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Abstract

Identifiers play an important role in communicating the intentions asso-

ciated with the program entities they represent. The information captured

in identifiers support programmers to (re-)build the “mental model” of the

software and facilitates understanding. (Re-)building the “mental model”

and understanding large software, however, is difficult and expensive. Be-

sides, the effort involved in the process heavily depends on the quality of

the programmers’ lexicon used to construct the identifiers.

This thesis addresses the problem of program understanding focusing on

(i) concept extraction, and (ii) quality of the lexicon used in identifiers. To

address the first problem (concept extraction), two ontology extraction ap-

proaches exploiting the natural language information captured in identifiers

and structural information of the source code are proposed and evaluated.

We have also proposed a method to automatically train a natural language

analyzer for identifiers. The trained analyzer is used for concept extraction.

The evaluation was conducted on a program understanding task, concept

location. Results show that the extracted concepts increase the effectiveness

of concept location queries. Besides extracting concepts from the source

code, we have investigated information retrieval (IR) based techniques to

filter domain concepts from implementation concepts.

To address the second problem (quality of the lexicon used in identifiers),

we have defined a publicly available catalog of lexicon bad smells (LBS)



and developed a suite of tools to automatically detect them. LBS indicate

some potential lexicon construction problems that can be addressed through

refactoring. The impact of LBS on concept location and the contribution

they can give to fault prediction have been studied empirically. Results

indicate that LBS refactoring has a significant positive impact on IR-based

concept location task and contributes to improve fault prediction, when used

in conjunction with structural metrics. In addition to detecting LBS in

identifiers, we try also to fix them. We have proposed an approach which

uses the concepts extracted from the source code to suggest names which

can be used to complete or replace an identifier. The evaluation of the

approach shows that it provides useful suggestions, which can effectively

support programmers to write consistent names.

Keywords

Concept extraction, lexicon bad smells, identifier parsing, domain concept

filtering
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Chapter 1

Introduction

To understand and maintain a software, developers try to explore and

gather information from various software artifacts such as the source code,

the design, and requirement documents. Artifacts such as design and re-

quirement documents however are often not available or up-to-date. Hence,

developers opt to rely on the source code as their primary source of infor-

mation [104].

The source code is a formalized representation of a solution to a given

requirement in a domain. Despite the formalization, the source code con-

tains a lot of textual information which is not strictly formal. In fact, ap-

proximately 70% of the source code is composed of identifiers [39], which

are freely chosen by developers to communicate their intentions [98]. Un-

derstanding the source code requires a developer to acquire the intention

embedded in the identifiers and (re-)building a “mental model”of the sys-

tem/domain.

Understanding the source code written by others or written some time

ago however is usually a difficult and time consuming activity. The dif-

ficulty stems from the fact that a solution of a problem in a domain can

be formalized in a number of ways and different developers might use a

different lexicon to express their intention through identifiers. A study

1



CHAPTER 1. INTRODUCTION

conducted by Furnas et al. [46] has shown that the probability of two peo-

ple naming the same object with the same name is between 7% and 18%.

This characteristics apply also to developers naming a concept and results

in identifiers which are not consistent and concise in representing a given

concept. Often there is no way of knowing how developers represent their

intention other than by reading the code. Reading the code of a large

program and building a “mental model”on the other hand is an expensive

activity, highly influenced by the quality of the identifiers [107].

Quality is subjective and its definition is relative to the person receiving

the final product [107]. Developers usually agree on some quality attributes

of the source code and use them by convention. For example some compa-

nies and open source communities have adopted coding conventions such

as the Java coding conventions1. Despite the effort and agreements on con-

ventions, some source codes contain poor quality identifiers. For instance,

in some legacy systems Sneed [106] has observed that programmers often

choose to name procedures after their girlfriends or favorite sportsmen.

If the quality of identifiers is poor, it hinders the process of reading and

understanding the source code which has a negative impact on maintenance

and evolution of the software. Realizing the difficulty associated with poor

quality identifiers on reading and understanding the source code, some de-

velopers rename identifiers to meaningless names to obfuscate their source

code, and hence protect their intellectual property from being copied [109].

While such obfuscation is done before distributing the software, the qual-

ity of identifiers in the source code on which the developers are working is

supposed to be good. This is often true for open source software, where

developers located at different places collaborate to maintain and evolve a

common code base.

The theory of broken windows [113] states that if a window in a building

1 http://www.oracle.com/technetwork/java/codeconv-138413.html
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CHAPTER 1. INTRODUCTION 1.1. RESEARCH PROBLEM

is broken and is left unrepaired, all the rest of the windows will soon be

broken. Like wise in the source code being unable to easily identify de-

veloper’s intentions and to re-build her “mental model”, and having poor

quality identifiers could be an indication and a driving factor for other

serious problems. Hence, we believe that addressing these problems have

a twofold advantage: (a) it prevents developers from misunderstanding

the code functionality and introducing new problems and (b) it improves

or maintains the quality of the source code over time. In this thesis, we

present techniques and methodologies which help developers in extracting

the knowledge embedded in the source code through reverse engineering,

in locating problems related to the quality of identifiers and in preventing

them from being introduced.

1.1 Research problem

Problem 1: Concept extraction. Understanding a program involves

learning the concepts implemented in the source code and the relations

among them. When programmers are given a task, they have to decide how

to structure and implement the knowledge they have about the solution

domain. This knowledge is encoded in program syntax, comments, but

most of all in identifiers. For maintainers and even for the first developers

of the software, after some time, (re-)acquiring the encoded knowledge from

the source code and understanding the program may be a difficult and

expensive task, especially for large systems. In fact different programmers

model the concepts of a domain, and the relations among them in various

ways, and represent them in the source code differently. We intend to

address the problem of extracting the concepts from the source code to

help program understanding.

Problem 2: Improving the quality of the lexicon used in iden-

3



1.2. CONTRIBUTION CHAPTER 1. INTRODUCTION

tifiers. The effort put to read and understand a program depends on

the quality of the lexicon used to represent the concepts in the identifier.

Despite the fact that programmers are free to use any lexicon to give a

name to a concept in their mind, they try to follow commonly adopted

conventions to make the name meaningful and consistent. However, due

to various factors, the lexicon selected to give names to different program

elements is not always consistent and concise in conveying the intended

meaning. In addition, different programmers might also follow different

naming patterns, which create confusion to the reader of the program.

Such a misunderstanding could also introduce ambiguous representations

of concepts during maintenance. Hence, it adds more difficulties to the

already difficult problem of program understanding. In this regard, we

intend to identify and suggest ways to improve the programmer’s lexicon

used in identifiers, which may compromise the quality of the source code.

1.2 Contribution

The main contributions of this thesis are techniques and methodologies for

extracting concepts and inter-concept relations from the source code and

for improving the quality of identifiers.

Concept extraction. We have defined a natural language based method-

ology to extract concepts and relations among concepts. The methodology

uses natural language analyzers to identify concepts and inter-concept re-

lations from phrases constructed by splitting identifiers. We have also

proposed and investigated different techniques to adapt and use natural

language analyzers with phrases constructed from splitted identifiers. Be-

sides the natural language based methodology, we have also formulated

an approach which exploits structural information in the source code to

extract concepts and inter-concept relations.
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In addition to extracting concepts used in source code, we have in-

vestigated information retrieval (IR) based approaches to separate (filter)

domain concepts from implementation concepts.

Improving the quality of the lexicon used in identifiers. We have

introduced the notion of “lexicon bad smell”, which indicates some bad

practices on the choice of the lexicon and on the construction of identifiers.

We have created a catalog of lexicon bad smells and developed a publicly

available suite of detectors to locate them. We have also proposed sugges-

tions which can be used to refactor the identifiers with a bad smell and to

improve their quality.

Identifier suggestion. To support programmers in writing good quality

identifiers, we have formalized a new approach to suggest identifiers. The

suggestion can be used to replace an existing identifier or to complete a

new identifier. The approach exploits the concepts extracted from the

source code following our natural language based approach and ranks the

suggested names taking into account the context in which the identifier is

written.

1.3 Structure of the thesis

An overview of the thesis structure is shown in Figure 1.1. The approaches

we proposed to extract concepts from the source code and their evaluations

are presented in Chapter 2. Chapter 3 presents the approaches investigated

and evaluated to filter domain concepts from the concepts extracted follow-

ing the approaches discussed in Chapter 2. The description of the catalog

defined to identify bad practices in naming identifiers, the corresponding

detectors, and evaluations are presented in Chapter 4. In Chapter 5 an

approach, relying on the methodology described in Chapter 2, which pro-

vides a ranked list of name suggestions, to replace an existing or complete

5
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a new identifier is presented. Chapter 6 discusses the related works in con-

cept extraction from the source code and methods proposed to improve

the quality of identifiers. The conclusion of the thesis and future works are

presented in Chapter 7.

Figure 1.1: Structure of the thesis

6



Chapter 2

Concept extraction

Program understanding involves (re-)building the mental model of the

knowledge captured in a program. Rebuilding the mental model of a pro-

gram requires identifying the concepts in the source code and the relations

among them. However, this task may be difficult for programmers having

different perceptions and representations of the concepts introduced during

the development and evolution of the source code.

One way for programmers to represent and communicate the intended

meaning of program elements is through identifiers [98] which constitute

approximately 70% of the source code [39]. Different approaches have been

proposed to analyze and exploit the information captured in identifiers

to support program understanding. Ratiu et al. [102] have developed an

approach to automatically extract a domain ontology from different domain

specific APIs that target the same domain. The extracted ontology is

composed of all prevalent domain concepts in the APIs. In other works

[83, 97, 105, 47] the authors have proposed approaches which minimize the

effort required to go through the source code and understand parts of the

source code relevant to a concept.

In this chapter, we present two approaches to extract concepts from the

source code and build an ontology, which supports program understand-
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ing. The first approach exploits the natural language information captured

in the identifiers [4], while the second approach exploits the structural re-

lations among source code elements. Based on the level of formality, an

ontology can vary from a simple taxonomy with almost no formalization,

to one which uses a rigorously formalized theory [110]. Ontology in this

context is a “lightweight ontology” which is in between these two extremes

and does not include axioms supporting formal reasoning, but only consid-

ers concepts and relations connecting the concepts. Lightweight ontology

which is built using only concepts and relations connecting the concepts

without any formalization is sometimes referred to as “concept map”. Here

after we refer to such lightweight ontology as ontology.

To exploit the natural language information captured in the identifiers,

we use natural language analyzers. A natural language analyzer is a natural

language tool which takes an input sentence, that is a string of words, and

returns its syntactic analysis. To carry out syntactic analysis on identifiers

and exploit the information captured in the identifiers, we have investigated

an approach to train natural language analyzers for use with identifiers. We

present our proposed approach which adapts natural language analyzers to

identifiers in Section 2.1. Section 2.2 and 2.3 discuss the approaches we

propose to extract concepts and build an ontology from the identifiers

and the structure of the source code, respectively. The comparisons of

the different types of analyzers, and the two types of concept extraction

approaches are presented in Section 2.5.

2.1 Identifier parsing

Natural language analyzers are mainly conceived to work with full sen-

tences. The term lists which are obtained by splitting identifiers however

are different from sentences. We present some heuristics to convert an iden-
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tifier term list into a sentence [4], so that it can be handled by a general

purpose parser which we call Standard English Analyzer (SEA). We also

investigate an analyzer constructed to directly work on the identifier term

list.

In the following sub-sections, we describe the syntactic analysis ap-

proaches followed to parse identifiers, including the analyzers and the cor-

responding training sets. The steps involved in the construction of the

sentences which are used by SEA are also described below.

2.1.1 Syntactic analysis

In NLP it is well known that a syntactic analysis is necessary to reconstruct

the meaning of the input sentence. In our case, the relations between

the entities (concepts) included in the identifier term list depend on the

syntactic and semantic role of each token. A syntactic parse is therefore

necessary for further processing.

The construction of the syntactic analysis for an input identifier can be

performed in different ways and requires several steps. The first step in

all cases, however, is tokenization. Tokenization is the process of splitting

a text into words or linguistic elements called tokens or terms. Identifiers

are composed of one or more terms. In order to identify the compos-

ing terms and tokenize identifiers, we take advantage of the commonly

used term separators, such as camel casing (e.g., FileItem) and underscore

(e.g., file item). This can also be achieved using more sophisticated tech-

niques proposed by Lawrie et al. [72], and Corazza et al. [36]. When the

terms used to construct the identifiers are abbreviations or contractions,

they can be expanded using existing approaches [70, 73, 57, 71, 36]. For

example, by tokenizing the identifier fileItem, we get the term list <file,

item>.

The syntactic analysis includes two modules: PoS tagging and parsing.
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The former assigns a label corresponding to the function of the word in

the sentence, such as noun, verb, and so on, to each token, while the lat-

ter constructs a syntactic analysis of the whole sentence. The syntactic

analysis can be hierarchically organized phrases, if a constituency based

approach is adopted, or a set of dependencies between word pairs compos-

ing a directed graph in case of a dependency based approach. In the latter

case, by dependency relationship we mean an asymmetric binary relation-

ship between a token called head, and another token called modifier (see

Lin [78]). In our case we consider a dependency parser where the analysis

is formed of dependencies between pairs of input words. The dependency

parser is chosen over the constituency parser because it allows a more direct

reconstruction of relations between concepts.

The two modules can be organized to work in a pipeline or integrated.

While in the pipeline analyzer PoS tagging is completed before the syn-

tactic parse is built, in the integrated schema a list of possible PoS tags

is associated to each token in the input by consulting the lexicon, and the

choice of the best PoS tags is performed during parsing. In other words,

in the integrated analyzer the parser is also involved in the decision of the

PoS tag which is more likely in the considered sentence.

Some NLP systems use a data-driven natural language parser which

requires a training phase to learn how to process the input tokens. The

advantage of such data-driven parsers is that they can easily learn how

to parse different (novel) languages and their variants from a collection of

suitable parse trees, called treebank.

We consider three NLP systems. The first NLP system, which is applied

to the token sequence, is similar to the analyzer of the standard English,

SEA. Its two analyzer modules are trained on a largely employed English

treebank, namely the PennTreebank (see Marcus et al. [84]). Both remain-

ing NLP systems involve retraining the two analyzer modules to adapt
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them to the identifier language, and only differ in the architecture, being

pipeline or integrated.

Training is performed on an annotated set which should be as similar as

possible to the actual input set, hence, in our case, to tokenized identifiers.

Indeed, the string of tokens extracted from an identifier is very different

from a natural language sentence as identifiers usually do not correspond to

complete sentences. In addition to that, they also have a different structure

depending on their function: method names are more likely to describe

actions and therefore their structure resembles the Verbal Phrases (VPs),

while attribute and class names usually aim at indicating things, in a way

similar to Noun Phrases (NPs). This is, for example, the case of the two

examples reported in Figure 2.1 which shows the analysis of two identifiers:

TextPanel and removeFile. The former corresponds to a class identifier

while the latter to a method name. Such distinction is expected to affect

the syntactic analysis, but not the PoS tagging. Therefore, we will consider

a unique PoS tagger, but a different parser for each of the two classes of

identifiers, namely a VP-parser for method names and an NP-parser for all

the others (classes and attributes). Consistently, we construct two different

training treebanks, one for each parser. In Section 2.1.4, we present details

of the training set construction.

All in all we therefore consider four NLP systems:

1. Untrained Integrated Analyzer (UIA): consists of an SEA integrating

PoS tagging and dependency analysis, applied to complete sentences

built by padding the token sequence produced by the tokenizer. The

system architecture is shown in Figure 2.2;

2. Untrained Pipeline Analyzer (UPA): to overcome the need for com-

plete English sentences, a pipeline composed of standard English PoS

tagger and parser is directly applied to the token sequence extracted

11
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Figure 2.1: Examples of dependency analysis for two identifiers: (a) the class name

composed by two tokens, text panel, and (b) the method name formed by two tokens,

remove file. Each graph node is labeled by one token of the identifier and the PoS tag

assigned to the token. The edge labels are dependency relationships extracted by the

analyzer, namely dobj - direct object and nn - noun-noun specifier.

from the input identifier: the analysis in this case is obviously more

difficult than in the previous case and a more accurate analyzer is

required. The pipeline architecture is depicted in Figure 2.3;

3. Trained Pipeline Analyzer (TPA): both syntactic analysis modules,

namely PoS tagger and parser, are retrained to adapt them to the

token language and then they are combined in a pipeline and directly

applied to the tokenizer output (see Figure 2.4). Note that in this

case two different parsers (i.e., VP and NP) are used, depending on

the function of the input identifier;

4. Trained Integrated Analyzer (TIA): this system is identical to the pre-

vious one, except that the two syntactic analysis modules are inte-

grated together to improve robustness towards PoS tagging errors, as

depicted in Figure 2.5.

The sentence construction module is adopted only in the UIA, while in

all other cases the analyzer is modified to directly process the tokenizer

12
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Figure 2.2: Architecture of Untrained Integrated Analyzer (UIA).

Figure 2.3: Architecture of Untrained Pipeline Analyzer (UPA): the two analyzer modules

are applied as distributed, without retraining, and in a pipeline.

output.

2.1.2 Sentence construction in UIA

The sentence construction step in the UIA system (see Figure 2.2) aims

at constructing a sentence which is used as an input to the integrated

analyzer.

To generate a sentence from an identifier term list, we have formulated

different rules which are shown in Table 2.1. The rules are defined for the
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Figure 2.4: Architecture of Trained Pipeline Analyzer (TPA): a pipeline of the two re-

trained modules is directly applied to the tokenizer output.

Figure 2.5: Architecture of Trained Integrated Analyzer (TIA): the two modules are

retrained and applied in an integrated modality.

three main identifier types: class, method, and attribute. A rule is applied

to a given type of identifier term list when the corresponding constraint is

satisfied. To know the parts of speech of the terms and see if a constraint

is satisfied, we have used WordNet [89, 44]. If none of the constraints are

satisfied, the list of terms is used as it is. Based on the rules we defined,

for a given term list, at most two candidate sentences are generated. Of

the two candidate sentences one is selected for further processing.

To elaborate the steps involved in the sentence construction, we use the

code snippet shown in Figure 2.6 as our running example.
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Table 2.1: Rules to generate sentences from term lists.
Rule Class term list Generated sentence Constraint

CR1 C = 〈T1〉 T1 “is a thing” T1 is a noun or an adjective

CR2 C = 〈T1〉 T1er “is a thing” T1 is a verb

CR3 C = 〈T1, T2, . . .〉 T1T2 . . . “is a thing” T1 is a noun or an adjective

CR4 C = 〈T1, T2, . . .〉 T1ing T 2 . . . “is a thing” T1 is a verb

Rule Method term list Generated sentence Constraint

MR1 M = 〈T1〉 “Subjects” T1 “object” T1 is a verb

MR2 M = 〈T1〉 “Subjects get” T1 T1 is a noun

MR3 M = 〈T1, T2, . . .〉 “Subjects” T1T2 . . . T1 is a verb

MR4 M = 〈T1, T2, . . .〉 “Subjects get” T1T2 . . . T1 is a noun or an adjective

MR5 M = 〈T1, T2, . . .〉 “Subjects handle” T2 . . . T1 is the preposition ”on”

MR6 M = 〈T1, T2, . . .〉 “Subjects convert” T2 . . . T1 is the preposition ”to”

Rule Attribute term list Generated sentence Constraint

AR1 A = 〈T1〉 T1 “is a thing” T1 is a noun or an adjective

AR2 A = 〈T1〉 T1er “is a thing” T1 is a verb which is not a past par-

ticiple, or

T1 is a past participle verb and A is

not of boolean type

AR3 A = 〈T1〉 T1 “subjects are things” T1 is a past participle verb and A has

a boolean type

AR4 A = 〈T1, T2, . . .〉 T1T2 . . . “is a thing” T1 is a noun or an adjective

AR5 A = 〈T1, T2, . . .〉 T1ing T2 . . . “is a thing” T1 is a verb

Generating candidate sentences

Class term list: A class term list is converted to sentences using the rules

shown in Table 2.1 (top). Class identifiers are usually constructed from a

noun, multiple nouns or adjectives followed by nouns. The rules take ad-

vantage of this general nature of class identifiers to suggest the formulation

of sentences. To construct a sentence from the list of terms produced from

a class name, we append “is a thing” at the end of the list. When the first

term in the sequence can (also) be used as a verb, we add either “er” or

“ing” to it. “er” is appended if the phrase has only one term while “ing”

is appended when there is more than one term.

If, for example, the class term list contains only a single term (e.g., the

super-class in our running example, <account>), by applying CR1 and
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public class CurrentAccount extends Account

implements Digi ta lCheque {

private double balance ;

private boolean c l o s ed ;

public double getBalance (){

return balance ;

}

public double transactionPayment (double amount){

ServiceCharge sc = new ServiceCharge ( ” currentAccount ” ) ;

double charge = sc . c a l c u l a t e ( ) ;

. . .

}

public void withdraw (Money m) { . . . }

public void c l o s e ( ) { . . . }

public boolean i sC l o s ed ( ) { . . . }

public double c a l c u l a t e I n t e r e s t ( ) { . . . }

. . .

}

public class BankSystem{

. . .

public void main (){

. . . .

CurrentAccount ca = new CurrentAccount ( ) ;

. . .

ca . withdraw (new Money( ”10” , ”Euro” ) ) ;

. . .

ca . c l o s e ( )

}

. . .

private void au then t i c a t e ( User user ){

Login l og i n = new Login ( ) ;

. . .

l o g i n . au then t i c a t e ( user ) ;

. . .

}

}

Figure 2.6: Running example: A fragment code of a Bank System.

CR2, we get “account is a thing” and “accounter is a thing” respectively,

since account can be used as both a noun and a verb. If the class list

of terms has more than one term, for example <current, account> (as in

Figure 2.6), we will have “current account is a thing” by applying CR3.

As current can only be used as an adjective or a noun, rule CR4 is not

applied.
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Method term list: Method identifiers often consist of a single term which

can be a verb or a noun, or multiple terms which start with a verb, followed

by nouns, which usually serve as the object of the verb. In addition to these,

we have included two special types of method name term lists which are

commonly used to describe methods that deal with events and conversion.

The former type of methods usually starts with the preposition “on” while

the latter starts with “to”. The possible sentences generated for these term

lists are shown in Table 2.1 (middle).

If a method name is constructed from a single term which can be used

as a verb or a noun, we apply rules MR1 and MR2. When the term is

considered as a noun and a missing verb is anticipated (MR2) “get” is

used to construct the sentence. For example, if we take the term <close>

extracted from the method name of our running example (see Figure 2.6),

two candidate sentences are generated by applying rules MR1 and MR2:

“Subjects close object” and “Subjects get close”, since the term close can

be used as both a verb and a noun. For term lists containing two or

more terms, we apply rule MR3 if the first term is a verb and rule MR4

if it is a noun. For MR3, if the first term in the term list is the verb

is, we use Subject instead of Subjects while constructing the sentence. In

our running example, for the method term list <transaction, payment>,

the sentence “Subjects get transaction payment” is generated by applying

MR3. No alternative candidate sentence is generated for this term list

as the term “transaction” can only be used as a noun. In addition to

these rules, we have two special rules, MR5 and MR6, for the two most

commonly used prepositions in method names. If the leading term of

a method name is the preposition “on” or “to”, we replace them with

the equivalent verbs “handle” and “convert”, respectively, during sentence

construction. If for example we have the method term list <on, click> and

<to, euro>, the sentences “Subjects handle click” and “Subjects convert
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euro” are generated using rules MR5 and MR6, respectively.

Attribute term list: Attribute identifiers are usually similar in nature to

class identifier. They are mostly constructed from a noun, multiple nouns,

adjectives followed by nouns, or a verb which is in its past participle form

and has a boolean return type. To construct a sentence from the list

of terms created from attribute identifiers, we follow similar construction

techniques as for the class identifiers. The sentences are generated by

appending “is a thing” or “subjects are things” at the end of each term list.

The latter sentence is used when we have an attribute term list composed

of a single term which is in its past participle form and has a boolean type

(AR3). AR3 is a special case where the verb becomes a modifier of the

subject in the clause “subjects are things”. The first term in the list is

also modified by adding “er” or “ing” when we have a verb that is not in

its past participle form and the associated attribute has a boolean type.

“er” is appended if the term list is constructed from only one term, while

“ing” is appended when there is more than one term. The summary of

these rules is shown in Table 2.1 (bottom).

If we take attribute name <balance> as an example from our running

example, we generate two candidate sentences “balance is a thing” and

“balancer is a thing” using rules AR1 and AR2, since the term balance can

be used as both a noun and a verb. By applying AR3, the boolean attribute

<activated> will generate the candidate sentence “activated subjects are

things”.

Candidate sentence selection

The rules shown in Table 2.1 and described above generate one or two

sentences. When we have two sentences, we need to select one sentence

which will be used as an input to the following steps. Prerequisite to
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the selection of a sentence is the generation of dependency trees for the

initial candidate sentences using a SEA (e.g., Minipar). Once parse trees

are available for the candidate sentences, we apply the following selection

criteria, in the given order (the first match is applied, without considering

the next ones). If we have only one candidate sentence, it is automatically

selected.

a. If only one of the sentences is correctly parsed, select the sentence whose

parse tree is correct. When SEA is not able to identify a term in a

sentence and parse the sentence correctly, Unknown (U, for short) is

reported. Hence, if just one of the two sentences has a U, the sentence

without U is selected.

b. If both sentences do not have a U and the source of the terms is a

method, the method name is checked against the attributes of the en-

closing class. If a match is found, the sentence with the verb get is

selected.

c. If both sentences do not have a U, the sentence satisfying the following

priority rules is selected: If the two sentences have been generated for

a method term list, the sentence constructed using either rule MR1 or

MR3 is selected. For sentences generated from a class term list, the

sentences generated following either rule CR1 or CR3 is given priority,

while for attribute term lists, either rule AR1 or AR4 has priority.

d. If both sentences have a U, selection criterion c is applied.

For the method term list<close> of our running example, two candidate

sentences are generated using rules MR1 and MR2: S1 = “Subjects close

object” and S2 = “Subjects get close”. These two sentences are parsed

correctly (with no U in the parse trees). The term close does not appear as
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attribute name in the containing class. Hence, based on the third criterion,

sentence S1 is selected for further analysis.

2.1.3 Syntactic analyzers

As our analyzers, we use two tools, namely Minipar which has an inte-

grated PoS tagger and the Malt parser, which we employ together with

the SVMTool PoS tagger. Minipar is used in UIA while Malt/SVMTool

are used in UPA, TPA, and TIA. Minipar is quite robust with respect to

natural language variability but is available as is, and can not be adapted

in any way to new tasks. Since we aim at adapting the analyzer to identi-

fier analysis, we consider the combination of the latter two state-of-the-art

tools: Malt parser and SVMTool. Malt parser and SVMTool are based on

data-driven NLP approaches. We have applied them both in their stan-

dard English version, referred to as untrained, and after re-training on a

text which is similar to the token sequences generated from identifiers.

Details of these tools are presented in the following sub-sections.

Minipar

Minipar1 is a broad-coverage principle based parser for the English lan-

guage (see Lin [77]), in which the grammar is represented as a network.

It adopts an integrated strategy: a list of possible PoS tags is associated

to each word in the lexicon and the resulting tag is chosen during parsing.

The lexicon used by Minipar contains 130,000 entries which are composed

of the lexicon from WordNet [89, 44] and additional proper names. Its

frequency and possible PoS tags are associated to each lexicon entry. Af-

ter parsing a sentence, Minipar outputs information about the individual

components of the sentence and the structural relations between such com-

ponents, including their mutual dependencies. In addition to specifying the
1http://webdocs.cs.ualberta.ca/ lindek/minipar.htm
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relationship between terms, Minipar labels each term with one of the PoS

based on its role in the sentence.

The PoS which are of interest to us, to extract concepts and relations,

and to build the ontology, are nouns (N), verbs (V) and adjectives (A).

Minipar generates a list of tuples. Each tuple provides information about

the term, w, represented by the node, its category (N, V, A, etc.), the

head (root) term it modifies, and the dependency relationship between the

modified term (the head) and w (see Lin [77]). In this study we are mainly

interested in the dependency relations between verbs and their respective

objects, and the nouns and their modifiers. The former dependency rela-

tion is referred to as object relation (obj ) in Minipar, while the latter as

a modifier (mod) or noun-noun specifier (NN ) relation. Figure 2.7 shows

a graphical representation of the tuples generated by Minipar for the sen-

tence Subjects get size.

Figure 2.7: Parse tree for Subjects get size which is generated using SEA (Minipar).

SVMTool PoS tagger

The PoS tagger SVMTool presented in Giménez and Màrquez [49] is based

on Support Vector Machines (SVMs) by Vapnik [111], a machine learning

approach largely adopted because of its good performance on a large set of

tasks. The SVMTool tagger for standard English achieves a very compet-

itive accuracy of 97.2%, as reported by Giménez and Màrquez [48]. The

system can also be efficiently trained to be adapted to different languages.
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In fact, SVMTool is composed of two modules: SVMLearn and SVMTag-

ger. The former is used to train the models and it is based on SVM light,

a library for SVM implemented by Thorsten Joachims [63]. The latter is

used to tag the input sentences, and in our case it is applied to tokenized

sentences. In the UPA NLP system, the standard English tagger is ap-

plied to the token sequence output by the tokenizer, while in the TPA and

TIA systems it is applied after training the models on the training set, as

discussed in Section 2.1.4.

Malt parser

Malt parser2 [92, 91] is a data-driven dependency parser, which, similarly to

SVMTool, can be applied either with a standard English model or trained

on a training set. In this case, however, the training set is represented by

a collection of sentences annotated with the corresponding analysis, called

treebank. While Minipar also includes a PoS tagger, the input to Malt

parser must be tagged. The final output of Malt parser is quite similar to

that of Minipar.

2.1.4 Training

In NLP tools based on machine learning, a model is learned from a training

set and then it is applied to the input. This is the means we employ in this

work to adapt generic natural language tools to process the list of tokens

extracted from an identifier. The crucial point in this approach, however,

is the construction of a training set which can describe the task at hand.

Each training set should be collected from a domain as similar as possible

to the one considered, and then annotated with the information necessary

for the model. In our case, annotation should include both PoS tagging

2Malt parser can be freely downloaded from http://maltparser.org/download.html
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and dependency analysis. We looked for collections of identifiers available

together with their analysis (PoS tags and parse trees). The closest data

we got is the class identifier data set built by Butler et al. [27]. It is a

treebank which has been employed for class and attribute names. This

data set contains 120,000 class identifiers extracted from 60 Java open

source projects. It has been used to understand the Java class identifier

naming conventions used in practice [27]. Since the first step of training is

identifying grammatical patterns in names based on a part of speech (PoS)

tagging, we use the identifiers of this data set, which are already tokenized

and tagged using the Stanford Log-linear PoS tagger3.

As larger training sets are usually better than smaller ones, a good train-

ing set is obtained as a trade-off between the need for a large amount of

data and the requirement that such data accurately describe the task at

hand. Unfortunately, manual annotation is a very expensive process, and

therefore it is very difficult to obtain large training sets for tokenized iden-

tifiers. Furthermore no large collection of program identifiers annotated

with PoS tags and associated with the respective parse trees is publicly

available. We have therefore designed an automatic procedure to con-

struct the necessary annotations without manual intervention. We used

natural language texts available from the documentation of the considered

software projects to build our training sets. Such documentation typically

includes comments extracted from the source code, user manuals, system

documentation, and FAQs describing howtos of the system.

As already mentioned above, while only PoS annotations are needed to

train the PoS tagger, for the parsers we need a treebank. In a similar way

to syntactic parsers, treebanks can also follow the constituency or depen-

dency framework. The latter suits well ontology construction, as it builds

dependency relations between words. On the other hand, the constituency

3http://nlp.stanford.edu/software/tagger.shtml
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approach produces a sentence parse tree, which is easier to transform to ob-

tain the kind of simplified sentences corresponding to identifiers. We have

used both approaches during the construction of the training sets for both

the PoS tagger and the dependency parser. In fact, the transformations

necessary to build a potential identifier from a natural language sentence

are more intuitively expressed in the constituency framework. Eventu-

ally, the so obtained constituency treebank has been transformed into an

equivalent dependency one, necessary to train Malt parser.

The construction of the training set by means of transformations ap-

plied to a natural language treebank has also the advantage of allowing a

stronger adaptation to the considered software system. Indeed, it can be

automatically applied to any natural language description of the system,

such as comments and documentation. While designing the transforma-

tions to be applied to these texts in order to simulate identifiers, we have

considered the fact that identifiers have different structures depending on

their function. For example, method names are more likely to describe

actions and therefore their structure resembles VPs, while attribute and

class names usually aim at indicating things, in a way similar to NPs. Such

distinction is expected to affect the syntactic analysis, but not the PoS tag-

ging. Therefore, a unique training set including all sentences is considered

to train the PoS tagger, while two different, disjoint training sets (VP-

like sentences for method names and NP-like sentences for class/attribute

names) are considered to train two parsers, a VP-parser and an NP-parser.

First of all, the natural language sentences available from the project

documentation are PoS tagged using SVMTool with the language model

for the standard English distributed with the tagger. Afterwards a con-

stituency parser, namely the Stanford parser discussed later in Section 2.1.4,

is employed to build the constituency parse trees of each sentence. Al-

though automatic PoS tagging and parsing can introduce errors, it is very
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cheap and the error rates of both tools are low enough to be sure that

the introduced errors will not deteriorate too much the resulting treebank.

All determiners are then deleted from the treebank, since no determiner

is usually included in identifiers. Although a similar transformation could

also be applied to other PoS tags, only this one resulted to be effective

in some preliminary tests. This is probably due to the fact that the other

infrequent PoS tags are nearly absent from the simplified text which we use

for training the parser. However, the deletion must be performed in such a

way that a consistent parse tree is produced even after the transformation.

An important property of parse trees is that only leafs are labeled with

PoS tags. Therefore, after deletion, every internal node must still have one

or more children.

As noted before, we aim at obtaining two different parsers, namely the

VP-parser to apply to method identifiers and the NP-parser for class/at-

tribute identifiers. Therefore, we need two different training sets, one con-

taining only parse trees of VP’s and the other of NP’s. As identifier struc-

tures are usually quite simple, we also impose that all NP’s and VP’s

composing our training treebanks are minimal in the sense that they do

not contain any other subtree with the same root. Such trees are called

non-recursive. Then, all non-recursive VP subtrees are collected from the

parsed project documentation to form the VP training set, while all non-

recursive NP subtrees form the NP training set. Eventually, the parse

trees are converted into equivalent dependency graphs, used to train the

data-driven dependency parser.

We use the whole treebank to train SVMTool, while each of the two tree-

banks is used to train the VP-parser and the NP-parser respectively. The

so obtained modules are then introduced in the two trained NLP systems,

namely TPA and TIA, as shown in Figures 2.4 and 2.5, respectively.
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Stanford parser

The constituency parser used for the construction of the training tree-

bank is the Stanford parser [67, 68] with the English grammar distributed

together with the software. It is based on probabilistic context-free gram-

mars whose probabilities are estimated during training and used during

parsing to output the most probable derivation with the Viterbi algo-

rithm. This package is implemented in Java and can be freely downloaded

from http://nlp.stanford.edu/software/lex-parser.shtml. To build

the training treebanks for NP-parser and VP-parser, we use another tool

distributed by the Stanford lab, namely the Tsurgeon4, a tree transforma-

tion tool which maintains the consistency of parse trees when non-recursive

subtrees are extracted.

2.2 NLP based concept extraction

The concepts which are used in building the ontology are derived mainly

from the nouns and adjectives found in the term lists. The ontological

relations are obtained by mapping the linguistic relations in the depen-

dency tree produced by the analyzers to ontological relations. Additional

ontological relations are obtained from verbs.

The resulting ontological relations are:

a. isA: a relation between a general and more specific concept.

b. <verb>: a context specific relation between a concept, usually the

doer, and the object on which the verb acts.

c. hasProperty: a relation between a concept and its properties.

d. hasState: a relation between a concept and its state.

4The tool can be freely download from http://nlp.stanford.edu/software/stanford-tregex-2012-07-09.tgz
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The details of how these ontological relations are extracted by map-

ping the linguistic relations (dependencies) is presented in the remaining

of this section. To graphically demonstrate the mappings we have used the

linguistic relations produced by UIA (Minipar).

2.2.1 The isA ontological relation

An isA ontological relation is mapped to nn and mod linguistic relations

produced by UIA (Minipar) as shown in Figure 2.8. If the analyzer used

is UPA, TPA, or TIA (Malt parser), it is mapped to nn, amod (adjectival

modifier) or partmod (participial modifier) natural language dependencies.

The isA ontological relation sub-tree is obtained by first taking the root

noun (the most general concept) which is modified/specified in the sentence

parse tree and the descendant (more specialized) sub-concepts are obtained

by incrementally adding all specifiers/modifiers down the sub-tree.

Figure 2.8: Mapping rule for NN -specifier or mod relation to an isA relation, S is a

specifier/modifier.

If we take the sentence generated using rule CR3 for the class identifier

currentAccount of our running example, “current account is a thing”, cur-

rent is identified as a nn-specifier of account (see Figure 2.9). Hence, the

ontological relation isA(current account, account) is extracted.
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Figure 2.9: Concept and relation extraction from the NLP parse tree of the sentence

“current account is a thing”. The shaded box shows the terms taken from the class name

of the running example and the linguistic relation among them.

2.2.2 The <verb > ontological relation

The <verb > relation is a context specific relation between the doer con-

cept, usually the class name, and the object (another concept in the rela-

tion) on which the verb acts (see Figure 2.10a). The object and relation

are identified and extracted from the verb phrase dependency tree of the

sentence constructed for method names. The <verb> relation is mapped

to the verb of the verb phrase while the object is identified by looking at

the object of the verb, which is connected to it using the NLP dependency

obj produced by UIA (Minipar), or the NLP dependency dobj (direct ob-

ject) or pobj (preposition object) produced by UPA, TPA and TIA. For

example, from the parse tree of the sentence Subjects calculate interest

which is constructed for the method term list <calculate, interest> cre-

ated from the method name calculateInterest in the class CurrentAccount,

we can extract the ontological relation calculate(current account, interest)

(see Figure 2.11).

This ontological relation is not generated if the verb in the sentence is

an accessor (get or set). When there is no obj NLP dependency in the

verb phrase, e.g., due to a method name constructed from only one verb,

we use the following steps to identify the possible object of the verb.

i. If the method has one or more formal parameters, we take the type of

the first formal parameter as an object, if such a type is a user defined
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Figure 2.10: Mapping rules for <verb > ontological relation. C is the concept related to

the class containing the method M for which the sub-parse tree is shown, P is the concept

representing the program and S is a specifier/modifier. S* means zero or more repetitions

of S. T is the type of the formal parameter t of method M.

type (see Figure 2.10(c)).

ii. If the method has one or more formal parameters and the type of the

first formal parameter is not a user defined type, we take the parameter

name as an object (see Figure 2.10(c)).

iii. If the method does not have any formal parameter, the class name is

considered as the object. In this case the doer concept is the concept

represented by the program name (see Figure 2.10(b)).

Figure 2.11: The NLP parse tree of the sentence Subjects calculate interest and the

corresponding ontological concepts and relation extracted. The shaded box shows the

terms taken from the method name of the running example and the linguistic relation

among them.

2.2.3 The hasProperty ontological relation

The hasProperty ontological relation is extracted in a similar way as the

<verb > relation. This ontological relation, however, is extracted when the
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Figure 2.12: Mapping rules for hasProperty, (a), and hasState, (b), ontological relations.

C is the concept related to the class containing the method M for which the sub-parse

tree is shown and S is a modifier/specifier. S* means zero or more repetitions of S.

verb in the verb phrase of the sentence is either of the two access verbs,

get or set. The concepts involved in this relation are those associated with

the class name and the object in the verb phrase which represents the

property (see Figure 2.12(a)). An example of such an extraction is shown

in Figure 2.13(a) for the statement Subjects get balance. The ontological

relation extracted from the corresponding parse tree is hasProperty(current

account, balance).

Figure 2.13: NLP parse trees and the corresponding ontological concepts and relations

extracted for the sentences Subjects get balance, (a), and Subject is closed, (b).

2.2.4 The hasState ontological relation

The hasState ontological relation is a relation generated from a parse tree

of a sentence when the verb to be is found in both the parse tree and the

method term list from which the sentence is constructed. The predicate
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verb and the corresponding object (when available) are used as concepts

that represent the state of the concept associated with the class containing

the method (see Figure 2.12(b)). Figure 2.13(b) shows the ontological

relation and concepts extracted, hasState(current account, closed), for the

sentence “Subject is closed” which is generated for the method term list

<is, closed >.

Figure 2.14: An ontology extracted for the running example code fragment shown in

Figure 2.6 using the NLP based approach.

31



2.3. STRUCTURAL BASED EXTRACT. CHAPTER 2. CONCEPT EXTRACTION

An example ontology

Figure 2.14 depicts the ontology 5 generated for the code fragment shown

in Figure 2.6, following the steps described above. We have concepts con-

nected using the isA relation such as isA(service charge, charge), isA(digital

cheque, cheque), and isA(current account, account) where one of the three

is also captured in the source code syntax (class CurrentAccount extends

class Account).

In addition, the ontology provides information about the properties and

actions of a concept. For example, the concept current account, has balance

as its property and calculates interest as an action it can perform. The

ontology also captures states of a concept through its hasState relation

(e.g., hasState(current account, closed)).

2.3 Structural based concept extraction

Programmers who use the object oriented paradigm to write their code fol-

low certain structural rules and design guidelines supported by the paradigm.

This, in turn, influences the way they think and model their knowledge of

the solution during the implementation. In this section, we describe how

we use the rules and structure associated with the object oriented paradigm

to extract an ontology which models the knowledge captured in the source

code structure. The summary of the mapping rules from the structure

of the source code to the ontology concepts and relations is presented in

Table 2.2 for the Java programming language. Similar rules can be easily

defined for other object oriented languages (e.g., C++).

The first syntactic relation listed in Table 2.2 is extends. Extends is used

to introduce an inheritance relationship between two classes. The corre-

sponding ontological relation which captures this characteristic is isA (S1).

5Protégé (http://protege.stanford.edu/) was used to visualize the ontology.
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Table 2.2: Rules for extracting structural ontology from object oriented (Java) source

code. (C=class, M=method, A=attribute, T=type, I=interface, p=formal parameter,

UDC= user defined class)

Rule Structural Ontological

Source Relation Target Concepts Relation

S1 C1 extends C2 C1, C2 isA(C1, C2)

S2 C1 implements I C1, I isA(C1, I)

S3 C1 has A : T , C1, A hasProperty(C1, A)

attribute T 6= boolean

S4 C1 has A : T , C1, A hasState(C1, A)

attribute T = boolean

S5 C1 :: M1 Calls C2 :: M2() C1, C2 <M2>(C1, C2)

S6 C1 :: M1 Calls C2 :: M2(Tp, ...) C1, T , p <M2>(C1, T ), if T ǫUDC

<M2>(C1, p), otherwise

S7 C1 has get/set M2 C1, m2; hasProperty(C1, m2)

method m2 is M2

without

get/set prefix

In some programming languages, such as Java, multiple inheritance is not

allowed. However, Java provides multiple sub-typing using the implements

construct. We map such a relation to the isA ontological relation as shown

in Rule S2. In the ontological relation, the class which is extended or the

interface which is implemented is taken as the general concept, while the

class which extends or implements it is the more specific concept. In our

running example, shown in Figure 2.6, there is an extends relation be-

tween the child class CurrentAccount and the parent class Account, and

there is an implements relation between the class CurrentAccount and the

interface DigitalCheque. These two syntactic relations are used to extract

the isA(current account, account) and isA(current account, digital cheque)

ontological relations, respectively.

Attributes are used to represent properties and states of a class. As

shown in Rules S3 and S4, we use the hasProperty and hasState ontological
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relations to capture them in the ontology. The concepts involved in this

relation are the attribute and the class containing the attribute. If the

attribute is of type boolean, the ontological relation used is hasState while

when it is not, hasProperty is used. For example, following Rule S3 the

ontological relation hasProperty(current account, balance) is extracted for

our running example from class CurrentAccount and its attribute balance

(see Figure 2.6). Properties of a class which are the result of a computation

are usually represented using accessor methods. We capture also such

properties using the hasProperty ontological relation (S7). In such cases,

the concepts involved in the relation are the class containing the accessor

method and the method name without the prefix get or set. For example, if

we have a class Rectangle with a method getArea, we extract the ontological

relation hasProperty(rectangle, area) using Rule S7.

Methods are used as a means of communication and interaction with

other classes. Such interaction is captured in our ontology through the

method name involved in the call relation between two classes (see Rules S5

and S6 ). When the called method does not take any argument, we create

a relation between the concepts represented by the caller class and the

type of the object on which the method is invoked (Rule S5 ). The relation

connecting the two concepts is a context specific relation represented by the

called method name. In cases where the called method has a parameter,

we create a relation between the concepts associated with the caller class

and the type of the first parameter, if it is a user defined type. Otherwise

the relation will be between the concept representing the caller class and

the name of the first parameter (Rule S6 ). In both cases the relation

used to connect the concepts is a context specific relation represented by

the called method name, like in Rule S5. For example, from the method

call calculate() on object sc in method transactionPayment of our running

example, we can extract the ontological relation calculate(current account,
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service charge) using Rule S5. From the method call withdraw(...) on

the object ca, the ontological relation withdraw(bank system, money) is

obtained following Rule S6.

Object oriented languages support polymorphic calls. As a consequence,

the declared type of the target object involved in a method call may be

different from its actual type (as determined at object creation time). This

might result in some degree of imprecision, when extracting C2 according

to Rules S5 and S6, which only consider the declared type of the object

on which a method is invoked or the declared type of the first method

parameter. The ontology extractor might be improved by resorting to

points-to analysis [88] or to the object flow graph [108].

An example ontology

By applying the rules described above to the code fragment shown in

Figure 2.6, we obtain the ontology shown in Figure 2.15. The ontol-

ogy shows the concepts and relations among them, as captured by the

structural relations in the code. For example, the inheritance relation-

ship shown between currentAccount and account is also present in the

ontology, where it is represented as an isA relation. The ontology cap-

tures also the attributes of each class through the hasProperty relation

(e.g., hasProperty(currentAccount, balance)). Context specific relations,

such as close(bankSystem, currentAccount), capture the communication

relations appearing in the code as method calls.

2.4 Concept location

Concept location is part of a program comprehension activity where the

programmer searches the source code to identify a specific part which im-

plements a given concept [100, 99]. During software evolution, it is used
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Figure 2.15: An ontology extracted for the running example code fragment shown in

Figure 2.6 using the structural approach

to identify the location where a change is to start in response to a change

request, such as, a bug report or a new feature request. It involves for-

mulating a query composed of one or more keywords which a programmer

thinks are related or refer to the concept to be searched. While formulat-

ing a query, the programmer resorts to her prior knowledge, as well as any

information associated with the concept to be searched.

After querying the code base with the initially formulated query, the

programmer will analyze the returned results. If she is not satisfied with
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the result, based on the newly acquired knowledge, she may decide to

reformulate the query or to further filter the results (see Petrenko et al. [94]

and Hill et al. [58]). Successive filtering and reformulation of the query

continues until the programmer is satisfied with the result.

To carry out a concept location task, the developer can employ various

approaches which exploit textual and dynamic information. In this sec-

tion, we discuss two text based approaches which are used in our studies:

information retrieval (IR) and regular expression matching.

2.4.1 Information retrieval

IR-based approaches treat the source code as a document corpus and use

methods such as latent semantic indexing (LSI) to index the corpus [83,

97, 95, 47]. A document corpus which corresponds to the source code is

created by extracting the identifiers and comments at a developer-defined

granularity level (classes, methods, etc.). In the corpus, one document is

mapped to a code entity at the chosen granularity level. While creating

the corpus, identifiers are split to their composing terms. For example,

userName is split to user and name. In some cases, common English

words are also filtered from the corpus.

The document corpus is then transformed to the corresponding math-

ematical representation and indexed using techniques such as LSI and

Lucene6. To transform the corpus to the corresponding mathematical rep-

resentation, scoring methods such as term frequency and term frequency

inverse document frequency (TF-IDF) are used. The indexed corpus is

then searched using queries formulated by developers.

In response to a query, IR-based approaches return a ranked list of doc-

uments which correspond to the entities at the selected granularity level.

The rank to each document is given based on the similarity of the doc-

6http://lucene.apache.org/
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ument to the query. Similarity between the query and the documents is

computed using similarity measures such as cosine similarity. The docu-

ments ranked close to the top are those relatively similar to the query, and

they are considered relevant to the query.

2.4.2 Regular expression matching

In regular expression matching the query formulated by the developers is

directly matched against the content of the files in the code base. The

matching is conducted using tools such as grep7. The result of the query,

in this case, is a set of files which contain all the terms (keywords) in the

query.

2.5 Evaluation

2.5.1 Comparison of natural language analyzers

In Section 2.1, we have presented four types of analyzers which can be

used to syntactically analyze, and extract the information captured in the

identifiers to build ontologies. In this section, we asses the impact of using

different analyzers to generate ontologies. The assessment is conducted

using a case study in the context of a program understanding task, namely

concept location.

One of the applications in which concept location is widely used is bug

fixing. When users of a program encounter a problem, they communicate

it to the developers of the program by filing a bug report. The bug report

contains several data, among which a title, a bug description and (option-

ally) a set of keywords. It is reasonable to assume that developers will

use this information to formulate a query, used to retrieve files which are

7http://www.gnu.org/software/grep/
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relevant for the bug to be fixed. In our study, we call such queries basic

queries.

In our previous work [4], we have proposed to enhance basic queries

using concepts taken from the ontology extracted from the corresponding

source code. The enhancement of the queries is carried out by expanding

the set of keywords used for formulating the basic queries with concept

names taken from the ontology. The concept names are selected by first

matching each keyword to the concepts in the ontology and taking the

neighboring concepts of the matched concept. A match is found when the

name of a concept is the same as the keyword. A neighboring concept

of a given concept is any concept that is exactly one edge away from the

matched concept, where by edge we mean any ontological relation (isA,

hasProperty, etc.). For example, given the keyword balance and the ontol-

ogy shown in Figure 2.14, the neighboring concepts current account and

account will be considered as additional keywords to be used in formulating

the query. In the following, we refer to queries formulated in this way as

enhanced queries. In our approach, the enhanced queries can be formulated

from the ontologies built using the parse trees of either UIA, UPA, TPA, or

TIA. We call the enhanced queries formulated using concepts taken from

the ontology built using parse trees of UIA/UPA/TPA/TIA respectively

as UIA/UPA/TPA/TIA enhanced queries.

The relation between concepts in the ontology are derived from the nat-

ural language dependencies. Since these often represent a semantic relation

between the terms they connect, we argue that the concepts connected in

the ontology are also closely related. Consequently we conjecture that the

expansion of the query with the additional closely related concepts could

potentially improve the quality of the query, which may have a positive

impact on concept location.
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Research questions

In this case study, we address the following research questions.

• RQ1. Query effectiveness: Do the extracted ontology concepts

contribute to increasing the effectiveness of basic queries formulated

for concept location?

• RQ2. Ontology comparison: Do the ontologies produced by dif-

ferent analyzers differ between each other?

• RQ3. Analyzer impact: Does the choice of the analyzer impact

the effectiveness of concept location?

The effort programmers have to put in a concept location activity de-

pends on the effectiveness of the queries they formulate. If a query is

effective, it will either rank a relevant document at the top of the ranked

list of documents (if IR-based approach is used) or it will find all relevant

files (if regular expression matching is used). Hence, a good query can

reduce the effort and time developers have to put in the task for which the

query is formulated. The first research question, RQ1, compares the basic

and enhanced queries in terms of their effectiveness, and investigates the

following null/alternative hypotheses:

H0−RQ1 : There is no statistically significant difference between the ef-

fectiveness of basic queries and the effectiveness of UIA, UPA, TPA, or

TIA enhanced queries formulated by expert or average programmers

while using either grep-based or LSI-based approach.

H1−RQ1 : There is statistically significant difference between the effec-

tiveness of basic queries and the effectiveness of UIA, UPA, TPA, or

TIA enhanced queries formulated by expert or average programmers

while using either grep-based or LSI-based approach.
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We can measure the effectiveness of a query in two ways depending

on the approach used to query the source code: reciprocal rank, for IR-

based approaches, and precision and completeness, for regular expression

matching. Reciprocal Rank of a query is computed as 1/rank of the top

relevant document. A query evaluated using reciprocal rank is considered

effective if the computed metric value is close to 1 (i.e., if the relevant

document is ranked close to the top). The Mean Reciprocal Rank (MRR)

is computed as the average of the top relevant document reciprocal rank

over all bugs considered for a system.

A query is precise if it reduces the amount of effort required by a de-

veloper to identify the relevant source code entities, among those reported

when the query is executed. It can be measured by computing the Preci-

sion (P) of the query. Precision is defined as the ratio of number of relevant

source code files retrieved to total number of source code files retrieved. If

precision is low, a developer has to inspect many files to identify those

which are actually relevant for the task at hand.

A query is complete if it identifies all the source code files which are

relevant for the task at hand. It is measured using Recall (R) which is

defined as the ratio of number of relevant source code files retrieved to total

number of relevant source code files. A recall value of 1 indicates that all

of the relevant files (e.g., to be modified to address a given change request)

are retrieved, while a value of 0 indicates that none of the relevant files

are retrieved by the query. To combine the two inversely related measures

(precision and recall) and simplify the comparison on query effectiveness,

we use the F-measure (F). F-measure (F) is computed as the harmonic

mean of precision and recall (F = (2 ∗ P ∗ R)/(P + R)). High F -measure

indicates that the query is effective.

A query can be formulated by programmers with different expertise.

In our study, we simulate the query formulation activity of programmers
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with two levels of expertise: expert programmer and average program-

mer. To carry out the simulation, we assume that an expert programmer

will formulate the queries which give the highest reciprocal rank or the

highest F -measure and that an average programmer will formulate queries

which give the median reciprocal rank or the median F -measure, among

all possible queries. Here after we refer to the queries which give the high-

est reciprocal rank or the highest F -measure as best queries while those

queries which give the median reciprocal rank or the median F -measure

are referred to as average queries.

To test the null hypothesis, we have applied the two-sided, pair-wise

Wilcoxon signed-rank test between basic queries, and UIA, UPA, TPA, and

TIA enhanced queries, considering reciprocal highest and median ranks,

and highest and median F-measures. The computed pair-wise tests are

summarized in Table 2.3 (top).

Table 2.3: Summary of pairs used to answer RQ1 and RQ3 hypotheses. The analyzer

names used in the table correspond to the enhanced queries formulated using the ontology

built from the respective analyzer.

Search LSI-based Grep-based

approach

Query Best Average Best Average

H0−RQ1 Basic vs. UIA Basic vs. UIA Basic vs. UIA Basic vs. UIA

Basic vs. UPA Basic vs. UPA Basic vs. UPA Basic vs. UPA

Basic vs. TPA Basic vs. TPA Basic vs. TPA Basic vs. TPA

Basic vs. TIA Basic vs. TIA Basic vs. TIA Basic vs. TIA

H0−RQ3 UIA vs. UPA UIA vs. UPA UIA vs. UPA UIA vs. UPA

UIA vs. TPA UIA vs. TPA UIA vs. TPA UIA vs. TPA

UIA vs. TIA UIA vs. TIA UIA vs. TIA UIA vs. TIA

UPA vs. TPA UPA vs. TPA UPA vs. TPA UPA vs. TPA

UPA vs. TIA UPA vs. TIA UPA vs. TIA UPA vs. TIA

TPA vs. TIA TPA vs. TIA TPA vs. TIA TPA vs. TIA
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The concepts used in the enhanced queries are retrieved from differ-

ent ontologies which are generated using different analyzers. In RQ2,

we compare four ontologies, generated using the analyzers UIA, UPA,

TPA and TIA. To compare the ontologies, we compute the Jaccard in-

dex (|A ∩B|/|A ∪B|) between them, to see how similar they are, and the

ratio of unique concepts each ontology has to their union (|A \B|/|A∪B|,

|B \ A|/|A ∪B|).

The enhanced queries use concepts taken from different ontologies which

are based on different parse trees of identifiers. The different parse trees

are produced using UIA, UPA, TPA and TIA. In our last research ques-

tion, RQ3, we investigate whether the choice of the analyzer impacts the

effectiveness of the enhanced queries in concept location and we test if the

impact is statistically significant. The investigation is conducted by com-

paring the effectiveness of the enhanced queries formulated using concepts

taken from the ontologies produced using the outputs of different analyz-

ers. To carry out the test, we have formulated the following null/alternative

hypotheses:

H0−RQ3 : There is no statistically significant difference between the

effectiveness of UIA, UPA, TPA, and TIA enhanced queries formu-

lated by expert or average programmers while using either grep-based

or LSI-based approach.

H1−RQ3 : There is a statistically significant difference between the ef-

fectiveness of UIA, UPA, TPA, and TIA enhanced queries formulated

by expert or average programmers while using either grep-based or

LSI-based approach.

To test the hypotheses, we have conducted a two-sided, pair-wiseWilcoxon

signed-rank test. The pair-wise tests computed to test these hypotheses

are summarized in Table 2.3 (bottom).
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In our study, we have conducted multiple tests on the hypotheses for-

mulated for two of our research questions (see Table 2.3). To control the

false discovery rate and correct for multiple comparison, we have adjusted

the p-values using the Benjamini and Hochberg (BH) [15] correction.

Procedure

Our case study has three main steps, identifier parsing, ontology extraction

and concept location. Next, we describe each step in detail.

Identifier parsing

Before parsing identifier names using the analyzers, they have to be tok-

enized. If the identifiers are composed of more than one term, we regard

camel casing and underscore as separators and use them to split identifier

names into their composing tokens. Before splitting an identifier into its

composing tokens, prefixes, such as those associated with the Hungarian

notation (e.g., m for data members and C for class names) are removed.

Sometimes an identifier’s token is not a word. In such cases we consult

a predefined list of “known abbreviations and contractions” to identify a

possible expansion for the token. If the token is not in the predefined

list, we use the longest common sub-string (LCS) technique to find the

most similar expanded form for the token. According to this technique,

an available dictionary of words is accessed to find the most similar word

(i.e., the one with largest LCS with the given token). For example, the

token “remot” is replaced by “remote” after applying the LCS algorithm.

The expansion of a token to its respective word can also be carried out using

the techniques described in existing works on the topic [70, 73, 57, 71, 36].

In the following, we assume that the tokenization step has produced a

sequence of valid words.

To automate the tokenization step, we have developed a tool which
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automatically collects and produces a tokenized list of class, attribute and

method identifiers, following the procedure described above. In addition to

this, the tool produces a fact file, which is used for further processing in the

next step (see Section 2.5.1). The fact file contains information about all

classes in the system and their members. The inputs to our tool are XML

representations of the source code files, produced by the src2srcml tool [35]

and a configuration file which contains options and file path information

for the files containing the list of “known abbreviations and contractions”

and identifier naming conventions (e.g., Hungarian notation in use).

The tokenized list of class, attribute and method names are passed as

an input to three types of syntactic analyzers, namely UPA, TPA and

TIA (SVMTool/MaltParser). The trained analyzers are obtained follow-

ing the approach presented in Section 2.1.4. Furthermore the sentences

constructed using the same tokenized list is the input of UIA (Minipar)

and they are constructed using the steps described in Section 2.1.2. The

output of the four analyzers is a set of dependency parse trees which are

used as an input of the following step.

Ontology extraction

In this step, we build four types of ontologies using the information cap-

tured in the parse trees generated by UIA, UPA, TPA and TIA. To build

the ontologies from the parse trees, we have used the natural language

dependency to ontological relation mappings described in Section 2.2. For

some of the mappings, such as for the hasProperty ontological relation,

we have to map the identifier containing the ontological relation to the

source code where the identifier is defined (e.g., to determine the contain-

ing class). To automate this step and make it work with all analyzers, we

have modified the tool developed in a previous study [4].

To generate ontologies, our tool takes the parse trees produced for all
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identifiers and the fact file generated in a previous step (see Section 2.5.1)

as an input. The fact file is used to identify the containing classes of a

given identifier which is reconstructed from its parse tree. The containing

classes are required to create some ontological relations, as described above.

For each set of parse trees generated by UIA, UPA, TPA and TIA, our

tool produces four ontologies, which are named after the corresponding

analyzers: UIA ontology, UPA ontology, TPA ontology and TIA ontology.

The concepts in the ontologies are stemmed using Porter stemmer 8 to avoid

different representations of a concept due to inflections of the corresponding

word.

Concept location

To carry out the concept location task, one of the researchers involved in

the study has played the role of the programmer and has manually collected

keywords from each bug title. Bug titles usually serve as the summary for

the problem described in the corresponding bug report and hence are good

sources of keywords. To avoid any bias, the collection of keywords was

conducted prior to computing any results. These keywords are used in

formulating the basic queries and selecting the concepts to be added when

formulating the enhanced queries.

To query the source code, we have used two different approaches de-

scribed in Section 2.4: information retrieval (IR) and regular expression

matching. The IR-based approach uses latent semantic indexing (LSI) to

index the document corpus [83]. A document in the corpus corresponds

to a class in the code and is composed of class, method, and attribute

name terms. We have used underscore and camel case to split the names

into their composing terms. LSI takes as input the number of dimensions

(k-value) to which the vector space should be reduced during the Singular

8http://tartarus.org/ martin/PorterStemmer/
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Value Decomposition (SVD) and the weight to be used when scoring input

documents. For our study, we have conducted a preliminary study using

different k-values, and based on the results we have selected k-value to be

10. To score documents we have used term frequency as the weight. In our

previous studies [1, 5], we have observed that term frequency is associated

with core domain concepts. To rank the documents in the indexed corpus,

similarity between the query and every document in the indexed corpus is

computed. If the result of the similarity measure is high, the document

is ranked closer to the top. To compute the similarity between the query

and the documents, we have used cosine similarity. Cosine similarity is the

most widely used measure while dealing with vector-based representation

of documents.

For the second approach, we have used the widely used, yet simple

method grep. Grep performs a pattern matching of the query against the

content of the files in the code base and returns all the files which contain

all keywords in the query. Hereafter we refer to this approach as grep-based

while we refer to the former, IR-based, approach as LSI -based approach.

Developers are supposed to analyze the results of the LSI-based ap-

proach sequentially starting from those documents having the highest sim-

ilarities to the initially formulated query. After analyzing each source code

document, they decide if it is relevant to the task at hand or not. If it

is found relevant, the search succeeds. Otherwise, they move to the next

top ranked document, or reformulate the query by adding or removing

keywords and recompute the rankings of the documents. As we do not

involve developers in our study, we simulate their activity using a tool.

The tool simulates the query (re-)formulation by considering all combina-

tions of one or two keywords (for basic query), and keywords and concepts

(for enhanced query). After querying the indexed document corpus with

each query, the tool determines the median/highest reciprocal rank for the
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relevant documents and returns the related query.

When developers use the grep-based approach to query the code base,

they usually analyze the returned result and if it is found unsuccessful, they

may decide to either reformulate the query by choosing another keyword

or further filter the results. Successive filtering of the query continues until

the developer is satisfied with the result. In our study, we have developed a

tool to automatically simulate the developers’ query filtering activity. The

tool simulates this activity by considering four or less possible combinations

of keywords (for basic query), and keywords and concepts (for enhanced

query), to formulate a compound query, i.e., a query possibly consisting

of at least one and at most four keywords. As we are resorting to an

automated simulation, it is not possible to identify a keyword a developer

would initially select and reformulate. Hence, our tool considers all possible

combinations of keywords of maximum length four. The tool returns the

query with the median/highest F -measure. If the selected query contains

two or more keywords, we interpret it as the developer applying one or

more filters after the initial query.

Subjects

In our case study, we considered three medium size open source systems,

FileZilla client9, JEdit10 and WinMerge11. FileZilla client is a GUI based

FTP client which is mainly used to upload and download files from an FTP

server. WinMerge is a merging and differencing utility for Windows, while

JEdit is a cross platform text editor mainly developed for programmers.

FileZilla and WinMerge are written in C++ while JEdit is written in Java.

The summary of the three systems is shown in Table 2.4 (LOT means Lines

Of Text).

9http://filezilla-project.org/
10http://jedit.org/
11http://winmerge.org/
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All systems have a bug tracking system from which we collected closed

bug reports with patch files (see Table 2.4). From the patches we have

collected the names of the classes and files which are actually modified to

fix the bugs. These classes and files are used as our reference to compute

reciprocal rank, precision, and recall (i.e., these are the correct program

entities to be retrieved by means of both basic and enhanced queries).

Table 2.4: Summary of systems (LOT = Lines of Text).

Systems

FileZilla JEdit WinMerge

Version 3.0.0 4.2 2.12.2 2.11.1.8

No. of Classes 208 639 146 145

No. of Files 264 224 257 255

No. of LOT 89080 79198 67643 67327

No. of Bugs 28 12 20

Results

RQ1. Query effectiveness

The results of LSI and Grep are shown in Tables 2.5, 2.6 for best and

average queries respectively. In all cases the enhanced queries are found

to be more effective than the basic queries irrespective of the approach

followed. If we average over all types of enhanced queries used with the LSI-

based approach, the reciprocal rank of enhanced queries has improved over

the basic queries by 26% in FileZilla, 10% in JEdit, and 29% in WinMerge.

A similar analysis on the F-measures of the grep-base approach result shows

that the F-measure of basic queries is increased by 127% in FileZilla, 50%

in JEdit and 106% in WinMerge.

To investigate if the observed differences are statistically significant, we

have formulated the hypothesis stated in H0−RQ1 and applied two-sided,
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Table 2.5: RQ1: Basic vs. enhanced queries; best queries. Top rank MRR and

average best F-measures of enhanced queries with the corresponding delta percentages

over basic queries top rank MRR and average best F-measures. The p-values are adjusted

for multiple tests.

Enhanced query FileZilla JEdit WinMerge

LSI-based MRR UIA (∆%) 0.568 (86.18) 0.529 (23.02) 0.78 (130.62)

UPA (∆%) 0.557 (82.58) 0.529 (23.03) 0.597 (76.38)

TPA (∆%) 0.548 (79.52) 0.541 (25.89) 0.623 (84.15)

TIA (∆%) 0.569 (86.38) 0.529 (23.03) 0.53 (56.53)

P -values UIA 0.006 0.483 0.009

UPA 0.008 0.309 0.024

TPA 0.003 0.309 0.024

TIA 0.003 0.309 0.021

Grep-based Precision UIA (∆%) 0.560 (156) 0.638 (59.7) 0.623 (156)

UPA (∆%) 0.576 (163) 0.596 (49.1) 0.634 (161)

TPA (∆%) 0.563 (157) 0.668 (67.3) 0.634 (161)

TIA (∆%) 0.598 (173) 0.598 (49.7) 0.631 (159)

Recall UIA (∆%) 0.878 (4.18) 0.958 (1.47) 0.952 (7.73)

UPA (∆%) 0.905 (7.36) 0.958 (1.47) 0.927 (4.91)

TPA (∆%) 0.887 (5.24) 0.958 (1.47) 0.927 (4.91)

TIA (∆%) 0.878 (4.18) 1.000 (5.89) 0.927 (4.91)

F-measure UIA (∆%) 0.600 (124) 0.677 (48.6) 0.668 (109)

UPA (∆%) 0.620 (131) 0.656 (43.9) 0.656 (106)

TPA (∆%) 0.602 (124) 0.721 (58.2) 0.656 (106)

TIA (∆%) 0.614 (129) 0.674 (47.8) 0.651 (104)

P -values (F) UIA 0.002 0.309 0.009

UPA 0.003 0.309 0.009

TPA 0.002 0.309 0.009

TIA 0.002 0.309 0.009
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pair-wise Wilcoxon signed-rank test between basic queries and enhanced

(UIA, UPA, TPA, and TIA) queries reciprocal ranks and F-measures of

all bugs considered for each system (see Table 2.3, H0−RQ1, LSI-based and

grep-based approaches, best columns). The results are shown in Table 2.5.

The p-values of the two-sided, pair-wise signed Wilcoxon test are signif-

icant (at α = 0.05) for all types of enhanced queries used in FileZilla and

WinMerge, irrespective of the approach used to query the code base. For

JEdit, none of the results are statistically significant. From these results,

we can reject the null hypothesis for the two systems and hence conclude

that for them there is a statistically significant difference between the ef-

fectiveness of best basic queries and best enhanced queries.

The results for the LSI-based approach (see in Table 2.6) show that the

effectiveness of average enhanced queries are worse than the corresponding

average basic queries. For the grep-based approach, however, the average

enhanced queries are found to be more effective than the average basic

queries. The average of the F-measure delta percentage improvement over

all types of average enhanced queries is 64% in FileZilla, 31% in JEdit and

67% in WinMerge.

To assess if the difference observed between the two types of average

queries is statistically significant, we have defined the hypothesis stated in

H0−RQ1 and conducted a two-sided, pair-wise Wilcoxon signed-rank test

(see Table 2.3, H0−RQ1, LSI-based and grep-based approaches, average

columns). The results are shown in Table 2.6. The results obtained for the

LSI-based approach show that the difference observed is not significant for

all systems. For the grep-based approach, however, the difference is sta-

tistically significant for all cases of FileZilla and two cases (UPA, TPA)

of WinMerge, while for JEdit the difference is not statistically significant

in all cases. Hence, we can reject the null hypothesis in half of the cases

for the grep based approach, while for the LSI-based approach we cannot
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Table 2.6: RQ1: Basic vs. enhanced queries; average queries. Median rank

MRR and average median F-measures of enhanced queries with the corresponding delta

percentages over basic queries median rank MRR and average median F-measures. The

p-values are adjusted for multiple tests.

Enhanced query FileZilla JEdit WinMerge

LSI-based MRR UIA (∆%) 0.116 (-32.95) 0.047 (-53.3) 0.091 (-40.46)

UPA (∆%) 0.142 (-17.92) 0.048 (-52.3) 0.099 (-34.74)

TPA (∆%) 0.162 (-6.36) 0.048 (-51.9) 0.099 (-34.87)

TIA (∆%) 0.122 (-29.48) 0.049 (-50.6) 0.091 (-40.39)

P-value UIA 0.495 0.309 0.279

UPA 0.989 0.309 0.279

TPA 0.989 0.309 0.278

TIA 0.989 0.309 0.341

Grep-based Precision UIA (∆%) 0.323 (48.8) 0.408 (34.4) 0.318 (81.3)

UPA (∆%) 0.379 (74.6) 0.422 (39.2) 0.393 (124.0)

TPA (∆%) 0.372 (71.4) 0.377 (24.3) 0.367 (109.0)

TIA (∆%) 0.404 (86.0) 0.403 (32.6) 0.330 (87.9)

Recall UIA (∆%) 0.915 (-1.89) 0.861 (0) 0.772 (-6.65)

UPA (∆%) 0.910 (-2.35) 0.861 (0) 0.780 (-5.64)

TPA (∆%) 0.885 (-5.11) 0.861 (0) 0.780 (-5.64)

TIA (∆%) 0.915 (-1.89) 0.861 (0) 0.763 (-7.66)

F-measure UIA (∆%) 0.383 (47.7) 0.474 (33.3) 0.354 (57.7)

UPA (∆%) 0.444 (71.6) 0.456 (28.2) 0.400 (77.9)

TPA (∆%) 0.424 (63.9) 0.463 (30.2) 0.392 (74.2)

TIA (∆%) 0.447 (72.5) 0.468 (31.4) 0.359 (59.8)

P-Value (F) UIA 0.025 0.309 0.111

UPA 0.011 0.309 0.021

TPA 0.008 0.691 0.021

TIA 0.006 0.483 0.111
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reject the null hypothesis in any case.

From the results obtained for both best and average queries, we can con-

clude that using the ontology concepts extracted based on NLP for grep-

based concept location has increased the effectiveness of queries. The ob-

served improvement is statistically significant in the majority of the cases.

Hence, for the grep-based approach, we can answer RQ1 positively for both

best and average queries. For LSI-based approach, however, the extracted

ontology concepts did not improve average queries and hence we can an-

swer RQ1 positively only for the best queries, i.e., when expert developers

are involved.

We performed a qualitative analysis of the query enhancement results.

We have selected two bugs from two of the systems considered in our case

study and we have analyzed in depth the effectiveness of the queries for

both querying techniques (LSI and Grep). The examples of queries and

their associated effectiveness metrics are shown in Table 2.7. In the upper

part of the table, the arrow (->) indicates filtering, i.e., the results obtained

using the query indicated before the arrow are re-queried using the query

indicated after the arrow.

When using Grep on FileZilla, the basic query can be improved by

filtering its results with a query that exploits a neighboring concept present

in all ontologies: the ContextMenu concept. Filtering with this concept,

which was unavailable to the basic query, improves precision from 0.2 to 0.5.

TPA and TIA extract another neighboring concept, FileZilla, which is not

a neighboring concept in the UIA and UPA ontologies. Using this concept

in the filter chain, precision can be further increased to its maximum, 1.

On JEdit’s bug reported in Table 2.7 and with Grep, concept Enhance-

Button is crucial to achieve maximum precision. However, only the TPA

analyzer is capable of extracting the relations in the ontology that makes

this concept a neighboring concept of the terms used for the basic query.
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Table 2.7: Examples of best queries, with the corresponding results taken from two of

our case studies. -> in grep based queries indicating a filtering relationship (P=Precision,

R=Recall, F=F-measure, RR=Reciprocal Rank).

Bug id Grep Basic UIA UPA TPA TIA

FileZilla 3348 Query Remote.* Remote.* Remote.* Remote.* Remote.*

tree.*view tree.*view tree.*view tree.*view -> tree.*view->

->context ->context file.*Zilla -> file.*Zilla ->

.*Menu .*Menu context.*Menu context.*Menu

P (1/5) 0.2 (1/2) 0.5 (1/2) 0.5 (1/1) 1.0 (1/1) 1.0

R (1/1) 1.0 (1/1) 1.0 (1/1) 1.0 (1/1) 1.0 (1/1) 1.0

F 0.333 0.667 0.667 1 1

JEdit 1275607 Query find -> find -> find -> find -> enhance find -> focus

focus focus focus .*Button

P (1/8) 0.125 (1/8) 0.125 (1/8) 0.125 (1/1) 1.0 (1/8) 0.125

R (1/1) 1.0 (1/1) 1.0 (1/1) 1.0 (1/1) 1.0 (1/1) 1.0

F 0.222 0.222 0.222 1 0.222

Bug id LSI Basic UIA UPA TPA TIA

FileZilla 3348 Query Remote drag, menu item, image drag, menu drag, menu

tree view Download List Download Download

RR 0.083 1 1 1 1

JEdit 1275607 Query find, find,focus find, vf File my J Radio find, vf File

focus Name Field Button, Name Field

enhance Button

RR 0.007 0.007 0.008 0.143 0.008
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Hence, the TPA query is the only one with precision and F-measure equal

to 1.

When LSI is used on FileZilla, a reciprocal rank of 1 is reached by all

enhanced queries (see Table 2.7), while the basic query has a reciprocal rank

of 0.083. This means that a developer using any of the extracted ontologies

would find the correct answer to the query in first position, while without

enhancing the query by means of the ontologies the developer would have

to scroll the list of query answers up to position 12. It is interesting to

notice that different concepts can be used to obtain a reciprocal rank of

1 (e.g., Drag, MenuDownload vs. Item, ImageList), which explains why

different ontologies (see answer to RQ2 below) can be equally good at

improving the effectiveness of basic queries.

On JEdit, the results of LSI can be improved if concepts MyJRadioBut-

ton and EnhanceButton are included in the query. However, these con-

cepts are available as neighboring concepts only in the ontology produced

by TPA.

Table 2.8: Average number of keywords in the most effective queries used with Grep.

Systems Query types

basic UIA UPA TPA TIA

FileZilla 1.32 2.12 1.70 2.04 2.08

JEdit 1.67 1.75 1.92 1.92 1.67

WinMerge 1.60 1.80 1.75 1.75 1.75

We have computed the average number of keywords used in queries to

see if the improvement achieved by the best enhanced queries is through a

sequence of successive filtering, when Grep is used (see Table 2.8). Results

show that the average number of keywords in the enhanced queries is ap-

proximately two and that it is increased with respect to the basic query.

This indicates that filtering plays an important role in improving the re-
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sults of enhanced queries. On the other hand, an average of two means

also that on average a developer has to filter the results only once, which

does not require a lot of effort.

RQ2. Ontology comparison

To answer the second research question, we have computed the Jaccard

index between each pair of ontologies and the ratio of unique concepts and

relations each ontology has to their union (see Tables 2.9 and 2.10). The

comparison of the paired ontologies is done by considering the union of all

concepts, the union of all relations and the union of all paired concepts.

While the first comparison considers only concepts, the other two focus

on pairs of concepts. In the comparisons which focus on pairs of concepts,

the union of concept relations deals with named relations. On the con-

trary, the union of paired concepts is computed irrespective of the name

of the relation connecting the two concepts. Hence, while two relations

match if both concepts at the end of each relation and the relation names

match, relation names are not taken into consideration while matching

paired concepts. In short, concept relations are named while concept pairs

are unnamed.

The Jaccard index computed for all union types of the paired ontolo-

gies show that there is some degree of similarity between the respective

ontologies (see Tables 2.9 and 2.10). From the results, it is also apparent

that each type of ontology is characterized by a peculiar set of concepts

and relations. Hence, we can say that none of the ontologies subsume any

of the other types of ontologies nor they are exactly the same.

The concepts and relations appearing in some but not all ontologies are

due to the different parse trees generated by the different analyzers. For

example, from the parse trees generated by UPA and TPA for the method

name findMatchingBracket in class TextUtilities (see Figure 2.16), we get
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Table 2.9: RQ2: Pair wise comparison between UIA ontology and the remaining three

types of ontologies (UPA, TPA and TIA).

Ontology

UIA ⊔ Only in Common

UPA UIA UPA (Ratio)

FileZilla Concepts 1940 780(0.402) 524(0.27) 636(0.328)

Relations 2676 1254(0.469) 804(0.300) 618(0.231)

Paired cpts 2446 848(0.347)

JEdit Concepts 2911 602(0.207) 562(0.193) 1747(0.600)

Relations 4163 1081(0.260) 1217(0.292) 1865(0.448)

Paired cpts 3875 2153(0.556)

WinMerge Concepts 2648 592(0.224) 809(0.306) 1247(0.471)

Relations 3712 996(0.268) 1305(0.352) 1411(0.380)

Paired cpts 3508 1615(0.460)

UIA ⊔ Only in Common

TPA UIA TPA (Ratio)

FileZilla Concepts 1957 637(0.325) 541(0.276) 779(0.398)

Relations 2718 1042(0.383) 846(0.311) 830(0.305)

Paired cpts 2470 1078(0.436)

JEdit Concepts 2966 564(0.190) 617(0.208) 1785(0.602)

Relations 4267 1081(0.253) 1321(0.310) 1865(0.437)

Paired cpts 3980 2152(0.541)

WinMerge Concepts 2591 594(0.229) 752(0.290) 1245(0.481)

Relations 3583 1061(0.296) 1176(0.328) 1346(0.376)

Paired cpts 3381 1548(0.458)

UIA ⊔ Only in Common

TIA UIA TIA (Ratio)

FileZilla Concepts 1618 610(0.377) 202(0.125) 806(0.498)

Relations 2672 889(0.333) 800(0.299) 983(0.368)

Paired cpts 2351 1304(0.555)

JEdit Concepts 2662 970(0.364) 313(0.118) 1379(0.518)

Relations 4417 1303(0.295) 1471(0.333) 1643(0.372)

Paired cpts 4080 1980(0.485)

WinMerge Concepts 2253 844(0.375) 414(0.184) 995(0.442)

Relations 3409 1078(0.316) 1002(0.294) 1329(0.390)

Paired cpts 3108 1630(0.524)

57



2.5. EVALUATION CHAPTER 2. CONCEPT EXTRACTION

Table 2.10: RQ2: Pair wise comparison between UPA, TPA and TIA ontologies.

Ontology

UPA ⊔ Only in Common

TPA UPA TPA (Ratio)

FileZilla Concepts 1582 262(0.166) 422(0.267) 898(0.568)

Relations 2096 420(0.200) 674(0.322) 1002(0.478)

Paired cpts 1952 1146(0.587)

JEdit Concepts 2583 181(0.070) 274(0.106) 2128(0.824)

Relations 3558 372(0.105) 476(0.134) 2710(0.762)

Paired cpts 3192 3076(0.964)

WinMerge Concepts 2143 146(0.068) 87(0.041) 1910(0.891)

Relations 2851 329(0.115) 135(0.047) 2387(0.837)

Paired cpts 2758 2480(0.899)

UPA ⊔ Only in Common

TIA UPA TIA (Ratio)

FileZilla Concepts 1499 491(0.328) 339(0.226) 669(0.446)

Relations 2365 582(0.246) 943(0.399) 840(0.355)

Paired cpts 2126 1079(0.508)

JEdit Concepts 2468 776(0.314) 159(0.064) 1533(0.621)

Relations 4121 1007(0.244) 1039(0.252) 2075(0.504)

Paired cpts 3473 2723(0.784)

WinMerge Concepts 2279 870(0.382) 223(0.098) 1186(0.520)

Relations 3608 1277(0.354) 892(0.247) 1439(0.399)

Paired cpts 3395 1652(0.487)

TPA ⊔ Only in Common

TIA TPA TIA (Ratio)

FileZilla Concepts 1557 549(0.353) 237(0.152) 771(0.495)

Relations 2424 641(0.264) 748(0.309) 1035(0.427)

Paired cpts 2169 1290(0.595)

JEdit Concepts 2581 889(0.344) 179(0.069) 1513(0.586)

Relations 4291 1177(0.274) 1105(0.258) 2009(0.468)

Paired cpts 3680 2620(0.712)

WinMerge Concepts 2218 809(0.365) 221(0.100) 1188(0.536)

Relations 3437 1106(0.322) 915(0.266) 1416(0.412)

Paired cpts 3213 1640(0.510)
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different concepts and relations. UPA identifiesmatching as xcomp (clausal

complement) which is not mapped to any of the ontological relations we

defined. It has considered Bracket as the direct object of <verb> match-

ing, which is mapped to the ontological relation matching(TextUtilities,

Bracket). TPA, on the other hand, has identified the NN (noun-noun spec-

ifier) natural language dependency between Matching and Bracket, and

considered MatchingBracket as the direct object of find. As compared to

the ontological relations produced by UPA, this results in two different on-

tological relations: isA(MatchingBracket, Bracket) and find(TextUtilities,

MatchingBracket).

If we consider the concepts produced by the two analyzers UPA and

TPA, two of them are common, Bracket and TextUtilities. ConceptMatch-

ingBracket is extracted only by TPA, which, differently from UPA, cor-

rectly identifies the specifier dependency relationship between matching

and bracket. In this case, training is crucial in order for the analyzer to

be able to recognize the specifier dependency which is instead missed by

the general purpose, untrained analyzer UPA. UPA misses one, potentially

relevant concept, as compared to TPA.

The relations between the concepts identified by UPA and TPA are

completely disjoint. While UPA identifies a matching relation between

TextUtilities and Bracket, no such relation is reported by TPA, which,

instead identifies two other relations, isA and find, connecting different

pairs of concepts, which also means that the two analyzers do not identify

any common paired concepts. When the extracted relations are used to

determine the neighboring concepts that are used to enhance a query, the

two analyzers may report different concepts, because of the difference in

the extracted relations. In turn, this might affect the effectiveness of the

enhanced query.
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<root>

<VB id=”1” pos=”0” r o l e=”nu l l ” phrase=”find”>

<VBG id=”2” pos=”1” role=”xcomp” phrase=”matching”>

<NN id=”3” pos=”2” role=”dobj” phrase=”bracket”>

</NN>

</VBG>

</VB>

</root>

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

<root>

<VB id=”1” pos=”0” r o l e=”nu l l ” phrase=”find”>

<NN id=”3” pos=”1” role=”dobj” phrase=”bracket”>

<NN id=”2” pos=”3” role=”nn” phrase=”matching”>

<NN/>

</NN>

</VB>

</root>

Figure 2.16: Parse trees generated by UPA (top) and TPA (bottom) for the JEdit method

name findMatchingBracket in class TextUtilities.

RQ3. Analyzer impact

The different types of ontologies used in this study are built using de-

pendency parse trees generated by UIA, UPA, TPA and TIA. From the

comparison of the ontologies (RQ2), we have seen that they are not exactly

the same. RQ3 investigates if this difference has impacted the effective-

ness of the enhanced queries used in concept location. To answer this

research question, we have computed the net improvement achieved by

each type of enhanced query over the other for both best and average, LSI

and grep-based queries (see Tables 2.11 and 2.13 for the net improvement

and Tables 2.12, 2.14 for a detailed comparison).

Values (except for the p-values) indicate the number of cases in which

the enhanced query indicated in each column improves the enhanced query

indicated in each row. A negative value indicates that it is the query in

the row that improves the query in the column.

For the LSI-based approach, the net improvement of the top rank of one

type of enhanced query over the other is marginal for all systems except

WinMerge (see Table 2.11). The highest net improvements for WinMerge
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Table 2.11: RQ3: Enhanced vs. enhanced queries; best queries. Net improvement

of paired enhanced queries and the corresponding p-values as computed using their top

ranks and best F-measures with the corresponding precision and recall measures. The

p-values computed over values of MRR and F-measure are adjusted for multiple tests.

System FileZilla JEdit WinMerge

Enhanced query UPA TPA TIA UPA TPA TIA UPA TPA TIA

LSI-based Top Ranks UIA 0 0 1 1 1 1 -6 -5 -7

UPA 2 2 1 0 1 -1

TPA 2 -1 -2

P-value UIA 0.99 0.93 1.00 1.00 1.00 1.00 0.11 0.16 0.07

UPA 0.99 0.99 1.00 NaN 1.00 0.58

TPA 0.99 1.00 0.35

Grep-based Precision UIA -4 1 3 0 1 1 0 0 0

UPA 6 6 1 -1 0 -1

TPA 0 -2 -1

Recall UIA 0 -1 0 0 0 1 -2 -2 -2

UPA -1 0 0 1 0 0

TPA 1 1 0

F-measure UIA -4 1 3 0 1 1 0 0 0

UPA 6 6 1 -1 0 -1

TPA 0 -2 -1

P-value (F) UIA 0.99 0.99 0.93 1.00 1.00 1.00 0.57 0.57 0.57

UPA 0.99 0.99 1.00 1.00 NaN 0.94

TPA 0.99 1.00 0.94
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Table 2.12: RQ3: Detailed comparison of enhanced vs. enhanced queries; best

queries. Enhanced queries are compared on top ranks and best F-measure.

System Enhanced Top ranks Best F-measures

query UIA UIA

Better Less Equal Better Less Equal

FileZilla UPA 4 4 20 4 8 16

TPA 3 3 22 5 4 19

TIA 2 1 25 4 1 23

JEdit UPA 1 0 10 2 2 8

TPA 1 0 10 3 2 7

TIA 1 0 10 2 1 9

WinMerge UPA 0 6 13 3 3 14

TPA 0 5 14 3 3 14

TIA 0 7 12 3 3 14

System Enhanced UPA UPA

query Better Less Equal Better Less Equal

FileZilla TPA 4 2 22 9 3 16

TIA 5 3 20 10 4 14

JEdit TPA 1 0 10 1 0 11

TIA 0 0 11 1 2 9

WinMerge TPA 1 0 18 0 0 20

TIA 1 2 16 1 2 17

System Enhanced TPA TPA

query Better Less Equal Better Less Equal

FileZilla TIA 4 2 22 4 4 20

JEdit TIA 0 1 10 1 3 8

WinMerge TIA 1 3 15 1 2 17
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Table 2.13: RQ3: Enhanced vs. enhanced queries; average queries. Net im-

provement of paired enhanced queries and the corresponding p-values as computed using

their median ranks and median F-measures with the corresponding median precision and

recall measures.The p-values computed over values of MRR and F-measure are adjusted

for multiple tests.

System FileZilla JEdit WinMerge

Enhanced query UPA TPA TIA UPA TPA TIA UPA TPA TIA

LSI-based Median rank UIA 3 1 -1 1 1 1 1 -1 0

UPA -1 2 2 1 -2 2

TPA 2 1 4

P-value UIA 0.99 0.99 0.99 1.00 1.00 1.00 0.94 1.00 0.96

UPA 0.99 0.99 0.50 1.00 0.57 0.94

TPA 0.99 1.00 0.75

Grep-based Precision UIA 2 4 5 0 -1 -1 7 6 2

UPA 4 3 -1 -3 -2 -4

TPA 2 -2 -2

Recall UIA 0 -2 0 0 0 0 0 0 -1

UPA -2 0 0 0 0 -1

TPA 2 0 -1

F-measure UIA 4 6 4 0 -1 -1 6 5 1

UPA 5 0 -1 -3 -1 -3

TPA -1 -2 -2

P-value (F) UIA 0.78 0.25 0.26 1.00 1.00 1.00 0.20 0.28 0.99

UPA 0.99 0.99 1.00 1.00 1.00 0.29

TPA 0.99 1.00 0.57
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Table 2.14: RQ3: Detailed comparison of enhanced vs. enhanced queries; aver-

age queries. Comparison of enhanced queries on median ranks and median F-measure.

System Enhanced Median Rank Median F-measure

query UIA UIA

Better Less Equal Better Less Equal

FileZilla UPA 11 8 9 10 6 9

TPA 10 9 9 8 2 15

TIA 7 8 13 5 1 19

JEdit UPA 5 4 2 2 2 8

TPA 5 4 2 2 3 7

TIA 5 4 2 1 2 9

WinMerge UPA 8 7 4 9 3 8

TPA 7 8 4 8 3 9

TIA 6 6 7 6 5 9

System Enhanced UPA UPA

query Better Less Equal Better Less Equal

FileZilla TPA 8 9 11 8 3 14

TIA 11 9 8 7 7 11

JEdit TPA 3 1 7 1 2 9

TIA 4 3 4 1 4 7

WinMerge TPA 0 2 17 0 1 19

TIA 7 5 7 2 5 13

System Enhanced TPA TPA

query Better Less Equal Better Less Equal

FileZilla TIA 10 8 10 4 5 16

JEdit TIA 4 3 4 2 4 6

WinMerge TIA 8 4 7 3 5 12
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are observed when UIA is compared with UPA, TPA, and TIA, with net

improvements of 6, 5, and 7, respectively. The pair-wise comparison result

of the median ranks is also marginal for most cases while using LSI-based

approach (see Table 2.13). The highest net improvement in this case is

4; and it is observed for WinMerge when comparing TIA with TPA. The

details of the number of times one type of enhanced query is better, less

than or equal to the other in terms of top and median ranks are shown in

Tables 2.12 and 2.14.

The net improvements of the best F-measures of one type of enhanced

query over the others while using grep-based approach are also marginal in

all pairs except for FileZilla (see Table 2.11). In FileZilla, TPA and TIA en-

hanced queries are found more effective than both UIA and UPA enhanced

queries. The highest net improvement, 6, is observed when comparing the

highest F-measures of TPA and TIA with UPA. Like the best F-measures,

the net improvements of the median F-measures are marginal for all pairs

except for some cases of FileZilla and WinMerge (see Table 2.13). The

highest net improvement, 6, is observed for FileZilla when comparing TPA

with UIA, and for WinMerge when comparing UPA with UIA. The details

of the number of times one type of enhanced query is better, less than

or equal to the other in terms of effectiveness (F-measure) are shown in

Tables 2.12 and 2.14. The results show that in the majority of the cases

all pairs have performed almost equally.

To further analyze if the differences observed are statistically signifi-

cant, we have formulated the hypothesis stated in H0−RQ3 and we have

conducted a two-sided, pair-wise Wilcoxon signed-rank test (see Table 2.3,

H0−RQ3, LSI-based and grep-based approaches). The results are shown in

Tables 2.11 and 2.13. The p-values in the tables indicate that the observed

differences are not statistically significant at α = 0.05 in all the cases.

From the results, we can conclude that the difference in the analyzers
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used to build the ontologies has little or no impact on the effectiveness of

the respective enhanced queries in concept location. An example of the

results obtained for the different types of enhanced queries is shown in Ta-

ble 2.7, where query improvements are achieved when the same neighbor-

ing concept is extracted by all ontologies (this is the case, e.g., of concept

ContextMenu on the FileZilla bug), but also when different, but equally

useful concepts are extracted by different ontologies (e.g., concepts Drag,

MenuDownload extracted by UIA, TPA and TIA are equally effective in

improving the basic query as concepts Item, ImageList extracted by UPA).

This shows that ontologies that are remarkably different (see answer to

RQ2) can be equally good at improving the basic queries and none of

them is superior to the others when a concept location task is performed.

Discussion

To carry out a concept location task, developers can use either LSI or grep-

based approach to query the code base. Results of RQ1 show that expert

developers who can formulate best queries and use either of the approaches

to query the code base benefit from using ontologies extracted employing

the analyzers (see Table 2.5). Average programmers who usually formulate

less effective queries, on the other hand, benefit from using the ontologies

if they use the grep-based approach to query the code base (see Table 2.6).

Using the LSI-based approach with enhanced queries formulated by average

developers did not show any improvement over using the basic queries.

When using the LSI-based approach, the enhanced queries formulated

by expert developers result in ranking relevant documents closer to the

top than the basic queries. The improvement in ranking allows developers

to go through a lower number of documents before finding the relevant

document. The effectiveness improvement observed while using the grep-

based approach is the result of the improvement in both precision (P ) and
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completeness (R) of the enhanced queries formulated by expert develop-

ers. The improvements in precision indicates that the developer has to

explore fewer files to identify those relevant for the task at hand, while the

improvements in the completeness of the enhanced queries indicates that

more relevant files are incorporated in the list of files to be explored than

what can be retrieved using the basic queries.

The effectiveness improvement observed in the median F-measures of

enhanced queries while using the grep-based approach is mostly due to the

improvement in precision (see Table 2.6). Though the enhanced queries

completeness slightly decreased, the increase in precision compensates for

such decrease. The higher precision is associated with a lower effort re-

quired to locate a relevant file. Once a relevant file is located, the remaining

parts of the system affected by the change can be identified using impact

analysis and change propagation.

While comparing the basic and enhanced queries, we hold all variables

constant except the queries. Hence, the observed improvements are due to

the concepts taken from the ontologies extracted from the source code and

used to formulate the enhanced queries. The result shows that concepts

which are found in the ontology, and are related to the concepts in the bug

description improve the ranking of relevant documents and narrow down

the search space.

In our study, we have used four different types of analyzers to generate

ontologies. The comparison of the resulting ontologies show that they are

different and are sensitive to the type of analyzer used (see Table 2.9).

The observed difference is due to different parse trees generated by the

analyzers. The analyzers use data-driven natural language parser and differ

in architecture (see Section 2.1). The difference, however, did not exhibit

any significant impact on the concept location task, which exploits the

ontologies to enhance queries (see Tables 2.11 and 2.13).
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Based on our findings, an expert developer can use any of the analyzers

to extract an ontology from the identifiers and explore the ontology to

find possibly related concepts which improve the effectiveness of concept

location queries. For example, the addition of concepts taken from the

ontologies and used to formulate UIA, UPA, TPA, and TIA enhanced

queries have improved the effectiveness of the basic query formulated for

FileZilla bug id 3348 (see Table 2.7) by a large amount (reaching F =

1 with TPA, TIA and Grep, and reaching RR = 1 with all analyzers

and LSI). For an expert developer the improvement on the effectiveness

of a query is not dependent on either of the approaches (LSI vs. grep-

based) used to query the code base. For an average developer, however, a

substantial improvement is achieved only when Grep is used.

2.5.2 Comparison of NLP vs. structural based concept extrac-

tion

In this chapter, we have proposed two approaches to extract concepts from

the source code and build an ontology, which can support program under-

standing. The approaches are based on the natural language information

captured in identifiers (see Section 2.2) and the structure of the source code

(see Section 2.3). We call the ontology built following the former approach

as NLP ontology while we refer to the ontology built following the latter

approach as structural ontology. In this section, we investigate if the two

approaches result in two different ontologies, and, if the difference exists,

we study the impact on the support they give to a program understand-

ing task, concept location. In the previous section, we have shown that

the ontology built following the NLP-based approach improves the effec-

tiveness of queries formulated to locate a concept. Here, we carry out a

similar study using the structural ontology and the union of the structural

and NLP ontologies. In particular, we address the following two research
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questions:

• RQ1. Structural vs. NLP ontology: Is there any difference

between structural and NLP ontologies?

• RQ2. Support for concept location: Do the structural ontology

and the union of structural and NLP ontologies increase the effective-

ness of programmer’s queries formulated for concept location?

NLP and structural based ontologies are generated by exploiting two

different aspects of the source code. In RQ1, we investigate if this dif-

ference results in ontologies which are composed of different sets of con-

cepts. To explore the differences and similarities, we compare each ontol-

ogy to the union of the two ontologies, and compute unique concepts ratio

(|A \B|/|A∪B|, |B \A|/|A∪B|) and Jaccard index (|A∩B|/|A∪B|). In

RQ2, we further analyze the impact of the difference on the support the

ontologies provide to concept location (see Section 2.4).

Like in Section 2.5.1, the evaluation of RQ2 is conducted by comparing

the effectiveness of queries formulated using only keywords taken from the

bug descriptions which we refer to as basic queries with enhanced queries

[4] that use also concepts from either of the ontologies in addition to the

keywords from the bug descriptions. As defined in Section 2.5.1, the effec-

tiveness of the queries is evaluated by computing F-measure (F).

For RQ2, we have formulated the following null/alternative hypotheses

to investigate if the differences between the effectiveness of the two types

of queries is statistically significant.

H0 : There is no statistically significant difference between the effec-

tiveness of basic queries and the effectiveness of enhanced queries.

H1 : There is statistically significant difference between the effective-

ness of basic queries and the effectiveness of enhanced queries.
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To conduct the statistical test we have used two-sided, paired Wilcoxon

signed rank test. To control the false discovery rate and correct for mul-

tiple comparison, we have adjusted the p-values using the Benjamini and

Hochberg (BH) [15] correction.

Procedure

To conduct our experiment we have developed two tools which imple-

ment the approaches described in Sections 2.2 and 2.3. The tools operate

on the XML representation of the source code which is generated using

src2srcml [35]. They respectively produce the NLP based and the struc-

tural ontology (see examples in Figures 2.14 and 2.15) for the input system.

The tool which is used to extract the NLP based ontology uses the output

of UIA (Minipar) (see Section 2.1) as an input to generate the NLP based

ontology.

To automatically reenact concept location, we have collected bug reports

which are closed and have patch files in the associated bug tracking system.

In Table 2.15, we list the number of bugs which have been collected for

each system. The patch files are used to identify the files which are actually

changed to fix the reported bug. The names of these files are used to

finally evaluate the results of our experiments. Keywords which are deemed

relevant for the concept location task have been manually collected from

the titles of each bug description. These keywords are used in formulating

basic query. The enhanced queries are formulated using concepts taken

from the ontologies and keywords [4]. The selection of concepts to be used

in the enhanced queries is done by first matching keywords to concepts in

the ontology and taking the neighboring concepts that are one edge away.

We have applied the queries on the source code files. To query the source

code files, we resort to a very simple (yet widely used) method, namely
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grep12. In Section 2.5.1, we have also used the state-of-the-art approach,

LSI, to query a code base, and we have shown that for an expert user who

can formulate effective queries both approaches give similar results while

for the average user who formulates less effective queries grep is better.

Hence, in this study we consider only grep-based queries. The activities

involved in the grep-based approach are discussed in Section 2.5.1.

Subjects

To conduct the study we have used five open source programs: ADempiere,

FileZilla client, JEdit, OpenOffice, and ThunderBird. The summary of the

systems is shown in Table 2.15.

Table 2.15: Summary of systems.

System Version Files Classes Lines of text No. of Bugs

ADempiere 3.1.0 1833 1917 482094 10

FileZilla 3.0.0 264 208 89080 28

JEdit 4.2 224 639 79198 12

OpenOffice 1.0.0 12761 12112 4666417 18

ThunderBird 2.0.0.0 11019 5949 3548012 12

ADempiere13 is an enterprise resource planning software, while FileZilla

client14 is a cross-platform, graphical FTP, FTPS, and SFTP client. JEdit15

is a programmer’s editor which provides syntax highlighting for over 2000

file formats. OpenOffice16 is an office software suite for word process-

ing, spreadsheets, presentations, graphics and databases, while Thunder-

Bird17 is an email and news client developed by Mozilla foundation. In all

12http://www.gnu.org/software/grep/
13http://www.adempiere.com/
14http://filezilla-project.org/
15http://www.jedit.org/
16http://www.openoffice.org/
17http://www.mozilla.org/en-US/thunderbird/
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these systems, most components are developed using the object oriented

paradigm. Two of the systems, JEdit and ADempiere, are developed using

Java, while the other three are developed using C++.

Results

RQ1: Structural vs. NLP ontology

To investigate the differences and commonalities of the structural and NLP

ontologies, we have compared each ontology’s concepts and relations to

their union (see Table 2.16). For each system, we have created three types

of unions: concepts, relations and paired concepts (see Section 2.5.1, RQ2).

Table 2.16: Comparison of the union of concepts and relations extracted using NLP and

structural approach with the individual approaches.

NLP ∪ Only in Only in Common

Systems Ontology Str. NLP.(Ratio) Str.(Ratio) (Ratio)

ADempiere Concepts 12346 3052(0.247) 1424(0.115) 7870(0.637)

Relations 45890 11850(0.258) 25552(0.557) 8488(0.185)

Paired cpts. 42747 11631(0.272)

FileZilla Concepts 1441 537(0.373) 98(0.068) 806(0.559)

Relations 3339 1517(0.454) 1539(0.461) 283(0.085)

Paired cpts. 3157 465(0.147)

JEdit Concepts 2535 592(0.234) 304(0.12) 1639(0.647)

Relations 5740 2230(0.389) 2922(0.509) 588(0.102)

Paired cpts. 5419 909(0.168)

OpenOffice Concepts 75763 24234(0.32) 4384(0.058) 47145(0.622)

Relations 233271 89933(0.386) 113496(0.487) 29842(0.128)

Paired cpts. 222865 40248(0.181)

ThunderBird Concepts 34819 13092(0.376) 3221(0.093) 18506(0.531)

Relations 91466 39721(0.434) 43071(0.471) 8674(0.095)

Paired cpts. 86944 13196(0.152)

The Jaccard index (shown in the last column of Table 2.16 within brack-

ets) indicates that the two types of ontologies have some parts in common,

but they are not exactly the same. The similarity between the two ontolo-
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gies is higher for concepts than for relations. When considering the unique

concepts of the respective ontologies, the NLP based ontologies have more

unique concepts than the structural based ontologies. This, however, is

reversed in all systems when considering unique relations. Hence, to get

a more complete set of concepts and relations in a program, the union

ontology is recommended.

RQ2: Support for concept location

Table 2.17 shows the average precision, recall and F-measures of the con-

cept location task for the enhanced query and the corresponding percentage

delta over the basic queries. The values are computed for structural on-

tology and NLPStr ontology, which is the union of NLP and structural

ontologies.

Table 2.17: Average precision(P), recall (R) and F-measure (F) of concept location using

the enhanced queries (with delta percentage within brackets); The adjusted P -values

indicate the statistical significance of the difference.

Ontology System Enhanced query P-value

Avg. P(∆%) Avg. R(∆%) Avg. F(∆%)

Str. ADempiere 0.676(346) 0.9(0) 0.717(210) 0.0039

FileZilla 0.483(91) 0.844(0.148) 0.516(71.4) 0.0025

JEdit 0.553(38.5) 0.958(1.47) 0.596(30.7) 0.0591

OpenOffice 0.346(1031) 0.878(-7.33) 0.357(541) 0.0025

ThunderBird 0.173(38.2) 0.833(0) 0.202(56.2) 0.1000

NLPStr ADempiere 0.744(391) 0.9(0) 0.77(233) 0.0039

FileZilla 0.55(118) 0.842(-0.0551) 0.601(99.7) 0.0005

JEdit 0.652(63.2) 0.958(1.47) 0.691(51.6) 0.0591

OpenOffice 0.448(1362) 0.818(-13.7) 0.456(719) 0.0017

ThunderBird 0.324(159) 0.833(0) 0.363(180) 0.0215

In all the systems, the average effectiveness (F-measure) of the enhanced

query is higher than the basic query. Negative delta percentage occurs only

for the recall of OpenOffice and FileZilla. However, these negative values
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are not reflected in the overall effectiveness as there is a large average

improvement of the precision. The improvement in the precision indicates

that there is a reduction of the search space, which also reduces the effort of

the developer who executes the concept location task. To see if the average

effectiveness improvement is statistically significant, we have formulated

the hypothesis stated in H0 and computed the two-sided, paired Wilcoxon

signed rank test.

For the union of NLP and structural ontologies, the observed improve-

ment on the effectiveness of enhanced queries is found statistically signif-

icant (at α = 0.05) in four of the five systems, while for the structural

ontologies the observed difference is statistically significant in three of the

five systems. Hence, for majority of the systems, we can reject the null

hypothesis.

The effectiveness of programmer’s queries has improved for all systems

when using the ontology concepts and this is found statistically significant

in more than half of the systems. Hence, we can answer RQ2 affirmatively.

Discussion

The comparisons of NLP and structural based ontologies show that the

two ontologies are complementary (see Table 2.16). The unique concepts

found in each of the ontologies could be due to the different aspects of the

source code which are exploited when extracting them. Hence, we think

that using the two ontologies in combination (i.e., computing their union)

could be useful for developers.

In RQ2, we have investigated the support of the structural ontology and

the union of the structural and NLP ontologies to enhance concept loca-

tion queries. The results show that both types of ontologies are practically

helpful to enhanced queries in all systems (see Table 2.17, F-measure delta

percentage). However, among the two, the F-measure delta percentages
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obtained for the NLPStr ontology are greater than the structural ontology.

The average of the F-measure delta percentages for the structural ontology

is 181.9%, while for the NLPStr ontology it is 256.7%. The NLPStr ontol-

ogy also has a higher average F-measure delta percentage when compared

with the average F-measure delta percentage of the NLP ontology, 236.3%.

Besides, these observed improvements are found statistically significant in

four of the five systems for the union ontology (see Table 2.17, p-values).

From these results we can see that the effectiveness of the enhanced queries

is better if a developer uses the union of NLP and structural ontologies to

enhance concept location queries.

2.5.3 Threats to validity

The main threats to the validity that can affect the results of the eval-

uations in Sections 2.5.1 and 2.5.2 can be of four different types [114]:

construct, internal, conclusion, and external validity threats. In the fol-

lowing we discuss them together with the strategies adopted to minimize

their effect.

Construct validity threats concern the relationship between theory and

observation. The main point to consider involves the adopted effectiveness

measures, which in our case depend on whether the results are ranked

or not. In the former case (see Section 2.5.1), the Reciprocal Rank aims

at measuring the effort necessary to get the correct answer by considering

results in the list starting from the top. In the latter (see Sections 2.5.1 and

2.5.2), we considered the usual measures of precision, recall and F-measure.

However, to be more precise, the effort required from the user to process

the output crucially depends on the choice of the basic query and on the

following filtering performed by the developer. Performing this activity

manually would have caused all threats to validity connected to human

involvement [114], including the possibility that the subject learns how the
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system behaves or tends to unconsciously alter the system performance.

We therefore preferred an automatic strategy, which simulates developers

activity and also makes replicability easier.

Internal validity threats concern additional factors that may affect an

independent variable. First of all, one threat can derive from the fact that

the basic queries employed in the evaluation have been created by one of the

researchers involved in the study from bug report titles. In both studies,

to minimize this problem we have decided a-priori a standard strategy for

query creation. We considered all the keywords as initial query and then

filtered the results. Even more importantly, the researcher has carried out

query creation prior to computing any result.

Another factor which can influence the system effectiveness in the study

conducted in Section 2.5.1 is the size of data available for training the

natural language parsers in TPA and TIA cases. It is largely known that for

all machine learning approaches, the combination of quantity and quality

of training data is crucial for effectiveness. In our case, we constructed

the training set by the union of documentation internal to the project

and general data sets, based on the documentation commonly available in

a software project. While such documentation is not required to be fully

aligned with the implementation for our purposes, a completely misaligned

or outdated documentation might impair the training phase.

Conclusion validity threats concern the relationship between the treat-

ment and the outcome. The validity of the results strongly depends on the

choice of the baseline system. We considered the LSI-approach, which at

the moment is largely regarded as the state of the art in concept location

(see Section 2.5.1) and have shown that the results are consistent with the

more traditional and widely used grep-based approach for effective queries.

Another point regards the statistical significance of the results. We

adopted the Wilcoxon signed-rank test to compute the p-value for each pair
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of considered systems. However, in our case such pair-wise comparisons

must be combined to obtain a global ranking of all the four proposed

approaches and the baseline, hence involving multiple tests. To take such

multiple tests into account, we have applied the Benjamini and Hochberg

(BH) [15] adjustment of the p-values.

External validity concerns the generalization of the findings. The study

conducted on comparison of analyzers (see Section 2.5.1) involved three

open source software applications, two written in C++ and one in Java,

while the study conducted on the comparison of the two concept extrac-

tion approaches (see Section 2.5.2) involved five systems of which two are

written in Java and the rest in C++. Developers in open source projects

usually are very careful in producing code which can be easily modified

by someone else. This implies that they try to exploit at best natural

language semantics, and this can help text mining approaches as the one

we are proposing. We feel that the approach could be effective also on

commercial systems, but this should be verified by further assessment.

In general, we hypothesized that the programming language is object-

oriented and considered class, attribute and method names. The approach

could be easily extended to other kinds of languages, and we are confi-

dent that the resulting trend would not change, because the techniques

we use exploit the natural language properties rather than the program-

ming language ones. However, such generalization would require further

experimentation. On the other hand, although English is largely employed

in software comments and identifiers, cross-language adaptation would be

necessary if other languages are adopted in addition to or in substitution

of English.

Last but not least, we adopted the available bug fixing patches to assess

the results of concept location, as usually done in the concept location

literature. However, bug fixing could require intervention only in a proper
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subset of all the places where the concept occurs and the number of gold

positives could be larger than the one considered.

2.6 Conclusion

In this chapter, we have presented four types of natural language analyz-

ers to parse identifiers and two approaches to extract concepts and inter-

concept relations from identifiers. Two of the analyzers have been adapted

to directly work on identifiers through training while the other two are

standard English analyzers. The training of the analyzers was conducted

automatically using a training set constructed from the documentation of

the corresponding system. To extract concepts and inter-concept relation-

ships, we have used natural language dependency relationships between

the terms used to construct identifiers (NLP-based approach) and the pro-

gram’s structural information which is based on object oriented program-

ming (structural-based approach).

In our study, we have used the analyzers to identify natural language

dependencies between terms in the identifier and to extract concepts and

inter-concept relationships. To analyze the effect of the analyzers in ex-

tracting concepts and inter-concept relationships, we have conducted a

case study. The study was conducted in the context of the support the ex-

tracted concepts give to concept location while using LSI and grep-based

approaches. The results of the study, show that using concepts taken from

the ontologies extracted from the respective systems improves the effective-

ness of concept location queries which can be formulated by experts, while

using both LSI and grep-based approaches. This is achieved irrespective

of the type of natural language analyzer used in the study. The statistical

test conducted on the results also confirms this observation in the majority

of the cases (i.e., the results of at least 8 out of 12 cases for both LSI-based
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and grep-based approaches are found statistically significant at α = 0.05).

For average queries, improvement in effectiveness of queries is observed

only when using the grep-based approach. The improvements observed in

this case are statistically significant at α = 0.05 in half of the cases.

The comparison of the ontologies generated using different analyzers

shows that they are different, with some concepts and relations in common.

However, this did not impact the support they give to concept location.

The comparison on the support they give to concept location show that

in the majority of the cases, they perform equally well and the observed

small differences are not statistically significant.

The ontology extracted using the NLP based approach was also com-

pared with the ontology extracted using the structural based approach in

terms of the concepts they contain and the support they give to concept

location. Our results indicate that the two ontologies have several unique

concepts, which might stem from the different aspects the corresponding

approaches exploit to extract the ontologies. The impact of the unique

concepts is also reflected on concept location, where the union of the two

ontologies gives better support for concept location than the individual

ontologies.
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Chapter 3

Domain concept filtering

A program is a formal representation of a solution to a problem, as per-

ceived by its developers. At various times, different programmers need to

understand the domain concepts captured in the code to perform mainte-

nance tasks. However, understanding the domain knowledge captured in

a program written by others or written some time ago is usually a diffi-

cult and time consuming activity. In fact, a solution of a problem in a

domain can be formalized in a number of ways. Often there is no way of

knowing how the domain knowledge is captured in the program other than

by reading the code. Reading the code of a large program on the other

hand is a difficult and expensive activity, which can be highly supported by

approaches such as those described in Chapter 2 and by Ratiu et al. [102].

The approach described in Chapter 2 extracts concepts captured in pro-

gram element names, while Ratiu et al. [102] extract common concepts cap-

tured in the APIs implementing a similar functionality. Both approaches

use ontologies to present the concepts extracted and the inter-concept rela-

tionships. These approaches do not make any distinction between concept

types, i.e., domain vs. implementation concepts. A concept in an ontology

may represent a domain concept (e.g., bank account) or an implementation

concept, such as a data structure (e.g., array, list), a GUI element (e.g.,
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button, canvas), etc. In this chapter we present an information retrieval

(IR) based approaches to separate (filter) domain concepts from imple-

mentation concepts [5]. The IR based techniques used in the filtering are

keyword and topic based approaches. They are used in various natural

language processing applications to identify the representative words, to

perform clustering and to identify the topics present in a corpus of docu-

ments [103, 80, 51].

In the following sections we present two keyword based filtering tech-

niques, a non-interactive and an interactive techniques, and a topic based

filtering technique. The evaluation of the filtering techniques is described

in Section 3.4.

3.1 Non-interactive keyword based filtering

In a document, keywords which refer to domain concepts are used with

other auxiliary words to convey the intended (domain) message to its read-

ers. A term is considered as a domain keyword depending on the context

in which it is used. For example, the term credential may not be consid-

ered as a domain keyword when it is used in a document related to a bank

system, while it is definitely a domain keyword if it is used in documents

related to security. In information retrieval (IR) and text mining, differ-

ent techniques are used to identify keywords of documents, such as term

frequency in a document (TF ), term weight (TW = TF/AT , AT= total

number of terms in a document), and term frequency-inverse document

frequency (TFIDF = TW ∗ log(D/d), D= number of all documents, d=

number of documents containing the term). These techniques give a weight

to the words in the documents and rank them in descending order of like-

lihood of being a keyword. Term frequency considers terms which have

high frequency as keywords while term weight normalizes the frequency
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by dividing it to the total number of terms in the respective documents.

Term frequency-inverse document frequency, on the other hand, consid-

ers the distribution of a term across documents in addition to the term

weight, to give more weight to document specific terms. A cut point or a

percentage is used to take the terms at the top, which are considered more

representative keywords of the domain.

To identify keywords related to the software system under analysis, we

have opted to use the corresponding documentation (e.g., the user manual,

the web site, etc.) as our main source. The documentation, usually, con-

tains a description of the solution implemented in the source code. Hence,

it is quite likely to contain domain keywords which are also used in program

element names, in the source code. The keywords from the source code

documentation are collected using term frequency (TF). In fact, we are not

interested in terms that characterize a document specifically. Therefore,

we merge all the documentation to one file, which makes the other tech-

niques not applicable. Prior to applying the TF technique, we pre-process

the merged document to remove stop words which are common English

words (e.g., the, is, etc) and programming keywords. To remove variants

of a word and have only their common root, we use stemming. Like in

our previous study [5], we have used three different cut points, top 15, 50

and 100 terms, to obtain the set of keywords from the terms ranked by

TF. We considered these cut points to investigate the impact of different

thresholds and have a reasonable set to manually analyze.

The terms which are identified as keywords are used to automatically

filter the recovered ontology. The filtering is conducted by matching iden-

tified keywords to the terms used to represent a concept in the ontology.

A concept in the ontology is kept if all the composing terms of the concept

have been identified as keywords. A relation is kept if both source and

target concepts are kept. For example, for the ontologies of our running
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Figure 3.1: The filtered ontology produced for the NLP ontology which is shown in

Figure 2.14.

example, Figures 2.14 and 2.15, if we find as keywords all terms used in

the ontology but login, password, user and credential, this approach will

filter the part of the ontology purely related to the bank system domain

(see Figures 3.1 and 3.2).

3.2 Interactive keyword based filtering

In the non-interactive keyword based filtering, all the terms which are clas-

sified as keywords using the three cut points are used for filtering. However,

closer examination of the keywords in some preliminary experiments has

shown that they contain terms such as click and menu which are used
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Figure 3.2: The filtered ontology produced for the structural ontology which is shown in

Figure 2.15.

to describe how to’s and GUI elements [5]. These terms are relevant for

describing the solution implemented in the source code, hence they are typ-

ical of the documentation, but they are not domain terms. We introduce

a limited manual intervention for keyword selection, which we call domain

keyword selection.

The process of domain keyword selection involves a developer’s decision

on whether or not to consider a keyword as a true domain keyword. If

a keyword is considered as a true domain keyword, it is kept in the list

for the next step while the others are removed. This manual selection is
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conducted for the top 15, 50 and 100 keywords automatically selected using

one of the techniques described above and hence requires minimal effort.

The keywords we have after the domain keyword selection are then used

in a similar way as in the non-interactive keyword based filtering to match

the terms representing a concept in the ontology and filter the domain

concepts.

3.3 Topic based filtering

Even though a software is an implementation of a solution to a given prob-

lem in a domain, it usually incorporates auxiliary implementations from

other domains such as security, logging, GUI, etc. In the absence of proper

documentation, a developer can learn about such auxiliary implementa-

tions by looking at the identifiers of the corresponding implementations.

Considering the source code as a collection of documents composed of

identifiers, one can similarly match the different but related domain imple-

mentations present in the source code to the topics in a document. A topic

in a document represents a concept and is described using a collection of

words [19]. In IR, various techniques such as pLSI (Probabilistic Latent

Semantic Indexing) [59, 20] and LDA (Latent Dirichlet Allocation) [20, 19]

are used to identify collections of words which correspond to the topics

composing a document.

In this sub-section, we describe pLSI and LDA which we used to identify

terms that correspond to the two major topics present in the source code:

domain and implementation. The source code is considered as a collection

of documents (files), each containing identifiers from classes, methods and

attributes (split into stemmed terms).

pLSI (Probabilistic Latent Semantic Indexing): Also known as aspect

model, is a generative topic modeling technique which is based on a prob-
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abilistic model that uses the maximum likelihood principle [59, 20]. pLSI

models a document as a mixture of words taken from different (unknown)

latent topics from which the document is composed. The document model

is achieved by first taking a document d, its probability P (d) and the joint

probability with the contained words w, P (d, w). In order to select a latent

topic z for d and to characterize the words w in a topic z, the probabili-

ties P (z|d) and P (w|z) are estimated using the expectation maximization

algorithm. This algorithm alternates two probability estimate steps: (1)

the estimate step, to compute P (z|d, w); and, (2) the maximization step,

to compute P (w|z), P (d|z), P (z). From the estimated probability P (w|z)

we can characterize topics as sets of most probable words, which we use as

keywords for the topic.

LDA (Latent Dirichlet Allocation): The basic idea of LDA [20, 19] is

also that documents are represented as a mixture of words taken from

different latent topics, where each topic is characterized by a distribution

over words. LDA is an advancement over pLSI, which addresses pLSI’s

limitations. pLSI generates the topic mixture, P (z|d), only for documents

which are known in advance, preventing its use with new documents. LDA

overcomes this limitation by assuming that the probability distribution of

a document over topics P (z|d) is generated from a Dirichlet distribution

withK parameters. In addition, this assumption addresses pLSI’s problem

of linear growth of parameters to be estimated as the number of documents

grows, which may result in over-fitting [20, 28].

Both pLSI and LDA rank terms (words) representing a topic using a

probability of membership, P (w|z). The membership probability indicates

the level of representativeness of the term in the respective topics in which

it is found. To restrict the list of terms which represent a topic and have

only those which are better representative, we have used three different

cut points (minimum thresholds), 0.01, 0.02, and 0.03. The resulting set
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of terms characterizing each topic is then regarded as keywords that are

used to filter the ontology.

Similar to the keyword based approaches, the terms representing a con-

cept in the ontology are matched to the keywords of a given topic. If all

are matched, then the concept is kept in the filtered ontology. As we have

two sets of terms corresponding to the two topics, domain and implemen-

tation, we will have two filtered ontologies. One of the filtered ontologies

corresponds to the domain while the other corresponds to the implementa-

tion. For example, for the running example shown in Figure 2.6, the topic

model may give us two sets of terms, one related to the implementation,

including login, password, user, credential, and the other containing terms

related to the domain, such as account and balance. Using these sets to

filter the ontology results in two filtered ontologies, one corresponding to

the domain and the other to the implementation. The latter can be easily

identified and discarded (see Figures 3.1 and 3.2).

3.4 Evaluation

To assess the need for filtering and evaluate the filtering techniques, we

have formulated the following three research questions. The evaluation is

conducted using the three domain concept filtering techniques described

in Sections 3.1, 3.2, and 3.3. For what concerns the ontology, the two,

NLP and structural based, concept extraction approaches described in Sec-

tions 2.2 and 2.3 are used.

• RQ1. Adequacy of filtering: Is there a filtering relationship be-

tween the concepts extracted following the NLP and structural based

approaches and the domain concepts?

• RQ2. Effectiveness of filtering techniques: How effective are
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filtering techniques based on information retrieval in separating do-

main concepts from implementation concepts?

• RQ3. Support for concept location: Do the filtered ontology

concepts increase the effectiveness of programmer’s queries formulated

for concept location?

As in the source code, where domain concepts are found together with

implementation concepts, the ontologies we extract are also expected to

be composed of two sets of concepts: domain and implementation. RQ1

focuses on analyzing this conjecture. In order to address RQ1 we will

consider gold concepts which are concepts that express the problem do-

main implemented in the program for which the ontology is extracted.

The gold domain concepts are manually collected from the user manuals

of the corresponding systems. In fact, for RQ1 it is not important that

the separation can be achieved in an automated way. What is important

for RQ1 is that such separation, even if obtained manually, shows that

most domain concepts are actually present in the automatically recovered

ontology, such that a properly defined filter may in principle distill them

from the ontology.

Assuming that a filtering relationship holds between extracted concepts

and domain concepts, the next question is if and how such a filtering pro-

cess can be automated. To this aim we investigate RQ2, where alternative

IR based filtering techniques to separate domain from implementation con-

cepts are compared.

In Section 2.5.2, we have shown that ontologies improve the effective-

ness of queries used in concept location. In RQ3, we investigate if the

filtered domain concepts can also be used to improve the effectiveness of

queries formulated to locate concepts as compared to the unfiltered on-

tology. The investigation is conducted by comparing the effectiveness of

89



3.4. EVALUATION CHAPTER 3. DOMAIN CONCEPT FILTERING

queries formulated using keywords taken from bug descriptions and the

unfiltered ontology with those that use concepts from the filtered domain

ontologies in addition to the keywords from the bug descriptions. We call

such queries as enhanced queries. We have formulated the following nul-

l/alternative hypothesis to investigate if there is a statistically significant

difference between the support provided by the filtered and unfiltered on-

tologies to concept location.

H0 : There is no statistically significant difference between the effec-

tiveness of enhanced queries formulated using concepts taken from

filtered ontologies and effectiveness of enhanced queries formulated

using concepts taken from unfiltered ontologies.

H1 : There is statistically significant difference between the effective-

ness of enhanced queries formulated using concepts taken from filtered

ontologies and effectiveness of enhanced queries formulated using con-

cepts taken from unfiltered ontologies.

To carry out the statistical test, we have conducted a two-sided, paired

Wilcoxon signed rank test. To control the false discovery rate and correct

for multiple comparison, we have adjusted the p-values using the Benjamini

and Hochberg (BH) [15] correction.

3.4.1 Procedure

To conduct the analysis, we have followed the steps shown in Figure 3.3.

To generate the filtered ontology, we first of all followed the steps described

in Sections 2.2 and 2.3 to extract two ontologies from the source code. We

refer to the ontology extracted using the NLP based approach and UIA

(see Section 2.2) as NLP ontology while the ontology extracted using the

structural information is referred to as Str ontology. We have also created
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a third ontology, NLPStr ontology, which is the union of the two types of

ontologies. This step can be replaced by any approach which extracts an

ontology directly from the source code.

Figure 3.3: Overview of ontology filtering and evaluation process.

To filter the extracted ontologies, we use the IR techniques described

in this chapter. The filtering techniques, as shown by the dotted arrows

in Figure 3.3 use information from either the source code or the system’s

documentation, in particular user manuals as an input. To automate fil-

tering, we have used the tool developed for our previous study [5]. The

tool implements the IR filtering techniques described above. It uses the

Dragon Toolkit [115] as a plug-in to generate topic terms from the source

code corpus. The source code corpus is constructed from class, attribute,

and method identifier terms identified after splitting the names using camel

casing and underscore. The toolkit has a configuration file where the num-

ber of topics to be generated by both pLSI and LDA is set and the values

for the parameters required by LDA, α and β, are specified. Like in our

previous study [5], we have set the value of α to 25 (50/Number of Topics),
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β to 0.1, and number of topics to 2. The same values of α and β have been

used in another work [51]. Like in our previous study [5], to automatically

filter the ontologies using the non-interactive keyword based filtering ap-

proach, we have used the top 15, 50, and 100 most frequent terms which

are extracted from the manuals. When using the topic based approach, we

used the terms in each topic to filter the ontology and the evaluation was

conducted separately for each topic (we expect one topic, associated with

the domain, to outperform the other topic).

To carry out interactive keyword based filtering a developer has to carry

out domain keyword selection on the top 15, 50 or 100 keywords listed

by the non-interactive keyword based filtering technique. Domain keyword

selection is a process where the developer decides whether or not to consider

a keyword as a true domain keyword. To simulate this step and avoid

bias, we have carried out this process fully automatically and we have

matched the top listed keywords with the gold concepts and considered

those keywords which are matched as true domain keywords selected by

the developer. The gold concepts can be extracted from different sources of

information related to the program. For this study, one of the researchers

involved in the study has manually collected the gold concepts from the

user manuals which come with the systems and are found on the website

of the case study programs. To avoid bias, the collection was conducted

prior to extracting and filtering the ontologies. To show the gold concepts

collected, FileZilla and WinMerge have been chosen as an example out of

the six systems analyzed in the study (see Table 3.1).

To evaluate if there is a filtering relationship between the concepts in

the ontology and domain concepts (RQ1), we have defined a metric called

Gold Concepts in the Source code (GCS). Gold Concepts in the Source

code (GCS) is the ratio of gold concepts found in the ontology concepts to

the total number of gold concepts. GCS shows how many of the manually
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Table 3.1: Manually collected gold concepts for WinMerge and FileZilla.

Systems Gold Concepts

FileZilla active mode, active transfer, client, connection, current directory, current

server, data, directory, download, file, file transfer, ftp, ftp client, ftp server,

host, host name, ip, local directory, local file, mode, passive mode, passive

transfer, password, port, protocol, remote directory, remote file, server, ses-

sion, sftp, sftp client, transfer, transfer mode, upload, user

WinMerge archive folder, binary file, block, change, character difference, compare, content,

control, data, date, difference, difference block, difference text, document, file,

file compare, file content, file filter, file mask, file size, file version, filter, folder,

folder compare, folder difference, line, line difference, line filter, mask, merged

document, multiple lines, patch, patch file, recursive compare, size, sub-folder,

syncronize, text, text block, time difference, unpacker, version, version control,

whitespace compare, word difference

identified gold concepts are actually present in the ontology extracted from

the source code.

Table 3.2: Domain-implementation filtering confusion matrix (TP=True positive,

TN=True negative, FP=False positive, FN=False negative)

Correct Filtering

Domain Implementation

Filtering by Domain TP FP

technique A Implementation FN TN

Filtering the domain from the implementation concepts is a classifica-

tion activity. Hence, we can use the confusion matrix which is commonly

used for evaluating classifiers, to measure the effectiveness of the consid-

ered filtering techniques (see Table 3.2). The effectiveness evaluation is

made by comparing the resulting classification with a reference, correct

domain filtering (TP +FN), which is produced manually. To measure the

effectiveness of a filtering technique and answer RQ2, we have computed

precision, recall and F-measure from the confusion matrix. The definition
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of these metrics are similar to those defined in Section 2.5.1 but, here, we

consider domain concepts instead of relevant source code files. The preci-

sion indicates how many of the filtered concepts are domain concepts as

compared to those actually present in the ontology, while the recall shows

the percentage of domain concepts in the ontology that are filtered by the

technique. The harmonic mean of the precision and recall, F-measure, is

used to aggregate the inversely related values of precision and recall to a

single value, which simplifies comparison of the effectiveness of the filtering

techniques.

To automatically carry out concept location (described in Section 2.4)

and answer RQ3, we have collected bug reports which are closed and have

patch files in the associated bug tracking system. In Table 3.3, we list the

number of bugs which have been collected for each system. The patch files

are used to identify the files which are actually changed to fix the reported

bug. The names of these files are used to finally evaluate the results of

our experiment. To investigate the support of the filtered ontologies to

concept location, we have formulated queries, which use concepts taken

from the filtered ontologies besides keywords which are deemed relevant

for the concept location task and have been manually collected from the

titles of each bug description. We call such queries enhanced queries [4] (a

detailed description of enhanced queries can be found in Section 2.5.1). In

this study, the enhanced queries are formulated using concepts taken from

the unfiltered ontology and filtered ontology and we compared the impact

of the unfiltered and filtered ontologies.

The queries are applied to the source code files. To carry out concept

location, we have resorted to a very simple (yet widely used) method,

namely grep to query the code base. In Section 2.5.1, we have also used

the state-of-the-art approach, LSI, to query a code base, and we have shown

that for an expert user who formulates effective queries both approaches
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give similar results while for average user who formulates average queries

grep is better. Hence, in this study we consider only grep.

The effectiveness of the queries is evaluated following the measures de-

fined in Section 2.5.1. The most effective query is the query which gives the

highest F-measure among all possible queries formulated with a maximum

combination of four or less keywords and concepts. Having more than one

keyword or concept in a query, in our case, represents a filtering relation-

ship. For example if a query contains two concepts, the second concept is

used to filter the query results obtained using the first concept.

3.4.2 Subjects

To conduct our study we have used six open source programs: ADempiere,

FileZilla client, JEdit, OpenOffice, ThunderBird and WinMerge. The sum-

mary of the systems is shown in Table 3.3.

Table 3.3: Summary of systems.

System Version Files Classes Lines of text No. of Bugs

ADempiere 3.1.0 1833 1917 482094 10

FileZilla 3.0.0 264 208 89080 28

JEdit 4.2 224 639 79198 12

OpenOffice 1.0.0 12761 12112 4666417 18

ThunderBird 2.0.0.0 11019 5949 3548012 12

WinMerge 2.12.2 257 146 67643 7

ADempiere1 is an enterprise resource planning software, while FileZilla

client2 is a cross-platform, graphical FTP, FTPS, and SFTP client. JEdit3

is a programmer’s editor which provides syntax highlighting for over 2000

file formats. OpenOffice4 is an office software suite for word processing,

1http://www.adempiere.com/
2http://filezilla-project.org/
3http://www.jedit.org/
4http://www.openoffice.org/
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spreadsheets, presentations, graphics and databases. ThunderBird5 is an

email and news client developed by Mozilla foundation, while WinMerge6

is a differencing and merging utility for Windows. In all these systems,

most components are developed using the object oriented paradigm. Two

of the systems, JEdit and ADempiere, are developed using Java, while the

other four are developed using C++.

3.4.3 Results

RQ1: Adequacy of filtering

We have compared the concepts found in automatically extracted ontolo-

gies with gold concepts which have been collected manually and represent

the domain concepts of each subject system. Table 3.4 shows the number

and ratio of gold concepts which are found in the respective ontologies.

More than 50% of the gold concepts are found in NLP based and the

union of NLP and structural based ontologies for all systems except ADem-

piere. The structural ontology contains more than 40% of the gold concepts

in five of the six systems. ADempiere has the lowest percentage (around

32%) of gold concepts in the extracted ontologies for all types of ontolo-

gies. The results show that in almost all the systems more than half of the

gold concepts are contained in the ontologies extracted from the systems.

Hence, a filtering relationship between the extracted ontologies and the

domain concepts holds. Moreover, more than half of the domain concepts

can potentially be obtained from NLP or union ontologies by means of

filtering.

We have also computed the ratio of the number of filtered domain ontol-

ogy concepts to the total number of concepts in the ontology (see Table 3.4

last column). Ratios show that a large portion of the ontologies is related

5http://www.mozilla.org/en-US/thunderbird/
6http://winmerge.org/
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Table 3.4: Gold Concepts in the Source code (GCS) and ratio of the domain ontology

concepts filtered to the total number of concepts in the corresponding ontology.

System Ontology GCS Domain ontology

concepts ratio

ADempiere NLP 0.326 (60/184) 0.011 (124/10922)

Str. 0.326 (60/184) 0.011 (103/9294)

NLPStr 0.364 (67/184) 0.011 (134/12346)

FileZilla NLP 0.629 (22/35) 0.019 (25/1343)

Str. 0.486 (17/35) 0.021 (19/904)

NLPStr 0.629 (22/35) 0.017 (25/1441)

JEdit NLP 0.567 (97/171) 0.063 (141/2231)

Str. 0.509 (87/171) 0.061 (119/1943)

NLPStr 0.579 (99/171) 0.058 (146/2535)

OpenOffice NLP 0.592 (180/304) 0.016 (1165/71379)

Str. 0.523 (159/304) 0.014 (739/51529)

NLPStr 0.599 (182/304) 0.016 (1185/75763)

ThunderBird NLP 0.523 (46/88) 0.0030 (83/31598)

Str. 0.443 (39/88) 0.0030 (56/21727)

NLPStr 0.523 (46/88) 0.0020 (86/34819)

WinMerge NLP 0.578 (26/45) 0.018 (31/1754)

Str. 0.4 (18/45) 0.021 (21/1008)

NLPStr 0.578 (26/45) 0.017 (32/1891)
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to implementation concepts, not to domain concepts. Hence, filtering the

domain concepts from the automatically extracted concepts would result

in a small-size ontology, focused on the domain information represented in

the source code.

RQ2: Effectiveness of filtering techniques

Tables 3.5, 3.6 and 3.7 show the results for the non-interactive and in-

teractive keyword based filtering techniques, when the top 15, 50 or 100

keywords are used, respectively. For each system and ontology type, we

have computed the average precision, recall and F-measure achieved in fil-

tering domain concepts. As the number of top keywords used increases,

the F-measure increases in all systems for the interactive keyword based

approach. The increase is observed for all types of ontologies. For the

non-interactive keyword based filtering technique, however, the increase is

observed only in two of the systems (JEdit and OpenOffice), for all types

of ontologies.

For the interactive keyword based filtering, the best results are observed

when taking the top 100 keywords, while for non-interactive filtering there

is no clear pattern among the systems and ontology types. To compare

the effectiveness of the two keyword based filtering techniques, we have

computed the delta percentage of interactive over non-interactive keyword

based filtering technique (see Tables 3.5, 3.6, and 3.7). The results show

that the interactive approach has a better performance in all the systems

when considering the top 100 keywords and in four of the six systems

when considering the top 50 keywords. The average delta percentage im-

provement for the top 100 keywords across systems is about 100% for all

ontology types and is significant at α = 0.05 (see Table 3.8). The box

plots shown in Figure 3.4 also confirm the superior performance of inter-

active over non-interactive keyword based filtering techniques for top 100

98



CHAPTER 3. DOMAIN CONCEPT FILTERING 3.4. EVALUATION

keywords.

Table 3.5: Effectiveness of keyword and interactive keyword based filtering techniques for

top 15 keywords.

System Ontology Keyword Int-keyword

P R F P R F ∆% (F)

ADempiere NLP 0.333 0.065 0.108 0.556 0.04 0.075 -30.6

Str. 0.333 0.049 0.085 0.571 0.039 0.073 -14.1

NLPStr 0.333 0.06 0.101 0.556 0.037 0.07 -30.7

FileZilla NLP 0.615 0.32 0.421 1 0.24 0.387 -8.1

Str. 0.5 0.211 0.296 1 0.211 0.348 17.6

NLPStr 0.615 0.32 0.421 1 0.24 0.387 -8.1

JEdit NLP 0.6 0.085 0.149 0.875 0.05 0.094 -36.9

Str. 0.786 0.092 0.165 0.875 0.059 0.11 -33.3

NLPStr 0.6 0.082 0.145 0.875 0.048 0.091 -37.2

OpenOffice NLP 0.769 0.034 0.066 1 0.022 0.044 -33.3

Str. 0.838 0.042 0.08 1 0.028 0.055 -31.3

NLPStr 0.755 0.034 0.065 1 0.022 0.043 -33.8

ThunderBird NLP 0.409 0.217 0.283 0.625 0.181 0.28 -1.1

Str. 0.483 0.25 0.329 0.667 0.214 0.324 -1.5

NLPStr 0.4 0.209 0.275 0.625 0.174 0.273 -0.7

WinMerge NLP 0.647 0.355 0.458 1 0.258 0.41 -10.5

Str. 0.692 0.429 0.529 1 0.333 0.5 -5.5

NLPStr 0.632 0.375 0.471 1 0.25 0.4 -15.1

Table 3.9 shows the best F-measures for topic based filtering techniques,

with the corresponding parameter configuration for each system. In all

systems, except ThunderBird, the best result is achieved when using the

structural based ontology. For ThunderBird, the topic based filtering did

not retain any concept. Of LDA and pLSI, LDA has given the best re-

sult in three of the systems while pLSI gives the best result only in one

of them. Both LDA and pLSI have performed equally in the remaining

two systems. The effectiveness of topic based filtering techniques is sub-

stantially lower than all non-interactive keyword and interactive keyword

based filtering techniques with the exception of ADempiere, when only the

top 15 keywords are used, and some of the cases of JEdit, when only the
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Table 3.6: Effectiveness of keyword and interactive keyword based filtering techniques for

top 50 keywords.

System Ontology Keyword Int-keyword

P R F P R F ∆% (F)

ADempiere NLP 0.328 0.339 0.333 0.683 0.226 0.339 1.8

Str. 0.406 0.379 0.392 0.743 0.252 0.377 -3.8

NLPStr 0.336 0.328 0.332 0.69 0.216 0.33 -0.6

FileZilla NLP 0.288 0.68 0.405 0.75 0.48 0.585 44.4

Str. 0.256 0.579 0.355 0.714 0.526 0.606 70.7

NLPStr 0.283 0.68 0.4 0.75 0.48 0.585 46.3

JEdit NLP 0.372 0.362 0.367 0.717 0.27 0.392 6.8

Str. 0.452 0.353 0.396 0.762 0.269 0.398 0.5

NLPStr 0.367 0.349 0.358 0.717 0.26 0.382 6.7

OpenOffice NLP 0.432 0.158 0.231 0.594 0.103 0.176 -23.8

Str. 0.441 0.172 0.247 0.619 0.116 0.196 -20.6

NLPStr 0.432 0.159 0.232 0.592 0.103 0.175 -24.6

ThunderBird NLP 0.193 0.446 0.269 0.571 0.337 0.424 57.6

Str. 0.226 0.464 0.304 0.595 0.393 0.473 55.6

NLPStr 0.189 0.43 0.262 0.571 0.326 0.415 58.4

WinMerge NLP 0.168 0.516 0.254 1 0.355 0.524 106.3

Str. 0.188 0.571 0.282 1 0.476 0.645 128.7

NLPStr 0.17 0.531 0.258 1 0.344 0.512 98.4
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Table 3.7: Effectiveness of keyword and interactive keyword based filtering techniques for

top 100 keywords.

System Ontology Keyword Int-keyword

P R F P R F ∆% (F)

ADempiere NLP 0.209 0.589 0.308 0.627 0.419 0.502 63

Str. 0.219 0.553 0.314 0.672 0.379 0.484 54.1

NLPStr 0.206 0.56 0.301 0.631 0.396 0.486 61.5

FileZilla NLP 0.185 0.88 0.306 0.8 0.64 0.711 132.4

Str. 0.193 0.842 0.314 0.778 0.737 0.757 141.1

NLPStr 0.183 0.88 0.303 0.8 0.64 0.711 134.7

JEdit NLP 0.321 0.56 0.408 0.722 0.369 0.488 19.6

Str. 0.357 0.546 0.432 0.782 0.361 0.494 14.4

NLPStr 0.319 0.555 0.405 0.73 0.37 0.491 21.2

OpenOffice NLP 0.236 0.315 0.27 0.577 0.192 0.288 6.7

Str. 0.246 0.327 0.281 0.604 0.208 0.31 10.3

NLPStr 0.233 0.313 0.267 0.577 0.191 0.287 7.5

ThunderBird NLP 0.116 0.602 0.194 0.55 0.398 0.462 138.1

Str. 0.152 0.696 0.249 0.614 0.482 0.54 116.9

NLPStr 0.116 0.605 0.194 0.55 0.384 0.452 133

WinMerge NLP 0.104 0.71 0.182 1 0.484 0.652 258.2

Str. 0.101 0.667 0.176 1 0.476 0.645 266.5

NLPStr 0.105 0.719 0.183 1 0.469 0.638 248.6

Table 3.8: Average delta percentage of interactive over non-interactive keyword based

filtering technique for top 100 keywords across systems.

Ontology Avg ∆ % P-value

NLP 103 0.03125

Str. 101 0.03125

NLPStr 101 0.03125
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Figure 3.4: Effectiveness of non-interactive Keyword (K) and Interactive Keyword (IK)

based filtering techniques across systems for top 100 keywords.
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top 15 keywords are used.

Table 3.9: Topic based filtering: The highest F-measures with the corresponding ontology,

filtering approach and setting combination (filtering approach, threshold, topic number).

System Ontology Setting combination F

ADempiere Str. (LDA, 0.01, 2) 0.153

FileZilla Str. (LDA & pLSI, 0.02 & 0.03, 2) 0.24

JEdit Str. (pLSI, 0.01, 2) 0.157

OpenOffice Str. (LDA, 0.01, 2) 0.039

ThunderBird -

WinMerge Str. (LDA, 0.02, 2) 0.25

RQ3: Support for concept location

In this research question, we investigate if the filtered ontologies, as com-

pared to unfiltered ontologies, can be used to increase the effectiveness

of programmers’ queries formulated for concept location. To carry out

the comparison, we have used the union of NLP and structural ontologies

which in Section 2.5.2 gives better practical support for concept location.

Table 3.10 shows the precision, recall and F-measure of the concept lo-

cation task for keyword based and interactive keyword based filtering of

the ontologies, using the top 100 keywords, as well as the corresponding

delta percentages, obtained by comparing the effectiveness of filtered vs.

unfiltered ontologies.

The F-measure delta percentage is negative for both types of filtering

techniques. We have computed the two-sided, paired Wilcoxon signed rank

test to investigate if the pattern observed is statistically significant. The

p-values are significant for four of the systems. Hence we can conclude

that filtering the domain concepts decreases the efficiency of the concept

location task, as compared to using the unfiltered ontology.
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Table 3.10: Concept location using the NLPStr ontology filtered with the top 100 keywords

retrieved automatically (top) and semi-automatically (bottom) as compared to using the

unfiltered NLPStr ontology. The p-values are adjusted for multiple comparison.

System Avg. P Avg. R Avg. F P-value

(avg. ∆%) (avg. ∆%) (avg. ∆%)

ADempiere 0.227(-69.6) 0.867(-3.7) 0.271(-64.8) 0.0092

FileZilla 0.305(-44.6) 0.853(1.26) 0.358(-40.4) 0.0005

JEdit 0.625(-4.07) 0.903(-5.8) 0.636(-8.04) 0.3710

OpenOffice 0.0413(-90.8) 0.91(11.3) 0.0734(-83.9) 0.0011

ThunderBird 0.207(-36.1) 0.833(0) 0.21(-42.1) 0.0223

WinMerge 0.39(-43.9) 0.929(-7.14) 0.435(-42.8) 0.0591

ADempiere 0.152(-79.6) 0.9(0) 0.232(-69.9) 0.0092

FileZilla 0.259(-53) 0.843(0.0721) 0.307(-49) 0.0004

JEdit 0.433(-33.5) 0.902(-5.83) 0.482(-30.2) 0.0842

OpenOffice 0.0311(-93.1) 0.929(13.6) 0.0572(-87.5) 0.0006

ThunderBird 0.125(-61.4) 0.833(0) 0.13(-64.1) 0.0223

WinMerge 0.264(-62) 0.976(-2.43) 0.336(-55.9) 0.0591

3.4.4 Discussion

The extracted ontologies, as the program they model, are composed of

domain and implementation concepts (see Table 3.4). The results show

that implementation concepts constitute a large portion of the ontology.

Hence, filtering out this large portion of concepts reduces the size of the

ontology by a substantial amount and allows developers to focus on the

domain concepts.

The reduced ontology is expected to help developers to more easily un-

derstand the domain concepts which are captured in the source code. How-

ever, if the objective of the programmer is to locate a concept, our results

indicate that better effectiveness is achieved with the union of unfiltered

NLP and structural based ontologies than with the filtered ontologies (see

Table 3.10). The reason for this could be that in concept location not only

domain concepts but also implementation concepts are required to identify
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part of the source code relevant to a change request.

For filtering the domain concepts, we have investigated three IR based

techniques: interactive and non-interactive keywords, and topic models.

The keyword based filtering techniques have been found to be more effec-

tive in filtering domain concepts than topic based techniques. Of the two

keyword based approaches, the interactive filtering technique is the most

effective in all the systems when considering the top 100 keywords (see

Tables 3.7 and 3.8). The keyword based techniques generate the keywords

from user manuals, which use the elements of the GUI to describe how to

use the functionality implemented in the programs. As a result, keywords

are a mix of domain words and other words which are not specific to the

domain, but are important to describe the functionality of the programs as

provided through the GUI. Removing these non-domain words manually

has improved the results considerably, while requiring a reasonable effort

(just a few minutes). The topic based filtering techniques have given poor

results. The reason for this is that most of the terms identified to describe

either of the two considered topics are not necessarily domain terms, which

results in reporting just few domain concepts after filtering. Hence, the rec-

ommended filtering technique to isolate domain concepts in the extracted

ontologies is interactive keywords using the top 100 keywords.

3.4.5 Threats to validity

To evaluate if there is a filtering relationship between the concepts in the

ontology and domain concepts and to simulate the interactive keyword

filtering, we have used gold concepts which are manually collected by one

of the researchers involved in the study. The gold concepts, if collected

by another person and if a different resource is used, could result in a

different set and the results could also be different. To address this threat,

we have selected the user manuals which are a reasonable source of domain
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concepts implemented in the source code. They allow to restrict the scope

of domain concepts to the domain information captured in the program.

To avoid personal bias during collection, the concepts have been collected

prior to computing any results. Another threat can derive from the fact

that the concepts used to identify neighboring concepts in formulating the

enhanced queries are collected by one of the researchers involved in the

study from bug report titles. To minimize this problem we have decided

a-priori a standard strategy for query creation. We considered all the

manually selected important terms in the bug titles and the corresponding

neighboring concepts as initial query and then filtered the results.

To measure the effectiveness of queries formulated to locate concepts,

we have considered precision, recall, and F-measure. However, to be more

precise, the effort required from the user to process the output crucially

depends on the choice of the query and on the following filtering performed

by the developer. Performing this activity manually would have caused all

threats to validity connected to human involvement [114], including the

possibility that the subject learns how the system behaves or tends to

unconsciously alter the system performance. We therefore preferred an

automatic strategy, which also makes replicability easier.

The evaluation of the effectiveness of queries in locating concepts was

assessed using the available bug fixing patches, as usually done in the

concept location literature. However, bug fixing could require intervention

only in a proper subset of all the places where the concept occurs and the

number of gold positives could be larger than the one considered.

We adopted the Wilcoxon signed-rank test to test the statistical signifi-

cance of our results. The tests involve multiple pair-wise comparisons. To

take such multiple tests into account, we have applied the Benjamini and

Hochberg (BH) [15] adjustment of the p-values.

The study was conducted using six open source systems which can limit
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its generalizability. To address this threat, we have selected systems whose

sizes range from medium to large and are developed using Java and C++.

The systems are also from different domains and hence can be representa-

tive of other, similar systems that can be found in the open source. We

feel that the approach could be effective also on commercial systems, but

this should be verified by further assessment.

3.5 Conclusion

In this chapter, we have presented IR based filtering techniques to filter

the domain concepts. Our results indicate that while fully automated fil-

tering based on keywords or topics has poor performance, it is possible

to highly improve it by involving the user in the selection of the relevant

domain keywords. Such a user involvement requires minimal effort, since

it consists just of browsing a list of 100 keywords and selecting those that

are regarded as associated with the specific domain of the program under

analysis. This task can be easily carried out in a few minutes. The in-

teractive keyword based filtering technique is the most effective in all the

systems, when considering the top 100 keywords. The results of filtering

have confirmed our initial conjecture: ontologies are composed of both do-

main and implementation concepts as in the source code. Besides, results

show that the vast majority of concepts in the ontologies are related to the

implementation. This allows developers to easily navigate and focus on

the domain concepts, once domain concept filtering has been performed.

To study the impact of filtering an ontology, we have conducted a study

in the context of concept location and compared the unfiltered ontology

with the filtered ontology. Results show that filtering reduces the effective-

ness of queries used in concept location. Hence, while we recommend the

use of filtered ontologies for understanding the domain knowledge captured

107



3.5. CONCLUSION CHAPTER 3. DOMAIN CONCEPT FILTERING

in the source code, the union of unfiltered NLP and structural ontologies

is recommended when carrying out concept location tasks.
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Chapter 4

Lexicon bad smells

While writing code, developers usually follow naming conventions adopted

by their team or a commonly accepted standard. A study conducted on

developers by Roehm et al. [104] indicates that consistently using such

standards facilitates and simplifies program understanding. Despite their

benefit, enforcing these standards and checking if they are strictly followed

is difficult, especially when they refer to the semantics of identifiers.

Locating naming inconsistencies as early as possible and correcting them

helps developers to maintain the quality of their code and increase its

understandability. Besides, it prevents new developers or maintainers from

misunderstanding the code and introducing other problems. To address

this problem, we have introduced the notion of “lexicon bad smell”[2].

A “lexicon bad smell”is a concept similar to that of a “code smell”and

it refers to potential lexicon construction problems, which could be solved

by means of refactoring (typically renaming) actions. It is a relative no-

tion, whose definition and use depends on the idiosyncrasies of the project,

programming environment, skills of developers, etc. Hence, a bad smell

in the source code of a system might not be considered a bad smell in

another (e.g., adding type information to identifiers may be both unde-

sirable or desirable, depending on the IDE used and its support for type
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identification).

We have defined a catalog of twelve lexicon bad smells (LBS) and cre-

ated a Wiki1 that maintains it. The catalog contains general lexicon bad

smells that look at identifiers in the source code from different perspec-

tives, such as the composing terms, their meaning, the syntactic structure

and naming rules followed. We have also implemented a suite of tools for

detecting the smells listed. The suite of tools is publicly available through

the Wiki. Below, we present the catalog with the evaluation of the heuris-

tics implemented by the suite of tools. A preliminary evaluation of the

suite is presented in a previous paper [2]. In addition to evaluating the

suite of tools, we have conducted an assessment of the effect of lexicon bad

smells on a program understanding task, concept location [3]. We have

also studied the role of lexicon bad smells on predicting fault prone classes

[7].

4.1 Catalog

In this subsection, we present twelve lexicon bad smells. For each smell,

we describe the smell’s definition with its symptoms, and exceptions, if

available. Examples, suggestions on how to remove the smell, and how the

corresponding smell detector works are also discussed for each smell.

4.1.1 Extreme contraction

Definition. Extremely short terms are used in identifiers due to an ex-

cessive word contraction, abbreviation, or acronym.

Symptoms. Terms shorter than a threshold (e.g., 2 characters) are used

with a type of identifier which is intended to be self-explanatory (e.g., class

names, interface names, method names).

1http://selab.fbk.eu/LexiconBadSmellWiki/
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Example. The attribute name sz in Figure 4.1.

public class Detector {

private int sz ; // s z = s i z e

}

Figure 4.1: Example: Extreme contraction

Exception. This rule does not apply to prefixes introduced due to the

naming conventions adopted in the system (e.g., m is a prefix used in

the Hungarian notation to mark attributes of a class), common program-

ming and domain terms (e.g., msg, SQL, etc.), and short dictionary words

(e.g., on, it, etc.).

Refactoring. Rename identifiers using longer, more expressive terms.

Detector. The detector splits every class, method, and attribute identifier

into its composing terms. The length of terms that are not known as

exceptions is then compared with a user defined threshold and, if smaller,

the terms are reported as bad smells.

4.1.2 Identifier construction rules

Definition. The naming of an identifier does not follow a standard nam-

ing convention (prefixes, suffixes, and term separators) adopted in the sys-

tem.

Symptoms. Some existing naming convention (or the prevalent naming

convention, if none is explicitly documented) for identifiers is not respected.

Example. The attribute name address of the class shown in Figure 4.2

does not follow the Hungarian naming convention (i.e., it does not start

with m ).

Refactoring.Restructure the identifier by following the adopted naming

convention.

Detector. The detector collects class, attribute, and method identifiers
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public class StudentIn fo rmat ion {

private St r ing m name ;

private St r ing addres s ;

}

Figure 4.2: Example: Useless type

and verifies if they are constructed according to the predefined naming

rules for each specific entity type.

4.1.3 Inconsistent identifier

Definition. A concept is not represented by two or more identifiers in a

consistent and concise way.

Symptoms. In the absence of concept to identifier mapping, all terms of

an identifier are contained in the same order in another identifier of the

same type (e.g., another class/method/attribute name), which is found in

the same container entity (e.g., package, class).

Example. In Figure 4.3 the attribute path is not named consistently and

concisely.

public class Documents {

private St r ing abso lu te pa th ;

private St r ing r e l a t i v e p a t h ;

private St r ing path ; // path i s i n c on s i s t e n t

}

Figure 4.3: Example: Inconsistent identifier

Exception. This rule does not apply to class identifiers which are related

by super-class sub-class relationship.

Refactoring. Renaming identifiers to make them concise and consistent.

Detector. The detector checks if an entire identifier is contained in an-

other identifier of the same entity type (attributes or methods), inside the

same container entity (a class).
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4.1.4 Meaningless terms

Definition. Meaningless identifier terms, aka metasyntactic words, are

used in an identifier.

Symptoms. A term from a list of known meaningless terms (i.e., meta-

syntactic variables, common placeholder names) is used in an identifier.

Example. The method name foo in Figure 4.4 is meaningless.

public class Detector {

public void foo ( ) {} // foo i s a metasyn tac t i c v a r i a b l e

}

Figure 4.4: Example: Inconsistent identifier

Refactoring. Rename identifiers using meaningful terms.

Detector. The detector checks if the terms of an identifier are in the

dictionary of meaningless terms.

4.1.5 Misspelling

Definition. The words (abbreviations, contractions, and acronyms ex-

cluded) used to construct an identifier are misspelled words.

Symptoms. English (or other natural language) words are spelled incor-

rectly (e.g., containing duplicate letters, reversed letters, etc.).

Example. The class name Examlpe in Figure 4.5 is not correctly spelled.

public class Examlpe{

// l and p are rever s ed

}

Figure 4.5: Example: Misspelled identifier

Exception. Words which are computer science or domain specific (e.g., refac-

toring) abbreviations and contractions.

Refactoring. Correct the misspelled words.
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Detector. The detector checks all terms of an identifier which are not in

the exception list and have a length greater than or equal to a user defined

value using Jazzy2, a Java open source spell checker.

4.1.6 No hyponymy/hypernymy in class hierarchies

Definition. The identifier of a child class in an inheritance hierarchy is

not a hyponym of the identifier of its parent class.

Symptoms. The identifier of a class and that of its superclass are each

made of a single dictionary word, but they are not related by an is-a

relationship.

Example. The class name Violin in Figure 4.6 is not a hyponym of the

class it extends, Mammal.

public class Mammal {

// . . .

} ;

// Vio l in i s not a hyponym of mammal

public class Vio l in extends Mammal {

// . . .

} ;

Figure 4.6: Example: No hyponymy/hypernymy in class hierarchy

Exception. When class identifiers are compound words or they contain

abbreviations, contractions, or acronyms, hyponymy and hypernymy can

be hard to assess.

Refactoring. Refactoring may just require identifier renaming, or may

involve deeper restructuring of the inheritance hierarchy.

Detector. The detector checks for an is-a relationship between the iden-

tifier of the class and that of its superclass, when these consist of single

2http://jazzy.sourceforge.net/
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dictionary words. It uses WordNet [89, 44] to identify the relationships

between the words in the class identifiers.

4.1.7 Odd grammatical structure

Definition. The grammatical structure of an identifier is not appropriate

for the specific type of entity it represents.

Symptoms. A syntactical rule concerning the construction of an identifier

is not respected, such as:

• class identifiers should not contain verbs;

• method identifiers should start with a verb;

• attribute identifiers should not contain verbs;

• etc. (users can define their own rules.)

Example. The class and method names in Figure 4.7 are grammatically

incorrect names (the class name is a verb while the method name is a

noun).

public class Compute { // verb

public void i n i t i a l i z a t i o n ( ) ; //noun

}

Figure 4.7: Example: Odd grammatical structure

Refactoring. The identifier should be renamed following the proper syn-

tactic rules for the specific entity it represents.

Detector. For every class, attribute, and method identifier in a system,

the detector checks if the related structuring rules are followed. It uses

the Minipar 3 English parser to determine the parts of speech for every

identifier.
3http://www.cs.ualberta.ca/ lindek/minipar.htm
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4.1.8 Overloaded identifiers

Definition. An identifier is overloaded with multiple semantics, which

might indicate the entity it represents is also overloaded with multiple

responsibilities.

Symptoms. The grammatical structure of the identifier suggests over-

loading:

• two verbs in a method/function name;

• two nouns in a class or attribute name, none of which is used as a

specifier.

Example. The method name compute create document in Figure 4.8 is

composed of two verbs (compute and create) which could refer to two tasks:

computing a document, and creating a document.

public class DocumentManager {

//Two r e s p o n s i b i l i t i e s : computing and c r ea t i n g a document

public void compute create document ( ) ;

}

Figure 4.8: Example: Overloaded identifier

Refactoring. Split the entity into two (or more) entities, each having

a single responsibility and name each entity using an appropriate (non-

overloaded) identifier, or name the entity with a proper name which reflects

a single responsibility.

Detector. The detector for this smell checks only overloaded method iden-

tifiers, i.e., it checks the number of verbs found in the phrase constructed

from the terms of the identifier. Minipar is used to identify the parts of

speech of the phrase.
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4.1.9 Synonym and similar terms

Definition. Synonyms or similar terms are used to construct the iden-

tifiers representing different entities declared in the same container, such

that differentiating between their responsibilities becomes difficult.

Symptoms. Two or more entities have identifiers which contain terms

that are either synonyms or are very similar in form, regardless of the

order in which they appear in the identifier.

Example. In Figure 4.9, the term replicate in the method name isIdRepli-

cate is synonym to the term copy in method name idCopy. copy is also

very similar in form to the term cpy of the method name keyCpy.

public class I d en t i f i e rKey {

private St r ing id ;

private St r ing key ;

// r e p l i c a t e i s synonym to copy

public boolean i s I dRep l i c a t e ( S t r ing id ) ;

// idCopy con ta in s Copy

public St r ing idCopy ( St r ing tex t ) ;

// keyCpy con ta in s Cpy , which i s very s im i l a r in form to Copy

public St r ing keyCpy ( St r ing tex t ) ;

}

Figure 4.9: Example: Similar and synonym terms

Refactoring. Rename the different entities so as to differentiate their

role/functionality. If necessary, introduce a common superclass or interface

for the shared properties.

Detector. The detector checks synonymy and similarity of the terms used

in identifiers of different entities inside the same class. The synonymy be-

tween two terms is computed using WordNet4. The similarity is computed

based on the Levenshtein edit distance, and a threshold is used to filter out

the terms which are not similar. For determining the synonyms, the stems

4http://wordnet.princeton.edu/
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of the words are considered instead of the full form, in order to account for

inflections.

4.1.10 Terms in wrong context

Definition. Terms that pertain to the domain of another container

(e.g., package) are used. This indicates that the entity named by such

terms may be misplaced.

Symptoms. The terms used to name an entity in a given container are

more frequently used to name entities in another container.

Example. In Figure 4.10, the class TypeDetector is wrongly placed in

package collections or incorrectly named as all the other classes that refer

to detector are in package detectors.

package c o l l e c t i o n s ;

class IntArray ;

class TypeDetector ;

package de t e c t o r s ;

class MuonDetector ;

class PhosDetector ;

class HLTDetector ;

Figure 4.10: Example: Terms in wrong context

Refactoring. Move the misplaced entity to the container it logically

belongs to or rename it to better reflect the role it has in its currently

assigned container.

Detector. The detector computes the frequency and spread of terms to

identify those which are prominent to a package and those crosscutting the

system. The terms which are not crosscutting and are found in a package

where they are not prominent are reported to be in the wrong context.
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4.1.11 Useless type indication

Definition. The type of a variable is explicitly indicated in its identifier.

Since modern programming environments provide easy access to type in-

formation for all variables, such an indication is often useless and provides

no extra information about the role of the variable in the program.

Symptoms. An identifier contains more than one term, one of which is

the identifier’s type name.

Example. The term short in attribute name key short gives redundant

information about its type (see Figure 4.11).

public class Rental {

private short key sho r t ; // type in a t t r i b u t e name

}

Figure 4.11: Example: Useless type

Exception. A static attribute used to realize the singleton design pattern

has usually the same identifier as the class. Also, some naming conventions

impose the use of individual characters or groups of characters which denote

the type of the variable (e.g., in the Hungarian notation, i is used in the

identifiers of integer values).

Refactoring. Rename the identifier by removing the type name and, if

necessary, rename it such that it conveys information about its role in the

program.

Detector. The detector checks if attribute identifiers contain their type

name.

4.1.12 Whole-part

Definition. The same term is used to represent a concept and its prop-

erties or operations.
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Symptoms. A term is used to name a class and it appears also in some

method or attribute identifier in the same class. This might indicate either

ambiguous use of the term or redundancy.

Example. Figure 4.12 shows the ambiguous and redundant use of the

concept account.

public class Account {

private int account ; //Ambiguous use

public void computeAccount ( ) ; //Account i s redundant in format ion

}

Figure 4.12: Example: Whole-part

Exception. A static attribute, used to realize the singleton design pattern

has usually the same identifier as the class. Constructor methods have the

same name as the class.

Refactoring. Rename different entities so as to differentiate their role

and/or avoid redundant information.

Detector. The detector identifies the last noun (when possible) or takes

the last term of the class identifier and checks if it is used in attribute

and/or method identifiers. The stems of the words are considered instead

of the full form, in order to account for inflections.

4.2 Detectors

Manual inspection of the source code to identify lexicon bad smells is a

tedious and difficult task. Hence, we have developed a suite of tools, called

LBSDetectors5 that automatically locate and report lexicon bad smells

based on the heuristics mentioned above. To implement these heuristics,

the tools use the following plug-ins and software components:

5http://selab.fbk.eu/LexiconBadSmellWiki/
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• Jazzy : is a Java open source spell checker which is based on algo-

rithms of Aspell6. It uses a dictionary which is based on contents of

the Ispell7 (ver 3.1.20) word list.

• JAWS 8: is a Java API for searching the WordNet dictionary. It is

used in the tool to retrieve synonyms and hyponyms of terms.

• PaWs9: (Parser Wrappers) is a Minipar wrapper which accepts Mini-

pars output and converts the output to XML. The detectors use the

XML output of the wrapper for further analysis.

• Minipar 10: is a parser for English, which is used to identify the parts

of speech of the terms composing an identifier (regarded as a phrase)

[77].

• src2srcml 11: transforms the source code files into XML [35].

• Porter stemmer 12: is used to obtain the stems of terms.

• LCS 13: implements Levenshtein edit distance.

To check the source code for a specific bad smell, the tools use some

thresholds (see Section 4.1) and some configuration files, including a list

of known abbreviations, a list of meaningless terms, and a grammar for

checking the structure of identifiers. These can be easily customized to

meet specific needs and can be adapted to a particular software system

using the suite’s configuration file.

6http://aspell.net/
7http://fmg-www.cs.ucla.edu/geoff/ispell.html
8http://lyle.smu.edu/ tspell/jaws/index.html
9http://ontoware.org/projects/paws/ (visited on October 2009)

10http://webdocs.cs.ualberta.ca/ lindek/minipar.htm
11http://www.sdml.info/projects/srcml/
12http://tartarus.org/ martin/PorterStemmer/
13Internal tool, FBK, Trento, Italy
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4.3 Evaluation

In this subsection, we present the evaluation conducted on the accuracy

of the detectors developed for the bad smells defined in Section 4.1. We

also present the assessment we carried out to study the impact of LBS

on a program understanding task, concept location, and the approach we

propose to locate fault prone classes based on the occurrence of LBS.

4.3.1 Accuracy of detectors

The detectors for bad smells use heuristics (see Section 4.1) to turn the con-

ceptual definition of a smell into a set of operational rules, which sometimes

approximate the conceptual definition. We have carried out a preliminary

evaluation [2] on the accuracy of the suite of detectors implemented for

some bad smells. Based on the findings of this analysis, we have improved

the detectors and carried out a new assessment. In this assessment, we

have considered all the detectors but two (No hyponymy/hypernymy in

class hierarchies, and Terms in the wrong context), as they require domain

knowledge and are quite difficult to assess.

The different detectors in the suite use different thresholds and take in

to consideration the exceptions stated for the smells. Prior to running the

detectors, we have defined the thresholds (3 for extreme contractions and

4 for Misspelling), and identified the exceptions and naming conventions

applied in the systems we used for our study. In cases where a conven-

tion is not explicitly stated, we have considered the most common naming

practices in the code as conventions [29].

To evaluate the accuracy of the suite of detectors, we have computed

precision. Precision (P) is defined as the ratio between reported smells that

are correct and total number of reported smells. Similar retrieval tasks also

use recall to measure the effectiveness of retrieval tools. In our case, we do
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not have any data about the total number of bad smells in the software,

hence recall can not be computed. In order to evaluate the precision of

the detectors, we have applied the following general guideline: A reported

bad smell is a false positive if developers are not expected to be willing to

take any action (e.g., renaming) to improve the “smelly” identifier. Using

this guideline, two researchers involved in this study have independently

evaluated 10 randomly selected lexicon bad smells for each program entity

type (class, method, and attribute) on each subject and have categorized

the reported smells as true positives or false positives. In cases where the

number of reported smells was small, all smells have been evaluated. The

evaluation result produced by each evaluator is then compared, and in cases

where there is a mismatch a discussion was held to reach a consensus.

Subjects

Our evaluation was conducted on four open source systems: ADempiere,

FileZilla client, OpenOffice, and WinMerge. A summary of the features of

these systems is shown in Table 4.1.

Table 4.1: Features of the subject systems. The identifier count does not include con-

structor and destructor identifiers; overloaded method names are counted only once.

System Version Files Classes Lines of Identifiers

text count

ADempiere 3.1.0 1833 1917 482094 38241

FileZilla 3.0.0 264 208 89080 2663

OpenOffice 1.0.0 12761 12112 4666417 182258

WinMerge 2.12.2 257 146 67643 2859

ADempiere14 is an enterprise resource planning software, while FileZilla

14http://www.adempiere.com/
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client15 is a cross-platform, graphical FTP, FTPS, and SFTP client. OpenOf-

fice16 is an office software suite for word processing, spreadsheets, presen-

tations, graphics, and databases while WinMerge17 is a differencing and

merging utility for Windows. In all these systems, most components are

developed using the object oriented paradigm. One of the systems, ADem-

piere, is developed using Java, while the other three are mainly developed

using C++.

Results and discussion

The summary of the results on the accuracy of the detectors is shown in

Table 4.3. Below we describe the results for each smell.

Extreme contraction: The extreme contractions bad smell detector was

run on the systems with a threshold of 3, i.e., all the terms which have 3

characters or less are considered by the detector as potential short terms.

The tool has detected 2,276 (214 class, 772 attribute, and 1,290 method)

identifier terms in ADempiere, 95 (31 class, 35 attribute, and 29 method)

identifier terms in FileZilla, 272 (21 class, 140 attribute, and 111 method)

identifier terms in WinMerge, and 4,859 (819 class, 3,467 attribute, and

573 method) identifier terms in OpenOffice as extreme contractions.

Table 4.2: Sample results of extreme contraction detector and the corresponding evalua-

tion.

System Entity Identifier Contracted term Evaluation

ADempiere attribute okMailUser ok False Positive

ADempiere method setEftValutaDate Eft True positive

FileZilla class TiXmlHandle Ti True positive

WinMerge method SetMessageIDs Ds False Positive

15http://filezilla-project.org/
16http://www.openoffice.org/
17http://winmerge.org/
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The precision of the extreme contractions detector for 30 randomly se-

lected identifier terms reported as bad smells is 100% for FileZilla and

OpenOffice while it is 93% for the other two systems, ADempiere and Win-

Merge. For ADempiere we have manually checked 10 randomly selected

identifier terms reported for each entity (class, attribute, and method)

while for WinMerge all class identifier terms reported (21 identifier terms),

and 10 randomly selected attribute and method identifier terms have been

checked. A sample of the bad smells reported is shown in Table 4.2.

The false positives reported by the detector are due to the splitting

mechanism used to identify hard words in identifiers, based on camel cas-

ing (e.g., Ds is reported as a bad smell in SetMessageIDs because it was

separated from I, which is also in upper case). The other false positives

are caused by the dictionary used. An example of false positive due to this

is ok (see Table 4.2). In this case, the tool is correct in identifying ok as

a bad smell because it is less than 4 characters and it is not considered as

a dictionary word (it should have been written with all words in capital,

OK ). However, in the context of the source code, we have considered it to

be a false positive following our guidelines.

Identifier construction rules: We ran this detector using a set of

identifier construction rules as input, which are defined separately for each

system, based on the naming conventions adopted in each of them. For

OpenOffice-class and method identifier, and ADempiere-method identifier

we were not able to find identifier construction rules defined by the develop-

ers or a pattern adopted in the majority of the respective entity identifiers.

Hence, the corresponding precision values are not computed.

The number of violations identified by the detector are 8,960 (814 class,

and 8,146 attribute) identifiers in ADempiere, 214 (16 class, 177 attribute,

and 21 method) identifiers in FileZilla, 2,207 attribute identifiers in OpenOf-

fice, and 190 (80 class, 72 attribute, and 38 method) identifiers in Win-
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Table 4.3: Accuracy of detectors (NA=not applicable, NC=not computed).

Lexicon System Precision (%) Reported LBS count

bad smell Class Attribute Method Total

Extreme ADempiere (28/30)93.3 214 772 1290 2276

contraction FileZilla (30/30)100 31 35 29 95

OpenOffice (30/30)100 819 3467 573 4859

WinMerge (38/41)92.7 21 140 111 272

Identifier ADempiere (20/20)100 814 8146 NC 8960

construction FileZilla (30/30)100 16 177 21 214

rules OpenOffice (10/10)100 NC 2207 NC 2207

WinMerge (30/30)100 80 72 38 190

Inconsistent ADempiere (20/20)100 NA 223 1917 2140

identifier FileZilla (17/20)85 NA 44 253 297

OpenOffice (19/20)95 NA 194 528 722

WinMerge (20/20)100 NA 98 264 362

Meaningless ADempiere (2/2)100 1 1 0 2

terms FileZilla - 0 0 0 0

OpenOffice (6/6)100 1 1 4 6

WinMerge - 0 0 0 0

Misspelling ADempiere (30/30)100 58 278 1224 1560

FileZilla (30/33)90.9 13 34 54 101

OpenOffice (30/30)100 796 626 813 2235

WinMerge (28/28)100 8 84 184 276

Odd ADempiere (12/30)40 642 3075 7399 11116

grammatical FileZilla (14/30)46.67 119 228 763 1110

structure OpenOffice (8/30)26.67 1123 2293 3367 6783

WinMerge (4/30)13.3 86 262 1124 1472

Overloaded ADempiere (7/10)70 NA NA 552 552

identifiers FileZilla (10/21)47.62 NA NA 21 21

OpenOffice (7/10)70 NA NA 139 139

WinMerge (4/10)40 NA NA 63 63

Synonym ADempiere (8/20)40 NA 1382 17397 18779

and similar FileZilla (12/20)60 NA 59 704 763

terms OpenOffice (5/20)25 NA 282 3174 3456

WinMerge (11/20)55 NA 35 2087 2122

Useless ADempiere (10/10)100 0 596 0 596

types FileZilla (20/21)95.23 NA 21 NA 21

OpenOffice (10/10)100 NA 283 NA 283

WinMerge (5/5)100 NA 5 NA 5

Whole-part ADempiere (19/20)95 NA 480 2681 3161

FileZilla (17/20)85 NA 55 77 132

OpenOffice (18/20)90 NA 224 384 608

WinMerge (18/20)90 NA 59 230 289
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Merge.

We manually evaluated 10 randomly selected bad smells from each entity

type of each system, and found that all selected bad smells are correct.

The precision of the detector for all systems is 100%. An example of the

violations reported are shown in Table 4.4.

Table 4.4: Examples of identifier construction LBS.

System Entity Identifier Violation Evaluation

FileZilla attribute output text special Does not start with m p, m b, m n, True positive

m cb, b, n, p, c, or m

FileZilla method clear Does not start with a capital letter True positive

WinMerge class ListEntry Does not start with C or I True positive

WinMerge method remove prefix Does not start with a capital letter True positive

Inconsistent identifier: The detector for this bad smell has identified

2,140 bad smells (223 in attribute identifiers and 1,917 in method identi-

fiers) in ADempiere, 297 bad smells (44 in attribute identifiers and 253 in

method identifiers) in FileZilla, 722 bad smells (194 in attribute identifiers

and 528 in method identifiers) in OpenOffice, and 362 bad smells (98 in

attribute identifiers and 264 in method identifiers) in WinMerge.

To compute the precision of this detector, we have randomly selected 20

entries (10 attribute identifiers and 10 method identifiers) for each system.

The evaluation of the samples indicates a precision of 100% for ADempiere

and WinMerge, 85% for FileZilla, and 95% for OpenOffice.

Table 4.5: Examples of inconsistent identifier LBS.

System Entity Identifier1 Identifier2 Class Evaluation

ADempiere method test testPort ConfigurationData True positive

FileZilla attribute time hasTime Direntry False positive

OpenOffice attribute Value HasValue XMLTableCellContext Impl False positive

OpenOffice method get getType IdlFieldAdapter Impl True positive
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Samples of the inconsistent identifier LBS identified by the correspond-

ing detector are shown in Table 4.5. All of the false positives reported in

this case are due to the detectors inability to identify the cases when a

boolean typed identifier starting with a verb contains entirely another one.

For example, the attribute Value in the OpenOffice class XMLTableCell-

Context Impl is contained in the attribute HasValue which is boolean (See

Table 4.5).

Meaningless terms: The detector of this bad smell checks for the oc-

currence of 65 metasyntactic words in the identifiers. It has identified 2

occurrences (1 in class and 1 in attribute identifiers) of the metasyntactic

words in ADempiere while 6 occurrences (1 in class, 1 in attribute, and

4 in method identifiers) in OpenOffice. In the remaining two systems no

meaningless term is found. The meaningless term identified in ADempiere

and OpenOffice is var. The accuracy of the detector on the two systems

in which it identified the LBS is 100%.

Misspelled words: This detector is meant to identify all terms which

are not in the dictionary and have a length greater than or equal to a

threshold, which in our study is set to 4. The detector has identified 1,560

misspelled words (58 in class identifiers, 278 in attribute identifiers, and

1,224 in method identifiers) in ADempiere, 101 misspelled words (13 in

class identifier, 34 in attribute identifiers, and 54 in method identifiers) in

FileZilla, 2,235 misspelled words (796 in class identifiers, 626 in attribute

identifiers, and 813 in method identifiers) in OpenOffice, and 276 misspelled

words (8 in class identifiers, 84 in attribute identifiers, and 184 in method

identifiers) in WinMerge.

To manually analyze the results, we have randomly selected 30 (10 class

identifiers, 10 attribute identifiers, and 10 method identifiers) records re-

ported for ADempiere and OpenOffice. For FileZilla and WinMerge, we

have considered all bad smells reported for class identifier which are 13 and
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8, respectively, and 10 randomly selected bad smells from attribute identi-

fiers and method identifiers. The precision of the detector for ADempiere,

OpenOffice, and WinMerge is 100% while for FileZilla it is 90%. Exam-

ples of the violations reported are shown in Table 4.6. The false positives

in FileZilla are due to the tools inability to differentiate between terms

commonly used in programming (e.g., initialize) and misspellings.

Table 4.6: Example results of misspelling LBS detector.

System Entity Misspelled word Identifier Evaluation

FileZilla class Combo ComboBoxEx False positive

FileZilla method Initialize Initialize False positive

OpenOffice attribute Droenk lDroenk True positive

WinMerge class Outputter CompilerOutputter True positive

Odd grammatical structure: The detector for this bad smell has iden-

tified 11,116 (642 in class identifiers, 3,075 in attribute identifiers, and

7,399 in method identifiers) bad smells in ADempiere, 1,110 (119 in class

identifiers, 228 in attribute identifiers, and 763 in method identifiers) in

FileZilla, 6,783 (1,123 in class identifiers, 2293 in attribute identifiers, and

3,367 in method identifiers) in OpenOffice, and 1,472 (86 in class, 262 in

attribute, and 1,124 in method identifiers) in WinMerge. The precision

obtained after manual investigation of the results for 30 randomly selected

entries (10 class identifiers, 10 attribute identifiers, and 10 method identi-

fiers) in ADempiere and FileZilla is 40% and 46.67%, respectively, while it

is 26.67% and 13.3% in OpenOffice and WinMerge, respectively. Samples

of the results with the related evaluation are shown in Table 4.7.

The false positives are mainly due to two reasons. First, the detector

relies on the output of Minipar to identify the parts of speech of the terms

in the identifier. For example the parser has identified word Floating in

the class name MenuFloatingWindow as a verb while it is used as a spec-
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Table 4.7: Example results of odd grammatical structure detector.

System Entity Identifier Evaluation

ADempiere attribute ConfirmType True positive

FileZilla method GetAllImages False positive

OpenOffice attribute VerifyMode True positive

OpenOffice class MenuFloatingWindow False positive

ifier (see Table 4.7). The second main reason for the false positives is the

grammar used. The grammar used by the detector assumes that class and

attribute names are constructed from adjectives and nouns, while method

names are constructed by verbs only or verbs followed by adjectives and

nouns. In some identifiers however different types of words are used, which

result in false positives (e.g., All in the FileZilla method name GetAllIm-

ages, see Table 4.7).

Overloaded identifiers: The overloaded identifiers lexicon bad smell

detector has identified 552 bad smells in method identifiers in ADempiere,

21 bad smells in FileZilla, 139 bad smells in OpenOffice, and 63 bad smells

in WinMerge. To evaluate if the method names actually imply two or

more functionalities, we have randomly selected 10 reported method iden-

tifiers from all systems except for FileZilla and manually investigated the

corresponding method implementations. For FileZilla the number of over-

loaded identifiers reported is small (21), and hence we have checked all

of them. The precisions for ADempiere, FileZilla, OpenOffice, and Win-

Merge are 70%, 47.62%, 70%, and 40%, respectively. Sample results for

the overloaded identifier detector are shown in Table 4.8.

The false positives reported are mainly due to specifiers of nouns which

are considered as verbs by Minipar. For example Encoding in the method

name GetEncodingType is considered as a verb while it is used as a specifier

of Type. The other category of false positives is observed in get and set
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Table 4.8: Example results of overloaded identifiers detector.

System Identifier Verb count Evaluation

ADempiere getM AttributeSetInstance ID 2 True positive

FileZilla GetEncodingType 2 False positive

OpenOffice METSetAndPushLineInfo 2 True positive

WinMerge GetTimeoutDisabled 2 False positive

methods of boolean type attributes (e.g., see GetTimeoutDisabled in Ta-

ble 4.8). Boolean attributes usually have verbs in their names, and hence

the corresponding get and set methods will have two verbs.

Synonym and similar terms: The detector for synonyms and similar

terms compares the attribute and method identifiers to attribute, method

and class identifiers inside the same class. In the case of similar terms,

it takes as input a parameter, which specifies the minimum Levenshtein

distance between two terms in order to decide if they are similar. We

used 90% as the minimum Levenshtein distance for reporting two terms

as similar. In the case of synonyms, it uses WordNet synsets to consider

two terms as synonym. A term is considered synonym if it is found in

the synsets of the other term. The detector has identified 18,779 bad

smells (1,382 in attribute identifiers, and 17,397 in method identifiers) in

ADempiere, 763 bad smells (59 in attribute identifiers, and 704 in method

identifiers) in FileZilla, 3,456 bad smells (282 in attribute identifier, and

3,174 in method identifiers) in OpenOffice, and 2,122 bad smells (35 in

attribute identifiers, and 2,087 in method identifiers) in WinMerge.

The evaluation of the precision was conducted by randomly selecting 20

entries from the bad smell list (10 in attribute identifiers and 10 in method

identifiers) for each system. The precision of this detector is 40% in ADem-

piere, 60% in FileZilla, 25% in OpenOffice, and 55% in WinMerge. The

detector used WordNet synsets for its judgment of synonymy. However, the
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semantics and relationship between two words in the source code turned

out to be, in some cases, different than those found in WordNet. Often,

words have a specific meaning in the source code, which make them seman-

tically distinct and not similar to the corresponding WordNet synonyms

(e.g., see Draw and Get in Table 4.9).

Table 4.9: Example results of synonym and similar terms LBS detector.

System Term ∼in∼ entity Synonym or Term ∼in∼ entity Evaluation

identifier similar to identifier

ADempiere PAYMENTRULEPO similar to, PAYMENTRULE True positive

∼in∼ attribute edit dist. =91 ∼in∼ attribute

PAYMENTRULEPO PAYMENTRULE

DirectDebit DirectDeposit

FileZilla Response∼in∼ method Synonym to Reply ∼in∼ method True positive

ConnectParseResponse ProcessReply

OpenOffice get ∼in∼ method Synonym to has ∼in∼ method False positive

getExactName hasByName

WinMerge Draw ∼in∼ method Synonym to Get ∼in∼ method False positive

CanDraw3DImageList GetMenuDrawMode

Useless type indication: The useless type indication detector has iden-

tified 596, 21, 283, and 5 lexicon bad smells in the attribute identifiers of

ADempiere, FileZilla, OpenOffice, and WinMerge. We manually checked

10 randomly selected reported bad smells from ADempiere and OpenOffice

while all reported bad smells of FileZilla and WinMerge have been checked.

The detector has identified all the bad smells manually checked for ADem-

piere, OpenOffice, and WinMerge correctly and hence has a precision of

100%. While manually checking the bad smells reported for FileZilla, the

evaluators have identified all bad smells correct but one, pIOThread, which

uses a commonly used coding style, naming the identifier with the same

name as the type and a prefix probably indicating the type of the iden-

tifier (p). Hence, the precision of the detector for FileZilla is 95% (see

Table 4.10).
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Table 4.10: Example results of useless types LBS detector.

System Attribute identifier Attribute data type Evaluation

ADempiere headerBG Color Color True positive

FileZilla pIOThread IOThread False positive

OpenOffice UserImageList ImageList True positive

OpenOffice maDropTimer Timer True positive

Whole-part: The detector for this LBS has identified 3,161 lexicon bad

smells (480 in attribute identifiers, and 2,681 in method identifiers) in

ADempiere, 132 lexicon bad smells (55 in attribute identifiers, and 77 in

method identifiers) in FileZilla, 608 lexicon bad smells (224 in attribute

identifiers, and 384 in method identifiers) in OpenOffice, and 289 lexicon

bad smells (59 in attribute identifiers, and 230 in method identifiers) in

WinMerge. Examples of whole-part LBS are shown in Table 4.11.

Table 4.11: Example results of whole-part LBS detector.

System Entity Member identifier Class identifier Evaluation

ADempiere method PaymentRule Payment True positive

OpenOffice method setPropertyValues DocumentSettings False positive

OpenOffice attribute OriginalRequest Request True positive

WinMerge attribute xml XmlUniformiser False positive

From the reported lexicon bad smells of each system we have randomly

selected 20 bad smells (10 from attribute identifiers, and 10 from method

identifiers) and manually evaluated them. The precision of the detector for

ADempiere, FileZilla, OpenOffice, and WinMerge is 95%, 85%, 90%, and

90%, respectively. The false positives are due to specifiers which are incor-

rectly identified as the main concepts represented by the class (e.g., xml

in class identifier XmlUniformiser, see Table 4.11), and due to stemming

(e.g., Settings in class identifier DocumentSettings is stemmed to set).
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Threats to validity

What is considered a bad smell in one system might not be a bad smell in

another, due to the specifics of every system. Also, what one person iden-

tifies as bad smell might not be interpreted as such by another person. We

handle these threats by using configurable files for the particular settings

used by our tools and by having the results verified by two researchers.

The case study can easily be replicated using the detectors and source

code of the systems, all available online. However, as the number of some

of the reported bad smells was large, we manually evaluated a sample of

the results. Even though such a sample was chosen randomly, a different

choice might have produced different values of precision.

4.3.2 Effect of lexicon bad smells on concept location

Identifiers play an important role during program understanding and main-

tenance activities as they are usually used to communicate the intention

of a program entity and relate domain concepts to their representation

in the code. Hence, we conjecture that having low quality identifiers im-

pacts these activities. We consider a low quality identifier as one having

numerous LBS, and high quality identifier one that has few to none such

smells.

To validate our conjecture, we have conducted a case study on the effect

of LBS on one of the program comprehension tasks, concept location, using

reenactment in before-and-after studies [3]. The case study was carried out

using two open source systems. We performed concept location using two

different Information Retrieval (IR) techniques, before and after the bad

smells are identified and removed from the code, and we have compared

the outcomes.

Having real developers performing concept location on software systems
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before and after removing the lexicon bad smells has several problems,

which make it very difficult to realize in practice. First, it requires a lot

of time and effort and finding developers willing to invest the time needed

to perform the changes can be very difficult. Second, it also introduces an

additional variable, i.e., the developer, which is very difficult to control,

and can, thus, introduce bias in the study. Hence, as done in similar

studies such as Gay et al. [47], we resorted to an approach which uses

historical data and IR techniques to locate concepts. The historical data

is used to determine the outcome of a task that was performed in the past.

Using bug tracking systems and versioning systems, we can find out what

parts of the code were changed in response to a bug fix request. In the

context of concept location, we call these target changes (target classes,

target methods, etc.), as they are the targets of the concept location task.

For our study, we have collected target classes from the patches that

often accompany bug reports in the bug tracking system, or from commits

to the versioning system hosting the source code. In this second case, the

target classes are located by identifying the bug ID in the commit messages

found in the source code versioning system and then analyzing the changes

that occurred in those commits. The bug reports are filtered such that

the commits include only one bug ID in the commit message. Besides the

target classes, we have collected the bug description for which the target

classes are changed.

To automate the reenactment process we have used two concept location

tools that implement IR techniques (see Section 2.4), Latent Semantic

Indexing (LSI) [83] and an improved version of the Vector Space Model

implemented in Lucene18. We used these two different IR techniques in

order to observe if the effect of the lexicon bad smells on concept location

depends on the IR engine used or not. LSI takes the number of dimensions

18http://lucene.apache.org/
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to which the vector space should be reduced during the Singular Value

Decomposition (SVD) and the weight to be used when scoring documents.

In this study, we used 100 dimensions for SVD [38] and TF-IDF (term

frequency inverse document frequency) as the weight [47]. The focus of this

study was to observe the difference in performance when lexicon bad smells

are present versus when they are absent, given that all the other variables

are fixed, including those used for LSI. Thus, it is of less importance which

dimension or weight is used, as long as they are the same before and after

refactoring the bad smells.

Both IR techniques use a corpus generated from the original source code

of the systems or refactored code. A document in the corpus corresponds

to a class in the source code. It is constructed from the terms composing

the identifiers and the original identifiers. To identify the terms composing

an identifier, we have used common naming conventions such as underscore

and camel casing. For example, “setValue”, “set value”, “SETValue”, etc.

are all split to “set” and “value”. The original identifiers are kept in the

corpus, in order to account for any identifiers that might be included in a

query. Filtering is also used to eliminate programming language specific

keywords (Java and C++), and also common English stop words19.

The queries for which we computed the ranks are formulated from the

change request. The formulation of the query can be done by the developer

who analyzes the change request and select terms which she considers to

be relevant. In this case, we have followed the simplest approach and the

whole change request as the query. The query is processed in the same

way as the corpus, i.e., by splitting any identifier present in the change

request and by filtering out programming keywords and common English

stop words.

In this study, we focused on eight of the twelve types of bad smells

19http://www.webconfs.com/stop-words.php
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described in Section 4.1, for which we could get enough information from

the artifacts of the systems to detect the smells and suggest new names.

For the other four smell types, we did not have enough information about

the systems in order to provide a reliable renaming of the identifiers. The

lexicon bad smells we focused on in this study are extreme contraction,

inconsistent identifier, meaningless terms, misspelling, odd grammatical

structure, overloaded identifiers, useless type indication, and whole-part.

To detect these lexicon bad smell, we have used the tool LBSDetectors

which is described in Section 4.2.

To refactor the lexicon bad smells detected, two researchers involved in

the study have independently proposed names and then compared their

suggestions. In the cases where the names proposed by the two researchers

were different, there was a discussion about the two names and an agree-

ment was reached. All renamings were performed across the entire system.

At the same time, if the bad smells occurred in the bug titles and descrip-

tions, they were renamed also there.

In studies that use IR-based concept location, it is common to use the

ranks of the target classes as effort measures [47]. These represent the

number of classes a developer would have to look at before finding the

target classes if she would analyze the list of results in the order provided.

Clearly this is an approximate measure as it considers that the effort to

investigate a class is identical for all classes, which may not be the case

in real-life scenarios. However, the measure is consistently applied in each

treatment. The impact of the lexicon bad smells on IR-based concept

location can be, therefore, measured using the difference between the ranks

of the target classes before and after the refactoring. If these ranks improve

(i.e., less effort is required to locate the classes) then we can conclude that

removing the lexicon bad smells improves IR-based concept location.
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Subjects

The two software systems used in the study are FileZilla Client 3.0.0,

an open source, cross-platform, graphical FTP, FTPS, and SFTP client

and OpenOffice 1.0.0, a well-known open source office software suite for

word processing, spreadsheets, presentations, databases, etc. FileZilla is

medium-sized, having 208 classes, while OpenOffice is a large system, with

12,761 classes. Both are implemented mostly in C++.

Both systems have online bug tracking systems, from which we extracted

a set of 29 bugs for FileZilla and 19 for OpenOffice. The bugs are selected

such that the target classes could be identified, either from the patches

that sometimes accompany the bug reports in the bug tracking system, or

from commits to the versioning system hosting the source code.

The corpus of the two systems is extracted both before and after the

lexicon bad smells are fixed, and identifiers were split, keeping the originals.

Also, filtering is applied in order to remove common English terms and

C++ keywords.

We have used the concatenation of the title and the description of the

bugs, as retrieved from the bug reports, as the queries for IR-based concept

location. We applied the same processing as for the corpus (i.e., splitting

and filtering) on the queries.

Refactoring

We have used the LBSDetectors to identify lexicon bad smells found in

the target classes identified for the set of bugs selected in the two systems.

We have found 192 identifiers containing at least one bad smell in the

28 unique target classes in FileZilla and 775 identifiers for the 26 unique

target classes in OpenOffice (see Table 4.12). Among the eight lexicon

bad smells, the number of identifiers found to contain odd grammatical
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structure, extreme contraction, misspelling and inconsistent identifiers was

high, while the number of meaningless terms was low in both systems (see

Table 4.12).

Table 4.12: Number of identifiers containing bad smells in the target classes and number

of refactored identifier occurrences in FileZilla and OpenOffice

Lexicon bad smell FileZilla OpenOffice

Extreme contraction 86 480

Inconsistent identifier use 95 74

Meaningless terms 0 1

Misspelling 64 436

Odd grammatical structure 147 434

Overloaded identifiers 4 12

Useless type indication 2 7

Whole-part 13 25

Number of identifiers containing 192 775

bad smells in target classes

Number of identifier occurrences 2,216 90,749

refactored in the system

Number of unique target classes 28 26

As mentioned before, the bad smell correction was done manually for

each identifier. For example, the method name command is identified as an

odd grammatical structure bad smell because it does not contain a verb.

It is renamed to executeCommand after consulting the comment of the

method in the source code of FileZilla. Not all identified bad smells are

corrected, though. For example, the extreme contractions which are due

to the use of the Hungarian notation are not changed, but other extreme

contractions, such as, Lev (refactored to Levenshtein) and Exc (refactored

to Excel), are refactored. Inconsistent identifiers, detected in large numbers

in FileZilla, refer generally to method identifiers which are included within

other method names in the same class, thus making their meaning not

specific enough. An example of such a method name is Connect, which
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appeared also in the name of another method, ConnectToClient inside

the same class in FileZilla. It is thus unclear how the two methods are

different and to what exactly Connect refers to. In consequence, based

on the body of the method and the comments, we renamed the identifier

to ConnectToServer, which is more specific and reflects the functionality

of the method better. For the misspellings bad smell, a high number of

bad smelling identifiers are reported in OpenOffice. One example of such

an identifier is isApplyable, which is renamed to isApplicable. There are

almost no identifiers containing meaningless terms in either system, as the

terms in our predefined list of metasyntactic variable names did not occur

in the target classes. The only exception is var, which occurred in one

target class.

While suggesting the new names the actions listed in Table 4.13 are per-

formed. The most frequent action is term expansion, where extremely con-

tracted terms are expanded to the terms they are referring to (e.g., nTrot

is expanded to nTextRotation). Other frequent actions were addition and

deletion. Addition included adding missing verbs to method names or re-

placing a term with a meaningful one. In OpenOffice, a few identifiers

that contained German terms are also encountered. These terms are re-

placed with their English translation (example: importGraf is renamed to

importGraphic).

The total number of occurrences of bad smelling identifiers changed

in the whole system is 2,216 for FileZilla and 90,749 for OpenOffice (see

Table 4.12).

Results and discussion

For each bug in the two systems we reenacted concept location using the

title and description of the bug as the query. We simulated the user by

using this initial query and no subsequent query reformulations. We as-

140



CHAPTER 4. LEXICON BAD SMELLS 4.3. EVALUATION

Table 4.13: Types of actions performed to fix the lexicon bad smells and the corresponding

number of identifiers on which they are applied.

Type of action while OpenOffice FileZilla

correcting a smell

Term expansion 484 38

Spelling correction 2 0

Term reordering 35 31

Added term 283 71

Deleted term 139 42

Replaced term 138 37

Language translation 33 0

sumed the users would inspect the classes in the order suggested by the

tool. For each bug we performed four reenactments: two before the bad

smells removal, using LSI and Lucene, respectively, and two after. In each

run we recorded the effort measures, represented by the rank of the target

classes in the list of search results. The measures for FileZilla and OpenOf-

fice are reported in Table 4.14 and Table 4.15, respectively. We present

the results for each of the two systems separately and then discuss the

differences between them.

For FileZilla, when using Lucene, out of the 45 non-unique target classes

for the 29 bug reports selected, 21 had the same rank in the list of search

results before and after the refactoring. At the same time, the results for

13 target classes were worse after refactoring. For the remaining 11 classes

the results were better after refactoring the lexicon bad smells. Although

there were more target classes for which the ranking did not improve, the

overall ranking of the target classes slightly improved after the bad smells

were removed (see Table 4.16).

The absolute difference between the ranks of the target classes before

and after refactoring, which is the sum of all the individual differences for

each target class, is 14, and the average difference is 0.31. This indicates
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Table 4.14: The rank of changed classes in the list of search results when using LSI and

Lucene on the original and refactored FileZilla source code.

No. Bug ID LSI Lucene

Before After Before After

1 1299 68, 54 65, 56 24, 17 26, 19

2 3023 36 37 20 19

3 3198 51, 2, 84 53, 3, 86 4, 1, 2 5, 1, 2

4 3220 68, 39, 17, 45 67, 40, 17, 45 65, 16, 11, 1 63, 16, 11, 1

5 3230 33 32 1 1

6 3232 2 1 4 2

7 3235 178, 52, 13 91, 50, 10, 130, 85, 64 101, 86, 65

8 3239 28 50 1 1

9 3252 6 9 8 6

10 3270 52 52 2 2

11 3272 84 81 16 17

12 3278 72 80 2 3

13 3284 91 86 8 8

14 3287 51 52 2 2

15 3307 68 67 2 2

16 3308 21 21 4 2

17 3319 124 122 25 24

18 3323 3 3 2 2

19 3334 64 62 7 6

20 3341 66 61 7 7

21 3343 21 19 4 4

22 3344 57 54 5 5

23 3345 3 5 4 6

24 3348 26 52 3 5

25 3356 53, 34, 47, 25, 51, 45, 41, 25, 11, 27, 22, 24, 12, 33, 23, 20,

68, 67, 116 68, 66, 117 1, 10, 12 1, 9, 10

26 3372 24 50 1 1

27 3373 51, 101 55, 99 1, 55 1, 67

28 3397 17, 25 17, 25 2, 3 2, 3

29 3403 42 67 1 1
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Table 4.15: The rank of changed classes in the list of search results when using LSI and

Lucene on the original and refactored OpenOffice source code.

No. Bug ID LSI Lucene

Before After Before After

1 4378 691 453 1174 29

2 5923 49 51 48 47

3 6906 1894 1671 48 44

4 7114 7366 7932 304 5

5 7868 6540 6919 95 79

6 8148 3531 3669 177 44

7 8426 5222, 2814, 2613 4039, 2169, 1349 2, 21, 57 1, 11, 4

8 8640 126 79 29 12

9 8755 3222 3489 434 434

10 8779 120 142 1146 1220

11 9391 431, 7102 639, 10749 2, 3 2, 5

12 9959 2185, 3132 1347, 3300 32, 8 22, 12

13 10424 1380 1141 780 798

14 10532 7199, 1621 6323, 1165 1757, 535 1766, 278

15 10828 915 747 1 1

16 10995 4560, 1152, 40 4029, 1193, 50 444, 277, 2298 57, 11, 126

17 11776 7279, 4357 6346, 3911 82, 18 10, 13

18 17620 2023, 9093, 9292, 1181, 3922, 8533, 1, 609, 8260, 1, 195, 6599,

4112,10058, 2099, 4792, 10137, 1999, 2, 987, 14, 2, 970, 11,

5250 5541 790 534

19 101603 583 729 274 85
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Table 4.16: Summary statistics for the rank delta in FileZilla and OpenOffice. A positive

delta indicates improved rank after bad smell fixing.

Statistics FileZilla OpenOffice

LSI Lucene LSI Lucene

Absolute rank delta -6 14 8315 7281

Average delta (std dev) -0.13 (15.4) +0.31 (4.9) 251.97 (1212.9) 220.64 (495.7)

Average positive delta 6.95 4.27 831.06 321.22

Maximum positive delta 87 29 5171 2172

Average negative delta -8.12 -2.53 -443.93 -21.4

Minimum negative delta -26 -12 -3647 -74

Median delta 0 0 100 10

Delta p-value 1 0.9884 0.0879 0.0004

an overall improvement of 14 positions in the list of ranked results over all

target classes after the lexicon bad smells were removed, with an average

improvement of 0.31 positions for each target class. The distribution of

the deltas can be seen in the histogram presented in Figure 4.13a. The

overall improvement is due to the fact that a few classes had a significant

improvement in the rank, which overcame the decrease in other target

classes (see Figure 4.13a). In fact, the average (4.27) and maximum (29)

positive deltas were higher than the average (-2.53) and minimum (-12)

negative deltas.

In order to see if the difference between results before and after the

refactoring is statistically significant, we performed a two-tailed, paired

Wilcoxon signed rank test between the two series of data. The p-value of

0.988 indicates that there is no statistical proof that the refactoring had

an effect on the ranks of the target classes.

When using LSI for FileZilla, there were 9 cases in which the ranking

of the target classes was the same before and after refactoring, 17 cases

in which the ranking was worse and 19 where the results were better after

refactoring. However, the absolute delta between ranks before and after
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Figure 4.13: Histogram of deltas for FileZilla and OpenOffice.

refactoring was -6, indicating a slight decrease in the results (-0.13 positions

per target class). This time, even though the maximum delta value was an

improvement of 87 positions (see Figure 4.13b), the average rank decrease

(-8.12) was higher than the average improvement (6.95).

The results for FileZilla indicate that removing the lexicon bad smells

has little impact overall, when considering the effect on all target classes.

However, the effect on the ranking was significant in the case of some

target classes, which registered an improvement in rank of almost 50%

(first target class in bug 3235, see Table 4.14). At the same time, the

study suggests that the IR technique used might have a small impact on

the overall difference in ranks before and after refactoring for FileZilla.

The difference between absolute deltas for Lucene and LSI was 20, with an

average of 0.44 delta per target class. Although the delta in ranks before

145



4.3. EVALUATION CHAPTER 4. LEXICON BAD SMELLS

and after refactoring was not greatly affected by the IR technique used,

Lucene generally placed the target classes higher than LSI in the list of

search results, by an average of 34 ranks both before and after refactoring.

For OpenOffice, the results were very different than those obtained for

FileZilla. The results after refactoring were significantly better than the

results before the refactoring was performed, for both IR techniques.

For Lucene, there were 23 cases out of the 33 non-unique target classes

for which the results after refactoring were better than before, 5 classes

for which the results were better before refactoring, and 5 classes which

had no change in rank (see Table 4.15). The distribution of the deltas for

all 33 non-unique target classes for the 19 bug reports can be found in

Figure 4.13c. The absolute delta between the ranks of the target classes

before and after refactoring was 7,281 (see Table 4.16), with an average

delta of 221. This means that after refactoring, the target classes were

ranked 221 positions higher in the list of search results, on average. As

for FileZilla, we computed the two-sided, paired Wilcoxon signed rank test

between the series of target class ranks before and after the lexicon bad

smell refactoring was performed, in order to see if the difference between

the two data series was statistically significant. The p-value obtained was

0.0004, indicating that the observed positive effect on the result due to

refactoring was statistically significant in OpenOffice, when using Lucene

as the IR technique.

When using LSI on OpenOffice, there were 18 classes for which refac-

toring brought an improvement in their rank and 15 for which the results

were worse after the refactoring. The absolute delta was in this case 8,315,

with an average of difference in ranks of 252 per target class. Thus, even

when using LSI, refactoring the lexicon bad smells significantly improves

the rank of the target classes in the list of search results, with a maximum

improvement of 5,171 positions, for the second target class of bug 17620
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(see Table 4.15). In this case, the p-value obtained for the two-sided, paired

Wilcoxon signed rank test between the target class ranks before and after

the refactoring was 0.0879. This is not statistically significant according

to the 5% rule; however, positive average of the delta ranks (252) indicates

that there was a positive effect on the ranks of the target classes when

refactoring the lexicon bad smells in OpenOffice and using LSI for concept

location.

One example of a significant improvement in the ranking of the tar-

get classes after the refactoring of lexicon bad smells is in the case of the

first bug for OpenOffice, i.e., bug 4378. The only target class for this

bug, i.e., ExcXf8, was initially located on position 1,174 in the list of re-

sults obtained when searching the source code of the system using Lucene

and on position 691 when using LSI. The class originally contained 10

bad smelling identifiers, having a total of 22 lexicon bad smells. These

were spread among three categories: extreme contraction (13 bad smells),

misspelled terms (5 bad smells), and odd grammatical structure (4 bad

smells). After refactoring, the bad smells were removed, which resulted in

a significant improvement in the rank of the target class, i.e., position 29

with Lucene (improvement of 1,145 positions) and 453 with LSI (improve-

ment of 242 positions). The improvement in rank can be attributed to the

meaningful terms introduced in the identifiers and thus in the corpus after

expanding the abbreviations and acronyms (e.g., ExcXf8 was expanded to

ExcelFile8, nTrot expanded to nTextRotation). This increased the number

of common terms between the bug description and corpus (e.g., the term

excel appeared in the corpus only after refactoring) and also increased the

frequency of other common terms (e.g., the frequency of the term rotation

has changed from 1 in the original corpus to 6 in the refactored corpus).

Table 4.17 shows the description of Bug 4378, the original identifiers with

lexicon bad smells, the same identifiers after refactoring, and the terms
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contained only in the original and then refactored class.

Table 4.17: Example of refactoring that led to a significant improvement in rank for the

target class.

Bug: Bug description orientation of cell content gets lost if exporting as excel

4378 97 or html. in my spreadsheet I rotated the writing

in one row for 90 degrees to the left. If I export the

sheet as excel 97 or html the writing is not rotated

anymore. Exporting as excel 95 works fine

Original Identifiers bFMergeCell, bFShrinkToFit, nCIndent, nDgDiag,

with LBS nGrbitDiag, nIReadingOrder, nIcvDiagSer, nTrot,

ExcXf8, GetLen, GetNum

Terms only xf8, excxf8, trot, ntrot, ncindent, nireadingorder, diag,

in original ngrbitdiag, nicvdiagser, ndgdiag, bfshrinktofit,

corpus bfmergecell, num, getnum, len, getlen

Refactored Refactored bFormatMergeCell, bFormatShrinkToFit,

identifiers nCharacterIndent, nDiagonalBorderStyle,

nGrbitDiagonalBorder, nIndexReadingOrder,

IndexColorValueDiagonalBorderSerial,

nTextRotation, ExcelFile8, GetLength, GetNumber

Terms only excel, file8, excelfile8, ntextrotation, character,

in refactored ncharacterindent, nindexreadingorder, diagonal, border

corpus Ngrbitdiagonalborder, serial,

nindexcolorvaluediagonalborderserial,

ndiagonalborderstyle, format, bformatshrinktofit,

bformatmergecell, number, getnumber, length, getlength

The difference in results between the two systems can be explained by

the fact that OpenOffice had a significantly worse lexicon than FileZilla,

containing many more lexicon bad smells, in spite of the lower number of

target classes (see Table 4.12). In particular, OpenOffice contained many

unusual abbreviations and acronyms that were expanded during refactor-

ing, resulting in new, more expressive terms. This probably contributed

in making the source code come closer to the language used in the bug

descriptions and, thus, in the queries, making it easier to locate the target

classes.
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Another factor that could have contributed to the difference in results

between the two systems is the fact that some of the types of bad smells,

which are dominant in FileZilla, might have a low impact on IR-based

concept location. These bad smells, i.e., odd grammatical structure and

inconsistent identifier use, take into consideration the grammar and lexical

form of the words found in identifiers. IR techniques, on the other hand,

disregard such aspects of the identifiers, as they are purely statistical ap-

proaches. Thus, IR could be marginally impacted by the refactoring of

such bad smells, which often involves changing the order of the terms in an

identifier, transforming a noun in its corresponding verb, etc. While this

might not have a big influence on automated tools like IR, we argue that

these types of bad smells can have a significant impact on comprehension

when developers are involved.

In OpenOffice, on the other hand, the most common types of bad smells

were the misspellings and extreme contractions. The performance of IR

can be significantly affected by these bad smells, as they can lead to the

appearance of new, statistically significant terms in the corpus of classes.

Thus, the good results obtained for OpenOffice after refactoring could be

explained partially by the removal of these two types of bad smells.
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Threats to validity

Like any case study, this study presents some threats to its validity, which

we discuss in this section. First of all, generalization of the results has

to be done with care. We analyzed the impact of lexicon bad smells on

IR-based concept location in only two software systems, both written in

C++. Having more systems, written in other programming languages,

might have led to different results.

The names proposed for the refactoring of the identifiers might have

also been different if other developers would have chosen them. However,

we tried to minimize this variation by having two researchers suggest the

names individually.

Last, we only identified the lexicon bad smells found in target classes

and did not consider the bad smells in the rest of the source code.

4.3.3 Effect of lexicon bad smells on class bug proneness

The cost of identifying and fixing faults in a system already in production

may be extremely high. To avoid such costs, developers spend a large

portion of the system development time on testing, to identify faulty classes

prior to release. To assist developers in this respect, various studies have

been conducted in the research community measuring the quality of the

source code using structural metrics [116, 117, 87], process metrics [90, 56]

or previous faults [66, 112]. Structural metrics are a lightweight alternative

and they have been shown to have good performance for fault prediction

[37].

Besides the structural metrics, several factors contribute to the faulti-

ness of a class. One factor which we believe contributes to the faultiness

of a class is LBS. LBS address the quality of the source code from the

lexicon point of view. Hence, we conjecture that adding such information
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to the structural metrics used in fault proneness prediction will improve

the prediction. This subsection presents the investigation we conducted in

Abebe et al. [7] to assert if this conjecture holds or not.

To prove this conjecture, we have formulated the following three research

questions:

RQ1. Additional information: Do LBS bring new information with

respect to structural metrics?

RQ2. Prediction improvement: Do LBS improve fault prediction?

RQ3. LBS contribution: Which LBS help more to explain faults?

In the first research question, RQ1, we investigate if LBS measure the

same aspects of the code as structural metrics or not. To carry out this in-

vestigation, following Marcus et al. [81], we have used principal component

analysis (PCA). PCA is a technique that uses solutions from linear algebra

to project a set of possibly correlated variables into a space of orthogonal

principal components (PC), or eigen vectors, where each PC is a linear

combination of the original variables which in our case are the metrics.

PCA is used to reveal hidden patterns that cannot be seen in the original

space and to reduce the number of dimensions. We use the information

captured in the PCs to analyze and answer RQ1.

For each principal component, PCA reports the coefficients of the at-

tributes on the corresponding eigen vector. Those coefficients are inter-

preted as the importance of the attribute on the PC. When using PCA it

is a common practice to select a subset of the principal components and

discard those that explain only a small percentage of the variance. Like in

Marcus et al. [81] we have used a threshold of 95% to select a subset of the

PC. That is, we retained the components that explain up to 95% of the

variance. For each principal component, we apply a 10% relative threshold
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to decide which attributes contribute to the component and we rank the

attributes of each PC based of their importance (weight). If LBS bring

new information with respect to structural metrics then LBS will be kept

in the retained principal components and will give major contributions to

them. To answer RQ1 we analyze two aspects: i) the number of times an

LBS contributes to at least one retained PC, and ii) the number of times

an LBS is the major contributor of at least one retained PC.

In RQ2 we, then, investigate if our conjecture holds by assessing LBS’

contribution, in addition to the structural metrics, in improving the capa-

bility of a prediction model. The prediction models used in this study are

logistic regression, random forest, and support vector machine. To assess

LBS’ contribution, we have carried out predictions using as independent

variables, on the one hand, only structural metrics, and on the other hand,

structural metrics plus LBS. The capability of prediction is then evalu-

ated using the evaluation metrics described later in this section. We then

compare the results using the achieved net improvements and the average

delta percentage. Prior to the comparison of the two sets of independent

variables, we compare and select the best model in predicting fault prone

classes using only the structural metrics.

The last research question, RQ3, is focused on identifying those LBS

that contribute the most to the prediction of fault prone classes. To answer

this research question, we rank each LBS based on the their importance in

the best model selected in RQ2. We then calculate the median rank across

the versions of the system and select the top three LBS separately for each

subject system.

Variables

For building the prediction models we considered the following dependent

and independent variables:

152



CHAPTER 4. LEXICON BAD SMELLS 4.3. EVALUATION

Dependent variable: As dependent variable we use a dichotomous vari-

able, has bug, indicating whether a class is faulty or not. The associated

experimental data have been previously published by Khomh et al. [65].

Independent variables: The overall set of independent variables con-

sists of the structural metrics considered by Kpodjedo et al. [69] (see Ta-

ble 4.18), and nine LBS defined in Section 4.1. The structural metrics list

consists of the set of well-known CK metrics [33], two metrics measuring

the lack of cohesion in methods (LCOM2 and LCOM5) defined by Briand

et al. [24], and two metrics counting the number of declared attributes

and methods [79]. Here after we collectively call the structural metrics

used in this study as CK metrics. The LBS used in the study are extreme

contraction, inconsistent identifier, identifier construction rules, meaning-

less terms, misspellings, odd grammatical structure, overloaded identifiers,

synonym and similar terms, and useless types.

Table 4.18: List of considered structural metrics.

Acronym Description

CBO [33] Coupling between objects

DIT [33] Depth of Inheritance Tree

LCOM1 [33] Lack of COhesion in Methods 1

LCOM2 [24] Lack of COhesion in Methods 2

LCOM5 [24] Lack of COhesion in Methods 5

LOC [33] Line Of Code

NAD [79] Number of Attributes Declared

NMD [79] Number of Methods Declared

NOC [33] Number Of Children

RFC [33] Response For a Class

WMC [33] Weighted Methods per Class

The set of CK metrics has been calculated using the POM frame-

work [52]. To identify LBS, we have used LBSDetectors presented in

Section 4.2. The detectors implement general heuristics that can be config-

ured to accommodate some variability. Hence, for each system used in our
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study, we have manually explored their documentations, when available,

and configured the detectors accordingly.

Evaluation metrics

In the literature, various evaluation metrics are used to evaluate the pre-

diction capability of independent variables and to compare prediction mod-

els [116, 117, 87, 56, 112]. We have categorized these metrics into three

groups: rank, classification, and error metrics. Below we present the de-

tails of each category.

Rank

Rank metrics sort the classes based on the value of the dependent variable

assigned to each class. Then a cumulative measure is computed using the

actual values of the dependent variable over the ranked classes to assess the

model and/or the independent variables. In our study, we have considered

two types of rank metrics: Popt and FPA (Fault Percentile Average).

Popt: is an extension of the Cost Effective (CE) measure defined in [10].

Popt takes into account the costs associated with testing or reviewing a

module and the actual distribution of faults, by benchmarking against a

theoretically possible optimal model [87]. It is calculated as 1 − ∆opt,

where ∆opt is the area between the optimal and the predicted cumulative

lift charts. The cumulative lift chart of the optimal curve is built using

the actual defect density of classes sorted in decreasing order of the defect

density (and increasing lines of code, in case of ties). The cumulative lift

chart of the predicted curve is built like the optimal curve, but with classes

sorted in decreasing order of fault prediction score.

FPA: is obtained from the percentage of faults contained in the top m%

of classes predicted to be faulty. It is defined as the average, over all values

of m, of such percentage [112, 14]. On classes listed in increasing order of
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predicted numbers of faults, FPA is computed as:

1

NK

K
∑

k=1

(k ∗ nk)

where N is total number of actual faults in a system containing K classes,

nk is the actual number of faults in the class ranked k [112].

In our study, however, we predict the probability of fault proneness of a

class instead of the number of faults. Hence, we have adapted the metrics

by using the predicted probability of fault proneness to sort the classes,

and 0 and 1 are used as a replacement of the number of defects. 1 is used

when a class is actually faulty; 0 otherwise.

Classification

Predicting fault proneness of a class is a classification problem. Hence,

in various studies the confusion matrix (shown in Table 4.19) is used to

evaluate models and analyze the prediction capability of the independent

variables. From the confusion matrix the following measures are computed

to conduct the evaluation.

Accuracy (A): measures how accurately both the actual faulty and

non-faulty classes are classified as faulty and non-faulty by the predic-

tor. It is computed as the ratio of the number of classes that are cor-

rectly predicted as faulty and non-faulty to the total number of classes

A = (TP + TN)/(TP + TN + FP + FN). A score of 1 indicates that

the model used for the prediction has classified all classes as faulty and

non-faulty correctly.

Correctness (P): is the precision of a predictor in identifying the faulty

classes as faulty. It is computed as the ratio of classes which are correctly

predicted as faulty to the total number of classes which are predicted to be

faulty P = TP/(TP +FP ). A prediction model is considered very precise

if all the classes predicted as faulty are actually faulty, i.e. if P = 1.
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Completeness (R): is the recall of a predictor. It tells how many of the

actually faulty classes are predicted as faulty. Completeness is computed

as the ratio of the number of classes which are correctly predicted as faulty

to the total number of classes which are actually faulty in the system

R = TP/(TP + FN).

F-measure (F): is a measure used to combine the above two inversely

related classification metrics, correctness, and completeness. F-measure is

computed as the harmonic mean of correctness and completeness (F =

(2 ∗ P ∗R)/(P +R)).

Matthew’s Correlation Coefficient (MCC): is a measure commonly

used in the bioinformatics community to evaluate the quality of a classifier

[86]. It is a measure which is quite robust in the presence of unbalanced

data. MCC is computed as:

TP ∗ TN − FP ∗ FN
√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

The value of MCC ranges from −1 to 1. −1 indicates a complete dis-

agreement while 1 indicates the opposite.

Table 4.19: Prediction confusion matrix (TP=True positive, TN=True negative,

FP=False positive, FN=False negative)

Actual

Faulty Not faulty

Predicted Faulty TP FP

Not faulty FN TN

Error

In the last category of the evaluation metric types, we have absolute error

(E). Absolute error is a measure based on the number of faults incorrectly
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predicted or missed:

E =
K
∑

k=1

|ŷk − yk|
2

where ŷk is the predicted number of faults in class k and yk the actual

number of faults [56]. As we are interested in the fault proneness of a

class and not in the number of faults it contains, we use 0 and 1, as a

replacement of the number of faults. 1 is used when a class is actually

faulty/predicted to be faulty and 0 otherwise. Unlike the other evaluation

metrics, for absolute error a value closer to 0 indicates better prediction

capability.

Prediction models settings

Here we describe the particular settings of each prediction model. All

computations are performed using R20.

Logistic Regression Model: We used the Generalized Linear Model

(package stats) glm (family=binomial(”logit”)). We perform backward

variable elimination and predict using the retained variables.

Random Forest: We use the function randomForest (package random-

Forest) with the number of trees being 500 as did Weyuker et al. [112].

Support Vector Machine: We used the Support Vector Machine model

(package e1071 ) svm (kernel=”radial”). Elish et al. [42] used the same

kernel, which showed good performance.

Common settings: The following settings are common for all models:

As Gyimóthy et al. [53] we standardize all metrics before performing the

calculations (i.e., zero mean and unit variance). Like in Kamei et al. [64],

for each type of model, we predict faulty classes in two configurations:

within the same version and for the next version. Prediction within the

same version represents scenarios in which there is no prior record of buggy

20http://www.r-project.org/
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classes and new systems while the latter represents scenarios in which a

system’s evolution is available and documented. When predicting within

the same version, we use 10-fold cross validation. For each configuration

we build two models: one where the independent variables are the CK

metrics alone and the second where the independent variables are CK and

LBS.

Subjects

For our case study, we have considered three open source systems written

in Java, ArgoUML21, Eclipse22, and Rhino23. ArgoUML is a UML model-

ing tool which includes support for all standard UML 1.4 diagrams while

Eclipse is an IDE which supports different languages. In this study we

have used the IDE for Java. Rhino is a Java implementation of JavaScript.

The summary of the versions of the systems used in our study are shown

in Table 4.20.

Results and discussions

RQ1: Additional information

Table 4.21 shows the percentage of the analyzed versions that retained the

specific LBS in at least one PC. In Table 4.22 we show the percentage of

the analyzed versions where each LBS was ranked first. Table 4.23 shows

the weight and ranking (in parentheses) of the attributes for ArgoUML

v0.16 after the relative threshold is applied.

ArgoUML: For all versions of ArgoUML we retained between 11 and

13 principal components that explain at least 95% of the variance. Two

LBS attributes were kept in at least one PC in all versions and those are:

21http://argouml.tigris.org/
22http://www.eclipse.org/
23http://www.mozilla.org/rhino/
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Table 4.20: Summary of the systems.

System Version LOC Classes

Total Defective

ArgoUML 0.10.1 154442 863 49

0.12 171746 946 47

0.14 182627 1227 93

0.16 185335 1185 152

0.18.1 196505 1249 52

0.20 186055 1333 127

Eclipse 1.0 1049434 4596 96

2.0 1471858 5985 163

2.1.1 1735010 6748 98

2.1.2 1737345 6750 78

2.1.3 1740487 6754 149

Rhino 1.4R3 43791 94 66

1.5R1 68086 124 22

1.5R3 86937 166 98

1.5R4 92398 180 35

1.5R5 92687 181 39

1.6R1 102511 178 37

1.6R4 102974 180 138

1.6R5 79144 124 37
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inconsistent identifier and useless types. Between them, useless types was

the major contributor of at least one PC in all versions.

Rhino: The number of components that explain at least 95% of the vari-

ance for Rhino is the same as for ArgoUML. Five LBS attributes were kept

in at least one PC in all versions and those are: inconsistent identifier, syn-

onym and similar terms, odd grammatical structure, overloaded identifiers,

and meaningless terms. As in ArgoUML, one LBS attribute was present

as a major contributor in all versions and this is overloaded identifiers.

Eclipse: The number of retained PC is between 13 and 14. The six LBS

that are present in all versions are: inconsistent identifier, odd grammati-

cal structure, extreme contraction, overloaded identifiers, useless types, and

meaningless terms. The majority of them (four) are ranked first: inconsis-

tent identifier, extreme contraction, overloaded identifiers, and meaningless

terms.

Overall: All LBS were present in more than 50% of the analyzed systems.

inconsistent identifier was present in at least one dimension in all analyzed

versions meaning that it is the major LBS attribute that helps to explain a

new variability dimension. Another different variability dimension in most

cases seems to be captured by overloaded identifiers and useless types.

The results show that the majority of LBS (all considered in the study

but three) are major contributors in at least one dimension for more than

50% of the analyzed versions. The strongest percentages are obtained by

inconsistent identifier, overloaded identifiers, and useless types. The weak-

est percentages across versions appear to be odd grammatical structure,

misspelling, and synonym and similar terms.

RQ2: Prediction improvement

For each evaluation metric, Table 4.24 shows the average values scored by

the corresponding model on all types of prediction (same and next version).
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Table 4.21: LBS retained in the principal components (MS=Misspelling, II=Inconsistent

identifier, SST=Synonym and similar terms, OGS=Odd grammatical structure,

EC=Extreme contraction, OI=Overloaded identifiers, IC=Identifier construction,

UT=Useless types, MT= Meaningless terms).
System MS II SST OGS EC OI IC UT MT

Eclipse 0.0% 100.0% 40.0% 100.0% 100.0% 100.0% 80.0% 100.0% 100.0%

ArgoUML 66.7% 100.0% 50.0% 66.7% 66.7% 83.3% 83.3% 100.0% 16.7%

Rhino 87.5% 100.0% 100.0% 100.0% 75.0% 100.0% 62.5% 87.5% 100.0%

All 57.9% 100.0% 68.4% 89.5% 78.9% 94.7% 73.7% 94.7% 73.7%

Table 4.22: LBS ranked first in the retained principal components (MS=Misspelling,

II=Inconsistent identifier, SST=Synonym and similar terms, OGS=Odd grammatical

structure, EC=Extreme contraction, OI=Overloaded identifiers, IC=Identifier construc-

tion, UT=Useless types, MT= Meaningless terms).
System MS II SST OGS EC OI IC UT MT

Eclipse 0.0% 100.0% 20.0% 20.0% 100.0% 100.0% 80.0% 80.0% 100.0%

ArgoUML 50.0% 83.3% 0.0% 16.7% 33.3% 83.3% 66.7% 100.0% 16.7%

Rhino 0.0% 87.5% 50.0% 0.0% 50.0% 100.0% 62.5% 62.5% 87.5%

Overall 15.8% 89.5% 26.3% 10.5% 57.9% 94.7% 68.4% 78.9% 68.4%
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Table 4.23: Detailed results of PCA for ArgoUML v0.16.

PC PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11

Cumulative 40.9% 51.8% 59.88% 65.54% 71.06% 76.2% 81.02% 85.29% 89.33% 92.91% 95.53%

proportion

CBO 0.275(9) 0.203 0.35 0.0741 0.0176 0.0994 0.0954 0.11 0.0853 0.0607 0.0953

DIT 0.0311 0.0551 0.123 0.13 0.772(1) 0.46 0.0998 0.338 0.0457 0.0665 0.107

LCOM1 0.281(7) 0.36 0.0835 0.0277 0.00268 0.0387 0.0503 0.0812 0.184 0.28 0.0641

LCOM2 0.278(8) 0.366 0.0879 0.0272 0.00323 0.0382 0.0507 0.0807 0.188 0.282 0.0685

LCOM5 0.111 0.307 0.00385 0.0976 0.206 0.269 0.0478 0.753(1) 0.35 0.16 0.0615

LOC 0.29(5) 0.15 0.367 0.0276 0.0123 0.0217 0.0729 0.165 0.0668 0.0341 0.134

NAD 0.21 0.101 0.442(1) 0.0404 0.0119 0.0138 0.0763 0.0568 0.368 0.0434 0.604(1)

NMD 0.338(1) 0.0988 0.0846 0.0403 0.0618 0.00984 0.0373 0.0147 0.0764 0.0998 0.108

NOC 0.0205 0.107 0.0854 0.386 0.428 0.774(1) 0.00912 0.113 0.132 0.0118 0.0585

RFC 0.296(4) 0.176 0.274 0.0458 0.0453 0.00323 0.0397 0.0971 0.0342 0.0189 0.0197

WMC 0.318(2) 0.12 0.286 0.0338 0.0116 0.0181 0.0958 0.0996 0.0384 0.0614 0.131

misspelling 0.24 0.201 0.187 0.207 0.255 0.0979 0.0973 0.0529 0.0174 0.211 0.571(2)

inconsistent 0.205 0.246 0.147 0.0116 0.0484 0.0543 0.383 0.29 0.189 0.6(1) 0.178

identifier

synonym and 0.288(6) 0.314 0.102 0.00884 0.00461 0.000561 0.155 0.0958 0.0317 0.154 0.241

similar terms

odd 0.305(3) 0.0148 0.28 0.013 0.048 0.0274 0.173 0.0301 0.0203 0.0892 0.152

grammatical

structure

extreme 0.0772 0.253 0.266 0.592(1) 0.276 0.212 0.0624 0.166 0.336 0.288 0.15

contraction

overloaded 0.144 0.0224 0.00102 0.236 0.161 0.00659 0.802(1) 0.0575 0.00447 0.467 0.0241

identifiers

identifier 0.14 0.416(1) 0.271 0.266 0.0227 0.143 0.0104 0.0399 0.41 0.139 0.299

construction

useless types 0.0413 0.248 0.236 0.539(2) 0.0042 0.153 0.304 0.318 0.561(1) 0.186 0.00662
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CK metrics are used to build the prediction models. The values in bold

are the best values of the three models considered for the given metrics.

For all the systems, SVM scores first for the majority of the evaluation

metrics. Hence, we have based our investigation of LBS’ contribution to

the improvement of fault prediction on SVM.

Table 4.25 shows the number of versions in which CK plus LBS met-

rics improve, decrease or keep the prediction unchanged, when compared

to CK metrics alone. The last two columns show the net improvement

within/across versions and the average delta percentage of LBS plus CK

metrics over CK alone for the various evaluation metrics. Positive values

of net improvements, for all types of evaluation metrics, indicate that in

the majority of the versions CK plus LBS are better predictors than CK

alone, while negative values indicate the opposite. A zero net improvement

means that both sets of independent variables were found better than the

other in an equal number of versions or that they are equal in all versions.

For all evaluation metrics except absolute error, the same is true for the

average delta percentage, which is computed on the average values over all

versions of the corresponding system. For absolute error, a negative value

means that there is a reduction in the amount of error and hence indicates

an improvement while the opposite holds for positive values of absolute

error.

The predictions using CK plus LBS metrics have outperformed those of

CK alone in most of the versions of the three systems, when considering

both within and across version prediction. For ArgoUML, the prediction

on the same versions using CK and LBS together has improved in at least

4 of the 6 versions considered, according to the different evaluation met-

rics. For Eclipse the improvement observed in all versions is consistently

reported by all evaluation metrics. Figure 4.14 shows the average val-

ues of all versions of Eclipse for the evaluation metrics. We observe an
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important improvement for all metrics except for accuracy where the im-

provement is minor. The evaluation metrics result for Rhino shows that

there is improvement in at least half of the versions considered (4 out of

8). The distributions of the evaluation metrics for all systems are shown

in Figure 4.16.

When predicting on the next version, CK plus LBS have been found

to be good predictors in the majority of Eclipse’s and Rhino’s versions by

some evaluation metrics; according to other evaluation metrics they are

the same as CK alone. Figure 4.15 contrasts the predictions of the two

models for Eclipse. For ArgoUML, negative net improvement values are

observed in three of the evaluation metrics while the other three show that

there is a net improvement in at least 3 out of the 5 versions predicted.

Overall, in both types of predictions, within and across versions, CK plus

LBS are better than CK alone in the majority of the versions. This result

is confirmed by almost all average delta percentage values shown next to

each net improvement. The average delta percentage decreased only in

7 out of the 36 metrics computed for the three systems. Hence, we can

answer RQ2 affirmatively.

Of the two types of predictions, the predictions conducted on the same

versions using LBS plus CK metrics have shown improvement in more

versions than observed in predictions on the next version. For example, in

Eclipse LBS plus CK metrics improved the prediction in all versions (5 of

5), while across versions the improvement is observed in at most half of the

versions (2 of 4). The difference can be observed by comparing Figures 4.14

and 4.15.

RQ3: LBS contribution

Table 4.26 shows the ranked LBS according to their contribution to SVM.

The median rank across versions is indicated within brackets.
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Table 4.24: Average values of each model while using the CK metrics as independent

variable (LRM=Logistic regression model, RF=Random forest, SVM=Support vector

machine).

System Category Metric LRM RF SVM

ArgoUML Rank Popt 0.468 0.505 0.603

FPA 38.9 4.91 45.8

Error E 91.6 88.7 86.8

Classifi. A 0.922 0.925 0.927

F 0.0797 0.199 0.0812

MCC 0.0991 0.199 0.12

Eclipse Rank Popt 0.458 0.521 0.637

FPA 67 0.444 60.8

Error E 124 127 118

Classifi. A 0.98 0.98 0.981

F 0.0101 0.0985 0.0439

MCC 0.0167 0.139 0.104

Rhino Rank Popt 0.528 0.535 0.568

FPA 21.3 16.3 21.4

Error E 42.8 42.8 41.2

Classifi. A 0.71 0.71 0.717

F 0.552 0.538 0.579

MCC 0.346 0.336 0.375

Figure 4.14: Eclipse: Average of the evaluation metrics for same version prediction.
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Table 4.25: CK and CK + LBS prediction capability comparison using SVM.

Systems Predi. CategoryMetric Imp.Dec. Equal Net Avg.

version imp. delta %

ArgoUML Same ErrorE 5 0 1 5 -8.94

Rank Popt 5 1 0 4 -5.878

FPA 5 1 0 4 1.917

Classifi.A 5 0 1 5 0.6738

F 5 0 1 5 81.51

MCC 5 0 1 5 56.72

Next ErrorE 1 3 1 -2 3.165

Rank Popt 2 3 0 -1 4.405

FPA 4 1 0 3 9.948

Classifi.A 1 3 1 -2 -0.2805

F 4 0 1 4 100

MCC 4 0 1 4 -1400

Eclipse Same ErrorE 5 0 0 5 -11.11

Rank Popt 5 0 0 5 22.91

FPA 5 0 0 5 43.53

Classifi.A 5 0 0 5 0.2176

F 5 0 0 5 314.6

MCC 5 0 0 5 140.8

Next ErrorE 2 2 0 0 1.212

Rank Popt 2 2 0 0 -3.067

FPA 2 1 1 1 0.8696

Classifi.A 2 2 0 0 -0.02364

F 3 1 0 2 234.3

MCC 3 1 0 2 200

Rhino Same ErrorE 6 1 1 5 -11.27

Rank Popt 6 2 0 4 3.233

FPA 6 0 2 6 3.518

Classifi.A 6 1 1 5 2.343

F 7 0 1 7 8.521

MCC 6 1 1 5 15.24

Next ErrorE 2 1 2 1 -0.6042

Rank Popt 3 2 0 1 3.085

FPA 4 0 1 4 8.861

Classifi.A 2 1 2 1 0.4126

F 3 0 2 3 3.925

MCC 3 0 2 3 10.53
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Table 4.26: Ranked LBS according to SVM.

ArgoUML Rhino Eclipse

Synonym and Odd grammatical Extreme

similar term (4) structure (6.5) contraction (3)

Inconsistent Misspelling (7.5) Overloaded

identifier (6.5) identifiers (4)

Overloaded Inconsistent Identifier

identifiers (8.5) identifier (10) construction (4)

Identifier Synonym and Useless

construction (9.5) similar term (11) types (7)

Odd grammatical Meaningless Synonym and

Structure (10) terms (12) similar term (8)

Misspelling (10.5) Identifier Odd grammatical

construction (12.5) structure (8)

Useless Extreme Meaningless

types (13) contraction (13) terms (10)

Extreme Overloaded Inconsistent

contraction (15.5) identifiers (14) identifier (11)

Meaningless Useless Misspelling (14)

terms (20) types (17.5)

Whole-part (20) Whole-part (20) Whole-part (20)

The following observations can be made across the different systems:

synonym and similar terms is in the top five most important LBS for all

systems. Inconsistent identifier and overloaded identifiers are in the top

three for two of the systems. Inconsistent identifier and synonym similar

have a median rank at most 11. Finally, whole-part does not seem to be

important for fault prediction.

Our findings are consistent with previous research on program identi-

fiers which suggest that identifiers using synonyms lack conciseness and

consistency [74].

We also observe that some LBS tend to have a specific contribution for

particular systems. For instance, extreme contraction is ranked first among

all LBS for Eclipse, while misspelling is ranked second for Rhino.
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Threats to validity

Our study uses the structural metrics considered by Kpodjedo et al. [69]

as a baseline to investigate the contribution of LBS in predicting fault

proneness of a class. In the literature, however, there are other metrics

which are proposed to achieve the same goal. In our future work, we plan

to investigate if LBS are complementary also to these metrics.

Different evaluation metrics assess different aspects of prediction models

and hence might give different results. To see if our results are consistent

across different evaluation metrics, we based our evaluation on selected

evaluation metrics which assess different aspects and have been commonly

used in recent studies.

The prediction results depend on the used models and their configu-

rations. We used default configurations or configurations used in other

studies. Further tuning of the parameters however could change the rank-

ings of the models. The best model from RQ2, SVM, was used with default

parameters. Di Martino et al. [40] suggest the use of genetic algorithms

to select the parameters for further improvement of the results.

In this study, we have considered only three Java systems which limits its

generalizability. However, these systems have been selected from different

domains and with different size to limit this threat. Besides, they are real

world open source programs which are actively evolving.

4.4 Conclusion

In this chapter, we have introduced the notion of lexicon bad smells and

defined a catalog, which lists and describes a set of twelve such smells. We

have developed a suite of detectors based on the heuristics described for

each smell in the catalog. The accuracy of ten detectors in identifying LBS

has been assessed on four real world open source systems, and we have
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discussed the limitations of the detectors.

We have also assessed the impact of LBS in concept location which is

one of the program understanding tasks, and the contribution LBS make

to the fault prediction approaches that use source code structural metrics.

The impact of LBS in concept location was studied using IR-based concept

location techniques on two real world open source systems. The results in-

dicate that lexicon bad smells can be an important factor to consider when

performing IR-based concept location and that refactoring these smells can

have a significant positive impact on the task. In particular, if the lexicon

of the system being maintained is known to be of relatively low quality (as

was the case in one of the two systems analyzed), the benefits of lexicon

smell removal are expected to be quite significant.

To assess the contribution of LBS to the structural metrics based fault

prediction approaches, we have conducted a study using three real world

open source systems. The results show that in the majority of the cases

using LBS with the structural metrics improves fault prediction. To assess

the improvement, we have used different evaluation metrics that address

different aspects of the prediction. The assessment shows that the improve-

ment is consistent in almost all types of evaluation metrics.

In the future, we plan to address the limitations of LBS detectors, and

extend the existing list of bad smells with the collaboration and feedback

of the research community. In addition, we plan to further analyze the

impact of each LBS in concept location, investigate whether LBS provide

additional contributions to other types of metrics that are used to predict

the fault proneness of a class, and validate our results on more systems,

possibly written in different programming languages.
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Chapter 5

Automated identifier completion and

replacement

One of the identifier quality attributes commonly agreed by many au-

thors is conciseness and consistency [8, 39, 74, 101, 2]. In Section 4.1,

we have presented inconsistent identifiers as one type of lexicon bad smell.

This smell is usually caused by lack of knowledge about how concepts are

named in the source code. Acquiring and maintaining such knowledge as

the software evolves, on the other hand, is not an easy task, especially if

programmers are working on a large software system, or if they are new

to the software system. Learning the knowledge from other programmers

is not always possible, as programmers might be located in other parts of

the world, or may not work on the software any longer.

To address this problem, some works have proposed approaches to help

programmers in detecting and avoiding such “violations” [39, 74, 101, 2,

60]. Deissenboeck and Pizka [39] have formally defined conciseness and

consistency of identifiers. Their definition involves a bijective mapping

between concepts and names. Such mappings are stored in a manually

maintained identifier dictionary, used during identifier naming. Lawrie et

al. [74] have proposed a syntactic approach which addresses the cost that

might be incurred due to the construction and maintenance of the identi-
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fier dictionary in Deissenboeck and Pizka’s approach [39]. Lawrie et al.’s

approach [74] defines syntactic rules based on containment of identifiers to

identify violations of conciseness and consistency.

In this chapter, we present an automated approach, based on the onto-

logical concepts and relations automatically extracted from the source code

(see Chapter 2), to suggest new names for identifiers [6]. The suggestions

can be used to complete part of a new identifier or to replace it with a bet-

ter name. During software maintenance, this approach helps programmers

to identify and reuse concept names already used in the code. The ontol-

ogy is extracted from the source code following the NLP-based approach

described in Section 2.2, which exploits the natural language information

captured in the existing identifiers.

Completion and replacement suggestions are obtained from the names

of the concepts and relations in the ontology. We take into consideration

the context in which the identifier is being defined to rank the sugges-

tions. The details of the approach are discussed in Sections 5.1 and 5.2.

To demonstrate our approach we use the example ontology shown in Fig-

ure 5.1. Our proposal is in-line with Deissenboeck and Pizka [39] and

Lawrie et al. [74], but it differs substantially in approach (ours is based on

an automatically extracted ontology) and application scenario (identifier

completion and replacement).

We have evaluated the approach by simulating the programmers’ activ-

ity during identifier naming [6]. The approach followed in the evaluation

and the obtained results are discussed in Section 5.3.
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Figure 5.1: An example ontology

5.1 Identifying candidate concepts

Our proposed approach identifies candidate concepts and relations which

can be used as suggestions for a partially written new identifier. We dis-

tinguish three types of program entities: class, attribute, and method. The

suggestions can be used to complete or replace part or all of the iden-

tifier terms. To identify the candidate suggestions, we use the following

methods.

Term prefixes: Identifiers are composed of one or more terms. In this

method we consider the initial letters of the term being currently written

as a prefix to be matched. The prefix is used to search and identify can-

didate concepts in the ontology which start with the given prefix. The

search is conducted as the developer writes the first few letters of a term

in an identifier. The result is further filtered as she adds more letters to

the prefix. If the developer is writing the first term of a method name, the
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relations of the ontology are searched for possible candidate relations that

start with the prefix of the first term. In fact, in the ontology extracted fol-

lowing our approach (see Section 2.2), verbs in method names are mapped

to relations between a doer concept and the object concept which takes

the action. The suggestions which are identified by this method are used

to complete part of the identifier or to replace the whole identifier.

For example, if a developer starts to type an attribute name by writing

letter “s”, in a system from which the ontology shown in Figure 5.1 is

extracted, our approach searches the ontology for concepts that start with

“s” and lists the candidate suggestions sender, senderMailAddress, and

server. Had the identifier been a method name, the relations in the ontol-

ogy would also be searched and the relation name start would be added to

the list of candidate suggestions. If the developer types “er” after “s”, the

list of candidate terms will contain only the term server (see Table 5.1).

Table 5.1: Suggestions using prefix information

Being typed Suggestions

s... sender

senderMailAddress

server

se... sender

senderMailAddress

server

ser... server

Neighboring concepts: When a fully written term in a new identifier

being currently typed is matched to a concept (or relation for methods) in

the ontology, all neighboring concepts are considered as candidate sugges-

tions. The rationale behind this method is that the neighboring concepts

are concepts which are closely related to the matched concept and possibly
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used together with it in other parts of the system. If for example, in a sys-

tem from which the ontology shown in Figure 5.1 is extracted, a developer

writes file as part of an identifier, the neighboring concepts addressFile,

index, and logFile will be presented as candidates (see Table 5.2).

Table 5.2: Suggestions using prefix and neighboring concepts information

Being typed Suggestions

f... file
...

...

file addressFile

index

logFile

If among the suggested candidate concepts in Table 5.2, the most appro-

priate name for the whole identifier is the specialized concept addressFile,

the developer may use the suggested concept to replace what she already

wrote. If the intention is to name the identifier as fileIndex, then she may

use the suggested concept index to complete the naming.

Synonyms: The terms used in identifiers can be abbreviations, acronyms

or dictionary words. As the developer adds more letters to a prefix and

this becomes a dictionary word, we use WordNet [89, 44] to identify its

synonyms. Such synonyms are then matched to the concepts and relations

in the ontology. If they are present in the ontology, they are added to

the candidate concepts list. For example, if the developer types the term

message, the synonyms of message, content, subject matter, and substance,

are collected from WordNet and matched to the concepts and relations in

the ontology shown in Figure 5.1. The only match found is content and,

hence, only this one is presented as a candidate term. The suggestions

provided in this manner are used mainly to replace the word for which the

synonym is identified.
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5.2 Prioritizing candidate concepts

To prioritize the candidate suggestions, we rank them based on their “rel-

evance” to the context in which the identifier term is being written. The

context, X, is defined as the set of class, attribute and method terms found

in the enclosing scope (e.g., the enclosing class or package), in which the

identifier term of interest is found. In case of ties in the relevance score,

suggestions are listed alphabetically.

Relevance of a candidate concept, cc, to a context, X, is defined as the

sum of ratios of terms in the neighboring concepts shared with the context:

∑

∀ciǫC|ccΥci

|split(ci) ∩X|

|split(ci)|
(5.1)

where C is the set of concepts in the ontology, Υ represents any ontological

relation in the ontology and does not take the order of the concepts into

consideration (i.e., it is regarded as a undirected relation), and split is a

function which gives the terms in the concept name.

For example, if the developer is writing the identifiers shown in Ta-

bles 5.1 and 5.2 in a context X = {mail, sender}, the suggestions will be

ranked using Equation 5.1 as shown in Table 5.3 top and bottom, respec-

tively.

Relevance of a candidate relation, Υc, to a context, X, is defined as the

sum of ratios of terms in the two related concepts shared with the context:

∑

∀ci,∀cjǫC|ciΥccj

|split(ci) ∩X| + |split(cj) ∩X|

|split(ci)|+ |split(cj)|
(5.2)

where C is the set of concepts in the ontology and split is a function which

gives the terms in the concept name.

For example, if the ontological relation start in Figure 5.1 is one of the

candidate suggestions for a method name in a contextX = {mail, sender},

its relevance score will be 0.75 (see Equation 5.2).
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Table 5.3: Ranked suggestions

Being typed Rank Suggestions Score

s... 1 sender 1

2 server 1

3 senderMailAddress 0.5

se... 1 sender 1

2 server 1

3 senderMailAddress 0.5

ser... 1 server 1

f... 1 file 0
...

...
...

...

file 1 addressFile 2

2 index 0

3 logFile 0

5.3 Evaluation

To evaluate our approach, we have simulated the activities of a developer

and automatically collected the suggestions provided by the methods de-

scribed above. In our experiments, between identifier completion and iden-

tifier replacement we have chosen the identifier completion scenario, since

in this scenario it is easier to automate the simulation of the developer’s

activities, with no need for any external, subjective input. The automat-

ically produced suggestions have been analyzed to answer the following

research questions:

• RQ1 How many completion suggestions are correct?

• RQ2 Are the correct completion suggestions listed on the top of the

ranked suggestion list?
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In the first research question, we investigate if the suggestions provided

by our approach to complete part of an identifier are correct. By correct, in

this context, we mean that a suggestion from the suggestion list matches

in part or entirely the identifier to be completed. A suggestion matches an

identifier to be completed partially, if it can be used to complete part of

the identifier. For example, a suggestion list containing file for the prefix

character f is considered correct if the identifier to be completed is fileIn-

dex. In fact, we are re-enacting the identifier writing process considering

identifiers that already exist in the system, so that we know in advance

how the “correct” completion looks like.

A suggestion list may contain more than one suggestion which are

ranked according to their relevance to the context in which the identifier is

being declared (see Section 5.2). When our approach gives correct sugges-

tions, in the second research question we further investigate the ranks of

the top correct suggestions in the suggestion lists. The analysis evaluates

how good our approach is in ranking high the relevant suggestions.

To answer the research questions, we have defined two metrics: success

rate and average rank. Success rate is defined as the probability of getting

correct suggestions, and is used to answer RQ1. It is computed as the ratio

of the number of correct suggestions to the total number of suggestions

provided. A suggestion is provided for each prefix of terms, as written by

the developers of the subject systems under analysis.

The second metrics average rank is computed only for correct sugges-

tions (i.e., suggestion lists containing at least one correct suggestion). It is

computed as the average of the ranks given to the top correct suggestion

in the suggestion lists.
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5.3.1 Methodology

Naming suggestions can be provided to developers as they write each char-

acter of the identifier being defined. To evaluate the suggestions, we have

simulated the developers’ activity using a tool. The simulation is con-

ducted by first removing the identifier from the system (i.e., we pretend

that this identifier has not been introduced yet) and then automatically

collecting the suggestions generated for each prefix sequence of characters

and terms of the identifier. The ontology used to produce the suggestion

list is obtained from a version of the system in which the identifier being

completed has been removed.

In practice, the correctness of a suggestion as a replacement or comple-

tion would be assessed by the developers. In our simulation, however, we

do not involve developers and, hence, we rely on the actual name of the

identifier that has been removed from the system and has been considered

as to be completed. This experimental setting makes it difficult to evalu-

ate the replacement scenario. In fact, we use as “correct” identifier only

the original, fully completed name, while in a replacement scenario, other

alternative names might be equally acceptable. However, assessing their

acceptability would require subjective, user judgment. For this reason,

we consider only the identifier completion scenario. Since the synonyms

method is not useful in a completion scenario where the prefix is already

correct, we did not evaluate this method in our experiments. We focused

on evaluating the other two methods, which can be used to effectively

provide suggestions for completion, term prefixes and neighboring concepts

(see Section 5.1).

Our approach uses an ontology extracted from the system to provide

suggestions. To extract the ontology, we have exploited the natural lan-

guage information captured in identifiers of the source code as presented in
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Section 2.2. The ontology is a reflection of the current state of the system

at hand. Hence, during the simulation, we have eliminated the concepts

and relations which can be extracted from the removed identifier and used

the updated ontology to generate the suggestions.

To evaluate the suggestions provided using term prefixes, all prefixes

of the terms in an identifier which are of length four or less are used to

search and identify candidate suggestions. For suggestions provided using

neighboring concepts, we have used initial sequence of four or less terms

(without including the last term) in the identifier. To get the terms which

constitute an identifier, the name is split using camel casing and under-

score. The splitting can also be carried out using the approaches described

in the related literature [72, 36].

When a concept is composed of more than one term, the terms appearing

on the left are often specifiers. For example, in the identifier userFileIndex,

userFile and user can be considered as specifiers of index and fileIndex

concepts, respectively. Hence, as a variant of the neighboring concepts

method, we have used the first four or less terms as a specifier, and we

have searched and identified candidate concepts in the ontology which start

with the given specifier. We refer to this variant as concept prefixes. The

candidate suggestions provided following the above three methods are then

evaluated using the metrics success rate and average rank.

Identifiers in different classes may happen to have the same name. In

such cases, a suggestion for completing an identifier can easily be obtained

by keeping track of already existing identifiers; with no need to resort to

an ontology. In order to see how many of the correct completion sugges-

tions can be obtained from the same identifier appearing elsewhere in the

system, we have introduced the metrics duplicate completions. Duplicate

completions is the ratio of the number of correct suggestions of identifiers

which are duplicated in other parts of the system (i.e., in other classes),
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to the total number of suggestions.

In our evaluation, method identifiers which appear more than once in

a class due to overloading are considered only once, and we have also

excluded main, constructor, and destructor method identifiers.

5.3.2 Subjects

Our experiment was conducted on six open source systems: ADempiere,

FileZilla client, JEdit, OpenOffice, ThunderBird, and WinMerge. A sum-

mary of the features of these systems is shown in Table 5.4.

Table 5.4: Features of the subject systems. The identifier count does not include con-

structor and destructor identifiers; overloaded method names are counted only once.

System Version Files Classes Lines of Identifiers

text count

ADempiere 3.1.0 1833 1917 482094 38241

FileZilla 3.0.0 264 208 89080 2663

JEdit 4.2 224 639 79198 5000

OpenOffice 1.0.0 12761 12112 4666417 182258

ThunderBird 2.0.0.0 11019 5949 3548012 72431

WinMerge 2.12.2 257 146 67643 2859

ADempiere1 is an enterprise resource planning software, while FileZilla

client2 is a cross-platform, graphical FTP, FTPS, and SFTP client. JEdit3

is a programmer’s editor which provides syntax highlighting for over 2000

file formats. OpenOffice4 is an office software suite for word processing,

spreadsheets, presentations, graphics, and databases. ThunderBird5 is an

1http://www.adempiere.com/
2http://filezilla-project.org/
3http://www.jedit.org/
4http://www.openoffice.org/
5http://www.mozilla.org/en-US/thunderbird/
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email and news client developed by the Mozilla foundation, while Win-

Merge6 is a differencing and merging utility for Windows. In all these sys-

tems, most components are developed using the object oriented paradigm.

Two of the systems, JEdit and ADempiere, have been developed using

Java, while the other four have been developed using C++.

Of the six systems, we have assessed our approach on all class, attribute,

and method names of ADempiere, FileZilla client, JEdit, and WinMerge.

For OpenOffice and ThunderBird, however, the assessment on all identi-

fiers took quite long, due to the size of the respective ontologies extracted

from these systems. Hence, we have randomly sampled 538 and 4205 iden-

tifiers from OpenOffice and ThunderBird, respectively, and conducted our

analysis on them. Actually, our current implementation of the proposed

identifier suggestion methods is not optimized for efficiency. We think that

major performance improvements are indeed possible.

5.3.3 Results

The detailed evaluation results of our approach on the six systems are

shown in Tables 5.5, 5.6, 5.7, and 5.8. Table 5.8 shows the results for

the union of the suggestions provided by concept prefix and neighboring

concepts. The column Size in Table 5.5 refers to the number of prefix

characters of a term, while it refers to the number of preceding terms in

Tables 5.6, 5.7, and 5.8. The three metrics values are computed for all

terms which have a prefix with the specified size in case of term prefix, and

for all identifiers with the number of preceding terms indicated as size in

the remaining three cases.

To answer RQ1, we have summarized the results obtained for the av-

erage success rate metrics across systems as shown in Figure 5.2. Results

indicate that term prefix has returned correct suggestions in the majority

6http://winmerge.org/
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Figure 5.2: Average success rate for each size across systems

of the cases with an average success rate of more than 80% for all prefix

sizes across systems. The next highest number of correct suggestions is

returned by the union of concept prefixes and neighboring concepts with

an average success rate higher than 80% for term sizes equal to one and

around 20% for a number of terms equal to two, three, and four. On the

other hand, neighboring concepts has returned very few correct suggestions,

which resulted in a success rate below 20%.

Suggestions to identifiers can be provided by keeping track of names

defined in other classes of the system. To assess how many of the cor-

rect suggestions can be easily retrieved from duplicate identifiers, we have

computed the duplicate completions metrics (see Tables 5.5, 5.6, 5.7, and

5.8). This metrics measures the number of correct suggestions that can

be retrieved from duplicate identifiers. Results indicate that our approach

provides substantially more correct suggestions than those retrieved just

from duplicate identifiers. In several cases, no suggestion can be provided

from duplicate identifiers, while our approach gives correct suggestions.

For example, in FileZilla the union of concept prefixes and neighboring
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concepts has a success rate of 39% while no suggestion can be retrieved

from duplicate identifiers, when the number of preceding terms is four.

Figure 5.3: Average rank distribution for each size across systems.

RQ2 investigates the quality of our ranking method on correct sugges-

tions. The average top rank for correct suggestions is shown in the last

column of Tables 5.5, 5.6, 5.7, and 5.8. In Figure 5.3, we show two box-

plots for the two methods which have the overall highest success rate, term

prefix, and concept prefixes and neighboring concepts. In all cases, the me-

dian and the distribution of the top ranks across the systems is reduced

(i.e., it improves) as the size increases. For correct suggestions provided

using three or four characters and term prefixes, the average top rank for

all systems is below five. While for term prefixes with two characters,

the average top rank is below five in three systems, FileZilla, JEdit, and

WinMerge. The top rank of correct suggestions provided using only one

character as a term prefix is between 10 and 20 for the above three systems,

while in the other three systems such rank is above 40.

The average top rank of correct suggestions provided using concept prefix
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and neighboring concepts is below five in all systems for three and four

sequences of terms, while for term sequences of size two it is below five in

three systems, again FileZilla, JEdit, and WinMerge. For the same three

systems, the average top rank for a term sequence size of one is below 12.

Overall, we can see that the rank of correct completion suggestions gets

closer to one (best rank) as the number of prefix characters or preceding

terms increases.

Table 5.5: Term prefix results.

Program Size Duplicate Success Average

completions rate rank

ADempiere 1 68.08 92.30 47.91

2 67.46 93.01 9.45

3 63.53 90.53 4.46

4 62.35 90.49 2.56

FileZilla 1 33.55 77.15 10.59

2 36.29 82.62 3.88

3 36.81 82.69 1.96

4 35.74 81.39 1.90

JEdit 1 35.64 77.78 14.67

2 36.69 79.61 4.27

3 39.51 85.14 1.87

4 39.46 85.45 1.65

OpenOffice 1 58.57 97.51 129.65

2 60.08 98.00 14.88

3 61.72 97.61 4.89

4 65.64 97.75 3.07

ThunderBird 1 48.33 92.14 88.44

2 49.51 93.18 15.10

3 49.17 93.56 3.77

4 48.80 93.15 2.11

WinMerge 1 23.38 74.89 13.35

2 25.66 81.90 4.36

3 25.66 80.73 2.27

4 25.70 78.22 1.85
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Table 5.6: Neighboring concepts results.

Program Size Duplicate Success Average

completions rate rank

ADempiere 1 12.48 15.34 41.88

2 2.90 4.54 15.03

3 5.60 6.37 4.17

4 12.02 13.93 2.26

FileZilla 1 7.18 9.56 6.68

2 0 1.06 4.90

3 0 0.36 1.00

4 0 0 -

JEdit 1 7.64 10.31 8.14

2 0.74 2.35 5.13

3 0 0 -

4 0 0 -

OpenOffice 1 23.84 31.25 73.5

2 2.08 2.49 201.00

3 0 1.11 38.00

4 0 3.45 6.00

ThunderBird 1 12.48 16.01 55.21

2 1.58 3.31 35.15

3 0.13 1.01 1.75

4 0 0 -

WinMerge 1 6.08 8.83 17.48

2 1.01 2.48 10.95

3 0 0.14 3.00

4 0 0 -
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Table 5.7: Concept prefix results.

Program Size Duplicate Success Average

completions rate rank

ADempiere 1 66.32 91.91 6.07

2 10.69 21.24 15.40

3 6.70 13.04 1.14

4 5.11 9.17 1.12

FileZilla 1 28.68 73.95 1.85

2 5.84 26.46 1.32

3 0.72 26.09 1.10

4 0 39.39 1.39

JEdit 1 28.23 69.32 1.87

2 4.39 25.40 1.17

3 0.46 18.29 1.11

4 0 7.55 1.00

OpenOffice 1 59.03 97.22 6.28

2 1.66 20.75 1.48

3 1.11 25.56 1.22

4 3.45 24.14 1.14

ThunderBird 1 49.13 92.81 11.57

2 7.17 24.12 1.74

3 4.30 20.76 1.15

4 2.60 19.05 1.14

WinMerge 1 22.25 67.42 2.08

2 2.35 13.26 1.20

3 1.13 5.50 1.08

4 0 1.44 1.00
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Table 5.8: Concept prefix and neighboring concepts results.

Program Size Duplicate Success Average

completions rate rank

ADempiere 1 68.68 94.28 82.25

2 12.24 23.64 18.19

3 11.05 17.70 3.06

4 16.72 22.49 2.16

FileZilla 1 29.42 74.69 8.36

2 5.84 26.99 1.91

3 0.72 26.09 2.01

4 0 39.39 1.50

JEdit 1 29.27 70.37 8.16

2 4.88 27.26 1.93

3 0.46 18.29 1.14

4 0 7.55 1.12

OpenOffice 1 59.03 97.22 224.96

2 3.73 23.24 26.64

3 1.11 26.67 2.88

4 3.45 24.14 1.86

ThunderBird 1 49.13 92.81 76.43

2 8.70 27.14 7.64

3 4.43 21.65 1.48

4 2.60 19.05 1.34

WinMerge 1 22.25 67.42 11.71

2 3.36 15.55 4.20

3 1.13 5.64 1.30

4 0 1.44 1.00
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5.3.4 Discussion

Among the four proposed methods, most of the correct suggestions for all

sizes is provided using term prefix, while only a small number of correct

suggestions are provided using neighboring concepts (see Figure 5.2). The

average success rate of term prefix is more than 80% for all sizes. The

small number of correct suggestions provided by neighboring concepts could

be due to the nature of the task we are performing in this investigation,

identifier completion, and the relation of the neighboring concepts to the

matched concept. If most of the neighboring concepts are in a specialization

relationship with the matched concept in the ontology, they are more suited

for a replacement rather than a completion. For example, the suggestion

addressFile provided for the term file in Table 5.2 can only be used to

replace file, if the intention of the developer is to represent the concept

address file. In our study, however, we do not have the developer in the

loop and we focused only on the name completion task. The correctness

of suggestions for replacement needs to be further studied by involving the

developers in the experiment.

The average success rate has decreased for all types of suggestions except

term prefix, as the size increases. This is not, in general, the case for the

average top ranks of the correct suggestions (see Figure 5.3). In almost all

cases, the average top rank improves considerably as the size increases (see

Tables 5.5, 5.6, 5.7, and 5.8). One of the few (four) cases where the rank

becomes worse as the size increases (from 1 to 2) is observed for ADempiere

in the concept prefix results (see Table 5.7). Such variations are due to an

unequal number of terms in identifiers and to the length of the terms. For

the example taken from ADempiere, for instance, most top ranks could be

observed for identifiers composed of two terms, associated with a pretty

good average rank of 6.07 (for size=1). The top ranks of the suggestions
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for identifiers with two terms, however, are not considered when the size

used by concept prefixes is two or more.

The generally observed inverse relationship between average success

rates and average ranks indicates that as more information is provided,

our approach ranks successful suggestions closer to the top, but it also

excludes many correct suggestions as the size grows, probably because a

smaller portion of ontology is taken into account. This inverse relation-

ship, however, is not observed in the suggestions provided by term prefix.

In term prefix, the average top rank improves, as well as the average suc-

cess rate, as the size grows. In particular, the average top rank of correct

suggestions improves by more than three times as the size used by term

prefixes increases from one to two.

From the experimental results, we can conclude that when two or more

characters have been typed, the term prefixes method can provide correct

suggestions which are ranked quite close to the top. If only one character

is typed, the success rate remains high, but the rank of the correct sug-

gestions decreases, hence forcing the developer to scroll a relatively long

list of suggestions before the correct one can be found. When one or more

preceding terms have already been typed, the concept prefixes method can

be used quite effectively to obtain correct suggestions. Their rank is gen-

erally good if two or more preceding terms have been typed, while it can

either be still good or become dramatically worse, depending on the sub-

ject system, when only one preceding term is available. The performance

of concept prefixes can be slightly improved if it is combined with neigh-

boring concepts. The amount of correct suggestions which are not just

redundant completions indicates that the proposed approach is potentially

very useful. Its performance is compatible with the typical cognitive needs

and limitations of humans (high success rate and top positioning of correct

suggestions) when two or more characters have been typed and when one
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(depending on the system) or two preceding terms are available.

5.3.5 Threats to validity

In this study, we have investigated the usability of our approach in only

six open source systems. Hence, the study has limited generalizability. To

mitigate this limitation, however, we have selected real world open source

systems which vary in size and programming language. The systems are

also taken from different types of software domains.

Neighboring concepts provide suggestions which can be used for both

completion and replacement. In our evaluation, we considered suggestions

as correct if they can be used to complete the respective identifier. This

could miss suggestions provided by this method which can actually be re-

garded as correct, if the decision is made by developers. In the future,

we plan to further investigate the correctness of the suggestions by includ-

ing developers in the study. Despite this limitation, as our evaluation is

automated and does not have any subjectivity, it is repeatable.

5.4 Conclusion

In this chapter, we have presented an approach which exploits the auto-

matic concept extraction approach discussed in Chapter 2 to help develop-

ers address one of the lexicon bad smells, inconsistent identifier, discussed

in Chapter 4. The proposed approach automatically suggests identifier

completions or replacements using the concepts and relations extracted

from the existing code by exploiting natural language information cap-

tured in the identifiers. To provide the suggestions, we have defined three

methods, term prefix, neighboring concepts, and synonym, plus an exten-

sion of the neighboring concepts method, called concept prefixes. In addi-

tion, we have presented an approach to rank the suggestions based on their
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relevance to the context in which the new identifier is being defined.

We have evaluated two of the proposed methods, term prefix, and neigh-

boring concepts with its variant concept prefix, on identifier completion.

The evaluation results show that term prefix has high success rate (>80%)

in providing correct suggestions; the union of neighboring concepts and

concept prefix performs also very well. The average rank of the correct

suggestions, in general, improves as more terms and characters are used

to obtain the suggestions. Results indicate overall applicability and use-

fulness of the proposed approach, when two or more characters have been

typed, or when one (depending on the system) or two preceding terms are

available in the identifier being written.
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Chapter 6

Related works

The programmer’s lexicon used in constructing identifiers is exploited by

various approaches and tools to support the programmer in understanding

the software and carrying maintenance. The level of support tools give to

the programmer and the programmer’s effort to understand the program

depend on the quality of the identifiers involved. In this chapter we de-

scribe different approaches developed to support program understanding

by exploiting the information captured in the identifiers and approaches

aimed at improving the quality of the lexicon used in the identifiers.

6.1 Concept extraction

Program understanding involves mapping existing knowledge of a program

to its elements and enriching this knowledge [16, 100, 94]. Mapping (high

level) knowledge to source code elements can be achieved using concept

location. To support and improve existing concept location techniques,

various approaches which exploit the natural language information cap-

tured in identifiers have been proposed, while to acquire and enrich knowl-

edge about concepts implemented in a program, various ontology based

approaches have been proposed.

A comprehensive survey of the approaches which improve/support con-
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cept location using various information, such as dynamic and textual in-

formation, are discussed in [41]. Here we focus on those approaches which

exploit textual information. Marcus et al. [83] and Gay et al. [47] used

information retrieval (IR) based approaches to reduce the effort required

to understand and locate the part of the source code that needs to be

changed. In their approach, they used Latent Semantic Indexing (LSI)

to convert source code documents (composed of identifier terms) and user

query to their respective mathematical representations. Such formaliza-

tions are then used to compute the similarity between them and get a

ranked list of source code documents (by decreasing similarity). The re-

sults of these approaches are dependent on the quality of user queries. To

assess the quality of queries prior to using them and reduce the effort and

time required to assess the results, Haiduc et al. [55, 54] have proposed

query assessment metrics. The metrics are used to evaluate and classify

the query as high-performing query and low-performing query prior to its

execution. Cleary et al. [34] have proposed an approach to expand queries

using information flow and term co-occurrence information in the system

documentation to identify terms which can be used to expand the queries.

To reduce the developers’ effort in locating concepts using IR tech-

niques, Poshyvanyk and Marcus [95] have combined Formal Concept Anal-

ysis (FCA) with LSI. The approach produces a concept lattice using the

most relevant attributes (terms) selected from the top n ranked documents

(methods). The evaluation of their approach has shown that the concept

lattice is effective in grouping relevant information. Poshyvanyk et al. [97]

have integrated the Google Desktop Search Engine1 into Eclipse, to take

advantage of the engine’s features and to facilitate searching of the source

code. Grant et al. [50] have also proposed automated concept location us-

ing Independent Component Analysis (ICA). In this approach, the authors

1http://googledesktop.blogspot.com/
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use ICA to identify statistically independent signals which correspond to

concepts. The concepts are then mapped to methods which are related in

functionality.

Fry et al. [45] have defined a set of rules and algorithms which uses the

information captured in method names to automatically extract a natural

language representation of the source code, called action oriented identi-

fier graph (AOIG). The AOIG is used in Find Concept to support concern

location and understanding [105]. Find Concept supports developers by

automatically searching AOIG and re-formulating the initial query. Hill

et al. [58] have also presented an approach that supports programmers in

(re-)formulating queries and locating program components. The approach

identifies the context of query words in the source code by extracting and

generating hierarchies of natural language phrases from method and field

signatures. They have compared the context search approach to Find Con-

cept [105] to see if natural language phrases beyond verbs and direct objects

improve the searching capabilities of Find Concept. Results indicate that

context search significantly outperforms Find Concept in terms of effort

and effectiveness.

Petrenko et al. [94] have used fragments of ontologies to partially com-

prehend a program and locate concepts in the source code. In this ap-

proach, programmers first build an initial ontology fragment based on

their previous knowledge of the domain and the information contained

in a change request. They, then, formulate a query based on the knowl-

edge captured in the initial ontology fragment. By looking at the results

of the query and available documentations, they extend the ontology frag-

ment and repeat the process until they are satisfied with the result. This

approach is reported to reduce the search space and the number of missed

program elements that implement a concept. Our approach used to extract

concept from the source code is in line with the work by Petrenko et al. [94],
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the main difference being that we use NLP and structural information to

automatically extract ontology concepts, instead of relying on ontology

fragments constructed manually by programmers. Nonnen et al. [93] have

defined heuristics to identify source code locations where terms are de-

fined. The heuristics are evaluated on 8000 manually evaluated samples

and achieved a precision of 75%.

Ratiu et al. [102] have proposed an approach to automatically extract

a domain ontology from different APIs that are implemented to address

similar problems in a given domain. Concepts and relations of the domain

ontology are retrieved using a graph matching algorithm which is applied

to a graph representation of the APIs. The matching algorithm identifies

concepts using similarity between terms of identifiers found in the APIs

and maps structural relations of APIs to ontological relations. This ap-

proach extracts all prevalent domain concepts found in the different APIs

considered for the extraction. However, unlike our concept extraction ap-

proaches (see Sections 2.2 and 2.3), it depends on the existence of several,

similar APIs, and on the chance of finding two related concepts having

similar names and connected with similar paths in different APIs. Falleri

et al. [43] have proposed an approach to automatically extract and orga-

nize concepts from identifiers in a WordNet-like structure which is referred

to as lexical view. Their approach is similar to our NLP based concept

extraction approach (see Section 2.2), but differs on the technique used to

identify the relations and number of relations used. They have used the

longest common prefix to identify common concept between two identifier

term lists sorted by dominance order, and create a hypernymy/hyponymy

relation, while we have used parse trees produced for the identifier term

lists to identify concepts and inter-concept relations. In addition, our ap-

proach considers more relations than hypernymy/hyponymy.

Maskeri et al. [85] have proposed an LDA (Latent Dirichlet Allocation)
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based human assisted approach to extract topics from a system. The ex-

periments they conducted have shown that their approach is successful in

extracting some of the domain topics. Support Vector Machines (SVM) and

subgraph identification algorithms have been used by Carey and Gannod

[32], and Hsi et al. [62], respectively, to identify the core concepts in a

system. Carey and Gannod [32] have used object oriented metrics to train

an SVM classifier and identify classes related to core concepts, while Hsi

et al. [62] applied graph analysis techniques to ontologies extracted from

the interface of a program. The ontology extraction is carried out by first

manually building an interface map from the user interface. With a similar

objective as these works, we have conducted concept filtering to identify

domain concepts (see Chapter 3). Our approach, however, utilizes different

techniques both to extract and filter ontologies, with the aim of substan-

tially reducing the manual effort involved, by resorting to fully automated

techniques for both steps with the exception of interactive keyword based

filtering (see Section 3.2), which requires a very limited amount of human

intervention.

6.2 Identifier quality improvement

Identifiers are one of the main sources of information used during soft-

ware understanding and maintenance [9]. Hence, their quality has a direct

impact on maintenance and understanding. Various works have proposed

different approaches which can be used to assess/identify poor quality iden-

tifiers in the source code, to improve and to maintain their quality, and to

predict possibly faulty parts of the source code.

Anquetil and Lethbrige [8] suggest to asses the quality of the identifiers

prior to relying on them. In their work, the authors have defined what a

reliable naming convention is and proposed a framework based on similar-
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ity metrics to identify if the naming is reliable or not. Lawrie et al. [76]

have developed the QALP (Quality Assessment using Language Process-

ing) tool to assess the effort required to understand a program, identify

parts of a program that need preventive maintenance and make related

changes. QALP is based on the assumption that a high quality code will

have comments that give a good description of the code. The tool uses

information retrieval techniques to carry out the assessment.

Besides the assessment, quality of identifiers is used to investigate and

identify part of the source code which is likely to be problematic. Binkley

et al. [17] have used QALP to predict number of faults in a module. Butler

et al. [25, 26] have studied the relationship between identifiers violating

naming guidelines and code quality issues reported by FindBugs2, and

found that poor quality identifiers are associated with lower quality source

code. In a similar line, Boogerd and Moonen [21, 22] have studied the

relationship between the MISRA C 2004 standards which include identifier

naming guidelines and issues found in the issue tracking system. The result

of their study indicates that only a subset of the standards correlates with

the issues and suggest to adhere to a customized, project specific set of

rules to decrease the probability of fault occurrence. Arnaoudova et al. [12]

have defined term entropy and context coverage measures to study the

relationship between the terms composing identifiers and fault proneness.

Term entropy is used to measure the “physical” dispersion of a term in

a program, while context coverage is used to measure the “conceptual”

dispersion of the entities in which the term appears. In their study, they

have showed that high term entropy and high context coverage could help

to locate fault prone methods.

When the assessment of the code indicates that there are low quality

identifiers, locating the identifiers with problems is important. In this re-

2http://findbugs.sourceforge.net/
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gard, Ratiu and Deissenboeck [101] have presented a mapping between a

graph like representation of domain knowledge and the program. Ratiu

and Deissenboeck’s approach identifies semantic defects in program ele-

ment names which are categorized into four groups: fatal polysemy, poly-

semy, logical redundancy, and synonymy. Høst and Østvold [61] have also

defined naming bugs and used automatically extracted rules from method

names to identify the bugs in most common method names written in

Java. In addition, they have presented an approach to automatically sug-

gest more suitable names which can be used to fix the naming bugs. In a

similar line, Arnaoudova et al. [11] have recently defined a family of linguis-

tic anti-patterns which are inconsistencies between names of methods and

attributes, and the corresponding definitions and comments. They have

classified the anti-patterns in to six categories based on what the names

say they do and what the corresponding implementations actually do.

To improve the quality of identifiers, Deissenboeck and Pizka [39] pro-

posed a formal model to consistently and concisely name identifiers. To

achieve consistency, the model defines a rule which requires a bijective

mapping between a set of names and a set of concepts. By applying this

rule while giving names to program elements, programmers eliminate the

inconsistency that might arise due to homonyms and synonyms of lexicon

in an identifier. To ensure conciseness of names, the authors have also

defined two more rules related to correctness and conciseness.

The bijective mapping between concepts and names requires human

intervention. Hence, constructing such mapping is difficult especially for

large existing systems. Considering this weakness of the model, Lawrie et

al. [74] proposed a syntactic approach to concisely and consistently name

identifiers. Lawrie et al. ’s approach defines two rules based on containment

of soft-words of an identifier in another. The first rule states that there

is a syntactic synonym consistency violation, if an identifier’s soft-words
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are contained in another identifier in the same sequence. While the second

rule, syntactic conciseness, states that there is violation of this rule if two or

more identifiers contain soft-words of another identifier in the same order.

This approach has limitations in discovering inconsistencies that arise from

homonyms and abbreviations (e.g. abspos and pixel absolute position)

[73]. In addition, it gives false positives when a containing identifier has

a different meaning due to the other composing word(s) or is used in a

hierarchy (for example, inheritance) of the system. These false positives

are regarded in the paper as addressable, by considering parts of speech.

The expansion of abbreviations found in identifiers increases the recall

of Lawrie et al. ’s approach [74] which is used to identify inconsistencies

[73]. In addition, expanding abbreviations and acronyms, to their appropri-

ate full length words improves programmer’s code understanding [75]. To

expand abbreviations, similar approaches are suggested in different works

[70, 73, 57, 71, 36]. The approaches in general follow three steps to expand

abbreviations or acronyms. In the first step, they identify non-dictionary

words which are potential abbreviations or acronyms by splitting the iden-

tifiers. Then, they try to identify possible expansions from a list of words in

pre/user-defined dictionaries [70, 73, 36] or automatically extracted word

list [57] and phrases [73], or by looking at patterns of text in the code

[57, 71]. In the last step of Laitinen et al. ’s approach [70], the user is

asked to choose the appropriate substitution while Lawrie et al. ’s tool [73]

automatically returns a substitute only when there is a single match. In

Hill et al. ’s approach [57] the tool computes the most frequent expan-

sion and suggests the one with the highest score as the correct expansion.

Corazza et al. ’s approach [36] uses Baeza-Yates and Perleberg’s string

matching algorithm [13] to match the abbreviations with dictionary words

and considers the expansion with lowest cost as the suggested expansion,

while Lawrie and Binkley [71] use a similarity measure based on Google
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data set [23] to select the most likely expansion.

To make the identifiers in the programs more meaningful, Caprile and

Tonella [30] have proposed restructuring the names. The restructuring of

identifiers is carried out on two different aspects of identifiers, lexicon and

syntax. The words used to construct identifiers are restructured by using

standard lexicon that can be extracted from the source code or provided

by the company. To syntactically restructure the identifiers, particularly

function identifiers, they have proposed to use a standard grammar that

can again be proposed by the company or derived from the source code.

The standard grammar is also used to further study the syntactical behav-

ior of method names and identify the basic blocks needed by programmers

to build new identifiers [31]. In addition, it improves the efficiency of tools

(example Find-Concept in [105]) that rely on the syntactical composition

of identifiers. Binkley et al. [18] have defined a template similar to what is

defined in Section 2.1.2 to improve the accuracy of parts-of-speech (POS)

tagger on field names. From the POS tags, they have defined field name

formation rules which can be used to support improved naming. Their

approach is similar to ours in improving the accuracy of natural language

taggers/analyzers, but we differ on the application of the results. They

have used the POS tags to define rules which can be used to improve

naming while we use the POS tags and dependency relations to identify

concepts and relations among concepts to build an ontology.

The aforementioned approaches present different rules and techniques in

which identifiers become more readable and hence comprehensible. How-

ever, programmers might not follow them all the time due to various rea-

sons, like the additional effort required or time constraints.

In our approach (see Chapter 4), we introduce naming anti-patterns

which are bad smells of the lexicon that reduce the quality of the names

used and compromise the comprehensibility of the source code. We pro-
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posed heuristics to identify such lexicon bad smells, detect them and sug-

gest refactoring techniques to improve the quality of the lexicon.
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Chapter 7

Conclusions and future works

7.1 Conclusions

During software evolution developers consult various artifacts related to the

software (e.g., requirement document, source code, etc.) to understand the

software and make changes. For most software, however, all artifacts except

the source code are often unavailable or not up-to-date. Hence, developers

mostly rely on the information captured in the source code to understand

and evolve the software. Information such as the concepts implemented in

the source code and where they are implemented is mainly communicated

through the identifiers.

Program understanding involves (re-)building the mental model of the

program as it is represented in the source code and identifiers play an

important role in this. The effort involved in the understanding process

heavily depends on the quality of the programmers’ lexicon used to con-

struct the identifiers.

In this work, we have presented two approaches, which are based on (i)

the natural language information captured in the identifiers; and (ii) the

structural information of the code, to extract concepts and inter-concept

relationships. The concepts extracted have been evaluated on the support

they give to a program understanding task, concept location. The results
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indicate that combining the concepts and inter-concept relations extracted

using both approaches give better practical and statistically significant

results.

To extract the natural language information we have used natural lan-

guage analyzers. Natural language analyzers, however, are mainly devel-

oped to work with sentences which are different from the term sequences

generated after splitting identifiers. In this regard, we have proposed two

approaches where (i) heuristics are used to convert the term sequences con-

structed from identifiers to sentences and adapt them to the form expected

by natural language analyzers; and (ii) a natural language analyzer train-

ing set which resembles term sequences constructed from identifiers is built

from documentations close to the software under consideration and used

to adapt the analyzer to work with identifier term sequences. In our study,

the extracted ontologies have been evaluated based on the support they

give to a program understanding task, concept location. The results show

that they are equally good in improving the effectiveness of queries formu-

lated in concept location. They also indicate that the extracted natural

language information is essential to improve the performance of concept

location, regardless of the used analyzer.

The concepts extracted following our approach are composed of both

domain concepts and implementation concepts, as in the source code from

which they are extracted. In some cases, the objective of the developer

can be to acquire the domain information captured in the source code and

understand the relationships among the domain concepts. In such cases,

separating the domain concepts from the implementation concept facili-

tates understanding. In this regard, we have presented three information

retrieval (IR) approaches to filter domain concepts: non-interactive key-

word based filtering, interactive keyword based filtering, and topic based

filtering. Among the three approaches interactive keyword based filtering,
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which requires minimal human involvement was found to be effective in

filtering domain concepts.

Besides supporting the extraction of concepts from the source code, we

have studied identifier naming patterns and characteristics, and defined a

publicly available catalog of lexicon bad smells, that may have a negative

impact on the effort put to understand a program. Lexicon bad smells

(LBS) are problems related to identifier construction. The catalog con-

tains definition of the LBS, symptom, exceptions to the LBS, a heuristics

on how to detect them, and a suggestion on how to refactor them. We

have also developed a publicly available suit of tools which implement the

heuristics proposed to detect the LBS. The evaluation conducted to assess

the accuracy of the detectors shows that the implemented detectors are

good approximations of the corresponding LBS definitions.

We have conducted an experiment to investigate if LBS have an impact

on concept location. The result shows that LBS can be an important

factor to consider when performing IR-based concept location and that

refactoring LBS can have a significant positive impact on the task. In

particular, if the lexicon of the system being maintained is known to be

of relatively low quality the benefits of lexicon smell removal on concept

location are expected to be quite significant. LBS have been also assessed in

terms of the contribution they can give to fault prediction. Fault prediction

is one of the mechanisms used to predict faulty parts of the software and

take measures to minimize post release maintenance costs and provide

quality software. The results of our assessment shows that using LBS

together with structural metrics improves fault prediction in the majority

of the cases.

LBS are problems which are introduced in the code while defining iden-

tifiers. In this work, we have proposed an approach which can assist devel-

opers in (re-)defining identifiers and avoid inconsistencies. The approach
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exploits the natural language based concept extraction approach described

above and uses three methods, term prefix, neighboring concepts, and syn-

onym, plus an extension of the neighboring concepts method, called concept

prefixes to provide a ranked list of terms to complete or replace an identifier

being defined. The results of the evaluation conducted on identifier com-

pletion using two of the proposed methods, term prefix, and neighboring

concepts with its variant concept prefix, show the applicability and useful-

ness of the approach in providing correct suggestions. This indicates that

assisting developers in extracting knowledge already captured in the source

code will allow them also to name concepts in the source code consistently.

7.2 Future works

In this work, we have presented two approaches to extract concepts and

inter-concept relations from the source code and evaluated the usability of

the concepts in a program understanding task, concept location. In the

evaluation, we have used the results of the queries formulated with and

without the use of the extracted concepts. Recently, Haiduc et al. [55, 54]

have proposed query assessment metrics which are used to classify if a

query is effective or not, prior to its execution. We believe combining

Haiduc et al. ’s query classification approach with our approach to select

the effective queries will benefit developers by saving time and effort spent

in formulating an effective query.

Besides the support the extracted concepts and the relations among

them give to concept location, we believe that they can be used to support

other tasks such as prediction and assessment of code quality, similar to

the works of Poshyvanyk et al. [96] and Marcus et al. [82]. We also plan

to investigate such dimensions in the future.

To filter domain concepts from the ontologies built using our approaches,
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we have applied information retrieval (IR) techniques. While using such

techniques, we have focused only on filtering the domain concepts and we

have used a simple rule to keep the inter-concept relationship: a relation

is kept if concepts at both ends of the relation are found to be domain con-

cepts. In the future, we plan to investigate heuristics which can be used to

infer possible relationships between domain concepts which are connected

indirectly, through other relations connecting intermediate implementation

concepts.

To improve the quality of identifiers, we have developed an approach

which exploits the concepts extracted following our approach and we sug-

gest terms which can be used for replacing or completing the identifiers

being defined. In the future, we plan to investigate other approaches which

can be used to avoid other types of LBS and we plan to integrate them with

our identifier suggestion approach, to provide developers with a compre-

hensive identifier naming assistance tool. Besides, we plan to extend the

LBS catalog with new bad smells that include also more types of identifiers.
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Guéhéneuc, and Giuliano Antoniol. Physical and conceptual identi-

fier dispersion: Measures and relation to fault proneness. In Proceed-

ings of the 2010 IEEE International Conference on Software Main-

tenance, ICSM ’10, pages 1–5, Washington, DC, USA, 2010. IEEE

Computer Society.

[13] Ricardo A. Baeza-yates and Chris H. Perleberg. Fast and practical

approximate string matching. In 3rd Annual Symposium in Combi-

natorial Pattern Matching, CPM ’92, pages 185–192, London, UK,

UK, 1992. Springer-Verlag.

[14] Robert M. Bell, Thomas J. Ostrand, and Elaine J. Weyuker. Does

measuring code change improve fault prediction? In Proceedings of

the 7th International Conference on Predictive Models in Software

Engineering, Promise ’11, pages 2:1–2:8, New York, NY, USA, 2011.

ACM.

[15] Yoav Benjamini and Yosef Hochberg. Controlling the false discovery

rate: A practical and powerful approach to multiple testing. Journal

of the Royal Statistical Society. Series B (Methodological), 57(1):pp.

289–300, 1995.

[16] T.J. Biggerstaff, B.G. Mitbander, and D. Webster. The concept as-

signment problem in program understanding. In Proceedings of the

15th International Conference on Software Engineering, ICSE ’93,

pages 482 –498, Los Alamitos, CA, USA, may 1993. IEEE Computer

Society Press.

211



BIBLIOGRAPHY BIBLIOGRAPHY

[17] D. Binkley, H. Feild, D. Lawrie, and M. Pighin. Software fault pre-

diction using language processing. In Testing: Academic and Indus-

trial Conference Practice and Research Techniques - MUTATION,

TAICPART-MUTATION ’07, pages 99–110, Washington, DC, USA,

2007. IEEE Computer Society.

[18] Dave Binkley, Matthew Hearn, and Dawn Lawrie. Improving iden-

tifier informativeness using part of speech information. In Proceed-

ings of the 8th Working Conference on Mining Software Repositories,

MSR ’11, pages 203–206, New York, NY, USA, 2011. ACM.

[19] David M. Blei. Probabilistic topic models. Communications of ACM,

55(4):77–84, 2012.

[20] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet

allocation. J. Mach. Learn. Res., 3:993–1022, 2003.

[21] Cathal Boogerd and Leon Moonen. Assessing the value of coding

standards: An empirical study. In Proceedings of the 24th IEEE

International Conference on Software Maintenance, ICSM ’08, pages

277 –286, Washington, DC, USA, 2008. IEEE Computer Society.

[22] Cathal Boogerd and Leon Moonen. Evaluating the relation between

coding standard violations and faults within and across software ver-

sions. In Proceedings of the 6th IEEE International Working Confer-

ence on Mining Software Repositories, MSR ’09, pages 41–50, Wash-

ington, DC, USA, 2009. IEEE Computer Society.

[23] Thorsten Brants and Alex Franz. Web 1T 5-gram Version 1. Lin-

guistic Data Consortium, Philadelphia, PA. Philadelphia, PA, 2006.

212



BIBLIOGRAPHY BIBLIOGRAPHY

[24] Lionel C. Briand, John W. Daly, and Jürgen Wüst. A unified frame-
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