an isotropic matrix have been obtained by Jasiuk et al. (1994) and
Thorpe et al. (1995), from which the first-order discrepancy stiffness can be
written in our notation as

K̃(n) = −A(n)[1−B(n)]K1 + µ1

µ1
K1, µ̃(n) = −A(n)[1+B(n)]K1 + µ1

K1
µ1,

(5.15)
where A(n) and B(n) are constants depending on the number of edges n of
the regular polygonal hole, which can be approximated through numerical
computations, and are reported in Tab. 5.1 for n={3; 5; 6}. In the case of a
regular polygon with infinite number of edges, in other words a circle, the value
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of the constants is A(n → ∞) = 3/2 and B(n → ∞) = 1/3, so that the case
of cylindrical void inclusion is recovered, eqn (5.11) with µ2 = K2 = 0. The
equivalent higher-order constants can be obtained from eqn (5.4) by using
the first-order discrepancy quantities, eqn (5.15), from which the non-null
constants follow

a2 = f
ρ2

2
A(n)

{
[1− B(n)]K2

1 − [1 + B(n)]µ2
1

} K1 + µ1

µ1K1
,

a4 = a5 = f
ρ2

2
A(n)[1 + B(n)]K1 + µ1

K1
µ1,

(5.16)

and are shown in Fig. 5.7 as functions of the matrix Poisson’s ratio ν1.

Approximated values
Polygonal hole n A(n) B(n)

Triangle 3 2.1065 0.2295
Pentagon 5 1.6198 0.3233
Hexagon 6 1.5688 0.3288
Circle ∞ 3/2 1/3

Tab. 5.1: Values of the constants A(n) and B(n) for triangular (n = 3), pentagonal (n = 5),
hexagonal (n = 6), and circular (n → ∞) holes in an isotropic elastic matrix (Thorpe et al.,
1995). These values are instrumental to obtain the equivalent properties K̃(n) and µ̃(n),
eqn (5.15), of the higher-order material.

5.2 Equivalent cubic SGE

When the first-order discrepancy tensor C̃ has a cubic symmetry, it can be
represented in a cartesian system aligned parallel to the symmetry axes as
(Thomas, 1966)

C̃
cub

ijhk = C̃
iso

ijhk + ξ̃ [(δi2δj3 + δi3δj2) (δh2δk3 + δh3δk2)

+ (δi1δj3 + δi3δj1) (δh1δk3 + δh3δk1)

+ (δi1δj2 + δi2δj1) (δh1δk2 + δh2δk1)] ,

(5.17)
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where C̃
iso

is given by eqn (5.1). The sixth-order tensor Aeq for the equivalent
material is obtained using eqn (4.1) in the form

A
eq
ijhlmn = A

iso
ijhlmn +

a6
2

[(δi1δh2 + δi2δh1) (δl1δn2 + δl2δn1) δjm

+(δj1δh2 + δj2δh1) (δm1δn2 + δm2δn1) δjl

+(δj1δh2 + δj2δh1) (δl1δn2 + δl2δn1) δim

+(δj1δh2 + δj2δh1) (δm1δn2 + δm2δn1) δil] ,

(5.18)

with A
iso given by eqn (5.3), parameters ai (i = 1, ..., 5) by eqn (5.4), and

a6 = −f
ρ2

2
ξ̃. (5.19)

According to results presented in sections 4.2.1 and 4.2.2, the effective
higher-order tensor Aeq results to be a cubic sixth-order tensor and is positive
definite when C̃, eqn (5.17), is negative definite, namely, eqn (5.5) together
with

ξ̃ + µ̃ < 0. (5.20)

Aligned square holes within an isotropic matrix There are no results
available for the plane strain homogenization of a dilute suspension of square
holes periodically distributed (with parallel edges) within an isotropic matrix.
Therefore, we have compared with a conformal mapping technique (Misseroni
et al. 2013) stress and strain averages, and found the following discrepancy
at first-order in the constitutive quantities1

λ̃ = −(1.198K2
1 − 1.864µ2

1)
K1 + µ1

K1µ1
,

µ̃ = −1.864
K1 + µ1

K1
µ1,

ξ̃ = −0.796
K1 + µ1

K1
µ1,

(5.21)

showing that C̃ is negative definite, eqn (5.20), and therefore the corresponding
effective higher-order tensor Aeq, eqn (5.18), is positive definite.

1Thorpe et al. (1995) give results for composites with a random orientation of square
holes, so that the effective behaviour is isotropic and given by eqn (5.15) with A(n = 4) =
1.738 and B(n = 4) = 0.306. This isotropic effective response can be independently obtained
by averaging the cubic effective response given by eqn (5.21) over two orientations of the
square hole differing by an angle π/4.
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The equivalent higher-order constants ai (i = 1, ..., 6) can be obtained
from the first-order discrepancy quantities, eqn (5.21), so that the non-null
constants are evaluated by exploiting eqns (5.4) and (5.19) as

a2 = fρ2 (0.599K2
1 − 0.932µ2

1)
K1 + µ1

K1µ1
,

a4 = a5 = 0.932fρ2
K1 + µ1

K1
µ1,

a6 = 0.398fρ2
K1 + µ1

K1
µ1.

(5.22)

These three independent constants are reported in Fig. 5.8 as functions of
the matrix Poisson’s ratio ν1.

5.3 Equivalent orthotropic SGE

When the first-order discrepancy tensor C̃ is orthotropic, it can be represented
in a cartesian system aligned parallel to the symmetry axes as (Spencer, 1982)

C̃
orth

ijhk = C̃
iso

ijhk + ξ̃I (δi2δj3 + δi3δj2) (δh2δk3 + δh3δk2)

+ξ̃II (δi1δj3 + δi3δj1) (δh1δk3 + δh3δk1)

+ξ̃III (δi1δj2 + δi2δj1) (δh1δk2 + δh2δk1)

+ω̃Iδi1δj1δh1δk1 + ω̃IIδi3δj3δh3δk3

+ω̃III (δijδh3δk3 + δhkδi3δj3)

+ω̃IV (δi1δj1δh3δk3 + δi3δj3δh1δk1) ,

(5.23)

where ξ̃III , ω̃I , ξ̃I , ξ̃II , ω̃II , ω̃III and ω̃IV are seven independent constants (in
addition to λ̃ and µ̃) defining the orthotropic behaviour in 3D.2 The in-plane
behaviour is defined by groups of four independent constants, which for the
x1–x2 plane are {λ̃; µ̃; ξ̃III ; ω̃I}.

In the case of orthotropic C̃, eqn (4.1) defining the sixth-order nonlocal
tensor Aeq leads to

2Note that the cubic representation (5.17) is obtained as a particular case by setting
ξ̃I = ξ̃II = ξ̃I = ξ̃ and ω̃I = ω̃II = ω̃III = ω̃IV = 0.
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A
eq
ijhlmn = A

iso
ijhlmn

+
a6
2

[(δi1δh2 + δi2δh1) (δl1δn2 + δl2δn1) δjm

+(δj1δh2 + δj2δh1) (δm1δn2 + δm2δn1) δjl

+(δj1δh2 + δj2δh1) (δl1δn2 + δl2δn1) δim

+(δj1δh2 + δj2δh1) (δm1δn2 + δm2δn1) δil]

+
a7
2

[(δi1δh3 + δi3δh1) (δl1δn3 + δl3δn1) δjm

+(δi1δh3 + δi3δh1) (δm1δn3 + δm3δn1) δjl

+(δj1δh3 + δj3δh1) (δl1δn3 + δl3δn1) δim

+(δj1δh3 + δj3δh1) (δm1δn3 + δm3δn1) δil]

+
a8
2

[(δi2δh3 + δi3δh2) (δl2δn3 + δl3δn2) δjm+

(δi2δh3 + δi3δh2) (δm2δn3 + δm3δn2) δjl

+(δj2δh3 + δj3δh2) (δl2δn3 + δl3δn2) δim+

(δj2δh3 + δj3δh2) (δm2δn3 + δm3δn2) δil]

+
a9
2

(δi1δh1δl1δn1δjm + δi1δh1δm1δn1δjl

+δj1δh1δl1δn1δim + δj1δh1δm1δn1δil)

+
a10
2

(δi3δh3δl3δn3δjm + δj3δh3δm3δn3δjl

+δj3δh3δl3δn3δim + δj3δh3δm3δn3δil)

+
a11
2

[(δihδl3δn3 + δlnδi3δh3) δjm + (δihδm3δn3 + δmnδi3δh3) δjl

+(δihδl3δn3 + δlnδj3δh3) δim + (δjhδm3δn3 + δmnδj3δh3) δil]

+
a12
2

[(δi1δh1δl3δn3 + δi3δh3δl1δn1) δjm

+(δi1δh1δm3δn3 + δi3δh3δm1δn1) δjl

+(δj1δh1δl3δn3 + δj3δh3δl1δn1) δim

+(δj1δh1δm3δn3 + δj3δh3δm1δn1) δil] ,
(5.24)
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with A
iso given by eqn (5.3), parameters ai (i = 1, ..., 5) by eqn (5.4), and

a6 = −f
ρ2

2
ξ̃III , a7 = −f

ρ2

2
ξ̃II , a8 = −f

ρ2

2
ξ̃I ,

a9 = −f
ρ2

2
ω̃I , a10 = −f

ρ2

2
ω̃II , a11 = −f

ρ2

2
ω̃III , a12 = −f

ρ2

2
ω̃IV ,

(5.25)

According to the results presented in sections 4.2.1 and 4.2.2, the effective
higher-order tensor Aeq results to be an orthotropic sixth-order tensor, positive
definite when C̃, eqn (5.23), is negative definite, namely







µ̃+ ξ̃III < 0,

µ̃+ ξ̃II < 0,

µ̃+ ξ̃I < 0,

λ̃+ 2µ̃ + ω̃I < 0,

4µ̃(λ̃+ µ̃) + (λ̃+ 2µ̃)ω̃I < 0,

8µ̃3 − ω̃Iω̃
III 2 + 4µ̃2(ω̃I + ω̃II + 2ω̃III)

+λ̃
(
12µ̃2 + ω̃Iω̃

II + 4µ̃(ω̃I + ω̃II − ω̃IV )− ω̃IV 2
)

−2µ̃
(
2ω̃III 2 − ω̃I(ω̃

II + 2ω̃III) + 2ω̃IIIω̃IV + ω̃IV 2
)
< 0,

(5.26)

while in the case of plane strain, conditions (5.26) become, in the x1–x2 plane







µ̃+ ξ̃III < 0,

λ̃+ 2µ̃ + ω̃I < 0,

4µ̃(λ̃+ µ̃) + (λ̃+ 2µ̃)ω̃I < 0.

(5.27)

Orthotropic matrix with cylindrical holes We consider the plane strain
of an orthotropic matrix containing a dilute suspension of circular holes with
centers aligned parallel to the orthotropy symmetry axes. In particular, as-
suming x3 as the out-of-plane direction and x1 and x2 as the orthotropy axes,
the discrepancy tensor has the form (5.23) and is characterized by the follow-
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ing constants 3 (Tsukrov and Kachanov, 2000)

λ̃ =
γ(λ1 + 2µ1)

[(−1 + γ)λ1 + 2γµ1] (λ1 + γλ1 + 2γµ1)
×

{[
(−1 + γ)2 − (1 + γ)δ

]
λ2
1 + 2 [2(−1 + γ)γ − (1 + γ)δ] λ1µ1 + 4γ2µ2

1

}
,

µ̃ =
− (λ1 + 2µ1)

2 [(−1 + γ)λ1 + 2γµ1] (λ1 + γλ1 + 2γµ1)
×

[(
−1 + γ2

)
(−1 + γ − δ)λ2

1 + 2(−1 + γ)γ(2 + 2γ − δ)λ1µ1

+4γ
(
γ + γ2 + δ

)
µ2
1

]
,

ξ̃ = −µ̃− δ(1 + γ + δ)(λ1 + 2µ1) [(−1 + γ)λ1 + 2γµ1] (λ1 + γλ1 + 2γµ1)

[(−2 + 2γ − δ2)λ1 + 4γµ1 − 2δ2µ1]
2 .

ω̃ = −µ̃− γ (λ1 + 2µ1)

2 [(−1 + γ)λ1 + 2γµ1] (λ1 + γλ1 + 2γµ1)
×

{(
−1 + γ2

)
(−1 + γ + γδ)λ2

1 + 2(−1 + γ) [δ + 2γ(1 + γ)(1 + δ)] λ1µ1

+4γ2(1 + γ + γδ)µ2
1

}
,

(5.28)
where

γ =
√

Γ2 −∆, δ =

√

Γ +
√
∆+

√

Γ−
√
∆,

Γ =
2µ1(µ1 + ω1) + λ1(µ1 − ξ1 + ω1)

(λ1 + 2µ1)(µ1 + ξ1)
,

∆ =
[−2ξ1(λ1 + 2µ1 + ξ1) + (λ1 + 2µ1)ω1][2µ1(µ1 + ω1) + λ1(2µ1 + ω1)]

(λ1 + 2µ1)2(µ1 + ξ1)2
.

(5.29)
The non-null constants a2, a4 = a5, a6, and a9 defining the effective higher-

order tensor Aeq can explicitly be evaluated using eqns (5.4) and (5.25), when
a specific orthotropic matrix is considered. With reference to orthotropic

3For conciseness, in this section the in-plane orthotropy parameters ξIII and ωI are
denoted by ξ and ω, respectively, in the representation of both matrix and discrepancy
quantities.
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properties of olivine, pine wood, olivinite, marble, and canine femora (which
orthotropic constitutive parameters are reported in Tab. 5.2 for the three
possible orientations of orthotropy) used as matrix material, the corresponding
non-null higher-order constants are given in Tab. 5.3 for a dilute suspension
of cylindrical holes with centers aligned parallel to the in-plane orthotropy
axes. All the three possible orientations (Or1, Or2, Or3) are considered for
the axis of the cylindrical inclusion, defining the out-of-plane direction in the
plane strain problem considered.

Matrix material Orientation λ1 µ1 ξ1 ω1

Olivine

Or1 66.000 47.000 −17.000 32.000

Or2 60.000 106.000 −75.000 −80.000

Or3 56.000 52.000 −27.500 112.000

Pine (softwood)

Or1 0.740 8.180 −7.590 −15.860

Or2 0.760 0.515 −0.476 −0.550

Or3 0.940 8.080 −7.625 −15.310

Olivinite

Or1 93.000 58.500 −21.85 22.000

Or2 92.000 53.500 −18.05 33.000

Or3 82.000 64.000 −29.7 −11.000

Marble

Or1 51.000 29.500 −14.65 9.000

Or2 52.000 26.000 −10.65 15.000

Or3 47.000 31.500 −15.2 −6.000

Canine femora

Or1 9.730 6.235 −2.900 −3.200

Or2 11.900 8.900 −6.065 −10.700

Or3 11.900 5.150 −2.815 7.500

Tab. 5.2: Values of the elastic constants λ1, µ1, ξ1, ω1 for different orthotropic materials,
namely: olivine (Chevrot and Browaeys, 2004), pine wood (Yamai, 1957), olivinite, marble
(Aleksandrov, Ryzhove and Belikov, 1968), and canine femora (Cowin and Van Buskirk,
1986). The reported values are in GPa.
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Matrix material Orientation
a2

fρ2µ1

a4
fρ2µ1

a6
fρ2µ1

a9
fρ2µ1

Olivine

Or1 2.426 1.661 3.077 −1.198

Or2 1.133 2.105 −1.014 −1.804

Or3 3.254 1.497 0.858 −0.780

Pine wood

Or1 0.269 3.789 −3.754 −3.737

Or2 10.297 3.551 −3.268 −3.497

Or3 0.142 3.478 −3.455 −3.399

Olivinite

Or1 3.119 1.644 −0.220 −1.045

Or2 4.398 1.414 0.804 −0.675

Or3 4.011 1.481 0.487 −0.782

Marble

Or1 4.023 1.629 −0.257 −1.068

Or2 5.866 1.389 0.823 −0.768

Or3 5.080 1.532 0.440 −1.015

Canine femora

Or1 8.279 1.219 2.465 −0.801

Or2 4.401 2.110 −1.875 −1.788

Or3 4.273 1.660 −0.690 −1.063

Tab. 5.3: Higher-order equivalent constants a2, a4 = a5, a6, and a9, eqns (5.4) and (5.25),
of the orthotropic SGE material equivalent to an orthotropic matrix containing a dilute
suspension of cylindrical holes, collinear to three possible orientations of orthotropy. The
constants are made dimensionless through division by parameter fρ2µ1 and are reported for
different matrices, which orthotropy parameters are given in Tab. 5.2.



46 Application cases

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

0

5

10

0

5

10

0

5

10

0

5

10

0

5

10

0

5

10

n
1
=0.40

n
1
=0.25

n
1
=0.00

n
1
=-0.50

n
1
=0.40

n
1
=0.25

n
1
=0.00

n
1
=-0.50

n
1
=0.40

n
1
=0.25

n
1
=0.00

n
1
=-0.50

n
1
=0.40

n
1
=0.25

n
1
=0.00

n
1
=-0.50

n
2
=-0.50 n

2
=0.00

n
2
=0.25 n

2
=0.40

a2

f r m
2

1

a2

f r m
2

1

m m2 1/ m m2 1/
0.0 0.0

Figure 5.2: Higher-order equivalent constant a2, eqn (5.12)1, of the SGE solid equivalent
to a composite made up of an isotropic matrix containing a diluite suspension of cylindrical
elastic inclusions, as a function of the ratio µ2/µ1, for different values of the Poisson’s ratio
of the phases {ν1, ν2} ={-0,5;-0.25;0;0.4}. The constant a2 is made dimensionless through
division by parameter fρ2µ1. The curves are dashed where the strain energy of the equivalent
material is not positive definite, a red spot marks where the positive definiteness loss of Aeq

occurs.
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Figure 5.3: Higher-order equivalent constant a4 = a5, eqn (5.12)2, of the SGE solid
equivalent to a composite made up of an isotropic matrix containing a dilute suspension of
cylindrical elastic inclusions, as a function of the ratio µ2/µ1, for different values of Poisson’s
ratio of the phases {ν1, ν2} ={-0,5;-0.25;0;0.4}. The constant a4 is made dimensionless
through division by parameter fρ2µ1. Note that the curves are not affected by the Poisson’s
ratio of the inclusion ν2, except that the threshold (red spot) for positive definiteness of
the equivalent material strain energy changes, eqn (5.9). Dashed curve represents values for
which the strain energy of the equivalent material is not positive definite.
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Figure 5.4: Higher-order equivalent constant a2, eqn (5.14)1, of the SGE solid equivalent
to a composite made up of an isotropic matrix containing a dilute suspension of spherical
elastic inclusions as a function of the ratio µ2/µ1, for different values of Poisson’s ratio of the
phases {ν1, ν2} ={-0,5;-0.25;0;0.4}. The constant a2 is made dimensionless through division
by parameter fρ2µ1. The curves are dashed where the strain energy of the equivalent
material is not positive definite, a red spot marks where the positive definiteness loss of Aeq

occurs.
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Figure 5.5: Higher-order equivalent constant a4 = a5, eqn (5.14)2, of the SGE solid
equivalent to a composite made up of an isotropic matrix containing a dilute suspension of
cylindrical elastic inclusions as a function of the ratio µ2/µ1, for different values of Poisson’s
ratio of the phases {ν1, ν2} ={-0,5;-0.25;0;0.4}. The constant a4 is made dimensionless
through division by parameter fρ2µ1. Note that the curves are not affected by the Poisson’s
ratio of the inclusion ν2, except that the threshold (red spot) for positive definiteness of the
equivalent material strain energy changes, eqn (5.10). Dashed curve represents values for
which the strain energy of the equivalent material is not positive definite.
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Figure 5.7: Higher-order equivalent constants a2 and a4 = a5 of the equivalent SGE
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Figure 5.8: Higher-order equivalent constants a2, a4 = a5, and a6 of the equivalent SGE
material for the plane strain case of a dilute suspension of periodically-distributed (with
parallel edges) square holes in an isotropic matrix, as a function of the matrix Poisson’s
ratio ν1, eqn (5.22). The constants are made dimensionless through division by parameter
fρ2µ1.
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Chapter 6

Conclusions

Micro- or nano-structures embedded in solids introduce internal length-scales
and nonlocal effects within the mechanical modelling, leading to higher-order
theories. We have provided an analytical approach to the determination of
the parameters defining an elastic higher-order (Mindlin) material, as the
homogenization of a heterogeneous Cauchy elastic material, eqn (4.1).

This result, obtained through the proposed homogenization procedure, is
limited to the dilute approximation (thought we believe it can be generalized
to the non-dilute case), but is not restricted to isotropy of the constituents
and leaves a certain freedom to the shape of the inclusions. A perfect match
between the elastic energies of the heterogeneous and homogeneous materials,
for a general class of displacements prescribed on the two respective bound-
aries, is obtained. However, it has been shown that, to achieve a positive
definite strain energy of the equivalent higher-order material, the inclusions
have to be less stiff (in a way previously detailed) than the matrix, a situation
already found by Bigoni and Drugan (2007) for Cosserat equivalent materials,
which limits the applicability of the presented results, but explains the inter-
pretation of previous experiments and results showing nonlocal effects for soft
inclusions and ‘anti-nonlocal’ behaviour for stiff ones.
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Appendix A

Elastic energies based on the displacement

field u
β⋄∗

In this Appendix it is assumed α = 0. The field u
β⋄∗

, eqn (4.10), is a
kinematically admissible displacement for both boundary conditions uβ⋄∗

, eqn
(4.12), and (uβ⋄∗

, Du
β⋄∗

), eqn (4.15), applied on the boundary of the RVE
and the SGE, respectively. The related strain and stress energies in the RVE
and in the SGE are obtained below.

• In Section A.1 the strain energies are computed with the kinemati-
cally admissible deformation εKA, eqn (4.46), and curvature χKA, eqn
(4.55), originated by the kinematically admissible displacement u

β⋄∗

,
eqn (4.10);

• In Section A.2 the stress energies are computed with the statically
admissible stress σSA, eqn (4.48), and double-stress τSA, eqn (4.57),
originated by the above mentioned kinematically admissible fields εKA

andχKA within a homogeneous material with constitutive tensors C
∗

and A
eq.

A.1 Strain and stress energies in the RVE

The kinematically admissible deformation εKA, eqn (4.46), and the statically
admissible stress σSA, eqn (4.48), provide the strain and stress energies (4.45)

55



56 Elastic energies based on the displacement field u
β⋄∗

in the RVE

WC
RV E(ε

KA) =

∫

Ω
2Cijhk(x )β

⋄∗

ijlβ
⋄∗

hkmxlxm,

UC
RV E(σ

SA) =

∫

Ω
2C∗

ijlmC
−1
ijhk(x )C

∗

hkrsβ
⋄∗

lmnβ
⋄∗

rstxnxt,

(A.1)

which, introducing the definition (3.14) of the Euler tensor of inertia E , can
be rewritten as

WC
RV E(ε

KA) = 2
[

C
(1)
ijhkElm(ΩC

1 ) + C
(2)
ijhkElm(ΩC

2 )
]

β⋄∗

ijlβ
⋄∗

hkm,

UC
RV E(σ

SA) = 2C∗

ijlm

{

C
(1)−1

ijhk Ent(Ω
C
1 ) + C

(2)−1

ijhk Ent(Ω
C
2 )
}

C
∗

hkrsβ
⋄∗

lmnβ
⋄∗

rst.

(A.2)
Assuming the geometrical property GP2 and considering the identity (3.11),
the strain and stress energies (A.2) simplify as

WC
RV E(ε

KA) = 2ρ2Ω






C
(1)
ijhk − f

(

ρ(2)

ρ

)2
[

C
(1)
ijhk − C

(2)
ijhk

]






β⋄∗

ijlβ
⋄∗

hkl,

UC
RV E(σ

SA) = 2ρ2ΩC∗

ijlm






C
(1)−1

ijhk − f

(

ρ(2)

ρ

)2
[

C
(2)−1

ijhk − C
(1)−1

ijhk

]






×

C
∗

hkrsβ
⋄∗

lmnβ
⋄∗

rsn.
(A.3)

Assuming the geometrical property GP3

ρ(2) = ρ̃(2)f r + o(f), (A.4)

with 0 < r ≤ 1, and C
∗ as a first-order perturbation in f to the material

matrix C
(1), eqn (4.9), the strain and the stress energies are given in the

dilute case (f ≪ 1) by

WC
RV E(ε

KA) = 2ρ2ΩC
(1)
ijhkβ

⋄∗

ijlβ
⋄∗

hkl + o(f),

UC
RV E(σ

SA) = 2ρ2Ω
(

C
(1)
ijhk + 2f Ĉijhk

)

β⋄∗

ijlβ
⋄∗

hkl + o(f).
(A.5)

A.2 Strain and stress energies in the SGE

The kinematically admissible deformation and curvature fields [εKA, eqn (4.46);
χKA, eqn (4.55)] together with the statically admissible stress and double-
stress fields [σSA, eqn (4.48); τSA, eqn (4.57)] provide the strain and stress
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energies (4.54) in the SGE

WSGE
eq (εKA,χKA) =

∫

Ω
2
[

C
eq
ijhkxlxm + A

eq
jlikmh

]

β⋄∗

ijlβ
⋄∗

hkm,

USGE
eq (σSA, τSA) =

∫

Ω
2
{

C
∗

ijlmC
eq−1

ijhkC
∗

hkrsxnxt + A
eq
mnlstr

}

β⋄∗

lmnβ
⋄∗

rst,

(A.6)
which, introducing the definition (3.14) for the Euler tensor of inertia E , can
be rewritten as

WSGE
eq (εKA,χKA) = 2

[

C
eq
ijhkElm(ΩSGE

eq ) + ΩSGE
eq A

eq
jlikmh

]

β⋄∗

ijlβ
⋄∗

hkm,

USGE
eq (σSA, τSA) = 2

{

C
∗

ijlmC
eq−1

ijhk C
∗

hkrsEnt(Ω
SGE
eq )

+ΩSGE
eq A

eq
mnlstr

}
β⋄∗

lmnβ
⋄∗

rst.
(A.7)

Assuming the geometrical property GP2, the strain and stress energies (A.7)
simplify as

WSGE
eq (εKA,χKA) = 2Ω

[

ρ2Ceq
ijhkδlm +A

eq
jlikmh

]

β⋄∗

ijlβ
⋄∗

hkm,

USGE
eq (σSA, τSA) = 2Ω

{

ρ2C∗

ijlmC
eq−1

ijhkC
∗

hkrsδnt + A
eq
mnlstr

}

β⋄∗

lmnβ
⋄∗

rst.

(A.8)
Finally, assuming C

∗ as a first-order perturbation in f to the equivalent local
tensor Ceq, eqn (4.8), the stress energy is given in the dilute case (f ≪ 1) by

USGE
eq (σSA, τSA) = 2Ω

{

ρ2
[

C
eq
ijhk + 2f

(

Ĉijhk − C̃ijhk

)]

δnt

+A
eq
mnlstr

}
β⋄∗

lmnβ
⋄∗

rst + o(f).
(A.9)
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Appendix B

Energy bounds for SGE Material

Statement. When boundary displacement conditions u , Du are imposed
on the boundary ∂Ωeq of a SGE, the strain energy WSGE

eq (u ,Du) is bounded
as

WSGE
eq (u ,Du) ≥

∫

∂Ωeq

(
tSAi ui + T SA

i Dui
)
+
∫

Γeq
ΘSA

i ui − USGE
eq (σSA, τSA)

WSGE
eq (u ,Du) ≤ WSGE

eq (εKA,χKA),
(B.1)

where εKA and χKA are kinematically admissible strain and curvature fields
(satisfying the kinematic compatibility relation (2.1) and the imposed dis-
placement boundary conditions), σSA and τSA are statically admissible stress
and double-stress fields (satisfying the equilibrium equation (2.4)) and the
other statically admissible quantities t

SA, TSA and ΘSA are given by eqns
(4.52) and (4.53), while USGE

eq (σSA, τSA) and WSGE
eq (εKA,χKA) are respec-

tively the stress and the strain energies, eqns (4.54)1 and (4.54)2.

Proof. Considering the displacement field u
eq solution to the displacement

boundary conditions u , Du and the related statical fields σeq and τ eq in
equilibrium, through the difference fields ∆εKA, ∆χKA, ∆σSA, ∆τSA the
kinematically and statically admissible fields can be defined as

εKA = εeq +∆εKA, χKA = χeq +∆χKA,

σSA = σeq +∆σSA, τSA = τ eq +∆τSA.
(B.2)
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Using the discrepancy fields ∆εKA and ∆χKA the term representing the upper
bound in eqn (B.1) can be rewritten as

WSGE
eq (εKA,χKA) = WSGE

eq (u ,Du) +WSGE
eq (∆εKA,∆χKA)

+

∫

Ωeq

(

Cijhkε
eq
ij∆εKA

hk +Aijklmnχ
eq
ijk∆χKA

lmn

)

,

(B.3)
which provides a proof to the upper bound, since the strain energy is positive
definite and the third term in the RHS of eqn (B.3) is null by the principle of
virtual work (2.3) with ∆u = ∆Du = 0 on the boundary.

Using the discrepancy fields ∆σKA and ∆τKA the term representing the
lower bound in eqn (B.1) can be rewritten as

∫

∂Ωeq

(
tSAi ui + T SA

i Dui
)
+

∫

Γeq

ΘSA
i ui − USGE

eq (σSA, τSA) =

WSGE
eq (u ,Du)− USGE

eq (∆σSA,∆τSA)

(B.4)

which provides a proof to the lower bound, since the strain energy is positive
definite. �



Appendix C

Higher-order displacement boundary

condition DuRV E

C.1 The asymptotic expansion of the displacement

fields

Under the hypothesis of dilute suspension, the relation between the displace-
ment field and the volume fraction of the inclusions can be written in a very
simple way. The formulation of this relation is used in order to obtain a proper
displacement boundary conditions for the homogeneous SGE material.

C.1.1 α term of the displacement field

For imposed displacements from eqn (3.5), with β = 0, at the boundary of
the RVE, the displacement field in the presence of the inclusion is given by
the asymptotic expansion in the volume fraction f

uαi (x ) = αijxj + f r ũαi (x ) + o(f), (C.1)

with the restriction

0 < r ≤ 1, (C.2)

and the condition,

ũαi (x ) = 0 on ∂Ω. (C.3)
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The strain energy stored in the RVE, for the principle of virtual work,1 can
be written as,

WC
ΩR

(uα) =
1

2
Ω
[

C
(1)
ijhk + f

(

C
(2)
ijhk − C

(1)
ijhk

)]

αijαhk

− f2r 1

2

∫

ΩR

Cijhk(x )ũ
α
i,j(x )ũ

α
h,k(x ) + o(f).

(C.5)

For the classical homogenization method, eqn (4.18) and eqn (4.19) gives
the following equality,

WC
ΩRV E

(uα) = WSGE
Ωeq

(uα) (C.6)

where

WSGE
Ωeq

(uα) =
1

2
ΩC

eq
ijhkαijαhk. (C.7)

Substituting eqn (C.7) and eqn (C.5) into eqn (C.6), we obtain a new
restriction for the r parameter,

f Ω
(

C
(2)
ijhk − C

(1)
ijhk − C̃ijhk

)

αijαhk − f2r

∫

ΩR

Cijhk(x )ũ
α
i,j(x )ũ

α
h,k(x ) = o(f).

(C.8)
from which it can be concluded that,

0 < r ≤ 1

2
. (C.9)

C.1.2 β term of the displacement field

For imposed displacements from eqn (3.5), with α = 0, at the boundary of
the RVE, the displacement field in the presence of the inclusion is given by

1The strain energy stored in the RVE, for property (C.1) and condition (C.3), can be
written as,

WC
ΩR

(uα) =
1

2
Ω
[

C
(1)
ijhk + f

(

C
(2)
ijhk − C

(1)
ijhk

)]

αijαhk

− f2r 1

2

∫

ΩR

Cijhk(x )ũ
α
i,j(x )ũ

α
h,k(x )

+ fr

∫

ΩR

Cijhk(x )u
α
i,j(x )ũ

α
h,k(x ) + o(f)

(C.4)

from property (C.3) the third term of the right hand side of the equation becomes null after
application of the principle of virtual work, and eqn (C.5) arises.
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the asymptotic expansion in the volume fraction f

uβ
⋄∗

i (x ) = β⋄∗

ijkxjxk + f q ũβ
⋄∗

i (x ) + o(f), (C.10)

with the restriction
0 < q ≤ 1, (C.11)

and the condition,
ũβ

⋄∗

i (x ) = 0 on ∂Ω (C.12)

The strain energy stored in the RVE, for the principle of virtual work, 2 can
be written as,

WC
ΩR

(uβ⋄∗

) =2ρ2ΩRC
(1)
ijhkβ

⋄∗

ijlβ
⋄∗

hkl

− f2q 1

2

∫

ΩR

Cijhk(x )ũ
β⋄∗

i,j (x )ũβ
⋄∗

h,k (x ) + o(f).
(C.14)

Comparing eqn (C.14) with eqn (4.21), the following equality arises,

f2q 1

2

∫

ΩR

Cijhk(x )ũ
β⋄∗

i,j (x )ũβ
⋄∗

h,k (x ) = o(f), (C.15)

so that the following condition for q is obtained

0 < q <
1

2
. (C.16)

C.2 Energetic equivalence with the higher-order bound-

ary condition Du

For the displacement problem of a generic SGE, the boundary conditions in-
volves the normal component of the gradient of the displacement. In the

2The strain energy stored in the RVE, for property (C.10) and condition (C.12), can be
written as,

WC
ΩR

(uβ⋄∗

) =2ρ2ΩRC
(1)
ijhkβ

⋄∗

ijlβ
⋄∗

hkl

− f2q 1

2

∫

ΩR

Cijhk(x )ũ
β⋄∗

i,j (x )ũβ⋄∗

h,k (x )

+ fq

∫

ΩR

Cijhk(x )u
β⋄∗

i,j (x )ũβ⋄∗

h,k (x ) + o(f).

(C.13)

from property (C.12) the third term of the right hand side of the equation becomes null
after application of the principle of virtual work, and eqn (C.14) arises.
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previous chapters, this boundary condition has been taken equal to the gradi-
ent of the displacement field applied on the boundary, eqn (3.6). In order to
impose the same boundary conditions on both the RVE and the homogeneous
SGE, we apply,







u = u ,

Du = DuRV E,
on ∂ΩSGE

eq . (C.17)

where DuRV E is the normal component of the gradient of the displacement
of the RVE.

In the case of linear displacements (β = 0), for eqn (C.1) the higher-
order boundary condition becomes,

Du
α
RV E = Du

α + f rDũ
α, (C.18)

and the energy stored in the homogeneous SGE is,

WSGE
Ωeq

(uα,Du
α
RV E) = WSGE

Ωeq
(uα,Du

α) + o(f). (C.19)

Proof Substituting eqn (C.18) into the boundary conditions (C.17), the
energy stored in the SGE becomes,

WSGE
Ωeq

(uα,Du
α
RV E) = WSGE

Ωeq
(uα,Du

α) + f2rWSGE
Ωeq

(0,Dũ
α)

+f rWSGE
Ωeq

(uα,Du
α;0,Dũ

α),
(C.20)

where,

WSGE
Ωeq

(uα,Du
α;0,Dũ

α) =
∫

∂Ωeq
Tα
i Dũi

α,

WSGE
Ωeq

(0,Dũ
α) = 1

2

∫

∂Ωeq
T̃α
i Dũi

α.
(C.21)

Since the α terms of the displacement field does not activate the non-local
effects, we can write

Tα
i = 0 ∀i = 1, ..., N (C.22)

and the energy contribution in eqn (C.21)1 becomes null. On the other hand,
for eqn (2.5)2, the vector of generalized tractions of eqn (C.21)2 becomes,

T̃α
k = ninjA

eq
ijkhlmχ̃

α
lmn, (C.23)
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substituting the sixth-order tensor of eqn (4.1) into eqn (C.23), for property
(C.9), the energy contribution (C.21)2, becomes

WSGE
Ωeq

(0,Dũ
α) = o(f), (C.24)

and eqn (C.19) arises.

In the case of quadratic displacements, for eqn (C.10) the higher-order
boundary condition becomes,

Du
β
RV E = Du

β + f qDũ
β, (C.25)

and the energy stored in the homogeneous SGE is,

WSGE
Ωeq

(uβ ,Du
β
RV E) = WSGE

Ωeq
(uβ,Du

β) + o(f). (C.26)

Proof Substituting eqn (C.25) into the boundary conditions (C.17), the
energy stored in the SGE becomes,

WSGE
Ωeq

(uβ,Du
β
RV E) = WSGE

Ωeq
(uβ,Du

β) + f2qWSGE
Ωeq

(0,Dũ
β)

+f qWSGE
Ωeq

(uβ,Du
β;0,Dũ

β)
(C.27)

where,

WSGE
Ωeq

(uβ,Du
β;0,Dũ

β) =
∫

∂Ωeq
T β
i Dũi

β

WSGE
Ωeq

(0,Dũ
β) = 1

2

∫

∂Ωeq
T̃ β
i Dũi

β
(C.28)

For eqn (2.5)2, the vectors of generalized tractions of eqn (C.28) becomes,

T̃ β
k = ninjA

eq
ijkhlmχ̃

β
lmn,

T β
k = ninjA

eq
ijkhlmχ

β
lmn,

(C.29)

substituting the sixth-order tensor of eqn (4.1) into eqn (C.29), for property
(C.16), the energy contributions (C.28), becomes

WSGE
Ωeq

(uβ ,Du
β;0,Dũ

β) = o(f)

WSGE
Ωeq

(0,Dũ
β) = o(f)

(C.30)

and eqn (C.26) arises.
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Appendix D

A different view of the proposed

homogenization approach

The result obtained through the homogenization procedure presented in Chap-
ter 3 is based on the annihilation of the elastic energy mismatch G. In this
Appendix it is shown that the result leads to the same mean values within
the RVE and the SGE.

D.1 Mean values

The mean strain, curvature, stress and double stress values of a generic SGE
material are considered as,

〈εij〉|Ω =
1

Ω

∫

Ω
εij , 〈χijk〉|Ω =

1

Ω

∫

Ω
χijk,

〈σij〉|Ω =
1

Ω

∫

Ω
σij, 〈τijk〉|Ω =

1

Ω

∫

Ω
xiσjk + τijk,

(D.1)

for the Lemma of Green, the kinematical quantities become,

〈εij〉|Ω =
1

2Ω

∮

∂Ω
(niuj + uinj) , 〈χijk〉|Ω =

1

Ω

∮

∂Ω
niuk,j. (D.2)

From property (D.2), and for an imposed displacement and normal compo-
nent of the gradient of displacement on the boundary of the RVE and of the
homogeneous SGE equivalent 1 such eqn (3.5), it can be observed that the

1These are the boundary condition of a generic SGE material for the displacement prob-
lem. It corresponds to the imposition of the same displacement field and of the same gradient
of displacement on the boundary of the RVE and of the homogeneous SGE equivalent.

67



68 A different view of the proposed homogenization approach

prescription of the parameters α and β leads to the imposition of the mean
strain and mean curvature values 2,

〈εij〉|ΩC
RV E

= 〈εij〉|ΩSGE
eq

, 〈χijk〉|ΩC
RV E

= 〈χijk〉|ΩSGE
eq

. (D.4)

D.2 Mean stress matching

For the classical homogenization method (β = 0), the energy matching im-
poses the following equality,

WC
ΩRV E

(uα) = WSGE
Ωeq

(uα) (D.5)

such equality gives the matching of the mean stress values, through an appli-
cation of the principle of virtual work 3,

〈
σα
ij

〉∣
∣
ΩC

RV E

=
〈
σα
ij

〉∣
∣
ΩSGE

eq
(D.9)

D.3 Second order homogenization with β terms

For the proposed homogenization method, the energy matching imposes the
following equality,

WC
ΩRV E

(uβ,Du
β) = WSGE

Ωeq
(uβ,Du

β) (D.10)

2Considering eqn (3.5) as a kinematically admissible displacement field, the mean strain
and mean curvature values becomes,

〈εij〉|Ω =
αij + αji

2
, 〈χijk〉|Ω = 2βkij , (D.3)

3From eqn (D.5), imposing the same displacement at the boundary and considering the
absence of non-local effect in the homogeneous SGE material, the following equality arises,

∫

∂Ω

(

σα
ij − σα

eq ij

)

niu
α
j = 0 (D.6)

where σα
ij and σα

eq ij are the stress field in the RVE and in the homogeneous SGE equivalent,
respectively. Applying the principle of virtual work, considering the following kinematically
admissible displacement field,

uα
i = αijxj , (D.7)

we obtain,

αij

∫

Ω

(

σα
ij − σα

eq ij

)

= 0. (D.8)

For the arbitrariness of α parameters and eqn for (D.1)3, eqn (D.9) arises.
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such equality gives the matching of the mean stress-momentum values, through
an application of the principle of virtual work 4,

〈

τβijk

〉∣
∣
∣
ΩC

RV E

=
〈

τβijk

〉∣
∣
∣
ΩSGE

eq

(D.15)

4From eqn (D.5), imposing the same displacement and the same gradient of the displace-
ment at the boundary, the following equality arises,

∫

∂Ω

[(

tβi − tβeq i

)

uβ
i +

(

T β
i − T β

eq i

)

Duβ
i

]

+

∫

Γ

(

Θβ
i −Θβ

eq i

)

uβ
i = 0 (D.11)

where tβi , T β
i , Θβ

i and tβeq i, T β
eq i, Θβ

eq i, are the traction and generalized tractions arising
on the boundary and on the edges of the boundary, of the RVE and of the homogeneous
SGE, respectively. Since the sixth-order non-local constitutive tensor of the RVE is null, the
generalized tractions arising on the boundary of the RVE are null,

T β
i = 0, Θβ

i = 0, (D.12)

Applying the principle of virtual work, considering the following kinematically admissible
displacement field,

uα
i = βijkxjxk, (D.13)

we obtain,

2βjki

∫

Ω

[

xiσ
β
jk −

(

xiσ
β
eq jk + τβ

eq ijk

)]

= 0 (D.14)

For the arbitrariness of β parameters and eqn for (D.1)4, eqn (D.15) arises.



Nomenclature

x (xi) : position vector

u (ui) : displacement vector

Du (Dui) : derivative of the displacement along the outward normal

direction to the boundary ∂Ω

emlj : Ricci ‘permutation’ tensor

n (ni) : unit vector normal to ∂Ω

s (si) : unit vector tangent to Γ

ε (εij) : strain tensor

χ (χijk) : curvature tensor

σ (σij) : stess tensor

τ (τijk) : double stess tensor

t (ti) : traction vector on the surface ∂Ω

T (Ti) : generalized traction vector on the surface ∂Ω

Θ (Θi) : generalized traction vector along the set of edges Γ

RV E : Representative volume element

SGE : Second Gradient Elastic

ΩC
RV E : RVE made up of a heterogeneous Cauchy material

ΩC
1 : matrix made up of a homogeneous Cauchy material
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ΩC
2 : inclusion made up of a homogeneous Cauchy material

ΩSGE
eq : equivalent SGE material

wSGE : strain energy density of a SGE material

WC
RV E : Strain energy stored in the RVE

WSGE
eq : Strain energy stored in the SGE material

G : Strain energy mismatch between the RVE and the SGE

material

C
(1) (C

(1)
ijhk) : matrix constitutive tensor

C
(2) (C

(2)
ijhk) : inclusion constitutive tensor

C
eq (Ceq

ijhk) : equivalent local (Cauchy) constitutive tensor

A
eq (Aeq

ijhlmn) : equivalent nonlocal (Mindlin) constitutive tensor

C̃ (C̃ijhk) : discrepancy tensor at the first-order in f between the RVE

and the SGE

f : volume fraction of the inclusion phase

ρ : radious of inertia of the RVE

Q (Qij) : orthogonal tensor

[[·]] : jump in the relevant argument across the surfaces

intersecting at the edge Γ
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〈·〉|Ω : mean value of the relevant argument over a domain Ω

SA : Statical admissible

KA : Kinematical admissible
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