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Abstract

Processes are omnipresent in humans’ everyday activities: withdrawals from an ATM,

loan requests from a bank, renewals of driver’s licenses, purchases of goods from online

retail systems. In particular, the business domain has strongly embraced processes as an

instrument to help in the organization of business operations, leading to so-called business

processes. A business process is a set of logically-related tasks performed to achieve a

defined business outcome. Business processes have a big impact on the achievement of

business goals and they are widely acknowledged as one of the more important assets of

any organization next to the organization’s customer basis and, more recently, data. Thus,

there is a high interest in keeping business processes performing at their best and improving

those that do not perform well.

Nowadays, business processes are supported by a wide range of enabling technologies,

including Web services and business process engines, which enable the (partial) automa-

tion of processes. Information systems supporting the execution of processes typically store

a wealth of process knowledge that includes process models, process progression informa-

tion and business data. The availability of such process knowledge gives unprecedented

opportunities to get insight into business processes, which leads to the question of how to

exploit this knowledge for facilitating the improvement of processes.

In order to answer this question, we propose to exploit process knowledge from two

different but complementary perspectives. In the first one, we take the process execution

perspective and leverage on process execution data generated by information systems to

analyze and understand the actual behavior of executed processes. In the second one, we

take the process design perspective and propose to extract process model patterns from

existing models for reuse in the design of processes. The final goal of this thesis is to fa-

cilitate process improvement by exploiting existing process knowledge not only for gaining

insight into and understanding of processes but also for reusing the resulting knowledge in

the improvement thereof. We have successfully applied our approaches in the context of

service-based business processes and assisted dataflow-based mashup development. In the

former, we validated our approach through a end-user study of the usability and under-

standability of our approach and tools, while in the latter the evaluations were performed

through experiments run on a dataset of models from the mashup tool Yahoo! Pipes.

Keywords

Business process, process model pattern, pattern mining, service-based business process,

compliance, mashup, uncertainty.
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Chapter 1

Executive Summary

Processes are part of every human’s daily activities. Consciously or uncon-

sciously, we are constantly participating in one or more processes. Take the

example of a very simple process for shopping goods on an online, Web-

based retail system. Typically, a costumer logs into his account, searches

for the goods he is interested in, adds the goods to a shopping cart, provides

shipping information, and pays for the goods. A customer goes through

these steps guided by the application, in most cases, just by clicking the

“next step” button and following this “shopping process”. In the case of

a small online shop with few clients, a small delay in one of the steps of

the process will probably have no big impact in the overall performance of

the business. Instead, if we consider big online shops such as Amazon.com

where up to millions of items are ordered in busy days [12], such delays

may severely damage not only the revenue of the company but also its

reputation [7].

The example process above corresponds to what is known as a business

process. As defined by Davenport and Short [4], a business process is “a set

of logically-related tasks performed to achieve a defined business outcome.”

The set of business processes of an organization is considered as one of its

more important assets [7], and, with their core business operations run-
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Chapter 1

ning as business processes, organizations have a high interest in keeping

processes performing at their best. For this reason, process improvement,

i.e., the endeavor of making processes effective (producing the desired out-

comes) and efficient (minimizing the resources used), has always been a

key concern for organizations.

Process improvement initiatives typically aim to eliminate defects that

may prevent processes from achieving these goals [8]. Doing so requires

both a careful design of processes so as to minimize the presence of defects

and the ability to identify problems and analyze them to find and under-

stand their root causes and then fix them [2]. In the following, we discuss

these concerns in more details.

• Process design. Process design is the task of formalizing the (infor-

mal) business process descriptions using a business process modeling

notation [27]. The design of effective and efficient business processes

has always been a top interest for organizations since its introduction

as an instrument for the organization of business operations [6]. Pro-

cess design is typically not a one-time activity. It is rather a part

of a broader business process management methodology where pro-

cess design is repeatedly visited for making adjustments. Typically, a

process is designed, then implemented and tested, deployed, and ex-

ecuted. Each phase that follows process design may encounter issues

that, in turn, require going back to the process design phase to ad-

dress such issues from a design perspective. Thus, designing a process

that is both effective and efficient is not always straightforward and

it can be a difficult task even for expert process designers, taking sev-

eral iterations before these goals are satisfied. The delay introduced

by these iterations may be then translated into additional costs or

even failure in fulfilling the organization’s business goals. Therefore,

a careful design of processes is needed to avoid defects that may lead
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Chapter 1

processes to fail in achieving their desired outcomes.

• Identification of problems in processes. Even when a process

has been carefully designed to make it effective and efficient, in prac-

tice, the actual behavior of the process may be different from what

was designed or expected, due to problems that emerge and become

evident only at process execution time. The evidences are typically

found in the process progression information and business data, and

the types of problems that can be found include excessive task execu-

tion times, violations of compliance rules, process instance abortions,

among other problems.

The correct identification of such problems is a key requirement to

analyze the underlying reasons of the underperformance of processes.

Doing so can be a difficult endeavor for three main reasons. First,

process execution data may be spread throughout the information

systems of the company, and generated by fully and partially auto-

mated as well as manual processes, which makes the identification of

process-relevant events hard. Second, the execution data generated

by the running processes may be extensive and uncertain. It may be

extensive because process instances may generate a large number of

evidences during process progression. It may be uncertain because

we may have cases in which we are not sure whether the generated

evidences correctly represent the process progression. These issues

complicate the identification of problems because we need to under-

stand which data to look at and how much we can trust such data

in the presence of uncertainty. Finally, spotting problems is in many

cases subjective: a small underperformance of a process during one

range of time may not be as critical as in another range of time. These

issues hint at the need for an appropriate management of potentially
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uncertain process execution data and a mechanism to effectively iden-

tify and report problems to assist the process analyst.

• Root cause analysis. Once a problem has been identified, the next

step is to understand what are the root causes of the problem. Finding

root causes typically involves an analysis that start from a high level

symptom down to fine-grained details of process executions, which

typically asks again for the inspection of process progression informa-

tion and business data. For example, we may start the analysis from

an indicator that shows excessive execution times for process instances

and go down to the execution times of each of the individual tasks of

the process to identify the task where the root cause is found.

There are cases in which the root cause is not associated to the prob-

lem in an obvious way. The challenge here resides in being able to

associate these potentially large, fine-grained and non-obvious root

causes to the identified problems. Just like for the identification of

problems, finding root causes is also a difficult task because of the

typically extensive execution data generated by process executions. A

manual inspection of process execution evidences and their dynamics

is in most cases not practical, and, therefore, we need to find a way to

(at least partially) automate this work. Moreover, the imperfections

present in process execution data may further complicate this work,

not only in finding the root causes, but also in their interpretation

by the human expert because the obtained models may be not only

complex but also inaccurate. We need, therefore, to create aware-

ness on the human expert about possible imperfections, such that the

analysis performed on top of the root causes found and the decided

improvement actions take such imperfections into account.

Many attempts has been undertaken to address the issue of process
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improvement. In the early nineties, these topics attracted a lot of interest

with seminal works such as the ones from Harrington [7] and Hammer et

al. [6], in which the focus was put on business process improvement, total

quality and business process reengineering. In that same decade, the total

or partial automation of business processes started to gain interest as a way

of fostering process improvement, leading to technologies such as workflow

management systems [11]. In more recent times, leveraged by Service-

Oriented Computing (SOC) technologies such as Web services, service-

based business processes turned into a key instrument for the organization

of business operations in modern business [1] [14]. Medium and large sized

organizations, both private and public, rely on such processes, which may

expand within and across many of their business units and partners.

The technologies that emerged from the works above turned into the

cornerstone for the support of business operations in organizations. Such

technologies typically store a wealth of process knowledge including (i) pro-

cess models, (ii) process progression information, and (iii) business data. A

process model represents the activities that are part of the process and the

constraints between them and it is typically expressed through a notation

such as the Business Process Modeling Notation (BPMN) [28]. Process

progression information refers to the actions and events that took place

during process execution, and they are usually represented as events that

are stored in an event log [26]. Finally, business data refer to data related

to the domain of the business as produced during process progression and

they are typically stored in the operational database or in the payload of

the events recorded in the event log of the supporting information system.

The availability of such rich process knowledge creates unprecedented

opportunities and challenges to gain visibility and insight into business

processes. The research question we address in this dissertation is how to

exploit such knowledge to facilitate process improvement.
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1.1 Research Questions

The process knowledge discussed in the previous section can be studied

from two different perspectives: On the one hand, we have the process

design (or static) perspective in which the knowledge comes in the form

of process models. On the other hand, we have the process execution (or

dynamic) perspective where the knowledge comes in the form of process

progression information and business data. The main objective of this

dissertation is thus to exploit such process knowledge from these two per-

spectives to facilitate process improvement. From this, we formulate the

following key research questions (RQs), which we address in this disserta-

tion:

• RQ1: How can we identify and extract process-relevant events within

an organization information system? Most approaches used for the

identification of problems and root-cause analysis from process execu-

tion data assume the existence of logs that store evidences of process

executions. For example, most algorithms used for process discov-

ery require event logs where each event carries information such as

the process instance identifier, the task name an event is related to,

timestamp of its occurrence, among other process execution data [26].

In practice, this is not always the case since in many situations the

information system supporting the business processes is not instru-

mented to generate such event logs.

Typically, however, an information system stores both process progres-

sion information and business data produced by process executions in

different formats and for different purposes. For example, operational

databases [10] (also known as production databases) store data that

comprise process progression data, process state data, business data

produced throughout the process, data related to the regular opera-
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Chapter 1 1.1. Research Questions

tions of an organization, as well as their related business facts and

objects. In a situation where there is no event log, we ask the ques-

tion of how to reconstruct the necessary process execution data from

such alternative datasources to enable process execution analysis tech-

niques such as process discovery [26]. Many challenges emerge when

trying to reconstruct an event log from such datasources including the

identification of events related to process execution, the determination

of the ordering of events, the grouping of events into process instances

(event correlation), and the mapping of data to the payload of events.

• RQ2: How can we exploit process execution data for the identification

of problems and root-cause analysis? The behavior of a process can

significantly differ from what was originally designed. This is of no

surprise if we consider that most processes are partly automated and

partly executed by humans. In the former case, many factors can affect

process execution and they range from hardware issues to runtime

error in business applications. In the latter case, humans can make

mistakes either intentionally or unintentionally. Problems that emerge

from these two situations typically impact on the process performance.

In the case of processes that need to adhere to compliance rules (e.g.,

compliance with laws, regulations or standards), these problems may

lead to compliance violations that may in turn be translated into hefty

penalties to the company.

Typically, these problems manifest themselves in the process execution

data generated as processes are executed. It is relevant, therefore, to

make use of this data to analyze and understand the actual behavior

of process executions. However, doing so is not trivial: we need to

understand what insights we want to gain from process execution data

(e.g., compliance level of process executions), what techniques to use
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for the analysis (e.g., root cause analisys), which data to use from the

available process execution data, how to prepare the data to bring

them to a format that is suitable for the analysis, how to deal with

the presence of uncertainty in data, and how to report on the results

in order to properly inform the process analysts.

• RQ3: How can we reuse the process modeling wisdom of the crowd to

assist process designers in defining processes? In the previous research

questions we focused on the process knowledge in the form of process

execution data. Here, we look at the problem from the process design

perspective and we ask how we can exploit existing process models

to acquire knowledge that can help us in the identification of com-

mon practices in a given domain. The intuition behind this research

question is that, by identifying such practices, we can analyze and un-

derstand how processes are modeled and incorporate such knowledge

in future process designs. The identification of common practices in-

volves analyzing the set of existing process models and finding model

patterns that are recurrently used in such models. When the number

of models is large, manually finding such patterns may turn into a

daunting task and therefore automated techniques are needed in or-

der to facilitate the work. The key research challenges that emerge

in this problem are, first of all, the identification and definition of the

types of patterns that can be useful from a process design perspective

and the development of algorithms that are able to find interesting

patterns from a model repository.

Given that we are able to discover useful knowledge from a set of

process models, the next question is how to reuse such knowledge for

the improvement of processes. Since these patterns are obtained from

process models that are the results of the design phase of a business
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application, we are interested in investigating on how to reuse this

knowledge for assisting process modelers in designing their processes.

To do so, we need to understand when we can assist users in designing

their processes. For example, we need to decide if the assistance will

be provided before, during or after process design. Then, we need to

investigate on the form (e.g., model patterns) and granularity (e.g.,

model fragments) in which the assistance will be delivered, and, finally,

we need to decide how to operationalize the delivery of such assistance.

The research questions discussed previously untangle the problem of

how to exploit existing process knowledge for process improvement from

two different perspectives, namely, the process execution and process design

perspective. Although different, these perspectives complement each other

and represent the foundation of a holistic approach to process improvement.

1.2 Contributions

Addressing the research questions discussed in the previous section asks

for models, techniques and tools that facilitate process improvement by

leveraging on the process knowledge generated by information systems. In

this dissertation, we propose to exploit such process knowledge in order to

produce analysis models that serve not only for the analysis and under-

standing of processes but also for reuse in the improvement of processes.

The contributions (Cs) of this dissertation are:

• C1: Process execution log reconstruction. The contributions

we make in addressing research question RQ1 can be summarize as

follows: (i) we characterize the problem of process execution log recon-

struction from operational databases and identify the key challenges

in addressing it, (ii) we propose an approach for addressing this prob-
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lem, which includes core steps such event identification, event order-

ing, data mapping and event correlation, (iii) we propose a set of

eventification patterns that can be applied in each of these steps, and

(iv) we provide a tool, the Eventifier 1, that assists human experts in

reconstructing process execution logs from operational databases.

• C2: Root cause analysis and process discovery from uncer-

tain process execution data. In order to address research question

RQ2, we first identify and analyze the information needed to carry

out our analysis. As result, we propose a data warehouse model for

storing process execution data. Here, we also introduce the ideas of

uncertain events and present a model to express and store uncertainty

metadata inside our data warehouse. Using these models, we propose

the idea of uncertain key indicators and a tool to effectively compute

an report on such indicators and show how to analyze process execu-

tion data using root cause analysis and process discovery techniques

for the case where uncertainty is present in the data. Overall, our

main contribution here is in providing the basis for uncertainty in

process execution data analysis and business intelligence applications.

• C3: Compliance reporting and analysis suite. Leveraging on

the contributions discussed above, and still in the frame of the research

question RQ2, we show how we successfully applied our approach for

SOA-enabled compliance management, in particular, for the case of

service-based business processes. Here, we propose an assisted com-

pliance management methodology based on the Deming cycle [9] and

an event-based compliance management architecture that instruments

our compliance management methodology. We also propose a report-

ing and analysis suite to report on compliance and support root cause

1https://sites.google.com/site/dbeventification/
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analysis to provide better informed decision making.

• C4: Process model pattern discovery. In order to address the

research question RQ3, we propose to leverage on community pro-

cess modeling knowledge by discovering process model patterns from

existing models. We investigate this research question in the con-

text of dataflow-based mashups [29]. While this technology serves a

different purpose than business processes, they both share a process-

oriented approach and therefore our contributions can be also adopted

for the case of business processes. In concrete, our contributions can

be summarized as follows: (i) we propose a canonical mashup model

that is able to represent in a single modeling formalism a variety of

dataflow-based mashup languages with the goal of mining dataflow

patterns from multiple source languages by implementing the neces-

sary algorithms only once, (ii) based on our canonical mashup model,

we define a set of mashup pattern types that resemble the modeling ac-

tions of typical dataflow-based mashup environments, (iii) we develop

a set of data mining algorithms that discover composition knowledge

in the form of reusable dataflow mashup patterns from a repository

of mashup models, and (iv) we describe an architecture that can be

used for mining patterns and building a pattern knowledge base.

• C5: Process model pattern reuse for assisted mashup de-

velopment. The results of our research on process model pattern

discovery has been used as the basis for building the knowledge base

of our assisted mashup development approach. In this approach, we

propose to assist users in designing mashups by means of interactive,

contextual recommendations of composition knowledge that comes in

the form of reusable model patterns. Thus, we show how to reuse

the discovered process model patterns in practice for assisting process

11
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designers in defining their processes (research question RQ3).

In summary, the contributions described above leverage on existing pro-

cess knowledge taking the perspectives of both process design and execu-

tion. The concepts, models, algorithms and tools described above provide

a powerful mechanism for aiding in the analysis, understanding and reuse

of process knowledge for facilitating process improvement.

1.3 Adoption of Results and Impact

The novel contributions discussed in the previous section regarding the

computation of indicators, root cause analysis and process discovery from

uncertain data, and compliance reporting and analysis have been adopted

in the European projects MASTER2 and COMPAS3. Inside these projects,

we developed prototype tools that served us as proof of concepts and al-

lowed us to perform user studies. The results obtained from our work

on process log reconstruction is currently being adopted in the research

project Ianus [13] from the Province of Trento (Italy) to enable process

discovery.

In the project OMELETTE4, the novel contributions regarding process

model pattern discovery and reuse in assisted mashup development serve

as basis for and are being adopted in the assisted development for the tools

MyCocktail and OMELETTE’s Live Environment (the details about these

tools can be found at the project’s website). These contributions has been

also adopted for building the knowledge base of Baya5, our assisted mashup

development tool for Yahoo! Pipes.

2Managing Assurance Security and Trust for Services - http://www.master-fp7.eu
3Compliance-driven Models, Languages, and Architectures for Services - http://www.compas-ict.eu/
4Open Mashup Enterprise Service Platform for Linked Data in the Telco Domain - http://www.ict-

omelette.eu/home
5http://www.lifeparticipation.org/baya.html
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1.4 How to Read this Dissertation

This dissertation takes the form of an executive summary with a collection

of research papers that have been peer-reviewed and published in interna-

tional journals, conferences or books. The collection of papers can be found

in the Appendix and is divided into two parts. In Part I, we discuss how

we exploit process knowledge from the process execution perspective, while

Part II does the same but from the process design perspective. Each part

presents a list of publications that address the research questions and dis-

cuss in more details the approach and contributions presented previously.

Figure 1.1 presents a graphical representation of our publications where we

include a brief abstract for each of them and their interdependencies, and

shows which publication falls into each of the process execution or process

design perspective. In the following, we discuss the development of our

research in each of these parts. Our aim is to use the learning process we

went through as a guide on how to read this dissertation.

Part I - Process execution perspective . Our first interest was to

analyze the behavior of processes from a high-level view by the use of key

indicators (i.e., numbers that summarize different aspects of the process)

computed over process execution data. We acknowledged that process

execution data is not always perfect and it may be subject to uncertainty.

Thus, to address this problem, we introduced an uncertain event model and

key indicators together with a model for storing and a tool for computing

and visualizing uncertain key indicators [16] [17]. The lessons learned from

these works led us to the conclusion that it is not enough to just compute

the right indicators in the right way, but we also need to visualize the

results appropriately in order to deliver the right message to the users of

such information. In the light of this observation, and starting from a

compliance management problem, we therefore modeled the problem of
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Appendix H

Part I: Process execution perspective Part II: Process design perspective

Dissertation

RQ2, C2
RQ2, C3

RQ2, C2

RQ2, C2

RQ2, C2, C3

RQ2, C2, C3

RQ1, C1

RQ3, C4, C5

RQ3

RQ3, C5 RQ3, C5

RQ3, C4

Figure 1.1: Timeline of scientific, peer-reviewed publications with the respective contri-

butions and interdependencies. For each publication we include the research questions

(RQs) and contributions (Cs) the publication is related to.
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Chapter 1 1.4. How to Read this Dissertation

reporting on compliance and developed an approach for reporting on it

together with a prototype reporting dashboard [25]. We also introduced

the concept of Key Compliance Indicators (KCIs) and applied techniques

from decision tree mining for the analysis of compliance violations [24] [21].

From the lessons learned in these research works, we proposed a method-

ology for compliance management in a service-based business process en-

vironment [20]. The methodology is based on the Deming cycle [9] and it

aims at the continuous improvement of the compliance of processes. Here,

we employ in a unified and harmonized way the approaches we proposed

in our previous works and added two additional techniques for the root

cause analysis of compliance violations, namely, key indicator correlation

and process discovery, both adapted to work on uncertain data. By apply-

ing these approaches to the Ianus project, we noticed that, in many real

settings, the information systems supporting the execution of processes ei-

ther do not generate event logs that are suitable for process execution data

analysis, or they do not generate event logs whatsoever (this is especially

true in the case of legacy systems). This led us to an additional line of

work in which we address the problem of obtaining process execution data

from an alternative source, in this case, the operational database of the

information system supporting the business [18]. While this research work

has been developed having in mind the reconstruction of an event log for

process discovery, the work can be adapted to support other types of pro-

cess execution data analysis that requires process execution data in the

format of an event log.

Part II - Process design perspective . As shown in Figure 1.1, shortly

after we started to work on the approaches based on process execution

data, we initiated in parallel our work from the process design perspective.

As opposed to the previous perspective, we carried out our studies in a

different context, namely, dataflow-based mashups [29]. The purpose of
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dataflow-based mashups is different from that of business processes, but

they both share a process-oriented approach. Moreover, dataflow-based

mashups (like in Yahoo! Pipes) are analogous to service-based business

processes in that both use a process-based logic to orchestrate services.

More precisely, the scenario we worked with inside the context men-

tioned above is that of assisted mashup development. We started with the

proposal of assisting users without programming skills in building their

mashups through development recommendation of composition knowledge,

where this knowledge comes in the form of composition patterns that are

mined from a repository of mashup models [22]. In order to better under-

stand the requirements from our target users, we run an end-user study

where the viability of the proposed approach was analyzed based on con-

ceptual designs (mockups) [5].

Based on the results obtained from the study above, we continued with

the progress on the research work and many artifacts where created: we

designed a canonical mashup model for dataflow-based mashups, identified

a set of mashup composition patterns types, developed algorithms for min-

ing these patterns and provided a tool for the interactive recommendation

of composition patterns for the mashup tool Yahoo! Pipes [23] [3]. The

tool is called Baya, and its knowledge base, made of mashup composition

patterns, is built with the mining algorithms we describe in details in [19].

While our algorithms developed for automatically mining composition pat-

terns were effective in finding patterns that structurally make sense, a main

limitation of the resulting patterns was the lack of rich semantics. This led

us to a new research direction that we are currently investigating and that

we will further discuss as part of the future work.

We conclude this dissertation with Chapter 2 where we outline the

lessons learned, limitations of our approach and directions for future work.
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Chapter 2

Lessons Learned

In this chapter, we discuss the lessons learned during the development of

our research work. To do so, we group together our discussion based on

the topics we investigated for addressing the research questions discussed

in this dissertation. We include not only the lessons learned during the

development of our research work, but also the limitations we identified in

each case and the ongoing and future work.

2.1 Uncertain Events and Uncertain Business Intel-

ligence

Uncertainty is a real issue in modern data management. Indeed, the

database community (both academia and industry) has already started

investing considerable amount of effort into research on uncertain and prob-

abilistic databases, yet there is a lack of business process management and

business intelligence applications that are able to profit from the results of

such research. The research we did in this area follows in the footsteps of

other scientific areas where uncertainty has become a key ingredient when

modeling reality. As opposed to what is typically done when facing uncer-

tain data, such as, data cleaning and other types of approaches with the
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purpose of providing clean and complete data to the end-users, we model

this imprecision in terms of uncertain events and uncertain indicators and

propose an approach to store uncertainty metadata and compute uncertain

indicators. The bottom line of all this is that we do not want to hide this

uncertainty from end users. Instead, we want to expose this information

to them in order to create awareness about the existence and extent of this

uncertainty.

Among the lessons learned from this research work we recognize that

dealing with uncertain data is a non-trivial task. We acknowledge that we

need to find the right level of complexity for the analysis models and indi-

cators computed on top of the uncertainty models we proposed, in order to

make them both informative and very clear to the process analysts. Fail-

ing to do so may not only put in risk the objective of creating awareness

about uncertainty in the data, but also complicate the work of the pro-

cess analyst. The application of our approach in practice does not come

for free. On the one hand, making computations that take uncertainty

into account requires more sophisticated algorithms, which, in turn, are

computationally more intensive than traditional algorithms. On the other

hand, there is a need for instrumenting the necessary mechanisms to ob-

tain uncertainty metadata. This is, however, not very different from what

existing approaches from data quality management have to face, where the

data quality systems and experts need to address similar issues to make

sure they provide clean and complete data [15]. Moreover, to address this

challenge, we too can benefit from the approaches coming from data quality

management.
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2.2 Reporting on Compliance

Compliance with regulations, laws and standards has become a very rel-

evant concern in modern business. We are witnessing how compliance

concerns are permeating more and more business operations and, thus,

how they are invading business processes. With the increasing number of

compliance concerns a modern business has to deal with, the effective visu-

alization and reporting on the compliance status of processes is becoming

a very important aspect in any organization. In this regard, our contribu-

tion consists in the conceptualization of the issues involved in the design of

compliance dashboards for service-based business processes and a model for

both storing compliance-related data and supporting the dashboard navi-

gation in a drill-down, roll-up fashion for exploring the compliance concerns

at different levels of detail. Our solution has been devised having in mind

the needs of auditors (both internal and external ones) and with the help

of experts from auditing companies, namely, PriceWaterhouseCoopers and

Deloitte.

The main findings in this line of work includes that reporting on com-

pliance is not a straightforward task especially when we need to combine

compliance concerns with a process-oriented reporting approach. In order

to effectively report on the compliance status of business processes we need

to find the appropriate aggregation of compliance-related information and

correct association of such information to process-related concepts. A key

concern expressed by the auditor experts is that no matter how good a

reporting solution is, if auditors identify a compliance violation or a flaw

in the process or controls, they will go right to the logs for a fine-grained

analysis. A reporting solution that provides support for this requirement

benefits the company in two ways: on the one hand, it allows internal

auditors and business process analysts to drill down to the events that
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originated the indicator values for finding the root causes of compliance vi-

olations, and, on the other hand, it positively impacts external auditors by

showing that there are mechanisms in place for monitoring the compliance

status of business processes.

In the solution we proposed for reporting on compliance we focus on

the compliance of business processes, and the highest level of abstraction

we reach is the business unit. Thus, with our solution we do not address

higher level concerns such as organizational compliance and the problem

of how it relates to compliance at the business process level.

2.3 Compliance Management in Service-based Busi-

ness Processes

We now switch to discuss our work in a relevant and critical issue in todays

business reality: compliance management. In this dissertation, we also con-

sider the problem of process improvement from a compliance management

viewpoint taking into account the peculiarities of service-oriented architec-

ture and distributed business contexts. In addressing this problem, we kept

the perspective of auditors (both internal and external ones) and focus on

the design of compliant processes and the assessment and improvement of

their compliance. The models and instruments we propose in our work

complement existing monitoring and enforcement approaches and provides

a comprehensive approach to service-based compliance management.

From the realization of our approach we learned that compliance man-

agement cannot be automated completely and that we always need a human

expert in the loop and, therefore, the most we can do is to facilitate com-

pliance management through instruments that help human experts in its

various phases. We also learned that a key factor to successful compliance

management is the appropriate internalization of compliance concerns into
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business processes, i.e., a proper translation of the compliance sources into

compliance rules that business processes must comply with.

The generation of the right process progression information, typically,

in the form of event logs, is just as important as the internalization of

compliance concerns since they are the key sources of data for compli-

ance assessment. Yet, there are cases in which the generated logs are not

suitable for the analysis techniques we proposed in our work or they are

simply not generated at all. This is especially true when parts of the busi-

ness processes of a company are supported by legacy systems, and thus,

sources different from an event log need to be queried to obtain the pro-

cess progression information needed. In this context, we learned that a

clear eventification process and a set of sensibly designed heuristics and

tools can enable a domain expert to reconstruct an event log even from

an operational database, an IT component that most companies running

an information system have. We also recognized that a fully automated

approach is not possible and it requires involving the domain expert into

the decisions to be taken. Finally, while we focus on event logs that enable

process discovery, the approach we proposed can reconstruct process exe-

cution logs that meet the requirements of other types of process execution

data analysis. The main task here is in identifying the right event types

that we need to reconstruct as required by the analysis to be performed.

2.4 Process Model Pattern Mining for Reuse

In our approach of mining process model patterns for reuse, we leverage

on community composition knowledge. As explained before, we took the

scenario of assisted mashup development in which we aimed to help users

in building dataflow-based mashups through interactive recommendation

of composition knowledge that comes in the form of mashup composition
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2.4. Process Model Pattern Mining for Reuse Chapter 2

patterns. Thus, one of the key challenges we faced here was the identifi-

cation of composition patterns that are useful from the point of view of

the typical mashup composition actions made by users and that can be

interactively recommended to them during composition. While we were

able to identify such patterns using Yahoo! Pipes as an exemplary tool,

we soon realized that other similar tools for dataflow-based mashups use

very similar models for representing their mashups and this led us to the

development of a mashup canonical model on top of which we developed

a set of pattern mining algorithms for the pattern types we had identified

in the previous phases. The purpose of doing this was the development

of a single set of mining algorithms that is abstracted from the specific

mashup representations used by different tools. Time proved us right as

we were indeed able to reuse the same algorithms to mine patterns from

two other mashup tools developed in the context of the European project

OMELETTE.

As for the discovery of model patterns, we learned that even patterns

with very low support carry valuable information. Even though they do

not represent generally valid solutions or complex best practices in a given

domain, they still show how its constructs have been used in the past.

This property is a positive side-effect of the sensible, a-priori design of the

pattern types we are looking for. Without that, discovered patterns would

require much higher support values, so as to provide evidence that also their

pattern structure is meaningful. Our analysis of the patterns discovered by

our algorithms shows that, in order to get the best out them, semantically

rich information inside the composition patterns is crucial.
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2.5 Final Remarks and Future Work

The managerial view on business process improvement is wide and includes

improvement in business processes, manufacturability, market share, cus-

tomer satisfaction, profits, employee performance, among other issues. In

this dissertation, we take the view of process improvement from an IT

viewpoint and propose to exploit business process knowledge managed by

the supporting information systems from the perspectives of process design

and process execution. We consider these two perspectives as proactive and

reactive, respectively. The process design perspective is proactive because

having a good design in the first place is important to prevent processes

from being ineffective or inefficient. The process execution perspective is

reactive because we analyze the actual behavior of the processes after they

were executed and only then we identify problems and their corresponding

solutions and improvements. The models, algorithms and tools we pro-

pose in this dissertation for each of these perspectives allow for gaining

great visibility into and understanding of the processes of an organization

and also profiting from this knowledge, thus, facilitating business process

improvement.

The lessons learned and outcomes of this dissertation ask for a contin-

uation of our research work. In the following, we discuss the future work

that aim to address some of the limitations discussed above along with

other new concerns:

• In the context of uncertain business intelligence, investigate the adop-

tion and extension of further data mining algorithms that can take

advantage of our uncertainty data model. Additionally, since the al-

gorithms operating on uncertain data are computationally more in-

tensive, we need to study how our approach scales for large volumes

of data.
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• Extend our approach for process log reconstruction to consider cases

where no timing information is associated to the records in the database.

Study also how to automatically extract and associate task names to

events, and how to recommend tables where potentially relevant, pro-

cess progression events can be found.

• Investigate how to adapt our compliance reporting approach to con-

sider the case of reporting on and navigating through compliance con-

cerns and indicators at multiple levels.

• Adapt our mashup model pattern mining algorithms for their use on

business processes models that include control flow constructs.

• In order to address the lack of rich semantics in the patterns resulting

from our model pattern mining algorithms, study how to use human

computation in a crowdsourcing environment for actively involving

human experts in finding patterns with semantically rich information

from process models. We have already started to work on this inter-

esting research issue.
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Computing Uncertain Key Indicators from
Uncertain Data ∗

Carlos Rodŕıguez Florian Daniel Fabio Casati Cinzia Capiello

Abstract

Key indicators, such as key performance indicators or key compliance in-
dicators are at the heart of modern business intelligence applications. Key
indicators are metrics, i.e., numbers, that help an organization to measure and
assess how successful it is in reaching predefined goals (e.g., lowering process
execution times or increasing compliance with regulations), and typically the
people looking at them simply trust the values they see when taking decisions.
However, it is important to recognize that in real business environments we
cannot always rely on fully trusted or certain data, yet indicators are to be
computed. In this paper, we tackle the problem of computing uncertain indi-
cators from uncertain data, we characterize the problem in a modern business
scenario (combining techniques from uncertain and probabilistic data man-
agement), and we describe how we addressed and implemented the problem
in a European research project.

1 Introduction

Facilitated by the extensive use of Information Technology (IT) in today’s com-

panies, business environments have become highly dynamic and responsive. Es-

pecially the growing availability of business data that are accessible for analysis

and interpretation has changed the way business people read the performance

of their company: increasingly, they base their decisions on summaries, reports,

and analyses coming from Business Intelligence (BI) applications. In order to

gain competitive advantage over their competitors, BI applications allow them

to get insight into the changes in the business environment, to rapidly react to

changes, and to keep performance under control. With the advent of so-called
∗The final publication is available at http://mitiq.mit.edu (http://mitiq.mit.edu/iciq/iqpapers.aspx?iciqyear=2009)
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process-aware information systems (such as Business Process Management sys-

tems), we are now also in the presence of large amounts of data regarding the

execution of business processes, and, hence, business people also have the possi-

bility to access not only business data (e.g., the amount of sales in a particular

month) but also execution data (e.g., who executed a given activity in a busi-

ness process and how long did it take him to complete the task). The analysis

of such kind of business process execution data is the focus of so-called Business

Process Intelligence (BPI) applications and of this paper.

One of the most important instruments used to report on the state of a com-

pany’s business are Key Indicators (KIs), which are metrics that allow a com-

pany to measure its performance against specific objectives. Their value mainly

lies in their simplicity: with one number they summarize a huge amount of data

and, at the same time, intuitively describe a well-specified part of business re-

ality. The use of alarm levels and colours further enhances their readability

and (cognitive) accessibility. Typically, indicators like KPIs (key performance

indicators) measure the achievement of business objectives (e.g., the average

revenue of a given department), but there are also indicators that rather focus

on risk (key risk indicators), compliance with laws or regulations (key compli-

ance indicators), and similar. In the last years, great attention has been paid to

the automated computation of KIs over business and process execution data.

The advantages provided by BI and BPI applications and the computation

of KIs are possible thanks to advanced technologies used to store large amounts

of data reflecting the whole lifecycle of a company’s business in a continuous

form (typically, we talk about data warehouses). However, the speed at which

data are generated, combined, and processed by means of various technologies,

software tools, and human actors, the quantity of the available data, plus the

fact that today’s business scenarios are highly interlinked, i.e., companies do not

act in an isolated fashion from an IT point of view (e.g., companies share parts

of their business processes with strategic partners or they outsource part of their

IT infrastructure and business processes to specialized companies), inevitably

leads to data with quality problems: logged data may contain errors or noise,

incomplete or inconsistent data flows, etc. For example, if the bus or the

logging system suffer from bad configuration, overload, performance problems,
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or downtimes we might not be able to log all the important messages flowing

through an enterprise service bus (e.g., to compute indicators).

Computing KIs from data that are characterized by low quality (i.e., uncer-

tain data) demands for novel and sophisticated algorithms, able to take into

account the quality of the data. As a matter of fact, KIs themselves will be

uncertain. Not taking into account the uncertainty that characterizes an indi-

cator during its computation could give the people looking at the final value of

the indicator a wrong perception of the actual performance of the business and

might cause them to take wrong decisions, which eventually could negatively

affect their business.

In many situations, the huge amount of potentially uncertain data com-

bined with the need for continuously computing and re-computing KIs, makes

the effort of running complex correction procedures (if any) prohibitive and im-

practicable. Yet, business people need to keep computing KIs in order to keep

track of business performance while taking into consideration that indicators

are computed on uncertain data. That is, decision makers must be aware of

the quality of their indicators at the time of taking decisions concerning their

business.

Contributions. Computing expressive and meaningful indicators from un-

certain data is a challenging and tricky endeavour. In this paper, we approach

the problem from both a theoretical and a practical perspective. Specifically,

we:

• Characterize the problem of computing key indicators in distributed busi-

ness environments as a data quality problem that is specifically related to

uncertain/probabilistic data;

• Propose an approach to compute values for key indicators from uncer-

tain/probabilistic data based on techniques from uncertain data manage-

ment;

• Introduce the concept of uncertain/probabilistic key indicator and quantify

uncertainties/probabilities starting from the data used in the computation

of an indicator;
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• Provide a concrete data warehouse model for the data needed to com-

pute key indicators in the context of a European project, along with the

corresponding extensions to deal with uncertainty;

• Hint at how to visualize indicators in order to convey to users the likelihood

that an indicator takes a particular value considering the uncertainty in

the input data.

Structure of this paper. In the next section we introduce a real-life refer-

ence scenario that will accompany us throughout the rest of the paper. Then,

we conceptualize the described scenario and its business context and formally

define the problem addressed in this paper. Based on this formalization, we

describe the theoretical foundation for the computation of key indicators from

uncertain data and, next, show how we compute uncertain indicators in prac-

tice. Finally, we describe our implementation of the proposed solution in the

context of a European project, discuss related works, and draw our conclusions.

2 Reference Scenario

Let’s consider a Network Information Center (NIC) that provides Internet do-

main name registration for a Top-Level Domain (TLD) in the Domain Name

System (DNS) via the Web. The NIC is in charge of administrating the (ficti-

tious) domain .sci, which is limited to organizations, offices and programs whose

main interest resides in any kind of science. For example, the organization abc

that does research in nanoscience could register the domain name abc.sci to

provide name resolution for Internet resources, such as mailing services or a

web site (e.g., http://www.abc.sci).

For our scenario, we consider two business processes used by the company

for administrating the TLD. The first business process consists in the delega-

tion of domain names as shown in Figure 1. The model in this figure is a

simple flowchart with swim lanes that show the distribution of tasks among

stakeholders. The process can be divided into four parts: (i) insertion of the

request (client), (ii) verification of the request (NIC), (iii) payment for the do-

main name (client/bank), and (iv) activation of the domain name (NIC). The
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Figure 1: Process for the delegation of domain names. The process is operated by the
NIC and the bank; clients are involved through the NIC’s web application.

management of the payment is performed in conjunction with a bank that in-

teracts with the NIC through web services, i.e., the NIC and the bank share

part of their business processes. When the request for delegation is approved,

the client proceeds with the payment via one of the channels offered by the

bank. Upon reception of the payment, the bank notifies the NIC, which causes

the NIC to automatically activate the domain name requested by the client.

The second business process (see Figure 2) is the procedure for modifying

information related to the delegation of domains, such as data of the owner and

technical details. The process is part of the customer support that the NIC has

outsourced to an external company specialized in user support and providing

services like a call center and a support web application. Both the call center

and the web application are fully detached from the operational system of the

NIC and managed by the Customer Support center. Yet, they provide a reduced

set of views and operations on users’ data.

The NIC is now interested in studying the performance of its business pro-

cesses, in order to monitor and improve quality of service. For instance, the

NIC is interested in computing the following key indicators:

• TBRP (time between request and payment): With this indicator, the NIC
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wants to capture how long in average it takes to the client to proceed with

the payment for the domain name.

• SRSE (number of subsequent requests by the same entity that block a

specific domain): This is an important indicator, since, once a request

is inserted, no one else can request that same domain name, unless the

request is cancelled or expired due to missing payment. This indicator

helps the NIC to detect when somebody tries to keep a domain name

blocked without willing to pay for it, e.g., to prevent others to acquire it.

• TBAS (time between the activation of a domain name and the first support

request): This indicator provides an idea of how long it takes in average

a user to contact the first time the support center upon the successful

registration of a domain name. This allows the NIC, for instance, to assess

the quality of the documentation provided in the phase of registration and

to estimate the cost of the support service.

For the computation of the above indicators, the NIC instruments its Del-

egation process, which is mainly based on web services and the client’s web

application, so that the process generates the necessary information in form of

events (we assume each activity in the process models may generate respec-

tive events). For instance, the NIC generates a ReceiveRequest event and has

already agreed with the bank on the generation of a corresponding Payment-

Confirmation event (along with a respective service level agreement ruling the

quality of service of the event delivery), which are at the basis of the TBRP

indicator. Similarly, the NIC provides for the events necessary to compute the

SRSE indicator, which only involves events under the control of the NIC and,

therefore, do not require any negotiation or agreement with either the bank

or the support center. The computation of the TBAS indicator, instead, is

trickier: the time of the activation of a domain name is easy to track (the NIC

has control of that), but for the time of the first support request the NIC could

only obtain a best effort commitment by the support center, which is already

a good achievement. Indeed, in general the support center could also not have

been willing at all to provide that information, able to do so, able to do so
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Figure 2: The data modification request process.

reliantly, etc. After some days, the NIC looks at the events it could log and

sees that, besides the availability or not of events, there are even other problems

with the data in the log: events are not always logged correctly; some events

seem to be wrong (but the NIC is not fully sure); some data values are not

precisely defined, and similar. In short, the event log the NIC would like to use

to compute its indicators may present data quality issues, yet the NIC needs to

compute its indicators anyway.

3 Uncertainty and Probability in Business Environ-
ment

The above scenario demands for the computation of three key indicators related

to the two business processes run by the cooperating parties. In this paper, we

do not want to pose any restriction on how business processes are executed (e.g.,

manually vs. semi-automatically vs. automatically). However, in order to be

able to automatically compute indicators, we assume that the data necessary

for the computation of the indicators are available in the form of events that are

generated by the cooperating partner’s IT systems and that provide (partial)

visibility into the execution of the business processes. We say that the business
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processes are instrumented in order to generate events. For instance, an Activi-

tyStart event could be automatically generated by a business process engine, or

a Reject event could be derived from an email sent by a physical person to an

archiving system. In order to be able to compute meaningful indicators, events

must carry some piece of business data (e.g., the name of the person approving

or rejecting a domain name registration).

These assumptions and minimum requirements are realistic. Especially in

presence of companies that cooperate over the Web and typically base their

cooperation on web services and the service-oriented architecture, the genera-

tion of such kind of events is no big issue. Also, as we want to compute key

indicators periodically for reporting purposes (e.g., each night or once a week)

we assume that the events we are interested in are logged in a central event log

that can be periodically inspected.

We represent a generic event ē as a tuple ē = 〈ID, procID, type, ts, src,
dest, d̄1, ..., d̄n〉 (note that we use the bar over symbols to indicate that they

represent certain data; we will use symbols without the bar when instead they

represent uncertain data), where ID is a unique identifier of the event, procID

is the unique identifier of both process instance and process model, type specifies

which kind of event we have (e.g., ActivityStart or Reject), ts is the timestamp

in which the event has been generated, src and dest are the source and the

destination (if any) of the event (e.g., the company or business process instance

that is the origin of the event), d̄1, ..., d̄n are the parameters carrying possible

business data values (they are the actual body or payload of the event, their

number might vary from event type to event type). More specifically, each d̄i is

characterized as follows: d̄i = 〈partype, name, value〉 with partype being the

type of the parameter (e.g., integer, enumeration of string values, etc.), name

being the name of the parameter, value being the concrete value assigned to

the parameter.

Events are generated during the execution of business processes, and each

business process in execution (i.e., a process instance) typically generates a mul-

titude of events during its execution. As the only information we have about the

executed process instances is the set of events generated by them, we represent

a process instance as a trace of chronologically ordered events t̄ = ē1, ..., ēn. For
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instance, the above Delegation process could produce an event trace as follows:

t = 〈0, DelegationProcess3, P rocessStart, 20090509144209, NIC,

NIC,Customer,RegistrationReq〉, ..., 〈27, DelegationProcess3,

Notification, 20090604050648, 67, NIC,Client,Msg〉 that tells us that there

has been an instance of the Delegation process ( procID = DelegationProcess3),

started on May 9, 2009, which sent a notification with content Msg to the client

on June 4, 2009. Finally, we represent the event log as a set E = {t̄i}.
Since now a KI summarizes execution data of multiple process instances (e.g.,

all the executions of the Delegation process of the last week), a key indicator is

a function that is computed over a set of process instances, i.e., a set of events.

More precisely, a KI is a function KI = KI({ti}) over a set of event traces

that assigns to each subset of {t̄i} a real number (the indicator value), i.e.,

KI : P({t̄i})→ R.

3.1 Data Quality in Event Logs

The problem in practice is that the event log E contains data (or not) that not

always are fully aligned with the real world, i.e., with the concretely executed

business processes. Inspired by [16], in this paper we distinguish four situations

that are characteristic of the described business scenario. In this paper, we

address the first three scenarios; we do not explicitly treat the fourth, as it

rather represents a design time issue that is out of the scope of this paper:

1. Meaningless state = there is an event in the event log, but we

are not sure the corresponding real-world event indeed happened: For

instance, in Figure 3a there is an ActivityStart event in the log (row 234)

but, as hinted at by the dotted tail of the arrow, we lack the corresponding

counterpart in the real world (e.g., an employee sent an email that he

started an activity but actually never performed the corresponding task).

As a result, there might be events in the log that are uncertain.

2. Uncertain data = there is an event in the event log, but we are not

sure about the exact data values carried inside the body of the event or,

simply, whether values are correct (Figure 3b): Rows 235 and 236 derive
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from the same real-world event (the notification of the payment details to

the client and the bank), yet we are not sure whether the notification has

been sent to Paul or to John. Row 240, instead, presents an uncertainty

regarding the exact time in which the event was generated.

3. Incomplete representation = we think that a real-world event hap-

pened, but there is no corresponding event in the log: As represented

by the empty row in Figure 3c, there might be actions in the real world

that should have been logged but that lack a corresponding event in the

log. Such a lack could for instance be due to system failures or downtimes,

network problems, people forgetting to send an email, or the like. In some

cases, however, we might be able to derive that a real-world action must

have happened from the business context that can be reconstructed from

the log. For instance, if the event log contains a ProcessEnd event, very

likely there also must have been a corresponding ProcessStart event.

4. Lack of representation = we are not able to log all the events

that are necessary to compute an indicator: If a company, for instance,

decides to outsource part of its business, it might lose visibility into the

details of how an outsourcing partner actually performs its business, prac-

tically losing the events associated with the outsourced part of the business

process. As a consequence, the company might no longer be able to com-

pute an indicator, and a re-design of the indicator’s computation logic

is necessary if possible; otherwise, the computation of the indicator can

simply not be performed any longer.

This casuistry shows that in realistic settings it is generally not a good idea

to think that indicators can be computed straightaway from the data that can

be found in an event log. The log might be incomplete (missing events), it

might contain noise (wrong events), it might contain uncertainties regarding

the correctness of tuples, or it might contain uncertainties regarding the exact

value of data cells. Note that the computation of the degrees of uncertainty in

the input data is outside of the scope of this paper.
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ID Type Time Source Dest Par1 Par2 ...
234 ActivityStart 7/10/09 10.05 AM NIC NIC
235 PaymentNotification 7/10/09 10.06 AM NIC Bank 120 Paul
236 PaymentNotification 7/10/09 10.06 AM NIC Bank 120 John
237 SupportRequest 10.12AM +/- 2.10 Supp Supp Phil
238 PaymentConfirmation 7/10/09 10.14 AM Bank NIC 120 Paul

240 SupportRequest 10.25AM +/- 2.40 Supp NIC Alice
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Figure 3: Discrepacy between the real world and the data we might have in the event
log.

3.2 Expressing Uncertainties and Probabilities

In order to be able to compute meaningful indicators from a real event log, we

must be able to represent the above problems in the data we use to compute

the indicators. The metrics that we use in this paper to keep track of data

quality depend on the object of the quality problem; specifically, we associate:

(i) reputation to events in order to express the likelihood that an event in the

log corresponds to an event in the real world (covering the cases of meaningless

states and incomplete representations); (ii) probabilities to data values in order

to express alternatives or levels of confidence for discrete values (covering part

of the data uncertainty case); and (iii) confidence intervals to data values in

order to express doubts about the exact value of continuous, numeric values

(covering the other part of the data uncertainty case). Taking into account

reputation, probabilities, and confidence intervals demands for an extension of

our event formalization.

So far, we defined an event as a tuple ē = 〈ID, procID, type, ts, src, dest,
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Figure 4: Reputation and visibility into business processes of cooperating partners.

d̄1, ..., d̄n〉, in which both the event and its parameter values were fully trusted.

In order to associate a reputation value with each event and probabilities/confidence

intervals with data values, we define an uncertain event as a tuple e = 〈ID,
procID, type, ts, src, dest, d1, ..., dn, rep〉, where ID, procID, type, ts, src,

dest are as defined previously for ē (note that, rep is the reputation associated

to the event), and d1, ..., dn are the business data parameter to which we asso-

ciate probabilities or uncertainties, as described next. Note that in presence of

uncertain date we now omit the bar on top of the symbols.

Modelling reputation. The association of a reputation level to an event

can, for instance, be done by combing an objective and a subjective measure,

i.e., an analysis of the data in the event log and the confidence we have in the

correct operation by cooperating partners (i.e., their reputation). The objective

measure can be derived by looking at how many meaningless state cases and

incomplete representation cases we have in the log. The subjective measure

typically stems from the reputation levels we associate to business partners;

Figure 4 conceptualizes our cooperative business scenario and highlights repu-

tation and visibility issues. First of all, the company (e.g., the NIC) runs own

processes in-house; the probability that events are correctly registered in own

processes is typically high (e.g., p(e1) = 0.99). Next, a company might cooper-

ate with an independent partner by means of a shared business process in which

both partners participate and of which both have full visibility (e.g., the NIC

cooperates with the bank); as the responsibility of the common process is shared

among the two parties, the confidence in correct events is typically lower than
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the one we have in own events (e.g., p(e2) = 0.85). Finally, if part of a business

process is outsourced (e.g., to the Customer Support Center), the company has

only a very limited visibility into the outsourced part of the business process

and, hence, confidence in events might be lower again (e.g., p(e5) = 0.70). For

presentation purposes, we manually assign reasonable values to the five types

of events; in practice, such values would be derived by a suitable reputation

assessment system from historical data about the interacting parties.

We assume that for each event e, we know its provenance, i.e., the company

c ∈ C that generated the event, where C is the set of companies involved in

the business processes over which we want to compute our indicators. The

reputation level rep of e can then be seen as a function rep : C → [0; 1],

where rep(c) represents the reputation of company c. Associating reputation

levels to events therefore allows us to deal with meaningless states: the level

of reputation expresses the likelihood that the events provided by a business

partner also have appropriate real-world counterparts. But we can also deal

with incomplete representations: if we decide to add an event to the event log

because we believe a real-world event is not represented in the log, we can add

the presumably missing event to the log, associate it to its respective company,

and assign it a low probability (to express that we are anyway not fully sure of

our decision).

Modelling uncertainty over data values. As hinted at above, we use

two instruments to express uncertainty over data values: confidence intervals

and possible worlds. We use confidence intervals to refer to measurements per-

formed over business matters, such as the revenue in a time period, for which we

are not sure of their exact value. More precisely, here we focus on event parame-

ters expressed as real numbers that come with an error or confidence represented

as a confidence interval or standard deviation σ. This way, an uncertain value

is represented as value±σ, which means that the true value lies somewhere in

between [value−σ; value+σ]. Instead, we talk about possible worlds in order

to denote all the possible values (together with their respective probabilities)

that a given data field or indicator might assume. For example, in probabilistic

databases, a possible world refers to a particular database instantiation that is

aligned to a predefined schema. Here, each instantiation is associated with a
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probability and the sum of the probabilities of all the possible instantiations

must be equal to 1 [8]. In our context, we use the possible world model as a

base to represent the various values a measurement can take, together with their

corresponding probabilities. More precisely, we opt to use the possible world

representation to describe the probabilities of occurrence of discrete, countable

values. For example, if we have an event parameter name for which we are not

sure about its true value (e.g., we are not sure if its value is smit, shmit, or

smith), the possible worlds for this parameter could be represented by a set of

pairs 〈value, probability〉 as {〈smit, 0.2〉, 〈shmit, 0.2〉, 〈smith, 0.6〉}.
The association of confidence interval with a data value can be done by the

source of the event if it knows about the probability distribution of the value to

be transmitted (e.g., in the case of the timing information logged by a logging

system in a distributed environment), or it can be computed from the log by

looking at the probability distribution of the value that derives from past values.

The association of a probability can be done directly by the source of the event

(a company), which might communicate its doubt regarding the data value, or

it can be computed from the log, for example, by means of entity resolution

algorithms [4] that are typically able to identify similar tuples and to associate

probabilities to the identified options.

In order to characterize confidence intervals/probabilities for the parameters

d1, ..., dn, we introduce the concept of uncertain parameter as di = 〈partype,
name, (vconf |vprob)〉 with partype being the type of the parameter, name being

the name of the parameter, vconf = {〈valuej, σ〉} being the value assigned to

the parameter and its standard deviation σ, and vprob = {〈valuej, probj〉},
being the set of possible worlds (in terms of possible values and probabilities)

deriving from the probabilistic nature of the data value (Σprobj = 1). In order

to express confidence intervals for numeric values, we therefore use the values’

standard deviation σ ∈ R (we do not take into account the whole probability

distribution of the value), while for each possible world we use a probability

p ∈ [0; 1]. We assume that from the name of a parameter we can uniquely tell

whether the parameter comes with probabilities or a confidence interval.

It is worth noting that if we have both the value and the probability distri-

bution for an uncertain parameter, we could actually compute its probability.
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This would allow us to assign a probability p to the parameter instead of an un-

certainty σ. However, in order to keep the number of possible worlds as small

as possible, we express uncertainty over data values as value ± σ whenever

possible. This decision further allows us to compute uncertainty levels for KIs

independently of the probability distributions of the in-volved parameters, as

shown in the next section.

The problem now is (i) how to compute an indicator KI({ti}) over a set of

traces t = e1, ..., en and that is uncertain itself and (ii) how to visualize and

report on indicators that are characterized by uncertainty.

4 Computing Uncertain Key Indicators

In the previous section, we have seen that we characterize events by means of

an uncertainty at the event level (its reputation) and an uncertainty at the data

level (the confidence and the possible worlds for the data values). The former

is strictly related to the reputation of the company involved in the cooperative

process and indicates the probability that a logged event indeed corresponds

to an event in the real world. In the computation of a KI, we can use this

information to weight the data in the events according to their reputation, so

as to give more weight to data with high reputation and less weight to data with

low reputation. The uncertainty at the data level, instead, carries over from the

data in input to the final value of the indicator in form of either a confidence

level associated with the indicator value or a set of possible worlds describing

all the possible combination of possible worlds we have in the probabilistic data

values of the events used in the computation of a KI.

Therefore, given a set of traces {ti} = {ei1, ..., eij} = {[eij]} with 1 ≤ i ≤ I ,

where I is the number of traces in the log, and 1 ≤ j ≤ J , where J is the number

of events inside a trace i , e = 〈IDij, procIDij, typeij, tsij, srcij, destij, [dijk],

repij〉 with 1 ≤ k ≤ K, where K is the number of parameters inside each

event, and dijk = 〈partypeijk, nameijk, (〈valueijk, σijk〉|〈valueijk, probijk〉)〉
with 1 ≤ l ≤ L, where L is the number of possible worlds characterizing the

value of a probabilistic parameter, an uncertain KI can be expressed as follows:
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KI({ti}) = 〈{〈fm, σm, probm〉}, conf〉 (1)

where 1 ≤ m ≤ M , being M the number of possible worlds that characterize

the indicator, fm is the indicator value, σm is the standard deviation associated

to the indicator value, probm is the probability that characterizes each possible

world, and conf is the overall confidence that we can derive for the indicator

from the reputations of the events used in f . The definition of uncertain KI, in

general, contains both a confidence interval σm for the value, and a probability

probm for each possible world, as the function f might be computed over events

with both, parameter values associated with confidence intervals, and parameter

values associated with probabilities (possible worlds).

The number of possible worlds M derives from the combination of the pos-

sible worlds inside each event. Specifically, M =
∏

nLijn with Lijn being the

number of possible worlds of each probabilistic data parameter dijk used in the

computation of KI; hence, 0 ≤ n ≤ K. An uncertain KI is therefore charac-

terized by a set of possible worlds, where each world can be characterized as

follows:

fm = f ({[〈{(valueijk|valueijkl)}, repij〉]}) (2)

That is, the indicator value of an individual possible world can be computed

by means of a function fm over the data values (valueijk|valueijkl) of the

parameters dijk over which the KI is defined; the computation might also take

into account the reputation repij of the events involved in the computation

(e.g., to weight data according to reputation). We use valueijk in case dijk
contains an uncertain data value and valueijkl in case we use the l-th possible

value of a probabilistic dijk. In practice, fm is given by the designer of the

KI. In our reference scenario, it is the NIC who defines the KIs it is interested

in. Indeed, we have seen that the NIC wants to compute the three indicators

TBRP, SRSE, and TBAS.

σm = σfm = g({[〈{σijk}, repij〉]}) (3)

The standard deviation σm can be computed by means of a function g from
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the standard deviations σijk associated with the values valueijk; g might take

into account the reputation of events. We use the notation σijk to uniquely

identify the standard deviation of each data value; yet, note that data values

of a same parameter in different traces or events are characterized by the same

standard deviation. We use the notation σm = σfm to highlight that the compu-

tation of the standard deviation (and g) depends on how the data values (i.e.,

the statistical variables) are used in the formula fm. We will see this property

in the example we discuss next.

probm = h({[〈probijkl, repij〉]}) (4)

We compute probm by means of a function h that is specified over all the

probabilities probijkl associated with the choices of possible data values that

characterize the particular set of possible world of the indicator.

conf = conf ({repij}) (5)

Finally, we compute the overall confidence conf of the indicator as a function

of the reputations associated with the data values considered by fm. The exact

value of conf can be computed by using different aggregation functions (e.g.,

the minimum of all reputations, the average of them, or similar); in this paper

we adopt the minimum, though other functions could be used as well.

In order to better explain the concepts introduced in this section, let us con-

sider the case in which the NIC is interested in monitoring the TBAS indicator

that calculates the average time between (i) ei1 = registration of a new domain

name and (ii) ei2 = first time that the customer contacts the customer support

center. Let’s assume ei1[TReg] = 〈time, TReg, 〈TReg.value, TReg.σ〉〉 and

ei2[TSup] = 〈time, TSup, 〈TSup.value, TSup.σ〉〉, that is, both data values

come with a confidence interval. Formally, the TBAS indicator is then charac-

terized by the value obtained by summing the time intervals calculated in each

trace and weighed based on the companies’ reputation:

TBAS(t{ti}, )[f ] =
ΣI
i=1(ei2[TSup.value]− ei1[TRep.value])

I
(6)
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In this case, the indicator TBAS({ti}) is also characterized by an aggregate

σ that can be obtained by applying the rules used for the computation of error

propagation from uncertain values to functions computed on these values, such

as the one presented below [15]. In this formula, f is the function we want to

compute, TSup.value = TS and TReg.value = TR are statistical variables,

and, σ(TS) and σ(TR) are the standard deviations of TS and TR, respectively:

f =
ΣI
i=1(TS − TR)

I
=
I(TS − TR)

I
= TS − TR (7)

σ(f ) =
√

[σ(TS)]2 + [σ(TR)]2 ± 2COV (TS, TR) (8)

In our example, we can assume that the time of the support is independent

of the time of the registration. Therefore, the events that are completely inde-

pendent, and the covariance between the two different values cov(eij[valueijk],

ek[valueijk]) is equal to 0. This simplification, together with the assumption

that, on one hand, all TReg values are associated with roughly the same stan-

dard deviation throughout all traces and, on the other hand, all Tsup are as-

sociated with roughly the same standard deviation as well, allows us to define

the standard deviation for the TBAS indicator as:

TBAS({ti})[σ] =
√
ei1[TReg.σ]2 + ei2[TSup.σ]2 (9)

Finally, each parameter discussed above (i.e., f , σ) that characterize the

indicator should be weighted by the person looking at the indicator with the

confidence that we associated to the overall indicator (in our convention, we

use the minimum; other conventions could be used as well):

TBAS({ti})[conf ] = Min(ei1[rep]; ei2[rep]) (10)

In conclusion, our uncertain indicator TBAS is given by:

TBAS({ti}) = 〈〈TBAS({ti})[f ], TBAS({ti})[σ]〉, TBAS({ti})[conf ]〉
(11)
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If instead of having uncertain data values, the two parameters used in the

computation of TBAS were of probabilistic nature, e.g., ei1[TReg] having

three different alternatives and ei2[TSup] having two differrent alternatives, we

would be in presence of six possible worlds for the final indicator. We would

therefore need to apply the above procedure to each of the possible worlds

of the indicator, and we would need to compute the combined probability for

each of the possible worlds as follows (note that the two events ei1 and ei2 are

independent):

TBAS({ti})[prob] = {ei1[probl] ∗ ei2[probl]} (12)

with l being the index of the possible worlds of the indicator. The final indicator

would therefore look like the following:

TBAS({ti}) = 〈{〈TBAS({ti})[f ]l, TBAS({ti})[σ]l,

ei1[probl] ∗ ei2[probl]〉}, TBAS({ti})[conf ]〉 (13)

5 Implementation: Key Indicators in Practice

The described approach to the computation of uncertain indicators has been

developed in the context of a European FP7 research project (MASTER Man-

aging Assurance, Security and Trust for sERvices1), which focuses on method-

ologies and infrastructures to manage security and compliance of service-based

business processes. We in particular focus on the assessment of and reporting

on compliance, starting from a log of events generated by the MASTER infras-

tructure, and the computation of uncertain key compliance indicators is one of

our main contributions, along with an analysis of correlations among indicators

and process model discovery.

Figure 5 shows a simplified architecture of the MASTER infrastructure;

specifically, we focus on the diagnostic infrastructure with its data warehouse

and analysis algorithms. The main input to the infrastructure is the (uncer-

tain) Event log, which contains events generated by the operational system (a

1For the details, the reader is referred to http://www.master-fp7.eu
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Figure 5: Functional architecture of the diagnostic infrastructure in the MASTER
project.

service-oriented architecture). During ETL (Extract-Transform-Load), events

are extracted from the log and stored in Staging area for transformation. Of the

overall transformation process, we highlight the Process instance reconstructor

and the Key indicator tables creator, which reconstruct from the events in the

log which process instances have been executed and create auxiliary tables for

indicator computation, respectively. Then, we load (Warehouse loader) the

data into the Data warehouse, upon which we then run our analysis algorithms

to (i) compute uncertain indicators (Indicator calculator), (ii) correlate indica-

tors (Indicator correlation analyzer), (iii) analyze compliance of processes with

regulations and laws (Compliance analyzer), and (iv) discover process models

from the log (Process model discoverer). All analysis results are stored back

into the warehouse and rendered to the user (compliance expert or business

analyst) via a Reporting dashboard. In this paper, we focus on the computa-

tion of the indicators, which are at the heart of the Reporting dashboard; the

respective components are highlighted in the architecture.

In Figure 6 we hint at the conceptual model of the data warehouse underlying

the analysis algorithms, yet, for lack of space, we do not describe its details here.

For the sake of this paper, it suffices to know that we store all the events in the

warehouse, along with the data quality metadata associated to them and to the

individual data parameters inside the events (reputation levels, uncertainties,
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probabilities). We also keep track if an event is a deduced event that we added

to the log during ETL to solve incomplete representation cases. Therefore,

the warehouse contains a complete historical view over the performance of a

company.

The figure also contains the so-called Key indicator tables supporting the

computation of KIs, in that they contain in a concise fashion, process instance

by process instance (trace by trace), all the data values and their confidence

levels and probabilities that we need to compute the indicators specified in the

KI definitions document shown in Figure 5. The tables we highlight in Fig-

ure 6 are the ones we need to compute the TBAS indicator of our NIC: the

RegDel table contains all the parameters regarding the Delegation process, and

the DataMod table contains all the parameter regarding the Data Modification

Request process. We only show the parameters necessary for the computation

of the TBAS indicator: TReg is the registration time of the domain name,

TRdev is the standard deviation, TRrep is the reputation, and ClientID is the

identifier of the client; the parameters in DataMod are defined analogously.

These tables are the output of the Key indicator tables creator in Figure 5.

Next, we explain the logic of the Indicator calculator, that is, we show how we

concretely compute uncertain indicators from the data warehouse. In order to

compute the TBAS indicator from the auxiliary tables in Figure 6, we translate

its mathematical formula into SQL statements that we can issue to the data

warehouse. For example, the following statements compute TBAS for all cus-

tomers who successfully registered a domain name in May 2009 (note that we

TBAS does not contain probabilistic parameters, so we only compute its value

and confidence interval):

IntervalSum = select sum(TSupp-TReg) from Rendell join

DataMod on RegDel.ClientID=DataMod.ClientID where

TReg>=20090501000000 and TReg<=20090531999999;

RegDelCount = select count(RegDel.ClientID) from RegDel join

DataMod on RegDel.ClientID=DataMod.ClientID where

TReg>=20090501000000 and TReg<=20090531999999;
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ID ... TReg TRrep ClientID

34 ... 2009050
9144209 0.99 2354

35 ... 2009050
9988343 0.99 985

36 ... 2009051
0348954 0.95 1232

37 ... 2009051
1896360 0.99 2289

RegDel

...

...

...

...

...

ID ... TSupp Srep ClientID

45 ... 2009060
1003405 0.60 2354

46 ... 2009070
9034034 0.70 2289

47 ... 2009071
4523905 0.70 1232

48 ... 2009080
9344633 0.65 985

DataMod

...

...

...

...

...

TRdev
0000000
0050000
0000000
0120000
0000000
0120000
0000000
0120000

Sdev
0000000
1120000
0000000
1120000
0000000
1120000
0000000
1120000

... ...
Figure 6: Conceptual model of data warehouse with uncertain data, plus - in the fore-
ground - the key indicator tables supporting the computation of the indicators.

TBAS_value = IntervalSum/RegDelCount;

TBAS_sigma = select sqrt(sum(power(TRrep,2) + power(Srep,2)))

from RegDel join DataMod on RegDel.ClientID=DataMod.ClientID

where TReg>=20090501000000 and TReg<=20090531999999;

TBAS_conf = select min(case when TRrep<=SRep then TRrep else

SRep end) from RegDel join DataMod on

RegDel.ClientID=DataMod.ClientID where TReg>=20090501000000

and TReg<=20090531999999;

The final indicator is therefore given by: TBAS = 〈TBAS value,

TBAS sigma, TBAS conf〉. Although not shown in this paper, it is impor-

tant to observe that the presence of probabilistic parameters in the computation

of an indicator can be handled by suitably applying the group by SQL statement

Appendix A. Computing Uncertain Key Indicators from Uncertain Data

53



to the columns that contain multiple possible values for a given parameter. In

this way, the output of the computation is no longer a single value, but a set

of tuples describing all the legal alternatives for the indicator in terms of value

and confidence.

Finally, as already discussed in [6], it is very important to convey the uncer-

tainty that characterizes the indicator to the user of the Reporting dashboard,

in order to create the necessary awareness of the data quality problem under-

lying the computation of the indicator and to enable better informed decisions.

We are still working on this aspect, but we propose to provide first a very

high-level view of the indicator through an intuitive, graphical visualization of

all the indicators (and their alternatives) in the system and to explicitly mark

those indicators that are uncertain. If a user wants to inspect the nature of

the uncertainty, we will support a drill-down mechanism allowing the user to

explore, for instance, the indicators’ alternatives, their probability distribution,

and the confidence we have in the indicator.

6 Related Work

Recently, there has been lots of interest in databases specifically designed to

manage uncertain data [1][3][5][14]. In this case, data are coupled with a prob-

ability value indicating the degree of confidence to the accuracy of the data.

These probabilities are then taken into account by the database management

system when processing the data to produce answers to user queries. Most

of the contributions deal with simple queries while only a few deals with the

aggregation of uncertain data to produce the results of queries in which the

aggregation functions (e.g., sum, count, avg) are used [9][13]. Anyway, the pro-

posed systems however do not deal with the problems of deriving probabilities

in more complex cases, such as when computing reports, and of extracting un-

certain data from not trustable sources Furthermore, past contributions relate

the value uncertainty only to the value correctness (i.e., accuracy) and do not

consider the case in which meaningless and incomplete representation affect the

databases.

In our case, we need to reason about data uncertainty caused by all the
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possible poor quality problems that could affect objects of different granularities

(i.e., values, events), in order to characterize the reliability of the reports within

their indicators. In an organization, KIs represent the links between available

sources of performance data and organizational objectives [2]. KI measurement

issues have been largely analyzed in the literature since sometimes decision

support systems are not efficient as expected since they are based on erroneous

KI values calculated on not reliable performance data. In fact, practically,

any input data have uncertainty that can be caused by different issues such

as inaccuracy of measuring and inaccuracy of rounding-up, scale restrictions,

impossibility of measuring or definition of values with needed precision, hidden

semantic uncertainty of qualitative data [11]. The number of data sources

required to support the most common KIs measurement is large and thus the

uncertainty issues cannot be neglected [10].

Previous work (e.g., [11]) focus on the evaluation of the KI measure starting

from the assumption that the confidence of the obtained value depends on the

assessment process. Here, the validity of the KI is defined as a property of a

KI that makes it suitable as a basis for performance assessment. The generic

attributes of valid performance measurements are straightforward: relevance,

accuracy, timeliness, completeness, and clarity. In these contributions, the un-

availability and the reliability of some data is not discussed since they assume

that the internal operational systems provide all the needed information. In

our approach, KI measurement relies on the available data obtainable from

the companies involved in the cooperative process and takes into account the

trustworthiness of all these sources. Thus, data availability and reputation are

considered as variables to consider in data uncertainty evaluation. The evalua-

tion of the quality of data received by other companies involved in a cooperative

process is an issue that has been also analyzed in [12]. In [12] authors propose an

architecture that evaluates the reputation of the different companies involved in

the cooperative process on the basis of the quality of the information that they

provide. In their evaluation, they did not consider uncertainty in data values

but in order to evaluate data correctness they assume that is always possible

to retrieve a certificate and correct value to assess the data provided by the

different companies. This is an assumption that is difficult to validate in the
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real world since the availability of certificated values is scarcely guaranteed.

7 Conclusion and Future Work

Uncertainty is a real issue in modern data management. Indeed, the database

community (both academia and industry) has already started investing huge

efforts into research on uncertain and probabilistic databases, yet there is a

lack of business intelligence applications that are able to profit from the results

of such research. In this paper, we discuss how to compute uncertain key

indicators from uncertain data and we provide a contribution toward uncertain

business intelligence, that is, business intelligence that runs atop uncertain data

and whose data analysis algorithms take into account uncertainty.

We characterized the problem of computing uncertain key indicators in the

context of distributed, cooperative business scenarios that are characterized by

different levels of reputation and different levels of visibility into the partners’

business practices. We discussed and classified the typical data quality problems

of that scenario and proposed both a conceptual and practical solution to the

computation of key indicators, which, in general, we describe as a set of values,

their standard deviations, their probabilities and an overall level of confidence

(taking into account the reputation of the cooperating partners).

Next, we will apply the concepts and practices discussed in this paper to the

case of compliance assessment. We will work on the correlation of uncertain

key indicators, so as to identify correlations in the dynamics of two indicators

over a predefined time span (e.g., KI1 drops in average one business day after

KI2 drops). This will allow us to perform root-causes analyses or, if used to

look into the future, to help in the prediction of future behaviours. In parallel,

we will also work on the visualization of uncertain indicators inside reporting

dashboards and test the solutions in the context of compliance assessment.

Acknowledgements. This work was supported by funds from the European

Commission (contract N 216917 for the FP7-ICT-2007-1 project MASTER).
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On the Design of Compliance Governance Dashboards
for Effective Compliance and Audit Management ∗

Patricia Silveira Carlos Rodŕıguez Fabio Casati Florian Daniel

Vincenzo D’Andrea

Abstract

Assessing whether a company’s business practices conform to laws and regu-
lations and follow standards and best practices, i.e., compliance governance,
is a complex and costly task. Few software tools aiding compliance gover-
nance exist; however, they typically do not really address the needs of who is
actually in charge of assessing and controlling compliance, that is, compliance
experts and auditors. We advocate the use of compliance governance dash-
boards, whose design and implementation is however challenging for at least
three reasons: (i) it is fundamental to identify the right level of abstraction
for the information to be shown; (ii) it is not trivial to visualize different
analysis perspectives; and (iii) it is difficult to manage the large amount of
involved concepts, instruments, and data. This paper shows how to address
these issues, which concepts and models underlie the problem, and, eventu-
ally, how IT can effectively support compliance analysis in Service-Oriented
Architectures.

1 Introduction

Compliance is a term generally used to refer to the conformance to a set of laws,

regulations, policies, or best practices. Compliance governance refers to the set

of procedures, methodologies, and technologies put in place by a corporation

to carry out, monitor, and manage compliance.

Compliance governance is an important, expensive, and complex problem

to deal with: It is important because there is increasing regulatory pressure on

companies to meet a variety of policies and laws (e.g., Basel II, MiFID, SOX).

This increase has been to a large extent fueled by high-profile bankruptcy cases
∗The final publication is available at www.springerlink.com (http://link.springer.com/chapter/10.1007/978-3-642-16132-

2 20)
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(Parmalat, Enron, WorldCom, the recent crisis) or safety mishaps (the April

2009 earthquake in Italy has already led to stricter rules and certification proce-

dures for buildings and construction companies). Failing to meet these regula-

tions means safety risks, hefty penalties, loss of reputation, or even bankruptcy

[11].

Managing and auditing/certifying compliance is a very expensive endeavor.

A report by AMR Research [6] estimates that companies will spend USD 32B

only on governance, compliance, and risk in 2008 and more than USD 33B in

2009. Audits are themselves expensive and invasive activities, costly not only

in terms of auditors’ salaries but also in terms of internal costs for preparing for

and assisting the audit - not to mention the cost of non-compliance in terms of

penalties and reputation.

Finally, the problem is complex because each corporation has to face a large

set of compliance requirements in the various business segments, from how in-

ternal IT is managed to how personnel is trained, how product safety is ensured,

or how (and how promptly) information is communicated to shareholders. Fur-

thermore, rules are sometimes vague and informally specified. As a result,

compliance governance requires understanding/interpreting requirements and

implementing and managing a large number of control actions on a variety of

procedures across the business units of a company. Each compliance regula-

tion and procedure may require its own control mechanism and its own set of

indicators to assess the compliance status of the procedure [1]. Today, com-

pliance is to a large extent managed by the various business units in rather

ad-hoc ways (each unit, line of business, or even each business process has its

own methodology, policy, controls, and technology for managing compliance)

[15]. As a result, today it is very hard for any CFO or CIO to answer questions

such as: Which rules does my company have to comply with? Which processes

should obey which rules? Which processes are following regulations? Where do

violations occur? Which processes do we have under control? [19]. Even more,

it is hard to do so from a perspective that not only satisfies the company but

also the company’s auditors, which is crucial as the auditors are the ones that

certify compliance.

To address these and similar compliance problems, the EU has funded
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projects that bring together corporations, auditors, and researchers in concep-

tual modeling, process monitoring, business intelligence, and service computing.

This paper is the result of a combined effort from two such projects (Compas

[www.compas-ict.eu] and Master [www.master-fp7.eu]). It presents a concep-

tual model for compliance and for compliance governance dashboards (CGDs),

along with a dashboard architecture and a prototype implementation. The aim

of CGDs is to report on compliance, to create an awareness of possible problems

or violations, and to facilitate the identification of root-causes for non-compliant

situations.

The dashboard is targeted at several classes of users: chief officers of a

company, line of business managers, internal auditors, and external auditors

(certification agencies). These two latter typically focus on a fairly narrow

set of processes and examine historical data to verify non-compliant situations

and how they have been dealt with. Via the dashboard, they also have ac-

cess to key compliance indicators (KCIs) defined for each process. Managers

(especially high-level ones) are interested in a much broader set of compliance

regulations and at quasi-real time compliance information that allows them to

detect problems as they happen and identify the causes, so that they can cor-

rect them before they become (significant) violations. They have access and

navigate through the entire set of regulations, business processes, and business

units and also observe the overall compliance status (through aggregate KCIs).

In addition, once problems are identified (unsatisfactory values for indicators)

they drilldown to the root of the problem.

Technically, building a dashboard that shows a bunch of indicators and that

allows drill-downs is easy. Indeed, the main challenges in this case are concep-

tual more than technological [18]. These challenges, which also correspond to

the main contributions of this paper, are:

1. Provide a conceptual model for compliance and for compliance dashboards

that covers a broad class of compliance issues. Identify the key abstractions

and their relationships. Otherwise the dashboard loses its value of single

entry point for compliance assessment.

2. Combine the above broadness with simplicity and effectiveness. The chal-
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lenge here is to derive a model that, despite being broad, remains simple

and useful/usable. If the abstractions are not carefully crafted and kept

to a minimum, the dashboard will be too complex and remain unused.

Models that are too generic are often too complex to use. As we have

experienced, this problem may seem easy but is instead rather complex,

up to the point that discussions on the conceptual model in the projects

took well over a year. There is no clarity in this area, and this is demon-

strated by the fact that while everybody talks about compliance, there are

no generic but simple compliance models readily available.

3. Define, besides the conceptual abstractions, a user interaction and navi-

gation model that captures the way the different kinds of users need to

interact with the dashboard, to minimize the time to accesses spent in

getting the information users need and to make sure that key problems do

not remain unnoticed.

4. Derive a model that is in line with the criteria and approach that au-

ditors have to verify compliance. In this paper, this last contribution is

achieved “by design”, in that the model is derived also via a joint effort

of two of the major auditing companies and reflects the desired method of

understanding of and navigation among the various compliance concerns.

In the following, we first introduce our conceptual model for compliance and

then the compliance management lifecycle. We then focus on the dashboard

and present a structural and navigational model for compliance, describe the

architecture and prototype, and then compare the work done with prior art and

existing tools.

2 The Problem of Compliance Management

To characterize the compliance management problem intuitively introduced

above, we now generalize the problem in terms of two models of its most impor-

tant concepts, their relationships, and the dynamics that describe their adoption

in practice.
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2.1 Concepts and Terminology

Despite the increasing awareness of compliance issues in companies and the

recognition that part of the compliance auditing task can be easily automated,

i.e., assisted by means of software tools [11][14][15], there is still a lot of confu-

sion around. This is especially true for the IT community, which would actually

be in charge of aiding compliance governance with dedicated software. To help

thinking in terms of auditing, in the following we aim to abstract a wide class

of compliance problems into a few key concepts that are also the ones under-

stood by auditors. The resulting model does not cover all possible compliance

problems, but our goal is to strike a balance between coverage and simplicity.

So far, we did not find any such model in literature. The model is illustrated

in Fig. 1.

We read the model from the top-left corner: The Regulation entity gener-

alizes all those documents that regulate or provide guidelines for the correct

or good conduct of business in a given business domain. Common examples

of regulations are legislations (e.g., MiFID, The Electronic Commerce Direc-

tive), laws (e.g., SOX, HIPAA), standards (e.g., CMMI, CoBIT, ISO-9001),

and contracts or SLAs. Typically, a regulation defines a set of rules or princi-

ples in natural language, which constrain or guide the way business should be

conducted. Complying with a regulation means satisfying its rules and princi-

ples. Yet, a company might be affected by only some of the rules or principles

stated in a given regulation. The selection of the pertaining ones represents

the requirements for compliance management, commonly expressed in terms

of control objectives and control activities. A regulation expresses multiple

requirements, and a requirement might relate to one or more regulations.

Assessing compliance demands for an interpretation and translation of the

requirements provided in natural language in an actionable rule description (es-

pecially in the case of principle-based regulations) [9][10]. This is modeled by

the Rule entity, which represents actionable rules expressed either in natural

language (using the company’s terminology and telling exactly how to perform

work) or, as desirable in a formalism that facilitates its automated process-

ing (e.g., Boolean expressions over events generated during business execution).
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Figure 1: Conceptual model of the compliance management problem.

Rules are then grouped into policies, which are the company-internal documents

that operatively describe how the company intends achieving compliance with

the selected requirements. Typically, policies represent a grouping of the re-

quirements into topics, e.g., security policies, QoS policies, and similar.

At a strategic level, compliance is naturally related to the concept of risk.

Non-compliant situations expose a company to risks that might be mitigated.

For example, a non-encrypted message that is sent through the network might

violate a security compliance rule, which, in turn, might put at risk sensitive

information. Risk mitigation is the actual driver for internal compliance audit-

ing. The Risk entity represents the risks a company wants to monitor; risks

are associated with compliance requirements. For the evaluation of whether

business is executed in a compliant way or not, we must know which rules

must be evaluated in which business context. We therefore assume that we

can associate policies with specific business processes (though this can easily

be generalized to the case of projects, products, and similar). Processes are

composed of activities, which represent the atomic work items in a process.

The actual evaluation of compliance rules is not performed on business pro-

cesses (that is, on their models) but on their concrete executions, i.e., their

instances. Executing a business process means performing activities, invoking

services, and tracking progression events and produced business data (captured

by the Execution data entity). In addition, e.g., separation of duties, it is nec-
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essary to track the actors and roles of execution of activities. When evaluation

of a rule for a process/activity instance is negative, it corresponds to violations,

which are the core for the assessment of the level of compliance of a company

and the computation of KCIs.

The model in Fig. 1 puts into context the most important concepts audi-

tors are interested in when auditing a company. The actual auditing process,

then, also looks at the dynamic aspect of the compliance management problem,

that is, at how the company decides which regulations are pertaining, how it

implements its business processes, how it checks for violations, and so on. In

short, the auditing process is embedded in a so-called compliance management

life cycle, which we discuss next.

2.2 The Compliance Management Life Cycle

In everyday business a company is subject to a variety of different regulations. It

is up to the company to understand, select, and “internalize” them that affect its

business, thus producing a set of internal policies (internalization phase in Fig.

2). The latter then drive the design of the company’s business practices, yielding

a set of business processes that are possibly designed compliantly (design phase),

meaning that they are designed to respect the internal policies. To provide

evidence of the (hopefully) compliant execution of designed business processes,

the company also defines a set of events, often also called “controls” or “control

points”.

Process and event definitions are consumed in the business execution phase,

where the company’s employees perform the tasks and duties specified in the

process models. Ideally (but not mandatorily), this execution is assisted by

software tools such as workflow management or business process execution sys-

tems, also able to collect compliance-specific evidence and to generate respective

execution events (the execution data), which can be stored in an audit trail or

log file for evaluation.

The internal evaluation phase serves a twofold purpose: First, it is the point

where collected data can be automatically analyzed to detect compliance vio-

lations. Indeed, designing compliant processes is not enough to assure compli-
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Figure 2: The compliance management life cycle with phases, products, and actors.

ance, as in practice there are a multitude of reasons for which deviations from

an expected business process might happen (e.g., human factors, system down-

times). Some of such problems can be detected during runtime, resulting in the

generation of respective events; some of them can only be detected after exe-

cution by means of, e.g., data mining or root-cause analysis techniques applied

to tracked runtime data. Second, the internal evaluation is the moment where

a company-internal expert (auditor) may inspect and interpret the tracked evi-

dence to assess the company’s level of compliance. The outcome of this internal

evaluation might be the enforcement of corrective runtime actions (e.g., sending

an alert), the re-engineering of process designs (e.g., to consider design flaws) or

the adjustment of the internal policies (e.g., to cope with inconsistent policies).

Note that the internal evaluation does not yet certify a company’s level

of compliance; it rather represents an internal control mechanism by means

of which the company is able to self-assess and govern its business. For the

certification of compliance, an external auditor, e.g., a financial auditor, phys-

ically visits the company and controls whether (i) the company has correctly

interpreted the existing regulations, (ii) business processes have been correctly

implemented, and, finally, (iii) business processes have been executed according

to the policies. In practice, external audits are based on statistical checks of
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physical documents. In addition to unavoidable statistical errors, a certified

level of compliance is further subject to the auditor’s assessment and, therefore,

also contains a subjective component.

3 Designing Compliance Governance Dashboard
(CGDs)

To aid the internal evaluation and to help a company pass external audits, a

concise and intuitive visualization of its compliance state is paramount. To

report on compliance, we advocate the use of a web-based CGDs, whose good

design is not trivial [5][17]. It is important to understand: i) what the typical

information auditors expect to find is; ii) how large amounts of data can be vi-

sualized in an effective manner, and how data can be meaningfully grouped and

summarized; and iii) how to structure the available information into multiple

pages, that is, how to interactively and intuitively guide the user through the

wealth of information. Each page of the dashboard should be concise and intu-

itive, yet complete and expressive. It is important that users are immediately

able to identify the key information in a page, but that there are also facilities

to drill-down into details.

Designing CGDs requires mastering some new concepts in addition to those

discussed above. Then, the new concepts must be equipped with a well-thought

navigation structure to effectively convey the necessary information. Here, we

do not focus on how data are stored and how rules are evaluated; several pro-

posals and approaches have been conceived so far for that (see Section 5), and

we build on top of them.

3.1 A Conceptual Model for CGDs

In Fig. 3 we extend the conceptual model (Fig. 1) to capture the necessary

constructs for the development of a CGD (bold lines and labels represent new

entities and their respective interrelations). The extensions aim at (i) providing

different analysis perspectives (in terms of time, user roles, and organizational

structures), (ii) summarizing data at different levels of abstraction, and (iii)
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enabling drill-down/roll-up features (from aggregated data to detailed data,

and vice versa).

The Dashboard view entity represents individual views over the compliance

status of the company. A view is characterized by the user role that accesses

it, e.g., IT specialists, compliance experts, managers, or similar. Each of these

roles has different needs and rights. For instance, managers are more interested

in aggregated values, risk levels, and long time horizons (to take business deci-

sions); IT personnel are rather interested in instance-level data and short time

spans (to fix violations). A view is further characterized by the time interval

considered for the visualization of data (e.g., day, week, month, or year), also

providing for the historical analysis (e.g., last year) and supporting different

reporting purposes (operative, tactical, strategic). Finally, a view might be re-

stricted to only some of the business units in the company, based on the role

of the user. Business units can be composed by other business units, forming a

hierarchical organizational structure. In summary, views support different sum-

marization levels of the overall available data, ranging over multiple granularity

levels.

Effective summarization of data is one of the most challenging aspects in

the design of CGDs, commonly instrumented by indicators [13]. An indicator

is a quantitative summarization of a particular aspect of interest in the busi-

ness, i.e., a metric of how well an objective is being reached. Typically, KPIs

(key performance indicators), are used to summarize the level at which busi-

ness objectives are reached. In our context, we speak about KCIs, referring

to the achievement of the stated compliance objectives (e.g., the number of

unauthorized accesses to our payroll data).

In general, indicators are computed out of a variety of data and functions;

in the context of compliance assessment, however, indicators can typically be

related to the ratio of encountered violations vs. compliant instances of a pro-

cess or activity. As an abstraction of indicator values, we can define taxonomies

(e.g., low, medium, high) and use colors (e.g., red, yellow, green) for their intu-

itive visualization. The same considerations hold for risk levels, which represent

the level of summarization that is appropriate for long-term, strategic perspec-

tives and are usually computed out of the values of indicators and additional
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Figure 3: Conceptual model for CGDs (dashboard-specific constructs are highlighted in
bold.

(external) data.

The described model extension aims at relating general compliance concepts

with concepts that are specific to the design of dashboards. The model is general

and extensible, so as to allow for the necessary flexibility to accommodate

multiple concrete compliance scenarios.

3.2 Navigation Design

After discussing the static aspects of the design of CGDs, we now focus on

the dynamic aspect, i.e., on how to structure the interaction of users with the

dashboard, and on how users can explore the data underlying the dashboard

application. Specifically, on top of the conceptual model for CGDs, we now

describe how complex data can be organized into hypertext pages and which

navigation paths are important.

For this purpose, we adopt the Web Modeling Language (WebML [3]), a

conceptual modeling notation and methodology for the development of data-

intensive web applications. We use the language for the purpose of illustration

only (we show a simplified, not executable WebML schema) and intuitively

introduce all the necessary constructs along with the description of the actual
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CGD navigation structure.

The WebML hypertext schema (Fig. 4) describes the organization of our

ideal web CGD. It consists of five pages (the boxes with the name labels in the

upper left corner), ComplianceHome being the home page (note the H label).

Each page contains a number of content units, which represent the publication

of contents from the data schema in Fig. 3 (the selector condition below the

units indicates the source data entity). Usually, there are many hyperlinks

(the arrows) in a hypertext schema, representing the possible navigations a

user might perform, but, for simplicity, we limit our explanation to only those

links that represent the main navigation flow. Links carry parameters, which

represent the selection performed by the user when activating a link (e.g., the

selection of a process from a list). For the purpose of reporting on compliance,

we define a new content unit (not part of the WebML), the compliance drill-

down unit, which allows us to comfortably show compliance data in a table-like

structure (see the legend in Fig. 4 and the examples in Fig. 5).

Let’s examine the CGD’s structure (Fig. 4): The home page of the CGD

provides insight into the compliance state of the company at a glance. It shows

the set of most important indicators (Main indicators multidata unit) and a

set of indicators grouped by their policy (IndByPolicy hierarchical index unit).

Then, we show the (BUnits/Regul.) unit that allows the user to drill-down

from business units to processes and from regulations to policies. A click on

one of: i) the processes leads the user to the Regulations by Activity page; ii)

regulations leads her to the Rules by Business Units page; and iii) the cell of the

table leads her to the Rules by Activity page. After the selection of a process,

in the Regulations by Activity page the user can inspect the compliance state

of each activity of the selected process with the given regulations and policies

(RegByActivity), a set of related indicators (BPIndicators unit; the unit con-

sumes the Process parameter), and the details of the selected process (Process

data unit). Similar details are shown for policies in the Rules by BusinessUnits

page, which allows the user to inspect the satisfaction of individual compliance

rules at business unit or process level (RulesByBU). A further selection in the

compliance drill-down units in these last two pages or the selection of a cell in

the BUnits/Regul. unit in the home page leads the user to the Rules by Activity
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Figure 4: WebML hypertext schema structuring the navigation of CGD concepts and
data.
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page, which provides the user with the lowest level of aggregated information.

It visualizes the satisfaction of the compliance rules of the chosen policy by

the individual activities of the chosen process (RulesByActivity), along with

the details of the chosen policy and process and their respective indicators. A

further selection in this page leads the user to the Compliance violations page,

which shows the details of the violations related to the chosen process/policy

combination at an instance level in the Violations index unit.

The navigation structure in Fig. 4 shows one of the possible views over

the data in Fig. 3, e.g., the one of the internal compliance expert. Other

views can easily be added by restraining access to data and defining alternative

navigation structures. Each page provides a different level of summarization

(overview, process-specific, policy-specific, process and policy-specific, violation

instances), guiding the user from high-level information to low-level details.

The time interval to be considered for the visualization can be chosen in each

of the pages.

3.3 CGD in Practice

To provide the look-and-feel idea we have implemented, in Fig. 5 we illustrate

screenshots from our prototype CGD. The screenshots show views that clar-

ify and consistently present our ideal CGD. Fig. 5(a) shows the Compliance

Home page (Fig. 4), Fig. 5(b) the Rules by Activity page, and Fig. 5(c) the

Compliance violations page.

Compliance Home concentrates on the most important information at a

glance, condensed into just one page (compare with Fig. 4). It represents the

highest granularity of information. The five colored indicators (top left) are

the most relevant, showing the most critical non compliant regulations. The

gray indicators (right) report on the compliance with the three main policies.

In the bottom, there is the interactive compliance drill-down table containing

the compliance performance of business units and processes (rows) in relation

to regulations and policies (columns). The user can easily reach lower levels of

granularity by drilling down on the table or navigating to pages. For instance,

the Rules by Activity page condenses lower level information concerning a com-
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Figure 5: Example CGD screenshots of our prototype implementation.
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bination of Business Process 1.1 and the company’s SOX policy. The colors of

the cells represent the compliance performance of each combination. For in-

stance, the Business activity 32.1 presents a critical situation regarding Rule

3 of SOX Section 301 (red cell) and weak performance regarding Rule 5, and

Rule 6 (yellow cells).

A drill-down on the red cell, for instance, leads us to the Compliance vio-

lations page, which provides the lowest level of abstraction in form of a table

of concrete, registered violations of the selected rule. The page illustrates the

main information that must be reported to assist internal and external auditors.

The data in the particular page reports all violations of one activity in Business

Process 1.1 of Business Unit 1, detected considering Rule 3 of SOX Section 301.

Each row of the table represents a distinct violation and the columns contain

the typical information required by auditors, e.g., responsible of activity, dates

and times, mitigation action, outcome of mitigation action, type of applied

control, cause of violation, frequency of control activity.

The amount and position of the graphical widgets for indicators, tables,

summaries, and so on are chosen in accordance with our short-term memory

and the convention of most western languages that are read from left to right

and from top to bottom [5].

4 Implementation Usage

The above described concepts are a joint result of the Compas and Master

projects, which involve Deloitte and PricewaterhouseCoopers (PwC) as indus-

trial and auditing partners who participated in the design of and approved the

models. Both projects share the same functional architecture from a reporting

point of view (Fig.6). The CGD is set on the top of a data warehouse (opti-

mized for reporting purposes) that implements the conceptual model described

in Fig. 3. It is however important to recognize that this does not affect the

logic behind the conceived navigation structure (Fig. 4), which represents a best

practice for the rendering of compliance information to auditors, according to

the experience by the industrial partners involved in the project.

Both projects produce case studies that have been input - along with the
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Figure 6: Functional architecture for logging business executions and reporting on com-
pliance.

experience of Deloitte and PwC - to the design of the dashboard. As an exam-

ple in this paper we briefly describe the WatchMe scenario, developed in the

Compas project. This scenario deals with compliance regarding licenses and

QoS polices for a mobile virtual network operator (MVNO) in the context of

online sales of digital artifacts. The MVNO provides video and audio streams to

its mobile phone clients based on pre-defined plans. For instance, the Per-view

plan states that clients can acquire (invoke a service) only n streams at price p,

while the Time-based plan states that clients can acquire any number of times

any possible streams from StartDate till EndDate of the plan. In addition to

those plans, the MVNO has also to comply with the licenses defined by each

video provider. For instance, Video1 can be downloaded and played with any

audio; instead, Video2 can only be used with one specific audio stream.

To govern compliance in this scenario, all compliance concerns are expressed

in domain specific languages (DSLs), which are translated to Esper rules for

complex event processing during runtime. Events and detected violations are

logged and stored in a data warehouse to be used for the computation of KCIs

(e.g., amount of violations, clients satisfaction index, average of unauthorized

streaming downloads). Different summarization levels and perspectives of anal-

ysis are implemented according to the WebML schema in Fig. 4; compliance

drill-down units and KCIs (cf. Fig. 5-a) are rendered according to the users’
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roles; e.g., violation details (low level) to internal auditors or IT personnel for

root-cause analysis and main KCIs to external auditors as a start point for the

auditing process.

The front-end of the dashboard is an interactive web application. The ap-

pealing graphical rendering of indicators is based on FusionCharts widgets,

while the compliance drill-down table is AJAX-based. Queries over data are

dynamically computed on the server and only rendered inside the client browser.

The server-side support is based on Java and JSP. The data warehouse collects

execution events, and indicators and process reconstructions are computed at

ETL time (weekly or daily).

5 Related Work

Compliance has been investigated in several contexts yielding a variety of ap-

proaches. In the following, we discuss related work in three areas that fall in

the context of this paper, namely, compliance modeling, compliance dashboards,

and Business Activity Monitoring (BAM).

Most of the compliance modeling efforts have been done with the aim of

checking compliance, and, therefore, the resulting models consist in formalisms

for expressing low-level rules for the compliance requirements. For instance, in

[7] the problem of static (i.e., before process execution) compliance checking of

process models against compliance rules is addressed by expressing the models

in pi-calculus and the corresponding rules in linear temporal logic; then, model

checking techniques are used to determine whether a process model complies

with the rules or not. In [2], policies are modeled and checked as deontic

sentences (i.e., rules are of the form “it is obligatory that X...” or “it is permitted

that Y...?”); then, a system can be compliant even if violations occur, in which

case, a second-level set of rules might be applied, for which, again, compliance

needs to be checked. A similar modeling technique is presented in [8], in which

Format Contract Language (FCL), a combination of defeasible logic and deontic

logic, is used to express normative specifications. Once the FCL specification

is built, control tags can be derived from it and used to annotate the process

model so that control concerns can be visualized in the process model space.
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To the best of our knowledge, there are no works on dashboards that specif-

ically address the problem of visualizing compliance concerns. However, there

are some works that, in part, deal with the problems we address in this pa-

per. For example, [1] studies the problem of designing visualizations (i.e., the

representation of data through visual languages) for risk and compliance man-

agement. Specifically, the study is focused on capturing the exact information

required by users and on providing visual metaphors for satisfying those re-

quirements. In [4], the business performance reporting is provided in a model-

driven fashion. The framework provides: data model, navigation model, report

template model, and access control model, which jointly help designing a busi-

ness performance dashboard. However, none of mentioned approaches provides

suitable navigation models supporting different analysis perspectives, summa-

rization levels, and user roles.

Business Activity Monitoring (BAM) has gained a lot of attention during

the last decade, and many tools have been proposed to support it. BAM aims

at providing aggregated information suitable for performing various types of

analysis on data obtained from the execution of activities inside a business. For

example, tools such as Oracle BAM, Nimbus and IBM Tivoli aim at providing

its users with real-time visual information and alerts based on business events

in a SOA environment. The information provided to users comes in the form

of dashboards for reporting on KPIs and SLA violations. The compliance

management part of these tools (if any) comes in the form of monitoring of

SLA violations, which need the SLA formal specifications as one of its inputs.

In our work, we take a more general view on compliance (beyond SLAs, which

are a special case to us) and cover the whole lifecycle of compliance governance,

including a suitable dashboard for reporting purposes.

It is important to notice that we do not provide any new compliance checking

technique; we rather focus on how to make the most of existing approaches

by putting on top of them a visualization logic that is validated by auditors

themselves, an aspect that is at least as important as checking compliance. Our

work mainly focuses on the case of compliance and provides a conceptual model

for both compliance and dashboards, i.e., we present the relevant concepts

regarding compliance and visualization and show the interplay of these two
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aspects. The purpose is that of providing compliance dashboard designers with

a holistic and comprehensive view of the business and compliance aspects that

characterized a good CGD.

6 Conclusions and Future Work

In this paper we have discussed a relevant aspect in modern business software

systems, i.e., compliance governance. Increasingly, both industry and academia

are investing money and efforts into the development of compliance governance

solutions. Yet, we believe compliance governance dashboards in particular,

probably the most effective means for visualizing and reporting on compliance,

have mostly been neglected so far. It is important to implement sophisticated

solutions to check compliance, but it is at least as important (if not even more)

to effectively convey the results of the compliance checks to a variety of different

actors, ranging from IT specialists to senior managers.

Our contribution is a conceptualization of the issues involved in the design of

compliance governance dashboards in service and process-centric systems, the

definition of a navigation structure that naturally supports drill-down and roll-

up features at adequate levels of detail and complexity, and a set of concrete

examples that demonstrate the concepts at work. Our aim was to devise a

solution having in mind the real needs of auditors (internal and external ones)

and - more importantly - with the help of people who are indeed involved every

day in the auditing of companies.

As a continuation of this work, we are planning to perform extensive usage

studies in the context of the projects mentioned earlier. First, such studies will

allow us to assess the acceptance of the proposed CGD by auditors in their

everyday work. Second, the studies will allow us to understand which support

for actions for mitigating compliance problems or violations directly through

the dashboard is desirable.
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Toward Uncertain Business Intelligence: the Case of
Key Indicators ∗

Carlos Rodŕıguez Florian Daniel Fabio Casati Cinzia Cappiello

Abstract

Decision support systems and, in particular, business intelligence techniques
are widely used by enterprises for monitoring and analyzing operations to un-
derstand in which aspects the business is not performing well and even how
to improve it. These tools provide valuable results in the context of single
departments and business processes, while they are often not suitable in sce-
narios driven by webenabled intercompany cooperation and IT outsourcing.
In such contexts, the adoption of service-oriented company IT architectures
and the use of external web services may prevent the comprehensive view
over a distributed business process and raise doubts about the reliability of
computed outputs. We analyze how these scenarios impact on information
quality in business intelligence applications and lead to non-trivial research
challenges. We propose the notions of uncertain events and uncertain key
indicators, a model to express and store uncertainty, and a tool to compute
with and visualize uncertainty.

1 Introduction

The increased usage of IT to support business operations and the advances in

business intelligence (BI) techniques create the opportunity for monitoring and

analyzing operations to understand in which aspects a business is not perform-

ing well and even how to improve it. This has been happening for a while in

the context of single departments and business processes, but now it is extend-

ing to BI applications that integrate data from multiple departments and even

multiple companies. Common examples are the now omnipresent Enterprise
∗ c©2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in

any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works. DOI: 10.1109/MIC.2010.59
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Data Warehouse [1], which aggregates process data across departments and ge-

ographies; business process outsourcing scenarios, in which the execution of a

process is delegated to other companies; or inter-company cooperation, where

data and processes are shared across multiple companies.

While BI applications are often complex and comprise multiple kinds of

analyses, one of the most widely used metaphors is that of Key Indicators

(KI) [2], a set of values that summarize the performance of critical business

operations. KIs are used to detect problems and trigger business decisions.

Despite the importance of KIs to business, little attention has been devoted

to the expressiveness of KIs if they are computed out of low-quality data and

to how possible uncertainties can be communicated to the BI analysts. Even in

closed scenarios there are many possible sources of uncertainty in BI applica-

tions [4], and the problem is magnified when data comes from multiple sources

and is collected with different methods and frequency by different departments,

institutions, and geographies. In some cases, uncertainty can easily be predicted

or detected (e.g., a partner does not send data on time or a source has an in-

herently unreliable data collection method), while in others the problems are

occasional and harder to recognize. The goal of this article is to understand how

to deal with the lack of a comprehensive knowledge about organizational busi-

ness processes and how to compute meaningful indicators, despite uncertainty

in the underlying data.

2 Motivation: Key Assurance Indicators in Health-
care

In the context of the EU project MASTER 1 (Managing Assurance, Security

and Trust for sERvices; Euro 9.3M of funding) we are developing diagnostic

algorithms to assess and report on compliance, even in presence of uncertain

data. So-called Key Assurance Indicators (KAIs) are used to measure per-

formance against compliance requirements, e.g., deriving from a privacy law.

Algorithms are being tested in collaboration with Hospital San Raffaele (Mi-

1http://www.master-fp7.eu
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Figure 1: Outpatient drug dispensation in a hospital.

lano, Italy), which provides the necessary, distributed business context: their

outpatient drug dispensation process. We summarize the process in Figure 1.

The process starts with the patients visit to the doctor in the hospitals ward.

In the case any treatment is needed, the doctor sends an according prescription

for drugs to the nurse, and the patient can ask the nurse for the dispensation

of the drugs. The nurse collects all drug prescriptions and checks whether all

necessary drug quantities are in stock. If yes, he/she can immediately dispense

the drugs to the patient. If not, he/she must issue a drug request to the

Pharmacy of the hospital, which is then in charge of providing the requested

drugs. If, in turn, the Pharmacy is running out of stock, the personnel in

charge issues a request to the Pharmaceutical Company that provides drugs

to the Pharmacy. By law, the hospital must guarantee that all patient data

are anonymized throughout the process, and the hospitals internal policy states

that drug replenishment by the Pharmacy must occur within maximum two

business days. In order to control, for instance, this latter aspect, the hospital

wants to compute a KAI called Average Replenishment Duration (ARD), which

allows the hospital to monitor the time it takes to refill the Wards drug stock.

From the IT point of view, the drug dispensation process is supported by

several web service-based information systems that interact inside a service-

oriented architecture (SOA). For instance, there are web services for issuing

drug requests in the various dependencies of the institute, and the pharmaceu-
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tical companies the hospital cooperates with accept drug requests through web

service interfaces. To retrieve the data requested by the hospitals BI applica-

tion, during the execution of the process suitable events are generated, which

can be logged and analyzed. In this article, we assume each arrow in Figure 1

corresponds to an event in form of a simple SOAP message.

3 Uncertain Events

The above process describes a BI scenario where data are sourced from multiple

cooperating entities or companies. This kind of scenario is typically character-

ized by different levels of visibility into a partners business activities and by

different levels of trust in the visible data that can be obtained from each part-

ner.

In the case of cooperative processes (processes that span across organiza-

tional domains [3], e.g., the Ward, the Stock management, and the Pharmaceu-

tical company), we can distinguish three kinds of business events: (i) Internal

events that stem from the activities that are under the control of the company

(the Ward) and consequently are completely visible and trustable. (ii) Shared

events that are originated in the activities that are shared with the integrated

partner (the Stock management); depending on the technical solution adopted

for the implementation of the cooperative part of the process, the visibility into

its internals (the events) might be lower than in the case of own activities; simi-

larly, trust into events might be lower. (iii) External events that are part of the

partners internal processes; these events are typically hidden to the company,

and we cannot analyze them (e.g., we do not have access to the Stock manage-

ments internal processes). Similarly, we can associate visibility and trust levels

to the case of outsourced processes (the production and shipment of drugs by

the Pharmaceutical company). Yet, in this case both visibility and trust are

typically lower than in the cooperative process scenario.
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Trust and Reputation in Web-based Collaboration
Trust and reputation are concepts studied in different fields, e.g., economics, so-
ciology, computer science, and biology. Although there is a growing literature on
theory and applications of trust and reputation systems, definitions are not always
coherent1. However, the concept of trust is undoubtedly associated with the con-
cept of reliability2: trust is the subjective probability by which a party expects that
another party performs a given action on which its welfare or business depends3,1;
reputation is the general opinion about a person, a company, or an object. There-
fore, while trust derives from personal and subjective phenomena, reputation can
be considered as a collective measure of trustworthiness based on the referrals or
ratings from members in a community.
To computer scientists, trust and reputation are particularly significant to support
decisions in Internet-based service provisioning. Especially, reputation is able to
drive the relationships of individuals and firms in online marketplaces4,5. For in-
stance, collaborative filtering systems are used to judge the behavior of a party
and to assist other parties in deciding whether or not to start business with that
party. A reputation system collects, distributes, and aggregates feedbacks about
participants past behavior and discourage unfair behavior6. The cross-analysis of
different reputation systems enables the realization of mechanisms and methods for
the online reputation monitoring and improvement7.
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The visibility into shared or outsourced processes has typically structural

or organizational roots (e.g., the use of incompatible IT systems or privacy

restrictions) that do not frequently change over time. Trust in partners and the
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information they provide might instead vary with faster dynamics, e.g., based

on trust assessment systems that automatically assess trust values for partners

from past interactions (see sidebar 1 for more details).

With the use of web services and the SOA, cooperative processes moved to

the Web. The consequent reliability problems raise information quality issues

in the collection of the events upon which BI algorithms can perform their

analyses. In this context, we identify some issues that are strongly related with

the way events are collected (the situation is graphically represented in Figure

2):

• We registered an event in the log, yet we are not sure the corresponding

real-world event really happened (case (a)). For instance, it may happen

that the system is not able to successfully anonymize a patients data, e.g.,

due to a failure in the algorithm. If the failure is not registered properly,

we register a wrong anonymization event.

• A real-world event happened, but we couldnt register it in the log (case

(b)). In a running production system, large amounts of events may be pub-

lished concurrently and, e.g., due to network overloads or system down-

times, events may get lost.

• A real-world event happened, but we have conflicting alternatives for it

(case (c)). For instance, it may happen that a doctor prescribes a specific

quantity of drug (e.g., 80 ml.), but there are only doses of 100 ml. or 70

ml. available. During data cleaning (before running the BI algorithms)

the system may detect the mismatch and track it by keeping both options

and associating probabilities to them, trying to reflect the doctors actual

intention (see sidebar 2 for details on uncertain data management).

4 Dealing with Uncertainty in Event Logs

We have seen that the data underlying distributed BI is characterized by a

number of data deficiencies, i.e., unconformities between the data we have in
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Figure 2: Typical data quality problems in web-based BI.

the event log and what happened in the real world [5]. The challenge is to

deal with deficiencies in a way that allows us to perform meaningful analyses,

despite the deficiencies. For this purpose, we propose a notion of uncertainty

that is composed of three attributes: trust, completeness, and accuracy.
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Uncertain/Probabilistic Data Management
In traditional data management, such as in relational databases, data items either
exist or not in the database and data that exist are assumed true (they reflect real-
ity) and correct (there are no errors). On the contrary, in Probabilistic/Uncertain
Data Management (UDM) this is not taken for granted anymore, and the existence
and values of data items are considered probabilistic events. As a consequence,
also answering a query over these data becomes probabilistic.
UDM is motivated, among others, by the large number of applications that nat-
urally need to take into consideration uncertainties emerging from the particular
domain (e.g., sensor networks and risk analysis) and by the ever increasing speed
at which data are automatically generated (e.g., in social networks and real-time
systems). In this latter case, noise and incompleteness are ubiquitous because per-
forming cleaning procedures at the same pace at which data is generated is simply
impractical. Therefore, the need to manage and process uncertain data is real.
Research on UDM can be grouped into two big areas: uncertain data modeling1

and query processing on uncertain data2. In the former area, the focus is on the
modeling of uncertain data in such a way that data can be kept rich and useful
for the applications that use them, while keeping the efficiency in terms of physical
data management. The latter area addresses the problem of efficiently querying
uncertain data, while providing rich semantics to both the definition of queries
and the results coming from the query evaluation. Several tools for uncertain
data management have been proposed, for instance, Mystic3, Trio4, Orion5, and
MayBMS6.
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If we model the ideal, i.e., certain, event log as an ordered sequence of events

L = [ei] (we use the bar to indicate certain data) and an event with ki data

parameters as ei = 〈di1, ..., diki〉, the three attributes allow us to deal with the
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deficiencies describe in Figure 2 as follows:

• Case (a) describes a meaningless state, i.e., an event that does not match

with any real-world event. Without additional controls, e.g., additional

events or certificates from cooperating partners, that specifically aim at

identifying this kind of discrepancy, we cannot deal with this situation.

What we can do, however, is leveraging on the trust we have in the partner

that produced the event. That is, we use a trust measure ti ∈ [0..1] as

an indicator of the probability with which an event registered in the log is

true.

• Case (b) shows an incomplete representation of the real world, i.e., the

lack of an event. This affects the completeness of the representation of

the real-world process and refers to the whole event log. We know about

missing events in the log since we know the models of the processes we

monitor and the expected sets of events generated by them. In order to

keep track of missing events, we associate a completeness measure comp ∈
[0..1] to L. If we need to report or run algorithms only on subsets of L,

e.g., by analyzing data from a given month or year, comp will refer to the

particular subset.

• Case (c) proposes two different alternatives for the same real-world event.

This leads to a problem with the accuracy of the event, since we cannot

provide a single description but only a set of possible alternatives for the

event. That is, each event may have a set of possible worlds (the alterna-

tives) for its parameters {dij1, ..., dijki}, where the index j identifies each

alternative. To keep track of the likelihood of each possible world, we

associate to each world j a probability pij, where ΣJi
j=1pij = 1 and Ji is

the number of alternatives. Each possible world has its own probability of

being the right description of the real world.

In summary, we represent an uncertain event log as a tuple L = 〈[ei], comp〉
(we omit the bar for uncertain data), with [ei] being the chronological sequence

of uncertain events stemming from all the business processes we want to analyze

and comp being the completeness of the log; and we model uncertain events as
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ei = {〈dij1, ..., dijki, pij, ti〉}, where the parameters dijk are the parameters of

the events (e.g., the cost of a product) or event meta-data (e.g., the identifier

of the event or its timestamp), pij are the probabilities of the possible worlds,

and ti is the trust level associated with the event.

In this article we do not focus on how the individual uncertainties for events

are computed. We rather tackle the problem of how to represent uncertainty

and how to compute with it.

5 Modeling, Computing and Visualizing Uncertain
Key Indicators

KIs are typically associated with specific business processes, e.g., the execution

time of a process or the delay between two activities. In order to specify a KI, we

therefore imagine having a view over the event log that filters out the events of

the process we are interested in and groups them according to executed process

instances. The result is a set of event traces {tl} = {[el1, ..., elnl]} with nl being

the number of events in each trace. This allows us to obtain KIs in the form of

KI({tl}) = v with v ∈ R being the scalar value of the indicator.

In the case of uncertain data, it is no longer appropriate to interpret KIs as

simple, scalar values. We propose the idea of uncertain key indicator (UKI) as

a means to convey to the business analyst both a value for the indicator and

the uncertainty associated with it. A UKI can be defined as:

UKI({tl}) = 〈{vm, pm}, conf, comp〉 (1)

The set {〈vm, pm〉} represents the possible worlds for the values vm of the

indicator, and pm is the probability for each of the alternatives. The number

of possible worlds depends on the number of possible worlds of the events

involved in the computation of the indicator. Specifically, the indicator will

have
∏

n Jn possible worlds, where Jn refers to the number of possible worlds

of the event en in the event traces. The parameter conf ∈ [0..1] represents

the confidence we have in the correctness of the computed possible worlds; we

compute this confidence by aggregating the trust levels of the events considered
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by the indicator. The parameter comp is the completeness of the data over

which the UKI is computed.

Let us consider the case of the ARD (Average Replenishment Duration)

indicator, which is computed as the average time in hours needed to replenish

drugs in the Wards drug stock. Figure 3(a) shows an excerpt of the data

warehouse we use to store event data for reporting and analysis. Specifically,

the table shows the parameters extracted from the event traces of the drug

replenishment process (a sub-process of the drug dispensation process) that

are used to compute indicators: each tuple corresponds to an executed process

instance. The column Duration tells us how many hours each replenishment

took; its values are expressed as a set of pairs {〈durantionij, pij〉} obtained

during ETL and data cleansing. The column AvgTrust contains the average

of the trust values associated with the events in each trace.

In order to compute ARD, it is necessary to consider individually each pos-

sible world that emerges from the data in Figure 3(a). For instance, Figure 3(b)

shows one possible world constructed by using the first alternatives for both tu-

ples 72665 and 72670 and a first value for ARD (v1 = avg(Duration) = 18.3)

with its probability (p1 =
∏

Proc.Inst.ID = 0.01). Applying the same logic to the

other eight possible worlds allows us to compute all possible worlds of ARD as

shown in Figure 3(c). The combination 〈19.1, 0.72〉 is the most likely, though

the other combinations cannot be excluded.

In order to obtain the overall confidence (conf ) we have in the indicator as

computed in Figure 3, we average the AvgTrust values in Figure 3(a), which

gives us a value of conf = 0.75. Finally, in Figure 3(a) we lack two tuples, i.e.,

process instances. The completeness for ARD is therefore comp = 7/9 = 0.78.

Thus, the uncertain representation of ARD is:

ARD = 〈{〈18.3, 0.01〉, 〈18.4, 0.04〉, 〈18.6, 0.01〉, 〈19.0, 0.09〉, 〈19.1, 0.72〉,
〈19.3, 0.09〉, 〈19.7, 0.01〉, 〈19.9, 0.04〉, 〈20.0, 0.01〉}; 0.75; 0.78〉 (2)

But how do we compute and visualize UKIs in practice? Figure 4(a) shows

a simplified version of the infrastructure being developed in the context of

the MASTER project: process definitions instrumented with compliance an-
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ID Value Prob.
1 18.3 0.005
2 18.4 0.04
3 18.6 0.005
4 19.0 0.09
5 19.1 0.72
6 19.3 0.09
7 19.7 0.005
8 19.9 0.04
9 20.0 0.005

Proc.	  Inst.ID Dura8on Probability
72665 10.0 0.05
72666 38.0 1.0
72667 10.0 1.0
72669 24.5 1.0
72670 3.0 0.10
72672 27.0 1.0
72673 15.5 1.0

=	  18.3 =	  0.005

(a) Data warehouse table used to store parameters from 
uncertain events and to compute UKIs

(b) One of the possible worlds of the input 
data (out of the available nine we have for 
the Duration parameter)

(c) Possible values (with respective 
probabilities) of the ARD indicator 

Figure 3: Example computation of the ARD indicator.

notations feed one or more runtime environments (e.g., operated by different

partners) that execute the processes and signal, monitor, and enforce behav-

iors according to the annotations. Doing so produces events, which we log and

periodically load into a data warehouse, where we also check the compliance of

executed processes. We store all execution data for reporting (in the reporting

dashboard) and analysis (key indicators, root cause analysis, protocol mining).

Figure 4(b) illustrates an excerpt of the dimensional data warehouse model

[6], showing how we physically store uncertain data and uncertain key indicators

in the warehouse. Fact tables are shaded gray, dimension and uncertainty meta-

data tables are white. The Event Fact table stores the events loaded from the

event log. Dimensions that can be used to perform queries and multidimensional

analysis are, e.g., Component Dimension, Process Instance Dimension, and

Date Dimension. The auxiliary Attribute Uncertainty table stores uncertainty

Appendix C. Toward Uncertain Business Intelligence: the Case of Key Indicators

95



Business 
analystData 

warehouse

Runtime environment

Signaling

Monitoring

Enforcement

Periodic ETL

Compliance 
analysis

Reporting dashboard

Key indicators

Root cause analysis

Protocol miningEvent log

Compliance 
constraints

Instrumented 
processes

Event Fact

EventID
DateID
ActorID
ReporterComponentID
ProcessInstanceID
ProcessDimensionID
TimeID
OcurrenceDateTime
RepeatCount
SequenceNumber
AvailabilityDisposition
Category
ConnectionDisposition
ElapsedTime
ExtensionName
GlobalInstanceID
LocalInstanceID
Message
Payload
ReasoningScope
SituationQualifier
SucessDisposition
UncertaintyFlag

Component Dimension

Actor Dimension

Time Dimension

Date Dimension

Process Instance Dimension

Process Dimension

Attribute Uncertainty

AttributeUncertaintyID
EventID
AttributeName
ParType
Value
Probability

Key Indicator Fact

KeyIndicatorValueFactID
DateID
ProcessInstanceID
ProcessDimensionID
TimeID
KeyIndicatorDimensionID
Timestamp

Key Indicator Values

KeyIndicatorValuesID
KeyIndicatorValueFactID
Value
Probability

Key Indicator Dimension

(a) Overview of system architecture
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(c) Prototype tool for visualizing uncertain 
key indicators

Figure 4: Storing events and computing and visualizing uncertain key indicators.

meta-data for the attributes of the Event Fact table. UKI values are stored in

the Key Indicator Value Fact and Key Indicator Values tables. The former can

be joined with the dimension tables it is associated with to support queries and

multidimensional analysis. The latter is again an auxiliary table that stores

the actual (uncertain) indicator values. The computation of an UKI therefore

translates into a set of SQL statements evaluated over the data warehouse.

Finally, it is important to properly visualize UKIs in a dashboard, where

the important aspects of the monitored business processes can be inspected at

a glance. The challenge is to convey the uncertainty of UKIs to the business

analysts, while keeping visual metaphors as simple and concise as possible. We
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approach this problem in a parallel line of research [7][8] where we work on

the development of effective reporting dashboards. In Figure 4(c) we show a

screenshot of our tool for the visualization of UKIs, which the business analyst

can start by drilling down on uncertain indicators in the dashboard. The tool

allows the analyst to inspect all uncertainty aspects introduced in this paper

(possible worlds, confidence and completeness) and to write ad-hoc queries to

better understand the nature of the underlying data.

6 Conclusion and Outlook

The discussion in this article follows in a way the footsteps of other areas

of science, mainly in physics, where uncertainty has become a key ingredient

when modeling reality. We believe the same should be done in information

engineering, recognizing that our ability to observe reality is not as precise as

we would like.

The result of the work presented here is a model for representing this im-

precision in terms of uncertain events and uncertain indicators, an approach

to store uncertainty metadata and compute uncertain indicators, and a tool to

communicate uncertainty to users. While this is useful in its own right, the main

contribution lies however in providing a basis for uncertainty in BI applications,

as this is the branch that is concerned with understanding and analyzing the

real world. Indicators are just one (although significant) aspect of BI appli-

cations, but what organizations aim at is understanding and improving their

processes. On the understanding side, we are now adopting the uncertain data

model introduced in this article in the context of process discovery from uncer-

tain data. On the improvement side, we are applying the model to analyze the

root causes of compliance violations, specifically working toward techniques like

uncertain decision trees and correlation analysis of uncertain data. The com-

putation model presented in this article is the conceptual basis for the outlined

research and a first step toward a theory of uncertainty in business intelligence

in general.
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Analyzing Compliance of Service-Based Business
Processes for Root-Cause Analysis and Prediction ∗

Carlos Rodŕıguez Patricia Silveira Florian Daniel Fabio Casati

Abstract

Automatically monitoring and enforcing compliance of service-based business
processes with laws, regulations, standards, contracts, or policies is a hot issue
in both industry and research. Little attention has however been paid to the
problem of understanding non-compliance and improving business practices
to prevent non-compliance in the future, a task that typically still requires
human interpretation and intervention. Building upon work on automated
detection of non-compliant situations, in this paper we propose a technique
for the root-cause analysis of encountered problems and for the prediction
of likely compliance states of running processes that leverages (i) on event-
based service infrastructures, in order to collect execution evidence, and (ii)
on the concept of key compliance indicator, in order to focus the analysis on
the right data. We validate our ideas and algorithms on real data from an
internal process of a hospital.

1 Introduction

Compliance means conformance with laws, regulations, standards, contracts,

policies, or similar sources of requirements on how to run business. Effective

compliance management, i.e., the practice of assuring compliance, is an increas-

ingly more important concern in today’s companies, since the set of compliance

requirements a company has to implement grows fast and their effect on the

traditional business practices in a company may be considerable. Despite its

increasing importance, compliance is however to a large extent still managed

in rather ad-hoc ways and with little or no IT support. As a result, today it is

very hard for any CFO or CIO to answer questions like: Which requirements

does my company have to comply with? Which processes should obey which
∗The final publication is available at www.springerlink.com (http://link.springer.com/chapter/10.1007%2F978-3-642-

16985-4 25)
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requirements? Which processes are following a given regulation? Where do vi-

olations occur? Which processes do we have under control? And so on. While

IT has been supporting (in more or less automated fashions) the execution of

business processes for long time now, in the past the adoption of ad-hoc and

monolithic software solutions did not provide the necessary insight into how

processes were executed and into their runtime state, preventing the adoption

of IT also for compliance assessment. The advent of workflow management

systems and, especially today, of web service-based business interactions and

the service-oriented architecture (SOA) have changed this shortcoming, turning

business processes into well-structured, modular, and distributed software arti-

facts that provide insight into their internals, e.g., in terms of execution events

for tasks, service calls, exchanged SOAP messages, control flow decisions, or

data flows. All these pieces of information can be used for online monitoring

or enforcement of compliant process behaviors or they can be logged for later

assessment. Unfortunately, however, the resulting amount of data may be huge

(in large companies, hundreds of events may be generated per minute!), and

especially in terms of reporting and analysis it is not trivial to understand

which data to focus on and how to get useful information out of them. Do-

ing so is challenging and requires answering questions like how to collect and

store evidence for compliance assessment in service-based business processes,

how to report on the compliance state, and how to support the analysis of non-

compliant situations. But more than these, the challenges this paper aims to

solve are how to collect evidence in a way that is as less intrusive as possible,

how to devise solutions that are as useful as possible, yet at the same time as

generic as possible and independent of the particular IT system to be analyzed,

and, finally, how to provide compliance experts with information that is as use-

ful and expressive as possible. In light of these challenges, this paper provides

the following contributions:

• A method for the definition and a dashboard for the visualization of so-

called Key Compliance Indicators (KCIs) for at-a-glance reporting on com-

pliance;

• An algorithm and a tool for the mining of decision trees from process
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execution logs that particularly look at data from the perspective of com-

pliance;

• An application of the algorithm mining approach to real-world data stem-

ming from a typical business process running in a large Italian hospital.

In the next section we provide the necessary details about this process and

highlight its compliance requirements, so as to derive the requirements for this

paper in Section 3. In Section 4 and 5, we then discuss how to report on

compliance and how to analyze non-compliance, respectively. In Section 6 we

discuss some related works, and in Section 7 we conclude the paper.

2 Scenario: Drug Reimbursement in Hospitals

Let us consider the case of a drug reimbursement process in the healthcare

domain. The process is the case study in one of our EU projects, where we

cooperate with Hospital San Raffaele (Milan, Italy), which runs the process

shown in Figure 1. The overall purpose of this process, from the hospital’s

point of view, is to obtain reimbursements from the Italian Health Authority

for the drugs dispensed to outpatients (i.e., patients that are not hospitalized).

In order to obtain the reimbursement, there are many compliance requirements

imposed by the Health Authority, among which we mention privacy preservation

in personal information processing, separation of duties, and the adherence of

standard template of dispensation reports.

The core process that generates the information that needs to be sent to the

Health Authority occurs inside the Ward. The process starts when a patient

visits the hospital’s ward to consult a doctor. After diagnosing the patient,

the doctor prepares a drug prescription that is delivered to a nurse, who is

in charge of dispensing the prescribed drugs to the patient. If the amount of

drugs is going below a certain threshold, the nurse issues a drug request to the

central pharmacy of the hospital, which must replenish the ward’s drug stock

in no later than 48 hours. The execution of this process is fully supported by

the ward’s SOA-based information system, and all progress events generated

during process executions are recorded in an event log for later inspection.
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Figure 1: Summary of the direct drug reimbursement process.

While the process above is executed daily, the preparation of dispensation

reports for drug reimbursement is a monthly task. That is, at the end of each

month, the records of drug dispensations are collected from the various wards

of the hospital and the corresponding dispensation reports to be sent to the

Health Authority are created. These reports consist in simple text files (known

as FileF) in which data about the dispensations are included. Examples of data

included in these files are hospital identification, patient, doctor, dispensed drug

and quantity, and amount in Euros. Whenever the report is ready it is sent

to the Health Authority, which checks the quality of the report against some

compliance requirements imposed on dispensation reports. For instance, one

compliance requirement that decides whether a dispensation can be reimbursed

or not regards the completeness and correctness of records: no null or incorrect

data are tolerated in any field. If there are such problems in the report, the

Health Authority sends a feedback to the hospital indicating the number and

type of errors found for each record of the file, and, in turn, the hospital must

correct them so as to get the reimbursement.

The complete reimbursement process is complex, and not complying with

the applicable requirements can be costly. Therefore, in order to better control

the compliance of the reimbursement process, the hospital wants to implement

an early warning system that allows the hospital’s compliance expert to have

updated information on daily compliance issues, e.g., in form of indicators,
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reports, or predictions on the compliance of its processes. In addition, in case

of repeated problems, it is important to understand why they happen and how

they can be solved for the future. However, manually analyzing the data in the

event log is time consuming and also error-prone but, still, the hospital wants

to improve its compliance in order not to lose money for not reimbursed drug

dispensations.

3 Service-Oriented Compliance Management: Re-
quirements

The above scenario describes a service-based business process that is distributed

over the hospital’s ward and the drug depot and that asks for proper compliance

management, that is, compliance assessment, reporting, and analysis.

As this paper has its roots in two EU FP7 research projects, i.e., Compas and

Master, that both assist compliance assessment in the SOA, here we do not pro-

pose a new assessment technique and rather rely on the techniques proposed

there: Compas (www.compas-ict.eu) strongly focuses on model-driven devel-

opment of compliant processes and proposes a compliance checking approach

that is based on (i) compliance requirements expressed in logical rules or pro-

cess fragments and (ii) complex event processing (CEP) and business protocol

monitoring to detect non-compliance with requirements. Master (www.master-

fp7.eu), instead, specifically focuses on the security domain and proposes a

two-layered approach to compliance assessment: first, it supports the CEP-

based monitoring of running processes and the enforcement of individual rules;

then, offline, it checks compliance of executed processes by assessing their con-

formance to a so-called ideal process model. Both approaches have in common

the use of an instrumented service orchestration engine for the execution of busi-

ness processes and the generation/logging of suitable execution events, starting

from a signaling policy that specifies which events are necessary for compliance

assessment.

Building on this background, reporting on the state of compliance requires

being able to store process execution and compliance data and to develop a

reporting dashboard on top, a task that we partly approached in [1]. But we
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also need to devise a method for the easy specification and, then, automated

computation of key compliance indicators (KCIs), in order to visualize them in

the dashboard. Next, the analysis of root-causes for non-compliance requires

selecting a suitable analysis algorithm and more importantly understanding

which data to look at, out of the huge amount of data that is available for this

task, and to validate the algorithm in the context of the described scenario.

4 Reporting on Compliance

In order report on the compliance of business processes, the common approach

is to visualize the compliance status at a high-level of abstraction, for instance,

by means of KCIs that are graphically rendered in a compliance governance

dashboard (CGD) [1]. KCIs support compliance experts with an overview of

the compliance performance of business processes and can be seen as particu-

lar type of KPIs (key performance indicators) that specifically measures how

compliant a process is with given requirements. A typical KCI may, for exam-

ple, measure how many process instances, out of all the executed ones, satisfy

a separation of duties requirement; but also a traditional QoS indicator (e.g.,

the average process execution time) can be seen as KCI, if we are subject to

a compliance requirement regarding QoS (e.g., deriving from a contract with

the customer). As we will see, KCIs also provide a starting point for finding

the root-causes of non-compliance. This section explains how we store process

execution data, specify and compute KCIs, and visualize them through effective

visual metaphors.

4.1 Storing Process Execution and Compliance Data

The main sources of process execution and compliance data are the event logs

generated by the execution of service-based business processes. Therefore, let us

first conceptualize the key ingredients characterizing event logs, as we perceive

them for our analysis. An event is a tuple e = 〈t, s, ts, d, p1, ..., pn, B〉, where

t is the type of the event (e.g., ProcessStart, ActivityExecuted, Violation), s

is the source that generates the event, ts is a timestamp, p1, ..., pn is a set

Appendix D. Analyzing Compliance of Service-Based Business Processes for
Root-Cause Analysis and Prediction

105



EventID 
DateID 
ActorID 
ProcessInstanceID 
ProcessDimensionID 
TimeID 
OcurrenceDateTime 
RepeatCount 
SequenceNumber 
AvailabilityDisposition 
Category 
Message 
Payload 
… 

F_Event 

D_Actor 

D_Component 

D_Time 

InstanceID 
ProcInstDimensionID 
ProcessDimensionID 
Parameter1 
Parameter2 
Parameter3 
…. 

F_BPInstance 

KeyIndicatorValueFactID 
ProcessDimensionID 
KeyIndicatorDimensionID 
DateID 
TimeID 
FromDateID 
ToDateID 
FromTimeID 
ToTimeID 
TimestampComputation 
Value 
Sigma 
Confidence 
Completeness 

F_KCI D_KCI 

D_Date 

D_Process 

ComplianceEvalID 
InstanceID 
ComplianceReqID 
ProcInstDimensionID 
ComplianceStatus 
EvaluationTimeStamp 
…. 

F_ComplianceEval 

D_ComplianceReq 

D_BPInstance 

Figure 2: Simplified schema of the data warehouse model.

of properties (e.g., event message header properties such as correlation data,

process instance identifier or similar), and B is the body of the event message

(e.g., containing business data needed for the computation of an indicator).

Using this data, events can be grouped together by their process instance and

ordered by timestamp, forming this way traces. A trace is a sequence of events

Ti = 〈ei1, ei2, ..., ein〉, where i refers to a process instance identifier and n is

the number of events that compose the process instance. This way, an event

log can be expressed as a set of traces L = {T1, T2, , Tk}, where k is the total

number of traces.

The events in the log are processed by Extract-Transform-Load (ETL) flows,

in order to store them into a data warehouse (DW), which is modeled using

a compliance-oriented dimensional data model. The reason for doing this is

that we aim at leveraging the capability of dimensional models for keeping a

conciliated view on the process execution and compliance data, and for sup-

porting further analysis, e.g., by means of root-cause analysis algorithms or

Online Analytical Processing (OLAP) tools. Figure 2 shows an excerpt of the

schema of the DW. The tables in white are the dimensional tables that allow

us to slice and dice through the fact tables (shaded in gray). The fact table

F Event stores the events as they come from the event log, F KCI stores the
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Table 1: Example of a process instance table for the drug dispensation process.

computed values of indicators, F BPInstance, the instances of processes, and

F ComplianceEval, the compliance status of process instances as computed,

for instance, by the compliance checking algorithms adopted in the context of

the Compas or Master projects.

The F BPInstance table deserves a further explanation, as it constitutes

an abstraction of the process execution data, and the basis for computing in-

dicators and performing root-cause analysis. In our DW model, each business

process BP has its own F BPInstance table, or, as we call it, process instance

table (e.g., in our scenario we have a F DrugDispensationInstance table).

In these tables, each row corresponds to an instance of the associated process,

while columns (i.e., parameters of the process instance table) correspond to

business data that are of interest for the analysis of each process. Table 1

shows a conceptual view on the process instance table for the drug dispensa-

tion process, where each row corresponds to a single drug dispensation. The

DrugType column refers to the type of drug, ErrPerData indicates whether

there was an error in the information about the patient, ErrCompData tells us

if there was an error in any other complementary data, and Compliant tells us

whether the dispensation was free of error. These parameters are obtained from

the attributes of the events that are part of the event trace. Sometimes, the

parameter values can be directly extracted from events without modifications

(e.g., the DrugType parameter), while in other cases the values are obtained

by performing aggregation/computations over a set of events and attributes of

process instances (e.g., the Compliant parameter).

Finally, it is worth to mention that in order to populate the DW, the ETL

usually needs to access other sources of data such as user management systems

and human task managers, which are the main data providers for dimension
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tables, as opposed to event logs, which provide mostly the evidences of process

executions.

4.2 Specifying and Computing Key Compliance Indicators

Generally, indicators are computed out of a variety of data and by means of

different functions, ranging from the lowest business data granularity to the

highest business goals. In the context of compliance assessment, a KCI is a

measure (i.e., a numeric value) that quantifies compliance performance against

compliance targets in a pre-determined time interval. For instance, one of the

compliance requirements imposed by the Healthcare Authority is that of send-

ing drug dispensation reports without errors in the data about dispensed drugs

and patients. Whenever there is an erroneous record of drug dispensation, the

corresponding drug is not reimbursed to the hospital, and, thus, it is impor-

tant for the hospital to keep an eye on the accomplishment of this compliance

requirement. KCIs are therefore useful means to assist this task.

KCIs can be easily specified by using the available information in Table 1.

For example, a KCI may be defined as the percentage of non-compliant process

instances out of all instances in the DW (and the reporting time interval).

More precisely, we can use the Compliant column of a process instance table to

compute KCIs, and we can express their respective formulas using standard SQL

queries. SQL has been designed also as a language for computing aggregates

and is well known, understood, and supported, so there was no reason to come

up with another language. Yet, the ease with which we are able to express KCIs

stems from the abstraction we made on the process execution data by using the

so called process instance tables.

4.3 Compliance Governance Dashboard

Finally, KCIs are rendered to the compliance experts by means of a CGD,

such as the one depicted in Figure 3 [1]. The CGD features are a graphical

representation of KCIs and serves as start point for further root-cause analy-

sis. More specifically, the CGD creates an awareness of possible violations and

concentrates the most important information to be evaluated at-a-glance. The
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Figure 3: CGD with KCIs and the interactive table for drill-down and roll-up [1].

interactive table (at the front in Figure 3) provides a drill-down and roll-up

mechanism for the compliance status, for example, for the different drug dis-

pensation locations controlled by the hospital (i.e., clinics, laboratories, dispen-

saries), according to two main analysis perspectives (compliance performance

vs. process performance), down to the individual event level (e.g., the list of

incomplete records associated to a drug (background of Figure 3).

5 Analyzing Non-Compliance

While checking the compliance of business process instances means determin-

ing whether the process instances are compliant or not at the individual event

trace level, analyzing non-compliance of business process executions, i.e., un-

derstanding and explaining the underlying reasons of non-compliance, needs

to be performed over a set of traces in order to be able to derive meaningful

knowledge that can be used to improve processes for future executions.

Incidentally, labeling event traces as compliant or non-compliant, which is

the main goal of compliance checking, is very similar to classifying data tuples,
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a data mining practice that is well-studied in literature [20]. There are several

algorithms that can help in performing this analysis, among which we choose

decision trees, as they are good for knowledge discovery where neither complex

settings nor assumptions are required [20], and they are easy to interpret and

analyze. In this section, we discuss how we address the issue of compliance anal-

ysis through decision trees, going from data preparation to the actual building

and interpretation of the decision tree.

5.1 Preparing the Analysis

In Section 4.1, we introduced our DW model, which constitutes the basis for

our CGD and the root-cause analysis. Preparing the analysis therefore means

selecting which data, out of the huge amount of events stored in the DW, are

suitable for identifying root-causes for non-compliance. In the same section, we

also introduced the idea of having process instance tables, one per process, in

which we store those process parameters that are used for computing indica-

tors. Recall that each tuple in a process instance table represents a particular

instantiation of the process under consideration and that each instance comes

with its compliance label. Now, considering that we are interested in analyzing

non-compliance problems for process instances, it is interesting to note that the

process instance tables initially conceived for the computation of indicators also

contain the data we are searching for. In fact, by defining a set of indicators for

each process (and the events and data attributes that are necessary to compute

them), the compliance expert implicitly performs a pre-selection of the data

that are most likely to be related with compliance issues. The availability of

the compliance label for each instance indicates that the best choice for the

root-cause analysis is to use the process instance tables to feed the decision tree

mining algorithm, as their data naturally fits the typical input format of these

kinds of algorithms.

For instance, considering again the process instance table shown in Table

1, one way of building the training tuples for the decision tree is to use the

Compliant column as the class attribute (leaf nodes) for the decision tree, while

ErrPerData and ErrCompData can be used as the attributes on which the
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Figure 4: Decision tree computed over non-compliant instances of the drug dispensation
process.

algorithm defines the split points (for internal nodes). This way, the training

tuples can be represented as 〈ErrPerData, ErrCompData, Compliant〉.
The set of training tuples can be easily obtained through trivial SQL queries,

and the retrieved result set can be used directly to feed the decision tree al-

gorithm. Note that, as in the case of the specification and computation of

the KCIs, the task of building the training tuples is greatly facilitated by the

abstraction provided by the process instance tables.

5.2 Understanding Key Factors

The algorithm we use in our prototype implementation for building decision

trees extends the C4.5 algorithm to handle uncertain data [21]. In this paper

we do not discuss the uncertainty aspect in mining data. However, our proto-

types are equipped to handle uncertainty in the event logs we use for analyzing

business process executions (for details on how uncertainty in event logs can be

handled, see [6]). Instead, here we focus more on the aspect of discovering and

understanding the key factors that affect the compliance of business executions.
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As in any decision tree, the internal nodes contain the criteria used for

classifying tuples. The leaf nodes, instead, contain the classes to which tuples

are classified. For instance, if we choose the Compliant column of Table 1 as the

class attribute, we will obtain a decision tree where the leaf nodes contain the

compliance outcomes for the paths drawn from the root of the tree. However,

nothing prevents us from choosing any other parameter of the process instance

table as the class attribute when searching for the root-causes of non-compliant

process executions.

For instance, as part of the validation of this approach, we performed exper-

iments on a dataset of more than 30000 drug dispensations performed between

January and April of 2009 in the hospital described in the scenario (Section 2).

To this end, a process instance table with around 25 relevant parameters was

build for the drug dispensation process, among which the parameters shown in

Table 1 were included. Since the dependence of the Compliance column on the

ErrPerData and ErrCompData columns was fairly obvious (but still, proven

with our tools), we narrowed our analysis by considering only those process

instances that were not compliant. After exploring some combinations of pa-

rameters, we found out that there was a relation between the ErrCompData

and DrugType parameters. More precisely, we found that 393 drugs dispensa-

tions out of around 30000 had some error, among which 173 had errors of the

type ErrCompData and 220 errors of the type ErrPerData. While the decision

tree was not able to tell us anything that was really significant about errors

of the type ErrPerData, it was able to find something useful for the errors of

the type ErrCompData, as shown in Figure 4. More precisely, the decision tree

discovered that 137 out of 173 (79%) erroneous process instances corresponded

to drugs of the type 2 (DrugType=2), which are drugs for ambulatory usage,

while the rest (21%) corresponded to drugs of the type 6, 9 and 11.

Since the ErrCompData refers to error in the dispensation data (such as

the drug code, quantity and unitary price), this may be an indication that, for

example, this type of drugs is dispensed at ease, and thus, a better monitoring

or compliance enforcement need to be carried out on the controls related to this

compliance requirement.
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5.3 Predicting Compliance States

While decision trees are generally perceived as simple classifiers, we however

use them rather for discovering and understanding better the root-causes of

undesirable behaviors. Furthermore, we advocate the use of decision trees also

for predicting the potential outcomes of process instances that are still running.

In fact, each decision point in a tree corresponds to an event (or better to an

attribute of an event). So, if during process execution an event that corresponds

to a decision point is generated, this allows performing predictions on the likely

outcome (in terms of compliance) of the process instance: it suffices to inspect

the path in the tree determined by the registered event to identify the instances’

likely compliance label.

Thus, in the case of predictions of non-compliant behaviors, enforcement

actions can be enacted in order to align process executions, whenever possible,

to the corresponding compliance requirements. This is particularly useful in

cases when the process has several tasks and long running times that span,

e.g., over several hours. Also, the prediction is particularly useful in the case

compliance is enforced manually, because it allows the compliance expert to

better focus his effort on those process instances that are likely to be non-

compliant, leaving out compliance ones.

6 Related Work

The major part of compliance management approaches focuses on the busi-

ness process modeling aspect at design time [7-9]. Typically, they are based on

formal languages to express compliance requirements (e.g., Business Property

Specification Language, Linear Temporal Logic) and simulations to prevent er-

rors at runtime (e.g., finite state machine, Petri nets). In this context, just few

approaches address compliance monitoring at runtime. For instance, Trinh et.

al. [10] monitor time constraints during the execution of process activities, using

UML Timing Diagrams to specify constraints and Aspect Oriented Program-

ming to control executions. Chung et. al. [11] check if the user-defined process

is compliant to pre-defined ontology and a specific model, in which compliance
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requirements are described. An IBM research group [12] advocates the use

of the REALM (Regulations Expressed As Logical Models) metamodel to de-

fine temporal compliance rules and the Active Correlation Technology to check

them. That way, it can detect duplicate events or compute a user-definable

function, which checks whether a function exceeds some threshold.

Concurrently, commercial Business Activity Monitoring (BAM) solutions

have been developed to support compliance management (e.g., IBM Tivoli, HP

Business Availability Center, Nimbus, Oracle Business Activity Monitoring).

Although, such tools still do not have the capability to process and interpret

generic events (e.g., user-defined business or compliance-related events). They

only support the definition of thresholds for parameters or SLAs to be moni-

tored. Also, the ability to compare monitored business process executions or,

more in general, business patterns with expected execution behaviors is not

supported. Regarding reporting on compliance and KCIs, few works address

this aspect and they do it partially. For example, [18] studies the representa-

tion of data through visual languages for risk and compliance management. In

[19], the authors purpose a model-driven fashion approach to report on business

performance and design dashboards.

To the best of our knowledge, no mining approaches have been specifically

proposed to understand the root-cause of the compliance violations. However,

few related approaches for the mining of business processes are in place [3-

5][14-16]. Similar to our solution, they adopted log files and a consolidated

warehouse containing business and process historical data, from where data

subsets are extracted and used as input to mining algorithms in order to predict

or understand the origin of undesired business process execution behaviors.

Finally, we can conclude that Compas and Master have been done significant

contributions in all the fields mentioned in this section, since they provide

solutions to manage, monitor and report on compliance based on generic events.

For instance, [2][13] provide approaches to the management of the compliance

monitoring at runtime, [17] states how to compute uncertain key indicators

from uncertain data, [1] presents CGD to report on compliance and this paper

presents root-cause analysis based on data mining techniques to understand

non-compliant business processes.
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7 Conclusions and Future Work

In this paper, we leverage on automated compliance checking techniques and

complement them with a tactical perspective that targets compliance experts,

which are accountable for assuring and improving compliance. We assist them

by automating the analysis of the huge amount of data that is produced during

process execution and specifically provide (i) a reporting dashboard with KCIs

and KPIs to assess the state of compliance, (ii) a root-cause analysis technique

to understand non-compliance. Our experiments with real data from a major

Italian hospital show that the developed dashboard is effective in highlighting

encountered problems and that the proposed abstractions and selection of data

indeed allow us to identify also unexpected causes for non-compliant situations

out of a large amounts of data.

It is important to note that, although in this paper we focused on the case of

compliance, the ideas and solutions we propose are of general nature and can, for

instance, easily be applied to the computation and analysis of KPIs. Similarly,

we are not limited to process engine event as only source of information; events

may also stem from web services, human task managers, or similar if suitably

instrumented.
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Aiding Compliance Governance in Service-Based
Business Processes

Patricia Silveira Carlos Rodŕıguez Aliaksandr Birukou

Fabio Casati Florian Daniel Vincenzo D’Andrea Claire Worledge

Zouhair Taheri

Abstract

Assessing whether a companys business practices conform to laws and reg-
ulations and follow standards and SLAs, i.e., compliance management, is a
complex and costly task. Few software tools aiding compliance management
exist; yet, they typically do not address the needs of who is actually in charge
of assessing and understanding compliance. We advocate the use of a compli-
ance governance dashboard and suitable root cause analysis techniques that
are specifically tailored to the needs of compliance experts and auditors. The
design and implementation of these instruments are challenging for at least
three reasons: (1) it is fundamental to identify the right level of abstraction
for the information to be shown; (2) it is not trivial to visualize different
analysis perspectives; and (3) it is difficult to manage and analyze the large
amount of involved concepts, instruments, and data. This chapter shows
how to address these issues, which concepts and models underlie the prob-
lem, and, eventually, how IT can effectively support compliance analysis in
Service-Oriented Architectures (SOAs).

Note: We include only the abstract of this publication. The full publication
is available at:

http://www.igi-global.com/chapter/aiding-compliance-governance-service-based/60900
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Eventifier: Extracting Process Execution Logs from
Operational Databases ∗

Carlos Rodŕıguez Robert Engel Galena Kostoska Florian Daniel

Fabio Casati Marco Aimar

Abstract

This demo introduces Eventifier, a tool that helps in reconstructing an event
log from operational databases upon which process instances have been ex-
ecuted. The purpose of reconstructing such event log is that of discovering
process models out of it, and, hence, the tool targets researches and practi-
tioners interested in process mining. The aim of this demo is to convey to
the participants both the conceptual and practical implications of identifying
and extracting process execution events from such databases for reconstruct-
ing ready-to-use event logs for process discovery.

1 Introduction

Process discovery is the task of deriving a process model from process exe-

cution data that are typically stored in event logs, which in turn are generated

by information systems that support the process execution [5]. Most of the

approaches available in the state of the art assume the existence of an event

log, where each event is assumed to have information, such as a process name,

activity name, execution timestamp, event type (e.g., start or end), and process

instance ID. In practice, most companies do not really have such an event log,

either because they do not have a business process engine that is able to gener-

ate such logs or, if they do, the engine supports only parts of the process, e.g.,

because parts of the process are supported by legacy systems. In the second

case, it may also happen that the engine does not generate an event log that

can be used for process discovery, e.g., if the log contains only events regarding

errors in the system.
∗Copyright is held by the authors. The final publication is available at http://ceur-ws.org/Vol-940/
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The information stored in an event log commonly provides a very narrow

and focused view on the overall data produced by a process during its execution

(e.g., focusing on errors for recovery or control flow decisions and actors for

auditing). Typically, however, an information system also stores the full data

produced by a process inside its operational databases (OD) (also known

as production databases), where these data comprise process progression data,

process state data, business data produced throughout the process, data related

to the regular operations of an organization, as well as their related business

facts and objects [2]. ODs therefore store more and richer data than event logs,

but blur different aspects of data and neglect the event-based nature of process

executions. For this reason, process discovery starts from event logs.

With this demo, we approach the problem of producing process execution

events in a fundamentally different context, i.e., in a context where we do not

have access to the information system running the process (hence we cannot

instrument it) and where the only way of obtaining process execution events is

deriving them from the OD of the information system after the actual process

execution. We call this activity eventification of the OD and we perform it

with the help of our tool Eventifier. For the rest of the paper, we assume

that the OD is a relational database [4].

Significance to the BPM field. Much attention has been paid so far to the

problems of representing event logs [6], event correlation [3] and process discov-

ery [5], while the problem of how to produce good events has been neglected

by research. As explained above, Eventifier approaches an important issue

in the field of process mining by providing an application that will help both

researches and practitioners working in the field.

2 Eventification of the Operational Database

Let’s start by giving some preliminary definitions. An event log can be seen as

a sequence of events E = [e1, e2, ..., em], where ei = 〈id, tname, pname, piid,

ts, pl〉 is an event of a process instance, with id being the identifier of the

event, tname being the name of the task the event is associated with, pname
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being the name of the process type, piid being the process instance identifier,

ts being the timestamp of the event, and pl being the payload of the event.

Thus, an event log stores traces of process executions as atomic events that

represent process progression information and that may carry business data in

their payload.

Reconstructing an event log E with events ei means deciding when to infer

the existence of an event from the data in the OD and filling each of the at-

tributes of the event structure with meaningful values. These values either stem

from the data in the OD or they may be provided by a domain expert. Specifi-

cally, for the id attribute, assigning an identifier to an event means recognizing

the existence of the event. Given that we do not have real events in the OD but

other, indirect evidence of their occurrence, there is no “correct” or “original”

event identifier to be discovered. The question here is what we consider evi-

dence of an event. Similarly, in the case of tname, without the concept of task

in the applications of the information system, there is no explicit task naming

that can be discovered from the data. Thus, we need to find a way to label

the boxes that will represent tasks in the discovered model. The value for the

attribute pname (the process name) we can only get from the domain expert,

who knows which process she is trying to discover. Then, the process instance

identifier (piid) is needed to group events into process instances. The piid is

derived by means of event correlation based on the values of the attributes of

the identified events. The attribute ts is needed to order events chronologi-

cally, which is a requirement for process discovery. Therefore, we need to find

evidences in the OD that help us in determining the ordering of events. Finally,

the goal of choosing a payload pl for the purpose of eventification is not to re-

construct the complete business data that can be associated with a given task

or event, but rather that of supporting the correlation of events into process

instances. We can get this data from the rows that originate the events.

We call the assignment of values to id, pname and tname the identifica-

tion of an event, to ts the ordering of events, to pl data association, and

to piid correlation. These four activities together constitute the eventifica-

tion process, and it is helped by heuristics in the form of eventification

patterns :
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Event identification patterns. These patterns help in the identification of

events from the OD. In these patterns, we assume that the existence of a row

in a relation R indicates the presence of an event. We express these patterns

as a function:

identify(R, pname, tname)→ e0 = 〈id, pname,−, tname,−, t〉
where pname and tname are defined by the domain expert, and t is the tuple

in R that originated e0. In concrete, we rely on the following three patterns for

the identification of events:

• Single row, single event pattern (Figure 1(a)). In this pattern, each row

in a relation R indicates the existence of an event. R can be obtained with

a simple SQL query as:

SELECT * FROM r1, r2, ..., rn

WHERE [JOIN conditions for r1, r2, ..., rn];

• Single row, multiple event pattern (Figure 1(b)). A tuple in R can

evidence the existence of more than one event, such as when different

values of the attributes Ai of R indicate different potential events. In this

case, the relation R is built by applying filtering conditions in the WHERE

clause so as to keep only the target events:

SELECT * FROM r1, r2, ..., rn

WHERE [JOIN conditions for r1, r2, ..., rn]

AND [filtering conditions for the target event, e.g., r2.dispatched = yes];

• Multiple row, single event pattern (Figure 1(c)). Multiple rows in a

relation R indicate the presence of a single event. This last pattern is

useful, for instance, when we deal with a denormalized relation that mixes

data at different granularities, e.g., when in a single tuple we find both the

header of an invoice and the item sold. The SQL for R has the following

form,

SELECT DISTINCT A1, A2, ..., Ak FROM r1, r2, ..., rn

WHERE [JOIN conditions for r1, r2, ..., rn] ;
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where the attributes Ai should be the higher granularity attributes that

would be typically used in a GROUP BY, SQL statement.

Event ordering pattern. The event ordering pattern aims at deriving the or-

dering of events from time-related information associated to the records stored

in the OD, and is represented as:

order(e0)→ e1 = 〈id, pname,−, tname, ts, t〉
where e1 is the result of attaching a timestamp value to ts, and ts is the

projection of all timestamp or date attributes of e0.t generated by the previous

pattern. If only one timestamp can be found, it is used straightaway. If there

are more possible timestamps in pl, the domain expert chooses the one that

best represents the execution time of the task.

Data association pattern. The data association pattern aims to select which

data to assign to pl. In the above patterns, we have so far simply carried over

the complete row t as payload of the event, while here we aim to select which

attributes out of the ones in t are really relevant. Our assumption is that all

necessary data is already present inside t, that is, we do not need to consult any

additional tables of the OD to fill pl with meaningful data. Thus, in the event

identification step, the necessary tables are joined, and t contains all potentially

relevant data items. The data association pattern is represented as:

getdata(e1)→ e2 = 〈id, pname,−, tname, ts, pl〉
where e1 is as defined before, and pl is the new payload computed by projecting

attributes from t. In absence of any knowledge about the OD by the domain

expert, the heuristic we apply is to copy into pl all attributes of t, except times-

A1
xx yes no
xx yes yes
xx no no

AnA1 e1
An

xx xx xx
xx xx xx
xx xx xx

e2

e3

deliveredorderID
xx
xx
xx

e  [dispatch]2
e  [deliver]3

A1
xx 1 1
xx 1 2
xx 1 3

AnitemIDorderID
xx
xx
xx

xx 3 1 xx
e  [invoice]1

... ... ...dispatched

(a) (b) (c)

e  [dispatch]1

Figure 1: Types of event identification patterns: (a) single row, single event, (b) single
row, multiple events, and (c) multiple row, single event pattern
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tamps and auto-increment attributes, which by design cannot be used for corre-

lation. The domain expert can of course also choose manually which attributes

to include and which to exclude.

Event correlation patterns. Eventually, we are ready to correlate events and

to compute the piid of the identified events. The goal of event correlation is to

group events into process instances, which are the basis for process discovery.

As explained above, we assume that after associating the final payloads to

events all information we need to correlate events is present in the payload pl

of the events in the form of attribute-value pairs. In practice, correlating events

into traces means discovering the mathematical function over the attributes of

pl that tells if an event belongs to a given process instance, identified by the

output piid of the function. We represent this step as follows:

correlate(e2)→ e = 〈id, pname, piid, tname, ts, pl〉
where e2 is as defined above and e is the final version of the discovered event

from the OD with the attribute piid filled with a suitable identifier of the

process instance the event belongs to.

3 The Eventifier Environment

Figure 2 provides an architectural view on the resulting approach to eventifi-

cation, which is a semi-automated process that requires the collaboration of a

domain expert having some basic knowledge of the OD to be eventified. First,

the domain expert identifies events in the OD, orders them, and associates data

with them. All these activities are supported the the so-called Event Extractor,

which supports the domain expert in an interactive and iterative fashion. The

result of this first step is a set of events, which are however not yet correlated.

Correlation is assisted via a dedicated Event Correlator, which again helps the

domain expert to interactively identify the best attributes and conditions to

reconstruct process traces. The result of the whole process is an event log that

is ready for process discovery.

The Eventifier is implemented as an integrated platform that includes the
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Figure 2: Overview of the database eventification prototype and approach.

Event	 
extractor

Event	 correlator

Figure 3: Screenshots of the components of our integrated platform for eventification.

components for eventification, correlation and process discovery. These com-

ponents allow domain experts to interactively apply patterns and to navigate

end-to-end from the OD to the discovered process model and back. Since our

aim is not to make contributions on process discovery, we use existing process

discovery algorithms implemented as plugins for the popular process mining

suite ProM [6]. All components are implemented as Java desktop applications

using standard libraries such as Swing. The implementation of the Event Corre-

lator is partly based upon a software tool originally developed for the correlation

of EDI messages [1]. For the creation of XES-conformant event logs [6] that are
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used in the interface to process discovery in ProM, we employ the OpenXES li-

braries (http://www.xes-standard.org/openxes/start). Figure 3 shows

the screenshots of the Event Extractor and Correlator components.

4 Demo scenario

A demo video of our eventification tool in action can be found at the website

http://sites.google.com/site/dbeventification. The demo is in the

form of a screencast and illustrates the main features of our tool using as scenario

the case of an Italian logistics company for refrigerated goods. In this video we

clearly show the two main tasks of our approach as outlined in Figure 2 and we

also show the final outcome in terms of the process model discovered from the

reconstructed event log.
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SOA-Enabled Compliance Management:
Instrumenting, Assessing and Analyzing

Service-Based Business Processes ∗

Carlos Rodŕıguez Daniel Schleicher Florian Daniel Fabio Casati

Frank Leymann Sebastian Wagner

Abstract

Facilitating compliance management, i.e., assisting a company’s management
in conforming to laws, regulations, standards, contracts and policies, is a hot
but non-trivial task. The service-oriented architecture (SOA) has evolved
traditional, manual business practices into modern, service-based IT practices
that ease part of the problem: the systematic definition and execution of
business processes. This, in turn, facilitates the online monitoring of system
behaviors and the enforcement of allowed behaviors – all ingredients that can
be used to assist compliance management on the fly during process execution.
In this paper, instead of focusing on monitoring and runtime enforcement
of rules or constraints, we strive for an alternative approach to compliance
management in SOAs that aims at assessing and improving compliance. We
propose two ingredients: (i) a model and tool to design compliant service-
based processes and to instrument them in order to generate evidence of how
they are executed and (ii) a reporting and analysis suite to create awareness
of a company’s compliance state and to enable understanding why and where
compliance violations have occurred. Together, these ingredients result in an
approach that is close to how the real stakeholders – compliance experts and
auditors – actually assess the state of compliance in practice and that is less
intrusive than enforcing compliance.

1 Introduction

Compliance management [35] is an important, costly, and complex problem: It

is important because there is increasing regulatory pressure on companies to

meet a variety of requirements in terms of regulations, laws and similar (e.g.,

∗The final publication is available at www.springerlink.com (http://link.springer.com/article/10.1007%2Fs11761-013-
0129-3)
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Basel II, MiFID, SOX). This increase has been to a large extent fueled by high-

profile bankruptcy cases (e.g., Parmalat, Enron, WorldCom), safety mishaps

(the April 2009 earthquake in L’Aquila, Italy, has already led to stricter rules

and certification procedures for buildings and construction companies), or the

recent financial crisis. Failing to meet these requirements may imply safety

risks, hefty penalties, loss of reputation, or even bankruptcy or jail [36].

Managing and auditing/certifying compliance is a very expensive endeavor.

In their 2008-2009 Governance, Risk Management, and Compliance Spending

Report [13], AMR Research estimated that companies would spend US$ 32B

only on governance, compliance, and risk in 2008 and more than US$ 33B

in 2009. In addition, audits are themselves expensive and invasive activities,

costly not only in terms of auditors’ salaries but also in terms of internal costs

for preparing for and assisting the audit.

Finally, the problem is complex because compliance requirements are often

pervasive in that they span across many segments of a company, and many

processes. They are also sometimes only vague and informally specified. Yet,

compliance management requires understanding and interpreting requirements

and then implementing and managing a typically large number of controls on a

variety of procedures across the business units of a company. Each compliance

requirement and procedure may demand for its own control mechanism and its

own set of assessment metrics to adequately capture the state of compliance.

Today, compliance is to a large extent managed by the various business units

in rather ad-hoc ways and with little or no IT support. As a result, today it is

very hard for any CFO or CIO to answer questions such as: Which requirements

does my company have to comply with? Which processes should obey which

requirements? Which processes are following a given regulation? Where do

violations occur? Which processes do we have under control? Even more, it

is hard to do so from a perspective that not only satisfies the company but

also the company’s auditors, which is crucial as the auditors are the ones that

certify the company’s capabilities to control compliance.

Yet, business processes are indeed supported by IT. Technologies like web

services and business process management systems have demonstrated, al-

though more slowly than initially thought, their viability for organizing work
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and assisting and orchestrating also human actors involved in business processes.

Interestingly, however, the automated operation of business processes has not

yet lead to a significant facilitation of compliance management practices.

1.1 Reference Scenario: Outpatient Drug Dispensation in a

Hospital

Let us consider, for example, the management and assessment of the outpa-

tient drug dispensation process summarized in Figure 1. The process – and

this paper – originates in the EU project MASTER (http://www.

master-fp7.eu) where we cooperate on compliance management with Hospi-

tal San Raffaele (Milano, Italy), which runs the described distributed business

process. The process is part of a bigger procedure known as the outpatient

drug reimbursement, which implements the steps required for refunding hos-

pitals for the drugs dispensed to patients that are not hospitalized. The overall

process is regulated by the Italian Healthcare Authority, which dictates regu-

lations on the dispensation and reporting requirements for the reimbursement

of drug expenses, such as the ones concerning privacy in personal information

processing.

The core process, shown in Figure 1, starts with the patient’s visit to the

doctor in the hospital’s ward. Depending on the diagnosis, the doctor sends a

prescription for drugs to the nurse, who dispenses the necessary drugs to the

patient if the requested quantity is available. If the available drug quantity is

Figure 1: Outpatient drug dispensation in a hospital: modeling compliance requirements
and assessing compliance
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insufficient, she requests the drug to the hospital-internal pharmacy, which is

then in charge of replenishing the nurse’s drug store. If, in turn, the pharmacy

is running out of stock, it orders the necessary drugs from the pharmaceutical

company.

The drug dispensation process is supported by several web service-based

information systems that interact inside a SOA that is distributed over the

hospital, the pharmacy, and the pharmaceutical company. For instance, there

are web services for issuing drug requests in the various dependencies of the

institute, and the pharmaceutical company the hospital cooperates with accepts

drug requests through web service interfaces. To retrieve the data necessary to

assess the hospital’s state of compliance, during the execution of the process

suitable data (e.g., events) that can be logged and later analyzed are produced

by all cooperating parties.

By law, the hospital must guarantee that all patient data are anonymized

throughout the process (and in the generated events), and the hospital’s inter-

nal policy states that drug replenishment must occur within maximum two

business days and that the person who prescribes a drug cannot also dispense

the drug (separation of duties). While this latter requirement is monitored

internally by the hospital’s own compliance expert, the former requirement is

subject to yearly audit by an official security auditor, who certifies (or not)

the hospital’s compliance with the laws the hospital is subject to. Passing this

audit is crucial for the hospital’s business continuity.

The compliance requirements that apply to the hospital are identified and

specified by the compliance expert, who knows about the applicable laws and

regulations and about the internal policy. Typically, the compliance expert as-

sists the process modeler in designing compliant processes, in order to prevent

non-compliance by design. Yet, he also checks the execution of the designed

processes, as at runtime non-compliant situations may occur despite a well-

designed process model (e.g., due to system failures or manual intervention on

a running process instance). Periodically, he then writes an internal compli-

ance report, which is the basis (i) for the management to take decisions and

enforce compliance and (ii) for the process modeler to understand violations

and improve process models and controls.
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Today, all these activities are typically performed manually, and compliance

assessment is of statistical nature. That is, controls are added to processes in

an ad-hoc and per-process fashion; process instances are checked by inspecting

only a subset of physical documents or log files and estimating compliance

levels; the compliance report is written by hand; and analyzing the root causes

of violations is hard and time-consuming, given the large amount of data to be

correlated. In addition to that, although the overall process is automatically

orchestrated and activities have suitable IT support, in practice many tasks are

still based on paper forms filled by doctors or nurses during their service and

manually input only in a later stage. 1

1.2 Contributions and Structure of the Paper

This paper describes an infrastructure and methodology that supports compli-

ance management. Specifically, we provide the following contributions:

• We provide a model and a graphical modeling tool that eases

building processes that are compliant with process-specific compliance re-

quirements. The approach allows one to equip a common business process

definition (e.g., BPEL process specification) with a definition of technical

compliance rules and to instrument it in order to generate the necessary

evidence for compliance assessment.

• In order to facilitate compliance assessment, we extend a state-of-the-

art service orchestration engine with signaling capabilities that

are able to generate compliance-related evidence on process executions.

• We provide a suite of reporting and analysis tools that facilitates

the writing of the compliance report and helps the compliance expert

and the process modeler to identify where and why compliance violations

happened. The suite is based on a compliance-oriented warehouse, key

compliance indicators, and root cause analysis algorithms.
1It is important to note here that we assume all the artifacts needed for compliance management are represented inside

the information system. Also, we do not deal with the problem of fidelity regarding the computer representations of real
world artifacts; this is a general modeling that requires adequate domain and modeling knowledge.
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• We implement all reporting and analysis algorithms on top of a data

model that supports compliance assessment , which allows us to

better reflect the nature of the data that is available for analysis and to

enable better business decisions.

In summary, the main goal of this work is to enable humans to be aware

of how compliant business processes are and to understand why problems hap-

pen, in order to improve compliance. We propose a methodology and tool for

the definition and assessment of compliance rules. While compliance rules are

typically domain-specific, our solution is generic and aims to support different

regulations at a technical level, limited to those business processes of a company

that are supported by web services and that are executed with the help of a

business process engine.

The methodologies, prototypes and demos described in this work have been

designed and evaluated with the help from audit experts of Deloitte, Paris, who

deal with compliance in a variety of domains at a daily basis.

In the next section we introduce our approach to compliance management

and show how the above contributions fit into an overall methodology. Then,

in Sections 3-6 we describe the individual phases of the methodology, i.e., (i)

design of processes and evidence, (ii) execution of processes and generation

of evidence, (iii) assessment of compliance, and (iv) analysis of problems. In

Section 7 we survey the most related works, and in Section 8 we recap the

contributions of the paper.

2 Compliance Management in the SOA

2.1 Compliance Management Requirements

Compliance management should enable the company’s management to know

about the state of compliance, assess the risks associated with non-compliant sit-

uations, and take business decisions to correct them. Ideally, these decisions are

based on up-to-date compliance reports, featuring a set of compliance-specific

indicators that are easy to interpret and, hence, effective in communicating key
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information. The compliance expert, instead, is interested in knowing the indi-

vidual compliance violations and understanding their causes, while the process

modeler is rather interested in how to improve process models as well as control

points for future executions.

Typically, this means that we need a dashboard for reporting on compliance

that allows navigation across the company’s processes and across compliance

concerns and associated key indicators at different levels of aggregation and

details. It also means that we need to provide a way to model concerns and

indicators, and to collect evidence for their computation. In terms of modeling,

we need a formalism and tool to express compliant behaviors ,

e.g., in the form of process templates that specify compliance requirements and

constrain the instantiation of the template. Once we have a definition of a

compliant process trace, we can then verify if the actual execution is compliant.

We also need a way to define and compute indicators which can typically be

based on aggregating information over many process instances (e.g., the total

amount of invoices that were handled in a non-compliant manner).

In this paper we consider as evidence of compliance and as source for the

computation of reports the information and events related to the execution of

processes. Some of these data and events (e.g., the start of an activity) are com-

monly produced by business process engines during runtime, but compliance

assessment may ask for some specific execution evidence (e.g., a login event

with actor information, or information about an invoice). Collecting proper

evidence, typically within a data warehouse, requires the instrumentation

of a process or service orchestration engine as well as a way to specify which

events should be signaled by the process.

While processes, related evidence, compliance requirements, and indicators

differ on a case by case basis, the challenge here is to adopt the same formalisms

and computation model, otherwise the approach is not reusable and we would

have to develop models and code for each new compliance requirement or new

process.

In the case compliance violations have happened, it is of utmost impor-

tance to be able to understand why and where these violations occurred.

Violations may stem from problems during process execution (instance-level
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violations) or from badly designed processes (model-level violations). To un-

derstand instance-level violations, we propose the use of classification by means

of decision trees, which allows the correlation of a process instance’s compliance

state with its business data. In order to understand model-level violations, we

propose the use of protocol discovery, which allows the comparison of a sys-

tem’s real behavior with its designed behavior. Finally, both instance-level and

model-level violations manifest themselves also in compliance indicators. Corre-

lating their values and dynamics over time may thus provide further indications

on where violations occurred in a process model and which violations impact

on which other violations.

2.2 System Architecture

Figure 2 illustrates how we approach the above requirements from a system

architecture perspective. The architecture has been designed leveraging on

events as concrete evidence of the runtime behavior of the system, where the

necessary events can be either derived for free from service communications in

the service-based environment or they can be obtained by instrumenting the

system purposefully. Starting from business and compliance requirements, the

compliance expert defines compliance templates (see Section 3.1) and Key

Compliance Indicators (KCIs), i.e., indicators measuring the compliance of

process instances (Section 3.2), with the help of a dedicated compliance tem-

plate editor. A compliance template describes the compliant behavior of a

business process, while the KCIs are key indicators that measure how compli-

ant a company is with respect to its compliance requirements. Based on the

compliance template and the specified KCIs, a so-called signaling policy is

created, which states which execution events are needed to assess compliance.

The process modeler instantiates the templates, designs the process mod-

els, and generates executable process specifications (in our case, we generate

BPEL), which can be inspected and fine-tuned with the help of a common

business process editor. The engine takes process models as input and in-

stantiates and runs them, establishing this way a communication between web

services, human users (via dedicated user interfaces that allow them to in-
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Figure 2: Event-based compliance management architecture

teract with the process), and possible external business process engines (in

the case of distributed business processes). The signaling policy configures the

signaling plug-in of the purposely extended business process engine. Com-

munications and events are sent over a shared enterprise service bus (ESB),

which allows the easy tracking of events in an event log. Out of all the mes-

sages that flow through the ESB, the event log only subscribes to the events

defined in the signaling policy. Periodically (e.g., during the night), an ETL

(Extract-Transform-Load) procedure loads tracked events into the data ware-

house and computes compliance and KCIs. The data in the warehouse can then

be inspected by the compliance expert in a reporting dashboard that visualizes

indicators and supports the necessary drill-down (navigation to finer-grained
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details) and roll-up (aggregation) features. An analysis workbench provides

for the analysis of compliance violations.

2.3 Compliance Management Methodology

Compliance management is not a simple issue, a property that manifests it-

self also in the complexity of the proposed system architecture (see Figure 2).

Compliance management typically requires understanding multiple sources for

regulatory compliance requirements (e.g., laws, standards or similar) and to

translate the requirements that affect a given process into technical rules. We

aim at supporting this latter aspect, which translates into the architecture and

instruments in Figure 2. For a better understanding of how the joint use of

these instruments can aid compliance management, we contextualize them in

our assisted compliance management methodology, which is based

on the Deming cycle [38], known from business process improvement. The

methodology consists of four phases, which we illustrate in Figure 3.

In the Plan phase, first we model a compliance template, which can then

be instantiated into a process model. Given a process model, it is possible to

specify which KCIs to compute for the process. Given the compliance template

and the KCI definitions, the necessary signaling policy can be generated auto-

matically. In the Do phase, processes and the signaling policy are executed,

that is, processes are instantiated and run by the process engine, and specified

events are generated and logged for later inspection. In the Check phase, the

system periodically loads logged events into the data warehouse and labels event

traces, i.e., process instances, as compliant or not. The so prepared data is used

to compute indicators and to prepare the reports, which can then be inspected

in order to understand the compliance state of the company. Depending on

the encountered compliance violations, the management may enforce compli-

ance (this step is not assisted by our system). Finally, in the Act phase, the

compliance expert and process modeler try to understand the root causes of

violations, so as to improve processes and policies by refining the respective

models and specifications and, hence, restarting from the Plan phase.

In this paper, we do not propose the use of automatic techniques for the
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Figure 3: Assisted compliance management methodology

runtime enforcement of compliant behaviors in business processes. While

such techniques undoubtedly allow a company to better control compliance

requirements at a technical and operative level (e.g., at the level of individual

events), compliance management is however still an organizational and tactical

activity that most of the times requires human intervention and interpretation.

The main goal of this work is therefore enabling humans to be aware of how

compliant business processes are and to understand why problems happen, in

order to incrementally improve compliance.

3 Plan – Designing Compliant Processes and Defin-
ing Evidence

For the purpose of designing compliant business processes, we complement tra-

ditional process modeling with three ingredients: (i) compliance templates,

which define the compliance requirements of a process; (ii) a signaling policy,
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which specifies which events need to be generated, and (iii) a set of KCIs, which

summarize events for reporting purposes.

3.1 Specifying Compliant Behaviors

To describe the compliant behavior a process should follow, we propose to

use compliance templates. By using compliance templates we can for exam-

ple define the acceptable order in which activities should be performed, which

activities are allowed, and which constraints exist among them [31]. This ap-

proach has multiple benefits. First, compliance requirements that apply to a

class of process models can be defined by individuals that are knowledgeable

in their respective compliance domain, i.e., the compliance experts (typically

members of the management or lawyers). Compliance experts are responsible

for the compliance templates; they are the only ones that are allowed to autho-

rise changes on them. Compliance experts are supported by business process

experts when a compliance template must be changed, for example. Second,

because templates, as the word denotes, are used as a starting point for defin-

ing the process itself by expanding and detailing them, following regulations is

made easier during design time. In other words, templates are not only a com-

pliance constraint, but also an aid to (compliant) process modeling. Finally,

compliance templates can be stored (e.g., in a central repository) and reused in

a variety of similar process models.

A compliance template comprises three parts, na-mely, an abstract

business process, a compliance descriptor, and a variability descriptor.

The abstract business process defines the compliant behavior of a

process in terms of its control flow and of allowed activities. It is called “ab-

stract” because it lacks the necessary implementation details to be instantiated

and run in a process engine. Only activities labeled constrained region can

be customized by the process modeler in order to get an executable business

process. Customizing a constrained region means inserting activities into it.

Process modelers cannot change activities or control flows originally included

in a compliance template, as this might lead to non-compliant processes.

As an example refer to Figure 4, which shows an abstract process model
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Figure 4: Compliance template for drug dispensations

(in the center of the figure) of the drug dispensation process sketched in Fig-

ure 1. We use a pseudo language in Figure 4 to specify the abstract process for

reasons of simplicity. Any other process specification language may have been

used to define this abstract process, because of the flexibility of the compliance

template approach. The abstract process expresses a number of compliance

constraints: activity Prescribe Drug must always be executed before activity

Collect Prescriptions ; or, after the activity Collect Prescriptions has been

executed, the activities Get Drugs or Request Drugs can be executed. The

separation of duties requirement for the Prescribe Drug and Dispense Drugs

activities can also be expressed as compliance rules and associated with the

respective web services, which must provide for the generation of the necessary

evidence (the events) to assess the rules.

The compliance descriptor , at the left of the abstract process model,
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allows the definition of constraints for the constrained regions. Compliance

descriptors can be defined independently of the abstract process, and a sin-

gle compliance descriptor can be re-used in more than one abstract process.

The dashed arrow pointing from one compliance assurance rule (Link to Con-

strained Region) in Figure 4 to a constrained region shows which compliance

assurance rule is applied to the first constrained region. Rules are expressed in

first order logic. We chose first order logic because the class of compliance rules

used with compliance templates deals with presence and absence of activities

within a constrained region. These kinds of compliance rules can be expressed

at best using the negation operator in front of a predicate to describe the ab-

sence of activities. Predicates without preceding operand are used to describe

the presence of activities. The name of the used predicate maps to the name of

the activity. One example for such a compliance rule is: activity A and activ-

ity B must always be inserted together. With first order logic, the example

compliance rule above can easily be expressed as A ∧B.

Compliance rules are evaluated at design time (in our graphical process de-

velopment tool) every time the process modeler inserts an activity into a con-

strained region. The graphical tool notifies the process designer about which

modifications are allowed and which modifications violate the implicit compli-

ance of the abstract process. For example, an invocation of the Pharmacy

web service in the first constrained region in Figure 4 would violate the compli-

ance of the abstract process, because the activities Prescribe Drug and Collect

Prescriptions would not yet have been executed.

The meta model of a compliance descriptor is shown in Figure 5. A compli-

ance descriptor contains one or more compliance points comprising compliance

rules. These compliance rules can be linked to the constrained regions in the

abstract process of a compliance template.

The variability descriptor , at the right of the abstract process model

in Figure 4, contains variabilities that can be used to fill the constrained regions

of the abstract process. The dashed arrow shows which variability descriptor

is associated with which constrained region. A variability descriptor assists the

process modeler by providing him/her with the set of allowed activities that

can be used inside each constrained region; activities can again be compliance
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Figure 5: UML meta model of a compliance descriptor

templates containing constrained regions. For instance, we have used Alterna-

tive A in Figure 4 in the design of the compliant BPEL process. The activities

in Alternative B are used in other constrained regions. Here it is, for example,

important that the compliance expert only allows services (activities) in the

variability descriptor that natively encrypt the data they exchange with other

services, in order to provide for the anonymization of patients’ data.

Compliance templates can be designed for robustness or for reusability. Ro-

bustness is achieved by adding detailed, domain-specific constraints that guide

the process modeler through an only narrow scope of action during the in-

stantiation of a compliance template. Reu-sability is achieved by keeping the

template more general. It is up to the compliance expert to decide what is more

important to him/her. In fact, while our approach facilitates the expression of

compliance rules, it is still important for the human expert to have the right

regulatory and domain knowledge in order to correctly interpret the company’s

compliance requirements and express them in terms of compliance rules.

3.1.1 Modeling Compliance Templates and Processes

In order to assist the compliance expert in defining compliance templates, we

have extended the Oryx2 BPMN editor. Oryx is a web-based BPMN editor

that fully runs inside a web browser and does not require the installation of any

additional software. Figure 6 shows a screen shot of Oryx at work. It mainly

consists of three parts: the shape repository (labeled 1), the modeling canvas

2http://code.google.com/p/oryx-editor/
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Figure 6: Oryx BPMN editor for compliance templates

(labeled 3), and a pane on the right hand side (labeled 2 and called Fragment

Repository) containing the activities that compose the variability descriptor

and a properties section.

To be able to create compliance templates we added a new activity type

named Region. In Figure 6, the region activity type is shown in the shape

repository and on the modeling canvas containing the task named Retrieve

Doctors Data. To implement the compliance descriptor described above, we

added a property named Compliance Descriptor to the region activity type.

The Fragment Repository on the right implements the concepts of a variability

descriptor as described before. Another addition we made is a compliance

checker plug-in. This plug-in is used to check whether an activity inserted into

a constrained region violates a constraint or not. The resulting BPMN 2.0

process model is transformed into a BPEL model that includes the mandatory

activities imposed by the compliance template as highlighted in Figure 7.

3.1.2 Creating the Signaling Policy

To measure the compliance of a process, evidence on process execution must

be generated, to be able to certify which activities have been executed by a

given process instance and which have been skipped or which have generated
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Figure 7: Executable drug dispensation process (for presentation purpose, we omit data
assignments)
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errors. This evidence is represented by execution events, which provide insight

into the status of the process instance at the time of their generation. As we

want to check compliance with the abstract process of a compliance template,

it implicitly defines the minimum set of events (or the event traces) that char-

acterize a compliant process instance. In order to check compliance, it therefore

suffices to generate suitable Start and End events for each mandatory activity

in the abstract process. Other execution events may be needed for computing

indicators, e.g., if an indicator is to be computed over non-mandatory activities.

The exact set of events is specified in the so-called signaling policy, that is,

the policy that tells the business process engine which events must be generated

during process execution. The necessary events that need to be produced in

order to check the compliance of the designed business process, can be chosen

by compliance experts. A signaling policy can then be created with this infor-

mation. In addition, the compliance expert can add properties to activities that

hold any form of custom compliance policy beyond what can be expressed via

the template. These are also checked in the assessment phase, discussed next.

3.2 Specifying Key Compliance Indicators

Business performance is commonly measured by means of key indicators, typ-

ically key performance indicators [21], which are metrics that summarize in a

single number how well predefined business goals are being achieved. Simi-

larly, we advocate the use of KCIs to measure how compliant a company is

with its compliance requirements and to better target the company’s efforts to

check and improve compliance, lowering the overall complexity of compliance

management.

KCIs can be computed out of the evidence collected from process executions.

Given the huge quantity of available events and runtime data that are typically

available for each single process instance, this can however be a very complex

task both from the perspective of metaphors and languages for defining such

indicators and from the perspective of performance.

We approach both issues by providing the compliance expert with a so-called

process instance table for defining and computing indicators. This is an
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Table 1: Excerpt of the process instance table for the drug dispensation process
PID TimeRequest T imeReplenish ReqWard PendPresc WrongDisp Compliant

72665 13-05-10 22:32 14-05-10 16:45 W5 1 2 true

72666 13-05-10 22:39 15-05-10 12:55 W3 3 1 false

72667 13-05-10 22:55 14-05-10 08:59 W3 3 1 true

72668 13-05-10 23:01 14-05-10 23:33 W7 25 4 false

72669 13-05-10 23:49 14-05-10 02:57 W6 2 0 true

.... ... ... ... ... ... ...

abstract table that is specific to a given process model and contains one row

per executed process instance. The attributes of the table are those process

data items that the compliance expert needs for the definition of indicators,

plus one or more Boolean attributes for each template to which the model

must be compliant (if more than one template apply), reflecting the compliance

requirements the process should satisfy. The values of the data items are carried

by the events generated at runtime, while all necessary events are specified in the

signaling policy and are either derived automatically from compliance templates

or manually defined (if they are not yet part of the template). We will see in the

assessment section how process instance tables are implemented and populated.

Given a process instance table, an indicator can now be defined as regular

mathematical expression over the attributes and rows of the table (on paper by

the compliance expert) and it can be implemented via standard SQL queries

(by the process modeler). Although indicators typically come in the form of

percentage values, averages, sums, or similar, the process instance table abstrac-

tion allows us to support the full expressive power of SQL in the computation of

indicators. SQL has been designed also as a language for computing aggregates

and is well known, understood, and supported, so there was no reason to come

up with another language.

Table 1 shows, for instance, an excerpt from the process instance table of

the drug dispensation process. The columns TimeRequest and TimeReplenish

represent the time at which a drug request was issued and the time at which

the request was fulfilled, respectively, while PendPresc and WrongDisp tell us

the number of pending patient prescriptions and the number of wrong dispen-

sations of drugs by the pharmacy (e.g., with a wrong drug type of quantity).
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Notice that the number of wrong dispensations is computed when loading the

data warehouse, and it can be done, e.g., by checking the records on the com-

plains from patients about wrong dispensations. Finally, the column ReqWard

represents the identification of the ward that issued the request (we omit the

other attributes). In the table we assume that the process should only follow

one template, so there is only one compliance column.

Having in mind the structure of Table 1, the compliance expert can now,

for instance, specify an indicator KCICompInst to monitor compliance with the

process’ compliance template:

KCICompInst = |CompliantInstances|
|AllInstances|

The process modeler expresses the formula then as follows (we only show

a simplified query, e.g., without time intervals; for more details please refer to

[22]):

count_compliant_inst =

select count(Compliant)

from drug_dispensation_instance_table

where Compliant = true;

count_all_inst =

select count(Compliant)

from drug_dispensation_instance_table;

KCI_CompInst =

count_compliant_inst / count_all_inst;

The formula presented above is stored in the data-warehouse together with

the definition of the indicator, from where the ETL procedure can retrieve

periodically for the computation of indicators.

The specification and computation of the indicator presented in this example

is rather trivial. The real challenges reside (i) in identifying which are the most

effective indicators (and events) and (ii) in the transformation and correlation

of raw events in order to create the process instance tables. In fact, the ease

with which we specified and computed the above indicator is a consequence of

this data preparation and one of the most important benefits of making this

data arrangement.
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Although the above examples associate KCIs with individual business pro-

cesses, it is important to note that we can also have KCIs that measure proper-

ties of multiple related processes (e.g., a process and its sub-processes). Such

kind of advanced KCIs can easily be specified by defining the indicator function

over the join of the respective process instances tables, practically enabling the

definition of arbitrarily complex indicators.

4 Do – Running Processes and Generating Evidence

Once business processes have been implemented according to their compliance

templates and the signaling policy has been completed, processes can be ex-

ecuted and evidence can be collected. In case the process is implemented in

BPEL, we also provide support to execute and most importantly to collect evi-

dence (we support BPEL as it is a common situation; in case of ad hoc languages

and infrastructures, we expect probes to be developed to generate the necessary

events). We have chosen to extend the Apache ODE (http://ode.apache.org/)

engine, although any other engine could be extended similarly.

Apache ODE is equipped with a mechanism to issue events at certain state

changes of a BPEL process during execution. These events are saved in an

internal database, the audit-trail. The audit-trail can be queried via a web ser-

vice interface to check the execution traces (the sequence of generated internal

events) of processes that have been executed and of processes that are still in

the executing phase. A drawback of this mechanism is that the audit-trail saves

all events generated during process execution. In most cases, a third party is

only interested in a subset of events, e.g., events indicating that the process

took a certain branch. Thus, these particular events must be separated from

the rest of the events in the audit-trail, which is not always an easy task. Also,

if we think of distributed business processes with multiple cooperating parties

(such as our reference scenario), for security reasons it is typically not possible

to query a partner’s audit trail. This is a major limitation for the assessment

of the compliance of processes whose execution is distributed over multiple par-

ties. To address these problems, we extended the Apache ODE BPEL engine

to emit events to external subscribers, where the set of events and the allowed
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Figure 8: Architectural overview of the core components of the signaling extension of
Apache ODE [15]

subscribers can easily be configured (e.g., by means of the signaling policy) [16].

Figure 8 gives a schematic overview of the extensions made to ODE.

On the left side, the instrumented BPEL engine is shown. We extended the

BPEL engine with a so-called generic controller. It comprises the glue code

connecting the process navigation parts of the BPEL engine to the event han-

dling part in the generic controller. At certain points in this execution logic

we throw events that are sent to one or more pluggable custom controllers,

which correspond to the domain specific part of the signaling architecture (this

part corresponds to the Signaling plug-in introduced in Figure 2). External

stakeholders can write custom controllers to meet the requirements of their par-

ticular domain. All events occurring during the execution of a BPEL process

are sent to every registered custom controller. In each custom controller, in-

coming events can be filtered and transformed. These filtered events can then

be provided to external subscribers. The external subscribers can configure

the filtering logic of the custom controllers. In our case, we use an external

controller to parse the signaling policy and to instruct the custom controller to

generate only those events that are required to assess compliance.

The signaling policy contains XPath expressions that point to the ac-

tivity elements in a BPEL file, which is written in XML. We extended these

XPath expressions with event indicators, since each BPEL activity may issue
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a number of different events. The XPath expressions in a signaling policy thus

indicate which events of which activity need to be issued.

The underlying concept of the event subscription is resource-centric. We

map process models, process instances, and activities deployed on a BPEL

engine to resources and provide a suitable management API that allows one to

access the resources. The API is exposed via web service interfaces.

Notice that the approach we present here is for offline assessment of compli-

ance. This means that we log events that will only later be used for compliance

assessment (e.g., during night hours). The performance issues for the gener-

ation of evidence regards more to the logging of event rather than the actual

compliance assessment. Since logging performance is not the focus of this pa-

per, and state of the art logging systems are capable of handling this issue very

well, we do not discuss this concern further.

5 Check – Assessing Compliance

From an IT perspective, assessing compliance means developing an assessment

engine that “executes” the specification discussed in Section 3 over the event log,

which constitutes our “evidence”. Specifically, the engine should verify that

process execution comforms to the different process templates and compute

compliance indicators. The challenge lies in how to do this in a way that

minimizes the development work needed for each new process, new template,

or new indicator, otherwise the system will not be easily maintainable. Given

that changes are frequent (especially in regulations) this is an important aspect.

To compute conformance with templates we leverage on raw events.

Although events in different processes may have different formats – as the

process-specific data differ from process to process – what matters for veri-

fying conformance is the process-independent part of events, that is, their type

(Start or End), the activity that generates them, the process and instance in

the context of which they are generated, and the occurrence time.

Reasoning in terms of language theory, process models are analogous to

grammars and event traces are analogous to language strings. Therefore, com-

puting whether a trace of events as described above conforms to a process model
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becomes analogous to checking if a string can be generated by a grammar. This

is a well-known problem and therefore we do not discuss it further. The output

of this procedure consists thus in giving a set of yes/no “labels” to each in-

stance, one for each process template that was associated to the process model

of that instance. Developing the conformance algorithm does not require any

process-specific logic, which means that no new code is needed each time a new

process or template is defined.

The case is different for computing indicators. The metaphor we adopt

for the indicator language implies that indicators can be arbitrarily complex

queries over a dataset of process execution data with compliance information.

This aspect, combined with the needs of providing efficient navigation and drill-

down/roll-up (i.e., navigation through the dimension and fact tables of the data

warehouse) over a complex dataset as well as the need for a more sophisticated

root cause analysis suggests that a sensible approach to leverage is that of

building a data warehouse of process data, oriented at computing and assessing

compliance and key compliance indicators.

Figure 9 shows an excerpt of our dimensional data model. In the

model, described in detail in [22], the facts are essentially the events and the

process instances, while dimensions are process models, activities, and actors.

Because different processes have different data items, instances of different pro-

cesses are stored in different fact tables, where the attributes correspond to

those process variables that are considered useful for compliance analysis and

for computing indicators. These constitute the physical representation of the

process instance tables discussed in Section 3.

An alternative approach would have been that of storing all process instance

data vertically, where each tuple contains instance ID, variable name, and

value. The benefit of this approach is that the warehouse sche-ma does not

change when new processes are defined. However, writing queries over vertical

tables is more difficult and performance is lower, especially due to the high

number of self-joins necessary.

The main data source of the warehouse is the event log. From there, the

ETL procedure determines how to fill the process instance tables, based on

mapping specifications done by the compliance template editor or the process
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Figure 9: Excerpt of the DW model; fact tables are shaded in gray, dimension tables are
white

modeler. In essence these mappings specify from which event and parameter

the attributes in the table take their values. This is done via simple XPath

statements. For instance, every time a new drug request is inserted into the

system, an event of the type NewDrugRequest is emitted that carries the

number of pending prescriptions for that drug among its attributes. In order

to obtain this information so that we can fill the PendPresc attribute for each

row in Table 1, we take all events of type NewDrugRequest and access their

PendPresc parameters.

This means that for each new process model or for each change in an existing

process model, the process modeler needs to (i) define the process instance table

(this is also done in conjunction with the compliance analyst who defines which

attributes are relevant for compliance analysis) and (ii) define the XPath ex-

pression that is used to populate the attributes for each given instance. Overall,

this is something that can be done rather easily. The key problem is figuring

out good indicators. Once that is done, the time taken to configure the process

Appendix G. SOA-Enabled Compliance Management: Instrumenting, Assessing and
Analyzing Service-Based Business Processes

156



instance tables for their computation is small.

The ETL procedure that loads the warehouse incrementally and computes

indicators runs periodically, e.g., each night or once a week. Only new and com-

pleted event traces (process instances) are loaded; running process instances are

not considered. This assures that all events needed to assign the compliance

labels are available (partial traces could be analyzed, e.g., to identify early

violations; however, compliance can still only be ascertained after process ter-

mination). Once computed, also the values of indicators are stored in the ware-

house (see the KeyIndicatorValueFact table in Figure 9) and made available

for reporting and further analysis, such as correlation and risk analysis.

KCIs can then be rendered in the reporting dashboard as illustrated in Fig-

ure 10, which also takes into account data uncertainty when rendering indicator

values to users. A description of the dashboard with details on how uncertainty

is managed can be found in [24].

6 Act – Improving Processes and Compliance

This is the last phase of the Deming cycle that aims at understanding problems

identified in the Check phase. While the cycle is closed by the compliance

expert and process modeler by applying their findings in a new Plan phase,

IT can significantly assist this phase and reduce the complexity of the analysis

task. In the context of compliance management, IT can assist in (i) identifying

correlations among KCIs, (ii) identifying correlations among compliance

states and business data, and (iii) reconstructing the actual behavior of

implemented processes.

6.1 Analyzing Correlations among Indicators

As explained in Section 3.2, indicators measure how well business processes con-

form to compliance requirements. In doing so, each indicator looks at a different

aspect of a process, typically a different compliance requirement. Identifying

correlations among indicators therefore allows us to identify relationships among

compliance requirements. If we visualize all identified relationships in a graph,
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Figure 10: Visualizing key compliance indicators

this allows one to trace back from one indicator to another to understand its

root causes. It is important to notice that correlation only indicates likely causal

relationship, not certain causalities. The idea of using correlation is to help the

human expert to spot places where to look at for root causes.

A particularly interesting analysis is that of cross-correlating multiple in-

dicators over time: there may be situations in which changes in the values of

an indicator KCI1 is associated with changes in the values of another indicator

KCI2, but only after a time interval that also needs to be determined. The

typical reason for this result is that KCI1 is computed over events raised at an

early stage of the process while KCI2 is computed over events raised at a later

stage. The dynamics of KCI2 has therefore its likely roots in the part of the

process measured by KCI1.

Figure 11(a) shows the output of our correlation analyzer if applied to the
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Figure 11: Instruments of the analysis workbench: correlation analyzer, decision tree
miner, protocol discoverer.

three indicators KCIDelay (introduced in Section 3.2), KCIPendPresc (number

of pending prescriptions), and KCIWrongDisp (number of erroneous dispensa-

tions, i.e., with wrong drug type or quantity). The correlations are based on

the cross-corre-lation technique proposed in [6]. The graph shows a dependency

(coeff = 0.856) among KCIPendPresc and

KCIWrongDisp with a time lag of 4 days (the arrow head of the correlation goes

back in time), while there is no correlation with KCIDelay (coeff < 0.70).

That is, too many pending prescriptions in the system systematically lead to

errors (e.g., wrong quantities or drugs dispensed) at dispensation time. More

than a simple implementation issue, this correlation hints at an organizational

problem in the drug dispensation (e.g., understaffed personnel).

6.2 Classifying Compliance Evaluations

We have shown earlier that we use process instance tables to store each process

instance’s event trace along with the data the events provide access to and

that we associate compliance labels (i.e., classes) to each instance for each

compliance template the process has to comply with. This conceptualization of
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the compliance problem allows us to apply standard classification algorithms to

identify correlations between the compliance classes (compliant yes/no) and the

process data, hopefully unveiling unknown dependencies. Indeed, the process

instance table with the compliance “labeling” is the typical data format that

can be fed to classification tools. We use decision trees, as they are simple

and fast in classifying tuples and – more importantly – they are suitable for

knowledge discovery without complex settings or assumptions and are easy to

interpret and analyze.

Figure 11(b) shows, for instance, the decision tree built out of the data stored

in Table 1. For this purpose, we have adopted the algorithm presented in [37].

As can be seen in the figure, the main decision point that affects compliance

is WrongDisp: if WrongDisp > 3, non-compliance is very likely. Along

this branch, the second decision point depends on the Delay parameter: if it

exceeds 48 hours, non-compliance is almost sure (99% of probability), yet also

for lower values of Delay non-compliance is the most likely (72% of probability)

outcome.

Decision trees can also be used as a prediction (or risk detection) mechanism.

For example, from Figure 11(b) we can derive the following rule:

if WrongDisp > 3 and Delay > 48hr then

p(non-compliant) = 0.9921

This rule can be used to predict the compliance of process instances while

they are still in execution, which allows a company to focus its attention to

those process instances that are at risk.

6.3 Discovering Business Protocol Models

The use of the compliance templates introduced in Section 3.1 helps the process

modeler to specify process models that are compliant by design with the stated

requirements and the logic rules contained in the compliance descriptor. Yet,

typically auditors do not assess compliance by looking at models only; rather,

they look at how processes have been executed concretely. In fact, it is impor-

tant to recognize that compliant models do not assure compliant execution. In
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practice, problems simply happen, for instance, due to human factors (e.g.,

untrained personnel or the process administrator explicitly changing a running

instance or a deployed model without notifying the compliance expert), mis-

configuration (e.g., wrong service endpoints), or system failures (e.g., a hard

drive error). It is impossible to predict these kinds of problems and, therefore,

it is even more important to identify them after they occurred.

We approach this need by means of protocol discovery, a problem for which

there already exist valuable contributions. [18] presents a good overview on the

protocol discovery problem and existing approaches to deal with it. Specifically,

we have adapted the algorithm introduced in [17] as this algorithm supports

the identification of models from service conversations that may be noisy (erro-

neously containing data from different conversations) and incomplete (missing

part of the data produced in one conversation). The reason for this choice,

instead of mainstream process and workflow mining techniques, is that we are

interested in mining events as generated by the infrastructure, which might

consist not only of events from the core business process but also of events

generated by control processes put on top of it. Instead of focusing on mes-

sage exchanges, i.e., SOAP messages, we feed the algorithm with events and we

identify “conversations” by grouping events according to the process instance

they stem from. Fig 11(c), for example, shows the output of the protocol dis-

coverer if applied to data from the drug dispensation process. The tool uses

finite state machines (FSMs) to graphically represent the reconstructed proto-

col model: nodes represent intermediate states of a process execution; edges

represent events raised during the execution. Nodes are labeled with incremen-

tal numbers that serve simply as state IDs, edges with the name of the event

they represent and the probability that the corresponding event took place [22].

6.4 User Study and Evaluation

Together with Hospital San Raffaele, we carried out an in-depth evaluation of

the usability and understandability of methodology described in this paper. The

evaluation involved the our target users, specifically the business process owner

(the pharmacy), the process analyst/modeler, an internal auditor, a quality and
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accreditation expert, IT staff, and the CIO of the hospital, and took the form

of a two-days evaluation workshop, which allowed us to collect feedback via

questionnaires, interviews, and focus groups.

As object of the evaluation we used the prototypes and demos developed

with the audit experts from Deloitte and described in this paper. The evalua-

tion was performed using real data from the scenario described in this paper.

The dataset consisted in 30000 drug dispensations done between January and

April 2009. This dataset allowed us to make a realistic demo of our tool to

showcase the indicator correlation and decision tree analysis as well as the busi-

ness protocol discovery. The required size of the dataset for building good

correlation and decision tree models depends strongly on the properties of the

dataset (e.g., on whether indicators are computed for each process instance only

weekly or monthly, or on the number of decision points inside a given process).

The protocol discovery algorithm can instead infer a model already from a sin-

gle process instance, capturing however only the behavior of this single process

execution. The complexity of cross-correlation is linear in the number of KCIs

by the number of considered data items by the number of time shifts [6]; the

performance of decision tree computation and protocol discovery is discussed

in [37] and [17], respectively.

According to the study, both the compliance templates and the Reporting

Dashboard tool (for the Check phase) used to display indicators and navigate

through the collected compliance data was perceived as very useful by all par-

ticipants, while the process analyst, quality and accreditation expert, internal

auditor, and business process owner particularly emphasized the usefulness of

the correlation analyzer, decision tree miner, and business protocol miner. The

overall judgment of the set of tools for the Check and Act phase reached an

average score of 8 in an interval that ranges from 1 (very negative) to 10 (very

positive).

The complete evaluation report D1.3.2 is available via the project web

site (http://www.project-master.eu). Details on the implemented tools

and a set of demonstration videos are available via http://mashart.org/

SOCA-Compliance.
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7 Related Work

We discuss the related work in five areas as related to our work, namely, IT gov-

ernance, SOA governance, business process compliance, reporting on business

performance and mining process execution logs.

IT governance. IT governance aims at ensuring that companies’ IT systems

sustain and extend the companies’ strategies and objectives. Many frameworks

have been proposed to approach IT governance, including COBIT, ITIL, ISO

2000 and ISO 17799. The focus of each of these varies from one another,

from the alignment of business objectives to IT objectives (e.g., COBIT), to

IT service management (e.g., ITIL), to IT security management (e.g., ISO

17799). While these frameworks typically provide general guidelines and best

practices on how to govern IT, they provide no guidelines that are specific

to compliance management. IT governance may act either as the source of

compliance requirements or as a guide on how to instrument IT for compliance

management. In the first case, for example, it may happen that a company

must comply with one of these frameworks in order to provide services to a

third party; in the second case, the framework itself can help enable compliance

management. As such, IT governance and compliance management therefore

complement each other.

SOA governance. SOA governance can be considered as a branch of IT gov-

ernance where the focus is put on SOA-based systems. As in IT governance,

many frameworks has been proposed to approach SOA governance. For exam-

ple, Brauer and Kline 2005 [2] approach SOA governance in the area of business

service life cycle through two key infrastructures: the business service registry

and business service management. Software AG [34] proposes a maturity model

with six levels: technology enablement, SOA enablement, SOA business ser-

vices, SOA lifecycle management, SOA consistency and SOA optimization. It

further describes the lifecycle of a service and SOA roles and provides a list of

best practices and common mistakes to avoid. SAP AG [29] proposes a list of

common guidelines and patterns for the modeling and implementation of en-

terprise services at different levels, including, map of process components and

business objects, service interfaces and services operations per business objects,
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structure of message types, common set of reusable data types, transactional

behavior and service implementation. Oracle’s approach to SOA governance

[19] proposes a framework, and a list of best practices that expands throughout

the service lifecycle. It furthermore proposes a list of six steps to successful

a successful SOA governance model, which aims at maturing the overall SOA

and thereby its business goals. IBM [3] proposes an approach that relies on a

lifecycle for SOA governance, which is distinguishable different from a service

lifecycle that is governed. The SOA governance lifecycle consists of 4 phases: (i)

in the plan phase, the governance focus is determined, (ii) in the define phase,

the SOA governance model is defined, (iii) the enable phase, is where the SOA

governance is implemented, and (iv) the measure phase, is where the governance

model is measured and refined. All these frameworks deal with the governance

of SOA-based systems to different degrees. Just like IT governance focus on

managing the company’s IT, SOA governance focuses on managing the overall

lifecycle of SOA-based systems and the guidelines provided there are only at

the high level and therefore they are not useful for compliance management as

addressed in this paper.

Business process compliance. There is a considerable amount of work

in the area of business process compliance. In [7] the authors describe, for

instance, an algorithm to generate a BPMN model from a set of constraints

written in deontic logic. In [9] deontic logic is also used to annotate business

process models with compliance rules. Such annotations are then used to check

compliance of the business process. Hoffmann et al. [14] instead use first order

logic to annotate business process models with compliance constraints. The

authors also show how to check compliance of a business process with these

constraints. In [5] the authors propose the use of domain-specific languages to

annotate processes with compliance constraints, and they equip their modeling

tool with compliance-specific views on the process. Shadiq et al. [28] describe

how control objectives can be modeled in formal contract language to annotate

process models in the form of control tags that can be used by analysis tools to

perform compliance checks on the business process model. Governatori et al.

[8] advance this line of static compliance check of normative control objectives

and provide status reports that highlight problematic cases together with the
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control objectives that are violated.

Our approach is based on compliance templates that are the starting point for

the development of a compliant business process. With this approach we cover

the first phase of the compliance management life cycle. A compliance tem-

plate implicitly defines the compliant behavior of the resulting business process.

The variable parts of the compliance template are annotated with constraints

written in first order logic. As opposed to lines of work like [28] and [8], we pre-

fer to work with first order logic because it is a standard and well-understood

formalism that suffices for our purposes and because compliance experts are

more likely to be familiar with it. The so represented constraints prevent the

compliance template from modifications that violate the compliance rules as-

sociated to the template. Yet, conceptually every formalism that allows us to

express compliance rules over process events could be adopted in our system.

From the modeling perspective, we advocate the use of these compliance tem-

plates because they are closer to compliance experts and process modelers. We

further use compliance templates to provide process modelers with real-time

conformance feedback during the instantiation of compliance templates (static

compliance checks).

Reporting on business process performance. Several works focus on

the reporting on business process performance. For instance, works like [30],

[4], [33], [23], [11] and [24] focus on warehousing process execution data, so

as to make these data available in a suitable schema for reporting and OLAP

purposes. We face similar reporting issues in our dashboard, yet our aim is to

analyze compliance of business processes not performance. This also leads us

to the concept of KCIs as a special type of key performance indicator (KPI).

In [21] the authors model KPIs and the relationships that exist among them.

Our internal, XML-based representation of KCIs is very similar to the model

proposed for KPIs, while, instead of modeling relationships, we discover them

via cross-correlation for root causes analysis. Finally, there are many business

process management commercial suites that include reporting on business pro-

cess performance as part of the toolset, e.g., HP Business Process Monitor, IBM

Business Process Manager, Oracle Business Process Management Suite, SAP

Business Process Management and TIBCO Spotfire.
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Mining process execution logs. Data mining techniques have been also

used for analyzing business process execution data. As for the root cause anal-

ysis, Grigori et al. [12] [11] focus on understanding, predicting, and preventing

exceptions in business executions by using decision trees built upon workflow

log files. In the same line of thought, Rozinat and van der Aalst [26] mine

event logs for decision point analysis, Apte et al. [1] focus on classification

and prediction of customer behaviors, and Seol et al. [32] use the inputs and

ouputs of each process to build decision trees for the analysis of the efficiency

of processes. There are however no works that specifically address the problem

of understanding compliance violations. In the context of process and work-

flow mining, several works have been proposed that aim at discovering process

models and checking the conformance of process executions using process ex-

ecution data. For instance, works like [17], [10], and [20] aim at discovering

workflow/process models from execution logs with special focus on the behav-

ioral/structural aspects of the process models. Rozinat and van der Aalst [27]

[25] focus instead on the automatic verification of how well process executions

conform with a predefined process model. We adopt algorithms of the first class

for discovering protocol models; however, algorithms of the second class could

be adopted for compliance assessment.

8 Conclusion

With this paper, we approach a relevant and critical issue in today’s business

reality, i.e., compliance management, and we do so by specifically taking into

account the peculiarities of the service-oriented architecture and of distributed

business contexts, two paradigms that heavily influence current and future busi-

ness practices. Differently from many works in literature, we do not focus on

monitoring and enforcement at the individual message level. We rather take

the auditor’s perspective and focus on the design of compliant processes and the

assessment and improvement of their compliance. We assist these activities by

means of (i) a model and tool to design compliant processes, (ii) an extended

service orchestration engine to generate process execution evidence, and (iii)

a reporting and analysis suite to report on compliance and support root cause
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analysis, in order to provide for better informed decision making. As such, the

models and instruments we propose in this paper complement existing moni-

toring and enforcement approaches and provide for a comprehensive approach

to service-based compliance management.

Our aim was to devise a solution having in mind the real needs of auditors

(internal and external ones) and – more importantly – with the help of people

who are involved every day in the auditing of companies (the dashboard [33]

and solutions proposed in this paper have extensively been discussed with part-

ners from Deloitte). While this paper specifically targets a company’s internal

compliance expert and process modeler, also the external auditor can benefit

from the proposed system, e.g., by using the compliance reporting dashboard as

a starting point for his analysis. This will not change the auditor’s own auditing

practice, yet the sole use of a systematic and assisted approach to compliance

management will surely impact positively on the auditor’s perception of the

company’s commitment to compliance.
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[33] Silveira, P., Rodŕıguez, C., Casati, F., Daniel, F., D’Andrea, V., Worledge,

C., Taheri, Z.: On the Design of Compliance Governance Dashboards for

Effective Compliance and Audit Management. In: NFPSLAM-SOC’09.

Springer (2009)

[34] Software AG: SOA Governance: “Rule your SOA”. Tech. rep., Software

AG (2007). URL http://goo.gl/EtgEi

Appendix G. SOA-Enabled Compliance Management: Instrumenting, Assessing and
Analyzing Service-Based Business Processes

170



[35] Tarantino, A.: Governance, Risk, and Compliance Handbook. John Wiley

and Sons, Inc. (2008)

[36] Trent, H.: Products for Managing Governance, Risk, and Compliance:

Market Fluff or Relevant Stuff? In-depth research report, Burton Group

(2008)

[37] Tsang, S., Kao, B., Yip, K.Y., Ho, W.S., Lee, S.D.: Decision Trees for

Uncertain Data. In: ICDE’09, pp. 441–444. IEEE (2009)

[38] Walton, M.: The Deming Management Method. Perigee Books (1988)

Appendix G. SOA-Enabled Compliance Management: Instrumenting, Assessing and
Analyzing Service-Based Business Processes

171



Appendix G. SOA-Enabled Compliance Management: Instrumenting, Assessing and
Analyzing Service-Based Business Processes

172



Part II

Process Design Perspective





Appendix H

Wisdom-aware Computing: On the

Interactive Recommendation of

Composition Knowledge

175



Wisdom-Aware Computing: On the Interactive
Recommendation of Composition Knowledge ∗
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Abstract

We propose to enable and facilitate the development of service-based develop-
ment by exploiting community composition knowledge, i.e., knowledge that
can be harvested from existing, successful mashups or service compositions
defined by other and possibly more skilled developers (the community or
crowd) in a same domain. Such knowledge can be used to assist less skilled
developers in defining a composition they need, allowing them to go beyond
their individual capabilities. The assistance comes in the form of interactive
advice, as we aim at supporting developers while they are defining their com-
position logic, and it adjusts to the skill level of the developer. In this paper
we specifically focus on the case of process-oriented, mashup-like applications,
yet the proposed concepts and approach can be generalized and also applied
to generic algorithms and procedures.

1 Introduction

Although each of us develops and executes various procedures in our daily life

(examples range from cooking recipes to low-level programming code), today

very little is done to support others, possibly less skilled developers (or, in the

extreme case, even end users) in developing their own. Basically, there are two

main approaches to enable less skilled people to develop: either development is

eased by simplifying it (e.g., by limiting the expressive power of a development

language) or it is facilitated by reusing knowledge (e.g., by copying and pasting

from existing algorithms).

Among the simplification approaches, the workflow and BPM community

was one of the first to claim that the abstraction of business processes into
∗The final publication is available at www.springerlink.com (http://link.springer.com/chapter/10.1007%2F978-3-642-

%2019394-1%2015)
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tasks and control flows would allow also the less skilled users to define own

processes, however with little success. Then, with the advent of web services

and the service-oriented architecture (SOA), the web service community sub-

stituted tasks with services, yet it also didn’t succeed in enabling less skilled

developers to compose services. Recently, web mashups added user interfaces

to the composition problem and again claimed to target also end users, but

mashup development is still a challenge for skilled developers. While these at-

tempts were aimed at simplifying technologies, the human computer interaction

community has researched on end user development approaching the problem

from the user interface perspective. The result is simple applications that are

specific to a very limited domain, e.g., an interactive game for children, with

typically little support for more complex applications.

As for what regards capturing and reusing knowledge, in IT reuse typically

comes in the form of program libraries, services, or program templates (such as

generics in Java or process templates in workflows). In essence, what is done

today is either providing building blocks that can be composed to achieve a

goal, or providing the entire composition (the algorithm possibly made generic

if templates are used), which may or may not suit a developer’s needs. In

the nineties and early 2000s, AI planning [1] and automated, goal-oriented

compositions (e.g., as in [2]) became popular in research. A typical goal there

is to derive a service composition from a given goal and a set of components

and composition rules. Despite the large body of interesting research, this

thread failed to produce widely applicable results, likely because the goal is very

ambitious and because assumptions on the semantic richness and consistency of

component descriptions are rarely met in practice. Other attempts to extract

knowledge are, for example, oriented at identifying social networks of people

[3] or at providing rankings and recommendations of objects, from web pages

(Google’s Pagerank) to goods (Amazon’s recommendations). An alternative

approach is followed by expert recommender systems [4], which, instead of

identifying knowledge, aim at identifying knowledge holders (the experts), based

on their code production and social involvement.

In this paper, we describe WIRE, a WIsdom-awaRE development environ-

ment we are currently developing in order to enable less skilled developers
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to perform also complex development tasks. We particularly target process-

oriented, mashup-like applications, whose development and execution can be

provided as a service via the Web and whose internals are characterized by rel-

atively simple composition logic and relatively complex tasks or components.

This class of programs seems to provide both the benefit of (relative) simplicity

and a sufficient information base (thanks to the reuse of components) to learn

and reuse programming/service composition knowledge. The idea is to learn

from existing compositions (or, in general, computations) and to provide the

learned knowledge in form of interactive advice to developers while they are

composing their own application in a visual editor. The aim is both to allow

developers to go beyond their own development capabilities and to speed up

the overall development process, joining the benefits of both simplification and

reuse.

Next, we discuss a state of the art composition scenario and we show that it

is everything but trivial. In Section 3, we discuss the state of the art in assisted

composition. In Section 4 and 5, we investigate the idea of composition advices

and provide our first implementation ideas, respectively. Then we conclude the

paper and outline our future work.

2 Example Scenario and Research Challenges

In order to better understand the problem we want to address, let’s have a look

at how a mashup is, for instance, composed in Yahoo! Pipes (http://pipes.yahoo.

com/pipes/), one of the most well-known mashup platforms as of today. Let’s

assume we want to develop a simple pipe that sources a set of news from Google

News, filters them according to a predefined filter condition (in our case, we

want to search for news on products and services by a given vendor), and locates

them on a Yahoo! Map.

The pipe that implements the required feature is illustrated in Figure 1.

It is composed of five components: The URL Builder is needed to set up the

remote Geo Names service, which takes a news RSS feed as an input, ana-

lyzes its content, and inserts geo-coordinates, i.e., longitude and latitude, into

each news item (where possible). Doing so requires setting some parameters:
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Figure 1: Implementation of the example scenario in Yahoo! Pipes.

Base=http://ws.geonames.org, Path elements=rssToGeoRSS, and Query pa-

rameters=FeedUrl:news.google.com/news?topic=t&output=rss&ned=us. The

so created URL is fed into the Fetch Feed component, which loads the geo-

enriched news feed. In order to filter out the news items we are really interested

in, we need to use the Filter component, which requires the setting of proper

filter conditions via the Rules input field. Feeding the filtered feed into the

Location Extractor component causes Pipes to plot the news items on a Yahoo!

Map. Finally, the Pipe Output component specifies the end of the pipe.

If we analyze the development steps above, we can easily understand that

developing even such a simple composition is out of the reach of people without

programming knowledge. Understanding which components are needed and

how they are used is neither trivial nor intuitive. The URL Builder, for example,
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requires the setting of some complex parameters. Then, components need to

be suitably connected, in order to support the data flow from one component

to another, and output parameters must be mapped to input parameters. But

more importantly, plotting news onto a map requires knowing that this can be

done by first enriching a feed with geo-coordinates, then fetching the actual

feed, and only then the map is ready to plot the items.

Enabling non-expert developers to compose a pipe like the above requires

telling (or teaching) them the necessary knowledge. In WIRE, we aim to do

so by providing non-expert developers with interactive development advices for

composition, inside an assisted development environment. We want to obtain

the knowledge to provide advices by extracting, abstracting, and reusing com-

positional knowledge from existing compositions (in the scenario above, pipes)

that contain community knowledge, best practices, and proven patterns. That

is, in WIRE we aim at bringing the wisdom of the crowd (possibly even a small

crowd if we are reusing knowledge within a company) in defining compositions

when they are both defined by an individual (where the crowd supports an

individual) or by a community (where the crowd supports social computing,

i.e., itself in defining its own algorithms). The final goal is to move towards a

new frontier of knowledge reuse, i.e., reuse of computational knowledge.

Doing so requires approaching a set of challenges that are non-trivial:

1. First of all, identifying the types of advices that can be given and the

right times when they can be given: depending on the complexity and

expressive power of the composition language, there can be a huge variety

of possible advices. Understanding which of them are useful is crucial to

limit complexity.

2. Discovering computational knowledge: how do we harvest development

knowledge from the crowd, that is, from a set of existing compositions?

Knowledge may come in a variety of different forms: component or ser-

vice compatibilities, data mappings, co-occurrence of components, design

patterns, evolution operations, and so on.

3. Representing and storing knowledge: once identified, how do we represent
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and store knowledge in a way that allows easy querying and retrieval for

reuse?

4. Searching and retrieving knowledge: given a partial program specification

under development, how do we enable the querying of the knowledge space

and the identification of the most suitable and useful advice to provide to

the developer, in order to really assist him?

5. Reusing knowledge: given an advice for development, how do we (re)use

the identified knowledge in the program under development? We need to

be able to weave it into the partial specification in a way that is correct

and executable, so as to provide concrete benefits to the developer.

In this paper, we specifically focus on the first challenge and we provide our

first ideas on the second challenge and on the assisted development environment.

3 State of the Art

In literature, there are approaches that aim at similar goals as WIRE, yet they

mainly focus on the retrieval and reuse of composition knowledge. In [6], for in-

stance, mashlets (the elements to be composed) are represented via their inputs

and outputs, and glue patterns are represented as graphs of connections among

them; reuse comes in the form of auto-completion of missing components and

connections, selected by the user from a ranked list of top-k recommendations

obtained starting from the mashlets used in the mashup. In [8], light-weight

semantic annotations for services, feeds, and data flows are used to support a

text-based search for data mashups, which are actually generated in an auto-

mated, goal-oriented fashion using AI planning (the search tags are the goals);

generated data processing pipes can be used as is or further edited. The ap-

proach in [9] semantically annotates portlets, web apps, widgets, or Java beans

and supports the search for functionally equivalent or matching components;

reuse is supported by a semantics-aided, automated connection of components.

Also the approach in [10] is based on a simple, semantic description of in-

formation sources (name, formal inputs [allowed ones], actual inputs [outputs

Appendix H. Wisdom-aware Computing: On the Interactive Recommendation of
Composition Knowledge

181



consumed from other sources], outputs) and mashups (compositions of informa-

tion sources), which can be queried with a partial mashup specification in order

identify goals based on their likelihood to appear in the final mashup; goals

are fed to a semantic matcher and an AI planner, which complete the partial

mashup. This last approach is the only one that also automatically discovers

some form of knowledge in terms of popularity of outputs in existing mashup

specifications (used to compute the likelihoods of goals).

In the context of business process modeling, there are also some works with

similar goals as ours. For instance, in [7], the authors more specifically focus on

business processes represented as Petri nets with textual descriptions, which are

processed (also leveraging WordNet) to derive a set of descriptive tags that can

be used for search of processes or parts thereof; reuse is supported via copy and

paste of results into the modeling canvas. The work presented in [13] proposes

an approach for supporting process modeling through object-sensitive action

patterns, where these patterns are derived from a repository of process models

using techniques from association rule learning, taking into consideration not

only actions (tasks), but also the business objects to which these actions are

related. Finally, [14] presents a model for the reuse data mining processes by

extending the CRISP-DM process [15]. The proposed model aims at including

data mining process patterns into CRISP-DM and to guide the specialization

and application of such patterns to concrete processes, rather than actually

exploiting the community knowledge.

In general, the discovery of community composition knowledge is not ap-

proached by the works above (or they do it in a limited way, e.g., by deriving

only behavioral patterns from process definitions). Typically, they start from

an annotated representation of mashups and components and query them for

functional compatibilities and data mappings, improving the quality of search

results via semantics, which are explicit and predefined. WIRE, instead, specifi-

cally focuses on the elicitation and collection of crowd wisdom, i.e., composition

knowledge that derives from the ways other people have solved similar composi-

tion problems in the past and that has a significant support in terms of number

of times it has been adopted. This means that in order to create knowledge for

WIRE, we do not need any expert developer or domain specialist that writes
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and maintains explicit composition rules or logics; knowledge is instead har-

vested from how people compose their very own applications, without requiring

them to provide additional meta-data or descriptions (which typically doesn’t

work in practice).

4 Wisdom-Aware Development: Concepts and Prin-
ciples

Identifying which advices can be provided and which advices do indeed have the

potential to help less skilled developers to perform complex development tasks

requires, first of all, understanding the expressive power of the composition

language at hand. We approach this task next. Then we focus on the advices.

4.1 Expressiveness of the Composition Language

Let us consider again Yahoo! Pipes. The platform has a very advanced and

pleasant user interface for drag-and-drop development of data mashups and

supports the composition of also relatively complex processing logics. Yet,

the strong point of Pipes is its data flow based composition paradigm, which is

very effective and requires only a limited set of modeling constructs. As already

explained in the introduction, constraining the expressive power of composition

languages is one of the techniques to simplify development, and Pipes shares

this characteristic with most of today’s mashup platforms.

In order to better understand the expressiveness of Yahoo! Pipes, in Figure

2 we derived a meta-model for its composition language. A Pipe is composed

of components and connectors. Components have a name and a description

and may be grouped into categories (e.g., source components, user input com-

ponents, etc.). Each pipe contains always one Pipe Output component, i.e.,

a special component that denotes the end of data flow logic or the end of the

application. A component may be embedded into another component; for ex-

ample components (except user inputs and operators) can be embedded inside

a Loop Operator component. Components may also have a set of parameters.

A Parameter has a name, a type, and may have a value assigned to it. There
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Figure 2: A meta-model for Yahoo! Pipes’ composition language.

are basically three types of parameters: input parameters (accept data flows at-

tributes), output parameters (produce data flow attributes), and configuration

parameters (are manually set by the developer). For instance, in our example

in Section 2, the URL parameter of the Fetch Feed component is an input pa-

rameter; the longitude and latitude attributes of the RSS feed fetched by the

Fetch Feed component are output parameters; and the Base parameter of the

URL Builder component is an example of configuration parameter.

Data flows in Pipes are modeled via dedicated connectors. A Connector

propagates output parameters of one component (indicated in Figure 2 by the

from relationship) to either another component or to an individual input field of

another component. If a connector is connected to a whole component (e.g., in

the case of the connector from the Fetch Feed component to the Filter compo-

nent in Figure 1), all attributes of the RSS item flowing through the connector

can be used to set the values of the target component’s input parameters. If

a connector is connected only to a single input parameter, the data flow’s at-

tributes are available only to set the value of the target input parameter. Input

parameters are of two types: either they are fixed inputs, for which there are

predefined default mappings, or they are free inputs, for which the user can

provide a value or choose which flow attribute to use. That is, for free inputs

it is possible to specify a simple attribute-parameter data mapping logic.
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Figure 2 shows that Yahoo! Pipes’ meta-model is indeed very simple: only

10 concepts suffice to model its composition features. Of course, the focus of

Pipes is on data mashups, and there is no need for complex web services or user

interfaces, two features that are instead present in our own mashup platform,

i.e., mashArt [5]. Yet, despite these two additions, mashArt’s meta-model only

requires 13 concepts. If instead we look at the BPMN modeling notation for

business processes [11], we already need more than 20 concepts to characterize

its expressive power, and the meta-model of BPEL [12] has almost 60 concepts!

Of course, the higher the complexity of the language, the more difficult it is to

identify and reuse composition knowledge.

4.2 Advising Composition Knowledge

Given the meta-model of the composition language for which we want to pro-

vide composition advices, it is possible to identify which concrete compositional

knowledge can be extracted from existing compositions (e.g., pipes). The gray

boxes in the conceptual model in Figure 3 illustrate the result of our analy-

sis. The figure identifies the key entities and relationships needed to provide

composition advices.

An Advice provides composition knowledge in form of composition patterns.

An advice can be to complete a given pattern (given it’s partial implementation

in the modeling canvas) or to substitute a pattern with a similar one, or the

advice can highlight compatible elements in the modeling canvas or filter and

rank advices.

Patterns represent the actual recommendation that we deliver to the user.

They can be of five types (all these patterns can be identified in the model in

Figure 3):

• Parameter Value Patterns: Possible values for a given parameter. For in-

stance, in the URL Builder component the Base parameter value in a pat-

tern can be set to http://ws.geonames.org, while the Path elements param-

eter value can be rssToGeoRSS, and feedUrl can be news.google.com/news?

topic=t&output=rss&ned=us, as shown in our example scenario. Alterna-

tively, we can have the URL Builder component with the Base parameter
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Figure 3: Conceptual model of WIRE’s advice approach. Gray entities model the in-
gredients for advices; white boxes model the advice triggering logic inside the design
environment.

set to news.google.com/news and the Query parameters set with different

values.

• Component Association Patterns: Co-occurrence patterns for pairs of com-

ponents. For instance, in our scenario, whenever a user drags and drops

the URL Builder on the design canvas, a possible advice derived from a

component association pattern can be to include in the composition the

Fetch Feed component and connect it to the URL Builder.

• Connector Patterns: Component-component or component-input param-

eter patterns. This pattern captures the dataflow logic, i.e., how compo-

nents are connected via connector elements. For example, URL Builder

connector- Fetch Feed is a connector pattern in our example scenario.

• Data Mapping Patterns: Associations of outputs to inputs. In Figure 1, for

instance, we map the description, title, and y:title attributes of the fetched

feed to the first input field of the first, second, and third rule, respectively,

telling the Filter component how we map the individual attributes in input

Appendix H. Wisdom-aware Computing: On the Interactive Recommendation of
Composition Knowledge

186



to the individual, free input parameters of the component.

• Complex Patterns: Partial compositions consisting of multiple compo-

nents, connectors, and parameter settings. In our example scenario, dif-

ferent combinations of components and connectors, having their parameter

values set and with proper data mappings, as a part and as a whole rep-

resent complex patterns. For example, the configuration URL Builder -

Fetch Feed - Filter - Location Extractor, along with their settings, repre-

sents a complex pattern.

An Advice provides composition knowledge in form of composition patterns.

An advice can be to complete a given pattern (given it’s partial implementation

in the modeling canvas) or to substitute a pattern with a similar one, or the

advice can highlight compatible elements in the modeling canvas or filter and

rank advices.

Patterns represent the actual recommendation that we would like to deliver

to the user. They can be of five different types: Complex Patterns (partial

compositions possibly consisting of multiple components, connectors, and pa-

rameter settings), Parameter Value Patterns (possible values for a given pa-

rameter), Component Association Patterns (co-occurrence patterns for pairs of

components), Connector Patterns (component-component or component-input

parameter patterns), and Data Mapping Patterns (associations of outputs to

inputs).

Now, let’s discuss the white part of the model. This part represents the

entities that jointly define the conditions under which advices can be triggered.

A Trigger for an advice is defined by an object, an action of the user in the

modeling canvas, and the state of the current composition, i.e., the partial

composition in the modeling canvas. This association can be thought of as a

triplet that defines the triggering condition. The Objects a user may operate are

Composition Fragments (e.g., a selection of a subset of the pipe in the canvas),

individual Components, Connectors, or Parameters (by interacting with the

respective graphical input fields). The Action represents the action that the

user may perform on an object during composition. We identify seven actions:

Select (e.g., a composition fragment or a connector), Drag (e.g., a component
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or a connector endpoint), Drop, Connect, Fill (a parameter value), Delete,

and Embed (one component into another). Finally, the Partial Composition

represents the status of the current overall composition.

While the object therefore identifies which advice may be of interest to the

user, the action decides when the advice can be given, and the state filters out

advices that are not compatible with the current partial composition (e.g., if

the Location Extractor component has already been used, recommending its

use becomes useless).

Regarding the model in Figure 3, not all associations may be needed in

practice. For instance, not all components are compatible with the embed

action. Yet, the model identifies precisely which advices can be given and

when.

5 The WIRE Platform

Figure 4 illustrates the high-level architecture of the assisted development en-

vironment with which we aim at supporting wisdom-aware development ac-

cording to the model described in the previous section: developers can design

their applications in a wisdom-aware development environment, which is com-

posed of an interactive recommender (for development advice) and an offline

recommender as well as the wisdom-aware editor implementing the interactive

development paradigm. Compositions or mashups are stored in a compositions

repository and can be executed in a dedicated runtime environment, which gen-

erates execution data. Compositions and execution data are the input for the

knowledge/advice extractor, which finds the repeated and useful patterns in

them and stores them as development and evolution advice in the advice repos-

itory. Then, the recommenders provide them as interactive advices through its

query interface upon the current context and triggers of the user’s development

environment. Here, we specifically focused on development advices related to

composition; we will approach evolution advices in our future work (evolution

advices will, for instance, take into account performance criteria or evolutions

applied by developers over time on their own mashups).

We realize that each domain will have suitable languages and execution

Appendix H. Wisdom-aware Computing: On the Interactive Recommendation of
Composition Knowledge

188



Runtime environment 
for WIRE applicationsCompositions

Knowledge/advice 
extractor

Offline recommender

Execution data

Interactive 
recommender

Wisdom-aware editor
Development advices

Evolution advice Evolution advices

Wisdom-aware development environment Advice repository
Trigger (object,action,state)

Development 
advice

Q
ue

ry
 

in
te

rfa
ce

Trigger

Advice

Mashup ID

Advice

Figure 4: High-level architecture of the envisioned system for wisdom-aware development.

engines, such as a mashup engine or a scientific workflow engine. Our goal is

not to compete with these, but to define mechanism to WIRE these languages

and tools with the ability to extract knowledge and provide advice. For this

reason, in this paper we started with studying the case of Yahoo! Pipes, which

is well known and allows us to easily explain our ideas. We however intend

to apply the wisdom-aware development paradigm to our own mashup editor,

mashArt [5], which features a universal composition paradigm user interface

components, application logic, and data web services, a development paradigm

that is similar in complexity to that of Pipes.

As for the reuse of knowledge, the WIRE approach is not based on semantic

annotations, matching, or AI planning techniques, nor do we aim at automated

or goal-driven composition or at identifying semantic similarity among services.

We also do not aim at having developers tag components or add metadata to

let others better reuse services, processes, or fragments. In other words, we

aim at collecting knowledge implicitly, as we believe that otherwise we would

face an easier wisdom extraction problem but end up with a solution that in

practice does not work because people do not bother to add the necessary

metadata. WIRE will rather leverage on statistical data analysis techniques

and data mining as means to extract knowledge from the available information

space. To do so, we propose the following core steps:

• Cleaning, integration, and transformation: We take as input previous com-
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positions and execution data and prepare them for the analysis.

• Statistical data analysis and data mining: On the resulting data, we apply

statistical data analysis and data mining techniques, which may include

mining of frequent patterns, association rules, correlations, classification

and cluster analysis. The results of this step are used to create the com-

position patterns.

• Evaluation and ranking of advices (knowledge): Once we have discovered

the potential advices, we evaluate and rank them using standard interest-

ingness measures (e.g., support and confidence) and ranking algorithms.

• Presentation of advices: The advices are presented to the user through

intuitive visual metaphors that are suitable to the context and purpose of

the advice.

• Gathering of user feedback: The popularity of advices is gathered and

measured in order to better rank them.

Among the techniques we are applying for the discovery tasks, we are specif-

ically leveraging on data mining approaches, such as frequent itemset mining,

association rules learning, sequential pattern mining, graph mining, and link

mining. Each of these techniques can be used to discover a different type of

advice:

• Frequent itemset mining: The objective of this technique is to find the

co-occurrence of items in a dataset of transactions. The co-occurrence is

considered frequent whenever its support equals or exceeds a given thresh-

old. This technique can be used as a support for discovering any of the

advices introduced before. For instance, in the case of discovering Com-

ponent Association Patterns we can this technique.

• Association rules: This technique aims at finding rules of the form A→ B,

where A and B are disjoint sets of items. This technique can be applied to

help in the discovery of any of the proposed advices. For instance, in the

case of the Parameter Value Pattern, given the value of two parameters of
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a component, we can find an association rule that suggests us the value

for a third parameter.

• Sequential pattern mining: Given a dataset of sequences, the objective

of sequential pattern mining is to find all sequences that have a support

equal or greater than a given threshold. This technique can be applied to

discover Complex Patterns, Component Association Patterns, and Con-

nector Patterns. For instance, in the case of the Connector Pattern, we can

use this technique to extract patterns that can be then used for suggesting

connectors among components placed on the design canvas.

• Graph mining: given a set of graphs, the goal of graph mining is to find all

subgraphs such that their support is equal or greater than a given thresh-

old. For our purpose, we can use graph mining for discovering Complex

Patterns and Connector Patterns. For instance, for Complex Patterns we

can suggest a list of existing ready compositions based on the partial com-

position the user has in the canvas, whenever this partial composition is

deemed as frequent.

• Link mining: rather than a technique, link mining refers to a set of tech-

niques for mining data sets where objects are linked with rich structures.

Link mining can be applied to support the discovery of any of the pro-

posed advices. For example, in the case of Data Mapping Patterns, we can

discover patterns for mapping the parameters of two components, based

on the types these parameters.

Once community composition knowledge has been identified, we store the

extracted knowledge in the advice repository in the form of directed graphs.

In our advice repository, elements in the patterns, e.g., a component or a con-

nector, are represented as nodes of the graph, and relationships among them,

e.g., a component has a parameter, are represented as edges between those

nodes. We also store a set of rules in our advice repository, which represent

the trigger conditions under which a specific knowledge can be provided as an

advice. Based upon this information, through our query interface we can match

knowledge with the current composition context and retrieves relevant advices
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from the advice repository. Retrieved advices are filtered, ranked, and deliv-

ered based on user profile data (e.g., the programming expertise of the user or

his/her preferences over advice types).

6 Conclusion

In this paper we propose the idea of wisdom-aware computing, a computing

paradigm that aims at reusing community composition knowledge (the wis-

dom) to provide interactive development advice to less skilled developers. If

successful, WIRE can extend the developer base in each domain where reuse of

algorithmic knowledge is possible and it can facilitate progressive learning and

knowledge transfer.

Unlike other approaches in literature, which typically focus on structural

and semantic similarities, we specifically focus on the elicitation of composition

knowledge that derives from the expertise of people and that is expressed in

the compositions they develop. If, for instance, two components have been

used together successfully multiple times, very likely their joint use is both

syntactically and semantically meaningful. There is no need to further model

complex ontologies or composition rules.

In order to provide identified patterns with the necessary semantics, we ad-

vocate the application of the WIRE paradigm to composition environments

that focus on specific domains. Inside a given domain, component names

are self-explaining and patterns can easily be understood. In the Omelette

(http://www.ict-omelette.eu/) and the LiquidPub (http://liquidpub.org/)

projects, we are, for instance, working on two domain-specific mashup platforms

for telco and research evaluation, respectively.

For illustration purposes, in this paper we used Yahoo! Pipes as reference

mashup platform, as Pipes is very similar in complexity to our own mashArt

platform [5] but better known. In order to have access to the compositions that

actually hold the knowledge we want to harvest, we will of course apply WIRE

to mashArt.

Acknoledgements. This work was supported by funds from the European

Commission (project OMELETTE, contract no. 257635).
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End-User Requirements for Wisdom-Aware EUD ∗

Antonella De Angeli Alberto Battocchi Soudip Roy Chowdhury

Carlos Rodŕıguez Florian Daniel Fabio Casati

Abstract

This paper presents requirements elicitation study for a EUD tool for com-
posing service-based applications. WIRE aims at enabling EUD by harvest-
ing and recommending community composition knowledge (the wisdom), thus
facilitating knowledge transfer from developers to end-users. The idea was
evaluated with 10 contextual interviews to accountants, eliciting a rich set of
information, which can lead to requirements for Wisdom-Aware EUD.

1 Introduction

There are two common approaches to enable less skilled users to develop soft-

ware artifacts. Development can be eased by simplifying it or by reusing knowl-

edge. Among the simplification approaches, the business process management

and service computing communities have focused on abstracting process de-

velopment and service composition into activities, as well as control and data

flows. However, these are still challenging tasks even for expert developers [1,2].

Traditional reuse approaches, in the form of program libraries, services, or tem-

plates (such as generics in Java or process templates in workflows) have targeted

developers rather than end-users. Recently, some effort has been invested into

knowledge reuse techniques for end-users. In programming by demonstration

[3], the system auto-completes a process definition, starting from a set of exam-

ples chosen by the user. Goal-oriented approaches [5] assist the users by auto-

matically composing solutions that satisfy user-specified goals. Pattern-based
∗The final publication is available at www.springerlink.com (http://link.springer.com/chapter/10.1007%2F978-3-642-

21530-8 21)
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development [4] proposes the use of libraries of patterns provided by experts to

represent good development practices, yet patterns, such as the glue patterns

in [7], may also be derived from existing compositions. Syntactic approaches

[11], for instance, suggest operators based on syntactic similarity (comparing

output and input data types), while semantic-based approaches [6] annotate

ingredients to support the retrieval of semantically matching elements.

While some of these approaches support end-users with reusable knowledge,

they all suffer from some shortcomings. Programming by demonstration and

goal-based approaches propose best, complete solutions, not allowing the user

to control which exact ingredients the solution should contain. Pattern and

semantics-based approaches are hard to maintain, in that they require explicit

input from human experts.

In this paper we present the results of a requirement study for WIRE

(WIsdom-awaRE development environment) a EUD tool to exploit the ben-

efits of simplification and reuse. WIRE targets process-oriented, mashup-like

applications that are characterized by relatively simple composition logics and

complex tasks or components. This class of programs provides the benefit

of simplicity (composition, not coding) and a sufficient information base (the

compositions themselves). The idea is to learn from existing compositions de-

veloped by expert IT developers and provide learned knowledge in the form of

interactive recommendations to facilitate EUD.

2 WIRE

The motivation behind the idea of WIRE has derived by the analysis of the

shortcomings of existing mashup development tools. To exemplify this claim,

let us consider a simple application created by Yahoo! Pipes, which retrieves

news feeds from a specified website, filters the content based on user-specified

criteria, and publishes the filtered content for viewing (Fig. 1). Such a simple

application requires 5 components. The user has to set the value of the config-

uration parameters of a component (e.g., the URL Parameter of the Fetch Feed

component) and define the dataflow logic between components. Assuming that

an end-user has this kind of technical knowledge is not realistic.
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Figure 1: Implementation of the example scenario in Yahoo! Pipes.

WIRE is aimed at discovering technical knowledge by analyzing existing,

successful applications, storing knowledge as development advice (community

composition knowledge[8]), and delivering it in the form of contextual inter-

active recommendations to the end-user. The intuition is that this knowledge

can be captured through composition patterns and reused as recommenda-

tions. The patterns we identified include Parameter Values (e.g., values for

the URL parameter in the Fetch Feed component), Component Associations

(e.g., suggest that a Loop component should be added together with a Fetch

Feed component), Connectors (e.g., possible connections between components),

Data Mapping (e.g., suggest that the item.link element coming from the Fetch

Feed component should be mapped to the URL parameter of the Fetch Page

component), or Complex patterns (e.g., suggest adding components based on

a Component Association pattern together with the wiring among them based

on a Connector pattern). A detailed explanation of the conceptual model and

architecture of WIRE is presented in [8].
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3 User study

An evaluation of the conceptual design of WIRE was run in order to address

benefits and limitations of the proposal and elicit user requirements [12]. The

evaluation was based on contextual interviews to 10 University accountants (7

F, 3 M; mean age = 37 years of age), which lasted approximately one hour.

None of them had a background in computer science. Participation was re-

warded with 15 Euros. The interview addressed two main topics. Section

A targeted the strategies that people use for overcoming the difficulties that

emerge while using computers during day-to-day work, and their attitudes to-

wards computer-provided help and advice with particular focus on the com-

parison between automatic/contextual and on-demand help. Participants were

shown a slideshow of familiar examples of automatic/contextual advice (i.e.,

word completion in the Google search box, friend suggestion in Facebook, book

suggestions in Amazon, passwords auto-save in web-browsers, pop-up reminder

on calendars, related videos sidebar on YouTube), invited to comment on each

example, and report their understanding on how the advice was created.

Section B collected opinions and suggestions about WIRE by a plus and

a minus scenario [9] reporting on an accountant who is using WIRE for au-

tomating the process of management of travel reimbursement. Both scenarios

described the effects brought forward by WIRE on a new user. These effects

were taken to the positive or negative extreme to help users to think what

consequences the approach could have in their work practices. In the Positive

Scenario, the accountant had a successful experience, which helped him to save

time and speed up repetitive work leading to adoption. In the Negative Sce-

nario, the accountant encountered serious difficulties and eventually decided to

go back to his traditional work procedures. Scenarios were presented with a

counterbalanced order. Interviewees were asked specific questions addressing

their willingness to use the system, advantages and drawbacks, preference for

contextual or on-request help, and for the way the help was presented.
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4 Results

Asking to colleagues and technicians represented the most common option used

by half of the interviewees to seek for help and advice. The person to whom

they asked for help was usually chosen on the basis of his/her level of expertise

or on friendship/acquaintanceship. Google represented the first choice of help

for four of the participants and the second choice for those participants who

could not find a solution to their problems asking colleagues or technicians.

Participants reported using online help and help menus rarely, and this was the

first choice only for one interviewee. When asked which source of help was the

most effective, eight participants indicated colleagues and technicians. Their

choice was motivated by the fact that technicians are professional and helpful,

and that providing support is part of their job. One participant indicated

Google as the best source of information “because you can use it at any time,

also when you are at home” (P10).

Seven participants reported a preference for automatic/contextual help rather

than help on-request, but two of them also specified that this method works

better for new or simple applications. Participants suggested that the auto-

matic/help function should be customizable in order to be really useful. One

participant provided an interesting observation about the function of auto-

matic/contextual help:

“Automatic/contextual help has a double function: it appears

when you need help and reminds you of potential errors; help on

request covers only the first function” (P10).

Participants provided valuable comments on the effectiveness and usefulness

of common examples of contextual advice. People favoured less intrusive con-

textual advice, that do not try to guess the user’s preferences or opinions, and

that do not present risks for data security, such as Google’s automatic word

completion, pop-up reminders in Google Calendar, and the related videos side-

bar in YouTube. Contextual advice was valued mainly in the case of objective

suggestions (e.g., YouTube) but perceived as less accurate when it tries to enter

users’ private space (e.g., Facebook). When asked to formulate their nave the-
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ories about contextual help is generated, all the participants reported that they

are created on the basis of the inserted keywords. One participant also made a

distinction between general, or simple, and particular, or complex, suggestions:

“For simple queries, the system works on simple analogies

with the inserted keywords; for more complex issues, the sys-

tem does a matching with your personal characteristics (provided

while registering to a service” (P8).

Participants provided useful information about their attitude toward WIRE.

When reading the positive scenario, participants recognized several similarities

with their work practices and perceived the system as potentially very useful.

Two participants expressed a common concern about the introduction of WIRE

into their work practices and suggested that, in order to benefit of its potentiali-

ties, the use of WIRE should totally replace previous practices, without leaving

space for overlapping. The Negative Scenario was also perceived as very plausi-

ble as it described well fears and frustrations that may emerge when something

goes wrong dealing with new systems or procedures. In particular the inter-

viewees stressed the need for a system which is well designed and thoroughly

tested before being introduced into the work practice:

“I gave for granted that this technology was previously tested

and approved by the central administration office. [...]. In the

case of dealing with sensitive or financial matters, I would trust

the system only if I am 100% sure that it is effective and func-

tional” (P7).

Participants were asked if they would be interested in using WIRE. Nine of

the interviewees responded positively and one was openly skeptical stating that

using WIRE would take the same time it takes doing the procedure manually

(P1). Anyway, formal training was indicated by two participants as a funda-

mental prerequisite for adoption. Drivers to adoption were identified in better

organization of work, optimization of time, reduction of errors, and sharing
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of procedures and methodologies with colleagues. Major obstacles were con-

nected to loss of control over work processes, in the case that these were entirely

completed in an automatic way:

“I would like to keep track of each step of the process; if ev-

erything is made automatically, the users misses the logic that

stays behind the process” (P4).

All the participants declared that the advice provided by WIRE in the sce-

narios would be effective in meeting their needs, as they were generated on

the basis of past experience of colleagues that share the same work procedures

and possibly the same difficulties. Interviewees showed a marked preference for

contextual help (8 participants) over help on-request; two of them added that

the possibility of personalizing the way suggestions are provided would be a

very important feature in order to make help messages really effective. Help

messages provided during the task were preferred to messages provided before

the task by nine of the interviewees. One participant suggested that the two

modalities could be combined:

“I can see the two modalities as complementary. At the be-

ginning of the activity the system asks what your needs are in

general; during the activity, pop-up windows provide you solu-

tions when the system feels that you are stuck” (P8).

5 Conclusion

End-users acknowledged that the idea of WIRE for providing assistance, which

was derived from the experience of colleagues working in a similar context, was

useful. However, issues related to trust, timing and usefulness of the advice

still remained as concerns to the users. During the design of WIRE we will

need to find new strategies to make its operations transparent e.g. showing

users how the advice is generated and why a particular advice is suggested in

a given context. Transparency will also help to build up the trust of the users

to use a recommendation tool like WIRE. This is particularly important when
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people deal with the sensitive and financial issues. Personalization is another

desired feature, which enables users to receive optimized advice based upon

their expertise level. Helping users with the personalized advice can certainly

reduce the barrier for adopting this kind of EUD tools to a larger end-user

community.

The study provides support to the proposal of collaborative tailoring, dis-

cussed in [10], as often participants mentioned that their willingness to engage

in EUD was mediated by having support from other people and technical help

easily available to them. This help was meant not only to alleviate some of

the technical difficulties they had to face during development but also to take

the responsibility out of their hands, making them less accountable in case

of software failures. Issues related to organizational regulations and corporate

processes also emerged as barriers to general EUD uptake, as people often men-

tioned the need to have explicit approval from their manager as a fundamental

step towards making them willing to explore new techniques and tools to au-

tomatize their work practices.
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Baya: Assisted Mashup Development as a Service ∗

Soudip Roy Chowdhury Carlos Rodŕıguez Florian Daniel

Fabio Casati

Abstract

In this demonstration, we describe Baya, an extension of Yahoo! Pipes that
guides and speeds up development by interactively recommending composi-
tion knowledge harvested from a repository of existing pipes. Composition
knowledge is delivered in the form of reusable mashup patterns, which are
retrieved and ranked on the fly while the developer models his own pipe (the
mashup) and that are automatically weaved into his pipe model upon selec-
tion. Baya mines candidate patterns from pipe models available online and
thereby leverages on the knowledge of the crowd, i.e., of other developers.
Baya is an extension for the Firefox browser that seamlessly integrates with
Pipes. It enhances Pipes with a powerful new feature for both expert devel-
opers and beginners, speeding up the former and enabling the latter. The
discovery of composition knowledge is provided as a service and can easily
be extended toward other modeling environments.

1 Introduction

Mashup tools, such as Yahoo! Pipes (http://pipes.yahoo.com/pipes/)

or JackBe Presto Wires (http://www.jackbe.com), simplify the development

of composite applications by means of easy development paradigms (e.g., using

visual programming metaphors) and hosted runtime environments that do not

require the installation of any client-side software. Yet, despite the initial goal

of enabling end users to develop own applications and the advances in simpli-

fying technology, mashup development is still a complex task that can only be

managed by skilled developers.
∗This is an electronic version of an Article published in WWW 2012 Companion, April 1620, 2012, Lyon, France. ACM

978-1-4503-1230-1/12/04. 2012 International World Wide Web Conference Committee
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Figure 1: A typical pattern in Yahoo! Pipes

For instance, Figure 1 illustrates a Yahoo! Pipes model that encodes how to

plot news items on a map. The example shows that understanding and modeling

the logic for building such a mashup is neither trivial nor intuitive.

Firstly, we need to enrich the news feed with geo-coordinates, then, we must

fetch the actual news items, and only then we can plot the items on a map. If

modeling difficulties arise, it is common practice to manually search the Web

for examples or help on which components to use, on how to fill the respective

parameter fields, or on how to propagate data.

In order to aid less skilled developers in the design of mashups like the one

above, in programming by demonstration [1], for instance, the system aims to

auto-complete a process definition, starting from a set of user-selected model

examples. Goal-oriented approaches [4] aim to assist the user by automatically

deriving compositions that satisfy user-specified goals. Pattern-based develop-

ment [3] aims at recommending connector patterns (so-called glue patterns) in

response to user selected components (so-called mashlets) in order to autocom-
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plete the partial mashup. Syntactic approaches [7] suggest modeling constructs

based on syntactic similarity (comparing output and input data types), while

semantic approaches [5] annotate constructs to support suggestions based on

the meaning of constructs. The limitations in these approaches lie in the fact

that they overlooked the perspectives for end user development, as they either

still require advanced modeling skills (which users don’t have), or they expect

the user to specify complex rules for defining goals (which they are not able

to), or they expect domain experts to specify and maintain the semantics of

the modeling constructs (which they don’t do).

Driven by a user study on how end users would like to be assisted during

mashup development [2], we have developed Baya, a plug-in for Yahoo! Pipes

that provides interactive, contextual recommendations of reusable compo-

sition knowledge. The knowledge Baya recommends is re-usable composition

patterns, i.e., model fragments that bear knowledge about how to compose

mashups, such as the one in Figure 1. For instance, Baya may suggest a can-

didate next component or a whole chain of constructs. Upon selection of a

recommendation, Baya weaves the respective pattern automatically into the

current model in the modeling canvas1. Baya mines community composition

knowledge from existing mashup models publicly available in the online Yahoo!

Pipes repository and provides the respective patterns as a service to client-side

modeling environments.

In this demo paper, we describe Baya, outline the concepts and architecture

behind its simple user interface, and provide insight into its implementation

and future evolution.

2 The Baya Approach

Baya aims to seamlessly extend existing mashup or composition instruments

with advanced knowledge reuse capabilities. It targets both expert developers

and beginners and aims to speed up the former and to enable the latter.

The design goals behind Baya can be summarized as follows: We didn’t
1This is also the capability that inspired the name of the tool: the Baya weaver is a so-called weaverbird that weaves its

nest with long strips of leaves.
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want to develop yet another mashup environment; so we opted for an extension

of existing and working solutions (in this demo, we focus on Yahoo! Pipes;

other tools will follow). We wanted to reuse composition knowledge that has

proven successful in the past; mining modeling patterns from existing mashups

allows us to identify exactly this, i.e., recurrent modeling practice. We wanted

to support a variety of different mashup tools, not just one; as we will see,

the sensible design of a so-called canonical mashup model serves exactly this

purpose. Modelers should not be required to ask for help; we therefore pro-

actively and interactively recommend contextual composition patterns. We

did not want the reuse to be limited to simple copy/paste of patterns, but

knowledge should be actionable, and therefore, Baya features the automated

weaving of patterns.

2.1 Composition Knowledge

Considering the typical actions performed by a developer in a graphical model-

ing environment (e.g., filling input fields, connecting components, copying/pasting

model fragments), Baya specifically supports the following set of pattern

types :

• Parameter value pattern. The parameter value pattern represents a

set of recurrent value assignments for the input parameters of a component.

This pattern helps filling input parameters of a component that require

explicit user input.

• Connector pattern. The connector pattern represents a recurrent

connector between a pair of components, along with the data mapping

of the target component. The pattern helps connecting a newly placed

component to the partial mashup model in the canvas.

• Connector co-occurrence pattern. The connector co-occurrence

pattern captures which connectors occur together. The pattern also in-

cludes the associated data mappings. This pattern is particularly valuable

in those cases where people, rather than developing their mashup model

Appendix J. Baya: Assisted Mashup Development as a Service

209



in an incremental but connected fashion, first select the desired function-

alities (the components) and only then connect them.

• Component co-occurrence pattern. Similarly, the component co-

occurrence pattern captures couples of components that occur together. It

comes with the two associated components as well as with their connector,

parameter values, and data mapping logic. The pattern helps developing

mashups incrementally in a connected fashion.

• Component embedding pattern. The component embedding pat-

tern captures which component is typically embedded into which other

component, both being preceded by another component. The pattern

helps, for instance, modeling loops, a task that is usually not trivial to

non-experts.

• Multi-component pattern. The multi-component pattern represents

recurrent model fragments that are composed of multiple components. It

represents more complex patterns, such as the one in Figure 1, that are

not yet captured by the other pattern types.

This list of pattern types is extensible and will evolve over time. However,

this set of pattern types at the same time leverages on the interactive modeling

paradigm of the mashup tools (the patterns represent modeling actions that

could also be performed by the developer) and provides as much information

as possible.

2.2 Discovery, Recommendation and Weaving

Figure 2 details the internals of the Baya architecture. The overall architecture

is devided into two blocks, namely, the recommendation server and the client-

side extension of the chosen mashup tool, i.e., Yahoo! Pipes.

The Baya recommendation server (at the left in Figure 2) is in charge

of discovering and harvesting composition knowledge patterns from existing

mashup compositions. The first step for discovering composition patterns con-

sists in taking the native models of the target mashup tools from a repository
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Figure 2: The internals of Baya: functional architecture for pattern discovery, recom-
mendation and weaving

of existing compositions and translating them into a canonical mashup model,

a step that is performed by a dedicated model adapter. The canonical model

is able to represent a variety of similar mashup languages and allows the de-

velopment of more generic mining algorithms. The pattern miner runs a set

of pattern mining algorithms on the data in the canonical model and discov-

ers the above introduced patterns. Discovered patterns are stored back into

a database of canonical patterns, transformed by the data transformer, and

loaded into the persistent knowledge base (KB). The persistent KB consists

in a database that is structured in such a way that patterns can be efficiently

queried and retrieved by the client-side browser extension for interactive rec-

ommendation.

The Baya Firefox extension consists of two main components: a rec-

ommendation engine and a pattern weaver. In the client, we have the actual

interactive modeling environment (Pipes), in which the developer can visually

compose components by dragging and dropping them from a component tool

bar and connecting them together in the canvas. The developer therefore per-

forms composition actions (e.g., select, drag, drop, connect, delete, fill, map,...),

where the action is performed on a modeling construct in the modeling canvas;

we call this construct the object of the action. For instance, we can drop a

component onto the canvas, or we can select a parameter to fill it with a value,

and so on. Upon each interaction, the action and its object are published on
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a browser-internal event bus, which forwards them to the recommendation

engine. Given a modeling action, the object it has been applied to, and the

partial mashup model, the engine queries the client-side pattern KB via the

KB access API for recommendations (pattern representations) and gets a list

of candidate patterns. Baya uses both exact and approximate pattern match-

ing algorithms [6] to determine the final candidate set of recommendations that

also match the current composition context, ranks them in order of their simi-

larity and popularity, and finally renders them in the recommendation panel.

Upon the selection of a pattern from the recommendation panel, the pat-

tern weaver weaves it into the partial mashup model in the modeling canvas.

For each supported pattern type, Baya retrieves a basic weaving strategy (a

static set of modeling instructions; see http://goo.gl/Xk7VF), which is in-

dependent of the partial mashup model, and derives a contextual weaving

strategy, which applies the basic strategy to the partial model at runtime. Ap-

plying the mashup operations in the basic strategy may require the resolution

of possible conflicts among the constructs of the partial model and those of

the pattern to be weaved. For instance, if we want to add a new component

of type ctype but the mashup already contains an instance of type ctype, say

comp, we are in the presence of a conflict: either we decide that we reuse comp,

which is already there, or we decide to create a new instance of ctype. In order

to choose how to proceed, Baya allows one to choose among different policies

(see http://goo.gl/9jJtK). Given a final, contextual strategy, the pattern

weaver applies the respective modeling actions to the partial mashup model.

Upon successful weaving of a recommended pattern into the partial com-

position, the usage statistics of the selected pattern in the client-side KB get

updated, and simultaneously this information is sent to the server-side per-

sistent KB via the KB loader. This updated metadata is used for future

recommendation filtering and ranking. In the Baya client side, we also consider

the option for saving patterns, in which users can select and store to the pattern

KB new user-defined patterns from their current composition. This feature is

part of our on-going development and will be available in future versions of

Baya.
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3 Implementation

Baya is implemented as Mozilla Firefox (http://mozilla.com/firefox) ex-

tension for Yahoo! Pipes, adding an interactive recommendation panel at the

right of its modeling canvas. Baya implementation is based on JavaScript for the

business logic (e.g., the algorithms) and XUL (XML User Interface Language,

https://developer.mozilla.org/En/XUL) for UI development. The use of

JavaScript in Firefox Extension development framework eases the interaction

with the HTML DOM elements in the browser window and the implementation

of dedicated listeners to intercept modeling events on elements in the DOM tree

(e.g., model constructs in the Pipes modeling canvas). A screenshot of Baya in

action is shown in Figure 3.

The server side is implemented in Java. This comprises the model adapter

(cf. Figure 2), which is able to convert Yahoo! Pipes’ internal JSON repre-

sentation of mashups into our canonical mashup model as well as the neces-

sary mining algorithms for the discovery of the patters (a description of the

algorithms can be found at http://goo.gl/Dis5V). Parts of our mining

algorithms make use of frequent itemset mining, for which we used the tool

ARMiner (http://www.cs.umb.edu/~laur/ARMiner/).

Discovered patterns are transformed and stored in a knowledge base that

is optimized for fast pattern retrieval at runtime. The implementation of the

persistent pattern KB at server side, is based on MySQL (http://www.mysql.

com/). Via a dedicated Java RESTful API, at startup of the recommendation

panel the KB loader synchronizes the server-side KB with the client-side KB,

which instead is based on SQLite (http://www.sqlite.org). The pattern

matching and retrieval algorithms are implemented in JavaScript and triggered

by events generated by the event listeners monitoring the DOM modifications

related to the mashup model.

The weaving algorithms are also implemented in JavaScript. Upon the se-

lection of a recommendation from the panel, they derive the contextual weav-

ing strategy that is necessary to weave the respective pattern into the partial

mashup model. Each of the instructions in the weaving strategy refers to a

modeling action, where modeling actions are implemented as JavaScript ma-
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Figure 3: Screenshot of Baya in action.

nipulations of the mashup model’s DOM elements. Both the weaving strategies

(basic and contextual) are encoded as JSON arrays, which enable us to use the

native eval() command for fast and easy parsing of the weaving logic.

For our experiments we extracted 303 pipes definitions from the repository of

Pipes. The average numbers of components, connectors and input parameters

were 12.7, 13.2 and 3.1, respectively, indicating fairly complex mashups. We

were able to identify patterns of all the types described above. For example, the

minimum/maximum support for the connector patterns was 0.0759/0.3234,

while the one for the component co-occurrence patterns was 0.0769/0.2308.

We used these patterns to populate our KB and generated additional synthetic

patterns to test the performance of the recommendation engine (the sizes of the

KBs ranged from 10, 30, 100, 300, 1000 multi-component patterns) [6]. The

complexity of the patterns ranged from 3 − 9 components per pattern, and

we used queries with 1 − 7 components. In the worst case scenario (KB of
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1000 patterns, approximate similarity matching of patterns), the recommenda-

tion engine could retrieve relevant patterns within 608 millisecond – everything

entirely inside the client browser.

4 Demonstration Storyboard

During the live demonstration, we will showcase Baya at work and take our

audience through the theoretical as well as the usage aspects of the tool, using

a mix of slides and hands-on examples. In particular, we intend to organize the

demonstration as follows:

1. Introduction : A short intro to the goals and key concepts of Baya.

2. Example : A simple example developed by us with the use of the inter-

active recommendations.

3. Non-assisted development by audience : A similar modeling ex-

ercise for a member of the audience, however without the help of the

interactive recommender.

4. Assisted development by audience : The same modeling scenario

as in 3, this time however with the help of the interactive recommender.

5. Patterns and discovery : An explanation of the pattern types sup-

ported by Baya, along with the mining approach underlying the pattern

knowledge base.

6. Architecture and internals : Explanation of the internal architec-

ture of Baya and of the recommendation and weaving algorithms working

behind the scenes.

7. Conclusion : Lessons learned and outline of future works and the evo-

lution of Baya.

This process will allow us to introduce the audience to Baya and help us

evaluate the efficacy and usability of the tool. We hope we will get valuable
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feedback from the audience, in order to further fine-tune Baya’s UI and algo-

rithms.

An introduction to and a screencast of Baya is available at http://www.

youtube.com/watch?v=RNRAsX1CXtE.

5 Status and Lessons Learned

Baya was born in the context of the EU research project OMELETTE, in

order to assist mashup development inside the project’s own mashup editors.

Soon, however, we recognized that the kind of knowledge discovery algorithms

we were working on and the conceptual approach to pattern recommendation

and weaving are generic enough to be applied in the context of many other

modeling or mashup tools. As a proof of concept, we therefore developed Baya,

an apparently simple, yet effective tool. The idea of composition knowledge as

a service makes it unique among other assisted development approaches, and a-

priori definition of pattern structures allows us to extract meaningful knowledge

also from single mashup models.

Next, we will extend the mining algorithms to other composition paradigms

and develop dedicated clients for different composition tools. The idea is to

make Baya publicly available and to study how effectively pattern recommen-

dation and weaving can help users to develop own mashups.
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Discovery and Reuse of Composition Knowledge for
Assisted Mashup Development ∗

Florian Daniel Carlos Rodŕıguez Soudip Roy Chowdhury

Hamid R. Motahari Nezhad Fabio Casati

Abstract

Despite the emergence of mashup tools like Yahoo! Pipes or JackBe Presto
Wires, developing mashups is still non-trivial and requires intimate knowledge
about the functionality of web APIs and services, their interfaces, parame-
ter settings, data mappings, and so on. We aim to assist the mashup pro-
cess and to turn it into an interactive co-creation process, in which one part
of the solution comes from the developer and the other part from reusable
composition knowledge that has proven successful in the past. We harvest
composition knowledge from a repository of existing mashup models by min-
ing a set of reusable composition patterns, which we then use to interactively
provide composition recommendations to developers while they model their
own mashup. Upon acceptance of a recommendation, the purposeful design
of the respective pattern types allows us to automatically weave the chosen
pattern into a partial mashup model, in practice performing a set of model-
ing actions on behalf of the developer. The experimental evaluation of our
prototype implementation demonstrates that it is indeed possible to harvest
meaningful, reusable knowledge from existing mashups, and that even com-
plex recommendations can be efficiently queried and weaved also inside the
client browser.

1 Introduction

Mashup tools, such as Yahoo! Pipes (http://pipes.yahoo.com/pipes/)

or JackBe Presto Wires (http://www.jackbe.com), generally promise easy

development tools and lightweight runtime environments, both typically run-

ning inside the client browser. By now, mashup tools undoubtedly simplified

some complex composition tasks, such as the integration of web services or user
∗Copyright is held by the author/owner(s). WWW 2012 Companion, April 1620, 2012, Lyon, France. ACM 978-1-4503-

1230-1/12/04.
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Figure 1: A typical pattern in Yahoo! Pipes

interfaces. Yet, despite these advances in simplifying technology, mashup devel-

opment is still a complex task that can only be managed by skilled developers.

Figure 1 illustrates a Yahoo! Pipes model that encodes how to plot news

items on a map. The lesson that can be learned from it is that plotting news

onto a map requires enriching the news feed with geo-coordinates, fetching the

actual news items, and handing the items over to the map. Understanding this

logic is neither trivial nor intuitive.

In order to aid less skilled developers in the design of mashups like the one

above, Carlson et al. [1], for instance, leverage on semantic annotations of

components to recommend compatible components, given a component in the

canvas. Greenshpan et al. [3] recommend components and connectors (so-called

glue patterns) in response to the user providing a set of desired components.

Elmeleegy et al. [2] recommend a set of components related to a component in

the canvas, leveraging on conditional co-occurrence and semantic matching, and

automatically plan how to connect selected components to the partial mashup.
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Figure 2: Functional architecture of the composition knowledge discovery and recom-
mendation approach

Riabov et al. [4] allow users to express goals as keywords, in order to feed an

automated planner that derives candidate mashups.

We assist the modeler in each step of his development task by means of in-

teractive, contextual recommendations of composition knowl-

edge. The knowledge is re-usable composition patterns, i.e., fragments of

mashup models. Such knowledge may come from a variety of possible sources;

we specifically focus on community composition knowledge (recurrent model

fragments in a mashup model repository). In this poster, we describe (i) how

we mine mashup composition patterns, (ii) the architecture of our knowl-

edge recommender, (iii) its recommendation algorithms, and (iv) its pattern

weaving algorithms (automatically applying patterns to mashup models).

2 The Recommendation Platform

Figure 2 details our knowledge discovery and recommendation prototype. The

pattern discovery logic is located in the server. After converting mashup

models into a canonical format, the pattern miner extracts patterns, which

we store into a knowledge base (KB) that is structured to minimize pattern

retrieval at runtime. We support six composition pattern types: parameter

value, connector, connector co-occurrence, component co-occurrence , com-

ponent embedding, and multi-component patterns (cf. Figure 1).

The interactive modeling environment runs in the client. It is here where
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the pattern recommendation logic reacts to modeling actions performed

by the modeler on a construct (the object of the action) in the canvas. For

instance, we can drop a component onto the canvas, or we can select a pa-

rameter. Upon each interaction, the action and its object are published on

a browser-internal event bus, which forwards them to the recommendation

engine. With this information and the partial mashup model pm the en-

gine queries the client-side KB for recommendations, where an object-action-

recommendation mapping tells the engine which types of recommendations

are to be retrieved. The list of patterns retrieved from the KB are then ranked

and rendered in the recommendation panel.

Upon the selection of a pattern from the recommendation panel, the pat-

tern weaver weaves it into the partial mashup model. The pattern weaver

first retrieves a basic weaving strategy (a set of model-agnostic mashup instruc-

tions) and then derives a contextual weaving strategy (a set of model-specific

instructions), which is used to weave the pattern. Deriving the contextual strat-

egy from the basic one may require the resolution of possible conflicts among

the constructs of the partial model and those of the pattern to be weaved. The

pattern weaver resolves them according to a configurable conflict resolution

policy.

Our prototype is a Mozilla Firefox extension for Yahoo! Pipes [6], with

the recommendation and weaving algorithms implemented in JavaScript. Event

listeners listen for DOM modifications, in order to identify mashup modeling

actions inside the modeling canvas. The instructions in the weaving strategies

refers to modeling actions, which are implemented as JavaScript manipulations

of the mashup model’s DOM elements. The server-side part is implemented in

Java.

3 Evaluation

For our experiments we extracted 303 pipes definitions from the repository of

Pipes. The average numbers of components, connectors and input parameters

were 12.7, 13.2 and 3.1, respectively, indicating fairly complex mashups. We

were able to identify patterns of all the types described above. For example, the
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minimum/maximum support for the connector patterns was 0.0759/0.3234,

while the one for the component co-occurrence patterns was 0.0769/0.2308.

We used these patterns to populate our KB and generated additional synthetic

patterns to test the performance of the recommendation engine (the sizes of the

KBs ranged from 10, 30, 100, 300, 1000 multi-component patterns) [5]. The

complexity of the patterns ranged from 3 − 9 components per pattern, and we

used queries with 1 − 7 components. In the worst case scenario (KB of 1000

patterns, approximate similarity matching of patterns), the recommendation

engine could retrieve relevant patterns within 608 millisecond – everything en-

tirely inside the client browser. The next step is going online and performing

users studies.
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Assisted Mashup Development:
On the Discovery and Recommendation of Mashup

Composition Knowledge ∗

Carlos Rodŕıguez Soudip Roy Chowdhury Florian Daniel

Hamid R. Motahari Nezhad Fabio Casati

Abstract

Over the past few years, mashup development has been made more accessible
with tools such as Yahoo! Pipes that help in making the development task
simpler through simplifying technologies. However, mashup development is
still a difficult task that requires knowledge about the functionality of web
APIs, parameter settings, data mappings, among other development efforts.
In this work, we aim at assisting users in the mashup process by recommend-
ing development knowledge that comes in the form of reusable composition
knowledge. This composition knowledge is harvested from a repository of ex-
isting mashup models by mining a set of composition patterns, which are then
used for interactively providing composition recommendations while develop-
ing the mashup. When the user accepts a recommendation, it is automati-
cally woven into the partial mashup model by applying modeling actions as
if they were performed by the user. In order to demonstrate our approach
we have implemented Baya, a Firefox plugin for Yahoo! Pipes that shows
that it is indeed possible to harvest useful composition patterns from existing
mashups, and that we are able to provide complex recommendations that can
be automatically woven inside Yahoo! Pipes’ web-based mashup editor.

1 Introduction

Mashup tools, such as Yahoo! Pipes (http://pipes.yahoo.com/pipes/)

or JackBe Presto Wires (http://www.jackbe.com), generally promise easy

development tools and lightweight runtime environments, both typically run-

ning inside the client browser. By now, mashup tools undoubtedly simplified

some complex composition tasks, such as the integration of web services or user
∗The final publication will be available at www.springerlink.com.
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interfaces. Yet, despite these advances in simplifying technology, mashup devel-

opment is still a complex task that can only be managed by skilled developers.

People without the necessary programming experience may not be able to

profitably use mashup tools like Pipes — to their dissatisfaction. For instance,

we think of tech-savvy people, who like exploring software features, author-

ing and sharing own content on the Web, that would like to mash up other

contents in new ways, but that don’t have programming skills. They might

lack appropriate awareness of which composable elements a tool provides, of

their specific functionality, of how to combine them, of how to propagate data,

and so on. In short, these are people that do not have software development

knowledge. The problem is analogous in the context of web service composi-

tion (e.g., with BPEL) or business process modeling (e.g., with BPMN), where

modelers are typically more skilled, but still may not know all the features or

typical modeling patterns of their tools.

What people (also programmers) typically do when they don’t know how

to solve a tricky modeling problem is searching for help, e.g., by asking more

skilled friends or by querying the Web for solutions to analogous problems.

In this latter case, examples of ready mashup models are one of the most

effective pieces of information – provided that suitable examples can be found,

i.e., examples that have an analogy with the modeling situation faced by the

modeler. Yet, searching for help does not always lead to success, and retrieved

information is only seldom immediately usable as is, since the retrieved pieces

of information are not contextual, i.e., immediately applicable to the given

modeling problem.

For instance, Figure 1 illustrates a Yahoo! Pipes model that encodes how to

plot news items on a map. Besides showing how to connect components and fill

parameters, the key lesson that can be learned from this pipe is that plotting

news onto a map requires first enriching the news feed with geo-coordinates,

then fetching the actual news items, and only then handing the items over to

the map. Understanding this logic is neither trivial nor intuitive.

Driven by a user study on how end users imagine assistance during mashup

development [4], we aim to automatically offer them help pro-actively and inter-

actively. Specifically, we are working toward the interactive, contextual
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Figure 1: A typical pattern in Yahoo! Pipes

recommendation of reusable composition knowledge, in order to

assist the modeler in each step of his development task, e.g., by suggesting a

candidate next component or a whole chain of tasks. The knowledge we want

to recommend is re-usable composition patterns, i.e., model fragments that

bear knowledge about how to compose mashups, such as the pattern in Figure

1. Such knowledge may come from a variety of possible sources. In this work,

we specifically focus on community composition knowledge and mine recurrent

model fragments from a repository of given mashup models.

The vision is that of enabling the development of assisted, web-based

mashup environments that deliver composition knowledge much like Google’s

Instant feature delivers search results already while still typing keywords into

the search field.

In this chapter, we approach two core challenges of this vision, i.e., the

discovery of reusable composition knowledge from a repository of ready mashup

models and the reuse of such knowledge inside mashup tools, a feature that

we call weaving. Together with the ability to search and retrieve composition

patterns contextually when modeling a new mashup, a problem we approached

in [10] and that we summarize in this chapter, these two features represent the

key enablers of the vision of assisted development. We specifically provide the

Appendix L. Assisted Mashup Development: On the Discovery and Recommendation of
Mashup Composition Knowledge

230



following contributions :

• We describe a canonical mashup model that is able to represent in a

single modeling formalism a variety of data flow mashup languages. The

goal is to mine composition knowledge from multiple source languages by

implementing the necessary algorithms only once.

• Based on our canonical mashup model, we define a set of mashup pattern

types that resemble the modeling actions of typical mashup environments.

• We describe an architecture of our knowledge recommender that can be

used to equip any mashup environment with interactive assistance for its

developers.

• We develop a set of data mining algorithms that discover composition

knowledge in the form of reusable mashup patterns from a repository of

mashup models.

• We present our pattern recommendation and pattern weaving algo-

rithms. The former aims at recommending composition patterns based

on the user actions on the design canvas. The later aims at automatically

appying patterns to mashup models, allowing the developer to progress in

his development task.

In the next section, we start by introducing the canonical mashup model,

which will help us to formulate our problem statement, define mashup pattern

types and describe our pattern mining algorithms. Section 3 is where we de-

scribe the types of mashup patterns we are interested in and the architecture

of our recommendation platform. In Sections 4, 5 and 6 we, respectively, de-

scribe in details the mining, recommendation, and weaving algorithms. Section

7 presents the details of the implementation of our approach. In Section 8 we

overview related work. Then, with Section 9, we conclude the chapter.
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2 Preliminaries and Problem

The development of a data mining algorithm strongly depends on the data to be

mined. The data in our case are the mashup models. Since in our work we do not

only aim at the reuse of knowledge but also at the reuse of our algorithms across

different platforms, we strive for the development of algorithms that are able to

accommodate different mashup models in input. Next, we therefore describe a

canonical mashup model that allows us to concisely express multiple data

mashup models and to implement mining algorithms that intrinsically support

multiple mashup platforms. The canonical model is not meant to be executed;

it rather serves as description format.

As a first step toward generic modeling environments, in this chapter we

focus on data flow based mashup models. Although relatively simple, they are

the basis of a significant number of mashup environments, and the approach

can easily be extended toward other mashup environments.

2.1 A Canonical Mashup Model

Let CT be a set of component types of the form ctype = 〈type, IP,
IN,OP,OUT, is embedding〉, where type identifies the type of component

(e.g., RSS feed, filter, or similar), IP is the set of input ports of the component

type (for the specification of data flows), IN is the set of input parameters of

the component type, OP is the set of output ports, OUT is the set of out-

put attributes1, and is embedding ∈ {yes, no} tells whether the component

type allows the embedding of components or not (e.g., to model a loop). We

distinguish three types of components:

• Source components fetch data from the web (e.g., from an RSS feed) or

the local machine (e.g., from a spreadsheet), or they collect user inputs at

runtime. They don’t have input ports, i.e., IP = ∅.

• Data processing components consume data in input and produce pro-

cessed data in output. Therefore: IP, OP 6= ∅. Filter components,
1We use the term attribute to denote data attributes produced as output by a component or flowing through a data flow

connector and the term parameter to denote input parameters of a component.
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operators, and data transformers are examples of data processing compo-

nents.

• Sink components publish the output of a mashup, e.g., by printing it onto

the screen (e.g., a pie chart) or providing an API toward it, such as an

RSS or RESTful resource. Sinks don’t have outputs, i.e., OP = ∅.

Given a set of component types, we are able to instantiate components in a

modeling canvas and to compose mashups. We express the respective canon-

ical mashup model as a tuple m = 〈name, id, src, C,GP,DF,RES〉,
where name is the name of the mashup in the canonical representation, id a

unique identifier, src ∈ {“Pipes”, “Wires”, “myCocktail”, ...} keeps track

of the source platform of the mashup, C is the set of components, GP is a set of

global parameters, DF is a set of data flow connectors propagating data among

components, and RES is a set of result parameters of the mashup. Specifically:

• GP = {gpi|gpi = 〈namei, valuei〉} is a set of global parameters that

can be consumed by components, namei is the name of a given parameter,

valuei ∈ (STR ∪ NUM ∪ {null}) is its value, with STR and NUM

representing the sets of possible string or numeric values, respectively. The

use of global parameters inside data flow languages is not very common, yet

tools like Presto Wires or myCocktail (http://www.ict-romulus.eu/

web/mycocktail) support the design-time definition of globally reusable

variables.

• DF = {dfj|dfj = 〈srccidj, srcopj, tgtcidj, tgtipj〉} is a set of data flow

connectors that, each, assign the output port srcopj of a source compo-

nent with identifier srccidj to an input port tgtipj of a target component

identified by tgtcidj, such that srccid 6= tgtcid. Source components don’t

have connectors in input; sink components don’t have connectors in out-

put.

• C = {ck|ck = 〈namek, idk, typek, IPk, INk, DMk, V Ak, OPk,

OUTk, Ek〉} is the set of components, such that ck =
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instanceOf (ctype)2, ctype ∈ CT and namek is the name of the com-

ponent in the mashup (e.g., its label), idk uniquely identifies the compo-

nent, typek = ctype.type3, IPk = ctype.IP , INk = ctype.IN , OPk =

ctype.OP , OUTk = ctype.OUT , and:

– DMk ⊆ INk × (
⋃

ip∈IPk ip.source.OUT ) is the set of data map-

pings that map attributes of the input data flows of ck to input

parameters of ck.

– V Ak ⊆ INk × (STR ∪ NUM ∪ GP ) is the set of value assign-

ments for the input parameters of ck; values are either filled manually

or taken from global parameters.

– Ek = {cidkl} is the set of identifiers of the embedded compo-

nents. If the component does not support embedded components,

Ek = ∅.

• RES ⊆ ⋃
c∈C c.OUT is the set of mashup outputs computed by the

mashup.

Without loss of generality, throughout this chapter we exemplify our ideas

and solutions in the context of Yahoo! Pipes, which is well known and comes

with a large body of readily available mashup models that we can analyze.

Pipes is very similar to our canonical mashup model, with two key differences:

it does not have global parameters, and the outputs of the mashup are spec-

ified by using a dedicated Pipe Output component (see Figure 1). Hence,

GP,RES = ∅ and a pipe corresponds to a restricted canonical mashup of the

form m = 〈name, id, “Pipes”, C, ∅, DF, ∅〉 with the attributes as specified

above. In general, we refer to the generic canonical model; we explicitly state

where instead we use the restricted Pipes model.
2To keep models and algorithms simple, we opt for a self-describing instance model for components, which presents both

type and instance properties.
3We use a dot notation to refer to sub-elements of structured elements; ctype.type therefore refers to the type attribute of

the component type ctype.
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2.2 Problem Statement

Given the above canonical mashup model, the problem we want to address in

this chapter is understanding (i) which kind of knowledge can be extracted

from the canonical mashup model so as to automatically assist users in de-

veloping their mashups, (ii) what algorithms we need to develop in order to

be able to discover such knowledge from existing mashup models, (iii) how to

interactively recommend discovered patterns inside mashup tools in order to

guide users with the next modeling step/s and (iv) how to automatically apply

(weave) the selected recommendation inside the current mashup design.

3 Approach

The current trend in modeling environments in general, and in mashup tools in

particular, is toward intuitive, web-based solutions. The key principles of our

work are therefore to conceive solutions that resemble the modeling paradigm

of graphical modeling tools, to develop them so that they can run inside the

client browser, and to specifically tune their performance so that they do not

annoy the developer while modeling. These principles affect the nature of the

knowledge we are interested in and the architecture and implementation of the

respective recommendation infrastructure.

3.1 Composition Knowledge Patterns

Starting from the canonical mashup model, we define composition knowledge as

reusable composition patterns for mashups of type m, i.e., model fragments

that provide insight into how to solve specific modeling problems, such as the

one illustrated in Figure 1. In general, we are in the presence of a set of

composition pattern types PT , where each pattern type is of the form ptype =

〈C,GP,DF,RES〉, where C,GP,DF,RES are as defined for m.

The size of a pattern may vary from a single component with a value as-

signment for one input parameter to an entire, executable mashup. The most

basic patterns are those that represent a co-occurrence of two elements out

of C,GP,DF or RES. For instance, two components that recur often together
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form a basic pattern; given one of the components, we are able to recommend

the other component. Similarly, an input parameter plus its value form a basic

pattern, given the parameter, we can recommend a possible value for it. As

such, the most basic patterns are similar to association rules, which, given one

piece of information, are able to suggest another piece of information.

Aiming, however, to help a developer refine his mashup model step by step

with as less own effort as possible, we are able to identify a set of pattern types

that allow the developer to obtain more practical and meaningful composition

knowledge. Such knowledge is represented by sensible combinations of basic

patterns, i.e., by composite patterns.

Considering the typical modeling steps performed by a developer (e.g., filling

input fields, connecting components, copying/pasting model fragments), we

specifically identify the following set PT of pattern types :

Parameter value pattern. The parameter value pattern represents a set

of recurrent value assignments V A for the input fields IN of a component c:

ptypepar = 〈{c}, GP, ∅, ∅〉;
c = 〈name, 0, type, ∅, IN, ∅, ∅, V A, ∅, ∅〉4;

GP 6= ∅ if V A also assigns global parameters to IN ;

GP = ∅ if V A assigns only strings or numeric constants.

This pattern helps filling input fields of a component that require explicit

user input.

Connector pattern. The connector pattern represents a recurrent connector

dfxy, given two components cx and cy, along with the respective data mapping

DMy of the output attributes OUTx to the input parameters INy:

ptypecon = 〈{cx, cy}, ∅, {dfxy}, ∅〉;
cx = 〈namex, 0, typex, ∅, ∅, ∅, ∅, {opx}, OUTx, ∅〉;
cy = 〈namey, 1, typey, {ipy}, INy, DMy, ∅, ∅, ∅, ∅〉.
This pattern helps connecting a newly placed component to the partial

mashup model in the canvas.
4The identifier c.id = 0 does not represent recurrent information. Identifiers in patterns rather represent internal, system-

generated information that is necessary to correctly maintain the structure of patterns. When mining patterns, the actual
identifiers are lost; when weaving patterns, they need to be re-generated in the target mashup model.
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Connector co-occurrence pattern. The connector co-occurrence pattern

captures which connectors dfxy and dfyz occur together, also including their data

mappings:

ptypecoo = 〈{cx, cy, cz}, ∅, {dfxy, dfyz}, ∅〉;
cx = 〈namex, 0, typex, ∅, ∅, ∅, ∅, {opx}, OUTx, ∅〉;
cy = 〈namey, 1, typey, {ipy}, INy, DMy, ∅, {opy},
OUTy, ∅〉
cz = 〈namez, 2, typez, {ipz}, INz, DMz, ∅, ∅, ∅, ∅〉.
This pattern helps connecting components. It is particularly valuable in

those cases where people, rather than developing their mashup model in an

incremental but connected fashion, proceed by first selecting the desired func-

tionalities (the components) and only then by connecting them.

Component co-occurrence pattern. Similarly, the component co-occurrence

pattern captures couples of components that occur together. It comes with two

components cx and cy as well as with their connector, global parameters, pa-

rameter values, and cy’s data mapping logic:

ptypecom = 〈{cx, cy}, GP, {dfxy}, ∅〉;
cx = 〈namex, 0, typex, ∅, INx, {opx}, OUTx, V Ax, ∅, ∅〉;
cy = 〈namey, 1, typey, {ipy}, INy, DMy, V Ay, ∅, ∅, ∅〉.
This pattern helps developing a mashup model incrementally, producing at

each step a connected mashup model.

Component embedding pattern. The component embedding pattern

captures which component cz is typically embedded into a component cy pre-

ceded by a component cx. The pattern has three components, in that both the

embedded and the embedding component have access to the outputs of the pre-

ceding component. How these outputs are jointly used is valuable information.

The pattern, hence, contains the three components with their connectors, data

mappings, global parameters, and parameter values:

ptypeemb = 〈{cx, cy, cz}, GP, {dfxy, dfxz, dfzy}, ∅〉;
cx = 〈namex, 0, typex, ∅, ∅, {opx}, OUTx, ∅, ∅, ∅〉;
cy = 〈namey, 1, typey, {ipy}, INy, DMy, V Ay, ∅, ∅, ∅〉;
cz = 〈namez, 2, typez, {ipz}, INz, DMz, V Az, {opz},
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OUTz, ∅〉.
This pattern helps, for instance, modeling cycles, a task that is usually not

trivial to non-experts.

Multi-component pattern. The multi-component pattern represents re-

current model fragments that are generically composed of multiple components.

It represents more complex patterns, such as the one in Figure 1, that are not

yet captured by the other pattern types alone. It allows us to obtain a full

model fragment, given any of its sub-elements, typically, a set of components

or connectors:

ptypemul = 〈C,GP,DF,RES〉;
C = {ci|ci.id = i; i = 0, 1, 2, ...}.
Besides providing significant modeling support, this pattern helps under-

standing domain knowledge and best practices as well as keeping agreed-upon

modeling conventions.

This list of pattern types is extensible, and what actually matters is the

way we specify and process them. However, this set of pattern types, at the

same time, leverages on the interactive modeling paradigm of the mashup tools

(the patterns represent modeling actions that could also be performed by the

developer) and provides as much information as possible (we do not only tell

simple associations of constructs, but also show how these are used together in

terms of connectors, parameter values, and data mappings).

Given a set of pattern types, an actual pattern can therefore be seen as an

instance of any of these types. We model a composition pattern as cp =

instanceOf (ptype), ptype ∈ PT , where cp = 〈type, src, C,GP,DF,RES,

usage, date〉, type ∈ {“Par”, “Con”, “Coo”, “Com”, “Emb”, “Mul”}, src
∈ {“Pipes”, “Wires”, “myCockail”, ...} specifies the target platform of the

pattern, C,GP,DF,RES, src are as defined for the pattern’s ptype, usage

counts how many times the pattern has been used (e.g., to compute rankings),

and date is the creation date of the pattern.
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Figure 2: Functional architecture of the composition knowledge discovery and recom-
mendation approach.

3.2 Architecture

Figure 2 details the internals of our knowledge discovery and recommendation

prototype. We distinguish between client and server side, where the discovery

logic is located in the server and the recommendation and weaving logic resides

in the client. In the recommendation server, a model adapter imports the

native mashup models into the canonical format. The pattern miner then

extracts reusable composition knowledge in the form of composition patterns,

which is then handed to a second model adapter to convert the canonical

patterns into native patterns and load them into a knowledge base (KB). This

KB is structured to maximize the performance of pattern retrieval at runtime.

In the client, we have the interactive modeling environment, in which the

developer can visually compose components (in the modeling canvas) taken

from the component tool bar. It is here where patterns are queried for and

delivered in response to modeling actions performed by the modeler in the
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modeling canvas. In visual modeling environments, we typically have action ∈
{“select”, “drag”, “drop”, “connect”, “delete”, “fill”, “map”, ...}, where the

action is performed on a modeling construct in the canvas; we call this construct

the object of the action. For instance, we can drop a component onto the

canvas, or we can select a parameter to fill it with a value, we can connect a

data flow with a target component, or we can select a set of components and

connectors. Upon each interaction, the action and its object are published

on a browser-internal event bus, which forwards them to the recommendation

engine. Given a modeling action, the object it has been applied to, and

the partial mashup model pm, the engine queries the client-side pattern KB

via the KB access API for recommendations (pattern representations). An

object-action-recommendation mapping (OAR) tells the engine which types

of recommendations are to be retrieved for each modeling action on a given

object (for example, when selecting an input field, only recommending possible

values makes sense). The client-side KB is filled at startup by the KB loader,

which loads the available patterns into the client environment, decoupling the

knowledge recommender from the server side.

The list of patterns retrieved from the KB (either via regular queries or by

applying dedicated similarity criteria) are then ranked by the engine and ren-

dered in the recommendation panel, which renders the recommendations to

the developer for inspection. Selecting a recommendation enacts the pattern

weaver, which queries the KB for the usage details of the pattern (data map-

pings and value assignments) and generates a set of modeling instructions that

emulate user interactions inside the modeling canvas and thereby weave the

pattern into the partial mashup model.

4 Discovering Patterns

The first step in the information flow described in the above architecture is the

discovery of mashup patterns from canonical mashup models. To this end, we

look into the details of each individual pattern and implement dedicated mining

algorithms for each of them, which allow us to fine-tune each mashup-specific

characteristic (e.g., to treat threshold values for parameter value assignments
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and data mappings differently). The pattern mining algorithms make use of

standard statistics as well as frequent itemset and subgraph mining algorithms

[13].

4.1 Mining algorithms

For each of the pattern types identified in Section 3.1, we have implemented

a respective pattern mining algorithm, the details of which we provide in the

following.

Parameter value pattern. In the case of the parameter value pattern, we

are interested in finding suitable values for the input fields in a given compo-

nent. Most of the components in mashup compositions contain more than one

parameter and more often than not the values of these parameters are related

to one another and therefore we need take into account the co-occurrence of

parameter values. In order to discover such co-occurrences, we map this prob-

lem to the well-known problem of itemset mining [13]. Algorithm 1 outlines the

approach for finding parameter value patterns. Here, we first get all component

instances from the mashups in the mashup repository (line 2) and group them

together by their type (line 5-6) and then perform the parameter value pattern

mining by component type (line 7). Finally, we construct the actual set of pat-

terns that consists in tuples 〈ct, V A〉, where ct represents a component type

and V A represents the value assignment for its parameters.

Algorithm 1: mineParameterValues
Data: repository of mashup compositions M and minimun support (minsupppar) for the frequent itemset mining
Result: set of parameter value patterns 〈ct, V A〉.

1 Patterns = set();
2 C = set of component instances in M ;
3 CT = array();
4 Patterns = set();
5 foreach type of component ct in C do
6 CT [ct] = cx.V A with cx ∈ C such that cx.type = ct ; // get all the parameter value assignments of

component instances of type ct
7 FI = mineFrequentItemsets(CT [ct],minsupppar);
8 foreach V A ∈ FI do
9 Patterns = Patterns ∪ {〈ct, V A〉};

10 return Patterns;

Connector pattern. A connector pattern is composed of two components,
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the source component cx and the target component cy, their data flow connector

dfxy, and the data mapping DMy of the target component. Given a repository

of mashup models M = {mi} and the minimum support levels for the data

flow connectors and data mappings, the pseudo-code in Algorithm 2 shows how

we mine connector patterns.

We start the mining task by getting the list of all recurrent connectors in M

(line 1). The respective function getRecurrentConnectors is explained in Algo-

rithm 3; in essence, it computes a recurrence distribution for all connectors and

returns only those that exceed the threshold minsuppdf . The function returns

a set of connector types without repetitions and without information about

the instances that generated them. Given this set, we construct a database of

concrete instances of each connector type (using the getConnectorInstances

function in line 5 and described in Algorithm 4) and, for each connector type,

derive a database of the data mappings for the connectors’ target component cy
(lines 7-9). We feed the so constructed database into a standard mineFrequen-

tItemsets function [13], in order to obtain a set of recurrent data mappings

for each connector type. Finally, for each identified data mapping DMy, we

construct a tuple 〈dfxy, DMy〉 (lines 11-12), which concisely represents the con-

nector pattern structure introduced in Section 3.1; the rest of the pattern comes

from the component definitions.

Connector co-occurrence pattern. The connector pattern introduced

previously is about how pairs of components are connected together. The

connector co-occurrence pattern goes a step further: it tells how connectors

between different pairs of components co-occur together in compositions and

how data mappings are defined for them. Algorithm 5 presents the logic for

computing connector co-occurrence patterns. The main difference with re-

spect to Algorithm 2 is that, instead of computing the frequency of individual

dataflow connectors between pairs of components, we compute frequent item-

sets of dataflow connectors (lines 2-4).

Component co-occurrence pattern. The component co-occurrence pat-

tern is an extension of the connector pattern; in addition to the connectors

and data mappings, it also contains the parameter value assignments of the
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Algorithm 2: mineConnectors
Data: repository of mashup models M , minimum support of data flow connectors (minsuppdf ) and data mappings

(minsuppdm)
Result: set of connectors with their corresponding data mappings {〈dfxy,i, DMy,i〉}

1 Fdf = getRecurrentConnectors(M,minsuppdf );

2 DB = array(); // database of recurrent connector instances

3 Patterns = set(); // set of connector patterns

4 foreach dfxy ∈ Fdf do
5 DB[dfxy] = getConnectorInstances(M,dfxy);

// create database for frequent itemset mining

6 DBDMy = array():
7 foreach dfixy ∈ DB[dfxy] do
8 cy = target component of dfixy;
9 append(DBDMy, cy.DM);

10 FIdy = mineFrequentItemsets(DBDMy, minsuppdm);

// construct the connector patterns

11 foreach DMy ∈ FIdy do
12 Patterns = Patterns ∪ {〈dfxy, DMy〉};

13 return Patterns;

Algorithm 3: getRecurrentConnectors
Data: repository of mashup models M , minimum support of data flow connectors (minsuppdf )
Result: set of recurrent connectors Fdf

1 DBdf = array(); // database of data flow connector instances

2 foreach mi ∈M do
3 append(DBdf ,mi.DF ) ; // fill with instances

4 Fdf = set(); // set of recurrent data flow connectors

5 foreach dfxy ∈ DBdf do
6 if computeSupport(dfxy, DBdf ) ≥ minsuppdf then
7 Fdf = Fdf ∪ {dfxy};

8 return Fdf ;

two components involved in the connector. As shown in Algorithm 6, the re-

spective mining logic is similar to the one of the connector pattern, with two

major differences: in lines 6-17 we also mine the recurrent parameter value as-

signments of cx and cy, and in lines 18-21 we consider only those combinations

of V Ax, V Ay and DMy that co-occur in mashup instances for the given con-

nector. Notice that, for the purpose of explaining this algorithm, we perform

a cartesian product of V Ax,, V Ay and DMy in line 22. Doing this can be

computational expensive if implemented as-is. In practice, the implementation

of this algorithm is performed in such a way that we do not have to explore the

whole search space. This comment also applies to the rest of the algorithms

presented in this section.
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Algorithm 4: getConnectorInstances
Data: repository of mashup models M , reference connector dfxy
Result: array of connector instances DBxy

1 DBxy = array(); // database of data flow connector instances

2 foreach mi ∈M do
3 append(DBxy],mi.DF ∩ {dfxy}) ; // fill with instances of the reference connector type

4 return DBxy;

Component embedding pattern. Mashup composition tools typically

allow for the embedding of components inside other components. However,

not all components present this capability. A common example is the loop

component: it takes as input a set of data items and then loops over them

executing the operations provided by the embedded component (e.g., a filter

component). Embedding one component into another is not a trivial task, as

there may be complex dataflow connectors and data mappings between the

outer and inner component as well as between the last two and the component

that proceeds the outer component in the composition flow. Algorithm 8 shows

the logic for mining component embedding patterns. First, we get the instances

of component embeddings from the mashup repository and then we keep only

those that have a support greater or equal to minsuppem (lines 2-10). Using

these frequent embeddings, we look for frequent dataflows that involve these

embeddings (lines 11 to 17). For these patterns, we are also interested in

finding data mapping and parameter value patterns and thus we proceed as

in the previous algorithms to mine them (lines 18-31). In the last part of the

algorithm (lines 32-37), we proceed with building the actual patterns with tuples

〈{cx, cy, cz}, DF,DM, V A〉 that include information about the components

involved in the pattern as well as the dataflow connectors, data mappings and

parameter value assignments.

Multi-component pattern. The multi-component pattern represents re-

current model fragments that are composed of multiple components. It repre-

sents more complex patterns, which are not yet captured by the other pattern

types alone. This pattern helps understanding domain knowledge and best

practices as well as keeping modeling conventions. Multi-component patterns

consists in a combination of the patterns we have introduced before. Algo-

rithm 7 provides the details of the mining algorithm. We start by obtaining
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Algorithm 5: mineConnectorCooccurrences
Data: repository of mashup compositions M , minimun support for dataflow connectors (minsuppdf ) and data

mappings (minsuppdm)
Result: list of connector patterns with their corresponding data mappings 〈DFxy, DMy〉
// find the co-occurrence of dataflow connectors

1 DBdf = array();
2 foreach mi ∈M do
3 append(DBdf , mi.DF );

4 Fdf = mineFrequentItemsets(DBdf ,minsuppdf );

5 DBci = array();
6 foreach mi ∈M do
7 foreach DFxy ∈ Fdf do
8 if DFxy ∩mi.DF = DFxy then
9 foreach dfixy ∈ DFxy do

10 append(DBci[DFxy], getConnectorInstances({mi}, dfixy);

// find data mappings for the frequent dataflow connectors obtained above

11 DBDMy = array();
12 foreach DFxy ∈ DBci do
13 foreach dfixy ∈ DFxy do
14 cy = target component of dfixy;
15 append(DBDMy, cy.DM);

16 FIdy = mineFrequentItemsets(DBDMy, minsuppdm);

// construct the connector patterns

17 Patterns = set();
18 foreach DMy ∈ FIdy do
19 Patterns = Patterns ∪ {〈DFxy, DMy〉};
20 return Patterns;

the graph representation of the mashups in the repository and mining frequent

sub-graphs out of them (lines 2-5). For the sub-graph mining we can choose

among the state of the art sub-graph mining algorithms [13]. Then, we get from

the mashup repository the list of mashup fragments that match the frequent

sub-graphs mined in the previous step (lines 6-11). We do this, so that next

we can mine both the parameter value and data mapping patterns using again

standard itemset mining algorithms (lines 13-21). Finally, we build the actual

multicomponent patterns by going through the mashup repository and keep-

ing only those combinations of patterns that co-occur in the mashup instances

(lines 22-25).
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Algorithm 6: mineComponentCooccurrences
Data: repository of mashup models M , minimum support of data flow connectors (minsuppdf ), data mappings

(minsuppdm), parameter value assignments (minsuppva) and pattern co-occurrence (minsupppc).
Result: set of component co-occurrence patterns with their corresponding dataflow connectors, data mappings and

parameter values {〈dfxy,i, V Ax,i, V Ay,i, DMy,i〉}
1 Fdf = getRecurrentConnectors(M,minsuppdf );

2 DB = array(); // database of recurrent connector instances

3 Patterns = set(); // set of component co-occurrence patterns

4 foreach dfxy ∈ Fdf do
5 DB[dfxy] = getConnectorInstances(M,dfxy);

// create databases for frequent itemset mining

6 DBV Ax = array();
7 DBV Ay = array();
8 DBDMy = array();
9 foreach dfixy in DB[dfxy] do

10 cx = source component of dfixy;
11 cy = target component of dfixy;
12 append(DBV Ax, cx.V A);
13 append(DBV Ay, cy.V A);
14 append(DBDMy, cy.DM);

15 FIvx = mineFrequentItemsets(DBV Ax, minsupppar);
16 FIvy = mineFrequentItemsets(DBV Ay, minsupppar);
17 FIdy = mineFrequentItemsets(DBDMy, minsuppdm);

// keep only those combinations of value assignments and data mappings that occur together in

mashup instances

18 Coo = set();
19 foreach 〈V Ax, V Ay, DMy〉 ∈ FIvx × FIvy × FIdy do
20 if computeSupport(〈V Ax, V Ay, DMy〉, DB[dfxy]) ≥ minsupppc then
21 Coo = Coo ∪ {〈V Ax, V Ay, DMy〉};

// construct the component co-occurrence patterns

22 foreach 〈V Ax, V Ay, DMy〉 ∈ Coo do
23 Patterns = Patterns ∪ {〈dfxy, V Ax, V Ay, DMy〉};

24 return Patterns;

5 Recommending Patterns

Recommending patterns is non-trivial, in that the size of the knowledge base

may be large, and the search for composition patterns may be complex; yet,

recommendations are to be delivered at high speed, without slowing down the

modeler’s composition pace. Recommending patterns is platform-specific. The

following explanations therefore refer to the specific case of Pipes-like mashup

models. In [10], we show all the details of our approach; in the following we

summarize its key aspects.
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Algorithm 7: mineMulticomponentPatterns
Data: repository of mashup compositions M and minimun support for multi-components (minsuppmc), parameter

value (minsupppar) and data mapping (minsuppdm) patterns.
Result: set of multi-component patterns 〈mf.C,mf.DF, V A,DM〉.

1 DBg = array() ; // database of graph representations of mashups

2 foreach mi ∈M do
// get a graph representation of mashup mi where the nodes represent components and arcs

represent dataflows; here, the arcs are labeled with the output and input ports involved

in the dataflow

3 gi = getGraphRepresentation(mi);
4 append(DBg, gi);

5 FG = mineFrequentSubraphs(DBg,minsuppmc);
6 DBmc = array();
7 foreach mi ∈M do
8 foreach fgi ∈ FG do
9 if getGraphRepresentation(mi) contains fgi then

// get the fragment mf from mashup instance mi that matches fgi; notice that mf is

represented as a canonical mashup model

10 mf = getSubgraphInstance(mi, fgi);
11 append(DBmc[fgi],mf)

12 Patterns = set();
13 foreach MC ∈ DBmc do

// get parameter values and data mappings and compute the corresponding frequent itemsets

14 DBV A = array();
15 DBDM = array();
16 foreach mf ∈MC do
17 foreach cx ∈ mf.C do
18 append(DBV A, cx.V A);
19 append(DBDM, cx.DM);

20 FIva = mineFrequentItemsets(DBV A,minsupppar);
21 FIdm = mineFrequentItemsets(DBDM,minsuppdm);

// construct the multi-component pattern

22 foreach 〈V A,DM〉 ∈ FIva × FIdm do
23 foreach mf ∈MC do
24 if 〈V A,DM〉 ∈ mf then
25 Patterns = Patterns ∪ {〈mf.C,mf.DF, V A,DM〉} ; // using mf, build the patterns

with its components (mf.C), dataflows (mf.DF), value assignments (mf.V A) and

data mappings (mf.DM)

26 return Patterns;
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Algorithm 8: mineComponentEmbeddings
Data: repository of mashup compositions M , minimum supports for component embeddings (minsuppem), data

flows (minsuppdf ), data mappings (minsuppdm), parameter value (minsupppar) and pattern co-occurrence
(minsupppc)

Result: list of component embedding patterns with their corresponding components, dataflow connectors, data
mappings and parameter value assignments 〈{cx, cy, cz}, DF,DM,V A〉

// get the list of component embeddings

1 DBem = array();
2 foreach mi ∈M do
3 foreach 〈cx, cy, cz〉 ∈ mi.C ×mi.C do
4 if (cx preceeds cy) and (cy embeds cz) then
5 emxyz = 〈cx, cy, cz〉;
6 append(DBem, emxyz);

// find the frequent component embeddings

7 Fem = set();
8 foreach emxyz ∈ DBem do
9 if computeSupport(emxyz, DBem) ≥ minsuppem then

10 append(Fem, emxyz);

// get dataflows involving the frequent component embeddings

11 DBdf = array();
12 Fdf = array();
13 foreach mi ∈M do
14 foreach emxyz ∈ Fem do
15 if emxyz ∈ mi then
16 append(DBdf [emxyz], 〈mi.dfxy,mi.dfxz,mi.dfyz〉);

17 Fdf = mineFrequentItemsets(DBdf ,minsuppdf );

// get parameter value and data mapping instances and compute the corresponding frequent itemsets

18 DBva = array(); DBdm = array();
19 foreach mi ∈M do
20 foreach 〈dfxy, dfxz, dfyz〉 ∈ Fdf do
21 if 〈dfxy, dfxz, dfyz〉 ∈ mi then
22 cx = component instance cx ∈ mi corresponding to dfxy;
23 cy = component instance cy ∈ mi corresponding to dfxy;
24 cz = component instance cz ∈ mi corresponding to dfyz;
25 V Ax = cx.V A; DMx = cx.DM ;
26 V Ay = cy.V A; DMy = cy.DM ;
27 V Az = cz.V A; DMz = cz.DM ;
28 append(DBva, V Ax ∪ V Ay ∪ V Az);
29 append(DBdm, DMx ∪DMy ∪DMz);

30 Fva = mineFrequentItemsets(DBva,minsupppar);
31 Fdm = mineFrequentItemsets(DBdm,minsuppdm);

// construct the component embedding pattern

32 Patterns = set();
33 foreach 〈EM,DF,DM,V A〉 ∈ Fem × Fdf × Fdm × Fva do
34 if computeSupport(〈EM,DF,DM,V A〉,M) ≥ minsupppc then
35 cx, cy, cz = components corresponding to the dataflows df ∈ DF ;
36 Patterns = Patterns ∪ {〈{cx, cy, cz}, DF,DM,V A〉};

37 return Patterns;
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5.1 Pattern Knowledge Base

The core of the interactive recommender is the pattern KB. In order to enable

the incremental and fast recommendation of patterns, we decompose them

into their constituent parts and focus only on those aspects that are necessary

to convey the meaning of a pattern. That is, we leverage on the observation

that, in order to convey the structure of a pattern, already its components

and connectors enable the developer to choose in an informed fashion. Data

mappings and value assignments, unless explicitly requested by the developer,

are then delivered only during the weaving phase upon the selection of a specific

pattern by the developer.

This strategy leads us to the KB illustrated in Figure 3, whose structure

enables the retrieval of each of the patterns introduced in Section 3.1 with a

one-shot query over a single table. For instance, let’s focus on the component

co-occurrence pattern: to retrieve its representation, it is enough to query the

ComponentCooccur entity for the SourceComponent and the TargetCompo-

nent attributes. The query is assembled automatically upon interactions in the

modeling canvas and is of the form q = 〈object, action, pm〉. Only weaving

the pattern into the mashup model requires querying ComponentCooccur ./

Connectors ./ DataMapping and ComponentCooccur ./ ParameterV alues.

5.2 Exact and Approximate Pattern Matching

The described KB supports both exact queries for the patterns with pre-

defined structure and approximate matching for multi-component patterns

whose structure is not known a priori. Patterns are queried for or matched

against the object of the query, i.e., the last modeling construct manipulated

by the developer. Conceptually, all recommendations could be retrieved via

similarity search, but for performance reasons we apply it only when strictly

necessary.

Algorithm 9 details this strategy and summarizes the logic implemented

by the recommendation engine. In line 3, we retrieve the types of recommenda-

tions that can be given (getSuitableRecTypes function), given an object-action

combination. Then, for each recommendation type, we either query for patterns
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Figure 3: KB structure optimized for Pipes

(the queryPatterns function can be seen like a traditional SQL query) or we

do a similarity search (getSimilarPatterns function). For each retrieved pat-

tern, we compute a rank, e.g., based on the pattern description (e.g., containing

usage and date), the computed similarity, and the usefulness of the pattern

inside the partial mashup, order and group the recommendations by type, and

filter out the best n patterns for each recommendation type.

As for the retrieval of similar patterns, we give preference to exact

matches of components and connectors in object and allow candidate patterns

to differ for the insertion, deletion, or substitution of at most one component in

a given path in object. Among the non-matching components, we give prefer-

ence to functionally similar components (e.g., it may be reasonable to allow a

Yahoo! Map instead of a Google Map); we track this similarity in a dedicated

CompSim matrix. For the detailed explanation of the approximate matching

logic we refer the reader to [10].
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Algorithm 9: getRecommendations
Data: query q = 〈object, action, pm〉, knowledge base KB, object-action-recommendation mapping OAR,

component similarity matrix CompSim, similarity threshold Tsim, ranking threshold Trank, number n of
recommendations per recommendation type

Result: recommendations R = [〈cpi, ranki〉]
1 R = array();
2 Patterns = set();
3 recTypeToBeGiven = getRecTypes(object, action,OAR);
4 foreach recType ∈ recTypeToBeGiven do
5 if recType 6= “Mul” then
6 Patterns = Patterns∪ queryPatterns(object,KB, recType) ; // exact query

7 else
8 Patterns = Patterns∪ getSimilarPatterns(object,

KB,CompSim, Tsim) ; // similarity search

9 foreach pat ∈ Patterns do
10 if rank(pat.cp, pat.sim, pm) ≥ Trank then
11 append(R, 〈pat.cp, rank(pat.cp, pat.sim, pm)〉) ; // rank, threshold, remember

12 orderByRank(R);
13 groupByType(R);
14 truncateByGroup(R,n);
15 return R;

6 Weaving Patterns

Weaving a given composition pattern cp into a partial mashup model pm is not

straightforward and requires a thorough analysis of both cp and pm, in order

to understand how to connect the pattern to the constructs already present

in pm. In essence, weaving a pattern means emulating developer interactions

inside the modeling canvas, so as to connect a pattern to the partial mashup.

The problem is not as simple as just copying and pasting the pattern, in that

new identifiers of all constructs of cp need to be generated, connectors must be

rewritten based on the new identifiers, and connections with existing constructs

may be required.

We approach the problem of pattern weaving by first defining a basic weav-

ing strategy that is independent of pm and then deriving a contextual weaving

strategy that instead takes into account the structure of pm.

6.1 Basic Weaving Strategy

Given an object and a pattern cp of a recommendation, the basic weaving

strategy BS provides the sequence of mashup operations that are necessary to
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weave cp into the object. The basic weaving strategy does not use pm; it tells

how to expand object into cp (object being a part of cp). This basic strategy

is static for each pattern type and it consists a set of mashup operations

that resemble the operations a developer can typically perform manually in

the modeling canvas. Typical examples of mashup operations are addCompo-

nent that corresponds to adding a new component to pm, addConnector that

corresponds to adding a connector between two selected components in pm,

assignValues that corresponds to assigning values to configuration parameters

of a component, and similar. Mashup operations are applied on the partial

mashup pm and result in an updated pm′. All operations assume that the pm

is globally accessible. The internal logic of these operations are highly platform-

specific, in that they need to operate inside the target modeling environment.

For instance, the basic weaving strategy for a component co-occurrence pat-

tern of type ptypecomp is as follows (we assume object = comp with comp.type =

cx.type, cx being one of the components of the pattern):

1 $newcid5=addComponent(cy.type);

2 addConnector(〈comp.id, cx.op, $newcid, cy.ip〉);
3 assignDataMapping($newcid, cy.DM);

4 assignValues(comp.id, cx.V A);

5 assignValues($newcid, cy.V A);

That is, given a component cx, we add the other component cy (line 1) as

mentioned in the selected pattern to the pm, connect cx and cy together (line

2) and then apply the respective data mappings (line 3) and value assignments

(line 4 and line 5). Note that, the basic strategy is not yet applied to pm; it

represents an array of basic modeling operations to be further processed before

being able to weave the pattern.

6.2 Contextual Weaving Strategy

Given an object object, a pattern cp, and a partial mashup pm, the contex-

tual weaving strategy WS is derived by applying the mashup operations

in the basic weaving strategy to the current partial mashup model and thus
5We highlight identifier place holders (variables) that can only be resolved when executing the operation with a “$” prefix.
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by weaving the selected cp into pm. The WS is dynamically built at runtime

by taking into consideration the structure of the partial mashup (the context).

Applying the mashup operations in the basic weaving strategy may require

the resolution of possible conflicts among the constructs of pm and those of

cp. For instance, if we want to add a new component of type ctype to pm

but pm already contains an instance of type ctype, say comp, we are in the

presence of a conflict: either we decide that we reuse comp, which is already

there, or we decide to create a new instance of ctype. In the former case, we

say we apply a soft conflict resolution policy, in the latter case a hard policy:

Soft : substitute(“$var=addComponent(ctype)”) with “$var = comp.id”

Hard : substitute(“$var=addComponent(ctype)”) with “$var=

addComponent(ctype)”

Formally, the conflict resolution policy corresponds to a function resolve-

Conflict(pm, instr) → CtxInstr, where instr is the mashup operation to

be applied to pm and CtxInstr is the set of instructions that replace instr.

Only in the case of a conflict, instr is replaced; otherwise the function returns

instr again.

In Algorithm 10 we describe the logic of our pattern weaver. First, it de-

rives a basic strategy BS for the given composition pattern cp and the object

from pm (line 2). Then, for each of the mashup operations instr in the basic

strategy, it checks for possible conflicts with the current modeling context pm

(line 4). In case of a conflict, the function resolveConflict(pm, instr) derives

the corresponding contextual weaving instructions CtxInstr replacing the con-

flicting, basic operation instr. CtxInstr is then applied to the current pm to

compute the updated mashup model pm′ (line 5), which is then used as basis

for weaving the next instr of BS. The contextual weaving structure WS is

constructed as concatenation of all conflict-free instructions CtxInstr.

Note that Algorithm 10 returns both the list of contextual weaving instruc-

tions WS and the final updated mashup model pm′. The former can be used

to interactively weave cp into pm, the latter to convert pm′ into native formats.
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Algorithm 10: getWeavingStrategy
Data: partial mashup model pm, composition pattern cp, object object that triggered the recommendation
Result: weaving strategy WS, i.e., a sequence of abstract mashup operations; updated mashup model pm′

1 WS = array();
2 BS = getBasicStrategy(cp, object);
3 foreach instr ∈ BS do
4 CtxInstr = resolveConflict(pm, instr);
5 pm = apply(pm,CtxInstr);
6 append(WS,CtxInstr);

7 return 〈WS, pm〉;

7 Implementation and Evaluation

We have implemented our prototype system, Baya [11], as Mozilla Firefox

(http://mozilla.com/firefox) extension for Yahoo! Pipes to demonstrate

the viability of our interactive recommendation approach. The design goals

behind Baya can be summarized as follows: We didn’t want to develop yet

another mashup environment; so we opted for an extension of existing and

working solutions (so far, we focused on Yahoo! Pipes; other tools will follow).

Modelers should not be required to ask for help; we therefore pro-actively and

interactively recommend contextual composition patterns. We did not want

the reuse to be limited to simple copy/paste of patterns, but knowledge should

be actionable, and therefore, Baya automatically weaves patterns.

In Baya we have implemented the model adapters (see Figure 2) in Java

(1.6), which are able to convert Yahoo! Pipes’s JSON representation into our

canonical mashup model and back. All the mining algorithms are also imple-

mented in Java. For the frequent itemset mining we used the tool Carpenter

(http://www.borgelt.net/carpenter.html), while for graph mining we

used the tool MoSS (http://www.borgelt.net/moss.html). The resulting

patterns are expressed in terms of canonical mashup models, which are then

converted to native models (in this case, Yahoo! Pipes JSON representations)

by our canonical-to-native model adapter and loaded into the pattern KB.

For testing our mining algorithms, we used a dataset of 970 pipes defi-

nitions from Yahoo! Pipes that were retrieved using YQL Console (http:

//developer.yahoo.com/yql/console/). We selected pipes from the list

of “most popular” pipes, as popular pipes are more likely to be functioning and
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useful. The average numbers of components, connectors and input parameters

are 11.1, 11.0 and 4.1, respectively, which is an indication that we are dealing

with fairly complex pipes.

The results obtained from running our algorithms on the selected dataset

show that we are able to discover recurrent practices for building mashups. Ta-

ble 1 reports on the list of pattern types and their Upper Threshold for minsupp

(UTm). The UTm tells us what is the upper threshold for the minsupp values

at which we start finding patterns of a given type and for a given dataset. In the

cases where we use more than one type of minsupp (such as in the component

co-occurrence pattern where we use minsuppdf , minsuppdm and minsupppar),

the minsupp we consider is the one corresponding to the pattern that is first

computed in the algorithm. For our dataset, in Table 1 we can see that we

are always able to find parameter value patterns for some component types.

For example, this is the case of Yahoo! Pipes’ component YQL that has the

parameter raw with a default value Results only that is always kept as-is by

the users. From the table we can also notice that the connector and component

co-occurrence patterns have the same UTm value. This is because in both cases

their corresponding algorithms compute first the frequent dataflow connectors

and thus the reference minimum support for the UTm is minsuppdf . Finally,

for the Multi-component pattern we have a UTm of 0.021, a relatively low value,

when we consider patterns with at least 4 components. However, considering

that here we are talking about complex patterns with at least 4 components

that, furthermore, include dataflow connectors, data mappings and parameter

value assignments, we can say that, even with a relatively low support value,

these patterns still captures recurrent modeling practices for fairly complex

settings.

The discovered patterns are transformed and stored in a knowledge base that

is optimized for fast pattern retrieval at runtime. The implementation of the

persistent pattern KB at server side, is based on MySQL (http://www.mysql.

com/). Via a dedicated Java RESTful API, at startup of the recommendation

panel the KB loader synchronizes the server-side KB with the client-side KB,

which instead is based on SQLite (http://www.sqlite.org). The pattern

matching and retrieval algorithms are implemented in JavaScript and triggered
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Pattern type UTm
Parameter value pattern 1
Connector pattern 0.257
Connector co-occurrence pattern 0.072
Component co-occurrence pattern 0.257
Component embedding pattern 0.124
Multi-component pattern 0.021

Table 1: Summary of pattern types with their corresponding UTm.

by events generated by the event listeners monitoring the DOM changes related

to the mashup model.

The weaving algorithms are also implemented in JavaScript. Upon the se-

lection of a recommendation from the panel, they derive the contextual weav-

ing strategy that is necessary to weave the respective pattern into the partial

mashup model. Each of the instructions in the weaving strategy refers to a

modeling action, where modeling actions are implemented as JavaScript ma-

nipulations of the mashup model’s JSON represenation. Both the weaving

strategies (basic and contextual) are encoded as JSON arrays, which enables

us to use the native eval() command for fast and easy parsing of the weaving

logic.

Figure 4 illustrates the performance of the interactive recommendation al-

gorithm of Baya as described in Algorithm 9 in response to the user placing

a new component into the canvas, a typical modeling situation. Based on

the object-action-recommendation mapping, the algorithm retrieves parameter

value, connector, component co-occurrence, and multi-component patterns. As

expected, the response times of the simple queries can be neglected compared to

the one of the similarity search for multi-component patterns, which basically

dominates the whole recommendation performance. During the performance

evaluation for Baya, we have also observed that the time required for weaving

a pattern is negligible with respect to the total time required for the pattern

recommendation and weaving.
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Figure 4: Recommendation types and times in response to a new component added to
the canvas

8 Related work

Traditionally, recommender systems focus on the retrieval of information

of likely interest to a given user, e.g., newspaper articles or books. The likeli-

hood of interest is typically computed based on a user profile containing the

user’s areas of interest, and retrieved results may be further refined with collab-

orative filtering techniques. In our work, as for now we focus less on the user

and more on the partial mashup under development (we will take user prefer-

ences into account in a later stage), that is, recommendations must match the

partial mashup model and the object the user is focusing on, not his interests.

The approach is related to the one followed by research on automatic service

selection, e.g., in the context of QoS- or reputation-aware service selection,

or adaptive or self-healing service compositions. Yet, while these techniques

typically approach the problem of selecting a concrete service for an abstract

activity at runtime, we aim at interactively assisting developers at design time

with domain knowledge in the form of modeling patterns.

In the context of web mashups, Carlson et al. [2], for instance, react to

a user’s selection of a component with a recommendation for the next compo-

nent to be used; the approach is based on semantic annotations of component

descriptors and makes use of WordNet for disambiguation. Greenshpan et al.

[6] propose an auto-completion approach that recommends components and

connectors (so-called glue patterns) in response to the user providing a set

of desired components; the approach computes top-k recommendations out of
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a graph-structured knowledge base containing components and glue patterns

(the nodes) and their relationships (the arcs). While in this approach the ac-

tual structure (the graph) of the knowledge base is hidden to the user, Chen

et al. [3] allow the user to mashup components by navigating a graph of com-

ponents and connectors; the graph is generated in response to the user’s query

in form of descriptive keywords. Riabov et al. [9] also follow a keyword-based

approach to express user goals, which they use to feed an automated planner

that derives candidate mashups; according to the authors, obtaining a plan

may require several seconds. Elmeleegy et al. [5] propose MashupAdvisor, a

system that, starting from a component placed by the user, recommends a set

of related components (based on conditional co-occurrence probabilities and

semantic matching); upon selection of a component, MashupAdvisor uses au-

tomatic planning to derive how to connect the selected component with the

partial mashup, a process that may also take more than one minute. Beauche

and Poizat [1] use automatic planning in service composition. The plan-

ner generates a candidate composition starting from a user task and a set of

user-specified services.

The business process management (BPM) community more strongly

focuses on patterns as a means of knowledge reuse. For instance, Smirnov et al.

[12] provide so-called co-occurrence action patterns in response to action/task

specifications by the user; recommendations are provided based on label similar-

ity, and also come with the necessary control flow logic to connect the suggested

action. Hornung et al. [8] provide users with a keyword search facility that al-

lows them to retrieve process models whose labels are related to the provided

keywords; the algorithm applies the traditional TF-IDF technique from infor-

mation retrieval to process models, turning the repository of process models

into a keyword vector space. Gschwind et al. [7] allow users to use the control

flow patterns introduced by Van der Aalst et al. [14], just like other modeling

elements. The system does not provide interactive recommendations and rather

focuses on the correct insertion of patterns.

In summary, assisted mashup and service composition approaches either

focus on single components or connectors, or they aim to auto-complete com-

positions starting from user goals by using AI Planning techniques. The BPM
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approaches do focus on patterns, but most of the times pattern similarity is

based on label/text similarity, not on structural compatibility. In our work,

we consider that if components have been used together successfully multiple

times, very likely their joint use is both syntactically and semantically mean-

ingful. Hence, there is no need to further model complex ontologies or com-

position rules. Another key difference is that we leverage on the interactive

recommendation of composition patterns to assists users step-by-step based

on their actions on the design canvas. We do not only tell users which patterns

may be applied to progress in the mashup composition process, but we also

automatically weave recommended patterns on behalf of the users.

9 Conclusions

With this work, we aim to pave the road for assisted development in web-based

composition environments. We represent reusable knowledge as patterns, ex-

plain how to automatically discover patterns from existing mashup models,

describe how to recommend patterns fast, and how to weave them into partial

mashup models. We therefore provide the basic technology for assisted devel-

opment, demonstrating that the solutions proposed indeed work in practice.

As for the discovery of patterns, it is important to note that even patterns

with very low support carry valuable information. Of course, they do not

represent generally valid solutions or complex best practices in a given domain,

but still they show how its constructs have been used in the past. This property

is a positive side-effect of the sensible, a-priori design of the pattern structures

we are looking for. Without that, discovered patterns would require much

higher support values, so as to provide evidence that also their pattern structure

is meaningful. Our analysis of the patterns discovered by our algorithms shows

that, in order to get the best out them, domain knowledge inside the mashup

models is crucial. Domain-specific mashups, in which composition elements

and constructs have specific domain semantics, are a thread of research we are

already following. As a next step, we will also extend the canonical model

toward more generic mashup languages, e.g., including UI synchronization.

The results of our tests of the pattern recommendation approach even out-
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perform our own expectations, also for large numbers of patterns. In practice,

however, the number of really meaningful patterns in a given modeling domain

will only unlikely grow beyond several dozens. The described recommending

approach will therefore work well also in the context of other browser-based

modeling tools, e.g., business process or service composition instruments (which

are also model-based and of similar complexity), while very likely it will per-

form even better in desktop-based modeling tools like the various Eclipse-based

visual editors. Recommendation retrieval times of fractions of seconds and neg-

ligible pattern weaving times will definitely allow us – and others – to develop

more sophisticated, assisted composition environments. This is, of course, our

goal for the future – next to going back to the users of our initial study and

testing the effectiveness of assisted development in practice.
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