
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

DISI - University of Trento

An effective end-user development

approach through domain-specific

mashups for Research Impact

Evaluation

Muhammad Imran

Advisor:

Prof. Maurizio Marchese

Università degli Studi di Trento

Co-Advisor:

Prof. Fabio Casati

Università degli Studi di Trento

March 2013

Abstract

Over the last decade, there has been growing interest in the

assessment of the performance of researchers, research groups,

universities and even countries. The assessment of productivity

is an instrument to select and promote personnel, assign research

grants and measure the results of research projects. One particular

assessment approach is bibliometrics i.e., the quantitative analy-

sis of scientific publications through citation and content analysis.

However, there is little consensus today on how research evalua-

tion should be performed, and it is commonly acknowledged that

the quantitative metrics available today are largely unsatisfactory.

The process is very often highly subjective, and there are no uni-

versally accepted criteria.

A number of different scientific data sources available on the

Web (e.g., DBLP, Microsoft Academic Search, Google Scholar)

that are used for such analysis purposes. Taking data from these

diverse sources, performing the analysis and visualizing results in

different ways is not a trivial and straight forward task. Moreover,

the data taken from these sources cannot be used as it is due to the

problem of name disambiguation, where many researchers share

identical names or an author different name variations appear in

the data. We believe that the personalization of the evaluation

processes is a key element for the appropriate use and practi-

cal success of these research impact evaluation tasks. Moreover,

people involved in such evaluation processes are not always IT ex-

perts and hence not capable to crawl data sources, merge them

and compute the needed evaluation procedures.

The recent emergence of mashup tools has refueled research on

end-user development, i.e., on enabling end-users without pro-

gramming skills to produce their own applications. Yet, similar

to what happened with analogous promises in web service com-

position and business process management, research has mostly

focused on technology and, as a consequence, has failed its objec-

tive. Plain technology (e.g., SOAP/WSDL web services) or sim-

ple modeling languages (e.g., Yahoo! Pipes) do not convey enough

meaning to non-programmers. We believe that the heart of the

problem is that it is impractical to design tools that are generic

enough to cover a wide range of application domains, powerful

enough to enable the specification of non-trivial logic, and simple

enough to be actually accessible to non-programmers. At some

point, we need to give up something. In our view, this something

is generality since reducing expressive power would mean support-

ing only the development of toy applications, which is useless,

while simplicity is our major aim.

This thesis presents a novel approach for an effective end-user

development, specifically for non-programmers. That is, we in-

troduce a domain-specific approach to mashups that ”speaks the

language of users”, i.e., that is aware of the terminology, con-

cepts, rules, and conventions (the domain) the user is comfortable

with. We show what developing a domain-specific mashup plat-

form means, which role the mashup meta-model and the domain

model play and how these can be merged into a domain-specific

mashup meta-model. We illustrate the approach by implement-

ing a generic mashup platform, whose capabilities are based on

our proposed mashup meta-model. Further, we illustrate how

4

the generic mashup platform can be tailored for a specific do-

main, which is achieved through the development of ResEval Mash

tool that is specifically developed for the research evaluation do-

main. Moreover, the thesis proposed an architectural design for

mashup platforms, specifically it presents a novel approach for

data-intensive mashup-based web applications, which proved to be

a substantial contribution. The proposed approach is suitable for

those applications, which deal with large amounts of data that

travel between client and server.

For the evaluation of our work and to determine the effective-

ness and usability of our mashup tool, we performed two sepa-

rate user studies. The results of the user studies confirm that

domain-specific mashup tools indeed lower the entry barrier for

non-technical users in mashup development. The methodology

presented in this thesis is generic and can be applied for other

domains. Moreover, following the methodological approach the

developed mashup platform is also generic, that is, it can be tai-

lored for other domains.

Keywords[End-User Development, Mashups, Domain-Specific Mashups,

Research Evaluation]

5

Acknowledgements

This thesis would not have been possible without the support

of many people, whom I want to acknowledge in this section.

First of all, thanking God for giving me the amazing opportunity

of coming to Trento to pursue my PhD degree.

I would like to express my sincere gratitude to my supervisors

Prof. Maurizio Marchese and Prof. Fabio Casati for their valu-

able guidance, support and constructive comments throughout

the journey toward my PhD.

I would also like to express my sincere gratitude to Dr. Florian

Daniel for his immeasurable attentive guidance, valuable insights

and technical advice throughout my PhD. Thank you Florian,

this thesis would not have been possible without your support. I

thank my fellows (Soudip roy chowdhury, Stefano Soi) and friends

(Zeeshan Munir, Musawar Saeed, Talha Rehman), who have been

with their kind behavior contributed to this work directly or in-

directly.

This PhD is also the result of much love, encouragement and

prayers from my parents and family. Especially my dearest dad,

who has been a great source of support and encouragement for me

throughout my life. He is truly a great father and a kind person.

Dad & mom, I owe you everything I have. Finally, I want to

thank my partner in life, my dear wife. Her constant support and

love got me through this process. Thank you all!!

Muhammad Imran

i

ii

Contents

1 Introduction 1

1.1 Research Evaluation: A Multi-dimensional Field . 3

1.1.1 Diverse Information Sources 4

1.1.2 Diverse Evaluation Indicators 5

1.1.3 Diverse Evaluation Procedures 6

1.2 Problems, Challenges and Objectives 7

1.3 Solution Overview and Contributions 11

1.3.1 Overview 11

1.3.2 Contributions 13

1.4 Structure of the thesis 15

1.5 Published Papers 17

2 Research Impact Evaluation: State of the Art 21

2.1 Overview . 21

2.2 Multiple Faces of Research Impact Evaluation . . 22

2.2.1 Quantitative and Qualitative Research Eval-

uation . 27

2.2.2 Bibliometrics, Scientometrics and Informet-

rics . 28

2.3 Research Evaluation Through Bibliometrics Ap-

proaches . 29

2.4 Bibliographic Databases 36

iii

2.4.1 Web of Science 36

2.4.2 SciVerse Scopus 38

2.4.3 Microsoft Academic Search 38

2.4.4 Google Scholar 39

2.4.5 DBLP . 40

2.5 Research Impact Evaluation Tools 42

2.5.1 Publish or Perish 42

2.5.2 Scholarometer 43

2.5.3 ResEval 43

2.5.4 Research Gate 45

2.6 Analysis and Discussion 45

3 End-user Development & Mashups: State of the

Art 51

3.1 Overview . 51

3.2 End-user Development 53

3.3 Enabling Practices and Techniques 56

3.3.1 Simple Programming Models 56

3.3.2 Domain-specific Modeling. 57

3.3.3 Domain-specific Languages (DSLs) 58

3.3.4 Web Service Composition. 59

3.3.5 Intuitive Interaction Paradigms 59

3.3.6 Reuse of Development Knowledge 60

3.4 Domain-Specific Languages: Discussion 61

3.5 Mashups from an End-User Development Prospective 63

3.5.1 Web 2.0 & Enabling Technologies 63

3.5.2 Tool-Assisted Mashup Development 65

3.6 Analysis and Discussion 71

iv

4 Research Evaluation Example Scenarios & Require-

ments Understanding 73

4.1 Overview . 73

4.2 University of Trento Department Evaluation Pro-

cedure . 74

4.3 Italian Professorship Selection Scenario 77

4.4 Analysis and Domain-Specific Requirements . . . 79

4.4.1 End-user centric requirements 81

5 End-User Oriented Mashup Platform Development

Methodology 83

5.1 Overview . 83

5.2 Concepts & Definitions 84

5.3 Challenges and problems 87

5.4 Methodology . 89

5.5 The Domain Concept Model 92

5.6 The Generic Mashup Meta-Model 95

5.6.1 The mashup meta-model 97

5.6.2 Operational semantics 101

5.6.3 Generic mashup syntax 102

5.7 The Domain-Specific Mashup Meta-Model 103

5.7.1 Domain process model 104

5.7.2 Domain rules 106

5.7.3 Domain syntax 107

5.7.4 Domain instances 108

6 Domain-Specific Mashup Platform Development 111

6.1 Overview . 111

6.2 Components & Compositions Execution Insights . 113

6.2.1 Orchestration style 113

v

6.2.2 Data-passing style 114

6.2.3 Compositions execution 115

6.3 Components Definitions 116

6.3.1 Component Definition Language (CDL) . 117

6.3.2 Component Definition Language in Action 120

6.4 Mashup Compositions Definitions 123

6.4.1 Mashup Definition Language (MDL) . . . 124

6.4.2 Mashup Definition Language in Action . . 125

6.5 The Mashup Engine 127

6.5.1 Mashup Engine Architecture 128

6.5.2 The Repository Module 129

6.5.3 Component- and Composition Mapper . . 130

6.5.4 Component Descriptor and Component . . 131

6.5.5 Composition 131

6.5.6 Data Mapper 132

6.5.7 Data Processor 133

6.5.8 Configuration Interface 135

7 ResEval Mash: A Domain-Specific Mashup Tool 139

7.1 Overview . 139

7.2 Design Principles 140

7.2.1 Intuitive graphical user interface 140

7.2.2 Hidden data mappings 141

7.2.3 Data-intensive processes 141

7.2.4 Platform-specific services 142

7.2.5 Runtime transparency 142

7.3 ResEval Mash Architecture 143

7.3.1 Overview 143

7.3.2 Mashup Engine 145

vi

7.3.3 Composition editor 146

7.3.4 Component Registration Interface 148

7.3.5 Server-Side Services 150

7.3.6 CDM Memory Manager, CDM Module &

Shared Memory 151

7.3.7 Local Database and the Web 152

7.4 Intelligent Switching between Data-flow and Control-

flow . 153

7.5 Components Models and Data Passing Logic . . . 156

7.6 The Domain-Specific Service Ecosystem 163

7.7 ResEval Mash in Action: Various Mashup Compo-

sitions . 170

7.7.1 UniTN Department Evaluation Scenario . 171

7.7.2 Italian Professorship Selection Scenario . . 173

7.7.3 Computing and Comparing H and G -Index

Values of Researchers 174

7.7.4 Comparison of Citations and Self-Citations 175

8 User Studies and Evaluation 177

8.1 Overview . 177

8.2 Comparative and Usability Evaluation: User Study-

1 . 178

8.2.1 Task Design 179

8.2.2 Evaluation Procedure 180

8.2.3 Questionnaires 183

8.2.4 Results . 186

8.2.5 Evaluation Analysis & Discussion 196

8.3 Usability Evaluation: User Study - 2 202

8.3.1 Evaluation Procedure 204

vii

8.3.2 Participants Description 207

8.3.3 Analysis: Usability Evaluation 207

8.4 General Analysis & Discussion 210

9 Conclusions and Future work 213

9.1 Overview . 213

9.2 Contributions Summary of the Thesis 216

9.3 Discussion and Lessons Learned 219

9.4 Future Work . 221

9.4.1 Persistent Cache Support 222

9.4.2 Third Party Services Registration & De-

ployment 223

9.4.3 Component-Mappers for Third Party Com-

ponents 223

9.4.4 Recommendation Support for Mashup Com-

positions Development 224

Bibliography 225

viii

List of Tables

2.1 Generations of bibliometric indicators 26

8.1 User Details . 180

8.2 User categories 204

ix

List of Figures

2.1 A multi-dimensional research assessment matrix,

presenting various units of evaluations, purposes,

and indicators. 25

3.1 Yahoo Pipes! Composition Editor showing a com-

pistion pipe . 66

4.1 University of Trento department evaluation proce-

dure, depicting steps a user performs manually . . 76

5.1 Domain concept model, covering main concepts re-

quired for the referenced research evaluation sce-

narios . 94

5.2 Mashup Meta-model supporting, domain-specific

concepts, processes, rules, and universal integration 97

5.3 Basic syntax for the concepts in the mashup meta-

model. 103

5.4 Mashup meta-model extension to its various exten-

sible ports extending it to domain-specific mashup

meta-model . 105

5.5 Extension to the domain-specific rules. 107

5.6 Domain-specific syntax for the concepts in the domain-

specific meta-model extension 108

xi

5.7 An example of the use of instances of domain-

specific components 109

6.1 Model Representing Component Definition Lan-

guage (CDL) . 117

6.2 Component Communication 119

6.3 Mashup Engine Internals: various modules inside

mashup engine and their interactions 128

6.4 Message passing between component with payload

and header information 134

6.5 An autocomplete field created with the configura-

tion using Listing 6.3 136

7.1 ResEval Mash Architecture presenting its core mod-

ule both on client and server sides 145

7.2 ResEval Mash’s composition editor and its various

parts . 146

7.3 ResEval Mash’s composition editor highlighting com-

patible ports upon making connections among com-

ponents . 148

7.4 ResEval Mash’s component registration interface

showing a component’s definition 149

7.5 ResEval Mash’s component registration interface

showing a component’s implementation 150

7.6 Service Call Data Processor Flow Chart 154

7.7 Service Call Data Processor Flow Chart: Event . 157

7.8 Detecting client-side and server-side components . 158

7.9 ResEval Mash’s internal data passing logic. 160

xii

7.10 The descriptor of the Italian Researchers compo-

nent along with its representation in the Composi-

tion Editor . 165

7.11 Platform-specific interaction protocol each service

must comply with 168

7.12 UniTN Dept. Evaluation Mashup Composition:

showing components config panels and output (anonymized)

with detail description 172

7.13 Italian Professorship Selection Mashup Composi-

tion: showing components and output with detail

description . 173

7.14 Mashup composition showing H and G -index val-

ues of DISI researchers (anonymized names) . . . 175

7.15 Mashup composition showing citation and self-citation

comparison for a given list of researchers (names

anonymized) . 176

8.1 Prototype-1: fixed components with fixed configu-

ration options . 181

8.2 Prototype-2: Showing a more customizable approach,

where user allowed to configure the components . 184

8.3 Prototype-3: showing a more flexible and customiz-

able tool to the users 187

8.4 Prototype-4: ResEval Mash a fully functional mashup

tool giving full freedom to users 188

8.5 Results of user study-1, prototype-1 189

8.6 Results of user study-1, prototype-2 191

8.7 Results of user study-1, prototype-3 193

8.8 Results of user study-1, prototype-4 194

xiii

8.9 Results of user study-1, general results 195

8.10 For both tech and non-tech groups the difficulty

level of steps (1-4) 197

8.11 For both tech and non-tech groups, how increased

flexibility perceived for all steps (1-4) 198

8.12 For both tech and non-tech groups, process execu-

tion understandability for all steps (1-4) 199

8.13 For both tech and non-tech groups, control over

process results for all steps (1-4) 200

8.14 Various results of non-technical participants for all

four prototypes against questions (1, 5, 6, & 7) . . 201

8.15 Mashup compositions to compute G-Index (a) and

publication count (b) 205

8.16 Participants technical skills breakdown 208

xiv

Chapter 1

Introduction

The concepts of scientometrics (i.e., the science of measuring and

analyzing science) and informetrics (i.e., the study of the quan-

titative aspects of information in any form) [Hood and Wilson,

2001], [Rip and Courtial, 1984] are increasingly popular. More

specifically, among the other fields that informetrics encompasses,

the field of bibliometrics, which deals with the quantitative analy-

sis of disseminated information of all forms, has received consider-

able interest over the last few years. The quantitative analysis of

scientific and technological information, under bibliometric field,

typically use citation and content analysis techniques. The ul-

timate goal of such an analysis is to determine the impact of a

research work that then contributed to productivity and the im-

pact of researchers (i.e., who actually conduct the research work).

Bibliometrics has changed out the way the research assessment

practices were following, and as it is now bibliometrics methods

are widely being used to evaluate research groups, individual re-

search’s, departments, universities and many more.

However, evaluating someone’s research output quality is a no-

toriously challenging problem which, so far, has no well accepted

2 Introduction

solution. The field of research is a competitive struggle for a re-

searcher. These researchers throughout their career are evaluated

on the basis of their research work, especially the disseminated

work, which could be of different forms. For example, to name

a few, among traditional quantitative indicators include journals

publications count, or top tier conference publications count etc.,

and among citation-based methods include, journal impact fac-

tor, h-index value, or g-index value etc.1 Often times, the choice

of an evaluation criterion depends on the purpose behind that

evaluation practice.

Over the last few years, research impact evaluation received

a substantial focus as the amount of contribution to science is

increasing heavily, and the competition becomes tougher among

researchers, and at large extent among research groups, depart-

ments, universities as well as research institutions. As the re-

search landscape evolves, assessing the impact of researchers and

their disseminated research outputs is in high demand for a va-

riety of reasons, such as the self-assessment of researchers, evalu-

ation of faculties or universities, faculty recruitment and promo-

tion, funding, awards [Meyer et al., 2008] as well as to support the

search for attractive content within an ocean of scientific knowl-

edge. An evaluation task, which determines the impact and the

productivity of researchers, requires the selection one or more in-

formation sources, appropriate evaluation indicators, and an un-

controversial evaluation procedure. To this end, a vast collection

of such evaluation indicators, information sources and procedures

are becoming available, which make the evaluation exercise more

1A more detailed presentation and discussion of such indicators will be given in chapter

2

Research Evaluation: A Multi-dimensional Field 3

subjective. In the next section, we present diversities along all

the above mentioned dimensions.

1.1 Research Evaluation: A Multi-dimensional

Field

Research productivity evaluation is a broad endeavor. Among the

other goals, the fundamental and the important one is to assess

the return of investment in scientific research in the form of qual-

ity output. As scientific research heavily funded by the funding

bodies, governments and institutions around the world, to estab-

lish a consensus about the success or failure of a research project

requires making evaluation procedures based on those enriched

indicators that can monitor both the productivity of their public

money and the quality/impact of research, in order to establish

policies for future investments.

Mostly, the evaluators (i.e., university management, funding

organizations etc.) produce a new or alter an existing evaluation

procedure or its sub-elements (e.g., h-index, g-index etc). The al-

teration takes place in the form of customization of an indicator

tailor it for fulfilling demands in-hand. Moreover, when it comes

to the selection of a data source, one may want to use a pri-

vate data source, one could consider blog posts, keynotes and the

like to be used as a performance indicator beside the traditions

dissemination activities. Mainly, we observed that an evaluation

procedure comprised of three basic, but diverse elements. These

are as follows:

• The selection of one or more appropriate information sources.

These are the sources which fulfill data requirements (e.g.,

4 Introduction

digital libraries, scholarly search engines). Recently, the

presence of a large number of such information sources has

provided an opportunity to choose one source over the oth-

ers.

• Second, the selection of a set of indicators. These are the

smallest units in an evaluation procedure, which hold the

logic to determine one particular impact factor. For instance,

h-index is a citation based metric.

• Finally, the formation of an overall procedure, which com-

prised of both, the information sources and the metrics that

collectively determine research impact of researchers. A pro-

cedure may also include a customized version of a metric or

a private data-source.

In the following sub-sections, we elaborate each of these aspects

in more detail.

1.1.1 Diverse Information Sources

An important dimension in the research impact evaluation do-

main lies in the exponential growth of freely available scientific/schol-

arly digital content. Bibliographic information sources (aka, digi-

tal libraries) maintain and provide bibliographic information. The

information sources (e.g. Web of Science (WoS), Scopus, DBLP,

Google Scholar etc.)2 as well as information production sources

(e.g., authors, journals, books, articles etc.) are growing day by

day. Moreover, universities and research institutes also main-

tain local repositories, which are then used by researchers to keep

record of their dissemination activities.
2Each one of these information sources will be described in detail in chapter 2

Research Evaluation: A Multi-dimensional Field 5

Information integration is an important aspect in the research

impact evaluation, which is to collect data from different sources

and to apply merging techniques. For example, several authors

can be merged in many ways, like (1) taking an author’s papers’

information from one source and getting citation information from

another (2) comparing two authors with data coming from differ-

ent sources (3) using one’s own private data source in comparison

with other sources.

Today, the presence of so many digital data sources overcomes

the problem of data availability. On one side, the excess of data

and the data sources is a constructive development, but on the

other side it becomes more challenging to decide the selection of

one data source over the others. For instance, it is commonly

accepted that DBLP data source is a good choice for computer

science field in terms of its completeness. It provides a list of pub-

lished articles for a researcher, but on the other hand it does not

provide citation data, which then forces to include other citation

sources.

1.1.2 Diverse Evaluation Indicators

In parallel with the growth of scholarly information sources and

scholarly literature, people have established richer assessment in-

dicators and metrics than before. These metrics not only incor-

porate traditional quantitative factors such as publication count

or citation count, but also consider various other aspects such

as researcher academic age, researcher positions, normalization.

To name a few of these bibliographical research quality indica-

tors that are considered to be well established and well-known

in different communities include h-index, g-index, citation count,

6 Introduction

ar-Index etc.

Over the years, these indicators have received a tremendous

success, even though different communities prefer to use cus-

tomized versions of them. These customizations often varies from

community to community and often based on a community trends,

normalizations and many other factors. The point here is that,

after so many efforts from different communities, it is still not

guaranteed that a single metric can reflect the in-house demands

of an evaluation committee. We also believe that with so many

rapid developments in evaluation indicators, it will be extremely

helpful to provide a way for research impact evaluation that could

provide flexibility and customization support as well as the free-

dom of expressiveness to the evaluators.

1.1.3 Diverse Evaluation Procedures

As research landscape evolves, universities and research institu-

tions start developing their personal research assessment proce-

dures to meet specific local requirements. As of today, the avail-

ability of variety of information sources and also the assessment

indicators, on one side gives more freedom to evaluators to choose

among several options, but on the other side overall evaluation

procedures become more subjective. These evaluation procedures

often differ from traditional ones. For example, factors such as

customization of the definitions of the traditional metrics such as

h-index to contemporary h-index, inclusion of public as well as

local private data sources, strict data filtering checks collectively

makes an evaluation procedure tailored yet complex. Indeed, soft-

ware developers cannot anticipate these customizations therefore

not able to provide a largely well-accepted solution.

Problems, Challenges and Objectives 7

We have gathered a number of such evaluation procedures,

which we describe in chapter 4 in more detail to understand their

insights. These specific, customized evaluation procedures de-

mand expertise and skills in various ICT-related technical areas

that those assessors lack. For example, a typical set of tasks re-

quired by these procedures include; fetching a list of publications

from a source, applying cleaning process (i.e., to exclude publi-

cations which do not belong the queried researcher) and then to

send the filtered list for a metric computation and in the end vi-

sualizations of results. In the following sections, we describe in

detail all the problems and challenges in this area and state our

objectives.

1.2 Problems, Challenges and Objectives

Despite the fact that, the researchers must be evaluated on the

basis of their research work; however, there is little consensus to-

day on how an evaluation procedure should be designed and per-

formed, and it is commonly acknowledged that the quantitative

metrics available today are largely unsatisfactory. Indeed, today

people judge research contributions mainly through publication

in venues of interest and through citation-based metrics (such as

the h-index), which attempt to measure research impact. How-

ever, there are different opinions on how citation statistics should

be used, and they have well-known flaws. For instance, [Chap-

man, 1989] pointed out shortcomings, biases, and limitations of

citation analysis. In another work [Seglen, 1997], authors criticize

the use of journal impact factor for evaluating research.

Furthermore, current metrics are limited to papers as the unit

8 Introduction

of disseminated scientific knowledge, while today there are many

other artifacts that do contribute to the Science, such as blogs,

datasets, experiments, or even reviews, but that are not considered

in research evaluation. Besides the flaws of current metrics, the

fact remains that people have - and we believe will always have -

different opinions on which criteria are more effective than others,

also depending on the task at hand (that is, the reason why they

are conducting the evaluation). For example, in our department,

the evaluation criteria for researchers are defined in a detailed

document of 10 pages full of formulas and are mostly based on

publications in venues that considered important in the particu-

lar community and are normalized following a particular agreed

criteria. For instance, other institutions use citation counts nor-

malized by the community to which the authors belong and then

grouped by research programs to evaluate each research group,

not individuals. Examples are numerous and, much like in the

soccer world cup, everybody has an opinion on how it should be

done.

Not only individuals may choose different metrics, but also

different sources (e.g., Google Scholar vs. Scopus), different nor-

malization criteria (e.g., normalizing the value of metrics with

respect to averages in a given community), different ways to mea-

sure individual contributions (e.g., dividing metrics by the num-

ber of authors), or different ways to compare (e.g., compare a

candidate with the group that wants to hire them to determine

the autonomy and diversity of the candidate from the group),

with different aggregation functions (e.g., aggregated h-index of

a scientists co-authors, aggregated citation count, etc.).

We believe that this kind of personalization of the assessment

Problems, Challenges and Objectives 9

processes (as well as many other personalization of the evalua-

tion process, like for instance, the need of normalizing a tradi-

tional metric for a specific community) is a key element for the

appropriate use and practical success of the various evaluation

tasks. Moreover, people involved in such evaluation processes,

most of the time are not IT experts, and not capable of build-

ing appropriate software for crawling data sources, automatically

parsing relevant information, merging data and computing the

required personalized metrics. Therefore, in order to empower

the interested end-users, we need to design an appropriate and

possibly easy-to-use IT platform, which could make life easier of

those domain-experts who do not expert in IT. Indeed, support-

ing custom metrics for research evaluation is a non-trivial issue

and requires addressing interesting research questions like:

• What is the set of key features that may enable a user to ex-

press its own evaluation metrics, i.e., what is the expressive

power needed to do so? For instance, assessing the indepen-

dence of a set of young researchers requires fetching all pub-

lications by the researchers, cleaning out papers that have

been co-authored by the researchers’ PhD supervisor, com-

puting their h-index metrics, and ranking them according to

their h-index.

• How to enable less technical end-users to perform both easy

and more complex data integration tasks? We have seen

that being able to access an evaluation body (e.g., a set of

papers) that is as complete as possible is at least as important

as expressing custom metrics over the evaluation body. For

example, fetching all publications of the young researchers

10 Introduction

may imply fetching data from Google Scholar, DBLP, and

Scopus as well as fusing the obtained data and cleaning it.

• Which is the best paradigm or formalism that may allow

users to model/express their custom evaluation metrics? A

metric may, for example, be expressed in text form via a

dedicated domain-specific language, or modeled visually by

means of suitable graphical modeling constructs, composed

with the help of a guided wizard, and so on.

• What type of software support does the computation of cus-

tom evaluation metrics need? Depending on the logic needed,

the actual computation of a metric may be achieved via gen-

erated code, a dedicated evaluation engine, a query engine,

or similar.

One of the most important issues that need especial considera-

tion while addressing the problem is the kind of target end-users.

We intend non-IT experts (i.e., non-programmers) as our end-

users, who will get benefited from our research work. In following

we introduce our proposed solution for all the aforementioned

problems. It must be well-understood that throughout the differ-

ent stages of our work, we always refer and give examples from

the selected domain to convey understanding whenever needed.

However, this does not mean that the proposed solution is only

valid for the selected domain. Instead, we aim at to keep sepa-

rate those aspects that purely based on the chosen domain from

those of generic type. In essence, we first aim at proposing a

generic approach, and a methodology that then given a set of

domain-specific aspects we show how to adapt it for that partic-

ular domain.

Solution Overview and Contributions 11

1.3 Solution Overview and Contributions

1.3.1 Overview

After about two decades of research in workflow management and

more or less one decade of web service composition, two research

streams whose initial ambitious goal was to enable non-technical

users to design processes or compose services with little or no

help from developers, we are still in a situation in which these

forms of process modeling and execution technologies can only be

mastered by specifically trained developers. One of the best ex-

amples of this situation is probably the recent standardization of

Version 2.0 of the Business Process Modeling Notation (BPMN)

[Model, 2011], which brings together the two worlds of BPM and

service composition, but that also has become much more like a

programming language and less like a modeling instrument tar-

geted at non-programmers (as the size of the documentation also

indicates). As a result, people that are not fully familiar with the

modeling notation are reluctant to use it since they know that

they will not be able to draw a correct and consistent process

model.

While this is a concrete issue in business process modeling

and service composition, it is even more so in a relatively new,

yet highly-related area: web mashups. The recent emergence of

mashup tools has refueled research on end-user development, i.e.,

on enabling end-users without programming skills to compose

their own applications.

Mashups are typically simple web applications (most of the

times consisting of just one single page) that, rather than be-

ing coded from scratch, are developed by integrating and reusing

12 Introduction

available data, functionalities, or pieces of user interfaces acces-

sible over the Web. For instance, housingmaps.com integrates

housing offers from Craigslist with a Google map adding value to

the two individual applications. Likewise, Mashup tools , i.e.,

online development and runtime environments for mashups, am-

bitiously aim at enabling non-programmers (regular web users)

to develop their own applications, sometimes even situational ap-

plications developed ad hoc for a specific immediate need.

However, we think that doing so is even harder than enabling

non-programmers to model an own process or service compo-

sition, because developing full applications is simply complex.

While the component-based reuse approach is certainly lowering

part of the complexity, developing an own application, however,

also means dealing with data integration, application logic, and

content presentation issues, all aspects the common web user is

not even aware of. Yet, similar to what happened in web service

composition, the mashup platforms developed so far tend to ex-

pose too much functionality and too many technicalities so that

they are powerful and flexible but suitable only for programmers.

Alternatively, they only allow compositions that are so simple to

be of little use for most practical applications.

For example, mashup tools typically come with SOAP services,

RSS feeds, UI widgets, and the like. Non-programmers do not

understand what they can do with these kinds of compositional

elements [Namoun et al., 2010b,a]. We experienced this with

mashup tools in our own group, mashArt [Daniel et al., 2009b] and

MarcoFlow [Daniel et al., 2010], which we believe to be simpler

and more usable than many composition tools, but that still failed

in being suitable for non-programmers [Mehandjiev et al., 2011].

housingmaps.com

Solution Overview and Contributions 13

Yet, being amenable to non-programmers is increasingly im-

portant as the opportunity given by the wider and wider range

of available online applications and the increased flexibility that

is required in both businesses and personal life management raise

the need for situational (one-use or short-lifespan) applications

that cannot be developed or maintained with the traditional re-

quirement elicitation and software development processes.

We believe that the heart of the problem is that it is im-

practical to design tools that are generic enough to cover a wide

range of application domains, powerful enough to enable the spec-

ification of non-trivial logic, and simple enough to be actually

accessible to non-programmers. At some point, we need to give

up something. In our view, this something is generality, since

reducing expressive power would mean supporting only the de-

velopment of toy applications, which is useless, while simplicity

is our major aim. Giving up generality in practice means nar-

rowing the focus of a design tool to a well-defined domain and

tailoring the tool’s development paradigm, models, language, and

components to the specific needs of that domain only.

1.3.2 Contributions

This chapter presented an introduction of the reference domain

and the problems and challenges faced by the users. However,

a more detailed discussion and requirements that are of domain-

specific type will be presented in chapters 2, 4. Moreover, the re-

quirements those are related to the end-users (i.e., non-programmers)

will be presented in chapter 3. In following we summarize contri-

butions of this thesis.

14 Introduction

1. First of all, we present the novel idea of domain-specific

mashups and describe what they are composed of, how

they can be developed, how they can be extended for the

specificity of any particular application context, and how

they can be used by non-programmers to develop complex

mashup logics within the boundaries of one domain.

2. We detail and exemplify all design artifacts that are nec-

essary to implement a domain-specific mashup tool, in order

to provide expert developers with tools they can reuse in

their own developments.

3. We show what developing a domain-specific mashup tool

means, which role the mashup meta-model and the do-

main concept model , the domain syntax model play

and how these can be merged into a domain-specific mashup

meta-model .

4. We describe a methodology for the development of domain-

specific mashup tools, defining the necessary concepts and

design artifacts. As we will see, one of the most challenging

aspects is to determine what is a domain, how it can be

described, and how it can both constrain a mashup tool (to

the specific purpose of achieving simplicity of use) and ease

development. The methodology targets expert developers,

who implement mashup tools.

5. We apply the methodology in the context of a mashup

platform that supports the development of domain-specific

mashup tools. To achieve this, we present a baseline plat-

form, which is then used to develop and tailor a mashup tool

Structure of the thesis 15

to support a domain most scientists are acquainted with, i.e.,

research evaluation. This mashup platform targets domain

experts (i.e., non-programmers).

6. In this thesis, we also present an efficient approach for mashup-

based web application, those communicate big data between

client and server. The proposed approach prevents heavy

data communication using suitable communication-pattern

(i.e., among the four proposed patterns) and a server-side

cache.

7. To evaluate our work, we performed twofold validations.

First, we performed a usability and comparative evaluation,

which is to understand end-users preference between a generic

versus a domain-specific mashup tool and to learn the right

balance a mashup tool should offer in terms of complexity,

flexibility, and expressiveness. Second, we performed a user

studies in order to assess advance usability aspects of the

developed platform and the viability of the respective devel-

opment methodology.

While we focus on mashups, the techniques and lessons learned

in the thesis are general in nature and can easily be applied for

other domain sand to other composition or modeling environ-

ments, such as web service composition or business process mod-

eling.

1.4 Structure of the thesis

Literature reviews and the aforementioned contributions of this

thesis are presented in different chapters as described below:

16 Introduction

• Chapter 2, presents state of the art related to the domain of

research evaluation. We present different evaluation indica-

tors, data sources and techniques, which are being used for

different evaluation purposes by different communities. We

also present the related tools that are currently available for

performing research evaluation.

• Chapter 3, presents state of the art related to the End-user

development. We present different approaches that end-user

development based upon. Various programming paradigms

especially for the end-user are reported. Moreover, we present

mashups approaches, and see how this paradigm can be used

for effective end-user development.

• Chapter 4, describes a few real-life research evaluation proce-

dures, which we have collected from different sources, to de-

vise a set of concrete requirements and in the end we present

our analysis in terms of major design-principals that are to

facilitate end-users for their development tasks.

• Chapter 5 states a set of methodological steps. We present

the definitions of important concepts, various design arti-

facts, formalisms, and a detailed methodology for the devel-

opment of domain-specific mashup tools. We show what role

a domain-model, meta-model and a domain-specific meta-

model play in the development of a domain-specific mashup

tool.

• Chapter 6 shows an implementation of a generic mashup

tool, its design principals, architecture and shows how and

where domain knowledge can be injected for tailoring it to a

Published Papers 17

domain-specific mashup tool.

• Chapter 7 presents ResEval Mash, a mashup tool that is

tailored to the domain of research evaluation. We present

how different domain related artifacts are used in the devel-

opment following the methodological steps presented in the

chapter 5.

• Chapter 8 reports on a few user studies that we conducted to

evaluate of our approach, methodology and domain-specific

mashup tool.

• Chapter 9 concludes the thesis. We present future work,

lessons learned specific of the selected domain and of related

to the development of mashup tool in general.

1.5 Published Papers

Following is the list of published papers related to the work pre-

sented in this thesis.

• Muhammad Imran, Stefano Soi, Felix Kling, Florian Daniel,

Fabio Casati and Maurizio Marchese. On the Systematic De-

velopment of Domain-Specific Mashup Tools for End-Users.

ICWE 2012, July 2012, Springer, Pages 291-298.

• Florian Daniel, Muhammad Imran, Stefano Soi, Antonella

De Angeli, Christopher R. Wilkinson, Fabio Casati and Mau-

rizio Marchese. Developing Mashup Tools for End-Users: On

the Importance of the Application Domain. International

Journal of Next-Generation Computing (IJNGC), 2012.

18 Introduction

• Muhammad Imran, Florian Daniel, Fabio Casati, Maurizio

Marchese. ResEval Mash: A Mashup Tool that Speaks the

Language of the User. CHI2012, 2012, Austin, USA.

• Florian Daniel, Muhammad Imran, Felix Kling, Stefano Soi,

Fabio Casati and Maurizio Marchese. Developing Domain-

Specific Mashup Tools for End Users. WWW2012, 2012,

France, Lyon.

• Muhammad Imran, Felix Kling, Stefano Soi, Florian Daniel,

Fabio Casati and Maurizio Marchese. ResEval Mash: A

Mashup Tool for Advanced Research Evaluation. WWW2012,

2012, France, Lyon.

• Muhammad Imran, Maurizio Marchese, Fabio Casati. Lever-

aging Mashups Approaches to Address Research Evaluation

Challenges. Proceedings of 14th International Multitopic Con-

ference, 2011, pp.17-22.

• Cristhian Parra, Muhammad Imran, Daniil Mirylenka, Flo-

rian Daniel, Fabio Casati, and Maurizio Marchese. A Scien-

tific Resource Space for Advanced Research Evaluation Sce-

narios. Proceedings of SEBD 2011, Springer.

• Muhammad Imran, Florian Daniel, Fabio Casati, Maurizio

Marchese. A Mashup Platform for Research Evaluation. Pro-

ceedings of ECSS 2010, 2010, Prague, Czech Republic.

• Alessandro Bozzon, Marco Brambilla, Muhammad Imran,

Florian Daniel, Fabio Casati. On Development Practices for

End Users. New Trends in Search Computing, May 2010,

Springer.

Published Papers 19

• Muhammad Imran, Marchese Maurizio, Ragone Azzurra,

Birukou Aliaksandr, Casati Fabio and Jara Laconich Juan

Jose. ResEval: An Open and Resource-oriented Research

Impact Evaluation tool.eprints.biblio.unitn.it, Feb. 2010.

• M. Baez, A. Birukou, I. Brito, F. Casati, R. Chenu, M. Im-

ran, J.J. Jara, J. Madrenas Ciurana, M. Marchese, A. Mussi,

C. Parra, M. Passamani, A. Ragone, J. R. , A. Ragone, J.

R. Wakeling. Design of the Liquid Publications Integrated

Platform. Version 2. Liquidpub, 2011.

20 Introduction

Chapter 2

Research Impact Evaluation:

State of the Art

2.1 Overview

This chapter presents comprehensive insights of the research im-

pact evaluation field. Exploring fundamental questions, like what

is research impact evaluation?, why is it needed?, how is it per-

formed? and who performs it?, provide us a consolidated base

through which we tend to understand various associated aspects

of the field. In response to the how, we also present different

evaluation indicators that are developed over the years and are

being used by different communities. Although, these commu-

nities have adopted and tailored these indicators to meet their

community-specific trends and requirements, even understanding

those specific details lead us to a solid understanding. This chap-

ter also reports on the impact evaluation tools that have been

developed and used over the years and we explain why these tools

failed to support the current practices in research evaluation field.

In response to the who, we present end-users who perform such

evaluation tasks and what are their expertise level with respect

22 Research Impact Evaluation: State of the Art

to this domain and to the technology.

2.2 Multiple Faces of Research Impact Evalu-

ation

Impact evaluation, in terms of a project, program or policy, as-

sesses the changes that could happen after a particular interven-

tion. In essence, the impact evaluation is a comparison between

what happened and what would have happened if we take those

interventions aside. In theory, the concept of impact evaluation

is slightly different from ”outcome monitoring”, which is to check

on whether targets have been achieved or not. While the field

of research impact evaluation deals with the growing concerns

related to the productivity assessment of a research work, some-

times, both in terms of research inputs and outputs. The re-

search assessment could be of various types, for instance, ranging

from the traditional ways (i.e., peer review process which usu-

ally performed before dissemination, for an early evaluation) to

more sophisticated assessment methods (i.e., using citation-based,

content-based indicators; mainly performed after dissemination).

Likewise, the evaluation can be an ongoing process that monitors

the progress of work, or it can be a process that evaluates at some

certain stages (e.g., midterm evaluation, final-stage evaluation).

From the point of view of an early or pre-dissemination evalua-

tion approach (i.e., peer review), the assessment takes place by the

recognized experts in a particular field. In practice, peer review

usually performed by experts with general expertise in a specific

field, which is largely an accepted way, however, sometimes this

particular scrutiny process considered controversial, as according

Multiple Faces of Research Impact Evaluation 23

to some others, the evaluation committee should be comprised of

specialists of the field rather than a general competence commit-

tee. On the other side, the post-dissemination evaluation process,

which is the main focus of our discussion, is much more controver-

sial than of pre-dissemination. Over the years, many approaches

have been proposed and to some extent fulfill a general set of

evaluation requirements. However, despite many efforts, different

communities have developed new or tailored exiting evaluation

methods for their specific needs. In the last few years, It has

been observed that the research spectrum crosses the boundaries,

researchers are becoming more collaborative than ever, research

groups are formed of experts from different affiliations and differ-

ent continents. In such a conducive environment for research to

grow, the amount of research dissemination to science is rapidly

increasing. In parallel to this increase, the assessment of research

outputs has become a crucial issue for a wider range of stakehold-

ers (e.g., funding bodies, universities, research institutions etc.).

The field of research impact evaluation primarily focuses on a

number of aspects that need to be considered first. For example,

amongst many others, the fundamentals are:

• For whom the evaluation procedure is taking place? A clear

vision of a body (e.g., individuals, groups, universities etc.)

to be evaluated is a core element before performing further

steps.

• What types of research artifacts to be considered in the eval-

uation? After the selection of whom, the next step is to agree

upon what research outputs of the selected unit will be con-

sidered in the evaluation.

24 Research Impact Evaluation: State of the Art

• What evaluation methods to adopt? This aspect addresses

the most controversial part of the evaluation process i.e.,

evaluation approach, method, the nature of the process.

The first and the fundamental aspect, that must be considered

before investigating further into the details, is for whom the eval-

uation procedure will be performed. That is the selection of an

unit to be evaluated (i.e., whose research work to be evaluated).

The units of assessment include individuals, research groups, de-

partments, universities, research fields and even countries. The

complexity of an evaluation procedure is directly proportional to

the selected unit. To determine the productivity of an individ-

ual researcher is far easier than to determine the productivity of

a university where normally hundreds of researchers work. The

second noteworthy aspect in the research impact evaluation field

is the selection of the types of research outputs to be evaluated.

To this end, different disciplines prefer different types of research

output to be considered. Usually these types include, to name

a few of them, journals, conference and workshop proceedings,

book chapters, books, prototypes etc. Amongst the other impor-

tant aspects, the selection of appropriate assessment indicator is

highly important, and to some extent is highly controversial in

some cases. Often, one’s opinion on an indicator for an assess-

able unit differs from others as everyone has his own opinion on

what criteria/indicator should be used.

Based on these diversities, in 2010, a multi-dimensional re-

search assessment matrix was published by the Expert Group

on the assessment of University Based Research (AUBR) [Kroll,

2010], operated under European Commission. Figure 2.1, depicts

the core part of that research assessment matrix, which is not

Multiple Faces of Research Impact Evaluation 25

Unit%of%
assessment%

Purpose% Output%
dimensions%

Bibliometric%
indicators%

Other%indicators%

Individual% Allocate%
resources%

Research%
productivity%

Publications% Peer%review%

Research%group% Improve%
performance%

Quality,%scholarly%
impact%

Journal%citation%
impact%

Patents,%licenses,%
spin%offs%

Department% Increase%regional%
engagement%

Innovation%and%
social%benefits%

Actual%citation%
impact%

Invitations%for%
conferences%

Institution% Stimulate%
international%
collaboration%

Sustainability%&%
Scale%

International%coD
authorship%

External%
research%income%

Research%field% Promotion,%
hiring%

Research%
infrastructure%

Citation,%prestige% PhD%completion%
rates%

%

Figure 2.1: A multi-dimensional research assessment matrix, presenting vari-

ous units of evaluations, purposes, and indicators.

the full version of the actual matrix. If we carefully look at the

figure 2.1, it can be easily seen that how much diverse the field

of research evaluation is. The matrix presents five basic units

of assessment, obviously one can think of a different one. The

matrix also represents a few purposes (i.e., why a particular re-

search work conducted) for each unit to be assessed. Moreover,

the matrix also shows a very basic set of bibliometric as well as

a few other emerging indicators that can be applied to various

assessable units. In essence, the matrix shows a glimpse of the

diversity of the field and clearly it is not restricted to only these

aspects, one can think of many other trivial as well as non-trivial

aspects.

In the field of research impact evaluation, the central role in

an assessment procedure holds by the selected assessment indi-

cators. Over the years, many different indicators have been pro-

26 Research Impact Evaluation: State of the Art

posed. These include quantitative as well qualitative ones. In a

report published by Scopus 1 in 2011, amongst the others, they

only focused on bibliometric indicators. According to the report,

bibliometric indicators are divided into three generations. In ta-

ble 2.1, we show the division of all three types of bibliometrics

indicators. The first generation corresponds to a basic set of in-

dicators (e.g., publications count, citations count etc.), which are

easily available and can be obtained from various sources. The

second generation, which is relatively more advance than the first

ones, includes indicators that used to be normalized based on a

specific filed to remove the biases and so on. The third and the

most non-trivial set of indicators were categorized in this genera-

tion that include influence weights, Journal Rank, SCImago and

other more sophisticated indicators etc.

Type (gen-

eration)

Description Typical examples

First Basic indicators; relatively

easy to obtain from sources

that have available for

decades

Number of publications;

number of citations; journal

impact metrics

Second Relative or normalized in-

dicators, correcting for par-

ticular biases (e.g., differ-

ences in citation practices

between subject fields)

Relative or field-normalized

citation rates

Third Based on advance network

analysis using parameters

such as network centrality

Influence weights; SCImago

Journal Rank; ’prestige’ in-

dicators

Table 2.1: Generations of bibliometric indicators

To practically devise an evaluation procedure, it requires mak-

1http://www.researchtrends.com/wp-content/uploads/2011/06/Research Trends Issue23.pdf

Multiple Faces of Research Impact Evaluation 27

ing decisions about which unit needs to be assessed, for what pur-

poses, on which output dimensions, using which assessment indi-

cator (i.e., a bibliometric or other emerging indicators). Clearly,

there is not a single answer to these questions, it is entirely, on

one side, based on the purpose of an evaluation, the selected unit

to be assessed, and on the other side the selection of appropriate

indicators. In our opinion, the field of research impact evaluation

is highly diverse, and the use of one indicator over the others is

highly subjective. Even the citation-based approaches can alone

raise significant challenges, but a proper use of these can also

provide a clear indication of someone’s performance. Many stud-

ies, for example, according to [van Raan, 1996], quantification

through citation analysis of past performance can be used to pre-

dict future performance. Moreover, in a similar study that is

based on several related aspects of citation analysis has been pre-

sented in [Moed, 2005], where author presented a detailed anal-

ysis of accuracy, theory, and effective use of citation analysis in

parallel to its strengths and weaknesses.

2.2.1 Quantitative and Qualitative Research Evaluation

By and large, the impact evaluation approaches can be divided

into two basic methods: 1) quantitative 2) qualitative. Both meth-

ods can be distinguished based on the type of evaluation experi-

ments conducted on the data produced by some research work. In

general, quantitative methods focus more and deal with real num-

bers. For instance, count on the number of publications, count

on the number of citations, and other indicators that rely on such

numbers in one way or the other, like H-Index, G-Index etc. While

qualitative methods are more based on the descriptive proper-

28 Research Impact Evaluation: State of the Art

ties of the data. For examples, evaluation practices those involve

aspects like reputation, peer ranking analysis through participa-

tory studies, interviews, and other socially enhanced indicators.

Quantitative approaches are typically used and kind of consid-

ered standard method. Whereas, qualitative approaches are less

common and rarely used. We mostly focus and study bibliometric

methods that are quantitative in nature than of qualitative ones.

2.2.2 Bibliometrics, Scientometrics and Informetrics

Often interchangeably used terms: Bibliometrics, Scientometrics

and Informetrics, refer to the methods that study various as-

pects related to the science and information (i.e., the information

present in any form). To some extent, there has been confusion

for these closely related terminologies. Over time, people have

defined these terminologies for the field they belong, but still all

definitions show considerable overlap among different terms that

they used.

In 1969 Pritchard introduced the term Bibliometric in his pa-

per [Pritchard, 1969] as ”the application of mathematical and sta-

tistical methods to books and other media of communication”. He

stressed more on quantitative aspects, like count on the number

of articles, publications, citations, books and in general any sta-

tistically significant measures of recorded information. The term

Scientometrics was introduced as a science for analyzing and mea-

suring science through relationships and social structure and also

to check the status of an individual within a group [de Solla Price,

1986].

A field that encompasses both the bibliometrics and sciento-

metrics fields is Informetrics. In [Bar-Ilan, 2008], the author de-

Research Evaluation Through Bibliometrics Approaches 29

fined it as a study of the quantitative aspects of information in

any form that include the production, dissemination and use of

the information regardless of its form. In the following section,

we mainly focus on the bibliometrics based approaches and indi-

cators.

2.3 Research Evaluation Through Bibliomet-

rics Approaches

Over the last few years, bibliometric indicators are considered to

be a standard and popular way to assess research impact. All sig-

nificant indicators heavily rely on publication and citation statis-

tics and other, more sophisticated bibliometric techniques. In

particular, the concept of citation[Garfield and Welljams-Dorof,

1992; Garfield and Merton, 1979] became a widely used measure

of the impact of scientific publications, although problems with

citation analysis as a reliable method of assessment and evalua-

tion have been acknowledged throughout the literature[Chapman,

1989]. Indeed, a research work not always gets citations because

of its merits, but also for some other reasons such as flaws, draw-

backs or mistakes. A number of other indicators have been pro-

posed to balance the shortcomings of citation count and to ”tune”

them so that they could reflect the real impact of a research work

in a more reliable way. As with the increase of scholarly liter-

ature, different communities introduced new indicators for the

assessment. Although these indicators widely based on citation

analysis, but they gained popularity over simple citation indica-

tors like a simple publication or citation count.

Of the many famous indicators, like h-index that is proposed

30 Research Impact Evaluation: State of the Art

by [Hirsch, 2005] by Jorge Hirsch, considered as a more com-

prehensive indicator to assess the scientific productivity and the

impact of an individual researcher. The h-Index is among the re-

cent and most successful indicators over the last few years because

it is straightforward to compute based on the citations of a re-

searcher’s publications. The h-index takes into account both the

quantity and the impact of the researcher’s contributions. That

is why some of the most significant journals[Ball, 2005] take in-

terests into it. The original definition of the h-index by Hirsch is

as:

Definition A scientist has index h if h of his or her Np papers

have at least h citations each and the other (Np−h) papers have

≤ h citations each.

The h-index has been widely acknowledged because of the good

properties it holds, for example in [Costas and Bordons, 2007], au-

thors considered this index as an objective indicator and based on

this they stated that it can play a significant role when allocat-

ing funds, making decisions about personnel or awarding prizes.

In [Vanclay, 2007] highlighted another advantage of the h-index,

where author reported that the h-index does not care much about

the low cited papers, which is a good thing that makes this in-

dex viable than others. According to them, as the majority of the

confusions and errors tend to occur in the lower part of someone’s

citation record so neglecting that part certainly reduces possible

errors.

However, some flaws and drawbacks of the h-index have been

identified over time and often different authors have tried to

solve those errors by introducing new indicators or its variations.

Research Evaluation Through Bibliometrics Approaches 31

Hirsche in his paper [Hirsch, 2005], himself mentioned that due

to differences in the productivity of different fields, there are dif-

ferences in h values. Hence, comparing two researchers based on

their h-index values those belong to two different disciplines is not

an appropriate comparison. Another disadvantage of the h-index

is that, it is used to compare researchers which are at a differ-

ent level of their career, since h-index depends on the scientist’s

entire career, but publications and citations increases over time,

claimed in [Kelly and Jennions, 2006].

To overcome the shortcomings of the h-index, recently a num-

ber of variations of the h-index have been proposed. One of the

proposals presented in [Van Eck and Waltman, 2008], where au-

thors considered the h-index is quite arbitrary. From their point

of view Hirsche could defined h-index as: ”a scientist has h-index

of h if h of his n papers have at least 2h citations each and the

other n− h papers have ≤ 2h citations each”. That is how they

extended the h-index to hα-index, which is formally defined as:

Definition ”A scientist has hα-index of hα if hα of his n papers

have at least α.hα citations each and the other n−hα papers have

fewer than ≤ α.hα citations each.” Where α ∈ (0,∞).

In [Jin, 2006], author proposed A− index, according to which

they proposed to use average of the citations in the Hirsch core

[Rousseau, 2006]. Formally A-index is defined as:

A = 1
h

h∑
j=1

citj

In the above definition of A-index, h is the h-index value and

citj is the total citations received by j − th most cited paper.

Another problem that is also solved by the A-index is that the

32 Research Impact Evaluation: State of the Art

index increases its value if the most cited papers receive more

citations, while in case of h-index, it does not increase if a most

cited paper gets more citations. To the best of this side, it is

crucial that if an indicator which should indicate quality of a

researcher, should consider the performance of top cited papers

too. To this end, an indicator which is known as g-index was

proposed by Egghe [Egghe, 2006]. The formal definition of the

g-index according to Egghe is as follows:

Definition A set of papers has a g-index g if g is the highest rank

such that the top g papers have, together, at least g2 citations.

This also means that the top g+ 1 papers have less than (g+ 1)2

cites.

Egghe’s concern with the h-index was, once the h-index is com-

puted, for the highly cited paper it remains insignificant that

those receive further citations as new citations do not effect the

h value. The consequences of this would impact highly cited re-

searchers, as they may have h-index similar or equal to moderate

researchers. However, the g-index also suffers from problems. For

instance, if a researcher receives a high number of citations in one

paper, but for other papers he gets average citations. The g-index

for that researcher would be higher as compared to other scien-

tists with higher average citations in their papers, reported by

[Alonso et al., 2010].

To overcome the limitations of both h and g − indices, a new

index has been proposed in[Alonso et al., 2010] with the aim to

combine the good properties of both indices and to minimize the

disadvantages. This index is known as hg-index, and is defined as

hg =
√
h.g, which is the geometric mean of the h and g-index. It

Research Evaluation Through Bibliometrics Approaches 33

is easily understandable that h ≤ hg ≤ g and that hg−h ≤ g−hg.

Indeed this index is very simple to compute once both h and g-

index values have been obtained. It has more granularity, which

makes it even easier to compare researchers with similar h or

g-index values.

In [Jin, 2007] authors proposed a new index, which is known

as AR-index. This particular index not only takes into account

citations of a researcher and also the publication age. As with the

time, the performance of a researcher can increase or decrease,

which is an aspect that was ignored before. However, the AR-

index claims to observe these changes and can increase or decrease

with time. The AR-index is formally defined as follows:

AR =

√
h∑
j=1

citj
aj

.

Where h is the h-index value, citj is the total number of cita-

tions of the j-th most cited paper, aj is the number of years since

the publication of the j-th paper. In another work [Egghe and

Rousseau, 2008] in which the authors proposed the idea to give

weights to citations. This variation of the h-index is known as

hw-index and is defined as follows:

hw =

√
r0∑
j=1

citj.

Where citj is the number of citations for the j-th most cited

paper, r0 is the largest row index i such that rw(i) ≤ citj and

rw(i) = (
∑
j=1

i
citj
h).

In [Kosmulski, 2006], author presented the h(2)-index. In this

work, the authors proposed to give more weight to the most

cited papers, as this idea originally been presented in the g-index.

Based on this idea, the h(2)-index is defined as: ”A scientist’s h(2)-

34 Research Impact Evaluation: State of the Art

index is defined as the highest natural number such that his h(2)

most cited papers received each at least[h(2)]2 citations”. This

index is easier to compute because it only focuses on highly cited

paper. It can be used with data where some uncertainty exists,

especially in low cited papers. This index also sufferd by problems

identified in [Sidiropoulos et al., 2007], where author emphasized

that as a small set of papers are needed to compute h(2)-index,

and since researchers with different number of publication and ci-

tation rate, which is not suitable for this type of index. Thus, they

proposed the normalized h-index, which is defined as: hn = h
Np

.

Where h is the h-index and Np is the total number of publications

of a researcher. This index is also considered more suitable for

younger researchers, as they can less productive at the beginning

of their career.

In [Anderson et al., 2008], author proposed an interesting in-

dex, which is called tapered h-index. They propose to incorporate

all citations for all papers of a researcher. One of the Shortcom-

ings of the h-index is that it ignores very low cited papers as

well as new citations to highly cited papers. However, this in-

dex claims to consider complete citation records of a researcher

despite a paper has low or high citations. It uses the idea of

representing the citations of the papers in a Ferrers graph, where

columns represent the partition of the citations among the papers.

The largest filled square in Ferrers graph, is called the Durfee

square. In another similar approach[Ruane and Tol, 2008], au-

thors presented the rational h-index hrat-index, which is defined

as: hrat = (h+ 1)− nc
2.h+1 where h is the h-index, nc is the number

of citations. Intuitively h ≤ hrat < h+ 1.

There are some other factors that might implicitly influence

Research Evaluation Through Bibliometrics Approaches 35

the interpretation of the results using a citation-based metric.

Therefore, the evaluation process may produce incorrect results.

One of these factors could be the self-citation count. The contro-

versial phenomenon of self-citation is generally believed to create

problems for those who would attest to the reliability of citation

analysis for evaluative purposes[Purvis, 2006; Van Raan, 2006].

The inclusion of self-citation in the calculation of citation statis-

tics inflates the research impact of a given artifact, thus taking

out self-citations from citation count would be better in quantifi-

cation of a more realistic research impact.

Michèle Lamont’s book [Lamont, 2009] holds a complete anal-

ysis on how evaluation is performed by professors. In the book,

she analyzed the complicated details of peer reviews and 12 pan-

els of experts in the humanities and social science, extrapolating

subjective criteria for decision-making in each different discipline,

giving an interesting overview of possible features that influence

reputation of researchers. The Altmetrics Initiative [Priem et al.,

2010] goes one step further and aims at using social interactions

for proposing new indicators of research impact more related to

the reputation of the researchers.

We have presented a number of different metrics that have

been proposed and used. We can clearly see that the present lit-

erature on research impact evaluation emphasizes that there are

so many different criteria, proposals and thoughts for conducting

the evaluation and there are different opinions on which criteria

are more effective than others (depending on the reason why they

are conducting the evaluation). We provide a more detailed crit-

ical analysis of all these metrics in the section 2.6. However, in

the next section we present a comprehensive review of the differ-

36 Research Impact Evaluation: State of the Art

ent information sources (i.e., bibliographic databases) and various

tools developed support providing evaluation services.

2.4 Bibliographic Databases

Bibliographic databases also known as digital libraries maintain

and provide bibliographic records such as, journals, conference

proceedings, technical reports, books, patents etc. A bibliographic

database can be a multidisciplinary in terms of coverage (i.e., cov-

ering various disciplines like computer science, physics etc.) or

can be a discipline-specific (i.e., covering one discipline). Of the

several bibliographic databases, a few of them are proprietary,

available under licensing, and other are freely available on the

Internet. The ones, freely available either offer their services as

a scholarly search engine or as a digital library (i.e., a system

that store content in digital formats and accessible via computers

through an API). In the next section, we present a few of these

bibliographic databases and present services these databases pro-

vide. We also report on diversities, completeness, and coverage

issues related to these databases.

2.4.1 Web of Science

A decade ago, researchers had essentially a very few bibliographic

data sources available, among those the Web of Science2, which is

an online academic citation index provided by Thomson Reuters,

was very popular. Web of science provides access over 12,000

journals worldwide, including 150,000 conference proceedings3.

2http://scientific.thomson.com/products/wos/
3Recorded on Jan 10, 2013

Bibliographic Databases 37

Web of Science provides coverage of nearly 256 disciplines that

include science, social science, arts, humanities etc. Along with

the bibliographic data, web of science also provides a few num-

bers of indicators that can be used for research impact evaluation.

The commonly used indicators provided by WOS include: p-index

(number of articles of an author), cc-index (number of citations

excluding self-citations), cpp (average number of citations per ar-

ticle), productivity (quantity of papers per time-unit). To some

extent, these indicators can be used to determine the impact of

communities, journals, academic institutes using various aggrega-

tions. Another, academic citation indexing search service known

as Web of Knowledge, is also provided by Thomson Reuters. This

wrapper service covers a few disciplines like sciences, social sci-

ences, arts, humanities, that also include a number of journals

from the web of science. It provides tools to analyze the biblio-

graphic content over several databases.

Despite all the benefits the web of science and web of knowl-

edge provide, they still have some limitations, and thus become

very crucial in some assessments tasks. Among these drawbacks,

the limited coverage of these services that only targets, as men-

tioned above, a few high impact peer-reviewed journals. These

journals only represent a fraction of research work that is pub-

lished. In various disciplines internationally recognized high im-

pact journals are not the only way to disseminate research work,

so those cannot take advantage of the Thomson Reuters services.

Moreover, the web of science does not provide free access to their

data and tools, which can also be considered as a drawback for

these kinds of bibliographic database.

38 Research Impact Evaluation: State of the Art

2.4.2 SciVerse Scopus

Recently, many other competitors of the Web of Science emerged

that also provide bibliographic data. One of these is Scopus4, that

maintains bibliographic records including citations, abstracts, jour-

nal articles. As of today5, Scopus claims of having a bibliographic

database that contains more than 20,500 peer-reviewed titles from

more than 5,000 international publishers. In case of scopus, it

only indexes journals, book series, conference proceedings that

have an ISSN assigned to them. Scopus does not index an arti-

cle whose author is not the person behind the presented material

such as obituaries or book reviews. Scopus provides various tools

that work on their own database and provide value-added ser-

vices. For instance, citation tracker is a tool that can be used to

find highly cited author in a field or hot topic in some subject

areas.

Similar to the web of science approach, Scopus is also a paid

source of bibliographic type of information. Elsevier that operates

Scopus also operates a free service called Scirus. It is a science-

specific search engine that only works for Computer science field.

One can search bibliographic records using this service; however,

they do not provide any kind free public API to take advantage

of the data they maintain.

2.4.3 Microsoft Academic Search

On the contrary to both Web of science, and Scopus services

as mentioned above, the Microsoft Academic Search6 is a free

4http://www.info.sciverse.com/scopus
5Scopus database status published on their website on Jan 17, 2013
6http://academic.research.microsoft.com/

Bibliographic Databases 39

academic search engine. This search engine is developed by Mi-

crosoft Research and it came into being during the recent years.

This multidisciplinary search engine covers more than 48 million

publications and more than 20 million authors from various do-

mains. The service is free and provides an easy to use interface to

query scholarly literature. Moreover, Microsoft Academic Search

provides a few basic indicators (e.g., h-index, g-index etc.) for

assessment, and it also provides a visual explorer where one can

visualize a researcher’s co-authors graph or a citation graph.

Another appealing yet highly demanding feature, which is re-

searchers name disambiguation, is also provided by Microsoft

Academic Search. This feature to some extent works, but we

personally observed that it too does not completely disambiguate

many cases. To disambiguate a researcher, it shows a list of

authors who share the same names along with their affiliations.

From the given list a user can select one among many based on

the affiliation. However, the problem still exists and the service

does not completely disambiguate more complex cases. In the

beginning their data service suffered by the problem of coverage.

Until the year 2010, they only covered the computer science field,

but quiet recently the coverage has been increased to other disci-

plines like biology, chemistry, mathematics etc., which makes the

service more useful.

2.4.4 Google Scholar

Likewise the Microsoft Academic Search service, Google also started

in 2004 a bibliographic search service named Google Scholar 7.

Google Scholar provides a very simple interface to search biblio-

7http://scholar.google.com/

40 Research Impact Evaluation: State of the Art

graphic content over a large set of disciplines from many sources.

Google Scholar maintains its database by crawling data from

quite a large number of sources. The type of bibliographic data

that Google Scholar indexes include peer-reviewed online jour-

nals, conference proceedings, books, non-peer reviewed journals,

preprints, technical reports, theses etc. Moreover, Google scholar

maintains the citation records of scholarly literature.

It does not guarantee that an article indexed by Google Scholar

can be freely available, though a request made through certain

universities, institutes those subscribed to various services can ac-

cess articles freely. Google Scholar claims and apparently consid-

ered trusted bibliographic source in terms of its coverage. More-

over Google Scholar seems the most updated scholarly data providers,

though nobody knows when and which journals Google scholar

crawls. However, the data quality in some cases seems compro-

mised. Google Scholar does not provide the support for name

disambiguation problem, that is, for example in the case where

two or more authors share the same name.

2.4.5 DBLP

DBLP is largely a computer science specific bibliographic database

hosted in Germany by the Universitat Trier. As of November 2012

DBLP maintains 2.1 million bibliographic data. DBLP provides a

browser-based user interface for performing search over the data

and also it allows to download the entire dataset in XML for-

mat. Moreover, DBLP offers an API that developers can use to

query specific records. The service is free, though as it is today,

a disadvantage of this service is that it only covers the computer

science field. Moreover, DBLP does not maintain citations refer-

Bibliographic Databases 41

ences. Despite these flaws, the DBLP service considered a clean

and reliable source for bibliographic data.

The above mentioned bibliographic services are just the tip of

the iceberg. Over the years, a number of other bibliographic

data sources have been emerged. Among these bibliographic

databases, CiteSeerX 8, arXive9, Association for Computing Ma-

chinery (ACM)10, GoPubMed11, Science.gov 12, SpringerLink 13 are

the popular ones.

The proliferation of data sources makes it evident that the

scholarly data and the data providers are numerous, however, the

main problem for non-experts users is the lack of technical exper-

tise that are required to use these sources to crawl, call API etc.

For simple scenarios, for instance, to get a list of publications of

a researcher seems reasonable and can be performed manually.

However, tasks such as to get all the publications and citations

of all the researchers of a university poses serious challenges that

cannot be performed manually as it requires huge human efforts.

Thus, an easy-to-use, flexible and as much as automated soft-

ware support is required that could perform such complex tasks.

Recently, a number of such tools have emerged. In the next sec-

tion we report on these tools that provide the research evaluation

services based on the different data sources mentioned in this

section.

8http://citeseerx.ist.psu.edu/
9http://arxiv.org/

10http://www.acm.org/
11http://www.gopubmed.org/
12http://science.gov/
13http://www.springer.com/

42 Research Impact Evaluation: State of the Art

2.5 Research Impact Evaluation Tools

2.5.1 Publish or Perish

Based on the existing bibliographic data sources, new tools are be-

ginning to be available to support people in their research evalua-

tion analysis. Such a tool named Publish or Perish was developed

by [Harzing, 2007]. The tool is freely available to download on

the Internet. It is a desktop software that crawls Google Scholar

pages for a given query and then analyses the data for further

computation of citation based metrics. It provides a few numbers

of famous metrics like h-index, g-index, zhang’s e-index and a few

more. A user can filter out publications of his/her interest from

a given list of publications that the tool actually crawls. To some

extent, this approach is useful for someone who intends to perform

analysis of his own data, because it’s easy to determine what pub-

lication data belong to him. But the very approach does not work

in those cases where users want to search other researchers as it is

less likely and hard to remember about someone’s else complete

publication details. Among the other weaknesses that this tool

has, include, (1) its reliance on only one information source i.e.,

Google Scholar; (2) the need for manual cleaning of the obtained

data (for example for author disambiguation and self-citations

among others); (3) the lack of Application Programming Inter-

face (API) over which other applications or web services could

use their services; (4) the tool does not provide a way to call a

third party API, a feature which is useful if provided. Moreover,

a user cannot customize or provide a new user-defined evaluation

procedure.

Research Impact Evaluation Tools 43

2.5.2 Scholarometer

A different approach is provided by Scholarometer [Hoang et al.,

2010], which is a kind of social tool that is used for citation anal-

ysis and also for the evaluation of the impact of an author’s re-

search work. It is a browser-based free add-on for Firefox and

Chrome that provides a smart interface for fetching data from

Google Scholar. However, the service requires users to tag their

queries with one or more discipline names from a predefined list of

disciplines. This generates annotations that go into a centralized

database, which collects statistics about the various disciplines,

such as average number of citations per paper, average number of

papers per authors, etc. The impact measures are then dynami-

cally recalculated based on the user’s manipulations. Scholarom-

eter has a server where information about the queries performed

and their results are stored. However, it does not offer an API to

retrieve or use this information. This tool also only depends on

Google Scholar data, and no other data providers can be injected

or used or linked with it. Moreover, the functionality to add or to

customize existing evaluation indicators is not provided, so it is

not suitable for those users who want to implement a very specific

evaluation procedure. The use of predefined disciplines makes

this tool more restricted to only tool provider’s chosen fields, no

provision is provided to introduce new disciplines though.

2.5.3 ResEval

Over the time, information sources and evaluation enabler tools

are becoming available but they still have many shortcomings.

For example they differ in data coverage, data quality as the

44 Research Impact Evaluation: State of the Art

same case for Scholarometer. Moreover, these tools are data-

source specific and cannot be extended to use other data sources.

Moreover, personalization of metrics, an important feature for the

diverse field of research evaluation, is still missing.

With an aim to overcome the above mentioned deficiencies of

the existing solutions, we introduced our own tool for the research

evaluation purposes. Lessons learned from the existing experi-

ences, in our own tool ResEval [Imran et al., 2010], we focused

on the computation of more informative citation based measures.

The tool focuses on providing an open and resource-oriented re-

search impact ways and stresses the customization of existing

evaluation procedures, such as the h-index and g-index measures.

ResEval provided the provision to introduce new customized eval-

uation procedures in the form of web services. Likewise, new data

sources can also be added with the help of web services, which

actually encompasses the logic of calling a data source API or

crawling data from its web pages. That data then can be used to

leverage various metrics provided by the tool.

By and large, the functionalities that ResEval provided mainly

targeted only the experience developers as the implementation

of new web services, crawling data from web pages, performing

filtering, aggregating results etc. are all aspects that an experi-

enced developer is capable to perform. That is the reason, the

tool failed to achieve its objective as no end-user (non-technical

user) support was provided, which is the main requirement of this

field. The lessons learned from other and our own tool motivated

us to think about a solution that stays in the boundaries of an

end-user’s expertises.

Analysis and Discussion 45

2.5.4 Research Gate

Research Gate, is a new and a different kind of entry in the list

of already existing tools. The tool is not built on the same theme

as other tools aimed at, however, it aims at providing a social

networking platform for scientists and researchers. It is more to-

wards finding collaborations, sharing papers, asking and answer-

ing questions than performing research evaluation. Although, we

believe that in near future new and advanced research evaluation

methods will be used instead of the traditional ones. These meth-

ods could be based on social reputation of a researcher that the

researcher might gain based on his/her social interaction in the

form of valuable shares of scientific papers, datasets, experiments,

and likewise answering peers’ questions and the like.

To the best of our knowledge, there are not so many other

tools left that are built for the purpose of research evaluation for

a broader audience. However, there are efforts within different

communities and those only addresses the specific problems of a

specific community. The lack of a general purpose, flexible, yet

end-user oriented tool left a huge gap for the growing community

of researchers, which is why complex research evaluation tasks

still pose challenges for non-technical users and these challenges

still have not been addressed yet by the existing solutions.

2.6 Analysis and Discussion

This section presents a critical analysis of all aforementioned bib-

liographic indicators, data sources, and impact evaluation tools.

We have presented different indicators that have been developed

and used for the assessment purposes over the years. We also no-

46 Research Impact Evaluation: State of the Art

ticed that these indicators evolved over time, and scientific com-

munities have adopted these indicators in one or the other way

(e.g., a customized version of an indicator). However, we have

not found any consensus on a commonly accepted indicators, and

that proves the fact that the field of research impact evaluation is

a diverse field, where everyone has its own interpretation of what

an evaluation procedure should be. To further support the jus-

tification for this fact, in following we present studies that have

been conducted and showed the same claim as we do.

In [Costas and Bordons, 2007], authors analyzed the relation-

ship of the well-known h-index with other bibliometric indicators.

Their analysis was based on a set of publications downloaded

from the Web of Science(1994-2004) for Spanish CSIC scientists

in Natural Resources, where the actual impact assessment con-

ducted through the h-index. Their claim was to give more weight

to those researchers who do not produce a high number of publi-

cations but who achieve a very significant impact. As the h-index

considers both quantity and impact of publications, however, a

researcher’s maximum h-index value cannot exceed his publica-

tion count. They emphasized the use of diverse indicators for the

better productivity assessment instead of just h-index, moreover

they noticed that widespread use of a single index (e.g., h-index)

might influence their publication behavior. Several other different

bibliometric indicators have been analyzed to distinguish between

researchers. For example in [Lehmann et al., 2008], author ana-

lyzed h-index with other indicators using Bayesian statistics, in

order to confirm which indicator performs better with respect to

publication data. They concluded that, in order to achieve long

term scientific productivity of a researcher, most indicators re-

Analysis and Discussion 47

quire minimum 50 publications as input.

It is widely accepted that some indicators show a strong bias

towards some scientific fields. For instance, in case of h-index,

when it is used to compare researchers from different fields tends

to create problems, as also identified in a related study conducted

by [van Leeuwen, 2008], where they analyzed the level of a re-

searcher with the academic reward system in the Netherlands.

They compared the h-index with other different bibliometric in-

dicators in different fields. They concluded that comparing sci-

entists from different fields using the h-index is not appropriate.

Another interesting analysis has been conducted by [Costas and

Bordons, 2008] among different types of scientists such as, low

producers, big producers, selective scientists14 and top scientists

in the Natural Resources field at Spanish CSIC. Their analysis

was based on the g-index and h-index. They found that these

indicators clearly distinguish between low producers and top sci-

entists. However, in the case of selective scientists and big pro-

ducers, these indicators do not perform well. Their results show

that g-index is more sensitive than the h-index. Therefore, this re-

search work shows that both indicators do not replace each other,

and both have their own advantages and disadvantages. Another

similar conclusion deduced in [Schreiber, 2008]. They analyzed

26 practical cases of physicists from the Institute of Physics from

Chemnitz University of Technology.

Some studies have been conducted regarding most criticized

aspects of these indicators, which is the possible influence of

self-citation. The inclusion of self-citation in the computation of

14Those researchers who do not produce a very high number of documents but who do

attain a high impact

48 Research Impact Evaluation: State of the Art

citation-based indicators inflates the reflection of research impact

of a scientist. In [Schreiber, 2007], author presented the results

conducted on several bibliography datasets. They showed that

self-citations do have an impact on the h-index, particularly in the

case of young researchers. They proposed to discern self-citations

while checking the impact. Mainly various scientific communi-

ties have a consensus on the exclusion of the self-citations before

performing research evaluation tasks.

The correct usage of the indicators has been the primary con-

cern of many studies and even in Hirsch’s h-index proposal, he

presented that the h-index, when applied to compare scientists

from different communities is not appropriate. Factor such as nor-

malization varies based on different fields, thus reference practices

and traditions in different fields should also be considered.

A particularly interesting aspect in the computation of these

indicators is the data sources used to fulfill data requirements.

Until a few years ago there was essentially only a very few data

sources available (e.g., ISI Web of Science, Scopus etc.) to com-

pute various indicators. However, this number has increased dur-

ing the recent years and now a number of different alternatives

have become available as also presented in the section 2.4. Some

of these sources only cover single discipline, like Chemical Ab-

stract produced by the American Chemical Society, MatchSciNet

by American Mathematical Society etc. On the other hand,

a number of multidisciplinary data sources have emerged, like

Google Scholar, Scopus, CiteSeer. These sources have been used

in many studies and also for the scientific evaluation purposes as

compared to discipline-oriented sources.

In a study [Sterne et al., 2009], author analyzed three main

Analysis and Discussion 49

data sources (Google Scholar, Scopus and Web of Science). The

study focussed on the analysis of pros and cons of these three

largest, cited-reference-enhanced, multidisciplinary databases. They

proposed that, some of the aspects to determine the h-index

need scrutiny because they believe that content from reference

databases can influence the h-index values due to problems such

as completeness of data, the scope of data source and coverage.

In another study [Meho and Rogers, 2008], authors examined the

citation counts, ranking by citation and h-index values for top 22

researchers belongs to human-computer interaction (HCI) field.

They used Scopus and Web of Science as data sources. Their

results show that Scopus provides more coverage in this field as

compared to Web of Science. They found significant differences

in the value of the h-index, where Scopus performs much better

which is near to the actual case.

In our literature review, we observed that the usage of biblio-

metric indicators in different perspective is highly subjective. We

noticed that a number of studies showed their concerns about data

sources problems in terms of completeness, coverage and their

scope. A number of studies have been conducted regarding most

sensitive issues about the use of proper indicators. Moreover,

we also found that their usage is highly variable aspect across

different scientific communities. Research executives, institutes,

and communities have different assessment requirements hence it

is hard to say that a single indicator would be truly effective.

Some studies proposed to use one indicator, and on the other

hand some propose to use its variation or they recommend using

other indicators. Moreover, the issues related to the compari-

son of researchers, research groups and institutes those belong to

50 Research Impact Evaluation: State of the Art

different community have not been addressed yet and rely on a

single indicator is not a recommended practice.

We have also noticed that, all the currently available tools

lack, in our view, some key features, mainly: (1) completeness of

data, (2) flexibility and personalization features (3) languages to

support users’ defined evaluation procedures, queries and metrics

and (4) data processing features. The possibilities to define cus-

tomized metrics is an essential feature in order to have a person-

alized access to the information, e.g., one might want to exclude

self-citation from the h-index value of a researcher or see how an

index could change excluding citations coming from the top co-

authors. To this end, in this thesis, we propose an approach to

tackle these challenges, which we believe mainly the reason that

this field is highly diverse. Thus, providing ingredients to be used

in research evaluation procedures will be more beneficial than to

restrict users to a fixed set features. Moreover, the people respon-

sible for performing these tasks often lack technical skills which

is also a main setback for the current solutions as they do not

aim at these non-technical users. To this end, in the next chapter

we explore techniques that could enable these users to easily and

effectively involve in such complex and technical tasks.

Chapter 3

End-user Development &

Mashups: State of the Art

3.1 Overview

By and large, in the current era, most people are familiar with the

use of computers, at least with the basic functionalities and user-

experience that computers provide. These computer users include

engineers, teachers [Wiedenbeck, 2005], doctors, salesmen, scien-

tists [Segal, 2007], managers, and children [Petre and Blackwell,

2007]. Based on a survey conducted by the U.S. Bureau of Labor

and Statistics, Boehm et al. in his paper [Boehm et al., 1995], pre-

dicted that in 2005 there would be 55 million such end-users (i.e.,

computer users using spreadsheets, databases, writing formulas,

and queries for their daily work requirements). In another work

[Scaffidi et al., 2005], which was also based on a survey conducted

in 2005 by the U.S. Bureau of Labor and Statistics, reported that

these end-users population already increased to 80 million. More-

over, in the same work, based on the rate of increase from 1995

to 2005, they also predicted that this number will be 90 million

in 2012.

52 End-user Development & Mashups: State of the Art

The nature of work that many of these users involved - vary

- rapidly on the basis of months or even days. Thus, the re-

quirements for more intuitive, easy-to-use and flexible enabling

development environments increased as with the growth of end-

users. Despite many efforts, it is still a challenging endeavor for

the end-users to develop or modify applications that support and

fulfill their goals. As this process requires considerable expertise

in programming languages that these users lack. On the other

hand, traditional requirement elicitation methods and computer

programmers simply cannot anticipate and meet all of these re-

quirements.

End-user development (EUD) is a way to solve this problem.

EUD helps to empower less skilled users in such a way that they

can easily and effectively be involved in development processes so

to develop and tailor applications by their own. More specifically,

EUD provides different techniques, methods, and tools that allow

users to easily cope with the new requirements within the bound-

aries of a particular user’s expertise [Lieberman et al., 2006]. Over

the time, different EUD techniques emerged that target different

classes of end-users having different expertises [Lieberman, 2001],

[Burnett et al., 2001], [Little et al., 2007], [Pane et al., 2002],

[Repenning and Ioannidou, 2006].

In this chapter, we present state of the art methods that have

been proposed in the field of end-user development and we also

present an analysis of the major techniques, methods, and tools

used for this purpose. We also discuss major paradigms those

considered as a fundamental base for EUD. Moreover, this chapter

introduces the newly emerging field of Mashups, especially in the

context of EUD along with various developments in mashups field

End-user Development 53

that have been proposed. In the end we discuss on how mashups

can be better choice for less-skilled users.

3.2 End-user Development

The term end-user typically refers and uses for a user of computer

applications. The user in this context considered a non-technical

or less skilled and a non-programmer. The intentions of these

users are to use the computer applications to fulfill their daily life

work requirements. While the term end-user development refers

to, when an end-user, who is not an expert on conventional com-

puter programming languages, writes computer programs using

either declarative or imperative programming techniques1. Thus,

end-user development, for these kinds of users (i.e., end-user),

provides enabling techniques, method and tools that facilitate

them to configure, tailor, modify or write new computer pro-

grams. Among various forms of end-user development, to name a

few, include use of spreadsheets, writing database queries, config-

uring software programs, visual programming, use of Wikis etc.

Early efforts in the field of EUD were focused around the con-

cepts like customization, parameterization of software programs

and some other on tailoring and writing small scripts [Trigg and

Bødker, 1994], [Eagan and Stasko, 2008]. These enabling tech-

niques allow end-users, for example, to write scripts in the form

of macros for MS Word using Visual Basic syntax, or to perform

complex computations or data processing with the help of spread-

sheets (e.g., MS Excel), or configuring a software settings using

1More details on declarative and imperative techniques will be presented in the next

section

54 End-user Development & Mashups: State of the Art

different parameters (e.g., use of various graphical settings). With

the passage of time and in parallel the increase in more complex

users’ requirements made some of these technologies (e.g., writing

scripts or macros), due to their richer technical usage demands,

off-track and out of non-programmers technical expertise domain

and others (e.g., use of spreadsheets) become simply useless for

performing non-trivial tasks.

However, new ways emerged and among those, for instance,

programming by example also known as programming by demon-

stration, to some extent, reduces the efforts a user needed to learn

traditional programming abstractions [Lieberman, 2001]. In this

approach a computer program records the user’s action and af-

ter generalizing those set of actions it performs the same actions

(not necessarily exactly same) in some other similar situations.

With the passage of time, the presence of the Internet, especially

with the growth of newly emerged Web 2.0 technologies, made

it possible to provide a common platform for everyone to pro-

duce and consume resources at any time, in any form and from

anywhere. For example, among these resources, open data access,

Web Services, Online APIs, feeds (i.e., RSS/ATOM feeds) are the

most popular. Although the requirement for more intuitive de-

velopment environments and design support for end-users clearly

emerge from research on end-user development, for example for

web services [Namoun et al., 2010b,a], not many tools and frame-

works are yet available to satisfy this need. From a conceptual

point of view, there are currently two main approaches to enable

less skilled users to develop programs, which are simplifying de-

velopment practices and enabling reusability. That is, in general

development can be eased either by simplifying it (e.g., limiting

End-user Development 55

the expressive power of a programming language) or by reusing

knowledge (e.g., copying and pasting from existing algorithms).

Among the simplification approaches, the workflow and Busi-

ness Process Management (BPM) community was one of the first

to propose that the abstraction of business processes into tasks

and control flows would allow also less skilled users to define

their own processes. Yet, according to our opinion, this ap-

proach achieved little success and modeling still requires training

and knowledge. The advent of the Service-Oriented Architec-

ture (SOA) substituted tasks with services, yet the composition

is still a challenging task even for expert developers [Namoun

et al., 2010a] [Namoun et al., 2010b]. The reuse approach is im-

plemented by program libraries, services, or templates (such as

generics in Java or process templates in workflows). It provides

building blocks that can be composed to achieve a goal, or the

entire composition (the algorithm -possibly made generic if tem-

plates are used), which may or may not suit a developer’s needs.

In recent years, several research projects such as Search Com-

puting2 [Ceri et al., 2010], mashArt [Daniel et al., 2009a], FAST3

[Hoyer et al., 2009] and even our own old tool ResEval [Imran

et al., 2010] spent substantial effort towards empowering end-

users (as for some of these tools refer end-users sometimes as ex-

pert users, to distinguish them from generic, completely unskilled

users), with tools and methods for software development. In the

following we look at this field from a different perspective and we

elaborate on which paradigms and ingredients best aid end-users

in performing development tasks, and most notably formulating

2http://www.search-computing.it/
3http://fast-fp7project.morfeo-project.org

56 End-user Development & Mashups: State of the Art

complex tasks. We also discuss various dimensions of end-user

programming, including vertical versus horizontal language defi-

nition, declarative versus imperative approaches.

3.3 Enabling Practices and Techniques

Enabling end-users to develop own applications or compose ap-

plication programs by combing together the different pieces avail-

able online in the form of public web services, APIs or data in

various forms, requires simplifying current end-user development

practices. To this end, a variety of approaches may help sim-

plify the end-user development, as also discussed a few of these

approaches in the previous section. However, in this section we

discuss in detail the most important ones, in order to use them

in the next section to analyze these approaches that partly aim

at supporting end-users for composing complex applications.

3.3.1 Simple Programming Models

The first issue is to understand which programming paradigms are

best suited for end-user programming. The solution to this issue

can take inspiration from existing experiences in the orchestration

and mashup languages which are targeted at process automation

and at relatively inexperienced users. Although they have not

been that successful in reaching out to non-IT experts, as yet. The

aim is to find programming abstractions that are simple enough to

appeal to domain experts and at the same time complex enough

to implement enterprise procedures and Web application logic.

For instance, some mashup approaches heavily rely on connec-

tions between components, which is for instance, the case of Ya-

Enabling Practices and Techniques 57

hoo! Pipes and IBM Damia [Altinel et al., 2007], and therefore

are inherently imperative; other solutions completely disregard

this aspect and only focus on the components and their pre- and

post-conditions for automatically matching them, according to

a declarative philosophy like the one adopted in choreographies.

For instance, as also stated in the FAST European project [Hoyer

et al., 2009].

3.3.2 Domain-specific Modeling.

The idea of focusing on a particular domain and exploiting its

specificities to create more effective and simpler development en-

vironments is supported by a large number of research works

[Lédeczi et al., 2001] [Costabile et al., 2004] [Mernik et al., 2005]

[France and Rumpe, 2005]. Mainly these areas are related to Do-

main Specific Modeling (DSM) and Domain Specific Language

(DSL).

In DSM, domain concepts, rules, and semantics are represented

by one or more models, which are then translated into executable

code. Managing these models can be a complex task that is typ-

ically suited only to programmers but that, however, increases

users’ productivity. This is possible thanks to the provision of

domain-specific programming instruments that abstract from low-

level programming details and powerful code generators that ”im-

plement” on behalf of the modeler. Studies using different DSM

tools (e.g., the commercial MetaEdit+ tool and academic solution

MIC [Lédeczi et al., 2001]) have shown that developers’ produc-

tivity can be increased up to an order of magnitude.

58 End-user Development & Mashups: State of the Art

3.3.3 Domain-specific Languages (DSLs)

Simple programming models are not enough. Typically, end-users

simply do not understand what they can do with a given devel-

opment tool, a problem that is basically due to the fact that the

development tools does not speak the language of the user and,

hence, programming constructs do not have any meaning to the

user. Domain-specific languages aim at adding domain termi-

nology to the programming model, in order to give constructs

domain meaning.

In the DSL context, although we can find solutions target-

ing end-users (e.g., Excel macros) and medium skilled users (e.g.,

MatLab), most of the current DSLs target expert developers (e.g.,

Swashup [Maximilien et al., 2007]). Also here the introduction of

the ”domain” raises the abstraction level, but the typical textual

nature of these languages makes them less intuitive and harder

to manage and less suitable for end-users compared to visual ap-

proaches. A number of benefits and limits of the DSM and DSL

approaches are summarized in [France and Rumpe, 2005] and

[Mernik et al., 2005].

In some fields, such as database design, domain-specific lan-

guages are a consolidated practice: declarative visual languages

like the ER model are well accepted in the field. Other, more

imperative approaches, like WebML [Ceri et al., 2000], address

developers that are willing to embrace conceptual modeling. Busi-

ness people, on the other hand, are well aware of workflow mod-

eling practices and are able to work with formalisms like BPMN,

completely ignoring what happens behind the scenes both in

terms of technological platform and of transformations applied to

Enabling Practices and Techniques 59

get to a running application. Another example in this category is

Taverna [Kuhn et al., 2010], a workflow management system well

known in the biosciences field. As DSL approach is more closely

related to our proposed solution so we present a more precise

classification of DSLs in Section 3.4.

3.3.4 Web Service Composition.

BPEL (Business Process Execution Language) [OASIS, 2007] is

currently one of the most used solutions for web service compo-

sition, and it is supported by many commercial and free tools.

BPEL provides powerful features addressing service composition

and orchestration but no support is provided for UI integration.

This shortcoming is partly addressed by the BPEL4People [Ac-

tive Endpoints, Adobe, BEA, IBM, Oracle, SAP, 2007a] and WS-

HumanTask [Active Endpoints, Adobe, BEA, IBM, Oracle, SAP,

2007b] specifications, which aim at introducing also human actors

into service compositions. Yet, the specifications focus on the co-

ordination logic only and do not support the design of the UIs for

task execution. In the MarcoFlow project [Daniel et al., 2010],

they provide a solution that bridges the gap between service and

UI integration, but the approach, however, is still complex and

only suited for expert programmers.

3.3.5 Intuitive Interaction Paradigms

The user interfaces of development tools may not be a complex

theoretical issue, but acceptance of programming paradigms can

be highly influenced by this aspect too. The user interface com-

prises, for instance, the selection of the right graphical or textual

60 End-user Development & Mashups: State of the Art

development metaphor so as to provide users with intelligible con-

structs and instruments. It is worth investigating and abstracting

the different kinds of actions and interactions the user can have

with a development environment (e.g., selecting a component,

writing an instruction, connecting two components), to then iden-

tify the best mix of interactions that should be provided to the

developer.

3.3.6 Reuse of Development Knowledge

Finally, even if a tool speaks the language of the user, it may still

happen that the user does not speak the language of the tool,

meaning that he/she still lacks the necessary basic development

knowledge in order to use the tool profitably. Such a problem

is typically solved by asking more expert users (e.g., colleagues

or developers) for help if such is available. The challenge is how

to reuse or support the reuse of development knowledge from

more expert users in an automated fashion inside a tool, e.g., via

recommendations of knowledge [Roy Chowdhury et al., 2011].

Recommendations can be provided based on several kinds of

information, including components, program specifications, pro-

gram execution data, test cases, simulation data, and possibly

mockup versions of components and program fragments used for

rapid prototyping. Information may or may not be tagged with

semantic annotations. When present, the annotations can be used

to provide better/more accurate measures of similarity and rel-

evance. In a general sense, the approach we envision is an al-

ternative to design patterns for exploiting the expertise of good

developers, thus allowing reuse of significant designs.

Programming, testing, and prototyping experiences of peers or

Domain-Specific Languages: Discussion 61

of more experienced developers may support the entire develop-

ment lifecycle. If knowledge is harvested and summarized from

peers (e.g., by analyzing their mashup definitions), this opens the

door to what we can call ”implicit collaborative programming” or

”crowd programming”, where users, while going through a soft-

ware engineering lifecycle for implementing procedures of their

own interest, create knowledge that can be shared and leveraged

by other domain experts for their own work.

3.4 Domain-Specific Languages: Discussion

We have seen that Domain-Specific Languages (DSLs), i.e., design

and/or development languages that are designed to address the

needs of a specific application domain, are important to provide

the end-user with familiar concepts, terminology and metaphors.

That is, DSLs are particularly useful because they are tailored to

the requirements of the domain, both in terms of semantics and

expressive power (and thus do not enforce end-users to study more

comprehensive general-purpose languages) and of notation and

syntax (and thus provide appropriate abstractions and primitives

based on the domain). In following we highlight a few possible

classifications of these languages, which can become handy for

EUD. In particular, we describe the dimensions of focus, style

and notation.

The focus of a DSL can be either vertical or horizontal. Vertical

DSLs aim at a specific industry or field. Examples of vertical

DSLs may include: configuration languages for home automation

systems, modeling languages for biological experiments, analysis

languages for financial applications, and so on. On the other side,

62 End-user Development & Mashups: State of the Art

horizontal DSLs have a broader applicability and their technical

and broad nature allows for concepts that apply across a large

group of applications. Examples of horizontal DSLs include SQL,

Flex , WebML , and many others.

The style of a DSL can be either declarative or imperative.

Declarative DSLs adopt a specification paradigm that expresses

the logic of a computation without describing its control flow.

In other words, the language defines what the program should

accomplish, rather than describing how to accomplish it. Im-

perative DSLs instead specifically require defining an executable

algorithm that states the steps and control flow that needs to be

followed to successfully complete a job.

The notation of a DSL can be either graphical or textual. The

graphical DSLs (also known as Domain Specific Modeling Lan-

guages, DSML) imply that the outcomes of the development are

visual models and the development primitives are graphical items

such as blocks, arrows and edges, containers, symbols, and so on.

The textual DSLs comprise several categories, including XML-

based notations, structured text notations, textual configuration

files, and so on.

Despite the various experiences in DSL design and application,

there is no general assessment on the preferences of the developers

for one or the other kind of language depending on the user profile.

However, typically languages oriented to the end-users tend to be

more visual and declarative, while the ones for developers are

often textual and imperative.

Mashups from an End-User Development Prospective 63

3.5 Mashups from an End-User Development

Prospective

3.5.1 Web 2.0 & Enabling Technologies

During the last decade, the advent of Web 2.0 has been dras-

tically and successfully proved as an enabling environment for

normal web users to enable them to involve into the creation and

consumption of Web resources of various types, like blogs, Wikis,

Social Media etc. In respect to Web 1.0 which was known as ”web

as information source”, web 2.0 is called ”web as participation

platform”. Of the major key features of Web 2.0 from EUD point

of view include ”rich user experience”, ”user as a contributor”,

and ”user participation”.

Among relevant Web 2.0 technologies, the Service-Oriented Ar-

chitecture (SOA) field emerged as a paradigm in software devel-

opment. The emerging visions of an Internet of Services (IoS) and

a Web Service Ecosystems [Barros et al., 2005] [Barros and Du-

mas, 2006] supported SOA and have shown much potential in the

field. However, the major focus of these technologies remained

on the technical level of a service to service based interactions

systems [Schroth and Christ, 2007] and a little on service to user

(i.e., non-programmer) communication. Due to the high technical

complexity of the relevant standards (e.g., WSDL, SOAP, UDDI,

REST), we think that doing so is even harder than enabling non-

programmers to model an own process or service composition, be-

cause developing full applications is simply complex as it require

a lot of programming knowledge to deal with data, application

and presentation issues

In parallel to Web 2.0 technologies evolution, the Web mashup

64 End-user Development & Mashups: State of the Art

[Yu et al., 2008a] phenomenon emerged, which provided easier

ways to glue these services and data together [Hartmann et al.,

2006] and claiming to enable also non-programmers to use and

mash pre-built components that provide an abstraction of com-

plex programming concepts. Before investigating further on mashups

and to set the context, lets just introduce the terminologies that

are mostly used. Typically the term mashup refers to those web

applications that, rather than being developed from scratch, are

developed using various available data, functionalities or user in-

terfaces over the Web. While, Mashup tools, provide development

and runtime environments for the composition and execution of

applications (i.e., mashup applications) to non-programmers to

enable them to create their own situational applications [Imran

et al., 2012].

Based on the Web 2.0 philosophy, a new type of mashup-based

approach emerged, which is known as Enterprise Mashups [Hoyer

et al., 2008]. As it is more adapted and evolved in large com-

panies where more rapid requirements require employees to be

dealt with more sophisticated information technologies. Within

an organization the key components of Enterprise Mashups in-

clude ”resources”, ”widgets” and ”mashups”, that deal with data

(i.e., actual content), application logic (i.e., implementing actual

business logic) and mashup application (i.e., assembling together

a collection of widgets) respectively. In [Abiteboul et al., 2008]

author introduces mashup concepts and present a mashup model

for syntactically composing mashups. In this model, a mashup is

defined as a network of mashlets. These mashlets are the main

mashup components and consist of a set of relations, e.g. internal

relations, I/O relations and web service relations. They can be

Mashups from an End-User Development Prospective 65

GUI-based and can be organized in a hierarchical way, i.e., com-

plex mashlets can contain simpler ones. In this model mashlets

are defined by means of rules that state which the input, the out-

put and the possible services calls are. The authors also explain

the necessity of allowing the user to query and update the data

dynamically in the mashup, as well as to add, update or remove

mashlets at run time.

As mashups aim to bring together the benefits of both sim-

plification and component reuse. We believe that, in order to

make application development from programmers-centric to end-

user centric, we need to achieve simplicity from both ends (i.e.,

from the technology as well as from end-user ends). While the

component-based reuse approach is certainly lowering part of the

complexity, developing an own application, however, also means

dealing with data integration, application logic, and content pre-

sentation issues, all aspects the common web user is not even

aware of. However, in the case of domain-specific mashup envi-

ronments, as also in our case, we aim to push simplification even

further compared to generic mashup platforms by limiting the

environment (and, hence, its expressive power) to the needs of a

single, well-defined domain only. Reuse is supported in the form

of reusable domain activities, which can be mashed up.

3.5.2 Tool-Assisted Mashup Development

In this section we present and review a number of representative

mashup tools, and evaluate them based on those main aspects we

consider fundamental for addressing real-life end-user needs. Of

the main assessment aspects, the support for the integration of

data, services and user interface is fundamental. This functional-

66 End-user Development & Mashups: State of the Art

Figure 3.1: Yahoo Pipes! Composition Editor showing a compistion pipe

ity is known as universal integration. Moreover, we also present

our analysis based on the requirements we gathered during our

domain analysis, those best suited for end-users, which are in-

tuitiveness of UI, modeling constructs, execution paradigm, and

data-mappings.

Yahoo Pipes!4 is a well-known mashup tool by Yahoo. It pro-

vides a number of built-in components and a visual composition

editor that allows to design data processing logics. The Yahoo

Pipes composition editor, which is shown in Figure 3.1, offers

a set of components and works in a drag-drop fashion, where a

user can drop, connect and configure components. Yahoo pipes

is quite an attractive with its composition environment, which

allows web users to make data centric compositions. The compo-

nents follow data-flow based approach, as each component waits

until data becomes available at its input port. The data-flow

based approach is more intuitive for an end-user as compared to

a control-flow approach as long as it stays trivial. As in case of

4http://pipes.yahoo.com

http://pipes.yahoo.com

Mashups from an End-User Development Prospective 67

Yahoo pipes, it mainly offers a very technical set of components

(i.e., modeling constructs) like loops, regular expression, URL

builder, RSS feeds etc. that makes composition task complex

for a non-technical users. A non-technical user by no means can

understand these components and consequently unable to make

compositions. Moreover, these programming-related components,

which require the basic expertise of programming concepts, may

have multiple input and configuration parameters through which

connection between two components take place. In essence, the

complex data mappings have to be performed to compose a valid

mashup. Moreover, Yahoo pipes does not support UI integration,

and support for service integration is still poor and is out of an

end-user technical reach.

Likewise, instead of domain-specific, the generic nature of the

components that Yahoo Pipes offers are only understandable by

programmers. However, we believe that a domain expert (i.e., a

non-IT user) is still not able to get fruitful results from this tool.

Because, one of the main reasons is that it restricts domain ex-

perts by not offering those domain constructs and terminologies

they are familiar with. It is almost as generic as only understand-

able by IT experts as it exposes programming notations.

Microsoft Popfly5 Among the other popular mashup-based tools,

Microsoft introduced Microsoft Popfly. This mashup tool targets

universal integration (i.e., data, application and UI). Of the other

tools (e.g., game creator, web creator) it offers mashup creator, a

tool that offers pre-built components and let users to mash them

together to make applications, but also in this case the end-users

were generally not able to develop real-life applications. Popfly

5http://www.popfly.ms

68 End-user Development & Mashups: State of the Art

has been discontinued from August 2009 onwards.

Intel Mash Maker [Ennals et al., 2007] provides a different

kind of mashup approach which mainly focuses on data (i.e., on-

line content) of a user’s interest. Intel mash maker is a Firefox

extension that runs on the client-side browser and adds a toolbar

to the browser with a set of buttons representing various func-

tionalities. It basically monitors the user’s behavior that checks

what information a user visit or is interested in and automatically

builds a mashup application that could be of interest to the user,

even when the user was not aiming at building a mashup applica-

tion. The tool mainly extracts relevant data from Web pages but

does not provide any data integration functionality. Moreover,

no UI or data presentation features are provided, likewise it does

not allow service composition. The proper use of the tool, espe-

cially use of the advanced features, requires programming skills

that non-technical end-users lack.

mashArt Among the academic projects a noticeable example is

mashArt [Daniel et al., 2009c] project. The tool mainly aimed at

a universal integration approach for UI components and end-user

centric development. Aiming at these objectives, mashArt comes

with models and languages able to accommodate all the three

types of needed components (i.e., data, services and UIs) and with

a simple web-based editor and an integrated lightweight runtime

environment (allowing for instantaneous previewing) targeted at

non IT-expert skilled web users. Although mashArt achieved uni-

versal integration, yet it is not able to effectively target end-users.

The tool does not solve the problem of complex data mappings,

and also mainly the components that mashArt provides are of

generic types.

Mashups from an End-User Development Prospective 69

JackBe Presto JackBe Presto6 is one of the popular commer-

cial products. The Presto suite is constituted by several distinct

tools. One constitutes the composition development environment,

Presto Wires, which adopts a Pipes-like approach for mashing up

data from enterprise internal and external sources. It also allows

a portal-like aggregation of UI widgets (so-called mashlets devel-

oped through the Presto Mashlet tool) visualizing the output of

such mashups on a dashboard. Each mashlet is independent from

the others, thus, and the synchronization at presentation level is

limited. This enterprise solution focuses on integrating enterprise

internal or external data and on visualizing them in the form of

widgets. The portal-like approach, in general, provides a satisfy-

ing level of usability for end-users. However, universal integration

is not actually achieved.

Taverna is a mashup like application, which allows the integra-

tion of the existing data sources (i.e, molecular biology sources)

available on the Web [Hull et al., 2006; Sroka et al., 2010]. The

tool allows users to design, execute and share workflows made-up

using web services in the domain of molecular biology and bio-

informatics. Components can be added and connected visually in

a drag drop way and different kinds of services can be added to

the service panel of the tool. Because mashups are intended to

integrate data from one or more sources, the previous version of

Taverna [Hull et al., 2006] cannot be considered as a mashup tool,

since it only focused on the integration of services, but the current

version, named Taverna 2 [Sroka et al., 2010], provides support for

data streaming through pipelining and so data-driven workflow

computation can be performed. Despite many claims, although

6http://www.jackbe.com

70 End-user Development & Mashups: State of the Art

the tool focuses on a particular domain, even then it is not suit-

able for the non-technical users because of its complexities related

to the web service usage, and complex data mapping etc.

Similarly, the CRUISe project [Pietschmann et al., 2009] specif-

ically focuses on composability and context-aware presentation of

UIs, but does not support the seamless integration of UI compo-

nents with web services.The ServFace project 7, instead, aims

to support normal web users in composing semantically annotated

web services. The result is a simple, user-driven web service or-

chestration tool, but UI integration and process logic definitions

are rather limited and again basic programming knowledge is still

required.

Although a number of other mashup-related tools and plat-

forms exist (e.g., Deri Pipes8, , Dapper9, to name a few), they

all show similar limitations as of the others presented solutions

(i.e., lack of universal integration support and/or simplicity of use

for non-technical users, complex data mappings and so on). Our

analysis on current the mashup initiatives highlights that none of

the proposed solutions is able to successfully empower end-users

to develop the applications actually supporting their daily activ-

ities. This is mainly due to the fact that, although through in-

tuitive visual metaphors, most of them still expose programming

concepts which, according to [Angeli et al., 2010], have semantics

that end-users do not understand and do not want to learn. In

the following section we summarize and present of analysis of all

of these directions.

7http://www.servface.eu
8http://pipes.deri.org/
9http://dapper.net/

http://www.servface.eu
 http://pipes.deri.org/
http://dapper.net/

Analysis and Discussion 71

3.6 Analysis and Discussion

End user development comprises several alternative approaches,

spanning from mashup development, to software configuration, to

simple programming tasks. These approaches are often authen-

tic, but sometimes they can be combined together to exploit the

respective strength points. For instance, while users are getting

more and more used to configure applications, also thanks to the

pervasiveness of mobile and gaming software, mashup platforms

for the development of simple Web applications are also gaining

popularity.

Yet, mashups were actually born as a hacking phenomenon,

where very expert developers build applications by integrating

reusable content and functionality sourced from the Web, for in-

stance, see programmableweb10, and despite the numerous at-

tempts mashup development is still for skilled programmers only.

For instance, a very popular mashup tool Yahoo Pipes! (as men-

tioned in the previous section) provides a mashup environment

with a variety of components. These components wrapped very

generic programming features thus providing a set of high-level

functionalities such as loops, if-conditions, parameter passing,

web-service binding etc. These high-level functionalities neither

understandable by end-users nor used in their daily life applica-

tion development purposes.

Actually, mashup tools initially targeting end-users slowly moved

towards the expert user, then to the developer, and finally to the

expert developer. To this end, in fact, both model-driven web

engineering [Ceri et al., 2003] and mashup development [Daniel

10www.programmableweb.com

72 End-user Development & Mashups: State of the Art

et al., 2009a] has shown that there are basically only two users

classes in the real world. The first class represents developers ,

who want to see the source code and to write imperative code

by their own. These users do not trust model-driven approaches,

because they feel this can reduce their freedom in application de-

velopment. The second class represents non-developers , who

want to ignore all the technical issues and have simple, possibly

visual or parameter-based configuration environments for setting

up their applications.

A possible stratification of users into ”developer” class could

be expert users, entry-level developers, developer/designer that

can be theoretically defined does actually not exist. Recognizing

the distinction of only two major user classes, empowering non-

developers become more focused and challenging, yet non-trivial.

As presented in this chapter that many approaches have been pro-

posed to help these users develop their own applications, and we

see largely they failed to do so. Among the reasons non-technical

users found these enabling solutions difficult for their practical

use is the language they speak, which is what constructs, con-

cepts, modeling paradigm they use, is not understandable by the

users. To provide non-developers, which is our target user class,

an end-user development platform whose main theme to speak

the language of a user. That means, we present a domain-specific

approach that leverage mashup strengths to offer an intuitive,

easy-to-use yet flexible end-user development platform that would

ultimately speak a user’s language by incorporating domain con-

cepts, terminologies, rules, and syntax a user is familiar with.

Chapter 4

Research Evaluation Example

Scenarios & Requirements

Understanding

4.1 Overview

To obtain important conceptual as well as those low level de-

tails of a domain that can never be considered and incorporate

without thorough analysis, we first present a few real evalua-

tion procedures related to the domain of research evaluation. For

our selected domain, we asked and gather different evaluation

procedures from different domain-experts working in different de-

partments in our and other Universities. The domain-experts

who perform or were involved in these evaluation tasks include

professors, PostDoc, administrative personnel and also PhD stu-

dents. They were involved in some kind of research evaluation

tasks ranging from simple tasks to complex ones. The obtained

procedures helped us to examine the domain thoroughly and so

to extract domain as well as users’ requirements. In the follow-

ing sections we state these evaluation procedures , their relevant

74 Research Evaluation Example Scenarios & Requirements Understanding

details to better understand the problems, requirements, and as-

sociated important concepts. In the end we also present a set of

general requirements those extracted from the analysis of all the

procedures.

4.2 University of Trento Department Evalua-

tion Procedure

As an example of a domain-specific application scenario, let us de-

scribe the evaluation procedure used by the central administration

of the University of Trento (UniTN) for checking the productivity

of each researcher who belongs to a particular department. The

evaluation is used to allocate resources and research funds to the

university departments. In essence, the algorithm compares the

quality of the scientific production of each researcher in a given

department of UniTN with respect to the average quality of re-

searchers belonging to similar departments (i.e., departments in

the same disciplinary sector) in all Italian universities. Impact

measure of each researcher then collectively contributed to their

particular department. The comparison uses the following proce-

dure based on one simple bibliometric indicator, i.e., a weighted

publication count metric.

1. A list of all researchers working in the selected department

as well as in the Italian universities is retrieved from a na-

tional registry, and a reference sample of faculty members

with similar statistical features (e.g., belonging to the same

disciplinary sector) of the evaluated department is compiled.

University of Trento Department Evaluation Procedure 75

2. Publications for each researcher of the selected department

and for all Italian researchers in the selected sample are ex-

tracted from an agreed-on data source (e.g., Microsoft Aca-

demic, Scopus, DBLP, etc.).

3. The publication list obtained in the previous step is then

weighted using a venue classification. That is, the publica-

tions are classified by an internal committee in three cate-

gories, which represent quality of a particular venue, mainly

based on ISI Journal Impact Factor: A/1.0 (top), B/0.6 (av-

erage), C/0.3 (low). For each researcher a single weighted

publication count parameter is thus obtained with a weighted

sum of his/her publications.

4. The statistical distribution – more specifically, a negative bi-

nomial distribution – of the weighted publication count met-

ric is then computed out of the Italian researchers’ reference

sample.

5. Each researcher in the selected department is then ranked

based on his/her weighted publication count by comparing

this value with the statistical distribution. That is, for each

researcher the respective percentile (e.g., top 10%) in the

distribution of the researchers in the same disciplinary sector

is computed.

In Figure 4.1 we illustrate the steps a user has to perform to

complete the described evaluation task. As it is shown in the

Figure (step-1), the process starts from fetching researchers from

UniTN local repository, and then also fetching list of all the re-

searchers those belong to all Italian universities from a national

76 Research Evaluation Example Scenarios & Requirements Understanding

Italian
Universities
Database

UniTN
Local

Database

Venue
Classification

List of researchers

Publication
Data Source

Venue
Classes

Negative binomial
distribution

Ranking

List of publications

Publications with
venues

1: user retrieves researchers
both from local and national

databases
2: fetching publications for the

retrieved researchers

3: annotating retrieved publications
with the venues information

4: performing set of manipulations
computations of the data

Figure 4.1: University of Trento department evaluation procedure, depicting

steps a user performs manually

repository (i.e., a web site, which provides data in excel format)

those belong to the same discipline as of the UniTN discipline.

In step 2, user has to retrieve publications from a data source

for both UniTN and Italian researchers, a task that is beyond an

effort a human can perform. Next, these publications must be

annotated with the venue classification defined by the University

management. That means, each publication is assigned a weight

depending what venue it belongs to. These annotated publica-

tions are then used to compute the statistical distribution (i.e.,

negative binomial distribution) and then ranked based on the per-

centile accordingly. Finally, the results have to be presented in

some visual format (e.g., charts, graphs etc.).

The percentile for each researcher in the selected department

is considered as an estimation of the publishing profile of that

researcher and is used for comparison with other researchers in the

Italian Professorship Selection Scenario 77

same department. As one can notice, plenty of effort is required

to compute the performance of each researcher, which is currently

mainly done manually. Fervid discussion on the suitability of the

selected criteria often arises, as people would like to understand

how the results would differ changing the publications ranking,

the source of the bibliometric information, or the criteria of the

reference sample. Indeed all these factors have a big impact on the

final result and have been locally at the center of a heated debate.

Many researchers would like to use different metrics, like citation-

based metrics (e.g., h-index). Yet, computing different metrics

and variations thereof is a complex task that costs considerable

human resources and time and thus beyond human capacity.

4.3 Italian Professorship Selection Scenario

This section presents an evaluation procedure, which was adopted

by the National Agency for the Evaluation of Universities and

Research Institutes (ANVUR) in 2012 for hiring and promoting

professors. The actual procedure is written in Italian language,

however, in following we present the English translation.

According to the original evaluation procedure document, it

states that based on the regulations for national scientific quali-

fication establish that some of the indicators/indexes, when used

for candidates for the national scientific qualification, should be

normalized according to the academic age (i.e., the number of

years starting from the first publication of a researcher) of the

candidate. The normalization criteria varies based on a particu-

lar type of research output. In following we describe the normal-

ization procedure in detail.

78 Research Evaluation Example Scenarios & Requirements Understanding

1. The number of articles in magazines/journals present in the

major international databases and published in the consecu-

tive 10 years previous to the date of publication of the decree

(i.e., another regulation), normalization must be performed

only if academic age is < 10 years, and will be performed

multiplying number of articles by 10, and dividing by aca-

demic age.

2. The total number of received citations related to the whole

scientific production, normalization should be performed di-

viding the number of citations by academic age.

3. The number of books with ISBN published in the consecutive

10 years previous to the date of publication of the decree,

the normalization must be done only if academic age is <10

years, and is performed multiplying the number of articles

by 10, and dividing by the academic age.

4. The articles in magazines/journal and chapters in books with

ISBN published in the consecutive 10 years previous to the

date of publication of the decree, only if academic age is <10

years, normalization is done multiplying number of articles

in magazines and chapters of books by 10 and dividing by

the academic age.

5. The number of articles in magazines/journals that belong to

”class A” published in the consecutive 10 years previous to

the date of publication of the decree, normalization must be

done only if academic age is <10 years, and will be performed

multiplying the number of articles by 10, and dividing by the

academic age.

Analysis and Domain-Specific Requirements 79

In addition to the normalizations that described above, the

procedure also uses a customized version of the h-index. The

customized version is called contemporary h-index. The ch-index

is different from the h−index, that is, it uses normalized citations

of the normalized papers those selected for evaluation. The ch-

index is defined using following formula.

S(i, t) = 4
(t−t1+1)C(i, t) for t ≥ t1

where the value of C(i, t) is the number of citations observed in

the database at time t for i-th article. t1 is the year of publication

of the article. Thus S(i, t) is the value of citation indicator for

the i-th article at time t.

The normalized results of all the indicators are then used to

compare the threshold values that ANVUR has selected as the re-

search quality threshold for a specific research area. The intention

is that a candidate performing well above the defined thresholds

will then be considered for hiring or promotion.

4.4 Analysis and Domain-Specific Requirements

If we carefully look at the described scenarios, we see that these

are all of domain-specific type, i.e., these are entirely based on

concepts that are typical of the research evaluation domain. For

instance, the described evaluation procedures process domain ob-

jects (researchers, publications, metrics, and so on), use domain-

specific computation logic, specific data sources (i.e., localized

venue classification), customized evaluation metrics (i.e., ch-index),

and likewise these procedures use a set of domain-specific normal-

ization rules. Despite many research evaluation approaches and

tools those are made for evaluation purposes, as presented in the

80 Research Evaluation Example Scenarios & Requirements Understanding

chapter 2, could hardly anticipate these domain-specific require-

ments thus resultantly failed to facilitate end-users.

For example, the requirement we extract from these scenarios

are that we need to empower people involved in the evaluation

process (i.e., non-programmers, the average faculty member or

the administrative persons in charge of it) so that they can be

able to define and compose relatively complex evaluation pro-

cesses, taking and processing data in various ways from different

sources, and visually analyze the results. A tool having such pro-

visions should allow to extract, combine, and process data and

services from multiple sources, and to integrate these ingredients

as user-defined way, finally representing the information in visual

components. These are all the characteristics that a mashup can

have, especially if the mashup logic comes from the users.

In order to enable the development of an application for the

described evaluation procedures, there is no need for a composi-

tion or a mashup environment that supports as many composition

technologies or options as possible. The intuition we elaborate is

that, instead, a much more limited environment that supports

exactly the basic tasks described in the scenarios (e.g., fetch the

set of Italian researchers) and allows its users to mash them up

in an as easy as possible way (e.g., without having to care about

how to transfer data between components) will be more effective.

However, to this end, the challenge lies in finding the right trade-

off between flexibility and simplicity. The former, for example,

pushes toward a large number of basic components, the latter to-

wards a small number of components. As we will see, it is the

nature of the specific domain that tells us where to stop.

To convey better understandings, in the following sections, we

Analysis and Domain-Specific Requirements 81

will therefore show how the development of a mashup tool that

capable to run these example scenarios can be aided by being

domain-specific. Moreover, based on the type of people involved

who perform these evaluation tasks, we learned a number of re-

quirements that we present in following. Turning the previous

consideration into practice, the development of this tool will be

driven by the following key principles:

4.4.1 End-user centric requirements

1. Intuitive user interface Enabling domain experts to de-

velop their own research evaluation metrics, i.e., mashups,

requires an intuitive and easy-to-use user interface (UI) both

in terms of a tool’s overall user experience as well as the

modeling metaphors used for building mashups based com-

positions. For example, starting from the very first step, that

is when users choose some components, those themselves be

visually understandable for the users.

2. Intuitive modeling constructs Next to the look and feel

of the platform, it is important that the functionalities pro-

vided through the platform (i.e., the building blocks in the

composition design environment) resemble the common prac-

tice of the domain. For instance, we need to be able to com-

pute metrics, to group people and publications, and so on.

3. No data mapping Our experience with prior mashup plat-

forms, i.e., mashArt [Daniel et al., 2009b] and MarcoFlow

[Daniel et al., 2010], has shown that data mappings are one

of the least intuitive tasks in composition environments and

that non-programmers are typically not able to correctly

82 Research Evaluation Example Scenarios & Requirements Understanding

specify them. We therefore aim to develop a mashup plat-

form that is able to work without the definition of data map-

pings.

4. Intuitive execution paradigm When it comes to the ques-

tion about how mashup tools, during run-time, exchange and

flow data between components, end-users feel unattended

about what is happening behind the scene. However, we

aim to follow a data flow paradigm that end-users are famil-

iar with in their daily life work. Moreover, we aim to reflect

the execution states so that they become aware of what is

being processed and how.

The state of the art analysis about end-user development and

mashup presented in the chapter 3 show that service composi-

tion, business process management (BPM), and mashup tools fail

in providing end-users with intelligible concepts and constructs.

That is because of various reasons like, complex user-experience,

complex modeling constructs (i.e., components), complex data

mappings and so on. Moreover, we will see that the naive ap-

proach of simply equipping a mashup tool with a set of domain-

specific components is not enough, in order to obtain a tool that

can be called domain-specific and that can be amenable to end-

users require a comprehensive analysis of domains to be consid-

ered along with a proper methodology that we present in the next

chapter.

Chapter 5

End-User Oriented Mashup

Platform Development

Methodology

5.1 Overview

In the previous chapter, we presented a few real research evalua-

tion scenarios, their analysis and the requirements that must be

addressed for the practical success of a mashup tool. In chapter

3, we presented in detail various aspects related to the mashups

and end-user development. We reported on the well-known ap-

proaches and also analyzed that these approaches, to a large ex-

tent, failed to facilitate end-users for their daily life development

needs. We mainly identified that the generic nature of these ap-

proaches restricted end-users to comfortably adapt them. The

reason behind is the interaction gap between the two sides (i.e.,

the end-user and technology). An end-user (i.e., a domain expert)

lives and knows better within his domain of expertise, whereas,

demands for more technical interaction kept increasing that cer-

tainly keeping apart both ends.

84 End-User Oriented Mashup Platform Development Methodology

However, in this chapter we present our proposed methodol-

ogy for the development of mashup based tools that can lower the

barriers for end-users by providing them a tool that speaks their

language. For this reason, throughout this chapter we show how

we have developed a mashup platform for our reference domain, in

order to illustrate how its development can tackle the challenges

systematically mentioned in the previous chapters. The develop-

ment of the platform has allowed us to conceptualize the necessary

tasks and ingredients and to structure them into a methodology

for the development of domain-specific mashup platforms. The

methodology encodes a top-down approach, which starts from the

analysis of the target domain and ends with the implementation

of the specifically tailored mashup platform. In the next section,

we first start from the essential concepts and definitions which are

required to be defined before we proceed to the domain analysis

step.

5.2 Concepts & Definitions

Before going into the details, we introduce the necessary concepts.

First of all, leveraging from the interpretation of web mashups [Yu

et al., 2008a]:

Definition A web mashup (or mashup) is a web application

that integrates data, application logic, and/or user interfaces (UIs)

sourced from the Web. Typically, a mashup integrates and orches-

trates two or more elements.

Most of the scenarios mentioned in chapter 4 require all three

ingredients listed in the definition: we need to fetch researchers

Concepts & Definitions 85

and publication information from various Web-accessible sources

(the data); we need to compute indicators and rankings (the ap-

plication logic); and we need to render the output to the user

for inspection (the UI). We generically refer to the services or

applications implementing these features as components. Com-

ponents must be put into communication, in order to support the

described evaluation algorithm.

Simplifying this task by tailoring a mashup tool to the specific

domain of research evaluation first of all requires understanding

what a domain is. We define a domain and, then, a domain-

specific mashup as follows:

Definition A domain is a delimited sphere of concepts and pro-

cesses; domain concepts consist of data and relationships; domain

processes operate on domain concepts and are either atomic (ac-

tivities) or composite (processes integrating multiple activities),

defined according to domain rules.

Definition A domain-specific mashup is a mashup that de-

scribes a composite domain process that manipulates domain con-

cepts via domain activities and processes following domain rules.

It is specified in a domain-specific, graphical modeling notation.

A domain-specific mashup is therefore a web mashup spec-

ified with a domain-specific model. The domain defines the ”uni-

verse” in the context of which we can define domain-specific mashups.

It defines the information that is processed by the mashup, both

conceptually and in terms of concrete data types (e.g., XML

schemas). It defines the classes of components that can be part of

the process and how they can be combined, as well as a notation

86 End-User Oriented Mashup Platform Development Methodology

that carries meaning in the domain (such as specific graphical

symbols for components of different classes).

As we will see later in detail, every mashup can only use com-

ponents that conform to the domain process model and that ex-

change data which belongs to the conceptual model. This means

that each component can send or receive data based on the enti-

ties or relationships of the conceptual model. Finally, the domain

defines rules that represent invariants to be met by each mashups.

It has a static part, which describes the concepts that are proper

of the domain, and a dynamic part, which describes the modifica-

tions the concepts may be subject to. For instance, in our refer-

ence scenario, concepts include publications, researchers, metrics,

etc. The process models define classes of components such as data

extraction from digital libraries, metric computation, or filtering

and aggregation components. A domain rule could, for instance,

disallow the use of a specific information source for the computa-

tion of a given metric. These domain restrictions and the exposed

domain concepts at the mashup modeling level is what enables

simplification of the language and its usage.

Generic mashup tools are neither aware of these concepts, nor

of these operations. Given Definition 5.2 we can therefore say that

our reference scenarios ask for a mashup that is specific to the

domain of research evaluation, i.e., it asks for a domain-specific

mashup. So following this we can define a domain-specific mashup

tool as:

Definition A domain-specific mashup tool (DMT) is a de-

velopment and execution environment that enables domain ex-

perts, i.e., the actors operating in the domain, to develop and

execute domain-specific mashups via a syntax that exposes all

Challenges and problems 87

features of the domain.

A DMT is initially ”empty”. It then gets populated with spe-

cific components that provide functionality needed to implement

mashup behaviors. For example, software developers (not end-

users) will define libraries of components for research evaluation,

such as components to extract data from Google Scholar, or to

compute the h-index, or to group researchers based on their insti-

tution, or to visualize results in different ways. Because all com-

ponents fit in the classes and interact based on a common data

model, it becomes easier to combine them and to define mashups,

as the DMT knows what can be combined and can guide the user

in matching components. The domain model can be arbitrarily

extended, though the caveat here is that a domain model that is

too rich can become difficult for software developers to follow.

5.3 Challenges and problems

Given these definitions, the problem we solve is that of providing

the necessary concepts and a methodology for the development of

domain-specific mashup models and DMTs. The problem is nei-

ther simple nor of immediate solution. While domain modeling

is a common task in software engineering, its application to the

development of mashup platforms is not trivial. For instance, we

must precisely understand which domain properties are needed

to exhaustively cover all those domain aspects that are necessary

to tailor a mashup platform to a specific domain, which property

comes into play in which step of the development of the plat-

form, how domain aspects are materialized (e.g., visualized) in

the mashup platform, and so on.

88 End-User Oriented Mashup Platform Development Methodology

The DMT idea is heavily grounded on a rich corpus of research

in Human-Computer Interaction (HCI), demonstrating that con-

sideration of user knowledge and prior experience are required to

create truly usable and inclusive products, and are key consider-

ations in the performance of usability evaluations [Nielsen, 1993].

The prior experience of products is important to their usability,

and the transfer of previous experience depends upon the nature

of prior and subsequent experience of similar tasks [Thomas and

van-Leeuwen, 1999]. Familiarity of the interface design, its inter-

action style, or the metaphor it conforms to if it possesses one,

are key features for successful and intuitive interaction [Okeye,

1998].

More familiar interfaces, or interface features, allow for eas-

ier information processing in terms of user capability, and the

subsequent human responses can be performed at an automatic

and subconscious level. [Karlsson and Wikstrom, 2006] identified

that the use of semantics could be an effective tool for enhancing

product design and use, particularly for novel users, as they can

indicate how the product or interface will behave and how inter-

action is likely to occur. Similarly, [Monk, 1998] stressed that to

be usable and accessible, interfaces need to be easily understood

and learned, and in the process, must cause minimal cognitive

load. Effective interaction consists of users understanding poten-

tial actions, the execution of specific action, and the perception

of the effects of that action.

As we cannot exploit the users’ technical expertise, we pro-

pose here to exploit their knowledge of the task domain. In other

words, we intend to transform mashups from technical tools built

around a computing metaphor to true cognitive artifacts [Nor-

Methodology 89

man, 1991], capable to operate upon familiar information in order

to ”serve a representational function that affect human cognitive

performance.”

5.4 Methodology

In order to develop a DMT, we have to look into the details

of three incremental aspects, i.e., the domain concepts, the do-

main processes, and the implementation of the DMT. In following

we state and define all the ingredients for developing a domain-

specific mashup platform. Specifically, developing a domain-specific

mashup platform requires:

1. Definition of a domain concept model (DCM) to express do-

main data and relationships. The concepts are the core of

each domain. They drive the implementation of the DMT

and of its data types and components. It is therefore cru-

cial to precisely delimit the concepts that characterize the

domain, in order to instruct the tool how to use them and

to develop components that understand them. The speci-

fication of domain concepts allows the mashup platform to

understand what kind of data objects it must support. This

is different from generic mashup platforms, which provide

support for generic data formats, not specific objects.

2. Identification of a generic mashup meta-model1 (MM) that

suits the composition needs of the domain and the selected

scenarios. A variety of different mashup approaches, i.e.,

1We use the term meta-model to describe the constructs (and the relationships among

them) that rule the design of mashup models. With the term instance we refer to the actual

mashup application that can be operated by the user.

90 End-User Oriented Mashup Platform Development Methodology

meta-models, have emerged over the last years, e.g., ranging

from data mashups, over user interface mashups to process

mashups. Before thinking about domain-specific features, it

is important to identify a meta-model that is able to accom-

modate the domain processes to be mashed up.

3. Definition of a domain-specific mashup meta-model. Given

a generic MM, the next step is understanding how to inject

the domain into it so that all features of the domain can

be communicated to the developer. We approach this by

specifying and developing:

(a) A domain process model (PM) that expresses classes of

domain activities and, possibly, ready processes. Do-

main activities and processes represent the dynamic as-

pect of the domain. They operate on and manipulate

the domain concepts. Injecting the domain into the

tool means introducing domain-specific extensions into

the mashup meta-model, e.g., to take into account the

nature of domain activities. The activities that can

be composed in order to form new processes indicate

which mashup components in terms of data, application

logic, and UI components are needed to implement the

domain-specific mashups. In the context of mashups, we

can map activities and processes to reusable components

of the platform.

(b) A Domain rule model that may constrain the use of pro-

cesses or activities, in order to guarantee the correct use

of concepts and components in the tool. We specify do-

main rules in a domain rule model.

Methodology 91

(c) A domain syntax that provides each concept in the domain-

specific mashup meta-model (the union of MM and PM)

with its own symbol. The claim here is that just catering

for domain-specific activities or processes is not enough,

if these are not accompanied with visual metaphors that

the domain expert is acquainted with and that visually

convey the respective functionalities.

(d) A set of instances of domain-specific components. This

is the step in which the reusable domain-knowledge is

encoded, in order to enable domain experts to mash it

up into new applications.

4. Implementation of the DMT as a tool whose expressive power

is that of the domain-specific mashup meta-model and that

is able to host and integrate the domain-specific activities

and processes.

(a) DMT. The DMT must support all features that are spec-

ified in both the domain-specific mashup meta-model

and the domain concept model. Specifically, the ex-

tended mashup meta-model determines the expressive

power of the DMT.

(b) Components. The components instantiate the concepts

in the domain-specific meta-model extension and imple-

ment the domain activities identified in step 3(d).

The above steps mostly focus on the design of a domain-

specific mashup platform. Since domains, however, typically evolve

over time, in a concrete deployment it might be necessary to pe-

riodically update domain models, components, and the platform

92 End-User Oriented Mashup Platform Development Methodology

implementation (that is, iterating over the above design steps),

in order to take into account changing requirements or practices.

The better the analysis and design of the domain in the first place,

the less modifications will be required in the subsequent evolu-

tion steps, e.g., limiting evolution to the implementation of new

components only.

In the next subsections, we expand each of the above design

steps starting from the domain concept model.

5.5 The Domain Concept Model

It is important to precisely delimit the concepts that characterize

the domain, in order to instruct the tool how to use them and to

develop components that understand them. We specify domain

knowledge in the form of a domain concept model. The domain

concept model is constructed by the IT experts via verbal in-

teraction with the domain experts or via behavioral observation

of the experts performing their daily activities and performing a

suitable task-analysis. The heart of each domain is represented

by the information items each expert of that domain knows and

understands.

The concept model represents the information experts know,

understand, and use in their work. Modeling this kind of in-

formation requires understanding the fundamental information

items and how they relate to each other, eventually producing a

model that represents the knowledge base that is shared among

the experts of the domain. In domain-specific mashups, the con-

cept model has three kinds of stakeholders (and usages), and

understanding this helps us to define how the domain should be

The Domain Concept Model 93

represented.

• The first stakeholders are the mashup modelers (domain ex-

perts), i.e., the end-users that will develop different mashups

from existing components. For them it is important that

the concept model is easy to understand, and an entity-

relationship diagram (possibly with a description) is a com-

monly adopted technique to communicate conceptual mod-

els.

• The second kind of stakeholders are the developers of compo-

nents, which are programmers. They need to be aware of the

data format in which entities and relationships can be repre-

sented, e.g., in terms of XML schemas, in order to implement

components that can interoperate with other components of

the domain.

• The third stakeholder is the DMT itself, which enforces com-

pliance of data exchanges with the concept model.

Therefore:

Definition The domain concept model (DCM) describes

the conceptual entities and the relationships among them, which,

together, constitute the domain knowledge.

A DCM is an example of data that is used to be as input to

or output from a mashup component. Modeling DCM is also

an attempt to separate out what doesn’t vary much from what

does in a particular domain. These first-class concept types are

constrained by the domain rules.

We express the domain-model as a conventional entity-relationship

diagram. It also includes a representation of the entities as XML

94 End-User Oriented Mashup Platform Development Methodology

PublicationPublisher

ResearcherInstitution Metric

Venue

Source Journal Conference

Name
Address

Name
Address

FirstName
LastName
Title

Title
PublicationDate
Keywords

Name
Value

Name
URL

Name
StartDate
EndDate
City
Country

written by
0..N

1..N

belongs to

1..N0..N

published by

1..N1..1

published in

1..10..N

cites

0..N

0..N

...

Figure 5.1: Domain concept model, covering main concepts required for the

referenced research evaluation scenarios

schemas. For instance, in Figure 5.1 we put only main concepts

we could identify in our reference scenarios into a DCM, detailing

entities, attributes, and relationships. The core element in the

evaluation of scientific production and quality is the publication,

which is typically published in the context of a specific venue,

e.g., a conference or journal, by a publisher. It is written by one

or more researchers belonging to an institution. Increasingly –

with the growing importance of the Internet as an information

source for research evaluation – also the source (e.g., Scopus, the

ACM digital library or Microsoft Academic) from which publica-

tions are accessed is gaining importance, as each of them typically

provides only a partial view on the scientific production of a re-

searcher and, hence, the choice of the source will affect the evalu-

ation result. The actual evaluation is represented in the model by

the metric entity, which can be computed over any of the other

The Generic Mashup Meta-Model 95

entities.

In order to develop a DMT, the ER (Entity-Relationship)

model has to be generated through several interactions between

the domain expert and the IT expert, who has knowledge of con-

ceptual modeling. The IT expert also generates the XML schemas

corresponding to the ER model, which are the actual artifacts

processed by the DMT.

In fact, although the ER model is part of the concept model,

it is never processed itself by the DMT. It rather serves as a

reference for any user of the platform to inform them on the

concepts supported by it. In principle, other formalisms can be

adopted (such as UML Class diagrams). We notice that each

concept model implicitly includes the concept of grouping the

entities in arbitrary ways, so groups are also an implicitly defined

entity.

5.6 The Generic Mashup Meta-Model

When discussing the domain concept model we made the implicit

choice to start from generic (i.e., domain-independent) models

like Entity-Relationship diagrams and XML, as these are well es-

tablished data modeling and type specification languages amenable

to humans and machines. For end-user development of mashups,

the choice is less obvious since it is not easy to identify a mod-

eling formalism that is amenable to defining end-user mashups

(which is why we endeavor to define a domain-specific mashup

approach). If we take existing mashup models and simply inject

specific data types in the system, we are not likely to be success-

ful in reducing the complexity level. However, the availability of

96 End-User Oriented Mashup Platform Development Methodology

the DCM makes it possible to derive a different kind of mashup

modeling formalism, as discussed next.

To define the type of mashups and, hence, the modeling for-

malism that is required, it is necessary to model which features

(in terms of software capabilities) the mashups should be able to

support. Mashups are particular types of web applications. They

are component-based, may integrate a variety of services, data

sources, and UIs. They may need an own layout for placing com-

ponents, require control flows or data flows, ask for the synchro-

nization of UIs and the orchestration of services, allow concurrent

access or not, and so on. Which exact features a mashup type

supports are described by its mashup meta-model.

Besides specifying a type or class of mashups, the mashup

meta-model (MM) specifies how to draw the actual mashup (pro-

cess) models. In the following, we first define a generic mashup

meta-model, which may fit a variety of different domains, then

we show how to define the domain-specific mashup meta-model,

which will allow us to draw domain-specific mashup models.

Definition The generic mashup meta-model (MM) speci-

fies a class of mashups and, thereby, the expressive power, i.e.,

the concepts and composition paradigms, the mashup platform

must know in order to support the development of that class of

mashups.

The MM therefore implicitly specifies the expressive power

of the mashup platform. Identifying the right features of the

mashups that fit a given domain is therefore crucial. For in-

stance, our research evaluation scenario asks for the capability to

integrate data sources (to access publications and researchers via

The Generic Mashup Meta-Model 97

Component Configuration port

Output Port

Input portView port

Information
Source

Information
Processor

Information
Sink

Rule

Mashup

Layout

Connector

Data Type

1

1..N

has target

0..N

has source1

has output

1

1..N

1 has input

1..N

Data Type
Dependency

Component
Compatibility

Component
Order

is displayed in
1

1
is displayed in

0..N

1

has type

1..N

1

compiles with
0..N

1..N

Data Type
Inclusion

Domain-Specific
Rule

Parameter

has ouput
1

has1 1

0..N

1

0..N

0..N

1..N

1..N

1..N

Figure 5.2: Mashup Meta-model supporting, domain-specific concepts, pro-

cesses, rules, and universal integration

the Web), web services (to compute metrics and perform trans-

formations), and UIs (to render the output of the assessment).

We call this capability universal integration. Next, the scenario

asks for data processing capabilities that are similar to what we

know from Yahoo! Pipes, i.e., data flows. It requires dedicated

software components that implement the basic activities in the

scenario, e.g., compute the impact of a researcher (the sum of

his/her publications weighted by the venue ranking), compute

the percentile of the researcher inside the national sample (pro-

ducing outputs like ”top 10%”), or plot the department ranking

in a bar chart. Figure 5.2 depicts our mashup meta-model that

supports the universal integration and also enforce various rules

that of a domain-specific type or a of generic nature. In following

we describe the details of the proposed mashup meta-model.

5.6.1 The mashup meta-model

We start from a very simple MM, both in terms of notation

and execution semantics, which enables end-users to model own

98 End-User Oriented Mashup Platform Development Methodology

mashups.

1. As shown in the Figure 5.2, a mashup m = 〈C,P,R, V P, L〉,
defined according to the meta-model MM, consists of a set of

components C, a set of connectors (i.e., data pipes) P , a set

of rules R, a set of view ports V P that can host and render

components with own UI, and a layout L that specifies the

graphical arrangement of components.

A mashup compiles with a set of rules. These rules can be

of various types, for example, data type inclusion: validates

when a new data type introduced to the mashup; data type

dependency confirms inheritance of those data types that are

already exist;component compatibility validates components

compatibility upon connecting two components. Sometimes

two components seem compatible to each other even then

their ordering (i.e., the position of a component in a mashup)

could make problems. So component order checks for right

ordering. Finally, there could be many domain-specific rules

that a mashup must consider. The detail of domain-specific

rules are given later in this chapter.

2. A component c = 〈IPT,OPT,CPT, type, desc〉, where c ∈
C, is like a task that performs some data, application, or UI

action.

Components have ports through which pipes are connected.

Ports can be divided in input (IPT) and output ports (OPT),

where input ports carry data into the component, while out-

put ports carry data generated (or handed over) by the com-

ponent. Each component must have at least either an input

or an output port. Both IPTs and OPTs can have parameters

The Generic Mashup Meta-Model 99

of specific data types. The data types include both primitive

and domain-specific types once the MM gets extended for a

domain.

Configuration ports (CPT) are used to configure the compo-

nents. They are typically used to configure filters (defining

the filter conditions) or to define the nature of a query on

a data source. The configuration data can be a constant

(e.g., a parameter defined by the end-user) or can arrive in a

pipe from another component. Conceptually, constant con-

figurations are as if they come from a component feeding a

constant value.

A component can be of type information source, information

processor, or information sink. Components with no input

ports are called information sources and work as data source

by supplying data to other components. Components with

no output ports are called information sinks. All UI com-

ponents are always of information sink type. They do not

perform business logic on the consumed data, but to visu-

alize it to users. Components with both input and output

ports are called information processors. These components

take data, process it and produce results.

The type (type) of the components denotes whether they are

UI components, which display data and can be rendered in

the mashup’s layout, or application components, which either

fetch or process information or a data source components.

Mainly the type information is used by the internal’s logic

but it could also be used to arrange components for better

presentation for end-users.

100 End-User Oriented Mashup Platform Development Methodology

Components can also have a description desc at an arbitrary

level of formalization, whose purpose is to inform the user

about the data the components handle and produce.

3. A pipe (i.e., connector) p ∈ P carries data (e.g., XML/J-

SON documents) between the ports of two components, im-

plementing a data flow logic. So, p ∈ IPT × (OPT ∪CPT).

4. A view port vp ∈ V P identifies a place holder, e.g., a DIV

element or an IFRAME, inside the HTML template that

gives the component its graphical identity. Typically, a tem-

plate has multiple placeholders.

5. Finally, the layout L defines which component with own

UI is to be rendered in which view port of the template.

Therefore l ∈ C × V P .

Each mashup following this MM must have at least a source

and a sink, and all ports of all components must be attached to

a pipe or manually filled with data (the configuration port).

This is all we need to define a mashup and as we will see, this

is an executable specification. There is nothing else besides this

picture. This is not that far from the complexity of specifying a

flowchart, for example. It is very distant from what can be an

(executable) BPMN specification or a BPEL process in terms of

complexity.

In the model above there are no variables and no data map-

pings. This is at the heart of enabling end-user development as

this is where much of the complexity resides. It is unrealistic to

ask end-users to perform data mapping operations. Because there

is a DCM, each component is required to be able to process any

The Generic Mashup Meta-Model 101

document that conforms to the model. This does not mean that

a component must process every single XML element. For exam-

ple, a component that computes the h-index will likely do so for

researchers, not for publications, and probably not for publishers

(though it is conceivable to have an h-index computed for publish-

ers as well). So the component will ”attach” a metric only to the

researcher information that flows in. Anything else that flows in is

just passed through without alterations. The component descrip-

tion will help users to understand what the component operates

on or generates, and this is why an informal description suffices.

What this means is that each component in a domain-specific

mashup must be able to implement this pass-through semantics

and it must operate on or generate one or more (but not all) ele-

ments as specified in the DCM. Therefore, our MM assumes that

all components comply to understand the DCM.

Furthermore, in the model there are also no gateways as in

BPMN, although it is possible to have dedicated components that,

for example, implement an if-then semantics and have two output

ports for this purpose. In this case, one of the output ports will

be populated with an empty feed. Complex routing semantics are

virtually impossible for non-experts to understand (and in many

cases for experts as well) and for this reason if they are needed we

delegate them to the components which are done by programmers

and are understood by end-users in the context of a domain.

5.6.2 Operational semantics

The behavior of the components and the semantics of the MM

are as follows:

102 End-User Oriented Mashup Platform Development Methodology

1. Executions of the mashups are initiated by the user. A user

have to explicitly start the execution using some user inter-

face means (e.g., a button click).

2. Components that are ready for execution are identified. A

component is ready when all the input and configuration

ports are filled with data, that is, they have all necessary

data to start processing.

3. All ready components are then executed. They process the

data in input ports, consuming the respective data items

from the input feed, and generate output on their output

ports. The generated output fills the inputs of other compo-

nents, turning them executable.

4. The execution proceeds by identifying ready components and

executing them (i.e., reiterating steps 2 and 3), until there

are no components to be executed left. However, during the

execution if in case some component requires user interac-

tion (e.g., an input) before it proceed, then the execution

stops and starts again after user acts as needed. This means

it is possible to interact with the mashup execution during

runtime. At this point, all components have been executed,

and all the sinks have received and rendered information.

5.6.3 Generic mashup syntax

Developing mashups based on this meta-model, i.e., graphically

composing a mashup in a mashup tool, requires defining a syntax

for the concepts in the MM. In Figure 5.3 we map the above MM

to a basic set of generic graphical symbols and composition rules.

The Domain-Specific Mashup Meta-Model 103

Name
[(Static conf.
parameters)*]

Input port
(multiple input
ports are allowed)

Pipe

Output port (multiple
output ports are allowed)

Shape
(may vary)

Port
name

Configuration port for dynamic configuration
parameters (multiple ports are allowed)

Figure 5.3: Basic syntax for the concepts in the mashup meta-model.

In the next section, we show where to configure domain-specific

symbols.

5.7 The Domain-Specific Mashup Meta-Model

The mashup meta-model (MM) described in the previous section

allows the definition of a class of mashups that can fit in different

domains. Thus, it is not yet tailored to a specific domain, e.g.,

research evaluation. Now we want to push the domain into the

mashup meta-model constraining the class of the mashups that

can be produced to that of our specific domain. Despite the

relative simplicity, providing users with a DCM-restricted mashup

meta-model is still not likely to be sufficient in terms of ease of

use. The user will still be faced with a large number of possible

components to be placed on a canvas.

The next step is therefore understanding the dynamics of the

concepts in the model, that is, the typical classes of processes and

activities that are performed by domain experts in the domain,

in order to transform or evolve concrete instances of the concepts

in the DCM and to arrive at a structuring of components as well

104 End-User Oriented Mashup Platform Development Methodology

as to an intuitive graphical notation. What we obtain from this

is a domain-specific mashup meta-model. Each domain-specific

meta-model is a specialization of the mashup meta-model along

four dimensions:

1. Domain-specific activities and processes

2. Domain-specific rules

3. Domain-specific syntax

4. Domain instances

The domain-specific meta-model extension extends the MM

with domain-specific sub-types of the component entity in the

MM. Sub-types allow the injection of classes of domain processes

or activities into the MM and, hence, the introduction of domain-

specific terminology and syntax. In figure 5.4 we show domain-

specific meta-model extension, and describe its details as follows.

5.7.1 Domain process model

Definition The domain process model (PM) describes the

classes of processes or activities that the domain expert may want

to mash up to implement composite, domain-specific processes.

Operatively, the process model is again derived by specializ-

ing the generic meta-model based on interactions with domain

experts, just like for the domain concept model. This time the

topic of the interaction is aimed at defining classes of components,

their interactions and notations. Figure 5.4 depicts an extension

of the mashup meta-model to our reference domain (i.e., research

evaluation). In the case of research evaluation, this led to the

The Domain-Specific Mashup Meta-Model 105

Information
Source

Information
Processor

Information
Sink Data Type

Static Sources Parametric Sources

Italian Researchers

Venue Ranking

IT Prof. Limits

...

DBLP

Microsoft Academic

Google Scholar

...

Metrics

H-Index

G-Index

C-H-Index

...

Output (UI)

Charts

Tables

Standard Formats

...

Domain Concept
Model

View Port

Domain-Specific
Syntax

Represents domain concept model
in some format (e.g., XML schema)

Represents domain specific
symbols, a visual metaphor
used by the components.

Figure 5.4: Mashup meta-model extension to its various extensible ports ex-

tending it to domain-specific mashup meta-model

identification of the following classes of activities, i.e., classes of

components:

For simplicity, we discuss only the processes that are necessary

to implement the reference scenarios.

1. Source extraction activities. They are like queries over

digital libraries such as DBLP or Google Scholar. They may

have no input port, and have one output port (the extracted

data). These components may have one or more configura-

tion ports that specify in essence the ”query”. For example

a source component may take in input a set of researchers

and extract publications and citations for every researcher

from Google Scholar.

2. Metric computation activities, which can take in input

institutions, venues, researchers, or publications and attach

a metric to them. The corresponding components have at

least one input and one output port. For example, a com-

ponent determines the h-index for researchers, or determines

106 End-User Oriented Mashup Platform Development Methodology

the percentile of a metric based on a distribution.

3. Aggregation activities, which define groups of items based

on some parameter (e.g., affiliation).

4. Filtering activities, which receive an input pipe and return

in output a filtering of the input, based on a criterion that

arrives in a configuration port. For example we can filter

researchers based on the nationality or affiliation or based

on the value of a metric.

5. UI widgets, corresponding to information sink components

that plot or map information on researchers, venues, publi-

cations, and related metrics.

5.7.2 Domain rules

As a domain comprises of domain concepts, activities/processes

and rules (i.e., constraints, restrictions on concepts and activities)

to prescribe and/or restrict the way in which domain experts use

domain activities and processes to achieve their goals. These

domain rules can be defined in a way like integrity constraints

e.g., from the cardinalities between concepts in a domain concept

model. However domain rules not only cover integrity constraints

but usually also allow or restrict domain behaviors (i.e., domain

activities/processes). For example, a rule could be that DBLP

cannot be used for computing H-index metrics and thus can be

instantiated as a Component compatibility (mashup) rule disal-

lowing the usage of these two components in the same mashup

composition). The rule enforcement in the DMT provides assis-

tance and guidance to the domain-experts improving usability,

composition correctness and development errors reduction.

The Domain-Specific Mashup Meta-Model 107

0..N

Domain-Specific
Rule

Domain Rule

Process/activity
Rule Integrity Rule

Domain Process /
Activity

Domain Concept

1..N

0..N

1..N

belongs to

has

1..N

0..N

1..N

0..N

has

belongs to

Figure 5.5: Extension to the domain-specific rules.

A well know way to define these rules is through ECA struc-

ture (event, condition, activity) which means: if the event occurs

and conditions are met, then execute the activity Herbst [1996].

Figure 5.5 depicts the extension of MM along with rule model.

Domain rules can be classified in many different ways. When

analyzing rules in the context of domain processes, following are

the two rule types we identify: Activity rules: domain rules re-

lated to the a particular activity or subset of an activity. Integrity

rules: are related to the domain objects and their relationships,

for example, the value of the H-index metric cannot be negative.

5.7.3 Domain syntax

A possible domain-specific syntax for the classes in the PM

(derived from the generic syntax presented in Figure 5.3) is shown

in Figure 5.6.Its semantics is the one described by the MM in Sec-

tion 5.6. In practice, defining a PM that fully represents a domain

requires considering multiple scenarios for a given domain, aiming

108 End-User Oriented Mashup Platform Development Methodology

Source name
[Query?]

Static source

Metric name
[Parameters*]

Metric

Filter name
[Filter condition]

Filter

Chart name

Chart

Source name
[Query?]

Parametric source

Aggregator name
[Aggregation function]

Aggregator

Figure 5.6: Domain-specific syntax for the concepts in the domain-specific

meta-model extension

at covering all possible classes of processes in the domain.

5.7.4 Domain instances

Domain instances are fully functional domain-specific components

that are ready to be used in mashup compositions. These domain-

specific components with domain syntax (i.e., domain symbols)

implements domain activities and processes, consuming and pro-

ducing domain-specific concepts at input and output ports. Fig-

ure 5.7 actually exemplifies the use of instances of domain-specific

components. For example, the Microsoft Academic Publications

component is an instance of source extraction activity with a con-

figuration port (SetResearchers) that allows the setup of the re-

searchers for which publications are to be loaded from Microsoft

Academic. The component’s symbol is an instantiation of the

parametric source component type in Figure 5.6 without static

query. Similarly, the Italian Researchers (source extraction ac-

tivity), the Venue Ranking (source extraction activity), the Im-

pact (metric computation activity), the Impact Percentiles (met-

ric computation activity), and the Bar Chart (UI widget) com-

ponents.

In summary, what we do is limiting the flexibility of a generic

mashup tool to a specific class of mashups, gaining however in

intuitiveness, due to the strong focus on the specific needs and

The Domain-Specific Mashup Meta-Model 109

Italian
Researchers

Bar Chart

Scopus
Publications

Sum
[Value=Items.Percentile,
Group by "Department"]

Italian
Researchers

[University="UniTN"]

Scopus
Publications

Venue Rankings Impact
Percentiles

GetImpact

GetImpact

SetVenueWeights

GetPercentiles

SetDistribution

Sum Plot

Set-
Researcher

Impact

Impact

SetVenueWeights

Set-
Researcher

Figure 5.7: An example of the use of instances of domain-specific components

issues of the target domain. Given the models introduced so far,

we can therefore refine our definition of DMT given earlier as

follows:

Definition A domain-specific mashup tool (DMT) is a

development and execution environment that (i) implements a

domain-specific mashup meta-model, (ii) exposes a domain-specific

modeling syntax, and (iii) includes an extensible set of domain-

specific component instances.

Once the domain models are ready, the IT expert can then

customize a mashup platform that meets the requirements that

emerge from the domain model. The DMT will therefore expose

not only a concept model, but also a process model that spe-

cializes MM and that presents to the user a set of components

grouped in a domain-meaningful way and with a graphical ap-

pearance that makes sense for the domain. Doing so implies,

first, understanding which type of mashups the platform should

support and, then, tailoring the mashup platform to the specific

domain. To this end, the next chapter presents the implementa-

tion related details that implements a generic mashup platform

110 End-User Oriented Mashup Platform Development Methodology

following the mashup-meta model.

Chapter 6

Domain-Specific Mashup

Platform Development

6.1 Overview

In the previous chapter we have presented the methodology for

the development of a domain-specific mashup platform. The

methodology clearly separate domain-independent concerns (i.e.,

in the form of mashup meta-model) from what of domain-specific

ones (i.e., domain-specific mashup meta-model and its extensions).

A mashup platform whose development follows the defined method-

ology initially stays empty in terms of domain-specific knowledge

(i.e., terminologies, concepts, rules, activities etc.) that is then in-

jected tailoring it to a domain-specific mashup tool. That is how

we enable generic platform to be tailored for a specific domain.

In this chapter we present how we developed the domain-specific

platform that will be then tailored for our reference domain (that

is presented in the next chapter). However, in this chapter we

specifically focus on the technical concerns and technological de-

sign decisions that we have taken.

The mashup meta-model proposed in the previous chapter ex-

112 Domain-Specific Mashup Platform Development

plains well the capabilities a mashup platform can offer whose

implementation follows the specified model. For example, the

provision of universal integration is achieved through the sup-

port of components those can be of type service, UI or data,

that is, the platform from its architectural design supports this

capability. The easy-of-use feature, that is to effectively enable

non-technical users in development, is achieved through via no-

complex mapping concept. Intuitiveness is achieved via intro-

ducing domain-specific syntax for composition constructs. These

are all the fundamental characteristics that help our platform to

provide an effective end-user development environment. In this

chapter we not only present steps in the development of a mashup

platform that should on one side reduce the complexity of creat-

ing mashups for non-technical users but on the other side support

developers in the process of developing new components. Primar-

ily focusing on domain-specific mashups greatly help us achieve

these objectives.

To this end, we first present our baseline mashup engine that

is comprised of various modules, which are explained later in this

chapter. We aim for a very lightweight yet powerful mashup en-

gine that can easily run in web browsers, that is, at the client-side

with no need to download any extra software. For this purpose,

the engine is implemented using JavaScript language and runs at

client-side in a web browser. The choice of using JavaScript lan-

guage over other languages is highly motivated by the fact that

most Web 2.0 Ajax based web applications whose major goals are

to offer fast interactive yet attractive designs and user interfaces,

use client-side languages like JavaScript.

Components & Compositions Execution Insights 113

6.2 Components & Compositions Execution In-

sights

Before describing the technical details of the mashup platform,

we first present a few design aspects that must be considered in

order to get maximum benefit of our mashup meta-model. Just

to clarify a few terminologies, we refer a ”composition” to a set

of components connected together to make a mashup. Compo-

nents are fundamental units contain presentation or application

logic and perform certain operations. They usually take some

input and generate some output (i.e., the result of their opera-

tion). Several components can be connected, so that the output

of one component serves as input for another component, which

forms a mashup composition (i.e., also referred as a mashup or

simply a composition). In the next sections, both ”mashup” and

”composition” terms interchangeably used, though representing

the same meaning.

6.2.1 Orchestration style

Of the many important aspects, orchestration is a key aspect to

be considered prior to the development of a mashup platform.

Generally, the orchestration, where multiple complex computing

units involved, manages their coordination while their execution.

Similarly, in our case, it specifies how to synchronize the execu-

tion of components in a composition making better coordination

among them. Mostly, there are three prominent approaches that

have been adopted [Yu et al., 2008b]:

Flow-based approach maintains orchestration as sequencing

of components that is also a kind of flowchart based approach,

114 Domain-Specific Mashup Platform Development

where multiple units (e.g., components) connect together whose

execution happens according to a defined sequence.

Event-based approach offers a publish-subscribe way, where

pub/sub models maintain synchronous behavior among compo-

nents. When a component behaves like publisher sends messages

to a queue which then consumed by all those components (sub-

scribers) who are interested.

Layout-based approach place components in a composition

into a common layout that then each component’s behavior is

specified individually by accounting for the other components’

reactions to user interactions.

We use a combination of flow-based and event-based approaches.

That is, generally components execution takes place following

flow-based style, however, components’ operations can subscribe

to the various data buses that then received required data when

an event triggered.

6.2.2 Data-passing style

The choice of data-passing approach is another pivotal aspect,

which describes the behavior through which data flows among

various components. This important property alone can be used

to effectively distinguish among various mashup tools, especially

when the target end-user belongs to a non-technical user class.

Mainly two approaches have been followed in the past, which are

data-flow and blackboard-based [Yu et al., 2008b].

According to the data-flow approach, actual data flow from a

component to another component. A component starts its exe-

cution upon receiving data its waiting for, and once the execu-

tion completes it sends the data to the next component in the

Components & Compositions Execution Insights 115

flow. The data-flow approach considered more intuitive for non-

technical users as it follows the philosophy of a natural workflow

in daily life work. On the other hand, according to the black-

board based approach data is written to variables, which serve as

the source and target of an operation invocation on components,

much like in programming languages.

In our case, we follow the data-flow based approach. For exam-

ple, a data source component produces data (after fetching from a

database/web service etc.) and hand over it to the next connected

component that then consumes it for further processing. To con-

vey the execution status of a component that would also reflect

a composition execution status, we aim to present to end-users

the execution status of individual components. Another aspect

related to the data-flow approach, which we describe later in this

chapter, is that sometimes on the background instead of passing

the actual data we pass control data. This scenario gets acti-

vated for components whose implementation is of a web-service

type. So far we have presented the different types of components,

while we will present how these components can be implemented

(i.e., as a web service, or as a client side implementation) later.

6.2.3 Compositions execution

A mashup composition, which comprises of several connected

components, executes to achieve its goals. The execution of a

composition means, running its components in an order that is

defined by the end-user. The general execution semantics of a

composition/mashup is described in section 5.6.2. However, in

this section we look at whether the execution follows an instance-

based or a continuous approach [Yu et al., 2008b]. An instance-

116 Domain-Specific Mashup Platform Development

based model is the traditional service composition model, in which

a certain kind of message’s arrival activates a new instance of

the composition, and the system executes the instance within the

same main thread and context (much like a program run). On the

other hand, the continuous model has one instance per compo-

nent in a composition model. Each component works as a thread,

processing the input data feed and transforming or filtering it to

generate the output. The strategy we follow is continuous model

based, that is, to allow various components to execute using their

own threads and also communicate between them when required.

6.3 Components Definitions

Given the above insights, now we first detail on Component Defi-

nition Language (CDL), which is build based on components ca-

pabilities described in the mashup meta-model. CDL represents

just the technical version of what a component is defined by the

mashup meta-model. As components are the main building blocks

of a mashup, they consume data, perform certain actions/manip-

ulation and produce results. From a software development point

of view, a component can be seen as a function or method. It can

take one or more input and produce one or more outputs. The

input might come from another component or from an external

service or from component’s own UI. Furthermore, a component

might require direct user interaction and provide a correspond-

ing UI (i.e., configuration UI). Considering this idea, we show

in Figure 6.1, the component definition language model and in

Figure 6.2 depicts the component communication mechanism. In

following we elaborate the details of both aspects.

Components Definitions 117

ID
Component

Configuration
Parameter

Request Event Operation

Key
Value

Meta Data

Input Param

depends

Data Type

Output Param
has type

value type

has typehas type

0..N

0..N

1..N

1..N

1

1..N

1
1

1

0..N1

1..N 1..N
1..N

0..N0..N

1..N

Figure 6.1: Model Representing Component Definition Language (CDL)

6.3.1 Component Definition Language (CDL)

From a technical point of view CDL is comprised of the following

elements to build a component:

• Operations : A component exposes a set of actions that it

can perform by means of operations. Operation can be seen

as the input configuration ports (i.e., IPT’s) as defined in the

mashup meta-model. Operations are invoked through events

(described below) and can accept one or more parameters as

input and can produce one or more output parameters. Each

parameter can have a certain data type. The generic model

does not constrain the types, although the mashup tool can

restrict possible types that is from a domain concept model

(DCM) in the form of an XSD. To complete its computation,

a component might need to have operations to be called in

a certain order. Therefore, operations can be dependent on

118 Domain-Specific Mashup Platform Development

each other. Ideally, an operation should expect only one in-

put, to make its purpose more intelligible to the composition

designer. This does not necessarily restrain the capabilities

of components: A multi-input operation can be split up into

several dependent operations.

• Events : Events are the way to propagate results of a com-

ponent’s action to other components. Events implement the

output ports (i.e., OPT) defined in the mashup meta-model.

They are either generated programmatically, for example af-

ter an operation is completed, or through the user interacting

with a component’s UI. Like the input for operations, the

output contained in the event data should conform to one

or more data types. Creating a composition mainly consists

of connecting events with operations which accept the same

data types (i.e., domain concepts).

These two concepts, operations and events, are general enough

to cover any kind of interaction between components as they

are essentially a mixture of the Observer pattern [Vlissides

et al., 1995] and the more general Publish/Subscribe pat-

tern [Eugster et al., 2003]. These are common patterns used

in Model View Controller (MVC) architectures, providing a

way to decouple different parts of an application and make

them easily exchangeable. From this point of view, applying

such a concept seems to be a logical step: the components

are the different parts of a composition (the application) and

they need to be highly exchangeable due to the dynamic na-

ture of mashups.

• Requests : In a composition components send data to each

Components Definitions 119

Component

Request

EventOperation

Through request components make
external calls (e.g., web service calls)

Operations handle incoming
connections to a component.

Processed data travel through
events which connect to

others' components operations.

Figure 6.2: Component Communication

other through operations events connections, but this is not

the only type of communication that happens in a compo-

sition, instead, often times components communicate with

external services or API to fetch or to process data. In the

previous chapter we described that components can be of an

information source type that act like data sources or can be

of type information processor that implement business logic.

For these kinds of components it is common that they call

external services to accomplish their task. External inter-

actions can be triggered from an operation or from a com-

ponent’s UI (i.e., against a user UI interaction). Although

these interactions can be seen as internal calls without the

relevance to the environment, we think that a formal spec-

ification of this interaction can be useful for the platform

provider and lead to a more comprehensive specification of

the component interface. We call this characteristic a re-

quest. The model is deliberately kept universal in this re-

gard and does not require a detailed specification of the pos-

sible type of a service or the request and response formats,

though the current implementation expects requests to be

120 Domain-Specific Mashup Platform Development

executable by means of Ajax. Interpreting the response is in

the responsibility of the component implementation.

• Configurations : Each component can have a set of con-

figuration parameters (Configuration ports (i.e., CPTs)) ac-

cording to the mashup meta-model. Users use these configu-

ration parameters to configure components through the com-

ponent’s UI. These parameters must have a data type that

can be a primitive or a platform specified type (e.g., domain

type) and each parameter value (i.e., user supplied value) of

a component belongs to that specific instance of the com-

ponent and the composition, hence not shared among other

compositions.

• Meta-data : Finally, a component can have an arbitrary set

of meta-data associated with it, typically in the form of key-

value pairs. This can be leveraged by the mashup platform to

store necessary, platform specific information. For example,

the description and type attribute of a component can be

defined using the meta-data feature.

6.3.2 Component Definition Language in Action

Listing 6.1 shows a simplified version of the model definition of a

component, which is responsible for retrieving a list of researchers

based on its configuration. The component has a fully quali-

fied name as ID, a descriptive name (line 1) and a more detailed

description (line 3). Furthermore, it has four configuration pa-

rameters (line 5 to 25) , sectionId, uniId, departmentId and

facultyId defined using config tag. These configuration param-

eters are the examples of filters, which restrict the result-set using

Components Definitions 121

various filtering criteria. Each config parameter definition con-

tains further information for displaying the configuration fields,

like the label & Sector under option tag. There are various

types of options that can be set, for example, as in sectionId

configuration parameter (line 6 to 12). These include:

- label defines a label using its value attribute.

- renderer renders a UI field based on selected renderer. In

this case a rendered of type jsm.ui.input.Autocomplete is used.

- url specifies a url of an external service if the data has to be

fetched from it.

- search parameter is like the query string value in web ser-

vice calls.

- value specifies what field used as value-field in the UI.

- display specifies the display field used to populate a UI field

(e.g., a text field)

We explain how all these parameters work collectively in sec-

tion 6.5.8. Moreover, this CDL example only expends first con-

figuration parameter details for the purpose of conveying the un-

derstanding.

The event (line 17 to 19) returns a collection of researchers,

denoted by its data type. It gets triggered by the request (line 21

to 29), which connects to some service with the given url, send-

ing the configuration parameters, denoted by the name syntax.

Presuming the web service correctly returns a list of researchers,

no further implementation has to be provided by the developer.

With this definition, the engine generates a generic configuration

interface and can manage the request to the web service automat-

ically. Apart from simplifying the development process for data

source components, it also completely hides the technical details

122 Domain-Specific Mashup Platform Development

of service calls from the composition designer.

This example also shows the usage of meta-data in the defini-

tion. The conceptual model does not require a name or descrip-

tion, but it can still be provided through meta-data. That means,

the implementation of the component does not process this data

but other routines can access it. For example, the user interface

of the mashup tool can use this data to present more information

about a component for a better user experience. In this example,

we do not show the details about how a service call can be con-

figured. However, section 6.5.7 provides in-depth details of this

aspect.

Listing 6.1: A component definition following CDL� �
1 <component id="org.reseval.ItalianResearchers" name=" Italian

Researchers">
2
3 <description >Gets a list of Italian researchers , optionally

filtered </ description >
4
5 <config ref=" sectionId">
6 <option name=" label" value=" Sector"/>
7 <option name=" renderer">
8 <option name="type" value="jsm.ui.input.

Autocomplete "/>
9 <option name="url" value="http :// example.com/

italianSource/sector/name/autocomplete "/>
10 <option name=" search_parameter" value=" input"/>
11 <option name=" value" value ="{id}"/>
12 <option name=" display" value ="{ name}"/>
13 </option >
14 </config >
15 <config ref=" uniId">
16 <option name=" label" value=" University "/>
17 ...
18 </config >
19 <config ref=" departmentId" dependsOn =" uniId">
20 <option name=" label" value=" Department "/>
21 ...
22 </config >
23 <config ref=" facultyId" dependsOn =" uniId">
24 ...
25 </config >
26 ...
27 <event name=" Researchers loaded" ref=" researchers_loaded">
28 <output name=" researchers" type=" Researcher[id][name][

masID][dblpID]" collection ="true"/>
29 </event >
30
31 <request name="Get Researchers" ref=" get_researchers"

triggers =" researchers_loaded">

Mashup Compositions Definitions 123

32 <url >http :// example.com/italianSource/getResearchers </
url >

33 <parameters >
34 <parameter name=" uniID" value ="{ uniId}"/>
35 <parameter name=" facID" value ="{ facultyId }"/>
36 <parameter name=" depID" value ="{ departmentId }"/>
37 <parameter name=" secID" value ="{ sectionId }"/>
38 </parameters >
39 </request >
40 ...
41 </component >� �

6.4 Mashup Compositions Definitions

Given the component definition language, we now present Mashup

Definition Language (MDL), a technical version of what a mashup

is defined by the mashup meta-model. The mashup definition lan-

guage provides a way in which a mashup composition can be de-

fined in terms of components, connections among them through

pipes, their states (i.e., parametric values they hold), their in-

stances information and the layout information. We pursue the

same goal for the mashup model as for the component model:

A minimal set of characteristics that is necessary to represent a

functional composition.

In essence, a mashup composition, which is formed using mul-

tiple components, is defined connecting events (i.e., output ports)

with the operation (i.e., input ports). An event emits data which

passes through a pipe and finally consumed by an operation.

Components in a composition may hold a user-defined configura-

tion parameters. A composition contains its layout information,

which is then used to render components to their proper layout

and position. So basically an MDL that is capable to accommo-

date the above mentioned snippets of information is suitable for

our purpose from a technical point of view.

124 Domain-Specific Mashup Platform Development

6.4.1 Mashup Definition Language (MDL)

Technically, based on the MDL a mashup is comprised of three

basic things, as described below:

• Components Many components form compositions hence

play major role in building mashups. A composition can have

multiple components connected together. The MDL defines

connections among components in terms of source and target

components. A source component is the one whose event is

connected to another component’s operation that is called

a target component in this case. Each component assigned

an instance id in a composition along with its full qualified

name. Other information like a component’s configuration

details also preserved in the MDL.

• Connections When two components connect, resultantly

form a connection. A connection information in the form

of source and target components is maintained by the MDL.

That is how the association between events and operations of

two components is maintained. That is then this information

used by the mashup engine to work as a publish-subscriber

approach to hand over data to the target operation emitted

by the source event.

• Meta-Data Mashup definition language also permits to

define arbitrary parameters in the form of meta-data (i.e,

specifically key-value pair). These parameters can be used to

define some special cases such as mashup composition state,

permissions. This also provides a way of extending the defi-

nition language with details which are not anticipated yet.

Mashup Compositions Definitions 125

6.4.2 Mashup Definition Language in Action

Although, an MDL is an internal document of the mashup plat-

form, even then describing its details would further help in case of

an extension to the platform if needed. Listing 6.2 shows a short

sample definition of a mashup composition which consists of only

two components and connection between them, just for the sake

of understanding.

Listing 6.2: Example of a composition using composition definition language� �
1 {
2 ...
3 "components ": [
4 {
5 "instance_id ": "2",
6 "component_id ": "org.reseval. ItalianResearchers",
7 "config ": {
8 "facultyId ": {
9 "value ": "",

10 "display ": "All"},
11 "departmentId ": {
12 "value ": "82",
13 "display ": "INGEGNERIA E SCIENZA DELL INFORMAZIONE -

DISI"},
14 "uniId ": {
15 "value ": 83,
16 "display ": "TRENTO"},
17 "sectionId ": {
18 "value ": "",
19 "display ": ""}},
20 "data": {
21 "name": "DISI Researchers",
22 "minimized ": false ,
23 "position ": [
24 21,
25 56]}},
26 {
27 "instance_id ": "4",
28 "component_id ": "org.reseval.MAS",
29 "config ": {
30 "endYear ": {
31 "value ": "2010" ,
32 "display ": ""
33 },
34 "startYear ": {
35 "value ": "2008" ,
36 "display ": ""}},
37 "data": {
38 "name": "MAS",
39 "minimized ": false ,
40 "position ": [
41 218,
42 55]}}] ,
43 "connections ": [
44 {

126 Domain-Specific Mashup Platform Development

45 "source ": "2",
46 "event ": "researchers_loaded",
47 "target ": "4",
48 "operation ": "set_researchers"
49 }
50 ...
51 "data": {
52 "public ":true ,
53 "name ":"DISI -ItaliaEvaluation -MASBased",
54 ...
55 }� �

As one can notice that the presented MDL lists down the de-

tails of the components used in the composition. Just like a

database table, each component with its various attribute rep-

resents a tuple. These attributes, to name a few include a com-

ponent’s configuration parameters and their values, component’s

position in the overall mashup layout, its UI status like minimized

or not etc.

Listing 6.2 shows a composition of two components in JSON1

format. The Italian Researchers component (line 5 to 25) we

showed in the previous example, and the Microsoft Academic

component (line 26 to 42), which accepts a list of researchers and

adds a list of publications to each researcher. Of the other parts

of this mashup definition, the components, the connections and

further meta-data are the important ones. For each component,

the MDL stores instance-id (line 4), component id (line 6),

config (i.e., the configuration parameters and their instance val-

ues) (line 7 to 19), name (i.e., component’s name) (line 21), and

layout position (line 23 to 25). The instance IDs remain unique

within a composition. Whereas a component ID is the one given

by component developer and it remains unique among all other

components in the platform.

1http://json.org/

The Mashup Engine 127

The important information about connections described for

this composition on line 43 to 49. For each individual connection

the MDL preserves source component’s instance ID (line 45), its

event name (line 46) and the target component’s instance ID (line

47) and its operation name (line 48). Other information about a

composition’s name and its visibility status is defined using data

tag (line 51 to 53).

6.5 The Mashup Engine

Given the CDL that defines components and the MDL that de-

fines mashup compositions (or mashups), we now pursue for a

mashup engine that allows the development of components fol-

lowing CDL, composing mashup compositions and finally running

those compositions following MDL. The mashup engine must be

able to incorporate the above described aspects like orchestra-

tion and data-passing style. We aim for data-flow paradigm as a

general approach, which must also be conveyed and understand-

able by the end-users, and sometimes we use control-signals to

decrease the data passing overhead hence to increase the overall

performance. However, mashup engine’s decision on when specif-

ically data or control-signal flows, is described in the next chapter

there we first introduce necessary concepts for its understanding.

The Mashup Engine is a core part of the platform, which

manages various modules and all communications that take place

among these modules. One of the main objectives, which drive

along the development of the mashup engine, was to keep sepa-

rate platform or environment specific requirements to that of a

mashup tool’s specific ones (i.e., domain-specific) and in parallel

128 Domain-Specific Mashup Platform Development

uses

A few platform provided input
elements, more can be added.

Component

Component
Mapper

Data Processor
Provider

Data Processor

Component
Descriptor

Composition
Mapper

Repository Access Module

Composition

uses uses

uses

creates

hascreates creates

Data Mapper

creates &
maps

has uses

Configuration
Interface

Text input Autocomplete ...

has
has

Mashup Engine internals

Figure 6.3: Mashup Engine Internals: various modules inside mashup engine

and their interactions

to provide a consolidated platform that can easily be tailored to

a specific domain. That’s the reason, throughout the elaboration

of various steps of the mashup engine, which we described in the

next sub-sections, we mainly focus on those set of generic aspects

whose design and implementation is not dependent but of course

inspired of a domain. This allows us to use the engine for other

domains with similar characteristics as of our reference domain

(i.e., research evaluation).

6.5.1 Mashup Engine Architecture

The mashup engine is designed and developed for the client side

technologies (e.g., web browser). JavaScript and the Goolge Clo-

The Mashup Engine 129

sure Library2 were the languages used for the development. In

following, we describe the main modules, their roles and relations

to each other. Figure 6.3 depicts an overall architecture of the

mashup engine. The modules presented in the architecture are the

main building blocks of the engine. Later, we will present how

UI of a mashup tool can interact with them to give information

and control to users. Some modules only describe an abstract in-

terface, for which the platform provider has to provide a concrete

implementation adapted to the environment of mashup tool.

6.5.2 The Repository Module

The repository module is the one responsible for performing typ-

ical CRUD operations (i.e., create, read, update and delete) for

managing components and compositions and other external calls

that the engine needs to perform. For example, this is the place

which is used to access web services that a developer defines inside

a component definition. Moreover, the repository module does

not fix the way components and compositions are stored to some

persistent storage. Instead, the repository interface is designed

for the usage of synchronous and asynchronous storage facilities.

For example one can use the HTML 5 local storage API, or a

server side storage accessed with Ajax or any other means. As an

overall this gives provision to the platform provider to decide on

how and where the storage will be done based on his requirements

and possibilities.

In addition to that, the repository module also independent of

what representation is used to describe components or composi-

tion (e.g., as in our case either XML or JSON). Hence, this task

2https://code.google.com/closure/library/

130 Domain-Specific Mashup Platform Development

is delegated to component and composition mappers (described

below) to transfer whatever representation of components and

composition to component Descriptor or Composition which are

then understandable by the components and composition classes.

6.5.3 Component- and Composition Mapper

The mashup engine does not restrict on a specific component,

and compositions representational format. This characteristic in-

troduced because there are many other formats that can be used

like to name a few famous ones include W3C Widgets3 and Ope-

nAjax Widgets4 and there might be others to be developed in

the future. For this reason we introduced the concept of map-

per in the platform that actually maps a particular format to the

system’s internal one. In the previous sections we showed the

components and compositions representations that the mashup

engine followed in which the default mappers work.

So, to not restrict the engine to a specific representation, the

mapper’s perform the conversion to a specific representation into

our internal model and vice versa. It might not be possible to

map any component description to our component model, but the

idea leads to a certain degree of independence and leaves room

for extensions. This again leaves the choice which representations

to use and support on platform provider.

3http://www.w3.org/TR/widgets/
4http://www.openajax.org/member/wiki/OpenAjax Metadata 1.0 Specification Widget

Overview

The Mashup Engine 131

6.5.4 Component Descriptor and Component

As described earlier that a component, which is a basic building

block, can be used in several compositions and can also occur

more than once in a composition. Therefore, it is necessary to

distinguish between the properties shared by all the instances

of the component, like the operations and events and those of

instance-specific properties, like a composition-specific name, it’s

id, configuration settings etc.

The component descriptor and component class are used to

keep track of these aspects of a component. Basically, the com-

ponent descriptor is a software artifact that represents a com-

ponent’s model definition, which is stored in its CDL document.

The information that a component descriptor gets populated af-

ter parsing component’s CDL include operations, events, requests

and configuration parameter details of a component. An instance

of the component class is generated to represent this and com-

ponent’s instance-specific information like the values of config-

uration parameters, instance id, and it also includes the basic

execution logic needed to run a component’s action.

The user interface of the mashup tool directly interacts with

component descriptor and component instances to provide infor-

mation about them and let the user manipulate them through the

configuration interface and the UI of a component.

6.5.5 Composition

Compositions represent user defined workflows that accomplish

some tasks. As compositions comprised of multiple components

connected together in an order to interact with each other by

132 Domain-Specific Mashup Platform Development

means of connections made between events and operations. The

composition module task is to register those connections and per-

forms the communication between components. Basically, the

composition listens to each component’s event and notifies the

connected components. It’s also responsible for passing the event’s

emitted data to the operation. Finally, in order to inform the

users about a possible state of a composition while running, the

composition module is used by the UI of a mashup tool to convey

such indicators.

6.5.6 Data Mapper

During a composition’s run-time, all components that belong to

a composition and are connected with each other communicate

by means of sending and receiving data among them. Basically,

the actual communication takes place between an event and an

operation. Event emits data and operation consumes it. The

data mappers are responsible for the conversion of the data re-

ceived from the event so that the data is understandable by the

operation. Data mappers would not worthwhile for components

those understand and built based on and for a specific domain, for

example, in our case many components understand our reference

domain DCM (e.g., XSD), but components such as bar charts,

pie charts, and other visualization components understand a pre-

defined data-format, which depends on what visualization API

is used (as we use Google Charts API). Without the conversion

functionality a new instance of a same visualization component

would be needed that specifically implements a component’s spe-

cific data visualization requirements that ends in developing too

many new UI components.

The Mashup Engine 133

This is the reason, we use data mappers to encapsulate the

data conversion logic so that the data is converted in a format

that is understandable by the target component. The current

implementation of the data mappers follows our current domain

model and hence the conversion is automatically performed for

such components. Simply, a new data-mapper will be needed in

case of a different domain.

6.5.7 Data Processor

To perform tasks a component is responsible for, component may

require to call external services to fetch data or to perform com-

putations. Also, at run-time mashup engine needs to inspect the

data that is being transferred between components for various

reasons, like, to read/write meta-data, calling external services,

conversion of data etc. For this reason, data processors provide a

way to the platform to intercept any communication that a com-

ponent initiates to either interact with other components or to

call services. The data processors allow for pre and post process-

ing of the data that components use. Figure 6.4 depicts how a

data processor can be seen as a wrapper around a component.

Another advantage of the data processors is for the component

developers. A component developer can develop and focus on

components related implementation concerns without having to

worry about platform-specific requirements or conditions. That

means, it also increases the reusability of components those be-

long to the same domain and share similar characteristics.

To further understand the potential of data processors, in fol-

lowing we describe the details of how components communicate

with each other having the data processor in place to intercept

134 Domain-Specific Mashup Platform Development

Component's payload to be
passed to next component

Event Operation

Component

P
L

Data Processor

Component

P
L

Data Processor

P
L

Header / meta-data information attached
and processed by data processor

Both header and payload
pass through pipe

Figure 6.4: Message passing between component with payload and header

information

their calls. As explained already that a composition keeps the

information about connected components in terms of events and

operations references. These events and operations exchange mes-

sages. A message, which is passed from an event to an operation,

consists of two parts, i.e., a body and a header, exactly as HTTP

header and body means to HTTP protocol. The header contains

meta-data information, whereas the body contains the actual pay-

load. In our case, the header contains arbitrary meta-data that

is not of concern to a component’s implementation. Whereas,

the data in a message’s body populated by the data an event

emits. A component implementation can only access to the body

of a message not to the header as it’s only understandable by the

platform.

It is then a data processor’s responsibility that it intercept

the communication and process header section accordingly. Data

processors make different components to synchronize themselves

if they understand the header information. Figure 6.4 depicts

the communication between two components along with differ-

ent stages a message passes through. The figure shows, a white

The Mashup Engine 135

box inside written PL (i.e., payload, the actual data), a black

box represents header. This is also the point where the mashup

engine decides about switching data-flow approach (the default

approach) to control-flow approach. We explain the switching

mechanism in the next chapter in section 7.4 after conveying the

necessary concepts that are required for its understanding.

6.5.8 Configuration Interface

A mashup platform whose target users are non-technical, must

offer a user-interface that is intuitive, easy to use and consistent.

Less-skilled users tend to prefer high intuitiveness, with relatively

less but consistent UI elements to play with configuration settings.

We noticed that some mashup tools come with too complex user

interface options (e.g., Yahoo Pipes) and others with too limited

options (e.g., mashArt). However, a right balance is preferable

between the two extremes.

To this end, one possibility to let components developers de-

cide entirely on what type of configuration interface a component

should provide. The problem with this approach is, it could lead a

component’s configuration interface to arbitrarily complex level,

and it might result in major inconsistencies with other compo-

nents. In order to solve all these issues, the choice we made is to

provide a basic set of UI configuration elements along with the

parameters the input needs. Component developers can choose

among the provided set of input elements, or in case if a new

element is needed, then he can add it too.

In listing 6.3, we present an example of two configuration input

elements. The first element (line 2 to 11) is a simple text-field,

which is connected with a web service to provide auto-complete.

136 Domain-Specific Mashup Platform Development

Figure 6.5: An autocomplete field created with the configuration using Listing

6.3

This text field offers auto-completion of the text when a user

starts typing. The second input element (line 13 to 25) generates

a drop-down field and also connected with a service, that is where

it gets data from. One can notice that the second input element

is dependent on the first element, which is set using dependsOn

attribute (line 13). That means, the departmentId element gets

updated whenever the uniId element will be changed. The auto-

updation is achieved through the value and the display tags

in departmentId element, both with values {id} and {name} re-

spectively (line 18 & 19). The use of curly braces makes a variable

that is then accessible throughout a model. As both id and name

are already defined by the uniId element so it is possible to use

them anywhere in the component’s definition.

Most of the remaining options have been already explained in

earlier sections. The engine includes a few basic input fields and

it is possible to add new elements as required. If a certain type

is not available or none is specified, a simple text field is used

instead.

Listing 6.3: Configuration interface definition� �
1
2 <config ref ="uniId ">
3 <option name="label "value=" University "/>
4 <option name=" renderer ">
5 <option name="type " value="jsm.ui.input.Autocomplete " />
6 <option name="url " value="http :// ... /university/

autocomplete" />

The Mashup Engine 137

7 <option name=" search_parameter" value=" input" />
8 <option name=" value" value ="{id}"/>
9 <option name=" display" value ="{ name}"/>

10 </option >
11 </ config >
12 ...
13 <config ref=" departmentId" dependsOn =" uniId">
14 <option name=" label" value=" Department "/>
15 <option name=" renderer">
16 <option name="type" value="jsm.ui.input.Dropdown"/>
17 <option name="url" value="http ://.../{ uniId}/

departments "/>
18 <option name=" value" value ="{id}"/>
19 <option name=" display" value ="{ name}"/>
20 <option name=" default">
21 <option name=" value" value =""/>
22 <option name=" display" value="All"/>
23 </option >
24 </option >
25 </config >� �

138 Domain-Specific Mashup Platform Development

Chapter 7

ResEval Mash: A

Domain-Specific Mashup Tool

7.1 Overview

The domain-specific mashup platform described in the previous

chapter provides a consolidated ground for the development of a

domain-specific mashup tool. In this chapter, we present how we

have developed such a mashup tool for our reference domain. Re-

sEval Mash1 [Imran et al., 2012] is a mashup tool tailored to the

research evaluation field, i.e., for the assessment of the produc-

tivity or quality of researchers, teams, institutions, journals, and

the like. The tool is specifically tailored to the need of sourcing

data about scientific publications and researchers from the Web,

aggregating them, computing metrics (also complex and adhoc

ones), and visualizing them. ResEval Mash is a hosted mashup

platform with a client-side editor and runtime engine, both run-

ning in a common web browser. It supports the processing of also

large amounts of data, a feature that is achieved via the sensible

distribution of the respective computation steps over client and

1http://open.reseval.org

140 ResEval Mash: A Domain-Specific Mashup Tool

server.

In the following, we first present the important design prin-

ciples which have been learned from our past works, and also

in result of those interactions that we did with domain experts.

Moreover, we show how ResEval Mash has been implemented,

starting from the domain models introduced throughout the pre-

vious sections.

7.2 Design Principles

Starting from the considerations that we presented in the section

5.2, the implementation of ResEval Mash is based on a set of

design principles (described below), which we think are crucial

for the success of a mashup platform like ResEval Mash. These

design principles stem both from the earlier work on this direc-

tion [Namoun et al., 2010a] and also from the requirements that

we have presented in the section 4.4.1 those gathered from both

domain and end-users. Moreover, these are also based on our

past experience with the similar problems in the context of the

LiquidPub European project2.

7.2.1 Intuitive graphical user interface

The user interfaces of development tools may not be a complex

theoretical issue, but acceptance of programming paradigms can

be highly influenced by this aspect too. The user interface com-

prises, for instance, the selection of the right graphical or tex-

tual development metaphor so as to provide users with intelli-

gible constructs and instruments. It is worth investigating and

2http://liquidpub.org/

http://liquidpub.org/

Design Principles 141

abstracting the different kinds of actions and interactions the user

can have with a development environment (e.g., selecting a com-

ponent, writing an instruction, connecting two components), to

then identify the best mix of interactions that should be provided

to the developer. To this end, we built as very simple yet pow-

erful interface of the tool, that implements domain-syntax model

to its various visual parts. That is, the tool visualizes intuitive

graphical symbols those of domain-specific nature and easily un-

derstandable by domain-experts.

7.2.2 Hidden data mappings

In order to prevent the users from defining data mappings, the

mashup component used in the platform are all able to understand

and manipulate the domain concepts expressed in the DCM, which

defines the domain entities and their relations. That is, they ac-

cept as input and produce as output only domain entities (e.g., re-

searchers, publications, metric values). Since all the components,

hence, speak the same language, composition can do without ex-

plicit data mappings and it is enough to model which component

feeds input to which other component.

7.2.3 Data-intensive processes

Although apparently simple, the chosen domain is peculiar in

that it may require the processing of large amounts of data. For

instance, we may need to extract and process all the publica-

tions of the Italian researchers, i.e., on average several dozens

of publications by about sixty-one thousand researchers (as the

scenario presented in the section 4.2 demands). Loading these

142 ResEval Mash: A Domain-Specific Mashup Tool

large amounts of data from remote services and processing them

in the browser on the client side is unfeasible due to bandwidth,

resource, and time restrictions. Data processing should therefore

be kept, especially for this kind of scenarios, on the server side

(we achieve this via dedicated RESTful web services running on

the server).

7.2.4 Platform-specific services

As opposed to common web services, which are typically designed

to be independent of the external world, the previous two prin-

ciples instead demand for services that are specifically designed

and implemented to efficiently run in our domain-specific archi-

tecture. That is, they must be aware of the platform they run on.

As we will see, this allows the services to access shared resources

(e.g., the data passed between components) in a protected and

speedy fashion.

7.2.5 Runtime transparency

Finally, research evaluation processes like our reference scenarios

focus on the processing of data, which – from a mashup paradigm

point of view – demands for a data flow mashup paradigm. Al-

though data flows are relatively intuitive at design time, they

typically are not very intuitive at runtime, especially when pro-

cessing a data flow logic takes several seconds (as could happen in

our case). In order to convey to the user what is going on during

execution, we therefore want to provide transparency in the state

of a running mashup.

We identify two key points where transparency is important

ResEval Mash Architecture 143

in the mashup model: component state and processing state.

At each instant of time during the execution of a mashup, the

runtime environment should allow the user to inspect the data

processed and produced by each component, and the environ-

ment should graphically communicate the processing progress by

animating a graphical representation of the mashup model with

suitable indications (i.e., in our case we use different colors to

represent different states).

These principles require ResEval Mash to specifically take into

account the characteristics of the research evaluation domain. Do-

ing so produces a platform that is fundamentally different from

generic mashup platforms, such as Yahoo! Pipes3.

7.3 ResEval Mash Architecture

7.3.1 Overview

Figure 7.1 illustrates the internal architecture that takes into ac-

count the above principles and the domain-specific requirements

introduced throughout the previous sections: Hidden data map-

pings are achieved by implementing mashup components that all

comply with the domain conceptual model described in Figure

5.1. If all instances of domain activities understand this domain

concept model and produce and consume data according to it,

we can omit data mappings from the composition environment

in that the respective components simply know how to interpret

inputs. The processing of large amounts of data is achieved at

the server side by implementing platform-specific services that

all operate on a shared memory, which allows the components

3http://pipes.yahoo.com/pipes/

http://pipes.yahoo.com/pipes/

144 ResEval Mash: A Domain-Specific Mashup Tool

to read and write back data and prevents them from having to

pass data directly from one service to another. To provide users

with a mashup environment that has an intuitive graphical UI we

design first a domain syntax as explained in section 5.7.3, which

provides each object in the composition environment with a vi-

sual metaphor that the domain expert is acquainted with and that

visually convey the respective functionalities. For instance, Re-

sEval Mash uses a gauge for metrics and the icons that resemble

the chart types of graphical output components.

The core of the platform is the functionalities exposed to the

domain expert in the form of modeling constructs. These must

address the specific domain needs and cover as many as possible

mashup scenarios inside the chosen domain. To design these con-

structs, a thorough analysis of the domain is needed, so as to pro-

duce a domain process model as described in section 5.7.1, which

specifies the classes of domain activities and, possibly, ready pro-

cesses that are needed (e.g., data sources and metrics). The com-

ponents and services implement the domain process model i.e.,

all the typical domain activities that characterize the research

evaluation domain. Runtime transparency is achieved by control-

ling data processing from the client and animating accordingly

the mashup model in the Composition Editor. Doing so requires

that each design-time modeling construct has an equivalent run-

time component that is able to render its runtime state to the

user. The modeling constructs are the ones of the domain-specific

syntax illustrated in Figure 5.6, which can be used to compose

mashups like the one in our reference scenario (see Figure 5.7).

Given such a model, the Mashup Engine is able to run the mashup

according to the meta-model introduced in Section 5.6. The role

ResEval Mash Architecture 145

Components ServicesComponents, Compositions
repository services

Authorization and
authentication services

Shared Memory Services

CDM Memory Manager

Shared
Memory

Common Data
Model Module

DatabaseRepositoryRepository

Domain-Specific
Classes

XSD
- Components defs.
- Compositions defs.

- Users
- Access rights
- ...

Mashup Engine

Component Registration
InterfaceComponent Editor

Authentication Interface

CDL

Component Definition
Langiage

XSD

Domain Concept
Model

--
--

--
--

Definition

JS Implementation

Component's artifacts

conforms to

restricted to

requries

au
th

en
tic

at
io

n
ca

lls

usesuses

uses uses

allow access to allow access to

uses

implements

Client

Server

...
Various modules of

mashup engine

caches datauses

usesgets datagets datagets data

WEB

External service & databases

Figure 7.1: ResEval Mash Architecture presenting its core module both on

client and server sides

of the individual module in Figure 7.1 is described as follows:

7.3.2 Mashup Engine

The most important part of the platform is the Mashup Engine,

which is developed for the client-side processing, that is we control

data processing on the server from the client. We have already

presented and described the details of the mashup engine’s in-

ternal behavior in the previous chapter. However, here we just

try to highlight its interaction with those modules that we intro-

duced in the ResEval Mash’s architecture. The engine is primar-

ily responsible for running a mashup composition, triggering the

component’s actions and managing the communication between

client and server. As a component either binds with one or more

146 ResEval Mash: A Domain-Specific Mashup Tool

A component (i.e., gauge symbole represents a metric)

List of components under
various categories.

Composition name

Composition textual
description.

A component with its
configuration settings open.

A pipe that connects
two components through
events and operations.

Composition's visibility controller.
Public visibility shows a composition
to all users.

Editor shows important tips related
to the usage of composition editor.

Important actions related to a
composition can be performed here.

Run-time status of a component shows the state of execution
i.e., processing, execution done or in case of execution failure.

Figure 7.2: ResEval Mash’s composition editor and its various parts

services or with a JavaScript implementation, the engine is re-

sponsible for checking the respective binding and for executing

the corresponding action. The engine is also responsible for the

management of complex interactions among components. A de-

tailed view of these possible interaction scenarios is given later in

this chapter.

7.3.3 Composition editor

Figure 7.2 shows ResEval Mash’s composition editor. The com-

position editor provides the mashup canvas to the users. It shows

a components list from which users can drag and drop compo-

nents onto the canvas and connect them. The composition editor

implements the domain-specific mashup meta-model and exposes

it through the domain syntax. From the editor it is also possible

to launch the execution of a composition through a run button

and hand the mashup over to the mashup engine for execution.

ResEval Mash Architecture 147

Each container with a symbol on the canvas represents one

component with its name, a symbol, configuration interface, and

in case of a UI component it’s output interface. On the left side

of a component shows its input ports (i.e., where it accepts con-

nections) and on the right side it shows output ports (i.e., where

it emits data to the next connected components). Components

can be expanded to view their configuration interface and various

ports. To connect two components, a user has to click and drag

from the output port of a source component and drop and release

click on input port of a target component. Figure 7.3 depicts how

connections can be performed. Composition editor highlights all

compatible ports (i.e., checking domain concepts compatibility)

of all components present on the canvas upon a mouse click on a

component’s event (i.e., output port), that is how editor knows

that user intends to make a connection.

To provide run-time transparency, which convey to users the

state of each component’s execution, composition editor shows

various visual states of the components. A component can have

and change among three visual states. These visual states cor-

respond to a component’s execution status, like a component

which is not in the running state shows its label and boarder

in black color. Whilst, a component which is in the running state

shows an extra label in yellow color right below the component,

which shows the operation name which is being executed. The

third state represents the successful execution of a component and

shows both component name and its boarder in green color. The

fourth and the final state, which shows component’s boarder and

a notice in a red color that represents the component execution

failed due to some reason.

148 ResEval Mash: A Domain-Specific Mashup Tool

	
Figure 7.3: ResEval Mash’s composition editor highlighting compatible ports

upon making connections among components

7.3.4 Component Registration Interface

The tool also comes with a component registration interface for

developers, which aids them in the setup and the addition of new

components to the platform. The interface allows the developer

to define components starting from ready templates. In order to

develop a component, the developer has to provide two artifacts:

(i) a component definition (Figure 7.4) and (ii) a component im-

plementation (Figure 7.5). The implementation consists either

of JavaScript code for client-side components or it can be linked

to a web service, which is achieved providing a binding to a web

service for server-side components.

To provide ease to component developers , especially with dy-

namic, untyped languages such as JavaScript, testing and debug-

ging can take much time since errors are often only discovered

when the code is executed, the editor provides a supportive in-

terface which allows easy adjustments to the code directly in the

browser. Developing inside the browser is not very popular yet,

ResEval Mash Architecture 149

List of symbols to be used
by components to implement
domain-specific syntax.

Component's model
definition following on CDL.On mouse hover component

shows pencil button to open
it to in development mode.

Button to create new
components

Figure 7.4: ResEval Mash’s component registration interface showing a com-

ponent’s definition

but is possible, especially for languages native to the browser en-

vironment, such as JavaScript. Developers do not need to upload

code changes of a component repeatedly after some changes are

made as the editor automatically identifies that new changes are

available and hence it deploys new version.

The component editor consists of two separate editors, one for

the component model definition and one for the implementation.

Both editors provide syntax highlighting and rudimentary code

completion support. For example, the component model editor

offers code completion for the elements of our XML representa-

tion. This is realized with the help of the CodeMirror4 library.

4http://codemirror.net/

150 ResEval Mash: A Domain-Specific Mashup Tool

Figure 7.5: ResEval Mash’s component registration interface showing a com-

ponent’s implementation

7.3.5 Server-Side Services

On the server side, we have a set of RESTful web services, i.e.,

the repository services, authentication services, and components

services. Repository services enable CRUD operations for com-

ponents and compositions, that is, the mashup engine interacts

with these services to perform CRUD operations. Authentica-

tion services are used for user authentication and authorization.

Components services manage and allow the invocation of those

components whose business logic is implemented as a server-side

web service. These web services, together with the client-side

components, implement the domain process model. The idea be-

hind these services was to move the computation from the client

side to the server side to improve performance by utilizing server’s

computational power and big memory hence reducing client side

burden. The interaction details between client side components

ResEval Mash Architecture 151

and their services is explained in section 7.5. And, a detail ex-

planation of how to develop a service for a component is given in

section 7.6.

7.3.6 CDM Memory Manager, CDM Module & Shared

Memory

The common data model (CDM) memory manager enforces and

supports the checking of data types in the system. To use the

domain-specific data-types (i.e., DCM concepts) for various mod-

ules on the server side, it is necessary to have an interface that

can read a domain-specific model (e.g., an XML schema defini-

tion (XSD) in our case), and can parse it, generate implemen-

tation classes. These classes then expose their definitions to the

other modules. In order to configure the CDM, the CDM mem-

ory manger generates corresponding Java classes (e.g., in our case

these classes are POJO, annotated with JAXB annotations) from

an XSD that encodes the domain concept model. Having the re-

quired data-types context in place, the CDM memory manager

is then responsible for the insertion and retrieval of data to and

from the shared memory.

On the server side, a shared memory is maintained that CDM

memory manager uses it to read and write data. The shared

memory can store multiple states of data, and also multiple in-

stances of the same data. However, all the data must comply

with the data-types provided by the common data model mod-

ule. The insertion and retrieval to and from the shared memory

follows key-value pair mechanism, where the value represents ac-

tual data and key works as an identifier. Client side mashup

engine initially generates a key, which passes along the data that

152 ResEval Mash: A Domain-Specific Mashup Tool

is then used by the CDM memory manger to store in the shared

memory. Hence, all data processing services read and write to

this shared memory through the CDM memory manager. That

means, the CDM interacts with the shared memory to provide

a space for each mashup execution instance if required. In our

first prototype we use the server’s working memory (RAM) as

shared memory, which allows for high performance. Clearly, this

solution fits the purpose of our prototype but it may not scale

to in-production installations, which may need to deal with large

numbers of users and large amounts of data that only hardly can

be kept in RAM if it offers small memory. However, in our fu-

ture work, we aim to develop a persistent database-based shared

memory.

7.3.7 Local Database and the Web

Both the database and the Web represent the data which is re-

quired and used by the component services. We as a platform

provider provide a database5 and a basic set of services on top of

it. A third-party service can be deployed and thus it can use an

external database anywhere on the Web. However, the develop-

ment of a third-party service must comply with the specification

presented later in the section 7.6.

5The database holds data that we have crawled, downloaded from various sources for

performance purposes.

Intelligent Switching between Data-flow and Control-flow 153

7.4 Intelligent Switching between Data-flow and

Control-flow

As explained earlier that the use of server-side web services is one

way to implement business logic of a component, which can also

be implemented through JavaScript that is we call these compo-

nents as client-side components. For components whose business

logic is implemented by server side services require to send data

from client side to the server side for various processing. More-

over, if a composition comprised of more than one such com-

ponent then for each such component data must be sent to the

server side from the client and vice-versa. This scenario will be

even worse, especially if the data (i.e., data which is being used

in communications) are bigger; as in our case too, then follow-

ing this strategy poses serious challenges in terms of speed that

decreases an overall performance of the platform. To deal with

data-intensive compositions, which deals with huge amounts of

data, the traditional mechanism (i.e., data-flow back and forth

between client and server) is not an appropriate choice. For this

reason, the mashup engine adds a Control-flow layer, which pro-

vides a substantial increase of performance during such situations.

The platform achieves the functionality of intelligently switch-

ing between data to control flow and back to data-flow with the

help of data processors presented in 6.5.7. The data processors

are designed to intercept any operation call, request or event. To

call a corresponding web service of a component, it is required

to intercept whenever an operation of the component is called,

and sending a request to the service. This is achieved by con-

figuring a ServiceCall data process, a specific type of the data

154 ResEval Mash: A Domain-Specific Mashup Tool

Configured for X?

Key exists?

Set Key

Send data?

Need data?

Send Request

Generate key

Add data

Add data request
parameter

Receive
response

Store key

Store data

Data exists?

Skip Component
Logic?

Operation X called

Return control Trigger event

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

Figure 7.6: Service Call Data Processor Flow Chart

processor as listed in the Listing 7.1. The operation ”get re-

searchers” (line 5) is configured, having a service URL (line 6),

with passthrough parameter as false and overwrite parameter as

true and also mentioning what type of service it is (line 9). The

passthrough parameters represents if the data (i.e., the service re-

sponse) will be needed by the component implementation (i.e.,

client-side implementation) for performing some actions before it

will be handed over to the next component. The overwrite pa-

Intelligent Switching between Data-flow and Control-flow 155

rameter represents if the original data will be overwritten or not.

These lines of configuration make sure that whenever an opera-

tion of a component is called, the data processor checks for its

ServiceCall configuration.

Listing 7.1: Data processor configuration� �
1 ...
2 <processor cls="org.reseval.processor.ServiceCall">
3 <![CDATA[
4 {
5 "get_researchers ": {
6 "url": "http :// example.com/getResearchers",
7 "passthrough ": false ,
8 "overwrite ": true ,
9 "method ": "POST"

10 }
11 }
12 }
13]]>
14 </processor >
15 ...� �

The overall procedure, which is to detect and to decide when

and where to send data, is represented in the flow chart in Figure

7.6 and explained as follows. In case, if a servicecall is configured,

the data processor inspects the header of the message for a key

(i.e., a numeric identifier comprises of composition id and time

stamp information) which should be dispatched to the service

to be called. The key is used on the server side and used as

an identifier for the data in the shared memory. A new key is

generated by the data processor if one is not found in the message,

which also means the particular data does not exist on the server

side.

The data processor further checks if some data already exist in

the message body that will be dispatched to the server along with

the Data Request parameter. The data request can be set either

as ”yes” or ”no”, which describes whether the response of the

service has to be sent back to the client side or not. The decision

about setting data request as ”yes” or ”no” depends on the next

156 ResEval Mash: A Domain-Specific Mashup Tool

component in the composition connected to the component that

is being inspected. A component whose business logic is imple-

mented as a JavaScript file requires the data on the client side for

processing, on the other hand a component whose business logic

is implemented by a service on the server side does not require

the data to be present on the client side. That is how the mashup

engine using data processors detects and makes decisions accord-

ingly. The details of each particular interaction scenario between

client and server side components as described in the next section

7.5.

Figure 7.7 depicts how the data processor intercept call upon

an event trigger. First it checks whether the triggered event is

the result of an operation or a request. In both cases, the control

data presence is checked. If control data is available, the key is

set in the header, the response data is set in the body of the

message. Figure 7.8 depicts the flow chart of the mechanism used

to detect whether the target component is a client-side or a server-

side component. The result is then used to configure dataRequest

parameter values that decides whether to fetch data or not on the

client-side.

7.5 Components Models and Data Passing Logic

There are two component models in ResEval Mash, depending on

whether the respective business logic resides either on the client

or the server side: server components (SC) are implemented as

RESTful web services that run at the server side; client compo-

nents (CC) are implemented as JavaScript file and run on the

client side. Independently of the component model, each com-

Components Models and Data Passing Logic 157

Control data
exists?

Set Key in header

Data exists?

Return control

Set data in body

Event Y triggered

No

Yes

No

Yes

Get event trigger
(request or
operation)

Figure 7.7: Service Call Data Processor Flow Chart: Event

ponent has a client-side component front-end, which allows (i)

the Mashup Engine to enact component operations and (ii) the

user to inspect the state of the mashup during runtime. All com-

munications between components are mediated by the Mashup

Engine, internally implementing a dedicated event bus for ship-

ping data via events. Server components require interactions with

their server-side business logic and the shared memory; this in-

teraction needs to be mediated by the Mashup Engine. Client

158 ResEval Mash: A Domain-Specific Mashup Tool

Is this component
the target?

Do nothing

Send data from
service

Component X connected
with component Y

NoNo

No Yes

is target configured
for service call?

is source
configured for
service call?

Get data from
service

YesYes

Figure 7.8: Detecting client-side and server-side components

components directly interact with their client-side business logic;

this interaction does not require the intervention of the Mashup

Engine.

The components consume or produce different types of data:

actual data (D), configuration parameters (CP), and control data

like request status (RS), a flag that conveys whether actual data

is required in output (DR), and a key (K) identifying data items

in the shared memory. All components can consume and produce

actual data, yet, as we will see, not always producing actual data

in output is necessary. The configuration parameters enable the

setup of the components. The request status enables rendering

the processing status at runtime. The key is crucial to identify

data items produced by one component and to be ”passed” as

input to another component. As explained earlier, instead of

directly passing data from one service to another, for performance

reasons we use a shared memory that all services can access and

only pass a key, i.e., a reference to the actual data from component

to component.

Based on the flow of components in the mashup model, we

can have different data passing patterns. Given the two different

Components Models and Data Passing Logic 159

types of components, we can recognize four possible interaction

patterns. The four patterns are illustrated in Figure 7.9. All of

these interactions are mediated by the mashup engine, hence nei-

ther a composition composer nor a component developer needs to

think about these complexities while component or composition

development. In particular, we may have two types of interac-

tion, that is, (i) the interaction among components that are con-

nected in the designed composition and (ii) the interaction among

a component and its server-side implementation (only in the case

of components of type SC). Both these types of interaction are

managed by the Mashup Engine. In the first type, the Mashup

Engine manages the event bus used to publish the components’

events (carrying associated data) and trigger the subscribed com-

ponents’ operations. In the second type, the Mashup Engine acts

as a proxy for the web service operation invocation with the help

of data processors. In both cases, the Mashup Engine has the

role of managing and including the correct control data in all

the events and service invocations, that is crucial for letting the

platform work properly. In following we elaborate individual in-

teraction pattern separately.

1. SC-SC interaction: As shown in the Figure 7.9, both the

components (SC A & SC B) are of type SC. Component A is

connected with component B. Since component A is the first

component in the composition and it does not require any

input, it can start the execution immediately. It is the re-

sponsibility of the Mashup Engine to trigger the operation of

the component A (step 1). At this point, component A calls

its back-end web service through the Mashup Engine, pass-

ing only the configuration parameters (CP) to it (2). The

160 ResEval Mash: A Domain-Specific Mashup Tool

SC A SC B CC C CC D SC E

Service A Service B Service E

Mashup Engine

Shared Memory

Component services

Component front-ends

JS logic C JS logic D

Se
rv

er

 C
lie

nt

Logical data flow

Physical data flow

1:
 a

ut
o

ru
n

2:
 [C

P]
3:

 [K
,C

P]

10: [K,D]

5:
 [K

,R
S]

6:
 [R

S]

7:
 [K

]

8:
 [K

,C
P]

9:
 [K

,C
R

,C
P]

11
: [

K,
R

S,
D

]
12

: [
R

S]

13
: [

D
]

14
: [

D
]

15
: [

D
]

18
: [

D
,C

P]
19

: [
K,

D
,C

P]

20: [K,D]

21
: [

K,
R

S]
22

: [
R

S]

4: [K,D]
16

: [
D

]

17
: [

D
]

Payload

Component-internal communiation

SC = Server component
CC = Client component

K = Key
DR = Output data required
CP = Configuration parameters
D = Data
RS = Request status

Figure 7.9: ResEval Mash’s internal data passing logic.

Mashup Engine, analyzing the composition model, knows

that the next component in the flow is also a server compo-

nent (component B), so it extends component A’s request

adding a key control information to the original request,

which can be used by component A’s service to mark the

data it produces in the shared memory. Hence, the Mashup

Engine invokes service A (3). Service A receives the con-

trol data, executes its own logic, and stores its output into

the Shared Memory (4). Once the execution ends, Service A

sends back the control data (i.e., key and request status) to

the Mashup Engine (5), which forwards the request status

to component A (6); the engine keeps track of the key. With

this, component A has completed and the engine can enable

Components Models and Data Passing Logic 161

the next component (7). In the SC-SC interaction, we do

not need to ship any data from the server to the client.

2. SC-CC interaction: Once activated, component B enacts

its server-side logic (8, 9, 10). The Mashup Engine detects

that the next component in the flow is a client component,

so it adds the DR control data parameter in addition to the

key and the configuration parameters, in order to instruct

the web service B to send actual output data back to the

client side after it has been stored in the Shared Memory.

In this way, when service B finishes its execution, it returns

the control data and the actual output data of the service

(i.e., key, request status and output data) to the Mashup

Engine (11), which then passes the request status to compo-

nent B (12) and the actual data to the next component in

the mashup, i.e., component C (13).

3. CC-CC interaction: Client component to client compo-

nent interactions do not require to interact with the server-

side services. Once the component C’s operation is triggered

in response to the termination of component B, it is ready to

start its execution and to pass component B’s output data

to the JavaScript function implementing its business logic.

Once component C finishes its execution, it sends its out-

put data back to the engine (14), which is then able to start

component D (15) by passing C’s output data.

4. CC-SC interaction: After the completion of component

D (16), the Mashup Engine passes the respective data to

component E as input (17). At this point, component E calls

its corresponding service E, passing to it the actual data and

162 ResEval Mash: A Domain-Specific Mashup Tool

possible configuration parameters (18), along with the key

appended by the Mashup Engine (19). Possibly, also the

Output Data Request flag could be included in the control

data but, as explained, this depends on the next component

in the flow, which for presentation purpose is not further de-

fined in Figure 7.9. Eventually, service E returns its response

(i.e., key and request status – plus possible output data if

the DR flag is present) to the Mashup Engine (21), which is

then delivered to component E (22).

While ResEval Mash fully supports these four data passing

patterns and is able to understand whether data are to be pro-

cessed at the client or the server side, it has to be noted that the

actual decision of where data are to be processed is up to the de-

veloper of the respective mashup component. Client components

by definition require data at the client side; server components

on the server side. Therefore, if large amounts of data are to

be processed, a sensible design of the respective components is

paramount. As a rule of thumb, we can say that data should

be processed on the server side whenever possible, and compo-

nent developers should use client components only when really

necessary. For instance, visualization components of course re-

quire client-side data processing. Yet, if they are used as sinks in

the mashup model (which is usually the case), they will have to

process only the final output of the actual data processing logic,

which is typically of smaller size compared to the actual data

sourced from the initial data sources (e.g., a table of h-indexes vs

the lists of publications by the set of the respective researchers).

The Domain-Specific Service Ecosystem 163

7.6 The Domain-Specific Service Ecosystem

An innovative aspect of our mashup platform is its approach based

on the concept of domain-specific components. In Section 7.3 we

described the role of the Components services in the architecture

of the system. These are not simply generic web services, but web

services that constitute a domain-specific service ecosystem, i.e., a

set of services respecting shared models and conventions and that

are designed to work collaboratively where each of them provides

a brick to solve more complex problems proper of the specific

domain. Having such an ecosystem of compatible and compliant

services, introduces several advantages that make our tool actu-

ally usable and able to respond to the specific requirements of the

domain we are dealing with.

Given the important role domain-specific components and ser-

vices play in our platform, next we describe how they are designed

and illustrate some details of their implementation and their in-

teractions with the other parts of the system.

A ResEval Mash component requires the definition of two main

artifacts: the component descriptor (i.e., following the component

definition language specifications) and the component implemen-

tation.

The component descriptor describes, to briefly mention,

the main properties of a component, which are:

1. Operations. Functions that are triggered as a consequence of

an external event that take some input data and perform a

given business logic.

2. Events. Messages produced by the component to inform the

external world of its state changes, e.g., due to interactions

164 ResEval Mash: A Domain-Specific Mashup Tool

with the user or an operation completion. Events may carry

output data.

3. Implementation binding. A binding defining how to reach

the component implementation.

4. Configuration parameters. Parameters that, as opposed to

input data, are set up at composition design time by the

designer to configure the component’s behavior.

5. Meta-data. The component’s information, such as name and

natural language description of the component itself.

In our platform the component descriptors are implemented

as XML file, which must comply with an XML Schema Defini-

tion (XSD). The XSD defines both the schema for the component

descriptors and the admitted data types. Validating the descrip-

tor against the data types definition we can actually enforce the

adoption of the common domain concept model (DCM), which

enable smooth composability and no need for data mapping in

the Composition Editor, as discussed in Section 7.2.

For example, an excerpt of the Italian Researchers component

descriptor along with its representation in the Composition Ed-

itor is shown in Figure 7.10. The component is implemented

through a server-side web service. Its descriptor does not present

any operation and it has an event called Researchers Loaded,

which is used to emit the list of researchers that are retrieved by

the associated back-end service. The binding between the service

and its client-side counterpart is set up in the descriptor through

the <request> tag. As shown, this tag includes the information

needed to invoke the service, i.e., its end-point URL and the con-

figuration parameters that must be sent along with the request. In

The Domain-Specific Service Ecosystem 165

Figure 7.10: The descriptor of the Italian Researchers component along with

its representation in the Composition Editor

addition, the attribute triggers specifies the event to be raised

upon service completion. The attribute runsOn, instead, speci-

fies the component’s operation that must be invoked to start the

service call. In this particular case, since the component has no

operations and no inputs to wait for, when the mashup is started

the Mashup Engine automatically invokes the back-end service

associated with the component, causing the process execution

to start. If we were dealing with a component implemented via

client-side JavaScript, we would not need the <request> tag, and

the implementation binding would be represented by the ref at-

tribute of the component operation or event, whose value would

be the name of the JavaScript function implementing the related

business logic.

The component in Figure 7.10 has different configuration pa-

166 ResEval Mash: A Domain-Specific Mashup Tool

rameters, which are used to define the search criteria to be applied

to retrieve the researchers. We can see the uniId parameter. Be-

side the name of the related label, we must specify the renderer

to be used, that is, the way in which the parameter will be repre-

sented in the Composition Editor. In this case, we are using a text

input field with auto-completion features. The auto-completion

feature is provided by a dedicated service operation that can be

reached at the address specified in the url option. Finally, we

can see the presence of the configTemplate tag, which is just

used to set the order in which the parameters must be presented

in the component representation in the Composition Editor.

The other main artifact that constitutes a ResEval Mash com-

ponent is its implementation . As already discussed above, a

component can be implemented in two different ways: through

client-side JavaScript code (client component) or through a server-

side web service (server component). The choice of having a

client-side or a server-side implementation depends mainly on the

type of component to be created, which may be a UI compo-

nent (i.e., a component the user can interact with at runtime

through a graphical interface) or a service component (i.e., a

component that runs a specific business logic but does not have

any UI). UI components (e.g., the Bar Chart of our scenario)

are always implemented through client-side JavaScript files since

they must directly interact with the browser to create and man-

age the graphical user interface. Service components (e.g., the

Microsoft Academic Publications of our scenario), instead, can

be implemented in both ways, depending on their characteris-

tics. In the research evaluation domain, since they typically deal

with large amounts of data, service components are commonly

The Domain-Specific Service Ecosystem 167

implemented through server-side web services. In such a way,

they do not have the computational power constraints present

at the client-side and, moreover, they can exploit the platform

features offered at the server-side, like the Shared Memory mech-

anism, which, e.g., permit to efficiently deal with data-intensive

processes. In other cases, where we do not have particular compu-

tational requirements, a service component can be implemented

via client-side JavaScript, which runs directly in the browser. The

JavaScript implementation, both in case of UI and service compo-

nents, must include the functions implementing the component’s

business logic.

For example, our Italian Researchers service component is im-

plemented at server-side since it has to deal with large amounts

of data (i.e., thousands of researchers), so it belongs to the server

components category (introduced in Section 7.5). This type of

components, to correctly work within our domain-specific plat-

form, must be implemented as Java RESTful web service follow-

ing specific implementation guidelines. In particular, the service

must be able to properly communicate with the other parts of the

system and, thus, it must be aware of the data passing patterns

discussed before and the shared memory. Figure 7.11 shows the

interaction protocol with the other components of the platform

the service must comply with.

The service is invoked through an HTTP POST request by the

client-side Mashup Engine, performed through an asynchronous

Ajax invocation (the half arrowheads in the figure represent asyn-

chronous calls). The need to expose all the operations through

HTTP POST comes from the fact that in many cases it must

be possible to send complex objects as parameters to the service,

168 ResEval Mash: A Domain-Specific Mashup Tool

Database.getData(SQL)

Response: Data

Client-Side
Mashup Engine Service Server-Side

Engine Database

(Key, OutputDataRequired, ConfigParams)

SharedMemory.getData(Key)

Response: InputData

Core Business Logic

SharedMemory.storeData(Key, OutputData)

Response: OutputData

HTTP POST http://.../resource

OPT:

[if OutputDataRequired = false]
Response: Key, RequestStatus

[else]
Response: Key, RequestStatus, OuputData

OPT:

ALT:

Figure 7.11: Platform-specific interaction protocol each service must comply

with

The Domain-Specific Service Ecosystem 169

which would not be possible in general using a GET request.

For instance, in our example, the operation is invoked through

a POST request at the URL http://.../resevalmash-api/

resources/italianSource/researchers and the component’s

configuration parameters (e.g., selected university or department)

are posted in the request body. Besides the parameters, the body

also includes control data, that is the key and the OutputDataRequired

flag.

Once the request coming from the Mahup Engine is received by

the service, the service code must process it following the sequence

diagram shown in Figure 7.11. If the service is designed to accept

input data, first it will get the data from the Shared Memory

through the API provided by the Server-Side Engine, using the

received key as parameter.

Then, the service may need to have access to other data for

executing its core business logic. The services developed and de-

ployed by us (as platform owners) can use the system database

to persistently store their data, as shown in the second optional

box. This is, for instance, the case of our Italian Researchers com-

ponent that retrieves the researchers from the system database,

where the whole Italian researchers data source has been pre-

loaded for efficiency reasons. Third-party services, instead, do

not have access to the system database but they can use external

data sources as external databases or online services available on

the Web. Clearly, the usage of the system database guarantees

higher performances and avoids possible network bottlenecks.

Once the service has retrieved all the necessary data, it starts

executing its core business logic (for our example component, it

consists in the filtering of the researchers of interest based on the

http://.../resevalmash-api/resources/italianSource/researchers
http://.../resevalmash-api/resources/italianSource/researchers

170 ResEval Mash: A Domain-Specific Mashup Tool

configuration parameters). The business logic execution results

are then stored in the Shared Memory. Typically, all the services

will produce some output data, although, possibly, there could

be exceptions like, for instance, a service that is only designed to

send emails.

Finally, the service must send a response back to the Mashup

Engine. The response content depends on the OutputDataRequest

flag value. If it is set to false, as shown in the upper part of the

alternative box in the figure, the response will contain the Key

and the RequestStatus of the service (success or error). If the

flag is set to true, in addition to those control data, the response

will also contain the actual OutputData produced by the service

logic.

So far, all components and services for ResEval Mash have been

implemented by ourselves, yet the idea is to open the platform

also to external developers for the development of custom compo-

nents. In order to ease component development, e.g., the setup of

the connection with the Shared Memory and the processing of the

individual control data items, we will provide a dedicated Java

interface that can be extended with the custom logic. The de-

scription, registration, and deployment of custom components is

then possible via the dedicated Component Registration Interface

briefly described in Section 7.3.

7.7 ResEval Mash in Action: Various Mashup

Compositions

This section presents various mashup compositions that are de-

veloped using the ResEval Mash tool. The first two compositions

ResEval Mash in Action: Various Mashup Compositions 171

implement the scenarios described in chapter 4.

7.7.1 UniTN Department Evaluation Scenario

The department evaluation procedure that is used by the Univer-

sity of Trento (UniTN) is described in the section 4.2. According

to its description, we need to fetch UniTN and Italian researchers

those belong to the same discipline as of UniTN ones. For both,

the UniTN and the Italian researchers the publications have to be

retrieved from a publication data source, which are then ranked

based on the UniTN venue ranking scheme. Finally ranked pub-

lications are used to compute impact percentile using negative

binomial distribution.

Figure 7.12 depicts the implemented version of UniTN depart-

ment evaluation scenario using ResEval Mash tool. The figure

shows in the center (in dotted border) the original mashup, along

with configuration panels of a few important components and the

final output of the mashup. In total ten components are used

to compose this procedure in which seven are distinct and other

three components are instances of some of these components (e.g.,

DISI researchers, Microsoft Academic, Publication Impact etc).

The composition starts with two parallel flows: one computing the

weighted publication number (the impact metric in the specific

scenario) for all Italian researchers in a selected discipline sector

(e.g., Computer Science). The other computes the same ”impact”

metric for the researchers belonging to the UniTN computer sci-

ence department. The former branch defines the distribution of

the Italian researchers in the Computer Science discipline sector,

the latter is used to compute the impact percentile of the UniTn’s

researchers and to determine their individual percentile, which are

172 ResEval Mash: A Domain-Specific Mashup Tool

DISI Researchers component
configured to fetch all the researchers
in the selected department

Italian Researchers component
configured to fetch all the researchers
in the selected sector

Microsoft Academic component
is configured to get publications
only of given researchers from
2008 to 2010

Publication Impact having two
input ports, one for publications
and other for venue rankings

Output (anonymized) of the
mashup in pie chart

Output (anonymized) of the
mashup in bar chart

M
as

hu
p

C
om

po
si

tio
n

xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx

Figure 7.12: UniTN Dept. Evaluation Mashup Composition: showing compo-

nents config panels and output (anonymized) with detail description

finally visualized in a bar and a pie chart.

Most of the components that are used in this composition are of

server-side type, that is, the actual computation is performed on

the server, except two components (i.e., bar chart and pie chart).

As described earlier in this chapter that server-side implementa-

tion (i.e., using a web service) is preferable for components those

manipulate big data.

ResEval Mash in Action: Various Mashup Compositions 173

Google Scholar Live component
crawls Google Scholar on run-time
and gets publications of the given
researchers

This component represents the
fixed threshold values set by the
authorities.

All three components (Contemporary
H-Index, Article normalizer and Citation
normalizer) take publications as input
and generate a normalized output based
on the academic age of a researcher

Metrics Analyzer component takes all metrics and the
threshold values as input and for each researcher
determine whether he/she qualifies or not. The output
can be seen in some visualization component.

achieved

Figure 7.13: Italian Professorship Selection Mashup Composition: showing

components and output with detail description

7.7.2 Italian Professorship Selection Scenario

In section 4.4, we elaborated the evaluation procedure used by the

National Agency for the Evaluation of Universities and Research

Institutes (ANVUR) for hiring and promoting professors. The

procedure states that metrics (e.g., contemporary h-index, num-

ber of articles, number of citations) used for the evaluation must

be normalized prior to perform comparison with the provided

thresholds values. These values have been fixed by ANVUR as a

research quality threshold for a specific area.

Figure 7.13 depicts the implementation of the evaluation pro-

cedure, which has been developed using ResEval Mash. In the

mashup composition we use seven components in total. The com-

position starts from the Google Scholar Live component, which

174 ResEval Mash: A Domain-Specific Mashup Tool

takes one or more researchers’ names as input and crawls Google

Scholar web site on run-time to get their publications. Retrieved

publication list for each researcher is then given to three compo-

nents (i.e., contemporary h-index, article normalizer and citation

normalizer) to compute normalized metric according to the de-

fined procedure in the original evaluation document. The metric

analyzer component, however, takes input of all required metrics

and the thresholds to determine for each researcher that he/she

qualifies or not. The results of this component can be displayed

in a visualization component, as in our case we show the results

in a stepped area chart component.

7.7.3 Computing and Comparing H and G -Index Val-

ues of Researchers

To show how ResEval Mash can be used to compute various met-

rics, we compose a mashup that calculates the H and G -Index

values of researchers who belong to the University of Trento Com-

puter Science Department. Figure 7.14 (top) depicts the mashup

composition that is developed in ResEval Mash.

The composition starts with DISI Researchers component, which

is configured to retrieve (i.e., from a local repository) all the re-

searchers of Computer Science department of UniTN. The list

of researchers is then passed to the next component, which is

in this case ”Microsoft Academic” component. This component

takes as input the researchers list and retrieves publications for

each. Next, the output of the Microsoft Academic component is

consumed by two components, which are H-Index and G-Index.

These two components compute the H and G values, which is then

visualized in a bar chart as shown in the figure 7.14 (bottom).

ResEval Mash in Action: Various Mashup Compositions 175

This component is configured to
get all UniTN computer Science
reseachers.

Microsoft Academic component
fetches publications for the given
researchers as input.

H and G -index calculate
h and g values for each
researchers based on their
publications and citations.

Output is shown in bar chart
component. This is not a
complete output.

xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx

(Researchers names are anonymized)

Figure 7.14: Mashup composition showing H and G -index values of DISI

researchers (anonymized names)

7.7.4 Comparison of Citations and Self-Citations

Figure 7.15 depicts a mashup composition, which can be used

to compare the citation versus self-citation of one or more re-

searchers. The task is achieved using three components in ResE-

val Mash. The first component (i.e., Microsoft Academic), given

one or more researchers, retrieves publications from Microsoft

Academic source. The next component, which is Citation & Self

176 ResEval Mash: A Domain-Specific Mashup Tool

Microsoft academic component retrieves
publications of the given researcher(s).

Citation and Self-citation component
determine the self-citations of the
given list of researchers with their
publications and citations.

Output of the bar chart component

xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx

xxxxxxxxxxxxx
xxxxxxxxxxxxx

Figure 7.15: Mashup composition showing citation and self-citation compari-

son for a given list of researchers (names anonymized)

Citation, takes publications as input and determines self-citation

count for each researcher. The self-citation count is determined

parsing all the publications of a researcher and checking if the

researcher (being investigated) appears in any publication that

cites his/her publication. Finally, we use bar chart component to

show the results.

This section presented a few example mashup compositions

which are used for different evaluation tasks. The ResEval Mash6

tool is capable to do more, as now all the effort depends on the

availability of new components that users can use according to

their broad wisdom. In the next chapter we present user studies

that we have conducted to test whether the tool really useful

for the non-technical users or not. The studies also investigate

various other associated aspects of a mashup tool usability.

6http://open.reseval.org

Chapter 8

User Studies and Evaluation

8.1 Overview

To evaluate different aspects associated with the work presented

in this thesis, like whether being domain-specific is preferable or

not for end-users; and if yes, how much expressive a tool should

be, that is, what level of flexibility a mashup tool should offer so

that the corresponding complexity stays within the boundaries of

non-technical users. For this purpose, we conducted a few user

studies. The first study, which was mainly focused on the us-

ability evaluation of our mashup tool also partially used for the

comparative analysis between ours and other mashup based tool.

To this end, to understand the users’ preference over domain-

specific versus generic mashup tools, we used Yahoo! Pipes as

a generic tool example. Moreover, to determine what level of

complexity a non-technical domain-expert can deal with in case

of a domain-specific mashup tool preference, we built four differ-

ent prototypes. Each prototype encompasses different level com-

plexity which surly depends on the flexibility and customization

features that these tools provide.

After the first user study, we addressed and incorporated the

178 User Studies and Evaluation

suggestions, feedbacks and new requirements gathered during the

first user study. The improvements and changes made our mashup

tool more usable and useful. Again, to validate the usability of

the ResEval Mash tool, we conducted the second user study to

test relatively advance features specifically related to the usability

of the ResEval Mash tool. The next section elaborate on the first

user study and the section 8.3 presents the details of our second

user study. Finally we conclude this chapter with analysis and

discussion.

8.2 Comparative and Usability Evaluation: User

Study-1

Being generic versus specific is fundamentally different from their

roots, that is, the former covers a broader level in comparison to

the latter, which stays specific and can be a specialized form of

what former offers. For instance, in this context, simply asking

someone to make a computer application and to its opposite ask-

ing to make an accounting application is different. Likewise, for

building generic or specific application depends what constructive

constructs are provided to a developer that is we believe especially

for non-technical users those constructs would be more valuable

if they are aligned to their level of domain-expertise. Moreover,

what a development environment conveys or understand from an

end-user point of view is different, like whether the language that

an application speaks understandable by the end-users or not.

In order to assess all these aspects, we designed our first user

evaluation experiment as described in the next section.

Comparative and Usability Evaluation: User Study-1 179

8.2.1 Task Design

To evaluate the different aspects related to the usability of our

domain-specific tool as well as to determine users’ preference, we

performed contextual interviews of 28 users. Among them, 7

were professors, 5 administrative people, 1 post-doc, 3 PhD stu-

dents and 12 master’s level students. These participants were

having different levels of technical skills. The technical skills of

the participants were determined asking the following questions:

• What is the user skill level with tools such as MS Excel, MS

Word etc?

• Is the user aware of the meaning of web service?

• Is the user able to draw/understand a (simple) process fol-

lowing a given graphical notation (e.g., flowchart)?

In addition to the above mentioned questions, the participants

were also asked to write (in a text box) if they program computer

applications, or involved in programming tasks and other details

related to their technical as well as domain skills. From those

recorded answers, we can say that all of the users were domain-

experts (i.e., they know research evaluation and were involved in

some kind of evaluation tasks), excepts the master’s level stu-

dents, which were having low domain-expertise than the former

group. Among all the user, 5 administrative were highly domain-

expert and most of them were directly involved in the research

evaluation task that we used during the study. Table 8.1 presents

the details of all the participants with their technical and domain

skills.

180 User Studies and Evaluation

Users Position Technical Skills Domain Skills
7 professor 4 (good skilled), 3 (moderate) very skilled
5 administrator 4 (moderate), 1 (very skilled) very skilled
1 post-doc good skilled very skilled
3 phd good skilled good skilled
12 ms student moderate moderate

Table 8.1: User Details

We use one of the famous mashup tool Yahoo! Pipes as a

generic tool example and our ResEval mashup tool as a domain-

specific one. To better understand the appropriate level of expres-

sive power, flexibility, and difficulty that our tool (i.e., ResEval

Mash) offers, we developed four separate prototypes of the tool

based on our selected scenario, each prototype offered a different

level of flexibility and, consequently, complexity.

8.2.2 Evaluation Procedure

First, the participants were asked about their technical and do-

main -skills (to assign them to the appropriate user category as

mentioned in the previous section), then we instructed them to

perform the following tasks in steps, providing help only upon

explicit request:

1. In the first step, we introduced prototype 1 as depicted in

Figure 8.1. This prototype consists of an explanation of the

scenario and a pictorial form of it in which different com-

ponents are connected making a composition. On the same

page we provide a button to start the execution of the pro-

cess. That is, the mashup is pre-built (by us; acted as a

developer) and can only be executed by the participants.

The participants were only allowed to click the start button

in order to execute the process and the final results shown to

Comparative and Usability Evaluation: User Study-1 181

Figure 8.1: Prototype-1: fixed components with fixed configuration options

182 User Studies and Evaluation

them on the same page. The provided composition did not

allow the participants to make any type of interaction with

the components thus restricting them only with the control

over process execution (i.e., start or stop).

2. In the next step, prototype 2 was presented, as depicted in

Figure 8.2. This time the participants were presented the

same scenario with configurable components, as it can be

seen in the figure that the components’ configuration panels

are open. Thus allowing participants to configure compo-

nents through components’ configuration panels, that is var-

ious parameters (e.g., filtering options, date ranges etc.) val-

ues can be of user-defined. Once the configured components

are ready, the participants can start the process execution

using a start button.

3. In this step, prototype 3 was presented to the participants as

depicted in Figure 8.3. The participants are now allowed to

change components in the mashup model by choosing among

different implementations of the same component class, again

through configuration panels. For example, a Microsoft Aca-

demic Search (MAS) data source can be replaced with a

DBLP data source. The possibility to change the configura-

tion parameters and to substitute the components, provides

more flexibility to the participants in order to tune the sce-

nario according to their needs.

4. During this step, a fully functional mashup composition en-

vironment (i.e., ResEval Mash) was presented to the partic-

ipants. Figure 8.4 depicts the screenshot of the tool. This

tool provides the possibility to drag-and-drop components

Comparative and Usability Evaluation: User Study-1 183

onto a composition canvas, to fill their configuration param-

eters, to connect them together and to execute composition,

hence giving maximum flexibility to the participants so they

can be as expressive as they want. The participants during

this step were allowed to use all the features of the ResEval

Mash tool, as during this step they were asked to compose

a mashup composition based on the scenario they have been

experiencing during the previous steps.

5. Finally, we presented to the participants the Yahoo! Pipes

tool, which is a popular generic mashup tool. An example

pipe, i.e., a composition, is shown to the participants as a

short tutorial to introduce the tool. Then, participants were

asked to imagine how they would implement our specific sce-

nario in Pipes and were asked to implement it to whatever

level they can reach.

8.2.3 Questionnaires

After each step of the procedure, which are mentioned in the

previous section, the participants were presented with a set of

questionnaires to answer. The questions related to various as-

pects like, what difficulties they encountered, their understand-

ability level, their suggestions for the improvements etc. were

asked. In following the detail of these questions is presented, and

the metaphors used for recording their answers are mentioned in

(parentheses):

1. What is your opinion about the difficulty level of this task?

(a set of six radio-option buttons ranging from extremely

difficult to extremely easy were presented)

184 User Studies and Evaluation

Figure 8.2: Prototype-2: Showing a more customizable approach, where user

allowed to configure the components

2. What are the main difficulties you encountered? and why?

(a multi-line text box)

3. What are the advantages of this step as compared to the

manual/previous approach? (a multi-line text box)

4. What do you think are the disadvantages of this step as

compared to the manual/previous step approach? (a multi-

line text box)

Comparative and Usability Evaluation: User Study-1 185

5. Do you think the increased flexibility of the tool with respect

to the previous step would be useful for you to adapt the

process to your specific needs? (ten radio-option buttons

ranging from extremely efficient to extremely inefficient)

6. Do you understand how the process executed behind the

scene? (ten radio-option buttons ranging from easily under-

standable to not understandable at all)

7. Do you feel comfortable having such control over the process

execution or you would like to have a clearer idea of what is

going on? (ten radio-option buttons ranging from extremely

comfortable to extremely uncomfortable)

8. Based on your experience during this step, would you prefer

to do this task by yourself using a similar tool or you would

prefer explaining and asking a technician to implement it for

you? (two options were presented: (i) I’d like to do by myself

(ii) I’d like to ask technician)

9. Do you have specific suggestions/requirements to improve

usability/usefulness of this tool? (a multi-line text box)

10. Are you happy about the flexibility given by the current tool

or you would like to be able to change something to adapt

the tool to be used for solving other similar problem? (a

multi-line text box)

11. In your opinion what is the difference between previous and

this step? (a multi-line text box)

The participants completed the above mentioned question-

naires by themselves after the completion of each step, help was

186 User Studies and Evaluation

provided if asked by any participants. Finally, after the 5th step

that is described in the section 8.2.2, in which we also presented

the Yahoo! Pipes tool, we asked participants a set of general

questions in order to constitute an overall consensus among all

the tools with respect to the flexibility, usefulness and complex-

ity they offer. These questions are presented below, answering

options are in parentheses. Throughout the phase of answering

questions the participants were allowed to ask assistance if they

have difficulty in understand a question. Final questions were as

follows:

1. What do you think what is the complexity of computing

a research evaluation metric manually? (ten radio-option

buttons ranging from extremely complex to extremely easy)

2. Now, you have seen all the different tools (steps), how would

you judge them? (for all the five steps, we presented three

radio-option buttons with flexible, useful and complex as op-

tions.)

3. Which step/tool would you consider closer to your needs

considering both simplicity and flexibility among 5 different

tools and why? (a multi-line text box)

4. Would you use this tool is your real life? (yes/no)

8.2.4 Results

As the objective of the study was to collect feedback about two

main questions. First, if the participants are indeed more com-

fortable with domain-specific mashup tools compared to general

Comparative and Usability Evaluation: User Study-1 187

Figure 8.3: Prototype-3: showing a more flexible and customizable tool to the

users

purpose tools like Yahoo Pipes. Second, in the case domain-

specific tools are preferred, which is the right tradeoff among flex-

ibility and complexity, i.e., which of the tools 1-4 is most effective.

Results of the first step

As for the first step in which we presented the prototype that

allows the participants only to the execute process, leaving con-

figurations and component modification options fixed (i.e., hard

188 User Studies and Evaluation

Figure 8.4: Prototype-4: ResEval Mash a fully functional mashup tool giving

full freedom to users

coded). The results of the quantifiable questions (question num-

ber 1, 5, 6 and 7) whose answers can be presented in a chart are

depicted in Figure 8.5. The figure shows four charts in which it

can be noticed that in chart-1, most of the participants found

the first step extremely easy to perform, as the prototype used in

this step had lowest complexity that is to only execute the process

with a button click. As chart-2 depicts, most of the participants

consider the approach as an efficient upon asking whether they

feel the approach is time saving as compared to the other tools or

manual effort. However, the chart-3 shows, a half-half division of

the opinions when the participants were asked whether they un-

derstand how the process executed behind the scene or not. As

no execution status was conveyed, nor a progress bar was shown,

and also they were having no idea how data is flowing, so many

participants remained in dark showing they did not understand

it. The chart-4 shows most of the participants feel uncomfort-

able with the level of control that the tool offers, which implies

that they certainly need more control over the execution of the

process.

Comparative and Usability Evaluation: User Study-1 189

(1) What is your opinion about the difficulty level
of this task?

(2) Do you think this tool would save time as compared
to perform the procedure manually or with the help
of other tools? like MS office tools.

(3) Do you understand how the process executed
behind the scene?

(4) Do you feel comfortable having such control over the
process execution or you would like to have a clearer
idea of what is going on?

Figure 8.5: Results of user study-1, prototype-1

Regarding the remaining questions (i.e., 2, 3, 4, 8, 9, 10 and 11;

as presented in the section 8.2.4) whose answers were collected in

textual format, we show here some important responses. For the

second question, main responses were ”not flexible, but simple”,

”not difficult”, ”I can’t use for my daily job, as I need to deal with

loads of variations”. For the third question typical answers were,

”easier, fast, efficient”, ”not difficult at all”, ”much faster than

the manual approach” etc. Regarding the fourth question, user

respond like, ”you can not check whats going on behind the scene”,

”unskilling people”, ”all data are registered with more accuracy

and speed” etc. For the eighth question 90% of the participants

said ”I’d like to do by myself”, whereas 10% said ”I’d like to

ask technician”. In response to the ninth question, which was

about users’ suggestions, they answered as, ”having an interface

to change the parameters that you need to look for”, ”need much

190 User Studies and Evaluation

more customization”, ”I’d like to make more choices” etc. were

the main ones. Mostly, similar to the ninth, in response to the

tenth question mainly participants asked for ”I’d like to change

configurations”, ”need more flexibility”, ”there is no flexibility”

etc.

Results of the second step

In response to the second step, which is mentioned in the section

8.2.2, Figure 8.6 depicts the charts of the four questions that are

1, 5, 6 and 7. The chart-1 shows that again the participants found

step-2 task (i.e., prototype-2) easy to use. As shown in the chart-

2, most of the participants liked the increased flexibility of the

tool. The third chart shows that almost an equal division of the

perception of the understanding of the execution of the process.

However, most of the participants still not comfortable using this

tool and thus demanded for more control over the process, as

depicted in the chart-4. Regarding questions (i.e., 2, 3, 4, 8, 9,

10 and 11; as presented in the section 8.2.4) whose answers are in

text format, mainly the users’ responses to the second question

were ”more flexible than the previous but not flexible to change

components”, ”understanding configuration parameters” etc. For

the third question responses were ”parameteric approach is better

than the previous one”, ”its flexible”, ”you can choose different

parameters”, ”auto-completion is perfect for me” etc. The fourth

question received responses like ”still no idea what’s behind the

process”, ”still not able to change the execution flow”, ”not always

reliable” etc.

In response to the eighth question, 90% said ”I’d like to do

by myself” and 10% said ”I’d like to ask technician”. The ninth

Comparative and Usability Evaluation: User Study-1 191

(1) What is your opinion about the difficulty
level of this task?

(2) Do you think the increased flexibility of the tool
with respect to the previous step would be useful
for you to adapt the process to your specific needs?

(3) Do you understand how the process executed
behind the scene?

(4) Do you feel comfortable having such control over the
process execution or you would like to have a clearer
idea of what is going on?

Figure 8.6: Results of user study-1, prototype-2

question where participants gave suggestions as ”if you provide

me right choice of component then I can do myself”, ”it should

provide the ability to check input parameters”, ”details about what

kind of data are being used”, ”better than one button” etc. The

tenth question received like ”more flexibility would be good for

me”, ”I’d like to change the flow of execution”, ”more options

are needed” etc. In response to the eleventh question, which was

not the part of the first step, the participants respond as ”more

customization of the search”, ”i have more flexibility”, ”more flex-

ibility” etc.

Results of the third step

In response to the third step, which is mentioned in the section

8.2.2, Figure 8.7 depicts the results of the four questions (i.e., 1,

5, 6 and 7; presented in the section). As shown in the chart-

192 User Studies and Evaluation

1, majority of the participants still feel that the difficulty of the

presented step is manageable and hence easy to handle. Like-

wise, most of the participants considered the increased flexibility

still an efficient approach, as shown in the chart-2. However, the

chart-3, which conveys the understanding level of the execution of

the process, still plot that largely the process execution was less

understandable for many. The chart-4 shows many of the partic-

ipants remain uncomfortable, which means they still demand for

more control over the process. On the other side, from textual

answers, for the second question main responses were ”no diffi-

culties”, ”more details about the sources would be good”, ”more

documentation”, ”none” etc. For the third question ”more clear,

more accurate”, ”more flexible than the previous one”, ”presen-

tation styles changing is good” etc. were the main responses and

for the fourth question ”provide more choices”, ”its more error

prone”, ”none” etc. were the main responses. In response to the

eighth question, 93% said I’d like to do by myself and 7% said

”I’d like to ask technician’.

As for the ninth question, the participants suggested as: ”hav-

ing more visual charts would be more useful”, ”having more sources

would be good”, ”check configuration parameter validity” etc. Re-

garding the tenth question, main responses were ”yes I’m happy,

but if you provide me more flexibility I will be more happy”, ”I’d

like to alter the execution flow”, ”I’d like to change flow”, ”yes”

etc. For the eleventh question, the participants differentiated this

tool with the previous as ”more flexibility”, ”this is better”, ”you

can choose other databases” etc.

Comparative and Usability Evaluation: User Study-1 193

(1) What is your opinion about the difficulty
level of this task?

(2) Do you think the increased flexibility of the tool
with respect to the previous step would be useful
for you to adapt the process to your specific needs?

(3) Do you understand how the process executed
behind the scene?

(4) Do you feel comfortable having such control over the
process execution or you would like to have a clearer
idea of what is going on?

Figure 8.7: Results of user study-1, prototype-3

Results of the fourth step

As stated in the section 8.2.2 that we presented to the participants

the fully functional tool (i.e., ResEval Mash) during the fourth

step. The responses regarding the questions (1, 5, 6 and 7) are

depicted in the Figure 8.8. In the chart-1, it is clearly shown

that this prototype slightly increased the difficulty level but still

majority voted it as easy to use. On the other hand, the increased

flexibility of the tool was mainly perceived positively and the

majority felt it as an efficient approach, as depicted in the chart-

2. However, this prototype was extremely understandable by the

participants as compared to all the previous ones, as depicted in

the chart-3. Moreover, as depicted in the chart-4, majority of the

participants felt comfortable with the control that the prototype-

4 provided.

Regarding the responses against the questions (2, 3, 4, 8, 9, 10

194 User Studies and Evaluation

(1) What is your opinion about the difficulty
level of this task?

(2) Do you think the increased flexibility of the tool
with respect to the previous step would be useful
for you to adapt the process to your specific needs?

(3) Do you understand how the process executed
behind the scene?

(4) Do you feel comfortable having such control over the
process execution or you would like to have a clearer
idea of what is going on?

Figure 8.8: Results of user study-1, prototype-4

and 11; as presented in the section 8.2.4), for the second question

main responses were ”no”, ”the more you are free in changing

configuring component, the more you are risky”, ”need to know

components”, ”documentation of the components required” etc.

For the third question mainly the users’ responses were ”Its all

advantages and not disadvantages”, ”the more you can person-

alize the more you feel comfortable”, ”i can customize”, ”I can

better adopt my needs”, ”I can reuse compositions, components’

etc. And for the fourth question, ”more degree of freedom so

there could be more chances of error”, ”more knowledge is re-

quired”, ”takes time to understand” etc. In response to the eighth

question, 95% of the participants said ”I’d like to do by myself”,

whereas 5% of the users said ”I’d like to ask technician”. Main re-

sponses for the question number nine were ”some training course

for the user would be good”, ”add more components”, ”give sug-

Comparative and Usability Evaluation: User Study-1 195

gestion/assistance to the user during composition”, ”check inter-

mediate results” etc. The tenth question was received as ”I am

fine, not more than this”, ”I think its enough”, ”I don’t need

more details than this because then we go into the programmers

world”, ”absolutely happy”, ”I’m happy with the approach”, ”yes,

happy” etc. And finally for the eleventh question, the partici-

pants’ responses were like ”interesting”, ”more configurable and

more useful”, ”need more skills”, ”more creative and more op-

tions”.

Now, you have seen all the different tools (steps), how
would you judge them?

Prototype 1 (fixed configuration, and components) Prototype 2 (changeable configuration, and fixed
components)

Prototype 3 (changeable configuration, and
components)

Prototype 4 (fully configurable environment,
ResEval Mash)

Yahoo! Pipes (generic and fully customizable)

Figure 8.9: Results of user study-1, general results

Results of the fifth step

As mentioned in the section 8.2.2 that at the end of the study

we asked a set of general questions to the participants. Figure

196 User Studies and Evaluation

8.9 depicts the results of the important questions, that is how

users judge all different tools in terms of flexibility, usefulness and

complexity. As it can be noticed that prototype-1 is little flexible,

more useful and little complex, whereas prototype-2 is a bit more

flexible, highly useful and little complex too. The prototype-3 is

considered more flexible than its usefulness and still considered

as little complex. However, it is clearly shown that in case of the

prototype 4, which is the full mashup environment (i.e., ResEval

Mash), the flexibility is largely increased along with its usefulness.

The participants found it more useful and flexible as the tool gives

freedom to drive their requirements as they want. As compared

to the previous three prototypes, the complexity of prototype 4

increased and that is normal. Because most of the participants

stated in their remarks that they would need an introductory

training to fully utilize its advantages. In the same figure the

results on Yahoo! Pipes tool can also be seen (the last chart). As

anticipated it has a high complexity, very low usefulness for the

users, however, it is fairly flexible as it offers more options to play

with, but mainly suitable for programmers only.

8.2.5 Evaluation Analysis & Discussion

In the previous section we have presented the results, which reflect

the exact representation of the participants’ responses. However,

this section provides an analysis of the overall study in which

we analyze inter as well as intra -steps variabilities and patterns

particularly focusing on the participants’ skills (e.g., technical,

non-technical). Mainly, the technical expertise of the participants

mentioned in the table 8.1, which shows 19 out of 28 participants

have moderate/low technical and 9 have good technical skills. As

Comparative and Usability Evaluation: User Study-1 197

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

non-‐tech	 tech	 non-‐tech	 tech	 non-‐tech	 tech	 non-‐tech	 tech	

Step-‐1	 step-‐2	 step-‐3	 step-‐4	

Extremely	 difficult	

Moderately	 difficult	

Slightly	 difficult	

Slightly	 easy	

Moderatelly	 easy	

Extremely	 easy	

Figure 8.10: For both tech and non-tech groups the difficulty level of steps

(1-4)

mentioned earlier that users with good technical expertise are

familiar with the programming languages and they were involved

in some sort of programming. On the other hand, users with

low technical expertise are not programmers. Based on this, we

can divide these users into two groups, that is, technical group

(i.e., those who know web services, programmings, etc.) and non-

technical group (i.e., those who know MS world, Excel etc. but

do not know programming).

Regarding the question number 1, as presented in the section

8.2.4, for all the four steps, as described in the section 8.2.2, the

difficulty level slightly increased for the non-technical group as

compared to the technical one. Figure 8.10 depicts the distri-

bution of the both groups along various difficulty levels. Non-

technical group faced difficulties as the process started providing

more flexibility and customization (see non-tech column of step

3 & 4). However, one can notice that even during the step-4 in

which the prototype-4 was presented, the majority of the non-

technical participants are still within the boundaries that they

consider it easy to use, and a few considered it ”slightly diffi-

culty”. In response to the very next question (i.e., question-2,

198 User Studies and Evaluation

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

non-‐tech	 tech	 non-‐tech	 tech	 non-‐tech	 tech	 non-‐tech	 tech	

Step-‐1	 step-‐2	 step-‐3	 step-‐4	

Extremely	 inefficient	

Moderately	 inefficient	

Slightly	 inefficient	

Slightly	 efficient	

Moderatelly	 efficient	

Extremely	 efficient	

Figure 8.11: For both tech and non-tech groups, how increased flexibility per-

ceived for all steps (1-4)

where participants were asked to provide textual answers about

what difficulties they faced) during the step-4, most of the par-

ticipants demand for more training and tutorial prior to the use

of the tool to effectively deal with difficulty.

In figure 8.11, the distribution regarding both, the technical

and non-technical groups in terms of process adaptation with re-

spect to increased flexibility for all the four steps is depicted.

Clearly for all the steps the ”moderately efficient” pattern is con-

sistent that is to some extent increased for the fourth step. The

technical group considered the prototype-4 more efficient than the

non-technical. Even then the majority of the non-technical par-

ticipants voted for the efficient option except one participant who

considered it slightly inefficient. Figure 8.12 depicts the level of

understandability of the both groups. A very low understandabil-

ity level can be seen in the step number 1 & 2 and a slight increase

is detected in the step-3 but still majority could not easily under-

stand how the process execution is performed. However, for the

step number four both non-technical and technical groups shown

a good understanding of the process execution. Obviously tech-

nical users have advantage than non-technical users with their

Comparative and Usability Evaluation: User Study-1 199

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

non-‐tech	 tech	 non-‐tech	 tech	 non-‐tech	 tech	 non-‐tech	 tech	

Step-‐1	 step-‐2	 step-‐3	 step-‐4	

Not	 understandable	 at	 all	

Moderately	 not	 understandable	

Slightly	 not	 understandable	

Slightly	 understandable	

Moderately	 understandable	

Extremely	 understandable	

Figure 8.12: For both tech and non-tech groups, process execution understand-

ability for all steps (1-4)

technical skills, that is the reason the process execution during

the step-4 were easily understandable for the former group.

The accumulated results of the both groups (i.e., technical

and non-technical) on question number 7, which represents par-

ticipants’ comfortability about the given control over the process,

are depicted in Figure 8.13. Clearly the demands for more control

over the process have emerged till the step number 3. However,

one can notice that during the step-4 majority of the participants

of both groups feels comfortable with the given control, that is

they now feel they can tailor it as they want up-to the level of

their expertise. The demand for more control mainly asked by

the technical participants, as a small number of participants still

want to go beyond the flexibility that the prototype-4 provides,

whereas non-technical participants largely consider prototype-4

as a boundary line for them, or otherwise the complexity will

increase, responded many non-technical participants.

As an overall, for non-technical participants the difficulty level

increased against each richer prototype, however, most of the

non-technical participants still found prototype-4 easy to use, as

shown in chart (a) in figure 8.14. The demands for more flexible

200 User Studies and Evaluation

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

non-‐tech	 tech	 non-‐tech	 tech	 non-‐tech	 tech	 non-‐tech	 tech	

Step-‐1	 step-‐2	 step-‐3	 step-‐4	

Extremely	 uncomfortable	

Moderately	 uncomfortable	

Slightly	 uncomfortable	

Slightly	 comfortable	

Moderately	 comfortable	

Extremely	 comfortable	

Figure 8.13: For both tech and non-tech groups, control over process results

for all steps (1-4)

tool emerged from both technical and non-technical groups and

the increased flexibility still within the range of users, as chart

(b) depicts in figure 8.14. Relatively low but some participants,

during the first three steps, with high technical background did

not even understand how the process executed behind the scene,

whereas participants having low technical skills did not under-

stand at all as chart (c) depicts in figure 8.14. Largely all types

of participants were uncomfortable with the give control over the

process for the first three steps, however, a clear satisfaction on

such control can be seen in the fourth prototype which was pre-

sented in the step-4, especially for non-technical users as depicted

in chart (d) in figure 8.14.

Likewise, during the final step in which the generic mashup

tool (i.e., Yahoo! Pipes) was presented, the non-technical partic-

ipants said the tool is too complex for them and that they are

not able to understand most of the component and parameter

names. However, the technical participants were not scared by

the programming-oriented functionalities and terminology of the

tool, but they identified a problem with the level of abstraction of

the tool. They think the tool could be potentially able to allow

Comparative and Usability Evaluation: User Study-1 201

0"

2"

4"

6"

8"

10"

12"

14"

1" 2" 3" 4"

Pa
r$
ci
pa

nt
s+

Prototypes+

Extremely"understandable" Moderately"understandable"

Slightly"understandable" Slightly"not"understandable"

0"

2"

4"

6"

8"

10"

12"

14"

16"

1" 2" 3" 4"

Pa
r$
ci
pa

nt
s+

Prototypes+

Extremely"comfortable" Moderately"comfortable"

Slightly"comfortable" Slightly"uncomfortable"

0"

2"

4"

6"

8"

10"

12"

14"

16"

1" 2" 3" 4"

Pa
r$
ci
pa

nt
s+

Prototypes+

Extremely"easy" Moderatelly"easy" Slightly"easy"

0"

2"

4"

6"

8"

10"

12"

14"

1" 2" 3" 4"

Pa
r$
ci
pa

nt
s+

Prototypes+

Extremely"efficient" Moderately"efficient" Slightly"efficient"

(a): Difficulty level (as asked in Q-1) (b): Efficiency w.r.t. increased flexibility (Q-5)

(c): Understandability level (Q-6) (d): Comfortability level over given control (Q-7)

Figure 8.14: Various results of non-technical participants for all four prototypes

against questions (1, 5, 6, & 7)

the design of a process similar to our reference scenario. How-

ever, a complete implementation of the scenario in Pipes would

be too complex and time consuming, since the level of abstrac-

tion of the provided functionalities is low and not focused on the

domain constructs. All participants in this test declared to prefer

the domain-specific tools, like ResEval Mash.

Regarding the tool they consider best among the domain-

specific ones – considering both their needs and abilities – the

majority of the participants stated that their preference go to the

fully functional mashup composition environment of step-4 (i.e.,

prototype-4). This was motivated by the fact that the tools up to

step 3 are too rigid and cannot adapt to different scenarios. In-

deed, in the feedbacks after each step a need for more flexibility

is evident until step 3, while in step 4 most of the participants

202 User Studies and Evaluation

declared that they think the flexibility level is enough to make

the tool actually useful. Most of the participants also think they

are able to cope with the increased complexity.

Moreover, the majority of the participants was overall satisfied

with the prototype-4 (i.e., ResEval Mash), they also pointed out

some shortcomings. In particular, some participants would have

liked some assistance during the design phase, e.g., in the form of

contextual information about the components’ functionality and

input and output data they use. Other users were instead more

concerned about the availability of components providing all the

necessary functionality and allowing for high customization (e.g.,

specification of custom filters, custom impact functions). An-

other common concern was related to the trust in the final result.

The transparency provided by the tool at runtime was useful to

establish trust, but there is still room for the improvements.

In summary, the results of this user study show that there

is a clear preference for domain-specific tools and that users can

indeed imagine to use such tools to build their own processes (only

1 user said that, instead of using tool 4 by himself, he would prefer

to ask a technician). Both classes of the participants judge the

complexity of the tool-4 as acceptable and think the benefits in

terms of time and effort savings are in balance with the effort it

takes to learn its proper and effective use.

8.3 Usability Evaluation: User Study - 2

The suggestions, which were gathered during the first evaluation

procedure, were addressed and incorporated in the tool. Mainly

we focused on the prototype-4 (i.e., ResEval Mash) to increase

Usability Evaluation: User Study - 2 203

its usability and intuitiveness, and domain-syntax was also in-

troduced in components’ list, process transparency enhanced by

conveying more intuitive execution status. Moreover, an impor-

tant and much requested feature, which is to give suggestions

while composing compositions, is added. Now the tool provides

suggestions on the possible connections that a component can

make with other components. This feature would surly enhance

composition problems that non-technical users could face. Now

the tool also shows helping tips regarding various things that we

think would help users to effectively adjust to the user experience

that the tool provides.

A summative evaluation was conducted to analyze the user

experience with improved ResEval Mash. The results reported

in this section concentrate on usability, with an emphasis on the

role of prior experience on learning. Lessons learned from the

first evaluation study, this time we give an introduction of the

mashup tool to participants before they use it. Prior experience

was differentiated in two categories which are fundamental in our

approach to mashup design: domain knowledge and computing

skills. Domain knowledge was controlled by selecting all users

with expertise in research evaluation, computing skills varied in

the sample from people with no programming knowledge at all,

to expert programmers.

The study applied a concurrent talk-aloud protocol, a tech-

nique requiring users to verbalise all their thoughts and opinions

while performing a set of tasks. Verbalisation capture techniques

have been found to be particularly effective when conducting ex-

perimental investigations, which provide an opportunity to study

communication between products, designers and users Jarke et al.

204 User Studies and Evaluation

[1998]Rouse and Morris [1986]. The responses given during task

completion are considered more representative of the behavior

and problems users have during assessment Hands and Avons

[2001] and concurrent talk-aloud protocols have been shown to

encourage participants to go into greater detail, to provide more

in-depth evaluation, and help pin-point usability problems and

places where their expectations fail to be met Teague et al. [2001].

Users Position Computing Skills
3 Administrative People No Computing Skills
1 PhD student No Computing Skills
1 Professor No Computing Skills
3 PhD Students High Computing Skills
1 Post-Doc High Computing Skills
1 Professor High Computing Skills

Table 8.2: User categories

8.3.1 Evaluation Procedure

Ten participants covering a broad range of academic and technical

expertise were invited to use ResEval Mash. At the beginning of

the study, they signed a consent form presenting ResEval Mash as

a tool for allowing non-programmers to develop their own comput-

ing applications. Then, they were asked to fill in a questionnaire

reporting their computing skills and knowledge about research

evaluation alongside some basic demographic information (e.g.,

age and job position). Specifically, participants were asked to

estimate their skills with the use of software similar to the Mi-

crosoft Office Suite tools, programming languages, flowcharts and

mashup tools, on a 4-point scale, ranging from very skilled to no

skilled at all. They were also presented with a list of 21 concepts

related to research evaluation and asked to indicate for each of

Usability Evaluation: User Study - 2 205

Figure 8.15: Mashup compositions to compute G-Index (a) and publication

count (b)

them whether they were aware of these and able to understand

their meaning, on a 2 point scale (yes vs. no).

After the questionnaire, participants watched a video tutorial

(lasting approximately 10 minutes) that instructed them how to

operate ResEval Mash. The video introduced the basic function-

alities of the tool, quickly explaining the concept of components,

configuration parameters, and data compatibility. It then showed

how to create a simple mashup of 4 components to display the H-

index of the researchers of the Department of Computer Science

and Engineering of the University of Trento on a bar chart ac-

cording to the Microsoft Academics publication source. Finally,

the video presented another mashup example used to summarize

and reinforce the concepts shown up to this point, where 4 com-

ponents were connected to visualize on a bar chart the G-index

of a researcher (Figure 8.15.a).

After training, participants were asked to use the system and

to perform a series of tasks as described follow:

1. The first task asked people to start from the first composi-

206 User Studies and Evaluation

tion presented in the video tutorial and to modify the year

parameter of the Microsoft Academic component, to select

a different department from the Italian Researchers compo-

nent and finally to replace the publication source component

currently used in the composition with the Google Scholar

component.

2. The second task required them to design a composition to

compute the participant’s own publication count and visu-

alize it on a chart. The correct solution required linking

together 4 components, as highlighted in Figure 8.15.b.

Whilst completing these two tasks, participants were asked to

”talk aloud” regarding their thoughts and actions. This inter-

action was filmed, as was the interview that followed task com-

pletion. The interview focused on interactional difficulties expe-

rienced, the evolution of participants’ conceptual understanding

over time, and a detailed usability evaluation stressing a feature

based assessment reporting which features were considered to be

beneficial to interaction, which were understood, and what par-

ticipants, as users, would like to see in the system. Finally, par-

ticipants asked to answer a set of questions as listed below and

answering metaphor are in braces:

1. What are the main difficulties you encountered? Why? (a

multi-line text box was given to get users’ comments)

2. Did you understand the concept of component? (a multi-line

text box)

3. Did you encounter difficulty configuration the components?

What? (a multi-line text box)

Usability Evaluation: User Study - 2 207

4. How usable did you find the tool? (choice options as: (1) I

feel very comfortable and I can use it. (2) I could use it with

some more training. (3) It is very unlikely I would be able

to use it, even with much more training. (4) I would not be

able to use it at all.)

5. Why do you think the tool is useful? (a multi-line text box)

8.3.2 Participants Description

The sample covered a broad range of job positions and technical

skills. Half of it was composed of people who reported not being

skilled in programming languages, the other half reported being

very skilled or good in relation to programming languages. All the

participants possessed moderate to no experience with mashup

tools. The breakdown of participants according to Position is

reported in Table 8.2 and a detailed breakdown of the participants

based on their technical skills is depicted in Figure 8.16.

On average as a group, participants had a good understand-

ing of the domain. They possessed experience of 80% of the

21 domain specific conceptual components listed during the pre-

interaction assessment. This value ranged from a minimum of

48% to a maximum of 100%. Table 8.2 shows the details of the

participants.

8.3.3 Analysis: Usability Evaluation

The video-capture and talk aloud protocols were used to establish

strengths and weaknesses in design and conceptual understand-

ing. A subsequent usability assessment was used to identify the

208 User Studies and Evaluation

How skilled are you with the use of software
similar to the Microsoft Office Suite tools?

How skilled are you with the use of programming
languages?

How skilled are you with the use of flowcharts? How skilled are you with mashup tools?

Figure 8.16: Participants technical skills breakdown

difficulties participants reported experiencing and their under-

standing of the key features of mashup tool interaction.

Overall, the tool was deemed as usable and something with

which participants were comfortable. Independently of their level

of computing knowledge, all participants were able to accomplish

the tasks with minimal or no help at all. The only visible differ-

ence reflected a variable level of confidence in task execution. The

IT expert users reflected less before performing their actions and

appeared to be more confident during the test. Overall, among

the users with lower computing skills there was agreement that

more training in the use of the tool would be beneficial, whereas

this requirement did not emerge from the more skilled sample. It

is worth noticing however that the people reporting this need also

indicated a lower level of domain knowledge as compared to the

other users.

All participants understood the concept of ”component” and

Usability Evaluation: User Study - 2 209

had no specific issues in terms of configuring or connecting compo-

nents. However, the post-doc researcher suggested that it might

be beneficial for the system to indicate clearly when a proposed

connection was inappropriate or illegal by using color to differ-

entiate the states of legality or appropriateness. Another partici-

pant suggested the possibility of disabling the illegal components

from the selection panel when a component was selected in the

composition canvas. Selection of components was highlighted as

a potential problem, as identification of the right component re-

quired some time to be performed. During the study, this did

not appear to be a major problem, as only a selected number

of components (N= 8) were tested. Yet, it is reasonable to as-

sume that this problem will increase as the number of available

components grows. One participant suggested a search feature,

to complement the current menu selection interaction mode. Re-

garding the question number 4, which asked ”how usable did you

find the tool?”, 80% of the participants responded as ”I feel very

comfortable and I can use it”, and 20% said ”I could use it with

some more training”.

The task requiring tailoring an existing mashup was generally

performed better than the task requiring creating a new mashup.

In the latter case, a problem emerged with the selection of the

first component (i.e., Researcher Input), as several participants

selected the Italian Researchers component expecting to be capa-

ble to personalise their query there. Saving of configurations was

also a source of uncertainty for some participants. The configu-

ration parameters only needed to be filled in by the users and no

other action from them was required. This was not clear to the

users that in many cases expected an explicit saving action to be

210 User Studies and Evaluation

performed (e.g., through a ”Save configuration” button) and that

also expected a feedback to be returned on configuration comple-

tion. Several people used the ”Close” button after updating the

configuration, leading to deletion of the component.

Furthermore, most participants reported some difficulty inter-

acting with the tool due to the physical interaction of double-

clicking on the component image in order to open it and been

capable to configure its parameters. This constraint was refer-

enced as taking time to learn.

8.4 General Analysis & Discussion

Our studies indicate real potential for the domain-specific mashup

approach to allow people with no computing skills to create their

own applications. The comparison between the two groups of

users highlighted good performance independently of participants

computing skills. The request for higher training emerging from

a few less expert users appeared to be rather linked to a weaker

domain knowledge than to their computing capabilities. Further

research could explore the relative role of these two factors by a

full factorial experimental study on a larger sample. However,

these studies suggested that ResEval Mash is a successful tool

appealing both to expert programmers and end-users with no

computing skills.

All participants reported a good level of understanding of the

basic concepts implemented in ResEval Mash, although some sug-

gestions for improvement were collected, mainly related to verbal

labels used to denote components. Most usability issues evinced

from behavioral observations can be easily solved. For instance,

General Analysis & Discussion 211

the uncertainty experienced by several users with saving the con-

figuration parameters can be counteracted by adding an explicit

saving option in the interface of the components. A more seri-

ous issue was highlighted as regards the selection of components,

which was found to be an error prone and time demanding task.

This problem is likely to increase exponentially with the availabil-

ity of more components, but it can be partially counteracted by a

smart advice system decreasing the number of items available for

selection based on a comparison between the current application

context and previous successful implementations, as presented in

De Angeli et al. [2011]. For instance, illegal components could be

automatically disabled and the one used most often made salient.

Overall, the studies provided some interesting results and high-

lighted the important role of user evaluation in the design of inter-

active systems. A major finding is related to the ease with which

our sample (independently of their technical skills) understood

that components had to be linked together so that information

could flow between different services. This is a well-acknowledged

problem evinced in several user studies of EUD tools (e.g., the

ServFace Builder, Namoun et al. [2010b]), which surprisingly did

not occur at all in the current study. The mismatch can be due

to a different level of complexity of the evaluation tasks, but also

to an important design difference. Indeed, ResEval Mash only

requires users to connect the components as holistic concepts,

whereas other tools, such as the ServFace builder required the

user to perform complex connections between individual fields of

user interfaces.

212 User Studies and Evaluation

Chapter 9

Conclusions and Future work

9.1 Overview

Many crucial decisions such as research funds distribution, fac-

ulty recruitment, promotions, PhDs selection, award of grants re-

quire measuring quality, productivity, and impact of researchers.

The research impact is determined based on the scientific re-

search outputs of a researcher, which is measured either through

traditional approaches that are based on published papers, ci-

tation records, journal prestige (where papers were published)

or through advanced bibliometric approaches such as h-index, g-

index, ch-index. Over the last few years scientific production has

increased to a large extent, researchers are growing in number

and also making collaborations, producing and disseminating sci-

entific results. However, primarily the growth is positive, but it

takes research organizations, funding bodies under pressure who

want to maximize the wider impact of their investment in re-

search. Evaluating research work, determining research impact

is a notoriously challenging problem which so far has no well ac-

cepted solution. Bibliometrics approaches, which are typically

comprised of citation and content analysis methods, have largely

214 Conclusions and Future work

well perceived by many communities. However, a general consen-

sus is that the problem remains unsolved, which is mainly due

to its multi-dimensionality nature. Moreover, the proliferation of

the scientific data sources (e.g., DBLP, Google Scholar, Microsoft

Academic etc.), and highly customized bibliometric indices, and

locally developed evaluation procedures are the three highly di-

verse aspects of this field, which make the overall approach highly

subjective. Moreover, people involved in such evaluation pro-

cesses, most of the time, are not IT experts, and not capable of

building appropriate software for crawling data sources, automat-

ically parsing relevant information, merging data and computing

the needed personalized metrics. Therefore, in order to empower

the interested people, we need to design an appropriate and pos-

sibly easy-to-use IT platforms, which could make life easier of

those domain-experts who do not expert in IT.

The ever increasing number of computer users, especially those

non-technical users (as also in our case), who are not computer

programmers, use computer applications to fulfill their daily life

situational requirements. A large proportion of such users are

teachers, doctors, researchers, administrative persons etc. Those

are more expert in their domains than in computing skills. In the

past, several enabling approaches have been proposed that aimed

at facilitating non-technical end-users. Despite many efforts, it

is still a challenging endeavor for users to develop applications

that support or fulfill their goals. This is because, generally pro-

posed technologies require expertise in programming languages

and their complicated user experience poses difficulties for the

users.

End-user development is a way to solve this problem with an

Overview 215

aim to empower non-technical end-users in such a way that they

can effectively participate in development processes. Specifically

through the end-user development a set of techniques, methods

and tools collectively enhance user experiences that then can be

easily utilized by the non-technical users. To this end, several

approaches have been proposed which we have explained in the

chapter 3. Mainly, these approaches whose initial goal was to

enable non-technical users to design and develop applications with

little or no help from developers, we are still in a situation in which

these solutions can only be used by specifically trained developers.

On the other hand, the recent emergence of mashup tools has

refueled research on end-user development. We see that mashups

are simple applications that rather than being developed from

scratch by developers, are composed by integrating and reusing

available services, data, functionalities or user interfaces. Like-

wise, mashup tools provide enabling environments for mashups

development, ambitiously aim at enabling non-technical users to

develop their own on-demand ad hoc applications.

We believe that doing so is even harder than enabling non-

technical users to develop applications because developing full

applications is simply complex. The reason is the mashup plat-

forms developed so far come with so many functionalities and

too many technicalities that are only suitable for programmers.

Yet, being amenable to non-technical users is extremely impor-

tant as the availability of a wider range of online applications,

services and data raised the need for situational, short-lifespan

applications that cannot be anticipated and developed through

traditional software development processes.

However, we believe that it is impractical to design tools that

216 Conclusions and Future work

are generic enough to cover a wide range of application domains,

powerful enough to enable the specification of non-trivial logic,

and simple enough to be actually suitable for non-programmers.

Instead, in our view, we need to give up something and that is a

generality since reducing expressive power would mean support-

ing only the development of simple applications, which is useless,

while simplicity is our major aim. That means, giving up gener-

ality in practice requires narrowing the focus of a design tool to

a domain and tailoring the tool’s development paradigm, models,

language, and components to the specific needs of that domain

only.

9.2 Contributions Summary of the Thesis

This thesis presented a novel approach for an effective end-user

development. The target end-users in this context considered

non-programmers, less-technical but domain-experts. The ap-

proach, which leverages mashups philosophy, can effectively in-

volve end-users in development tasks. Opposite to the exist-

ing mashup based solutions, this thesis presented a novel idea

of domain-specific mashups, that is, we specifically focused, dur-

ing the development of the mashup platform, to a well-defined

domain. So that, a tool whose design and development is based

on a domain can speak the language of the users, a key aspect

that existing approaches lack and consequently failed in aiding

end-user development.

To this end, we first introduced the notion of domain-specific

mashups and described what they are composed of, how they

can be developed and how non-programmers can effectively get

Contributions Summary of the Thesis 217

benefits. We described which design artifacts are necessary for

a domain-specific mashup tool’s development. In this regard, we

presented the mashup meta-model and the domain concept model,

the domain syntax model and showed how these can be merged

into a domain-specific mashup meta-model, which provides a con-

solidate basis and expressive power to a mashup tool whose de-

velopment follows it.

Based on the above mentioned design and modeling artifacts,

the thesis proposed a systematic approach and methodology (pre-

sented in chapter 5), which consists of a number of steps. The

proposed methodology can be used for both, the development

of an end-user oriented mashup platform and the development

of a domain-specific mashup tool. The developed platform ini-

tially stays empty (i.e., in terms of domain-specific concepts) and

generic (i.e., ready to be tailored for other similar domains) so

then it can be tailored to make a domain-specific mashup tool.

In this thesis we followed the same strategy, that is, we first de-

veloped a mashup platform (presented in chapter 6) whose ca-

pabilities are as defined in the mashup meta-model, second, we

developed ResEval Mash (presented in chapter 7), which is a

domain-specific mashup tool for the research evaluation domain.

The development of ResEval Mash was also driven by the require-

ments that are of end-user specific, which we gathered during the

analysis of various domain-specific research evaluation procedures

(presented in chapter 4).

Moreover, this thesis introduced a novel and an efficient ap-

proach for data-intensive web applications, specifically applica-

tions which follow mashups philosophy. The approach is suitable

for those applications, which deal with large amounts of data that

218 Conclusions and Future work

travel between client and server. We observed that web-service

based mashups applications extensively communicate data not

only between client server but also between web services too. In

this case, particularly, if these web services are deployed on a web

server, then data-intensive communication can be reduced to a

large extent with the help of proposed approach (presented in

chapter 7, section 7.5).

For the evaluation of our proposed approach and to check the

usability of our mashup tool, we performed two separate user

studies. In the first user study, which was focused on the usability

and comparative evaluation aspects, participants were presented

four different mashup based prototypes comprising different level

of expressive power and flexibility. Moreover, participants were

presented Yahoo! Pipes as a generic mashup tool example. The

results presented in the chapter 8 clearly show users’ preference

to domain-specific mashup approach and most of the participants

preferred ResEval Mash tool among the other prototypes. The

participants found ResEval Mash offering right balance in terms

of expressive power and complexity that a non-programmer can

easily deal with. Many useful comments, feedbacks, and requests

for improvements were gathered during this study, which were

applied to the tool for further improvements.

After incorporating improvements, the second user study was

performed, which was mainly focused on the advance usability

evaluation aspects of the improved ResEval Mash tool (presented

in chapter 8). The results of this study show that the real po-

tential of our domain-specific mashup approach to allow people

with no programming skills to create their own applications. Do-

main experts found very attractive the no-data mapping approach

Discussion and Lessons Learned 219

offered by the ResEval Mash, as asking non-programmers or less-

technical users to perform complex data-mapping always creates

difficulties for them. As an overall, both studies suggested that

ResEval Mash is a successful tool appealing both to expert pro-

grammers and end-users with no programming skills.

9.3 Discussion and Lessons Learned

The work presented in this thesis mainly focused on the research

evaluation domain, however, throughout the presentation of method-

ological approach, and the development of the mashup platform

we keep separate aspects those are of domain-specific type from

the ones of generic type. This helped us to learn from both, the

technology and the domain, ends about demands (from domain)

and support (from technology) both in the context of less skilled

end-users. As we have seen in the reference domain and this is

also the case for other domain, that the ever increasing number

of end-users, especially non-programmers, those use computers in

their daily life routine for different tasks. For instance, consid-

ering only those users which belong to a particular field such as

medical field (doctors), research field (scientists), teaching (teach-

ers) and banking field (bankers) are only a few examples of non-

programmers. The nature of work they usually involved in vary

on a daily basis, which requires more easy-to-use, flexible, and

intuitive software solutions which can provide enabling environ-

ments to support such rapid development. Despite many efforts,

little is achieved in this direction.

However, in this thesis we learned in detail what these kinds

of specific fields (i.e., domains) and their users requirements from

220 Conclusions and Future work

technology. We presented that traditional software development

practices largely failed to achieve their needs. This is due to many

reasons, as also listed below a few important ones:

• From the traditional software development point of view,

anticipation of rapidly changing requirements is an aspect

which is almost impossible to achieve. Simply traditional

requirements elicitation approaches cannot gather and thus

software developer cannot anticipate what a specific type of

requirement a user can face or think of. This is the reason, we

focused in our work on giving more expressive power to users

keeping simplicity and complexity within a user’s expertise

domain.

• Existing enabling environments (e.g., those based on mashups

approaches) do not effectively communicate with the users.

That is, they do not speak the language of the users, which

creates a communication gap between users and technology

(e.g., Yahoo Pipes, Taverna and many other DSLs). We be-

lieve that not only these technologies must be simply to use

but also the interaction medium between technology and its

users must be the same (i.e., communication language should

be same).

• Most customizable and tailorable mashup based tools pro-

vide enabling environment to these users to develop their own

applications. However, often these tools offer components of

generic types, as they cover a broader set of functionalities,

in result not suitable for many non-programmers. In our

opinion, the compositional constructs on one side should re-

flect domain processes or activities and on the other side they

Future Work 221

should wrapped by domain-syntax.

• Most mashup based tools require complex data mappings in

order to develop mashup compositions. Non-technical users

always find this aspect very hard to grasp, and also they

don’t show interest in learning these complex issues. A tool,

which is specific to a domain, can get rid of complex data

mappings, as also in our case.

As an overall, we believe that less technical users (i.e., non-

programmers) can be involved in development tasks provided if

they are given with appropriate technology support. This the-

sis presented a comprehensive analysis of all end-user develop-

ment related research directions, and found that either these ap-

proaches require high technical skills or even in some cases where

less-skilled users were targeted they still not able to achieve their

objectives due to the generic nature of compositional constructs.

We believe a successful end-user oriented development environ-

ment on one side must provide an intuitive user experience and

on the other side the development constructs should be within

the users’ domain expertise. Moreover, an enabling environment

having these two characteristics must maintain a right balance

between flexibility and the expressive power it offers, as these

aspects consequently change the corresponding complexity of a

tool.

9.4 Future Work

During this thesis work we observed a number of interesting di-

rections those if applied can strengthen the overall platform. In

222 Conclusions and Future work

the following sub-sections we provide details on these future di-

rections.

9.4.1 Persistent Cache Support

The platform presented in this thesis provides cache support for

mashups to efficiently process huge data. Server-side components

(i.e., those components which use web services) take advantage

of server-side cache, a feature which prevents heavy communica-

tion between client and server. The current design of our plat-

form uses server’s physical memory (RAM) as cache, thus under

server’s memory limitations. Although, we have not observed a

noticeable drawback of using server’s physical memory as cache

purposes, however, we believe that the support of a persistent

cache (e.g., like database which uses persistent means to store

data) can act like an effective backup plan. Most database man-

agement solutions such as Oracle, Cassandra provide a very ro-

bust mechanism to read & write data to and from disks. In some

cases, for example Oracle, even provide a physical memory based

shared area (much like our cache) that intelligently uses RAM to

provide high hit-ratio and efficiency.

To this end, an extension for a persistent cache requires just

an implementation of the same interfaces, which are currently

being used in the case of physical memory, for the persistence

solution. That is, the schema, which we used to generate imple-

mentation classes, has to be used for this purpose too and in case

of a database-based persistence this schema can be used to create

database-dependent schema. The rest of the task is then to com-

municate with the persistence solution from our CDM manager.

A more efficient approach in this case would be to use both caches

Future Work 223

(i.e., RAM and disk).

9.4.2 Third Party Services Registration & Deployment

In addition to the client-side components support, which can be

implemented using JavaScript language, the platform provides

the support for server-side components so that components can

use web services. These web services can be deployed and used

from anywhere, through a publicly accessible application server.

However, if one wants to deploy web services on our server, in

that case the current implementation of the platform does not

provide an interface for third party services for the registration

and deployment purposes. However, we, as a platform provider

deploy these services manually in case of a third party service

deployment request. A significant improvement can be achieved

by providing an interface for third party web services to register

and deploy automatically via a web interface. Moreover, these

web services should allow to be set as public or private, much like

the concept we use for components and compositions.

9.4.3 Component-Mappers for Third Party Components

Components, which are the basic building blocks, follow com-

ponent definition language and a representational format of our

choice. However, the platform does not restrict components rep-

resentational format specific to ours, but components defined and

having different formats can also be plugged-in. As described in

the chapter 6 that the components mappers perform conversions

from a format to the one understandable by our platform. We

provide default mappers that are compatible to our specified for-

224 Conclusions and Future work

mat, however, new mappers can be written which then can be

used to convert different representations into the platform spe-

cific one.

9.4.4 Recommendation Support for Mashup Composi-

tions Development

Recommender systems such as Amazon.com1, Pandora Radio2,

Netflix3 have become very successful in recent years. A recom-

mender system makes predictions for users based on content-

based or collaborative filtering based approaches. This is also

inline to support the reuse of development knowledge from more

expert users in an automated fashion. In our case, intelligent rec-

ommendation during mashup composition surely can greatly aid

end-users in their development tasks. For instance, component

recommendations, composition recommendations would greatly

increase the overall experience of the platform.

1http://www.amazon.com/
2http://www.pandora.com/
3http://www.netflix.com/

Bibliography

Abiteboul, Serge; Greenshpan, Ohad, and Milo, Tova. Modeling the mashup space. In

Proceeding of the 10th ACM workshop on Web information and data management, pages

87–94, Napa Valley, California, USA, 2008. ACM. ISBN 978-1-60558-260-3. doi: 10.1145/

1458502.1458517. URL http://portal.acm.org/citation.cfm?id=1458502.1458517.

Active Endpoints, Adobe, BEA, IBM, Oracle, SAP, . WS-BPEL Extension for People

(BPEL4People) Version 1.0. Technical report, June 2007a.

Active Endpoints, Adobe, BEA, IBM, Oracle, SAP, . Web Services Human Task (WS-

HumanTask) Version 1.0. Technical report, June 2007b.

Alonso, S.; Cabrerizo, F.J.; Herrera-Viedma, E., and Herrera, F. hg-index: A new index

to characterize the scientific output of researchers based on the h-and g-indices. Sciento-

metrics, 82(2):391–400, 2010. ISSN 0138-9130.

Altinel, M.; Brown, P.; Cline, S.; Kartha, R.; Louie, E.; Markl, V.; Mau, L.; Ng, Y.H.;

Simmen, D., and Singh, A. Damia: a data mashup fabric for intranet applications. In

Proceedings of the 33rd international conference on Very large data bases, pages 1370–

1373. VLDB Endowment, 2007.

Anderson, T.R.; Hankin, R.K.S., and Killworth, P.D. Beyond the Durfee square: Enhancing

the h-index to score total publication output. Scientometrics, 76(3):577–588, 2008. ISSN

0138-9130.

Angeli, Antonella De; Namoun, A, and Nestler, Tobias. End user requirements for the

composable web. In ComposableWeb’10, pages 428–443, 2010.

Ball, P. Index aims for fair ranking of scientists. Nature, 436(7053):900, 2005. ISSN 0028-

0836.

Bar-Ilan, J. Informetrics at the beginning of the 21st centurya review. Journal of Informet-

rics, 2(1):1–52, 2008.

Barros, A.P. and Dumas, M. The rise of web service ecosystems. IT professional, 8(5):

31–37, 2006.

http://portal.acm.org/citation.cfm?id=1458502.1458517

226 Bibliography

Barros, A.P.; Dumas, M., and Bruza, P.D. The move to web service ecosystems. BPTrends,

3(3), 2005.

Boehm, B.; Clark, B.; Horowitz, E.; Westland, C.; Madachy, R., and Selby, R. Cost models

for future software life cycle processes: Cocomo 2.0. Annals of software engineering, 1

(1):57–94, 1995.

Burnett, M.; Chekka, S.K., and Pandey, R. Far: An end-user language to support cottage e-

services. In Human-Centric Computing Languages and Environments, 2001. Proceedings

IEEE Symposia on, pages 195–202. IEEE, 2001.

Ceri, S.; Fraternali, P., and Bongio, A. Web modeling language (webml): a modeling

language for designing web sites. Computer Networks, 33(1):137–157, 2000.

Ceri, S.; Fraternali, P.; Bongio, A.; Brambilla, M.; Comai, S., and Matera, M. Morgan

Kaufmann series in data management systems: Designing data-intensive Web applica-

tions. Morgan Kaufmann Pub, 2003.

Ceri, S.; Braga, D.; Corcoglioniti, F.; Grossniklaus, M., and Vadacca, S. Search computing

challenges and directions. Objects and Databases, pages 1–5, 2010.

Chapman, A.J. Assessing research: citation count shortcomings. The Psychologist, 2:336–44,

1989.

Costabile, M. F.; Fogli, D.; Fresta, G.; Mussio, P., and Piccinno, A. Software environments

for end-user development and tailoring. PsychNology Journal, 2(1):99–122, 2004.

Costas, R. and Bordons, M. The h-index: Advantages, limitations and its relation with

other bibliometric indicators at the micro level. Journal of Informetrics, 1(3):193–203,

2007. ISSN 1751-1577.

Costas, R. and Bordons, M. Is g-index better than h-index? An exploratory study at the

individual level. Scientometrics, 77(2):267–288, 2008. ISSN 0138-9130.

Daniel, F.; Casati, F.; Benatallah, B., and Shan, M.C. Hosted universal composition:

Models, languages and infrastructure in mashart. Conceptual Modeling-ER 2009, pages

428–443, 2009a.

Daniel, Florian; Casati, Fabio; Benatallah, Boualem, and Shan, Ming-Chien. Hosted Uni-

versal Composition: Models, Languages and Infrastructure in mashArt. In ER’09, pages

428–443, Berlin, Heidelberg, 2009b. ISBN 978-3-642-04839-5.

Daniel, Florian; Casati, Fabio; Benatallah, Boualem, and Shan, Ming-Chien. Hosted uni-

versal composition: Models, languages and infrastructure in mashart. pages 428–443,

2009c.

Bibliography 227

Daniel, Florian; Soi, Stefano; Tranquillini, Stefano; Casati, Fabio; Heng, Chang, and Yan,

Li. From People to Services to UI: Distributed Orchestration of User Interfaces. In

BPM’10, pages 310–326, 2010.

De Angeli, Antonella; Battocchi, Alberto; Roy Chowdhury, Soudip; Rodriguez, Carlos;

Daniel, Florian, and Casati, Fabio. End-user requirements for wisdom-aware eud. In

Proceedings of IS-EUD 2011, pages 245–250, 2011.

de Solla Price, D.J. Little science, big science–and beyond. Columbia University Press New

York, 1986. ISBN 0231049579.

Eagan, J.R. and Stasko, J.T. The buzz: Supporting user tailorability in awareness applica-

tions. In Proceedings of the twenty-sixth annual SIGCHI conference on Human factors in

computing systems, pages 1729–1738. ACM, 2008.

Egghe, L. Theory and practise of the g-index. Scientometrics, 69(1):131–152, 2006. ISSN

0138-9130.

Egghe, L. and Rousseau, R. An h-index weighted by citation impact. Information Processing

& Management, 44(2):770–780, 2008. ISSN 0306-4573.

Ennals, R.; Brewer, E.; Garofalakis, M.; Shadle, M., and Gandhi, P. Intel mash maker: join

the web. ACM SIGMOD Record, 36(4):27–33, 2007.

Eugster, P.T.; Felber, P.A.; Guerraoui, R., and Kermarrec, A.M. The many faces of pub-

lish/subscribe. ACM Computing Surveys (CSUR), 35(2):114–131, 2003.

France, R. and Rumpe, B. Domain specific modeling. Software and Systems Modeling, 4:

1–3, 2005. ISSN 1619-1366. URL http://dx.doi.org/10.1007/s10270-005-0078-1.

Garfield, E. and Merton, R.K. Citation indexing: Its theory and application in science,

technology, and humanities, volume 8. Wiley New York, 1979.

Garfield, E. and Welljams-Dorof, A. Of Nobel class: A citation perspective on high impact

research authors. Theoretical Medicine and Bioethics, 13(2):117–135, 1992. ISSN 1386-

7415.

Hands, David S and Avons, SE. Recency and duration neglect in subjective assessment of

television picture quality. Applied cognitive psychology, 15(6):639–657, 2001.

Hartmann, B.; Doorley, S., and Klemmer, S.R. Hacking, Mashing, Gluing: A Study of

Opportunistic Design and Development. Pervasive Computing, 7(3):46–54, 2006.

Harzing, A.W. Publish or perish. Retrieved December, 7:2007, 2007.

Herbst, H. Business rules in systems analysis: a meta-model and repository system. Infor-

mation Systems, 21(2):147–166, 1996. ISSN 0306-4379.

http://dx.doi.org/10.1007/s10270-005-0078-1

228 Bibliography

Hirsch, J.E. An index to quantify an individual’s scientific research output. Proceedings of

the National Academy of Sciences of the United States of America, 102(46):16569, 2005.

Hoang, D.T.; Kaur, J., and Menczer, F. Crowdsourcing scholarly data. 2010.

Hood, W.W. and Wilson, C.S. The literature of bibliometrics, scientometrics, and informet-

rics. Scientometrics, 52(2):291–314, 2001.

Hoyer, V.; Stanoesvka-Slabeva, K.; Janner, T., and Schroth, C. Enterprise mashups: Design

principles towards the long tail of user needs. In Services Computing, 2008. SCC’08. IEEE

International Conference on, volume 2, pages 601–602. IEEE, 2008.

Hoyer, V.; Janner, T.; Schroth, C.; Delchev, I., and Urmetzer, F. Fast platform: a concept

for user-centric, enterprise class mashup. In Proceedings of 5th conference of professional

knowledge management: gesellschaft für Informatik (GI), Solothurn, 2009.

Hull, Duncan; Wolstencroft, Katy; Stevens, Robert; Goble, Carole; Pocock, Mathew R; Li,

Peter, and Oinn, Tom. Taverna: a tool for building and running workflows of services.

Nucleic acids research, 34(suppl 2):W729–W732, 2006.

Imran, M.; Marchese, M.; Ragone, A.; Birukou, A.; Casati, F., and Laconich, JJJ. Reseval:

An open and resource-oriented research impact evaluation tool. LiquidPub, 2010.

Imran, M.; Soi, S.; Kling, F.; Daniel, F.; Casati, F., and Marchese, M. On the systematic

development of domain-specific mashup tools for end users. Web Engineering, pages

291–298, 2012.

Jarke, Matthias; Bui, X Tung, and Carroll, John M. Scenario management: An interdisci-

plinary approach. Requirements Engineering, 3(3):155–173, 1998.

Jin, B. H-index: an evaluation indicator proposed by scientist. Science, pages 8–9, 2006.

Jin, B. The AR-index: complementing the h-index. ISSI Newsletter, 3(1):6, 2007.

Karlsson, M. and Wikstrom, L. Contemporary Ergonomics, chapter Safety semantics: A

study on the effect of product expression on user safety behaviour, pages 169–173. Taylor

and Francis, Great Britain, 2006.

Kelly, C.D. and Jennions, M.D. The h index and career assessment by numbers. Trends in

Ecology & Evolution, 21(4):167–170, 2006. ISSN 0169-5347.

Kosmulski, M. A new Hirsch-type index saves time and works equally well as the original

h-index. ISSI newsletter, 2(3):4–6, 2006.

Kroll, Adeline. Assessing Europe’s University-Based Research. page

151, 2010. URL :http://ec.europa.eu/research/era/docs/en/

areas-of-actions-universities-assessing-europeuniversity-based-research-2010-en.

pdf.

: http://ec.europa.eu/research/ era/docs/en/areas-of-actions-universities-assessing-europeuniversity-based-research-2010-en.pdf
: http://ec.europa.eu/research/ era/docs/en/areas-of-actions-universities-assessing-europeuniversity-based-research-2010-en.pdf
: http://ec.europa.eu/research/ era/docs/en/areas-of-actions-universities-assessing-europeuniversity-based-research-2010-en.pdf

Bibliography 229

Kuhn, T.; Willighagen, E.L.; Zielesny, A., and Steinbeck, C. Cdk-taverna: an open workflow

environment for cheminformatics. Bmc Bioinformatics, 11(1):159, 2010.

Lamont, M. How professors think: Inside the curious world of academic judgment. Harvard

University Press, 2009.

Lédeczi, Ákos; Bakay, Arpad; Maroti, Miklos; Völgyesi, Péter; Nordstrom, Greg; Sprinkle,

Jonathan, and Karsai, Gabor. Composing domain-specific design environments. IEEE

Computer, 34(11):44–51, 2001.

Lehmann, S.; Jackson, A.D., and Lautrup, B.E. A quantitative analysis of indicators of

scientific performance. Scientometrics, 76(2):369–390, 2008. ISSN 0138-9130.

Lieberman, H. Your wish is my command: Programming by example. Morgan Kaufmann,

2001.

Lieberman, H.; Paternò, F., and Wulf, V. End user development, volume 9. Springer, 2006.

Little, G.; Lau, T.A.; Cypher, A.; Lin, J.; Haber, E.M., and Kandogan, E. Koala: capture,

share, automate, personalize business processes on the web. In Proceedings of the SIGCHI

conference on Human factors in computing systems, pages 943–946. ACM, 2007.

Maximilien, E. Michael; Wilkinson, Hernán; Desai, Nirmit, and Tai, Stefan. A domain-

specific language for web apis and services mashups. In ICSOC, pages 13–26, 2007.

Mehandjiev, N.; De Angeli, A.; Wajid, U.; Namoun, A., and Battocchi, A. Empowering

end-users to develop service-based applications. End-User Development, pages 413–418,

2011.

Meho, L.I. and Rogers, Y. Citation counting, citation ranking, and h-index of human-

computer interaction researchers: A comparison of Scopus and Web of Science. Journal

of the American Society for Information Science and Technology, 59(11):1711–1726, 2008.

ISSN 1532-2890.

Mernik, M.; Heering, J., and Sloane, A. M. When and how to develop domain-specific

languages. ACM Comput. Surv., 37(4):316–344, 2005.

Meyer, Bertrand; Choppy, Christine; Staunstrup, Jrgen, and van Leeuwen, Jan. Research

evaluation for computer science. 2008. URL http://www.informatics-europe.org/

docs/research_evaluation.pdf.

Model, B.P. Notation (bpmn) version 2.0. OMG Specification, Object Management Group,

2011.

Moed, H.F. Citation analysis in research evaluation, volume 9. Springer, 2005.

Monk, A. Cyclic interaction: a unitary approach to intention, action and the environment.

Cognition, 68:95–110, 1998.

http://www.informatics-europe.org/docs/research_evaluation.pdf
http://www.informatics-europe.org/docs/research_evaluation.pdf

230 Bibliography

Namoun, Abdallah; Nestler, Tobias, and De Angeli, Antonella. Service Composition for Non

Programmers: Pro-spects, Problems, and Design Recommendations. In Proceedings of

the 8th IEEE European Conference on Web Services (ECOWS), pages 123 – 130. IEEE,

2010a.

Namoun, Abdallah; Nestler, Tobias, and De Angeli, Antonella. Conceptual and Usability

Issues in the Composable Web of Software Services. In Current Trends in Web Engineering

- 10th International Conference on Web Engineering ICWE 2010 Workshops, pages 396–

407. Springer, 2010b.

Nielsen, J. Usability Engineering. Academic Press, California, 1993.

Norman, Donald A. Cognitive artifacts, pages 17–38. Cambridge University Press, New

York, NY, USA, 1991. ISBN 0-521-40056-2. URL http://dl.acm.org/citation.cfm?

id=120352.120354.

OASIS, . Web Services Business Process Execution Language Version 2.0. Technical report,

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html, April 2007.

Okeye, H. Metaphor mental model approach to intuitive graphical user interface design. PhD

thesis, Cleveland State University, USA, 1998.

Pane, J.F.; Myers, B.A., and Miller, L.B. Using hci techniques to design a more usable

programming system. In Human Centric Computing Languages and Environments, 2002.

Proceedings. IEEE 2002 Symposia on, pages 198–206. IEEE, 2002.

Petre, M. and Blackwell, A.F. Children as unwitting end-user programmers. In Visual

Languages and Human-Centric Computing, 2007. VL/HCC 2007. IEEE Symposium on,

pages 239–242. IEEE, 2007.

Pietschmann, Stefan; Voigt, Martin; Rümpel, Andreas, and Meißner, Klaus. Cruise:

Composition of rich user interface services. In ICWE’09, pages 473–476. 2009. URL

http://dx.doi.org/10.1007/978-3-642-02818-2_41.

Priem, J.; Taraborelli, D.; Groth, P., and Neylon, C. alt-metrics: A manifesto. Retrieved

February, 24:2012, 2010.

Pritchard, Alan. Statistical Bibliography or Bibliometrics? 1969. URL

http://independent.academia.edu/AlanPritchard/Papers/602982/Statistical_

bibliography_or_bibliometrics.

Purvis, A. The h index: playing the numbers game. Trends in ecology & evolution (Personal

edition), 21(8):422, 2006.

Repenning, A. and Ioannidou, A. Agentcubes: raising the ceiling of end-user development in

education through incremental 3d. In Visual Languages and Human-Centric Computing,

2006. VL/HCC 2006. IEEE Symposium on, pages 27–34. IEEE, 2006.

http://dl.acm.org/citation.cfm?id=120352.120354
http://dl.acm.org/citation.cfm?id=120352.120354
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://dx.doi.org/10.1007/978-3-642-02818-2_41
http://independent.academia.edu/AlanPritchard/Papers/602982/Statistical_bibliography_or_bibliometrics
http://independent.academia.edu/AlanPritchard/Papers/602982/Statistical_bibliography_or_bibliometrics

Bibliography 231

Rip, A. and Courtial, J.P. Co-word maps of biotechnology: An example of cognitive scien-

tometrics. Scientometrics, 6(6):381–400, 1984.

Rouse, William B and Morris, Nancy M. On looking into the black box: Prospects and

limits in the search for mental models. Psychological bulletin, 100(3):349, 1986.

Rousseau, R. New developments related to the Hirsch index. Science focus, 1(4):23–25,

2006.

Roy Chowdhury, S.; Rodŕıguez, C.; Daniel, F., and Casati, F. Wisdom-aware computing: on

the interactive recommendation of composition knowledge. Service-Oriented Computing,

pages 144–155, 2011.

Ruane, F. and Tol, R.S.J. Rational (successive) h-indices: An application to economics in

the Republic of Ireland. Scientometrics, 75(2):395–405, 2008. ISSN 0138-9130.

Scaffidi, C.; Shaw, M., and Myers, B. Estimating the numbers of end users and end user pro-

grammers. In Visual Languages and Human-Centric Computing, 2005 IEEE Symposium

on, pages 207–214. IEEE, 2005.

Schreiber, M. Self-citation corrections for the Hirsch index. EPL (Europhysics Letters), 78:

30002, 2007.

Schreiber, M. An empirical investigation of the g-index for 26 physicists in comparison

with the h-index, the A-index, and the R-index. Journal of the American Society for

Information Science and Technology, 59(9):1513–1522, 2008. ISSN 1532-2890.

Schroth, C. and Christ, O. Brave new web: Emerging design principles and technologies as

enablers of a global soa. In Services Computing, 2007. SCC 2007. IEEE International

Conference on, pages 597–604. IEEE, 2007.

Segal, J. Some problems of professional end user developers. In Visual Languages and

Human-Centric Computing, 2007. VL/HCC 2007. IEEE Symposium on, pages 111–118.

IEEE, 2007.

Seglen, P.O. Why the impact factor of journals should not be used for evaluating research.

BMJ: British Medical Journal, 314(7079):498, 1997.

Sidiropoulos, A.; Katsaros, D., and Manolopoulos, Y. Generalized Hirsch h-index for dis-

closing latent facts in citation networks. Scientometrics, 72(2):253–280, 2007. ISSN

0138-9130.

Sroka, Jacek; Hidders, Jan; Missier, Paolo, and Goble, Carole. A formal semantics for the

taverna 2 workflow model. Journal of Computer and System Sciences, 76(6):490–508,

2010.

232 BIBLIOGRAPHY

Sterne, J.A.C.; White, I.R.; Carlin, J.B.; Spratt, M.; Royston, P.; Kenward, M.G.; Wood,

A.M., and Carpenter, J.R. Multiple imputation for missing data in epidemiological and

clinical research: potential and pitfalls. BMJ: British Medical Journal, 338, 2009.

Teague, Ross; De Jesus, Katherine, and Ueno, Marcos Nunes. Concurrent vs. post-task

usability test ratings. In CHI’01 extended abstracts on Human factors in computing

systems, pages 289–290. ACM, 2001.

Thomas, B. and van-Leeuwen, M. The user interface design of the fizz and spark GSM

telephones. Taylor & Francis, London, 1999.

Trigg, R.H. and Bødker, S. From implementation to design: tailoring and the emergence

of systematization in cscw. In Proceedings of the 1994 ACM conference on Computer

supported cooperative work, pages 45–54. ACM, 1994.

Van Eck, N.J. and Waltman, L. Generalizing the h-and g-indices. Journal of Informetrics,

2(4):263–271, 2008. ISSN 1751-1577.

van Leeuwen, T. Testing the validity of the Hirsch-index for research assessment purposes.

Research Evaluation, 17(2):157–160, 2008. ISSN 0958-2029.

van Raan, A.F.J. Advanced bibliometric methods as quantitative core of peer review based

evaluation and foresight exercises. Scientometrics, 36(3):397–420, 1996.

Van Raan, A.F.J. Comparison of the Hirsch-index with standard bibliometric indicators

and with peer judgment for 147 chemistry research groups. Scientometrics, 67(3):491–

502, 2006. ISSN 0138-9130.

Vanclay, J.K. On the robustness of the h-index. Journal of the American Society for

Information Science and Technology, 58(10):1547–1550, 2007. ISSN 1532-2890.

Vlissides, J.; Helm, R.; Johnson, R., and Gamma, E. Design patterns: Elements of reusable

object-oriented software. Reading: Addison-Wesley, 1995.

Wiedenbeck, S. Facilitators and inhibitors of end-user development by teachers in a school.

In Visual Languages and Human-Centric Computing, 2005 IEEE Symposium on, pages

215–222. IEEE, 2005.

Yu, Jin; Benatallah, Boualem; Casati, Fabio, and Daniel, Florian. Understanding Mashup

Development. IEEE Internet Computing, 12:44–52, 2008a. ISSN 1089-7801.

Yu, Jin; Benatallah, Boualem; Casati, Fabio, and Daniel, Florian. Understanding mashup

development. Internet Computing, IEEE, 12(5):44–52, 2008b.

	Introduction
	Research Evaluation: A Multi-dimensional Field
	Diverse Information Sources
	Diverse Evaluation Indicators
	Diverse Evaluation Procedures

	Problems, Challenges and Objectives
	Solution Overview and Contributions
	Overview
	Contributions

	Structure of the thesis
	Published Papers

	Research Impact Evaluation: State of the Art
	Overview
	Multiple Faces of Research Impact Evaluation
	Quantitative and Qualitative Research Evaluation
	Bibliometrics, Scientometrics and Informetrics

	Research Evaluation Through Bibliometrics Approaches
	Bibliographic Databases
	Web of Science
	SciVerse Scopus
	Microsoft Academic Search
	Google Scholar
	DBLP

	Research Impact Evaluation Tools
	Publish or Perish
	Scholarometer
	ResEval
	Research Gate

	Analysis and Discussion

	End-user Development & Mashups: State of the Art
	Overview
	End-user Development
	Enabling Practices and Techniques
	Simple Programming Models
	Domain-specific Modeling.
	Domain-specific Languages (DSLs)
	Web Service Composition.
	Intuitive Interaction Paradigms
	Reuse of Development Knowledge

	Domain-Specific Languages: Discussion
	Mashups from an End-User Development Prospective
	Web 2.0 & Enabling Technologies
	Tool-Assisted Mashup Development

	Analysis and Discussion

	Research Evaluation Example Scenarios & Requirements Understanding
	Overview
	University of Trento Department Evaluation Procedure
	Italian Professorship Selection Scenario
	Analysis and Domain-Specific Requirements
	End-user centric requirements

	End-User Oriented Mashup Platform Development Methodology
	Overview
	Concepts & Definitions
	Challenges and problems
	Methodology
	The Domain Concept Model
	The Generic Mashup Meta-Model
	The mashup meta-model
	Operational semantics
	Generic mashup syntax

	The Domain-Specific Mashup Meta-Model
	Domain process model
	Domain rules
	Domain syntax
	Domain instances

	Domain-Specific Mashup Platform Development
	Overview
	Components & Compositions Execution Insights
	Orchestration style
	Data-passing style
	Compositions execution

	Components Definitions
	Component Definition Language (CDL)
	Component Definition Language in Action

	Mashup Compositions Definitions
	Mashup Definition Language (MDL)
	Mashup Definition Language in Action

	The Mashup Engine
	Mashup Engine Architecture
	The Repository Module
	Component- and Composition Mapper
	Component Descriptor and Component
	Composition
	Data Mapper
	Data Processor
	Configuration Interface

	ResEval Mash: A Domain-Specific Mashup Tool
	Overview
	Design Principles
	Intuitive graphical user interface
	Hidden data mappings
	Data-intensive processes
	Platform-specific services
	Runtime transparency

	ResEval Mash Architecture
	Overview
	Mashup Engine
	Composition editor
	Component Registration Interface
	Server-Side Services
	CDM Memory Manager, CDM Module & Shared Memory
	Local Database and the Web

	Intelligent Switching between Data-flow and Control-flow
	Components Models and Data Passing Logic
	The Domain-Specific Service Ecosystem
	ResEval Mash in Action: Various Mashup Compositions
	UniTN Department Evaluation Scenario
	Italian Professorship Selection Scenario
	Computing and Comparing H and G -Index Values of Researchers
	Comparison of Citations and Self-Citations

	User Studies and Evaluation
	Overview
	Comparative and Usability Evaluation: User Study-1
	Task Design
	Evaluation Procedure
	Questionnaires
	Results
	Evaluation Analysis & Discussion

	Usability Evaluation: User Study - 2
	Evaluation Procedure
	Participants Description
	Analysis: Usability Evaluation

	General Analysis & Discussion

	Conclusions and Future work
	Overview
	Contributions Summary of the Thesis
	Discussion and Lessons Learned
	Future Work
	Persistent Cache Support
	Third Party Services Registration & Deployment
	Component-Mappers for Third Party Components
	Recommendation Support for Mashup Compositions Development

	Bibliography

