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Abstract

Video streaming is rapidly becoming one of the key services of the Internet.

Most streaming is today “on demand” and delivered via unicast delivery; how-

ever, many applications require delivery to many end-users and the lack of

ubiquitous IP multicast remains a weakness of the Internet.

Given this scenario, the peer-to-peer (P2P) or peer-assisted communica-

tions is an appealing solution, especially in light of its intrinsic scalability

and its extremely low initial investment requirements. However, the design

of efficient, robust, and performing P2P streaming systems remains a high

challenge, in particular when real-time (hard or soft) constraints are part of

the service quality, as in TV distribution or conferencing.

This thesis deals with P2P live streaming, concentrating on unstructured,

swarm-based systems. The protocols explored and proposed are based in gen-

eral on mixed Push/Pull phases, i.e., the behavior of peers alternates between

offering content to other peers and seeking the content from other peers.

The first part of the work is dedicated to the analysis of the fundamen-

tal properties of the Push/Pull protocols, including the enhancement of base

protocols with a chunks’ negotiation phase, which enable peers to execute par-

allel communications at the same time, fully exploiting their resources and

drastically reducing duplicates and waste. Next, the focus is shifted on the

impact of network parameters in video streaming distribution, showing that

promoting locality in interactions leads to better performance than selecting

target peers randomly.
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Then, the attention is focused on wireless scenarios by mixing local mul-

ticast techniques (based on a modified version of the Protocol Independent

Multicast –PIM– adapted to wireless environments) with active Pull recov-

ery of missing data, with a peer-assisted approach. This protocol, called

PullCast, enables end-users to pull missed data packets via unicast com-

munications while they receive video packet in multicast via push, exhibiting

interesting results in terms of chunks diffusion delay and fraction of end-

users served.

Finally, the GRAPES library is introduced to provide a set of open-source

components conceived as basic building blocks for developing new P2P stream-

ing applications which have in mind the intelligent usage of network resources

as well as the Quality of Experience of final users. GRAPES is the core li-

brary behind PeerStreamer, an open source P2P media streaming framework

developed under the NAPA-WINE European research project, and currently

supported by the EIT ICT Labs.

Keywords: Peer-to-Peer, Content Distribution, Multicast, Live Streaming,

Push/Pull Protocols, Wireless Mesh Networks
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Chapter 1

Introduction

1.1 Content Distribution

In the last decade the Internet has experienced a tremendous growth of data,

especially multimedia contents. According to Cisco VNI (Visual Networking

Index), video streaming is dominating mobile communications, exceeding

51% of total traffic by the end of 2012,1 accounting for over two-thirds of total

mobile data traffic by the end of 2017, as reported in Fig. 1.1. Thus, video

and TV services are fast becoming an important part of users’ lives, resulting

in a significant grown of bandwidth used for delivering video contents.

Broadband penetration is increasing dramatically; Telecommunication

companies are deploying miles of optical fibers to improve the last-mile

telecommunications from fiber-to-the-neighborhood (FTTN) to fiber-to-the-

home (FTTH), offering more and more bandwidth to home and business

networks; On the wireless side, the fourth generation of mobile communi-

cation (4G) offers high speed broadband Internet access, guaranteeing high

mobility communications through the Long-Term Evolution (LTE), and the

future LTE-Advanced.

1http://www.cisco.com
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CHAPTER 1. INTRODUCTION

Figure 1.1: Mobile traffic forecast (Cisco VNI 2013).

TV broadcasters, independent producers, and the end-users themselves

are willing to offer their video contents to the Internet community which

represents a potential market that makes video streaming more attracting

than ever.

Video streaming is a typical multicast application which involves a

large number of participants that are willing to receive the same stream

of packets. Content providers can rely on the client-server architecture to

stream their video contents. Although this architecture is simple to manage

and to update, however, it is very expensive to maintain and is not suitable

for serving large population of users, which is a fundamental requirement in

video streaming systems.

Today, the content distribution is a potential business opportunity; New

companies are deploying their private infrastructure by placing their network

resources strategically at the network edges, providing a high-performance

network for content delivering, namely Content Delivery Network (CDN).

However, they offer an excellent service at a price suitable for big content

providers, but excessive for small-medium ones.
2



1.1. CONTENT DISTRIBUTION

The peer-to-peer (P2P) paradigm promises to solve the content distribu-

tion problem through a flexible application-level distribution, following the

epidemic-style dissemination mechanisms where the stream is divided into

small parts, called chunks, and exchanged among peers in a distributed fash-

ion, without additional costs. The P2P technology has become increasingly

popular to stream video contents, as shown by the success of several com-

mercial systems such as PPLive2, PPStream3, UUSee4, and SopCast5.

Given this scenario, the big challenge is to design an efficient and reliable

peer-to-peer content distribution system which enables users to enjoy their

video contents anytime and anywhere.

1.1.1 Video Streaming Multicasting

Media streaming refers to a process of delivering multimedia content, such

as video streaming, to a group of users called participants. The content is

streamed regarding timing and quality constraints, and the main problem

regards an efficient distribution process that satisfies the corresponding con-

straints and application requirements.

Basically, video streaming contents can be classified in two groups: on-

demand and live. In on-demand video streaming, called Video on-Demand

(VoD), contents are pre-recorded and stored in one or more servers, and their

size is fixed and well known, making VoD similar to file transfer: the content

can be partially buffered or completely downloaded before being watched,

and timeliness constraints are not critical. Thus, the content can be played

and paused by users, as well as rewound or fast-forwarded: users can navigate

the content. For instance, users can download the episodes of their favorite

TV Series at anytime, and watch them in the evening or during the weekend,

2www.pptv.com
3www.ppstream.com
4www.uusee.com
5www.sopcast.org

3



CHAPTER 1. INTRODUCTION

Figure 1.2: On-demand video streaming.

whenever they want. Netflix and Hulu are two companies that offer Video

on-Demand both ad-supported and at monthly price.

In live video streaming, as represented in Fig. 1.3, the content to stream

is generated during the execution of the corresponding event (e.g., football

match), making the content available at a certain time for all the users, for

instance when the football match starts, and cannot be fast-forwarded.

Figure 1.3: Live video streaming service.

4



1.1. CONTENT DISTRIBUTION

Therefore, the size and the number of video packets that will be sent

to participants are not known a priori, making the video distribution more

challenging than in Video on-Demand. These characteristics emphasize the

timeliness constraints of live streaming, affecting the quality experienced by

customers: users are willing to watch the football match without interrup-

tions, enjoying a sharp and clean live stream. Perhaps, they can wait a

handful of seconds to establish the stream, buffering a few seconds, then,

they are very demanding on its quality.

Live video streaming are delay sensitive services, reflecting the “play while

downloading” model. The contents must be delivered within a limited delay,

otherwise can be discarded, resulting in a wasting of time and resources.

The source node can stream the content at different data rates and video

formats, resulting in several channels, related either to the network resources

or to the devices available at participants. For instance, TV broadcaster

might distribute the same channel on regular and the High Definition (HD)

quality, and the latter requires more resources.

Thus, there is a trade-off between the target video quality and the amount

of resources employed.

1.1.2 IP Multicast

IP Multicast [80] provides a scalable point-to-multipoint delivery service for

those applications that involve groups of users. IP Multicast delivers traf-

fic from a source host towards multiple receivers, consuming less network

resources than any other solution.

Basically, a multicast session is characterized by one or more nodes, called

multicast sources, which inject multicast traffic, for instance video, towards

a multicast group, flowing such packets through the multicast overlay: such

packets are replicated by multicast routers towards participants, as showed

in Fig. 1.4.

5



CHAPTER 1. INTRODUCTION

In particular, users announce their interest to join a multicast session to

routers by subscribing to the corresponding multicast group address through

the Internet Group Management Protocol (IGMPv3) [21]. After a router re-

ceives a membership subscription, it joins the corresponding multicast group

address, being part of the multicast overlay. Then, it receives the data pack-

ets associated to the multicast group address, and it will forward such data

packets towards the users interested in that multicast group. The multicast

routing protocols enable only a subset of multicast routers to forward the

multicast traffic towards the hosts or other routers, resulting in an overlay

topology, usually a spanning tree, on top of the physical network.

Multicast routing protocols can be classified in two categories: source-

based and core-based. In source-based multicast routing protocol, the source

of the multicast session is the root of the multicast tree. Core-based multicast

protocols construct a shared multicast tree for each multicast group, having a

rendezvous point as the root of the tree. The multicast tree is shared among

all the source nodes of the same group. Each source-node sends the multicast

data to the core node that forwards such data to the shared tree.

There are several multicast routing protocol, they include Protocol In-

dependent Multicast Sparse Mode (PIM-SM) [34], PIM Dense Mode (PIM-

DM) [14], Distance Vector Multicast Routing Protocol (DVMRP) [102],

Multicast Open Shortest Path First (MOSPF) [75], Border Gateway

Multicast Protocol (BGMP) [59], Core-Based Trees (CBT) [15], and many

other protocols.

IP Multicast is the most efficient solution for video streaming distribution:

it employs the actual bandwidth needed to deliver the video packets, plus the

signaling overhead introduced by the multicast routing protocol to establish

and maintain the multicast overlay, and the data delivery delay corresponds

to the minimum delay to reach all the receivers.
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Figure 1.4: IP Multicast over a source-based tree topology.

However, IP Multicast suffers of several issues [33], they include assigning

permanent and temporal multicast address, multicast data integrity mech-

anism, multicast access control, security and protection on multicast routes

and sessions, group management, and sender authorization. In addition, sev-

eral Internet Service Provides (ISPs) used to disable multicast in their core

routers, or filter multicast traffic, or their backbone routers are too old to

support multicast. Therefore, the IP Multicast service suffers of several issues

and it is not yet available on the Internet.

1.1.3 Client-Server Architecture

The client-sever paradigm is the most common centralized computing archi-

tecture where servers and clients are connected through IP unicast connec-

tions, as depicted in Fig. 1.5.

Basically, each server provides a collection of services and the clients obtain

the desired service through request messages. For instance, a server might

offer a collection of video contents and the clients that are willing to watch

them will issue the corresponding request messages.

7
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Figure 1.5: The client-server architecture.

Content providers might distribute their video contents through the client-

server architecture, mainly because it is easy to set up and simple to maintain

and to update. However, in order to guarantee the service availability and

reliability, they have to reserve a noteworthy collection of resources from

hardware resources to human resources, resulting in a significant investment

of money.

In addition, the client-server architecture provides the access to only a

limited number of clients, until the server’s resources are saturated, limiting

significantly the number of clients that will access to the video streaming

service. Thus, the client-server model might be expensive to maintain and

does not scale with the number of clients, being available to only a subset of

clients, that is in contrast to the actual objectives of content providers.

1.1.4 Content Delivery Networks

A Content Delivery Network, such as Akamai, Weebo6, and CoralCDN7,

consists of a collection of network and storage resources spanning the Inter-

net. The origin server pushes the content over several servers that are placed

strategically at the network edges, offering a transparent and efficient deliv-

ery to the clients, reducing significantly the latency at the end-users. This

6www.weebo.it
7www.coralcdn.org
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Figure 1.6: A content delivery network infrastructure.

architecture allows to distribute the burn of the clients traffic over several

servers, reducing the load at the origin server and the network congestion, as

well. Thus, CDNs overcome the limits of the client-server model by providing

more servers, multiplying the amount of available resources, increasing the

number of clients served [58].

Several content providers, such as USAToday8 and New York Post9, moved

their Web sites to CDNs, obtaining fast, reliable, and scalable content deliv-

ery. Nowadays, video content providers and TV broadcasters, such as RAI10,

BBC11, and CBC12, leverage on CDNs to provide their contents, for instance

full-length shows, movies, and TV series.

Although the CDN technology employs more resources than the client-

server architecture, however, such resources are limited and might be insuf-

ficient to sustain the video streaming service, in terms of number of partici-

pants, number of video channels, and video quality data stream. In addition,

small content provides, such as local TV broadcasters and radios, or indepen-

8www.usatoday.com
9www.nypost.com

10www.rai.tv
11www.bbc.com
12www.cbc.com
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Figure 1.7: The peer-to-peer architecture.

dent filmmakers, cannot benefit of CDNs advantages because of their cost,

that is not affordable for such small-medium content providers.

1.1.5 Peer-to-Peer Technology

The basic philosophy behind the peer-to-peer paradigm is to promote co-

operation among end-users exploiting their resources: end-users behave as

client and server at the same time, they are completely equivalent, namely

peers. In particular, peers not only download data from the network, but

become active entities of the distribution process by employing their band-

width resources to upload the downloaded data to other peers, resulting

in a significant load reduction at the origin server, as depicted in Fig. 1.7;

Hence, the P2P paradigm addresses the resources bottleneck by employing

the peers’ ones.

The peer-to-peer technology owes its popularity to file sharing which aims

to disseminate data files on the Internet in a distributed fashion. Today,

emule13 and BitTorrent14 are the most used file sharing applications. Ac-

13www.emule-project.net
14www.bittorrent.com

10



1.2. MOTIVATION OF THE THESIS

tually, the P2P technology is employed in several services, including search

engines (e.g., Faroo15), Voice over IP (e.g., Skype16), and other applications,

representing a noteworthy part [86, 55] of the global Internet traffic.

Recently, P2P video streaming has emerged as a promising solution for

Internet video distribution, as testified by the growing success of commer-

cial streaming systems such as UUSee, PPLive, SopCast, and many others.

Basically, P2P video streaming is characterized by one source node which

transforms video flows into data packets that are injected into the P2P net-

work. Then, peers establish several connections among them to exchange

such data packets as well as additional information that can be helpful to

improve the streaming experience.

1.2 Motivation of the Thesis

TV-like video streaming is a typical multicast application because involves a

large number of participants that are willing to receive the same stream of

video packets.

The actual content delivery can be realized in several ways. IP Multicast

is the network solution which allows to deliver the same stream of packets to

multiple receivers. Multicast packets are replicated by the network routers,

without adding any additional load to the source node, using the least net-

work resources needed. Unfortunately, the Internet Service Provides (ISPs)

used to filter multicast traffic or to disable multicast protocols in Internet

routers, making IP multicast unfeasible to distribute multicast traffic (e.g.,

video content) on the global Internet.
15www.faroo.com
16www.skype.com
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The client-server paradigm is suitable to manage several permanent con-

nections, emulating the IP Multicast through multiple IP unicast connections

from the server to each client. However, when the population of clients in-

creases, the number of IP unicast connections grows dramatically, and the

server can either reduce the amount of resources (e.g., bandwidth) dedicated

to each unicast connection (i.e., user), or reject clients connections, resulting

in a quality degradation or a denial of service, respectively. The incapacity to

scale with the number of clients and the limited amount of available resource

at the server, make the client-server architecture unsuitable for delivering

live streaming content to millions of end-users at any time.

The Content Delivery Networks (CDNs) overcome such limitations by

deploying high speed array of servers, actually providing more resources than

the client-server model, enabling the system to sustain more clients. However,

content providers have to paying a fee for each GB delivered, which can be

expensive for small-medium content providers.

In recent years, the Peer-to-Peer technology has emerged as a promising

solution for Internet video distribution. This technology i) leverages the

resources available at the end-users, revealing great potential to scale and ii)

does not require any additional support from Internet routers and network

infrastructure, resulting in a cost-effective and easy to deploy solution.

This thesis focuses on unstructured (i.e., mesh-based) P2P systems which

exhibits better performance [71] than structured ones. The key component of

such systems is the scheduler which i) realizes the Internet video distribution

through either push-based or pull-based diffusion schemes, ii) combines dif-

ferent peer and piece selection algorithms, and iii) leverages on peers and net-

work information, exploiting the overall system resources. Hence, the sched-

uler operates to satisfy the application timing and bandwidth constraints,

through an efficient use of peers resources and information, optimizing the

video quality experienced by end-users.

12
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Given this scenario, the big challenge is to design an efficient and reli-

able mesh-based P2P streaming system, shedding an insightful light on the

diffusion schemes and network parameters employed in video distribution,

enabling end-users to experience their video contents anytime and anywhere.

1.3 Structure of the Thesis and Contributions

As outlined discussing the motivation, this thesis deals with protocols and

scheduling strategies for unstructured P2P streaming systems, with particu-

lar attention and reference to large-scale, real-time applications like TV.

Chapter 2 reviews the state-of-the-art in peer-to-peer application-level

multicast systems, describing what has been proposed so far in the literature

to tackle the research problem described in Section 1.2.

Chapter 3 presents our research work, introducing a new class of hybrid

protocols that alternates data dissemination via push with missed data re-

covery via pull, this contribution is summarized in Section 1.3.1.

Chapter 4 points out the issues that prevent the Protocol Independent

Multicast protocol family to work on Wireless Mesh Networks, proposing

a solution to tackle such issues and evaluating the Wireless-PIM protocol.

Then, the hybrid protocols are applied to video multicast session in Wireless

Mesh Networks, where the push is performed via standard multicast delivery,

while the pull is used to recover missed data packets in a P2P fashion. This

work is reviewed in Section 1.3.2.

Chapter 5 introduces the GRAPES library, a helpful toolkit for P2P multi-

media systems, presenting the functionalities that GRAPES offers. GRAPES

has been implemented in the NAPA-WINE project and it is currently the core

library behind PeerStreamer, an open source P2P media streaming frame-

work. This contribution is outlined in Section 1.3.3.
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Finally, concluding remarks and insights about future possible research

directions are provided in Chapter 6.

1.3.1 Hybrid Push/Pull Protocols in P2P Networks

This section focuses on a new class of protocols that combines push and pull

diffusion schemes, called hybrid Push/Pull protocols. The class is known as

mesh-based swarming Push/Pull systems or interleave protocols;

The first contribution examines both synchronous and asynchronous mod-

els, exploring the impact of protocols parameters, such as overlay connectivity

type, peers bandwidth, and active neighborhood size, trying to identify the

efficiency of such simple protocols under several scenarios, gaining insight

to design the next protocol generation with performance and efficiency in

mind. The result of our study shows that hybrid protocols can work with-

out having additional information on the other peers, being suitable for high

churn scenario, because a piece negotiation occurs before the actual transfer.

Moreover, the overlay connectivity type (i.e., asymmetric or symmetric) has

no influence when the neighborhood degree is greater than 12 peers. Fur-

thermore, it is shown that the round-trip-time delay (RTT) is an important

parameter to take into account for delay sensitive systems, and can be em-

ployed in peer selection algorithms to promote communication among closest

neighbors, leading to a reduction of the chunks diffusion delay.

Therefore, this contribution will help to better understand content distri-

bution systems and also make a contribution to the debate about the relative

merits of basic, stateless schemes and status-based schemes. Furthermore,

such a hybrid system shows sustainable and efficient streaming with resources

limited to two times the stream rate, ensuring small overhead, a result that

pure push or pull protocols achieve at the price of state exchange between

peers: Such a class of protocols is suitable for delay tolerant content delivery

14



1.3. STRUCTURE OF THE THESIS AND CONTRIBUTIONS

(i.e., file-based communications) as well as high-bandwidth delay sensitive

media streaming, such as live video streaming and IPTV.

1.3.2 Cooperative Multicasting in Wireless Mesh Networks

The second contribution is divided in two parts. The first part analyzes

the problem of extending the Internet multicast protocols to wireless mesh

networks, in view of the third contribution. In particular, it focuses on the

standard Protocol Independent Multicast (PIM) protocols family. Such a

protocols family has been dismissed as non practical, or non feasible, assum-

ing its straightforward application on wireless networks.

This contribution shows that the PIM standard based implementations

improperly interact when employed across wireless mesh networks and iden-

tifies the issues that prevent the PIM protocols to work on such networks.

It proposes a solution which do not require the actual modifications of the

standard, but require only minor modifications of the underlying protocol

implementation, yielding to the Wireless-PIM-DM protocol version.

Then, an evaluation study is addressed through the Wireless-PIM-DM

protocol implementation in a network modeled by using the ns-3 simulator

program. Such a study investigates on the performance of a wireless mesh

network with full static mesh nodes that serve a multicast session to either

static or roaming users.

The performance results show that the Wireless-PIM-DM protocol works

properly and efficiently across wireless mesh networks, and this protocol

scales with the number of clients. In addition, a multicast video stream-

ing session is run on PIM, showing that PIM achieves effective throughput

and packet delay performance behavior.

The second part of this contribution introduces PullCast: A cooperative

protocol for supporting multicast distribution. PullCast applies the hybrid

15



CHAPTER 1. INTRODUCTION

Push/Pull protocols previously explored in the Internet scenario to wireless

mesh networks.

In particular, end-users receive the multicast data packets in push; Then,

such users build their local neighborhood through hello messages, or any gos-

siping protocol, retrieving missed chunks via pull through unicast messages

to 1-hop neighbors, exploiting spatial diversity and higher unicast data rates.

The key idea is to complement the standard multicast delivery protocol (i.e.,

push), by enabling a peer-to-peer mechanism to recover (i.e., pull) a small

fraction of missed data packets from nodes’ neighborhood.

The results show a significant increase of the fraction of peers reaching

the target quality, that is 95% of chunks, showing also a rather low chunks

diffusion delay.

Finally, PullCast has been evaluated in highly structured mesh network,

where the chunks recovery is limited to the equivalent of an 802.11 BSS, and

in more complex scenarios, where the mesh nodes offer connectivity to clients

in a seamless network using a single radio channel, showing that PullCast

improves the system performances in both scenarios.

1.3.3 GRAPES: A Generic Library for P2P Streaming

The last contribution presents the GRAPES library. GRAPES (Generic

Resource-Aware P2P Environment for Streaming) is an open-source library

that provides basic functionalities for building P2P streaming applications.

GRAPES aims at providing a working codebase that can be easily modified

to experiment with and to integrate novel ideas, addressing the problem of

rewriting the whole application for any solution to test.

Currently, GRAPES is the core library of PeerStreamer17, an Open Source

P2P Media Streaming Framework. Indeed, PeerStreamer is today one of the
17http://peerstreamer.org
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most diffused Open Source systems for P2P TV and streaming applications

and its use by researchers and practitioners is increasing steadily.

1.4 Topics Outside the Scope of the Thesis

There are important issues related to content distribution that are outside

the scope of the thesis:

Overlay Discovery and Management. One of the main assumptions in P2P

systems is that peers can easily get in touch with all the other peers involved

in the same video streaming session. Indeed, such systems employ several

mechanisms to discover the overlay network topology. For instance, gossip-

ing protocols [48, 100] can be used to complement the overlay management

protocol, discovering peers belonging to the same streaming session. Then,

the overlay management protocol selects a subset of nodes to populate and

update the neighborhood set to communicate with.

Cooperation and Incentives. The P2P paradigm works on the premise that

peers cooperate among them, sharing their resources, in order to increase

the actual system capacity [108]. However, selfish peers may be motivated

to use more resources than those allowed, for instance by sending a large

number of request for obtaining data packets, without contributing in the

distribution process, actually pauperizing the overall system, or even ex-

hausting the whole P2P streaming system. P2P video streaming systems

should address such a problem, providing mechanism to identify and exclude

such peers (e.g., removing them from their neighborhood). In addition, pro-

viding incentive mechanisms for video streaming distribution is more com-

plex than file-sharing applications, because of the real-time nature of such

application. The tit-for-tat [46] strategy has been successfully employed in
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BitTorrent-like distributions and has been revised for video streaming appli-

cations [87].

Content Integrity and Pollution. The P2P paradigm assumes the peers hon-

esty, however, it cannot guarantee such trustfulness. Peers may intentionally

pollute the content by introducing errors or distributing modified data, yield-

ing in a waste of time and resources to distribute wrong data packets [32].

A simple mechanism to avoid content pollution is to diffuse chunks digi-

tally signed by the source node, allowing peers to decrypt the chunks signa-

ture, discarding wrong packets. In addition, peers may banish that malicious

neighbors that have injected or sent polluted data, diffusing their identities

in the system.

Network Coding. Network coding allows intermediate nodes to encode data

packets in order to perform error correction, exploiting cooperation among

nodes: a client should receive enough linearly independent combinations

of packets to reconstruct the original content,[25]. For instance, wireless

links (e.g., WiFi) suffer from packet loss due to signal attenuation and

interference, and network coding can be employed to address such a problem

over lossy networks.

Security and Privacy. P2P systems are vulnerable to attack by malicious

or malfunctioning nodes at several levels [37]. Such nodes can i) alter the

protocol functioning, for instance sending malformed, different, or false

messages, ii) modify or remove some data or control packets, iii) steal

other nodes information, for instance violating peers privacy by stealing

information on the content they are watching, and iv) performing Denial

of Service attack to some node or, even worse, toward the source node.

In addition, streaming system should grant the access to only authorized
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peers, guaranteeing that their information (e.g., peer’s history) are properly

collected, used, and maintained.

Wireless Physical Layer. Live streaming over wireless networks has more

rigid bandwidth limitations and different network constraints than wireline

networks. In particular, the wireless medium suffers of several issues includ-

ing background noise, signal attenuation, multipath fading, shadowing, and

interference, that make the wireless channel less reliable than wired medium.

In addition, wireless devices are usually battery-powered and the energy con-

sumption is a key parameter to define the corresponding battery life time,

and thus, the up-time period of wireless devices.
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Chapter 2

State-of-the-Art

2.1 P2P Live Streaming

Peer-to-peer networks are emerging as cooperative solution to provide

scalable, reliable, flexible, and cheap to deploy multicast service at the

application-level. P2P systems designed for live video streaming are very

different than those designed for file sharing; Despite of file sharing systems,

where the content is open after being downloaded, in live video streaming sy-

stems the content is play while downloading, introducing more requirements

and constraints, where the main bottleneck is the uplink bandwidth. Such

systems aim to deliver each piece of content within its deadline, through a

clever resource management, avoiding content blackout, in order to provide

high quality of experience to users.

P2P systems may be broadly classified as two-sided or one-sided, depend-

ing on whether peers exchange information or not. For instance, peers can

exchange information about their content (e.g., buffer map), their resources

(e.g., bandwidth), their neighborhood, and other information, at a price of

introducing control messages overhead. However, there is a trade off between

information exchange (e.g., frequency, type) and the corresponding benefits.
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2.1.1 Principles

A peer-to-peer network consists of a group of nodes that communicate and

cooperate among them to achieve a common interest, e.g., video streaming

service. Such nodes are logically connected among them through virtual links,

implementing a network abstraction over the underlying physical topology,

namely overlay network. Hence, each peer maintains a list of peers that form

its neighborhood: the overlay manager module is in charge of populating

and updating such a list of neighbors. Therefore, peers establishes commu-

nications with their neighbors, exchanging video packets and information.

Figure 2.1: From video content to chunks.

Despite of peers, several entities can be involved in the P2P network.

For instance, file sharing systems employ dedicated servers to provide the

indexing services used to search files. Therefore, some services, critical or not,

might be provided or supported through dedicated servers, which are easier

to manage and update, while the data exchange is realized directly between

peers. Such systems that include external entity, for instance servers, are

called hybrid P2P systems, while pure P2P systems consists of only regular

peers, without any external entities.

Basically, live streaming systems are characterized by one or more nodes

that are in charge of distributing the media content, following the file swarm-
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ing paradigm: the video stream is divided in piece of data of a limited size,

called chunks. Hence, such nodes are called source nodes because they are

the actual entry point of the media stream into the network. The source node

encapsulates one or more chunks in IP packets that will be sent towards the

P2P network, as depicted in Fig. 2.1. Afterwards, whenever a new chunk is

generated, this fresh content is received by a few peers that will redistribute

such information towards the other peers.

2.1.2 Overlay Topology

In a P2P network peers are logically connected among them. Such virtual

connections are related to the underlying physical topology, resulting in an

overlay network, as depicted in Fig. 2.2.

Layer

Network

Overlay

IP Layer

Figure 2.2: The overlay network layer.

P2P systems can be classified in structured and unstructured systems,

depending on the resulting delivery tree. In particular, tree-based structured

systems have the same delivery tree for all packets that corresponds to the

actual tree overlay. On the other hand, unstructured overlay dynamically

built the delivery tree for each single packet. while the packet travel into

the overlay.
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Structured Systems

In structured systems, the overlay management protocol entails a fundamen-

tal role, aim at building the tree structure multicast overlay, as shown in

Fig. 2.3. The video source node is the root of the tree and peers establish

parent-child relationships among them: each peer has exactly one parent

node, while internal nodes become k degree parents, connecting to at most

k children;

Figure 2.3: Tree-based overlay network.

Thus, whenever a peer receives a piece of data from its parent, it forwards

such information to its children: the content flows through the tree structure,

from the root to the leaves. Although the tree structure is straightforward

and efficient, however, it suffers network dynamics significantly: the system

must detect quickly such peers departure, otherwise all the peers in the sub-

tree, rooted at the departed nodes, experience data starvation. Thus, the

overlay management protocol has to take care of such issues, introducing

signaling overhead: In structured systems the multicast tree overlay is the

strong and the weak point at the same time.
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Unstructured Systems

In unstructured systems peers are connected between them in a mesh topol-

ogy, establishing neighborhood relationships, as show in Fig. 2.4. Such con-

nections can be either symmetric or asymmetric, resulting in a directed or

undirected graph, respectively. Mesh topologies are more resilient to peers

departures than tree-based systems, because a peer departure results in an

edge removed in the graph that can be replaced by adding another peer (i.e.,

edge) in the corresponding neighborhood.

Figure 2.4: Mesh-based overlay network.

In such systems, each piece of data may follow a different distribution path,

from the source node to each peer. The intelligence resides in the scheduler

which use both neighborhood and network information, as well as its current

state, to perform the content distribution. Basically, peers exchange several

information among them, such as the fraction of chunks received or missed,

the neighborhood size, the QoE score, and other information; The scheduler

uses such information to select both the target peer to contact and the piece

to exchange. In particular, the peer selection algorithm employs one or more

policies to find a suitable peer in the neighborhood to contact, and the chunk

selection algorithm chooses a set of chunks to exchange.
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A comparative study between tree-based and mesh-based performance

reveals [71] that swarm-like distribution in mesh-based overlay exhibits a su-

perior performance. First, swarm-like distribution reduce the impact of low

bandwidth peers. In case of tree-based overlay, the descendant peers of low

bandwidth parents experience content bottleneck, affecting the correspond-

ing sub-tree. Opposite is the case of mesh-based systems, where peers can

fetch the video packets from alternatives paths, obtaining such packets from

their neighboring nodes. In addition, mesh-based systems are more resilient

to network dynamics than tree-based ones which require to re-organize the

whole distribution overlay.

2.1.3 P2P Streaming Architecture

In a live streaming session, peers run the same P2P system, which consists of

several modules. The NAPA-WINE project has defined an high-level system

architecture [18], that include the user, the scheduler, the overlay, the mon-

itoring, the information repository, and the messaging layer module. This

architecture is shown in Fig. 2.5.

The relevance of each module is related to the overlay topology employed.

For instance, in tree-based systems the overlay manager is the core module

because it is in charge of establishing and maintaining the content distri-

bution tree; In mesh-based systems the content distribution engine is the

scheduler module. Thus, such modules interact among them, defining peers

behavior and interactions, applying rules and algorithms to the content dis-

tribution.

User Module This module is in charge of receiving the video stream from

the P2P application, decoding the stream and reproducing the content to the

user’s device.
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Figure 2.5: The NAPA-WINE architecture.

Furthermore, the user modules might provide information about the

streaming quality experienced by the users.

Monitoring Module P2P systems often fail to notice the importance of the

underlying network conditions, the dynamic countermeasure made by ISPs to

tackle such traffic, and the possibility to combine such network measurements

to design a network-aware systems.

This module is in charge of performing measurements on the peer’s envi-

ronment and resources. It provides information on the network access (e.g.,

NAT), resources (e.g., bandwidth) and latency (e.g., RTT) between the local

peer and its neighbors, and other metrics. The importance and the impact of

such measurements to the content distribution system is is one of the main

achievements [18] of the NAPA-WINE project.
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Overlay Module The main task of this module to create and maintain the

peer Neighborhood, which populates this set with a large number neighbors,

guaranteeing resilience and flexibility to overlay dynamics and session switch.

Moreover, each streaming session has its corresponding overlay network;

Thus, whenever the peer switches from one streaming session to another one,

this module has to rebuild the local peer Neighborhood for the new streaming

session.

Repository Management Information are very helpful to perform wise op-

erations. This module stores information and statistics about peers status,

environments, and resources in a centralized database.

Such information can be used by several entities. For instance, peers can

enhance their neighborhood, or improve the session switching mechanism,

network providers can tune the resources allocated to the P2P network, and

content providers can evaluate the impact of their contents.

Scheduler Module The scheduler is the core of the distribution process in

mesh-based systems. It interacts with the other entities of the system, inte-

grating the information gathered from the other peers, with network param-

eters and measurements, as well as the information provided by the overlay

manager, and the current peer state.

The scheduler is in charge of executing the peer and chunk selection algo-

rithms to select the chunks to exchange with the other peers. The algorithms

can be classified in two classes, depending on whether the system is push-

or pull-based, namely diffusion schemes. Push-based systems are sender ori-

ented, because the sender manages the actual content distribution, deciding

the chunks to diffuse through such algorithms. On the other hand, pull-

based systems are receiver oriented, because the receiver selects the content

to receive.
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Furthermore, the order of executing such algorithms provide another clas-

sification, based on whether the chunk is selected before the peer, or vice

versa, stressing the diffusion more on the chunks or on the peers, respec-

tively.

2.1.4 Requirements and Trade-off

This section describes the main requirements of P2P live streaming systems

and the corresponding trade-offs.

Startup and Buffering Delay. P2P systems usually underestimate the start-

up phase. Whenever a peer join the networks, the overlay-discovery operation

is done, collecting information about other peers. Then, the peer receives

data packets from the P2P network, establishing connections to exchange

such packets, and, after a short time, the playout at the peer starts. Thus,

the peer experiences i) the join and overlay-discovery delay, becoming part

of the P2P network and ii) the buffering delay, collecting enough chunks to

play the video. Some resources can be dedicated to minimize such delays,

increasing the quality perceived by users. Similar observations can be applied

for channel switching.

Scalability. P2P systems are supposed to scale with the number of partici-

pants. Even an unexpected increase of participants, also with heterogeneous

resources, should be manage by the system, at a price of marginal effects.

Commercial live streaming systems (e.g., PPLive, CoolStreaming, SopCast)

show how big is the actual P2P population, reporting that the size, depend-

ing on the video content, is between hundreds of thousands and millions

of users, and such a population is growing faster, because of the increasing

penetration of broadband access and the entertainment offers.
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Overlay Management and Reliability. P2P systems employ several proto-

cols, such as gossiping protocols, discovering a partial view of the overlay

network topology. Such protocols can be employed to identify changes in the

network topology. In particular, peers can leave the network at any time,

in graceful or ungraceful (e.g., failure) ways. The dynamics of the network,

characterized by peers that continuously join and leave the network is called

churn. Whenever a peer leaves the network, it brings its resources and the

received content away from the network, possibly leaving obsolete informa-

tion about its actual presence into the network. Thus, P2P system has to

address the churn problem, limiting its impact on the overall system, possi-

bly promoting connections among stable peers, limiting the effects of network

dynamics on video quality experienced by users.

Quality of Experience. Quality of Experience (QoE) describes the quality

of multimedia and video services. The most common metrics [20, 68] used

to estimate the QoE are the chunk delivery delays, the playback rate, the

fraction of chunks received, as well as the peak signal-to-noise (PSNR) ratio.

The latter measures the distortion between the received video image and the

original one. However, QoE is influenced by additional factors [103], such as

the users quality expectation and users attention.

2.2 State-of-the-Art Solutions

So far, the literature proposes several works to address the live streaming

problem. Indeed, unstructured P2P systems are difficult to analyze, because

of their i) dynamic interaction among peers imposed, ii) real-time require-

ments, and iii) the unpredictable delivery path taken by each chunk according

to the peer and chunk selection algorithms. Recent traffic measurement stud-

ies [41, 28] on commercial P2P streaming systems show how such systems
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are aggressive in consuming peers resources, especially bandwidth. Hence,

several techniques can be employed in content distribution systems, leverag-

ing either on the network topology and the information exchanged between

peers, to optimize the resources utilization (e.g., bandwidth).

The following sections surveyed the state-of-the-art of P2P streaming sy-

stems that have been proposed in the literature as follows. Section 2.2.1

reviews the tree-based systems while Section 2.2.2, instead, describes mesh-

based ones, and Section 2.2.3 discusses the combination of tree-based and

mesh-based systems, namely hybrid systems. Finally, Section 2.2.4 presents

the NAPA-WINE architecture.

2.2.1 Tree-based P2P Streaming Systems

DONeT [111] (Data-Driven Overlay Network) organizes nodes in a dynamic

tree, depending on data availability. DONeT consists of the membership

manager, to preserve a partial knowledge of the overlay network and ex-

changing buffer map among peers, the partnership manager, to maintain

collaboration with other active nodes, and the scheduler, to schedule data

transmissions towards suitable suppliers. Although such an adaptive behav-

ior, i.e., nodes selects best partners, leads to nodes clustering, which depends

on their buffer maps, it may lead to unbalanced-tree that affects end-to-end

delay while the buffer map exchange increases the overhead in the network.

CoolStreaming is the commercial implementation of DONet. In [110] the

authors presents an empirical study on CoolStreaming, investigating on users’

behavior, their correlation, and the perceived video quality; Next, the authors

redesigned [105] the system, introducing a pull-push mechanism, adopting

sub-streams, multi-source, and multi path delivery, to reduce the content

diffusion delay, and introducing multiple servers to boost join procedure.

Finally, they investigate [64] on users network access (e.g., firewall, NAT),

finding out that users contribution are significantly influenced by their net-
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work access. In addition, they collect and analyze real traces of live event, in-

vestigating on several system parameters, such as the packet block size, num-

ber of sub-streams, peers uplink capacity, partner set size, and start-up time.

ZIGZAG [92] is a single source tree-based protocol, which guarantees a bal-

anced tree. ZIGZAG employs an administrative module to separate the main-

tenance and the data layer. Thus, whenever a parent left the data delivery

tree, the administrative part recoveries such a departure, handling ungraceful

node failure, at a price of protocol complexity and signaling overhead.

PROMISE [39] is a video streaming implementation on top of the P2P

application-level service CollectCast [40]. CollectCast gathers information

of the underlying network topology, such as bandwidth variation, end-to-

end delay, and peers failure. In PROMISE a session is established whenever

a peer requests a content: first the receiver performs a look-up request to

the underlying network that provides a collection of peers that can supply

the requested content. Then, it constructs the topology and fills active and

standby set, connecting active candidates to the receiver that establishes

parallel connections towards all such active senders, using the standby set as

a backup.

SplitStream [25] is a multi-tree system that splits content in several stripes,

e.g., k stripes, delivering each stripe on a separate tree. Peers join as many

tree as there are stripes they wish to receive. SplitStream uses the multi-tree

topology to exploit leaves’ bandwidth: each node is an internal node only in

one tree, being a leaf in the others. SplitStream employs MDC where each

stripe is a description and a parent node failure implies the loss of at most

one description. However, such a protocol is built on top of a tree structure,

suffering of all the issues related to tree topology: maintenance, reliability,

node failure detection, and recovery.

CoopNet [97] was originally proposed as a web-cache system to tackle the

problem of flash crowds at web sites. A flash crowd is an unexpected surge
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of traffic which overload the queried server. When a flash crowd occurs, the

bandwidth is the main bottleneck, and when the server provides dynamic web

pages, the CPU becomes another bottleneck. The same authors proposed a

revised version of CoopNet [98] for distributing media content among peers.

The original architecture has been converted in an hybrid-P2P system where

the server provides contents to peers and maintains also a list of peers served

and contents provided to them. When the server is going to be overloaded by

peers requests, it redirects such peers to those that have already received the

corresponding content before: Such a mechanism produces a set of tree rooted

at the source, where peers forward contents to the others, using Multiple

Description Coding (MDC) schemes to reduce the churning effects.

ChunkySpread [99] is a multi-tree system which leverages on frequent

signaling messages to dynamically changing parents node, in order to fulfill

load balancing and reducing latency delay. Furthermore, it provides a loop

detection mechanism based on bloom filters.

2.2.2 Mesh-based P2P Streaming Systems

In [81] authors propose a queue-based scheduler that employs queue tech-

niques from the router world. The scheduling algorithm adapts peers’ be-

havior to the state of their corresponding queues. Each peer holds a playback

buffer which stores the chunks received and a forwarding queue for the con-

tent to forward: the content received is classified either to forward (chunks

received as a reply to a pull message) or not (received from other peers),

and whenever the forwarding queue is empty a pull message is issued to the

source that fills the forwarding queue. Although such a system achieves full

bandwidth utilization, however, it uses several noteworthy advantages: (i)

full mesh network, (ii) the server is able to send a chunk to all peers in the

network at the same time, (iii) the signal propagation delay is negligible, (iv)

data delivery is performed quickly because the chunk is made up by a small
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amount of data, (v) signaling messages does not suffer any queuing delay and

is processed immediately. In addition, the source server corresponds to the

bootstrap node, thus, churn phases may overwhelmed the source, increasing

the pull response time.

So far, several mesh-based systems which combines scheduling policies and

overlay management protocols have been proposed in the literature [67, 69,

73, 36].

In [29] authors investigate on the performance improvements achieved by

exploiting information on peers’ upload bandwidth in the overlay topology

construction, as well as the peer selection, leading to a reduction of the the

chunk distribution delay.

A new chunks trading scheme based on the offer-select messages has been

proposed in [24]. Actually, the offer-select mechanism is a three-phase proto-

col: i) each peer advertises the chunks it possesses through an offer message

towards neighboring nodes, ii) the latter reply with a select message which

contains the subset of chunks they are willing to receive, and iii) finally, the

original peer collects a sequence of selected chunks in their outbound queue,

which are sent and Ack-ed, and before the transmission queue empties, a

new offer-select cycle is started. The combination of dynamic chunks trad-

ing and transmission queue enable nodes to utilizing the upload bandwidth

efficiently, improving the overall system performance in terms of delay and

lost video packets.

A comparative study [20], analyzes several peer/chunk selection algo-

rithms in push-based systems, assuming that each peer knows everything

about the others, including the transmissions they are going to initiate in

the next future. The authors prove the optimal rate diffusion achieved by

the combination of random peer selection and latest useful chunk algorithms,

while random peer selection and latest blind chunk algorithms plus coding

schemes at the source achieve delay optimality.
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Another comparative study [66] focuses on both simple and sophisticated

algorithms, evaluating five different protocols on the source rate, the band-

width usage, buffering techniques, and other metrics. They start from a

simple random pull protocol which avoids wasting transmission due to chunk

duplicates, introducing a pull-token mechanism to publish bandwidth avail-

ability, so peers may reply either pulling a sequence of pieces or notifying that

they have the same chunks. The authors compare simple and complex sched-

ulers, showing that streaming quality is not scheduling-dependent in presence

of low streaming rate and are wide playback delays; On the other side, by

increasing the streaming rate, the delay constraints become too strict, and

the intelligence of the scheduler is fundamental. Finally, they also observe

that systems which guarantee high streaming rate with low delay are too

complex and need some particular conditions (e.g., full-mesh overlay), and

the source’s bandwidth is crucial in such systems because increases chunks

diffusion noteworthy as well as rich peers (e.g., good heterogeneity) that have

more bandwidth than the others.

Pulse [79] uses a pull technique and builds a general mesh topology with a

complex neighborhood structure for each node, trying to favor a distribution

of nodes such that more endowed nodes are closer to the source and help an

efficient distribution.

2.2.3 Hybrid P2P Streaming Systems

The near-optimality of simple-pull based protocol has been demonstrated

in [109] through simulation and real-world experiments. Such optimality is

paid with a source bandwidth above several times the streaming rate and ex-

changing buffer maps, increasing significantly the signaling overhead. There

is a question about when reporting such information, because there is a trade-

off between delay and signaling overhead. The authors deal with this trade-off

by proposing a pull-push protocol using the sub-streams approach; whenever
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a peer successfully receives a packet belonging to a given sub-stream via pull,

it sends a sub-stream subscription, asking the target peer to directly push

the chunks of that sub-stream. The pull mechanism is used when a packet

expected in push is not received within its deadline. This protocol builds

a push-tree for each sub-stream, with all the problems related to the tree

structure, thus, nodes departures may cause starvation and pull overhead to

recover from such failures.

In Prime [70] participants form a randomly connected and directed mesh

where each peer has multiple parents and child peers. The parents are

assigned randomly and incoming and outgoing connections of each peer

have different path in order to reduce the probability of a shared bottleneck

among them. Receivers “drive” the distribution, which means that also in

Prime the basic mechanism is pulling information from other nodes. This

system produces a significant amount of traffic due for reporting periodically

new chunks received, and during churn phases the bootstrapping node may

be overwhelmed.

2.2.4 The NAPA-WINE Architecture

The NAPA-WINE1 (Network Aware Peer-to-peer Application over WIse

NEtwork) project proposes an innovative architecture [18] for High Qual-

ity P2P live streaming applications [63] over unstructured networks. Such

an architecture promotes cooperation between the application level and the

underlying network layer to offer high quality streaming service to users,

limiting the impact of the P2P application on the underlying network. This

solution introduces the monitoring module to collect real time information

on the network conditions and users’ video experience. Such information are

helpful to improve the actual content distribution, and can be used locally

by each peer, to reconfigure the scheduling policies, to modify the overlay

1www.napa-wine.eu
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topology, or by the source node to tune the content distribution. In addi-

tion, such information can be stored in a shared repository that can be used

by the network providers (i.e., ISPs) to improve the P2P distribution. In-

deed, the NAPA-WINE project did not limit its work to only propose such

an architecture, it actually implements PeerStreamer:2 an open source P2P

media streaming framework.

2www.peerstreamer.org
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Chapter 3

Understanding Hybrid P2P Push/Pull

Protocols

3.1 Introduction

The rise of Peer-to-Peer (P2P) communication paradigm seems to be the

next big thing in Internet services. After the initial phase, where legal con-

cerns about illegal exchanged content hampered the diffusion, the key idea of

sharing resources to improve the common benefit of users is gaining momen-

tum, and service providers are modifying their business plans and strategies

to ride the rising tide.

Multimedia applications are dominating the Internet in terms of band-

width usage (at least if we include in this traffic also the download of video

files). IPTV to VoIP and video conference applications are among the fastest

growing applications, and those based on P2P communications are starting

to dominate the lot (e.g., PPLive, SopCast, CoolStreaming, Skype). The

main goals in the design of a video streaming system are i) provisioning in-

formation delivery within given time bounds, and ii) make an efficient use

of the available bandwidth. In addition the system should be simple and

resilient to churn and overlay dynamism, as well as scaling well with the

number of users and the length of the stream.
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Traditional approaches for peer-to-peer streaming systems propose

streaming on either structured or unstructured overlays. The former are

characterized by parent/children relationships over a tree-structure, where

the information flow [25] through the multicast tree, pushed from parents to

children. On the other side, in unstructured overlays peers are organized in

mesh topology where they either push [79, 70] to or pull [109] information

from their neighbors, depending on the diffusion scheme and the algorithms

employed. Among these systems, those based on swarm-like distribution of

the chunks over unstructured overlays are the most successful, (see for in-

stance commercial applications like PPlive, SopCast, UUsee, TVAnts, etc.,

or scientific literature [93, 70]). Early performance works [23, 22, 17, 19] pro-

pose new semi-analytic techniques to explore fundamental properties of the

topology used by P2P overlays as well as the protocols used to build them.

Indeed, some recent works [71, 20, 29] use the push scheme in unstructured

overlays, that have superior performance than structured ones, hinting to

the fact that the structure of the overlay and the information distribution

process are not necessarily coupled.

Two recent works [69, 85] proposed a system called Interleave where nodes

are synchronized and alternate regularly push and pull phases where push

is used to disseminate fresh content to target nodes while pull is used to

retrieve missing information. The proposal is appealing because of good

asymptotic performances, and because it reduces almost to zero the need for

signaling. However, all the analysis is based on asymptotic assumptions and

synchronized, cycle-based operation.

There are few other works that propose a combination of pull and

push [109, 69]. Most of them use the push mechanism for spreading rapidly

the content, and the pull mechanisms for filling the holes in the received

stream or to subscribe to different trees in case of a multiple-tree structure. In

any case, no proposal considers to interleave the pull and push mechanisms.
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Interleave was designed mainly for P2P file transfer. The analysis of the

scheme made in [85] was done considering that all the nodes in the network

are homogeneous and synchronized, i.e. the download time of a single piece

is the same for all nodes and the time is slotted. Authors of [85] found

that the file dissemination time of Interleave is within a constant factor of

the optimal performance of a fully centralized system. A major concern is

whether the good performance of Interleave is due to synchronization and

bandwidth homogeneity or not. Also, while [85] speculates that Interleave

may be used for live streaming, it does not further investigate this issue.

In this work, we translate the synchronous scheme into a fully distributed

asynchronous protocol, where nodes in the network behave independently,

without any coordination, actually introducing a new class of asynchronous

push-pull protocols for live video streaming systems. Thus, we compare syn-

chronous and asynchronous models, and evaluate the impact of protocols

parameters, such as the dimension of the active neighborhood, and the influ-

ence of topologies, such as symmetric or asymmetric topologies, identifying

the efficiency of such very simple protocols in different scenarios, gaining in-

sight to design the next protocol generation with performance and efficiency

in mind. Then, we focus on understanding the interactions between push

and pull phases, we explore the importance of parallel download and possi-

ble choice on chunks to either push or pull. Finally, we investigate on the

impact of upload bandwidth, the role of push and pull diffusion schemes,

and the importance of network parameters, in particular, the round-trip-

time, evaluating a peers selection algorithm that promote communications

between closest neighbors.

The results show that the protocol we propose is able to maintain the

performance of the synchronized Interleave scheme in case of file distribution;

moreover, it is able to provide delay bounds in case of live streaming. To the

best of our knowledge it has never been shown that a scheme as simple as
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Interleave, which is a combination of pull and push and it does not maintain

information about the pieces owned by nodes, can already provide such a

good performance. The notation used in this chapter is reported in Table A.1.

The remaining part of this chapter is organized as follows. Section 3.2

describes the fundamental workout of push/pull protocols, both in a simpli-

fied, cycle-based model and in a more realistic, entirely distributed system.

Section 3.3 discusses numerical results and fundamental system parameters.

Section 3.4 provides some observations on fundamental study of push/pull

protocols. Section 3.5 introduces the chunks negotiation mechanism and par-

allel transmission. Section 3.6 describes the performance metrics. The results

are discussed in Section 3.7. Section 3.8 reports several comments on the

protocol. Finally, Section 3.9 describes a delay-aware protocol to promotes

communications among closest peers. The evaluation metrics are reported

in Section 3.11 while the experimental setup is described in Section 3.12,

and Section 3.13 presents the obtained results. Section 3.14 presents the

conclusions and describes future directions.

3.2 Interleave Protocols

We consider a system with a single source, where the content is partitioned

into pieces that can be exchanged independently. Pieces are generated at

a constant rate Bs, which can be the streaming rate or simply a service

rate for a file transfer. Each piece has a sequence number that reflects the

order of creation by the source. Each node alternates between pull and push

mode, and has a finite size neighborhood N defined by its contact list of size

|N |; the neighborhood of peer Kj is defined as the set of peers that can be

contacted actively by peer Kj, i.e., Kj can contact peers only in its contact

list, but can be contacted by peers that are outside its contact list.1

1This work was supported by the Italian Ministry of University and Research (MiUR), with the Grant

PRIN-2006099023 “Profiles” (disi.unitn.it/profiles)
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In push mode, a peerKk randomly selects a neighbor and a piece to push; if

the neighbor does not have the piece and has available download bandwidth,

Kk uploads the piece, otherwise the push is aborted.

In pull mode, a peer Kk randomly selects a neighbor and a piece and sends

a pull request to that neighbor. If the neighbor has the requested piece and it

is currently not uploading to any other node, it accepts the request, otherwise

it refuses it.

The piece selection policy represents a delicate part of the design, espe-

cially for streaming systems, where each piece should be received within a

maximum delay. A random piece selection may work for file distribution, but

not for live streaming. Also, ‘intelligent’ selection procedures, like rarest-first

and similar, cannot be implemented without state signaling between peers,

thus cannot be implemented in a basic push/pull protocol without state. We

adopt the same piece selection policy proposed in Interleave [85]:

• In push mode, the node pushes the piece with the highest sequence

number among the pieces received via a push from one of its neighbors.

• In pull mode, the node asks for the piece with the lowest sequence num-

ber it does not possess. This policy aims to fill the holes within the

sequence of pieces.

Interesting features to be explored in the future, include simple choice-

based selection policies and strategies to maintain the system without state,

thus highly dynamic and resistant to churn.

3.2.1 A Cycle-based Model

The basic scheme described above was initially proposed considering a

simplified environment, where all the nodes have the same upload link

Part of this work was published in the proceedings of the Second International Conference on Commu-

nications and Electronics (ICCE 2008) Hanoi, Vietnam [2].
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bandwidth and unlimited download link bandwidth. It is also assumed that

the time to upload a single piece is much bigger than the latency for the

exchange of a single (application level) message. Additionally it is supposed

that the nodes are synchronized and the time slotted. In even slots all the

nodes are in push mode; in odd slots all the nodes are in pull mode.

If the node is in push (pull) mode and the request is accepted by the

selected neighbor, the piece is pushed (pulled). At the end of the slot the

node switches mode. If the request is refused by the selected neighbor, the

slot is entirely wasted, and the node waits until the end of the slot before

switching mode (and sending a new request).

The source pushes a new piece in every even slot, and it replies to pull

in odd slots. This means that the streaming rate is equal to one piece every

two cycles and the required upload bandwidth is 2Bs.

This cycle-based model was employed in [85] to find theoretical bounds for

the distribution process, and we use it for comparison reasons. In a realistic

scenario, upload link bandwidths are heterogeneous, downlink capacity is not

infinite, and imposing synchronization may be impractical (if at all possible),

thus a better model is required to understand fundamental properties.

3.2.2 A Realistic Model

In a real distributed system, the behavior of each node is independent from

all other nodes. Nodes are desynchronized, because forcing synchronization

is costly and can also lead to high inefficiency (synchronization can be based

only on the least performing peer). A node switches from one mode to

the other (e.g., from push to pull) either after a request is accepted and

the corresponding piece transfer is finished, or after receiving a maximum

number of refusals to requests (at each try, a new neighbor is randomly

selected). This behavior keeps the system running smoothly and avoid

starvation and blocking.
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The time spent in pull or push mode depends on the success of the requests

and on the availability of the bandwidth (both, the neighbors’ and the node’s

bandwidth); thus each push or pull interval is not fixed and the nodes, even

in a homogeneous case, will be desynchronized.

We stress that this implementation is entirely decentralized and the infor-

mation exchange among peers is kept to a minimal level: Keep-alive messages

for the contact list management and push/pull queries and answers. Addi-

tionally, the goal of this work is not building a new system (not yet at least!),

but to gain insight into fundamental parameters like the contact list size, the

efficiency of the distribution system (i.e., the ratio between the available

bandwidth in upload/download and the streaming or transfer rate). Algo-

rithms 1 and 2 summarize the basic operations of a single node related to

sending out requests ; Algorithms 3 summarizes the basic operations related

to replying to requests. We do not report the pseudo-code for building and

maintaining the contact list for the sake of brevity.

Notice that these simple algorithms generate asynchronous behaviors even

within the same node. Indeed, a node controls its own alternating between

push and pull in sending out requests, but has no control on the requests he

receives, thus a node can be in one of four states, depending on its active/-

passive status (not considering periods of idle behavior during the signaling

related to requests’ negotiation): Pushing/pulled, pulling/pushed, pushing/-

pushed and pulling/pulled. We use the desinenceing to identify the active

status consequent to sending out a request, and the desinenceed to identify

the passive status of answering a request. Notice that in the two states push-

ing/pulled and pulling/pushed, the two coexisting transmissions compete for

the same uplink (downlink respectively) resources.
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Algorithm 1 Interleave: Sending Out Requests in PULL state.

1: Input: maxPullAttempts

2: while (pullAttempt < maxPullAttempts) do

3: n = Select a neighbor //Select a neighbor to Pull

4: c = Select the lowest piece not owned //Select a chunk to recover

5: SendPull(n,c) //Pull chunk c to node n

6: Wait for reply: Run Pull timeout GoTo TimeoutExpired

7: if (reply == AcceptPull) then

8: if (has download bandwidth available) then

9: SendReady(n,c) message

10: Wait for receiving piece: Run timeout GoTo TimeoutExpired

11: StartPullingPiece

12: break //exit from the loop cycle

13: else

14: SendBusy(n) message //Node’s downlink is saturated

15: end if

16: end if

17: TimeoutExpired:

18: pullAttempt++

19: end while

20: status = PUSH

21: pullAttempt = 0 //Reset attempts for the next cycle

3.3 Numerical Results

We have implemented both the cycle-based and the more realistic, asyn-

chronous and distributed model in a simulation environment, to explore some

fundamental parameters.

The cycle-based implementation works in the same ideal hypotheses of

the theoretical analysis in [85] as summarized in Section 3.2.1.

The asynchronous model is based on the protocol described in Sec-

tion 3.2.2, along with Algorithms 1 and 2 and 3. It include the signaling

for pieces exchange and some simple models of the underlying information

transport network. The actual transmission of pieces, e.g., with TCP/IP, is
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Algorithm 2 Interleave: Sending Out Requests in PUSH state.

1: Input: maxPushAttempts

2: while (pushAttempt < maxPushAttempts) do

3: n = Select a neighbor //Select a neighbor to Push

4: c = Select the highest piece owned //Select a chunk to transmit

5: SendPush(n,c) message //Push chunk c to node n

6: Wait for reply: Run Push timeout GoTo TimeoutExpired

7: if (reply == AcceptPush) then

8: if (has upload bandwidth available) then

9: SendReady(n,c) message

10: StartPushingPiece

11: break //exit from the while cycle

12: else

13: SendBusy(n) message //Node’s uplink is saturated

14: end if

15: end if

16: TimeoutExpired:

17: pushAttempt++

18: end while

19: status = PULL

20: pushAttempt = 0 //Reset attempts for the next cycle

not implemented since is would slow down simulation and make the results

so complex as to make their interpretation almost impossible.

3.3.1 The PeerSim Environment

PeerSim is a Java based simulator that consists of many configurable compo-

nents: It has two types of engines, cycle-based and event-based, and different

modules that manage the overlay building process and the transport charac-

teristics. In the cycle-based engine, all nodes are synchronized, making it a

perfect tool for the implementation of the simple cycle-based model. In each

cycle each node is activated sequentially and executes a protocol: There is no

concurrency among nodes nor competition for resources. In the event-based

engine, all nodes are independent and run concurrently (they are indepen-
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Algorithm 3 Interleave: Replying to Requests.

1: if (message == PULL) then

2: if (has piece c && has upload bandwidth available) then

3: SendAcceptPull(n,c) message

4: Wait for reply: Run Reply timeout GoTo TimeoutExpired

5: if (reply == READY) then

6: StartPieceUploading

7: end if

8: else

9: SendRefusePull (n,c) message

10: end if

11: end if

12: if (message == PUSH) then

13: if (pieceID missing && has download bandwidth available) then

14: SendAcceptPush(n,c) message

15: Wait for reply: Run Reply timeout GoTo TimeoutExpired

16: if (reply == READY) then

17: StartPieceDownload

18: else

19: SendRefusePush(n,c) message

20: end if

21: end if

22: end if

23: TimeoutExpired:

dent instances of the same class). They can add events in the event list of

the simulator, so nodes can compete for resources.

With PeerSim it is possible to build different network overlays; the models

for some of them (e.g., random graph) are present in the simulator. It is also

possible to specify if the edges of the overlay graph are directed or not. With

random graphs, the degree of each node is random, because it depends on how

many incoming edges have been created. We create a model with constant-

degree, where all the nodes has the same number of edges (and neighbors).

This overlay is similar in spirit to the one built by BitTorrent.
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Parameter Value

BUP 128, 256, 512 kbit/s

|K| 102, 5 · 102, 103

|C| 103, 5 · 103, 104

Table 3.1: Parameters used for exploring Interleave protocols.

The simulator contains a transport layer for sending messages from a

source to a destination: The layer adds a delay uniformly distributed be-

tween a minimum and a maximum value an it can also drop messages with

a probability p.

For a detailed description of PeerSim simulator the interested reader is

referred to [74]. The software modules developed in this chapter are available

at the author’s home page or on request.

3.3.2 Parameters under Study and Settings

The theoretical analysis of the basic Interleave scheme in [85] is done con-

sidering a directed random graph with degree |K| = k. Each peer selects its

own k neighbors independently from any other peers and without constraints.

Each peer has a contact list of exactly k neighbors, and the probability of

being in the contact list of other nodes is binomially distributed with mean

k. We refer to this overlay as asymmetric.

We also define and test another overlay model, where the edges are not

directed: In this case we use a constant-degree graph with degree k. Building

it is somewhat more complex, since the choice of neighbors to build the

contact list, requires signaling and coordination and can be difficult if the

contact list is large and the number of peers small. We refer to this overlay

as symmetric.

The source injects a piece per second, resulting in a the streaming rate

Bs equal to the chunk size. In the cycle-based model this implies that each

49



CHAPTER 3. UNDERSTANDING P2P PUSH/PULL PROTOCOLS

cycle is equal to 0.5 s. In the event-based case, we set the piece size to

15.625 kB (125 kbit). So, the minimum bandwidth assumed for the uplink

(128 kbit/s) is sufficient to leave some capacity for maintenance and piece

request messaging.

We start considering a homogeneous case, where all nodes have the same

bandwidth, and we test two different homogeneous bandwidths: 256 kbit/s

and 512 kbit/s. Note that, with a bandwidth of 256 kbit/s, the source can

serve each piece twice, because the streaming rate is one piece per second.

Thus, this case corresponds to the cycle-based case, where a new piece is

generated every even cycle and served again in odd cycle. If not otherwise

stated, each node has a limited download bandwidth equal to four times the

upload bandwidth.

We analyzed many scenarios with different network sizes and number of

pieces. In particular, the number of nodes |K| can be equal to 100, 500 and

1000. The number of pieces |C| can be equal to 103, 5 · 103 and 104.

In order to evaluate the performance of different models with different

parameter settings, we consider three main performance indexes:

The diffusion delay of a chunk is

δp(c) = Tp(c)−
−→
TS(c)

where Tp(c) is the time in which peer p receives chunk c, and
−→
TS(c) is the

time the source generated chunk c. ∆ is the chunk diffusion delay averaged

over multiple realizations of the simulation.

Completion time In case of file distribution, the main performance metric

is the time at which all nodes receive all pieces.

Maximum diffusion delay In case of live streaming, the delay of each piece

represent the performance index of primary interest. We compute it consid-

ering all the nodes and all the pieces. Piece are numbered 0, . . . , |C|. Piece
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c is injected by the source at time
−→
TS(c), and it reaches the node Kj at time

Tj(c). The maximum diffusion delay δmax is the maximum over all pieces

and over all nodes:

δmax = max
c,j

(Tj(c)−
−→
TS(c)) c ∈ C, j ∈ K .

Number of operations Since each node alternates between push and pull,

it is important to understand how much efficient are these two mechanisms;

we compute the number of pieces retrieved via pull and the number of pieces

received via push.

For the different scenarios, we perform 20 independent realizations and we

compute the Empirical Cumulative Distribution Function (ECDF or simply

CDF) by combining the realizations.

3.3.3 Fundamental Cycle-Based Properties

In this Section we present the result for the cycle-based system. The purpose

of this Section is twofold: to validate our implementation against the results

presented in [85] and to show other performance measures, in order to gain

more insight into the operations.

For the validation, we consider the asymmetric overlay with various degree

k. The results presented in [85] focused on the completion time and they

showed that, for k > 8, it reaches a stable value approximately equal to

2|C|+ 2 log |K|.

In Fig. 3.1 we show the full CDF of the completion time for different values

of the contact list size (degree) k and for different values of number of pieces

|C|. In order to be able to compare the results for different |C|, we show the

completion time as the number cycles after the source has pushed the last

piece. We observe that the completion time becomes stable for k > 12 (the

upper group of curves; lower curves refer to k = 8), a value that is slightly
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Figure 3.1: CDF of the overall download time with |K| = 1000 nodes: Asymmetric contact

list.

higher than the one presented in [85]. Since there are not many details in the

simulation methodology used in [85], we are not able to investigate the reason

of these differences. In any case, the qualitative behavior, that the contact

list can be kept small without jeopardizing the results, remains the same.

The performances in case of too small contact list size k are due do the

difference in the number of incoming edges. The nodes responsible for the tail

of the CDF are the ones that are poorly connected. In fact, in a random graph

with mean degree k = 8 there is a non-negligible probability that nodes are

only in one or two contact lists, or even in none, so that most pieces must be

pulled actively, since the probability of being pushed is small. This problem is

reduced if we increase the mean number of contacts. We found similar results

for different overlay network sizes (not shown here for space constraints).
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Figure 3.2: CDF of the overall download time with |K| = 1000 nodes: Symmetric contact

list.

In case of symmetric overlay, each node has a constant number of contacts

and the problem observed in the asymmetric case disappears. Fig. 3.2 shows

the CDF of the download time in case of symmetric contact list.

Comparing the CDF of the completion times in the different scenarios,

we observe that the performances are almost equivalent, independently from

the type of overlay (symmetric and asymmetric, provided that the degree

is greater than 12), or from the number of pieces. This is valid for any

performance measure we consider. For this reason hereinafter we will show

only results where the contact list is symmetric and the degree k is set to 16.

The evaluation in [85] focused on the completion time, since Interleave

was proposed for file distribution. Nevertheless, the piece selection policy
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Figure 3.3: CDF of the maximum delay: Symmetric contact list, k = 16.

used by the scheme takes into account the order of creation of the pieces.

Hence, it is interesting to study if the protocol can be used for distributing a

stream. Fig. 3.3 shows the CDF of δmax, the maximum delay. The maximum

delay is slightly influenced by the number of pieces C, especially the maximum

value of the CDF. This means that, by properly setting the initial delay, the

streaming can be received at the application level without interruption.

An interesting future work will address the analysis of delay percentiles.

Using Forward Error Correction or Network Coding techniques, it is sufficient

to receive a percentage f of the information to reconstruct the whole flow.

Analyzing the delay behavior as a function of the f -th percentile will give

indications on the design of the multi-coding technique to be used, as well

as on the amount of redundancy needed to support a streaming with a given

maximum delay.
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Figure 3.4: CDF of the Push operations: Symmetric contact list, k = 16, |K| = 1000,

|C| = 104.

We notice that the maximum delay is expressed in number of cycles, thus

finding efficient ways to reduce the piece size, and consequently the cycle

duration, is an efficient way of supporting live streaming. Reducing the piece

size to a single video frame (25ms) will reduce the maximum delay to less

than 2 s which is already a good value for streaming purposes.

Finally, in Fig. 3.4 we show the number of pieces received by push for dif-

ferent overlay types, asymmetric and symmetric. In both cases more pieces

are received by push then by pull. In case of asymmetric overlay, the distri-

bution has greater variance, since the overlay connectivity distribution has

greater variance. The symmetric case shows instead almost perfect balance

over all nodes, with slightly more pieces received via push.
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3.3.4 Evaluating a Realistic Model

While the cycle-based is interesting as a first step in the analysis, the realistic

model is able to show if the scheme still maintains the good performances in

a scenario with no synchronization (and possibly heterogeneous). We start

comparing the completion time obtained from the cycle-based model with

the results obtained with the realistic model. To this aim, in the cycle-based

model we set the duration of the cycle equal to 0.5 s, while in the realistic

model we set the upload bandwidth equal to 256 kbit/s.

Fig. 3.5 shows the CDF of the completion time with the two models: Not

only the realistic model protocol is able to work without synchronization, but

it obtains also better performances in term of download time. For the realistic

model, we consider also different scenarios: Also in this case, the overlay

connectivity type (asymmetric or symmetric) has no influence if the degree

is greater than 12. Moreover, different number of pieces |C| and number of

nodes |K| give similar results.

The factor that mainly influences the performance here is the upload band-

width of the nodes (including the source). We considered the case with upload

bandwidth close to Bs, the rate of the streaming (i.e., 128 kbit/s): In this

case the system is unstable and it is not possible to reach convergence.

Fig. 3.6 shows the CDF of the maximum delay for two different upload

bandwidths. The impact of number of nodes on the CDF, especially with an

upload bandwidth equal to 256 kbit/s, is mainly due to the greater number

of hops that pieces have to do to reach all the nodes. An interesting result

is represented by the decrease of the maximum delay as the upload band-

width increases. The initial delay for a streaming application that uses the

Interleave protocol is only few pieces.

Analyzing the delay, it is interesting to investigate the scalability in terms

of number of pieces and number of nodes. To this aim, we consider the max-
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Figure 3.5: CDF of the overall download time: Symmetric contact list, k = 16, |C| =

5 · 103, BUP = 256 kbit/s.

imum value of the CDF of the maximum delay, and we compare different

scenarios. Fig. 3.7 shows how the delay varies as the number of pieces in-

creases. Especially when the bandwidth is equal to twice the streaming rate,

there is a non negligible increase in the maximum delay. This means that the

scheme may not be able to sustain long streaming and different mechanisms

that are able to maintain the delay bounded are necessary.

3.4 Remarks

We considered a class of protocols suitable for supporting both file-based and

stream-based communications in P2P overlay networks.
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The advantage of the protocol we analyze is that it can work without

making any assumption on the node behavior: The interaction between two

nodes is limited to the exchange of a single piece, making it suitable to sit-

uations with high churn. We evaluate the performance of this basic scheme,

considering that it provides a lower bound on the performance achievable

by any system, since adding other mechanisms, for instance, spreading the

information about pieces the nodes own, should normally improve the per-

formance.

These results are helpful to understand hybrid content distribution sy-

stems and also make a contribution to the discussion about the relative merits

of basic, stateless schemes and status-based schemes.
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3.5 Enhancing the Push/Pull Protocols

We focus on the impact enabling peers to negotiate the chunks to transfer

in both push and pull phases and to pursue parallel transmissions, investi-

gating on the impact of peers bandwidth.2 We assume that peers have no

information about the status of neighbors (limiting signaling overhead), so

that also in presence of high churn we expect the performance will be almost

unaffected. In other words, we propose and evaluate a system with elemen-

tary characteristics only, so that the performance obtained can be used as a

benchmark (hopefully a lower bound) for the performance of more sophisti-

2This work is supported by the European Commission through the NAPA-WINE Project (www.napa-

wine.eu), ICT Call 1 FP7-ICT-2007-1, 1.5 Networked Media, grant No. 214412.

Part of this work was published in the proceedings of the INFOCOM Student Workshop 2009, Rio de

Janeiro, Brazil [4].
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cated systems based on the same principle.

The source is a normal peer with the same resources of the other nodes.

This is very important since other studies assume that the source is a super-

peer with more upload bandwidth, and in general, more resources than other

nodes. This assumption affects (indeed improves) performance results non

marginally: a source that has n times the bandwidth needed for the stream,

i.e., Bs, can inject the information n times in the system, practically “seeding”

n parallel distribution processes. We analyze the impact of both upload

and download bandwidth on streaming performance, using a priority-sharing

bandwidth management system. Focusing on streaming, the simple idea of

pushing recent information (generated continuously in a stream) and pulling

old one seems winning: push operations open the receiver window time frame

(or chunk trading window) with new chunks, and pull operations try to fill

holes left by non contiguous pushes.

We remark that nodes have no information on target nodes’ status and

signaling is limited accepting or refusing a transfer. To explore the impor-

tance of choices, we also introduce a small window choice in chunks offers and

requests: peers propose ω chunks that can be pushed or that wish to pull.

3.6 Performance Metrics

Initial investigation is focused on:

Maximum diffusion delay We recall that the maximum propagation delay

δmax is the delay to diffuse any chunk in the entire overlay.

90-th percentile of the transfer delay The 90-th percentile of the transfer

delay δ90. is the delay after every nodes has received the 90% of chunks,

indicated with
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Parameter Value

|K| 103

|C| 104

Cbits 122 kbit

BUP 192, 220, 256 kbit/s

|N | 16

ωpush= ωpull 1, 2, 4

ρdw 1, 4

Table 3.2: Simulation parameters values.

Histogram of the diffusion delay This histogram represents an approxima-

tion of the measured probability density function (pdf) of the chunk diffusion

delay.

3.7 Experimental Results

We have implemented our protocol on PeerSim adding the priority-sharing

bandwidth management mechanism. We consider several parameters: net-

work size, number of chunks, upload and download bandwidth, minimum

and maximum one-way delay, number of uploads and downloads and finally

the maximum number of chunks offered in either push or pull. The chunks

size Cbits is set equal to 122 kbit and we remark that source has the same re-

sources of other peers. The simulation parameters are reported in Table 3.2.

Fig. 3.8 shows a comparison between δmax and δ90 varying the upload

bandwidth without parallel download. The results show that with upload

bandwidth BUP = 1.5 times the stream rate Bs, δmax is less than 20 s and

obviously δ90 is lower than the last one, which are values allowing VCR-like

streaming. As we expect, by increasing the upload bandwidth both values

decrease. We recall that this study is exploring a basic version of this protocol
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Figure 3.8: δmax and δ90 for different uploads: |K| = 1000, |N | = 16.

which retrieves all chunks, we are currently exploring solutions. Both δmax

and δ90 can be used for tuning buffering for different quality desired, in

particular δ90 is useful for dimensioning MDC or FEC codes.

Finally, Fig. 3.9 reports the histogram of chunk diffusion delay varying

the chunks window ω. We observe that parallel downloads and choice on

chunks selection influence the system performance, reducing the chunk

diffusion delay.

3.8 Lesson Learned

This basic version of a Push/Pull protocol is coupled, intentionally, with

random selection of peers. We observe that enabling chunks choice during

negotiation and parallel downloads, the protocol reduces the chunk diffusion

delay, revealing interesting potential to support streaming in P2P systems.
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3.9 The Importance of Network-Aware Protocols

We recall that each peer Ki is completely independent from the others in its

decisions and there is no timing coordination, apart from the fact that chunks

are timestamped from the source. We remark that this definition differs

radically from the asymptotic analysis of [85], where global coordination is

considered and the system works in cycles with all peers being synchronized

either in Pull of Push state. We usually refer to state with capital letter (e.g.,

Push) while the messages are with small letters (e.g., pull).3

In general, Push/Pull protocols work as described in Algorithm 4 and

peers can follow any algorithm to select the chunk and peer for scheduling

either the push or the pull (functions ChunkSelect and PeerSelect in Algo-

rithm 4).

3This work is supported by the European Commission through the NAPA-WINE Project (www.napa-

wine.eu), ICT Call 1 FP7-ICT-2007-1, 1.5 Networked Media, grant No. 214412.

Part of this work was published in the proceedings of the IEEE International Conference on Commu-

nications (ICC 2010), Cape Town, South Africa [5].
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Algorithm 4 Generic algorithm for Push/Pull protocols at node Ki,

1: at every peer Ki

2: repeat

3: if State == PUSH then

4: Kj = PeerSelect(Ni)

5: Cc = ChunkSelect(C(i))

6: Transmit(Kj ,Cc)

7: State = NextState(PUSH,Transmit)

8: else if State == PULL then

9: Kj = PeerSelect(Ni)

10: Cc = ChunkSelect(C(i))

11: Receive(Kj ,Cc)

12: State = NextState(PULL,Receive)

13: end if

14: until the stream is finished

Each peer verifies if the exchange is useful with a signaling message before

proceeding to the actual chunk transfer itself. Finally, the protocol will decide

the next Push/Pull state as a function of the current state and the result of

the previous exchange.

Fig. 3.10 exemplify the protocol data exchange for a successful push and

pull operation, unsuccessful operations are Ack-ed explicitly.

We note in this simple version the alternation of push and pull, this mean

that each node may be either in push or pull state, while the protocol may

also execute both push and pull in parallel, in according to node’s state.

We are interested in protocols where peers do not exchange information

about their state prior to scheduling so that the peers do not maintain any

status relative to their neighbors, making the protocol inherently robust to

dynamic neighborhood management. Specializing the Algorithm 4 to operate

without knowledge about neighbors’ state and with the alternation logic just

described, the Algorithm 5 is obtained: each node actively contributes to the

streaming by propagating fresh information via Push (Latest function); the
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Figure 3.10: Example of push (left) and pull (right) communications.

Pull is devoted to retrieve locally missing chunks (OldestMissing function),

thus it does not contribute to the streaming, but only to enhance local quality.

Algorithm 5 defines the active behavior of peers, when they propose an

exchange. In particular, during Push, each node offers a set of chunks to some

neighbors, actually pushing only to the first neighbor that accepts, while the

others are refused explicitly; in Pull, the node requests a set of chunks to its

neighbors, accepting only the first positive reply, refusing the others. The

protocol description is completed by the passive node’s behavior, when a

node is queried by other peers: Each node may receive many offers of push,

accepting only missed chunks and refusing the others, while it satisfies only

one pull requests among all received.

Fig. 3.11 shows a graphical representation of node’s state. Obviously, a

node can chose its own active state, so that it can decide to be either in Push

or Pull state, but it cannot control the type of queries it receives, so that

alternating between Push and Pull when queried it is not possible.

A window of ω chunks are offered or requested by peers during negotiation,

giving some choice to the queried node, hopefully increasing the efficiency of

the protocol. The node’s state is changed deterministically from Push to

Pull and vice versa upon success, or if the number of failed communication

attempts is equal to na. Notice that a node can signal its offers and requests in
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Figure 3.11: Active and passive states for a peer in Push/Pull protocols

parallel to multiple nodes to enhance its success probability. The higher the

parallelism the higher the signaling overhead, but the higher the probability

of success too. Considering that a signaling message is normally a single

small packet, while a chunk can contain several hundreds kB of data, the

signaling overhead remains small.

Albeit it is possible to execute Push and Pull phases in parallel (i.e., each

node may send push and pull messages at the same time), we decided to

maintain the alternation between the two states to limit the complexity of

the system. This means that each node may be either in active Push or in

Pull state, while the passive state depend on other nodes requests. We remark

that the rationale behind this stateless behavior is simple, yet compelling:

The push operation disseminate recent information generated by the source,

while pulling tries to fill the gaps in owned information.
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Algorithm 5 Revised Push/Pull protocol with peer/chunks selection.

1: at every peer Ki

2: repeat

3: Kj = UniformRand(Ni)

4: if State == PUSH then

5: {Cc} = Latest(C(i),ω)

6: Transmit(Kj ,{Cc})

7: if Tx-success OR Tx-failures==na then

8: State = PULL

9: end if

10: else if State == PULL then

11: {Cc} = OldestMissing(C(i),ω)

12: Receive(Kj ,{Cc})

13: if Rx-success OR Rx-failures==na then

14: State = PUSH

15: end if

16: end if

17: until the stream is finished

As a consequence, we identify four states in a node, based on its active/-

passive state, as exemplified in Fig. 3.11: push/push, push/pull, pull/push,

and pull/pull. We observe that the actual active state is only one, since node

alternates push and pull, while the passive state is independent. This means

that the node may perform a push (actively) while it is receiving a chunk via

push and (potentially) is satisfying a pull, sharing its upload bandwidth.

A peer has the freedom to accept or refuse queries. We indicate with

ρup the maximum number upload connections (exchanges that insist on the

uplink of the node) that a node can accept to satisfy Pull requests, and

ρdw the maximum number of passive download (exchanges that insist on the

downlink of the node) that can be activated when a peer receives Push offers.

The value of ρup and ρdw may depend of up-link and down-link resources or

simply on peer’s policies.
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3.10 Delay-Aware Peer Selection

Algorithm 5 selects one peer in the neighborhood at random. However,

this choice neglects network conditions, making the P2P distribution system

network-agnostic: Performance suffers and the network is often overloaded.

As observed in the NAPA-WINE project [18], there are many network proper-

ties and characteristics that can be exploited to improve the system behavior,

however, most of them are very difficult to measure, such as the available

bandwidth between two peers. The round-trip-time (RTT) delay instead is

very simple to measure accurately and is normally a very good indicator of

how far nodes are and how much congested the network is between them.

The RTT is the time required for a packet to travel from a source node to a

destination node, back again. Thus, trying to communicate with close-by (in

terms of RTT) peers should improve performance and have a lighter impact

on the network.

The main difference between the random and the delay oriented peer

selection is that the second one picks those peers with lower RTT with higher

probability, promoting exchanges with closest neighbors. A simple way to

do this is selecting peers in the neighborhood Ni based on a probability

distribution function build as follows:

Vi,j =
1

RTT(i,j)
, i, j ∈ K (3.1)

SVi =
∑

j

Vi,j , j ∈ Ni (3.2)

Pi(j) = Vi,j/SVi (3.3)

This choice reduces the average delay δpeers required to exchange each chunk

between any peer, which in turn will significantly reduce the overall diffusion

delay, since the diffusion delay is comprised between δpeers|K| for systems

based on a distribution chain, and δpeers⌈log2 |K|⌉ for optimal system that

double the number of chunk replicas at every new transmission [12].
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In some cases, the delay oriented peer selection may suffer from repeated

selection of the same neighbors, that reduces the fairness, and thus, the

correct spreading of information, building chains of peers instead of swarms.

For this reason, the peer selection is poisoned, so that the same peer can be

selected again only after 2
−→
TS . We assume that a chunk can be transmitted

within
−→
TS , and we recall that nodes alternate Push and Pull, so the maximum

time between two Push phases in the same node is 2
−→
TS , while on average

multiple Push and Pull will alternate in this time. Without this threshold,

a peer may push two or more consecutive chunks to the same peer, which

may end up propagating only the last one via Push, while the others linger

behind and will finally be retrieved via Pull, increasing their diffusion delay

as a consequence. This poisoning guarantees a correct distribution of fresh

content via Push.

3.11 Performance Metrics

The following performance metrics are investigated:

CDF of the average chunk diffusion delay The average diffusion delay for

chunk c among all peers is

δc =

∑

p δp(c)

|K|
, c ∈ C, p ∈ K (3.4)

Then, we compute the Cumulative Distribution Function (CDF) over all

chunks.

CDF of the average transfer delay among peers The average chunk diffusion

delay at peer p is

δp =

∑

c δp(c)

|C|
, p ∈ K, c ∈ C (3.5)

We then compute the CDF over all peers.
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Histogram of the chunk diffusion delay It is the measured probability density

function (pdf) of chunk diffusion delay averaged over realizations. Here,

each chunk, at each peer, provides a point of the estimated pdf. Thus, each

realization provides |C| × |K| points. The bin size unit is 0.5s.

3.12 Experimental Setup

We have implemented the Push/Pull protocols described in Section 3.9 in

PeerSim [74].

The simulator structure is based on modular programming which allows

adding new components, facilitating protocols implementation, moreover it

easily supports a large number of nodes. The Push/Pull protocol extension

as well as the network model we implemented, and all other “side code”,

are available to the community and will be shortly added to the PeerSim

distribution.

The overlay topology graph G(K, E) is randomly built, in general having

an n-regular random graph as a good model. Indeed, the topologies consid-

ered in different works are not always n-regular topologies; however, most

of the properties considered for mesh systems are not strictly dependent on

the specific topology, whose main property is the randomness with a roughly

constant connectivity degree, as confronted to specific, deterministic topolo-

gies such as trees or hypercubes (example in Fig. 3.12). The topology is built

selecting |N | ∈ K neighbors at random for each node, with symmetrical con-

nections: E(i, j) → E(j, i), i, j ∈ K (E( · , · ) ∈ E by construction). We use

|N | = 16; larger neighborhoods should improve performance.

As parameter to tune the application to the network we consider the RTT

for several reasons: i) The signaling phase introduced before chunks exchange,

to avoid conflicts and wasted transmissions, is heavily affected by delay; ii)

RTTs between peers are easily measured even at the application layer and
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Figure 3.12: A 3-regular topology with eight nodes, the shaded area is the neighborhood

of the black node.

are not much affected by correlations; iii) RTT delay is an indication of how

far peers are in terms of hops, so that choosing closer peers will also reduce

the global amount of network resources used.

We assume that the size of control messages is negligible (a few tens

of bytes), so that the message transfer delay on every connection E(i, j) is

roughly 1/2 of the RTT. In the simulations we model the RTT of connections

with a random variable extracted from a uniform distribution between [δmin÷

δmax] ms. RTTs from peer i to peer j and vice versa are the same.

We indicate the maximum number of parallel signaling messages sent by

the node in active mode with α: αup indicates messages that involve up-
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loading (push offers), while αdw is for messages involving downloading (pull

requests). The passive node’s behavior is controlled by ρ, which indicates

how many of the messages received are positively answered: ρup refers to

accepting requests that use the upload bandwidth (satisfying a pull), while

ρdw concerns the download usage (receiving pushes).

The source S streams at BsMbit/s, generating a new chunk every
−→
TS s

which is sent to the other peers. We stress that the source is a normal

peer without additional resources; This is important because many evalua-

tion studies assume that the source is somewhat special and has more upload

bandwidth, which indeed modifies the performances non marginally. In order

to guarantee the continuous emission of chunks, both negotiation and trans-

mission of each chunk should be done within
−→
TSs. In accordance to these con-

siderations, the peers upload bandwidth is always BUP ≥
−→
TS/(
−→
TS − δmax),

in which is normalized to Bs. In our simulation study we use
−→
TS = 1 s, thus

for δmax = 500 the minimum value of BUP is 2.

Bandwidth availability and its sharing in the up- and down-link are critical

parameters for streaming applications. In actual networks the sharing is

mediated by the transport protocol (TCP, UDP, UDP/RTP, etc.); However,

PeerSim does not support actual packet transmission (which is one of the

reason it allows simulating large overlays). We implemented a bandwidth

management system based on priority sharing, which gives as much resources

as possible to the first connection, then it tries to satisfy the second with the

remaining part, and so on. This bandwidth mechanism is accurate enough

to capture chunk transfer interaction and simple enough to maintain high

simulation speed.

We consider a mildly popular stream with |K| = 1000 and |C| = 4000. We

limit the accepted number of downloads to ten (ρdw = 10), allowing parallel

downloads, and each node can satisfy at most one pull per time (ρup = 1).

In Push each node proposes a window of size ωpush chunks to its neighbors,
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Parameter Value

|K| 103

|C| 4× 104

|N | 16
−→
TS 1 s

ρup 1

ρdw 10

αdw 1, 4

αup 1

ωpush= ωpull 1, 4

[δmin ÷ δmax] [10÷ 250], [10÷ 500]ms

Table 3.3: Parameters used for evaluating delay-awareness.

while in Pull it requests a set of ωpull chunks. We usually set ωpush = ωpull,

referring to them with ω, as well as αup = αdw, indicating their values with

α. In this study, we limit the maximum number of attempts na = 1.

We investigate bandwidth homogeneous networks to simplify results in-

terpretation. The system is at steady-state (peers in the overlay are stable).

Peers try to retrieve all chunks of the stream, so that we can evaluate the

tail behavior of the system; if an application may tolerate, say, 5% losses, it

is enough to read pdf plots at 95th percentile, as we do in Fig. 3.15.

3.13 Results

We discuss a set of results highlighting the role of the Push and Pull phases

in the information delivery, and results showing the impact of RTT on the

delay experienced by peers through the comparison of the Random (R) and

Delay based (D) peer selection. Further details on this study can be found

in [6].
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Figure 3.13: Histogram of chunk diffusion delay for Push and Pull mechanism, for BUP =

{1.9, 2.4, 2.9, 3.4}, and RTT [10÷ 250]ms.

3.13.1 The Role of Push and Pull

Fig. 3.13 highlights the different role of the Push and Pull states, and how

they contribute to the pdf of chunks distribution. The push mechanism starts

the diffusion before the pull, limiting the maximum delay and it ends before,

while the pull starts to retrieve data when there are more chunks in the

network, so the pull requests could be satisfied. We can see that Push phase

has lower delay and spreads the greater part of the chunks, while the Pull

operates filling the gaps of missed chunks, so that chunks retrieved via pull

are those experiencing the largest delay, while the Pull experiences the largest

delay due to blind search for retrieving the missing chunks. We expect such a

behavior because the Push is the active part of the distribution process, while

Pull is a local recovery mechanism. The quantitative difference is however

much larger than one can expect. The shape of the pulled chunks delay

distribution shows lighter tails as BUP increases, since many more chunks are
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Figure 3.14: Histogram of chunk diffusion delay among all peers varying ω, α: BUP=1.9,

and RTT [10÷ 250]ms.

diffused via Push, so the number of pulls become smaller and the probability

to find a chunk via pull becomes higher.

3.13.2 Impact of Choice and Parallel Signaling

Fig. 3.14 shows the effect of varying the number of messages issued in each

phase, and of providing a window of ω possible chunks during negotiation.

First we focus on random peer selection, and then we describe the delay ori-

ented one. We fixed BUP = 1.9, because in this situation the basic Push/Pull

protocol (α = 1; ω = 1) does not provide satisfactory performance, as shown

by the dashed line in Fig. 3.14. For α = 1 and ω = 4, offering multiple chunks

leads to a clear reduction in diffusion delay, and the tail becomes smaller, as

shown by the two-dotted curve. When we set α = 4 and ω = 1, the protocol

achieves lower average diffusion delay, but the distribution tail remain impor-

tant (short dashed line in Fig. 3.14), because some chunks are not properly
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diffused and remain rare. The combination of parallel signaling (α = 4) and

more choice among chunks negotiation (ω = 4), reaches satisfactory results

(dotted curve). The corresponding curve has a negligible tail above 12 s, and

its mass is well concentrated around the mode at 9.55 s.

Now, we focus on the delay aware peer selection, always achieves bet-

ter results, with negligible tails. In particular, with α = 1 and ω = 1 the

delay aware selection limits the diffusion delay to roughly 14 s, while the

corresponding curve with random selection has a tail extending beyond 20 s.

When α = 1 and ω = 4, the curve becomes narrower and within 12 s, while

for α = 4 and ω = 1, the curve shifts to the left, obtaining a meaningful

diffusion delay reduction. Finally, for α = 4 and ω = 4, the combination of

parallel signaling and the possibility of choosing among chunks, with the de-

lay oriented peer selection, leads to lower delays than all the others, as shown

by the solid line. This plot confirms several important points. Although no

information is exchanged during negotiation and without multiple messages,

the Push/Pull protocol is able to limit the delay experienced by peers, also

when the random peer selection is used. The ability to choice during chunks

negotiation reduces the chunks’ delay not marginally, in particular, for those

tails due to chunks not well distributed: this is particularly clear for random

peer selection from ω = 1 to 4.

3.13.3 Impact of Upload Bandwidth

We continue our analysis allowing both parallel signaling and allowing choice

during chunks negotiation, i.e., with α = 4 and ω = 4. Fig. 3.15 presents the

95th-percentile of chunk diffusion delay, for different uploads configurations,

and RTT distribution [10÷ 250] and [10÷ 500]ms.

Again, the delay aware peer selection shows that our intuition is right,

achieving an average diffusion delay lower than the random peer selection

one, especially with small upload bandwidth. Increasing the maximum RTT,
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Figure 3.15: 95th-percentile chunk diffusion delay for different BUP and RTT.

the delay aware selection shows a larger gain even when bandwidth resources

are very high. Although we double the RTT delay, the delay aware selection

does not reflect a proportional increase in chunk diffusion delay for the same

upload bandwidth: the difference remains around 1.5 times.

In Fig. 3.16 we focus our attention on RTT between [10÷ 500]ms, show-

ing its impact for different upload bandwidth. In this case, the RTT heavily

impacts chunk diffusion delay, and increasing the upload bandwidth the RTT

becomes the main part of chunk diffusion delay. For this reason neighbors

selection should be done carefully, reducing the impact of the RTT and its

propagation in chunks’ distribution. The curves become narrower as BUP

increases, for both random and delay oriented selection. However, the delay

oriented approach always achieves lower delay than the random one, reducing

the average chunk diffusion delay experienced by peers, giving useful infor-

mation for computing buffering time and timeout for chunks to be pulled.

Fig. 3.17 shows the comparison between the delay oriented and the random
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Figure 3.16: Histogram of chunk diffusion delay for RTT [10 ÷ 500]ms and BUP =

{2.3, 2.5, 3.0}.

peer selection, comparing the cdf of the average delay experienced by peers

during the streaming. The delay experienced by peers are quite stable, and

the curves rise quickly, showing that the inter-arrival chunks delay in each

peer is small and steady. Thus, the delay oriented approach confirms that

the choosing of closest neighbors leads to low delay, without big dispersion.

Note that with just 2.3Bs, with RTT [10 ÷ 500]ms, the delay oriented is

within 12 s, while the corresponding random is around 16 s, and the average

distance between them is about 30%.

3.14 Conclusion

In this chapter, we discussed some fundamental properties of hybrid

Push/Pull protocols for P2P streaming applications with zero state, i.e.,

nodes have only limited local knowledge of their neighbors. Zero state means
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Figure 3.17: CDF of the δ(p), BUP = {2.3, 2.5, 3.0}, and RTT [10÷ 500]ms.

that the algorithms used to select chunks and peers rely solely on local infor-

mation and the state of neighboring nodes is not known to the node taking

the decision. The core of the protocol is the alternation of Push and Pull

phases, where the chunk to be pushed is the most recent owned by the peer,

while the chunks to be pulled is the oldest not yet received by the peer.

The protocol is able to work without making any assumption on the node

behavior, because each transmission occurs after the corresponding negotia-

tion, making the protocols suitable to situations with network dynamics. We

evaluate the performance of this basic scheme, under symmetric and asym-

metric topologies, exploring the impact of the upload bandwidth and the

network size, moving from the cycle-based model to a more realistic asyn-

chronous model.

In addition, we explored how adding some choice to the system, i.e., the

possibility for the selected peer to choose among a small set of chunks to be

pushed or pulled, as well as issuing more push or pull messages in parallel,
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influences the overall performance.

Finally, a key result of delay-awareness is that RTT is a very important

parameter for delay sensitive systems, so promoting communication among

closest neighbors are more suited, even with limited resources. We stress that

the proposed system is bandwidth-optimal in that the only useful information

(and signaling) is distributed, avoiding the waste of many P2PTV systems.

Moreover, the ability to choose during chunks negotiation, combined with

parallel signaling, lead to lower diffusion delay.

The overall insight gained on the Push/Pull system shows that with re-

sources which are no larger than two times the stream rate, the streaming is

sustainable and efficient (the protocol ensures small overhead), a result that

with protocols exploiting only push or pull mechanism is achieved only at

the price of state exchange between peers.

Further research include exploring churn impact, heterogeneity of nodes,

different overlay construction mechanisms, Peer and Piece scheduling algo-

rithms, and more efficient implementations of the Push/Pull protocol, e.g.,

by allowing signaling to be in parallel with data transmission.
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Chapter 4

Cooperative Wireless Mesh

Multicasting

4.1 Introduction

Multimedia communications to mobile devices are one of the most powerful

drivers of the networking and communications market. Be it standard on-

demand streaming, live video events or on-line gaming, the availability of

good quality video on tablets, smartphones and mobile devices in general is

one of the key issues in the selection of the device to buy and the network

to subscribe to. Most multimedia communications are now integrated over

the Internet, but when it comes to broadcast or multicast services the global

architecture of the Internet remains badly adapted, and a wireless last-leg

(be it 3G, LTE or WiFi) to ensure mobility does not help.

The use of multi-hop, or mesh, wireless networks is rapidly expanding due

to their low cost and high bandwidth availability, their intrinsic support for

proximity and location based services, and their simple deployment, often

not requiring licensing permits or high capital investments. Wireless Mesh

Networks (WMNs) are ideal for outdoor deployment and cheap, compared to

wireline networks, because are self-configuring and self-healing, limiting the

cost of administration and maintenance. Thus, they are perfect for public
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safety, municipalities, and industrial purposes. They can be used to deploy

remote monitoring and emergency communications services, as well as smart

cities, and providing network coverage those users that are difficult to con-

nect because of their geography. In WMNs each node has a limited view of

the whole system, communicating with just several of its neighboring nodes

wirelessly. Hence, routing mechanisms must be used to direct packet flows.

Multicast distributions cannot simply rely on the broadcast nature of a single

shared wireless medium.

Several protocols have been proposed to address multicast routing in ad-

hoc networks [53, 91, 90]. In the latter papers, the authors have constructed

efficient multicast mechanisms for mobile ad-hoc wireless networks through

the dynamic synthesis of mobile backbone networks. In [26], authors observe

how the validity of multicast routing protocols designed for wireline networks

is undermined by the broadcast nature of the wireless channel and network

dynamics. In [96], the authors consider the use (for wireless multicast) of

modified versions of commonly employed wireline multicast routing protocols

such as the Distance Vector Multicast Routing Protocol (DVMRP), Multicast

extension to Open Shortest Path First (MOSPF), and Protocol Independent

Multicast (PIM).

Multicast participants subscribe a specific multicast session they are in-

terested in. A session is formed to include the users that are involved in

interactive communications relating to certain applications. A source user

that has joined the session is then able to communicate with clients that are

members of the same multicast session. The multicast routing protocol is in

charge of distributing packets across the network to other members of the

multicast session. Routers that are elected members of this multicast session

are configured to forward packets to other routers in the same session. Multi-

cast group end-users are attached to some of the routers that are included in

the multicast session. Packets of the multicast session are normally flooded

on the distribution tree that includes all the routers in the session.
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Extending standard wireline Internet multicast protocols to mesh wire-

less networks is not straightforward, due to the intrinsic differences between

the underlying media. Several studies [60, 61, 104] have pointed out that

the execution of multicasting in a wireless network under the use of a PIM

protocol does not lead to acceptable performance behavior. Nevertheless, to

the authors’ knowledge, only few works have engaged in studying the use

of the PIM-SM protocol [54, 107], across wireless networks; and we know of

no study that presents analysis of the PIM-DM scheme over wireless ad-hoc

networks. Also, its operation over mesh wireless networks has not yet been

addressed.

The PIM protocol [31] defines a class of multicast routing protocols which

are independent of the unicast routing protocol that is employed. PIM pro-

tocols impose the construction of a multicast tree by using the underlying

unicast routing tables, assuring the coverage of all distributed session parti-

cipants. Since building a multicast tree has distinctly different flavors based

on the density of the network’s destination hosts, two PIM protocol versions

have been identified: Sparse Mode (SM) and Dense Mode (DM).

In the first part of this chapter, we discuss whether the PIM-DM protocol

scheme can be used over wireless ad-hoc networks as it currently stands,

and identify the limitations of its operation we discuss and evaluate the use

of the PIM-DM protocol scheme to support multicast applications within a

single domain, (e.g., campus or park), using a wireless network. Over such a

domain, it is assumed that the designated multicast stream is directed to a

large number of receiving nodes that are densely located.

The contributions provided in this work include the following: (i) We dis-

cuss whether the PIM-DM protocol scheme can be used over wireless ad-hoc

networks as it currently stands, and identify the limitations of its operation;

(ii) We present a simple mechanism for resolving the identified limitations,

enabling the PIM-DM based scheme to properly operate over wireless mesh
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networks. We perform this task by introducing simple modifications to the

protocol’s management process, while not changing the protocol itself, so

that it remains compatible with the underlying Standard recommendation;

(iii) We show how the characteristic features of PIM, such as its protocol in-

dependence and easy implementation properties, can be effectively exploited;

and (iv) We present results that depict the performance of the protocol when

used over regular wireless mesh networks, providing insight into the process

to be used in planning and designing such networks.

The reason for focusing on the PIM-DM protocol is explained by the

following. Considering the networking of packet flows over a wireless mesh

networks that are generated by using applications such as live streaming

events and gaming oriented processes, we note that user locations will be

highly correlated. Consequently, many user nodes that are concentrated

over distinct neighborhood clusters will tend to share the multicast tree.

Consequently, a dense mode operation is applicable. In turn, over the global

Internet, the use of the PIM-SM protocol is employed when conditions are

such that the density of user nodes that are interested in a specific multicast,

compared to that of the routers, is rather small, resulting in a sparse network.

The rest of this chapter is organized as follows. Section 4.2 provides a brief

description of the PIM-DM protocol, identifying mechanisms that adapt its

operations to a wireless network. Sections 4.3 and 4.4, describe the evaluation

methodology and the experimental setup, respectively. Section 4.5 presents

the results that confirm the performance efficiency over wireless networks

of the Wireless-PIM-DM protocol, as modified by the use of the proposed

adaptations. Section 4.6 presents several comments on the Wireless-PIM-

DM protocol. Section 4.7 describes cooperative protocols for wireless mesh

networks. Section 4.8 reviews the related works. Section 4.9 provides helpful

observations for promoting cooperation among end-users in WMNs. Sec-

tion 4.10 introduces PullCast, a peer-assisted protocol for wireless mesh
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multicasting. Section 4.11 provides the performance metrics, and Section 4.12

describes the simulation model and the scenarios investigated. Section 4.13

evaluates PullCast performance and feasibility. Finally, Section 4.14 sum-

marized the conclusions of this chapter, providing future work directions.

4.2 Enabling PIM-DM over WMNs

PIM-DM is a data driven protocol that is designed to support multicast

sessions where the end-nodes are densely distributed in the network; i.e.,

the probability that a multicast router has end-nodes attached to it is high.

The approach used is based on performing flooding and pruning operations,

rather than defining rendezvous points: the source node floods the network

with multicast packets and the routers apply the forwarding rule. Whenever

a leaf router has no end-user clients for a specific multicast group (or session),

it sends a PIM Prune message towards the upstream router; this is used to

prune the link branch connecting this leaf node across the multicast tree to

this upstream neighbor node. PIM-enabled routers that execute the PIM-DM

protocol are called PIM-routers; they construct the multicast tree from the

source node towards all PIM-routers that have associated end-nodes, called

PIM-clients. PIM-clients join the multicast group, so that the nodes involved

in a multicast session are either PIM-routers or PIM-clients.1

PIM-DM has been designed for wired networks and it is based on the

use of routers’ interfaces. These are classified into two categories: upstream

and downstream. The upstream interface is the one connecting the router to

the next hop router toward the source node, based on the use of the reverse

path forwarding (RPF) process. The others are identified as downstream

1Part of this work was published in the proceedings of the IEEE International Conference on Com-

puting, Networking and Communications (ICNC 2013), San Diego, CA, USA [9].

This work was partially done while the author was a visiting Ph.D. student at the University of Cali-

fornia, Los Angeles (UCLA).
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interfaces. The forwarding rule is defined in terms of interfaces: whenever a

data packet is received from and upstream interface UG,S , relative to source

node S for multicast group G, the router computes the set of downstream

interfaces DG,S to which it will sequentially send P :

∀P ← UG,S ,Send P → d, ∀ d ∈ DG,S (4.1)

Albeit apparently trivial, the operation defined by (4.1) meets several diffi-

culties when it is applied across a wireless network.

In wired networks, a router’s interface provides access to either a specific

router or to a subnet. In turn, in a wireless network in which radio broadcast

links are used, an interface is usually used to cover all the nodes that are

located within the node’s radio transmission range, regardless of whether

they are end-nodes or routers, and regardless of whether the routers are

located downstream or upstream in the multicast tree, or whether they are

situated on pruned branches, making the forwarding rule in (4.1) ambiguous.

In case nodes employ a single radio module (say radio a), this module

is used to provide for the upstream interface. When a node uses two radio

modules (say a and b), radio module a can be employed to realize links along

the multicast tree; radio b is often used for host access purposes, or to collect

packets from source nodes. In the latter case two situations are possible:

i) the multicast packet P is received on b (the end-node’s interface) which

means that the source S is attached across this interface; the received packet

is forwarded by module a (if the interface has not been pruned); or ii) the

multicast packet P is received by module a; Since a is the upstream receiving

module, the only radio module that can forward the packet is module b, so

that the multicast delivery process is interrupted. Under this scenario, the

packet P is able to reach at most the second level of the tree.

This problem is caused by having the interfaces along the wireless network

correctly (from the PIM and multicast point of view) matched among the
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routers’ interfaces and the proper subnets. To solve this issue, we propose

to properly define the concept of ’virtual interfaces’, and configure them by

having them serve to provide proper mapping between router interfaces and

designated subnets. We then operate the PIM protocol scheme by using

virtual rather than physical interfaces. This is described as follows. Let a

virtual Wired Equivalent Interface (WEI) be defined as the pair {<physical

interface>; <router/subnet>}. A WEI is the interface used to reach a single

neighboring (i.e., reached within a single hop) router, or a group of end-nodes

residing in the same IP subnet in the wireless network. In this manner, a

wireless node with one interface, N neighboring router nodes and M subnets,

will configure N +M WEIs. Notice that in a mobile or in general a dynamic

mesh network the number of WEIs must be continuously adapted to the

changing physical topology of the network.

This definition of WEI resolves the above mentioned problem, since it

allows routers to properly classify upstream and downstream WEIs, as illus-

trated in Fig. 4.1. WEIs retain the same properties (w.r.t. PIM) as those

displayed by the use of wired interfaces, so that upstream an downstream

WEIs can be used as the standard interfaces for operating in accordance

with the PIM process. The associated introduced overhead rate is noted

to be negligible. However, without the use of proper countermeasures, such

an operation will introduces additional traffic, because each node will sepa-

rately transmit a multicast packet P across each one of its downstream WEI.

The latter packet transmissions are sent and received across a single physical

channel. This overhead may lead to traffic congestion, channel saturation,

increased collision rates and transport quality degradation. To avoid creating

such excess overhead, we dynamically cluster WEIs into DG,S oriented groups

based on their physical interface, and then instruct the router to transmit

only a single copy of P across the designated group. In this manner, we

exploit the broadcast nature of the wireless medium, making also use of the
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Figure 4.1: Matching WEIs to routers and IP subnets for single physical interface.

structure of the IP multicast process. Such an implementation is readily

performed by adding a few program lines to the code that defines the oper-

ation of the Wireless-PIM-DM scheme. No change is induced in the actual

definition or scope of the protocol’s multicasting delivery mechanism.

Another challenge is represented by the network’s topological layout.

Wired networks are generally static, so that the lifetime of interfaces is long

and statically mapped to subnets (unless router failures occur). On the other

hand, due to nodal mobility or link degradation events, this is not the case

in wireless networks. The resulting topology is continuously changing and

may contain nodes, or clusters of nodes, that are temporarily isolated either

from the entire network or from specific routes.

Isolated nodes may not be able to receive multicast packet transmissions.

To determine the impact of changing topological layouts and nodal mobility
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on the multicast operation of the PIM-DM protocol, experimental and/or

simulation evaluations must be carried out. The identification and possible

resolution of induced issues and multicast distribution degradation phenom-

ena depend also on the underlying unicast routing protocol that is employed

(e.g., on the speed at which a link failure is detected and eventually recov-

ered) and on the involved scenario (e.g., including the frequency of topology

change and the characteristics of involved isolated nodes).

4.3 Wireless-PIM-DM Performance Metrics

The notation we use in this chapter is reported in Table A.1. We use the

following metrics to assess the performance efficiency of the Wireless-PIM-

DM protocol scheme:

Control messages traffic We measure the control traffic rate generated by

configuring and employing WEIs, exploiting the broadcast properties of the

wireless channel. We monitor both transmitted and received message flows,

for both control and data traffic, computing the involved control to data

message ratio. The involved control message is set as

Hm(j) =
1

T

∫ T

t=0

hm(j, t)dt (4.2)

Hm = E[Hm(j)] (4.3)

where hm(j, t) designates the control traffic level involving either transmitted

or received packets processed at PIM-router j at time t, while T represents

the duration of the scenario that is simulated. Eq. (4.3) defines the average

control message rate, averaged over all involved PIM-routers.

Convergence time The protocol process is said to converge when the process

that involves the distribution of all PIM Prune/Join messages reaches steady
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state. Clearly, the protocol continues to maintain the tree and dynamically

adapt it to changes the topology or in the identity of PIM-clients. Assume

that the protocol convergence rate is faster than nodal mobility rate. Steady

state is reached when PIM-routers stop exchanging Join/Prune messages for

a suitable period of time Tss. This period is defined as a function of the

PIM-DM timeout, i.e., the idling time after which the tree is rebuilt and

Join/Prune messages are sent again:

τc=min{t | ∀j∈V , (hp(j, t, Tss)=0)∧(hn(j, t, Tss)=0)}

where hp(j, t, Tss) and hn(j, t, Tss) r represent the number of Prune and

Join messages transmitted/received at PIM-router j within a time interval

[t ÷ t + Tss], while V is the set that consists of the involved PIM-routers.

The convergence time τc is influenced by the topology, the number of PIM-

clients subscribing the multicast group G, and also by the amount of data

transmitted by the source S since PIM-DM is data driven.

Data delivery Defines the fraction of issued multicast packets P that are

successfully delivered to PIM-clients. Clearly this metric depends on the

topological layout, the number of PIM-clients subscribing to multicast group

G, and also on the type and intensity of the multicast traffic flow. In our

experiments, we have computed this metric by running a video streaming

session originating at a source S that is external to the wireless network,

so that the stream is injected into a selected PIM-router that is acting as a

gateway node. We set the streams rate to 1Mbit/s with constant size chunks

of 1200 bytes, so that they fit in a standard Ethernet packet. We assume

the source node is not a end-user client, actually it does not belong to the

wireless mesh network, but it is directly connected to the single PIM-router

with gateway functionality that connect the mesh network to the Internet.

Thus, a packet transmitted by the source node is received always by the
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same PIM-router, which forwards the packet to its PIM-clients and to its

downstream PIM-routers, in accordance with the forwarding rules implied

by the multicast tree layout constructed by using the PIM-DM protocol.

We have then measured, over the duration of the process, the number of

received and missing video chunks, at every PIM-client, as well as accounted

for duplicate copies. We have also measured the end-to-end delay levels

incurred by delivered data packets. The fraction of chunks received by PIM-

client i is computed with using eq. (4.4), while eq. (4.5) is used to compute

the throughput rate when averaged over all PIM-clients. Eq. (4.6) and (4.7)

are the complement, i.e., the chunk loss rate.

RP (i) =
1

|C|

∑

P∈C

r(P ) , r(P ) =







1 if P is received

0 otherwise
(4.4)

RP = E[RP (i)] (4.5)

LP (i) = 1−RP (i) (4.6)

LP = E[LP (i)] (4.7)

where P is the generic chunk/packet of the multicast stream, and C is the

set of packets composing the stream. We note that packet duplication is

unavoidable on wireless networks, and can also be employed for positive

spatial redundancy, but it obviously has a cost in terms of network load. A

PIM-client receives normally one or more copies (one from its upstream PIM-

router, and others from PIM-routers within reception range that have PIM-

clients associated). In addition, we compute Eqs. (4.8) and (4.9) compute

the average number of packet copies CP received by PIM-client i, and the

overall level Cp when averaged over all PIM-clients. Notice that this measure
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is meaningful only when the RP (i) is very close to 1.

CP (i) =
1

|C|

∑

P∈C

c(P ) (4.8)

CP = E[CP (i)] (4.9)

4.4 Wireless Model and Experimental setup

In our experiments, we use IEEE 802.11. The channel data rate is set to

54Mbit/s. We set the transmission power to 16dBm, as commonly used by

wireless platforms. Large-scale propagation models have been used to com-

pute the path loss between transmitter and receiver pairs under different

channel conditions. Theoretical and measurement based models show that

the average received signal power (in dB units) across a link decreases loga-

rithmically with distance. In our experiments, we use the Log-Distance path

loss model to model power attenuation as given by eq. (4.10) with the path

loss exponent n = 3.5, which is suitable for an urban scenario [82]; d0 is the

reference distance (i.e., one meter), and d is the distance between transmitter

and receiver:

PL(dB) = PL0 + 10n log

(

d

d0

)

(4.10)

More details about the parameters used in our experiments are available

in [8]. To compute the radio transmission range, we have simulated a simple

source-sink scenario where the sink moves away from the source at speed of

1m/s. The average radio transmission limit for such a configuration is 45

meters. The simulation parameters are reported in Table 4.1.

We have implemented the Wireless-PIM-DM [14] scheme within the ns-32

simulator. The software modules developed in this chapter are available at

the author’s home page or on request. The protocol complies with the stan-

dard PIM-DM, and the implementation is modified in accordance with the
2www.nsnam.org
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Parameter Value

TxPower 16 dBm

EnergyDetection -95 dBm

CCA Threshold -62 dBm

Reference Loss
(

PL0

)

30 dBm

Path loss exponent n 3.5

Simulation time 180s

Runs 20

Stream rate 1Mbit/s

Packet size 1200B

PIM-clients speed 1.4m/s

TxRange [15÷40]m

Table 4.1: Parameters used for Wireless-PIM-DM experiments.

Wireless-PIM-DM scheme described in Section 4.2 based on the WEI ap-

proach.

Furthermore, we have implemented a simple group membership protocol,

because the Internet Group Management Protocol (IGMP), including the

processes for session setting and end-user joining, protocol has not yet been

implemented in the current version of ns-3, The traffic rate generated by such

protocol messaging is noted to be relatively negligible.

We used the AODV [78] as the underlying ad-hoc unicast routing protocol.

We observe that the proposed protocol would work equally well with other

unicast routing protocols, as the latter interact through queries to the unicast

routing table.

Each node is either a PIM-router or a PIM-client depending on whether

it executes the Wireless-PIM-DM protocol or not, respectively. Indeed, PIM-

routers are part of the mesh infrastructure, while PIM-clients are end-user

clients interested in the multicast session. We focus on demonstration the

operation of our proposed scheme for a static mesh network layout where

PIM-routers are fixed in place while PIM-clients may roam over a specified
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Mesh router

End-user

Figure 4.2: Overview of the scenario.

region that is served by these PIM-routers. Future studies will account for

the accommodation of mobile PIM-routers.

The wireless mesh network consists of 16 fixed PIM-routers arranged in

a 4 × 4 grid, as represented in Fig. 4.2. The distance between two adjacent

nodes in the grid is used as a parameter in our simulation. It is set to be no

longer than the radio propagation range (i.e., 45m). The number of PIM-

clients is also used as a parameter in our simulation, varying over the range

[1 ÷ 238]. PIM-clients are placed randomly within radio propagation range

of the PIM-routers. The first scenario is characterized by fixed PIM-clients.

In the second scenario, we use a Random Waypoint Mobility model [44]

to model the mobility of a group of PIM-clients over an area which is covered

by the installed static PIM-routers. A typical representation of this scenario

may be a university campus scenario, where roaming students access the

network to view academic news or sports events. Groups of students may

move from one area (e.g., a lecture building) to another one at given speed,

waiting for a given time (i.e., the pause time) before moving again. We

set a group speed Veu = 1.4m/s, which represents the speed of an average

pedestrian; the pause time Peu = 40 s, allowing four changes of positions to

occur during the simulation run time. Each simulation run lasts for 180 s.
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Figure 4.3: Average convergence time τc for static and roaming clients.

Performance results have been calculated by averaging over 20 runs, varying

seed values; the settings serve to permit convergent behavior and guarantee

high confidence levels.

4.5 Results on Wireless-PIM-DM Protocol

In Fig. 4.3, we depict the average convergence time of our protocol scheme,

for both the static and roaming scenarios. We observe it to show that the

Wireless-PIM-DM protocol converges rather quickly, independently of the

number of clients. Although one may expect a longer convergence time for the

mobility scenario, this is noted to not be the case. By increasing the number

of PIM-clients, we note that a set of several PIM-routers is selected to form

a multicast tree, such that the same routers are employed in feeding roaming

clients with multicast packets for the complete duration of the session. We

observe the average protocol convergence time to be limited to 8s; it increases
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Figure 4.4: Average traffic at PIM-routers with static PIM-clients.

(slightly) to 11s when the network serves a smaller number of clients. In this

case, several PIM-routersare pruned.

Fig. 4.4 displays the average transmitted and received traffic levels, in-

cluding both control and data messages. We observe that the control traffic

overhead Hm is affected only marginally by the number of PIM-clients, except

for the case that involves many fewer PIM-clients. In the latter situation,

many PIM-routers issue prune messages and are removed from the multicast

tree. Hence, we observe that the control traffic rate level incurred is related

to the average level characterizing the distance between PIM-routers. By

increasing the grid range used for the placement of PIM-routers, we reduce

the ensuing control traffic overhead rate, noting it for the underlying scenario

to decrease from 10kbit/s, when the grid range is set to 15m, to 500bit/s

for a grid range of 40m. The increase of the distance between PIM-routers

reduces the size of the overlapped area, resulting in a reduction of prune and

graft messages. We conclude that the resulting PIM-DM associated control
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Figure 4.5: Average traffic at PIM-routers with roaming PIM-clients.

traffic rate generated with the incorporated use of WEIs and dynamic group-

ing does not represent a bottleneck element in the system. Its level is noted

to be comparable, if not lower, than the traffic rate generated by a typical

unicast ad-hoc routing protocol.

Similar observations are made for the roaming scenario shown in Fig. 4.5.

Here, we observe that the control traffic overhead rate is slightly higher than

that generated under the static scenario. As they travel, roaming nodes may

either activate or deactivate certain PIM-routers, resulting in graft or prune

messages that are used for join or leave operations.

Fig. 4.6 shows the average fraction of packets correctly received, missed

and duplicated at PIM-clients, under different distance levels between PIM-

routers. We conclude that the protocol operation scales well as the number

of clients grows, limiting the fraction of missed chunks to a value that is

lower than 0.02 in dense networks (i.e., for PIM-routers inter-distance lev-

els of 15m). By increasing the PIM-routers’ inter-distance level to a value
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Figure 4.6: Fraction of chunks received, missed, and replicas: static clients.

that is close to the maximum allowed range (i.e., 40m), the average frac-

tion of missing chunks increases slightly, but is still lower than 0.05. The

relation between missing/duplicate chunks and the distance between PIM-

routers is obvious: PIM-clients are used to recover missed chunks by using

the duplicate ones received by other PIM-routers. Thus, (i) short distance

values result in a higher rate of duplicate chunks, which reduce the fraction

of missed chunks, while the control message overhead increases; (ii) The use

of longer ranges results in a reduction in the number of duplicate chunks,

leading to an increasing fraction of missed chunks, while reducing the control

message overhead (i.e., reducing prunes). The 40m configuration performs

better than the 30m one, as explained in the following. By increasing the

distance between PIM-routers, we reduce the probability of frame collision

events, increasing the spatial diversity element (spatial reuse factor) of the

operations. The gap is present until we add more PIM-clients that activate

all PIM-routers, making both configurations exhibit similar performance re-
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Figure 4.7: Fraction of chunks received, missed, and replicas: roaming clients.

sults. The fraction of received chunks is about 98% (for grid range of 15m)

and 95% (for grid ranges of 30m and 40m). As we have expected, the dis-

tance between PIM-routers in the grid plays an important role, limiting the

number of missed chunks, or increasing the number of replicas. In particular,

in a dense grid (i.e., 15m), PIM-clients receive on average about 8 replicas

per chunk, while when stretching the grid (i.e., to 40m), the corresponding

value drops to about 2 replicas per chunk.

Fig. 4.7 provides the same information for the second scenario, where PIM-

clients move within the area covered by PIM-routers. Although we expect a

moderate increase of the fraction of missing chunks, due to mobility, this is

not observed in results. Rather, we observe a slight decrease to take place

in many cases. The reason is that PIM-clients, during their roaming phase,

activate additional PIM-routers than the static scenario, and on average,

more PIM-routers are involved in the distribution. This increase the number

of duplicate chunks received by PIM-clients, resulting in a reduction of the
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Figure 4.8: CDF of the average chunks delay for nodes that receive at least the 95% of

chunks vs. the distance between PIM-routers.

fraction of missed chunks.

Next, we focus on the configuration involving 128 PIM-clients, both static

and mobile. The cumulative distribution function (CDF) of the average

chunks diffusion delay is shown in Fig. 4.8. We consider only those nodes that

have received at least 95% of all the chunks, for both the static and roam-

ing scenarios. As already observed, the grid dimension (distance between

PIM-routers) affects the chunks delivery delay, since when it increases, the

number of PIM-routers traversed by each chunk, in reaching all PIM-clients,

increases too as there is less overlap in the transmission range of PIM-routers.

Obviously, PIM-clients that are associated with PIM-routers located closer

to the source node receive chunks that have experienced lower delays than

those associated to PIM-routers at a longer distance, determining the shape

of the CDF. Similar observations hold for the mobility scenario, but with a

moderate increase in the chunks diffusion delay than that observed under the
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static scenario. This is induced by the mobility of PIM-clients. We note the

involved delay level to be lower than about 10ms, so that it does not hamper

the distribution effectiveness of real-time multicast traffic flows.

4.6 Discussion

We presented a wireless version of the PIM-DM protocol and its performance

in wireless mesh networks that employ ad-hoc routing protocols. Our pro-

posal slightly modifies the wireline version of the PIM-DM protocol through

the introduction and use of Wired Equivalent Interfaces (WEIs). In this

manner, we avoid the ambiguity involving the operation of upstream and

downstream interfaces that will otherwise occur and prevent a PIM protocol

to properly operate in a wireless network environment.

We show that the multicasting operation under the Wireless-PIM-DM

protocol is scaling well with the number of clients. Through the use of an

illustrative video streaming session, we demonstrate the underlying system

to yield effective throughput and packet delay performance behavior.

4.7 Peer-Assisted Wireless Multicasting

P2P protocols have been extremely successful for data dissemination, but

also for real-time streaming [42, 50, 94]. P2P approaches, however, consume

a lot of last-leg transmission resources, which, in case of wireless access, is a

problem, especially in light of the intrinsic broadcast nature of the wireless

channel.3

A successful IP-based streaming system for mobile devices must make the

most out of every piece of the network to be efficient and successful. We focus

here on the efficient distribution of a multicast stream (typical applications

3Part of this work was published in the proceedings of the 10th Annual Conference on Wireless On-

demand Network Systems and Services (WONS’13), Banff, Alberta, Canada [7].
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range from TV to gaming to context-aware services in push) on an 802.11

access wireless network, considering both the single BSS (Basic Service Set)

case and a more complex wireless mesh network.

In this scenario, the key features to take into account are four:

1. The wireless channel is intrinsically broadcast, but reception conditions

are not identical for every station, i.e., a broadcast communication may

be correctly received by some stations and not by some others;

2. Modern radio technologies are multi-rate, i.e., the better the channel

conditions the faster the transmission rate;

3. Broadcast and Multicast transmissions are sent at one chosen rate from

the basic rate set (BRS), usually lower than unicast rate, to increase the

number of stations that correctly receive the packet;

4. There is a definite trend in enabling direct communication between sta-

tions that are within radio range of one another, trying to exploit spatial

diversity; 802.11e/n already implement direct stations communications

also in infrastructured mode, while 3G+ and LTE are adopting it with

the WiFi Direct standard.

Exploiting these four key observations, we propose a P2P recovery protocol,

which exploits direct unicast transmissions to retrieve damaged or lost data

packets sent either in broadcast or in multicast by the source node.

The key idea is simple: whenever a station receiving a multicast stream

misses a packet, it tries to retrieve such a packet from its neighbors stations

within its radio communication range. Implementation and the performance

achievable are instead far less obvious and require the definition of how mul-

ticast is implemented in the access network, the peer discovery protocol, and

an intelligent way to identify the best station to try to recover the packet

from. We call the overall system PullCast.
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4.8 Related Works

The first issue at stake to implement PullCast is solving the problem of

multicasting in mesh networks. As pointed out in [60] multicasting in mesh

networks can be difficult, specially extending protocols designed for wired

networks. In [9] we have proposed and implemented a modification to PIM-

DM [14] which can be used in mesh networks, and we will use it in this work.

However, any multicast routing protocol can be used.

We do not claim that the idea of cooperative recovery of missing data

is entirely new, as cooperation has been proposed in many works to im-

prove performance. For instance, in [84] a Cooperative P2P Repair (CPR)

is proposed to improve the reliability of wireless broadcasting via 3G net-

works, recovering lost packets using 802.11 in ad-hoc mode, while a very

recent contribution named BooSTER [101] proposes to enhance performance

of DVB-T by recovering damaged data adopting a CPR paradigm where

unicast pull messages are sent over the Internet to recover lost information.

Other examples on heterogeneous networks exists as well; however, the spe-

cific environment of Internet-based multicasting plus local P2P recovery in a

802.11 wireless access has never been studied to the best of our knowledge.

In [2] we explored the fundamental properties of hybrid push/pull systems

in wired networks, but in wireless networks the protocol has to deal with

different constraints and networks conditions.

In [72], Majumda et al. propose a solution based on data redundancy that

combines a hybrid automatic repeat request (ARQ) algorithm and Forward

Error Correction (FEC) to address the problem of real-time video streaming

over WLANs for unicast, while for multicast progressive video coding based

on MPEG-4 FGS is combined with FEC.

In [83] Raza et al. explore the benefit of cooperative out-of-band peer-to-

peer repair (CPR) to enhance the reliability of wireless multimedia broadcast-
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Figure 4.9: Abstract representation of the system where PullCast operates.

ing in hybrid cellular/WLAN networks. In particular, they consider a fully

distributed CPR protocol where multimedia content is broadcasted through

the 3G cellular network, while lost data packets are recovered over IEEE

802.11 ad hoc P2P network.

In [106] Xiong et al. propose PeerCast, a centralized cooperative system

for 802.11-based WLANs. The key observation is that the wireless channel

capacity is highly deteriorated by by lower data rates, generating congestion.

In PeerCast, the AP (i) pushes the data packets to a subset of clients at

higher data rate, and (ii) selects a few clients in strategic positions to relay

packets to the other clients at higher data rate, exploiting higher client-to-

client Signal-to-Noise Ratio (SNR) and spatial diversity, as well.

4.9 System Overview

We consider a system as depicted in Fig. 4.9. A source node (e.g., TV

broadcaster) streams a multimedia service in the Internet. The stream gets

to a gateway that distribute it into the wireless access network. Within this

latter, the multicast PIM-DM, modified as described in [9], is used to deliver

the stream to all the Mesh Nodes (mesh-nodes) involved in the distribution.
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Each mesh-node is responsible for one Basic Service Set (BSS), serving

end-user; mesh-nodes form a backbone network and also serve end-users

stations using standard 802.11e/n. The final hop toward end-users exploit

data-link broadcast.

We observe that the number of wireless network interfaces available on

mesh-nodes affects the system performance significantly. In particular, in

case mesh-nodes have only one interface, packets must be forwarded as broad-

cast frames on the single interface towards both end-users and other mesh-

nodes, that will share the same wireless channel: the backbone and the end-

user network will interfere each other, resulting in a system bottleneck. In

presence of two (or more) wireless interfaces, instead, one will be used for

connecting all the mesh-nodes, and the second will be used for communicat-

ing with end-users. Moreover, different mesh-nodes’ BSSs can overlap, and

end-users stations are scattered in the area served by the mesh network, pos-

sibly moving. End-users receive the same video stream, as in TV broadcasts,

on-line gaming and similar applications. Different streams can be supported

on different multicast groups, albeit resources can severely limit the number

of video streams that can be distributed.

We observe that losses among end-users are in general uncorrelated, be-

cause they depend on the position-specific channel state. Moreover, the

identification of the missed packets is straightforward, because packets are

timestamped, sequential and numbered: missing packets are identified im-

mediately upon receiving correctly a packet with a higher sequence number.

In addition, video streaming applications may be able to tolerate a limited

amount of lost data packets; therefore, end users nodes do not need to receive

all packets, but a small percentage of losses is acceptable, and depending on

the error correction techniques, the losses percentage might be 5%, to guar-

antee a good Quality of Experience (QoE), or even 10% with lower quality.

We assume that video chunks are mapped to single packet for the sake of
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easy implementation of multicast, so these two terms are used interchange-

ably in the rest of the chapter. In PullCast, end-user stations missing one

or more packets will try to ask these packets to stations which are receiving

the same stream and that define a local neighborhood based on the exchange

of sporadic hello messages. The goal of PullCast is the definition of an ef-

ficient, low overhead protocol to discover if such a situation exist and in this

case create neighbor relationships and define an efficient recovery protocol

with high chances of success.

4.10 PullCast Design

The key idea is to build a local P2P overlay among the nodes that receive

the same stream. The application source node numbers and timestamps each

stream packet that can thus be recovered individually (‘packet’ and ‘chunk’

are used interchangeably). Packets are sent on a multicast group, reaching

the gateway of the wireless access network, then, the gateway forwards such

packets towards the mesh-nodes, which also are multicast enabled, feeding

the end-users attached in the wireless network. However, being multicast,

packets can be easily lost both between mesh-nodes and in the last hop.

PullCast tries to recover lost data packets via unicast transmissions.

In particular, each end-user station tries to pull such packets from a one-hop

neighborhood maintained for the purpose trying to identify nodes that are

as close as possible to exploit high data rates. Packets that are not received

(either in multicast or pulled) within a delay δ from their timestamp are lost.

PullCast has to discover node’s neighbors that are running PullCast

on the same multicast session. The P2P overlay is local to the wireless cov-

erage of each end-user station. If all mesh-nodes serve end-users stations
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Algorithm 6 NeighborhoodManagement

1: function SendHelloBroadcast(Subnet)//Send a broadcast hello every ht

2: HelloMsg ← Node’s metrics

3: SendMsgBroadcast ← (HelloMsg, SNR)

4: end function

5: function RecvHello(Sender, HelloMsg) //Hello message was received

6: NeighborhoodUpdate (Sender, HelloMsg, SNR)

7: end function

8: function NeighborhoodUpdate(Sender, HelloMsg, SNR)

9: n = FindNeighbor(Sender, Nj)

10: UpdateNeighborInformation (n, HelloMsg, SNR)

11: end function

//Invoked whenever a neighbor is selected at node j

12: function Purge(Nj) //Invoked whenever a neighbor is selected at node j

13: Expire = hl × ht

14: for all n ∈ Nj do

15: if TimeToLastContact(n) > Expire then

16: remove n from Nj

17: end if

18: end for

19: PeerSorting (Policy)

20: end function

on the same channel, then the end-users stations can receive the multicast

traffic from different mesh-nodes, otherwise the P2P overlay is limited to the

single BSS. In both cases, PullCast simply uses broadcast Hello mes-

sages that announce the willingness of the station to participate in Pull-

Cast. Hello messages are sent every ht s. Algorithm 6 describes the pro-

cedure used by each peer. The Hello protocol is as simple as it can be:

nodes periodically advertise themselves by broadcasting Hello messages;

each node, upon receiving Hello messages, builds and maintains its neigh-

borhood. Hello messages are not ACKed (they are broadcast frames) and
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Algorithm 6 NeighborhoodManagement

//Peer selection for pull messages at node j

21: function PeerSelection(Policy)

22: Purge(Nj);

23: if Policy == Random then

24: n = PeerSelectionByRandom(Nj)

25: else if Policy == Snr then

26: n = PeerSelectionBySNR(Nj)

27: else if ... then

28: end if

29: end function

//Invoked whenever a neighborhood changes at node j

30: function PeerSorting(Policy)

31: if Policy == Random then

32: n = PeerSortingByRandom(Nj)//Uniform PDF

33: else if Policy == Snr then

34: n = PeerSortingBySNR(Nj)//Weighted PDF on SNR

35: else if ... then

36: end if

37: end function

a neighbor is deleted from the local list after a timeout (i.e., hl×hts) without

receiving Hello messages. Furthermore, the neighborhood is limited to |N |

nodes, which are ordered by the Signal-to-Noise Ratio (SNR) of their Hello

messages. The on-air overhead of building the P2P overlay is given by the

Hello messages only, which are small broadcast data frames. Hello mes-

sages need not to be sent frequently as neighborhood changes are related to

terminal mobility.

The rationale behind PullCast is to complement the standard multicast

delivery by recovering the fraction of lost data packets, as long as this fraction

is reasonably small. Nodes compute the chunk ratio Kω of the multicast

packets received within a window of Pω packets. The Kω includes the chunks

received in multicast by the AP or mesh-node and those recovered using the

pull mechanism. An excessive use of pull unicasts (to recover a packets when
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Algorithm 7 PullCast

// Called whenever a chunk i is received at node j

1: function ChunkReceived(Sender, Cj)

2: if Cj was pulled then

3: CancelPullTimer()

4: end if

5: ChunkBuffer ← Cj

6: Cpull = ChunkSelection (OldestMissedChunk)

7: Kω= ComputeRatio(Pω)

8: if PullTimer 6=Running AND Kω ∈ IP then

9: invoke PullLoop

10: end if

11: end function

// Called whenever a pull is received

12: function PullReceived(Sender, Cj)

13: if Cj ∈ ChunkBuffer AND Cj is valid AND Ps then

14: invoke SendChunk(Cj)

15: end if

16: end function

too many are lost) would simply overload the channel, making the system

collapse. From this observation, we define a pull activation interval IP ,

limiting the pull recovery mechanism to nodes having Kω ∈ IP . Therefore,

stations receiving a poor quality from the multicast delivery will not use the

pull mechanism to recover lost data packets.

PullCast tries to recover the missing packet k closer to its playout

deadline δk (oldest packet still useful). Algorithm 7 shows the pseudocode

of the PullCast protocol. Each node keeps the statistics of the SNR of all

the neighbors from which it receives Hello messages. The neighbor to pull

from is chosen in the set of the |N | neighbors with the higher SNR following

a weighted random procedure derived from the one we studied in [5], where

peer selection was based on nodes round trip time delay (i.e., RTT). Let

SNRi be the SNR of neighbor i at node j, then each neighbor i is selected
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Algorithm 7 PullCast

// Pull loop to retrieve missed chunks

17: function PullLoop

18: Cpull = ChunkSelection (OldestMissedChunk)

19: while PullAttempts(Cpull) ≥ Pm do

20: ChunkSkipped(Cpull)

21: Cpull = ChunkSelection (OldestMissedChunk)

22: end while

23: Kω= ComputeRatio(Pω)

24: if Cpull > 0 AND Kω∈ IPAND Valid(Ps) then

25: Npull = PeerSelection (SNR)

26: if Npull 6= NULL then

27: invoke SendPull(Cpull)

28: StartPullTimer(PullLoop, Pt)

29: AddPullAttempt(Cpull)

30: end if

31: end if

32: end function

with probability

P (i) =
SNRi

SNRtot
(4.11)

SNRtot =
∑

i

SNRi, i ∈ Nj (4.12)

where SNRtot is simply the sum of all SNRi. As many studies on ad-hoc

networks (e.g., [106, 45]), we use the SNR as a measure of the point-to-point

channel quality, furthermore we assume that the SNR measured on (broad-

cast) hello packets is representative also for higher rates unicast packets.

In video streaming, packets are sent at regular intervals, thus if
−→
TS s is

the inter-arrival time of multicast packets, known to all clients, the pull

packets asking for missing chunks are sent in an interval Ps <
−→
TS immediately

following the reception of a multicast packet; in addition, each node satisfies

at most Pr pull request within each Ps. A pull that is not served within the

pull timeout Pt is sent to another neighbor for at most Pm times, satisfying

Pt × Pm < Ps, then the packet is marked as discarded.
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The protocol is very light, stateless and stable, however its performance

is difficult to predict. Given that the inter-time ht between Hello messages

is very large compared to
−→
TS , it is not possible to distribute up-to-date in-

formation about the chunks nodes own, so that the use of optimal, informed

strategies (see for instance [12]) for chunk selection is impossible, and request

are sent blindly. Albeit the scenario is different, the seminal work in [20] set

an upper bound to the performance of blind-pull protocols, which means

that we should not expect the protocol to be able to retrieve 100% of missing

chunks. The attempt of a theoretical modelling is beyond the scope of this

work; however, the analysis of the influence of Pt, Pm, Ps, as well as their

interaction with standard 802.11 parameters ad the number of retransmission

attempts for frames lost at the MAC layer will give interesting insight in dis-

tributed protocols attempting to improve multicast performance in wireless

access and mesh networks.

4.11 PullCast: Performance Metrics

PullCast has been designed to enable end-users to recover missing multi-

cast packets to improve the final quality, and it is not meant to substitute

multicast itself. The metrics we selected to evaluate its performance are the

following.

Video delivery ratio The video delivery ratio is the ratio between the num-

ber of chunks received by end-users and the number of chunks in the stream.

It considers both the chunks obtained via multicast and those recovered in

P2P mode.

C(j) =

|C|
∑

i=1

r(Ci)

|C|
, r(Ci) =







1 if Ci is received

0 otherwise
(4.13)
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Video delivery delay The video delivery delay measures the average chunks

diffusion delay. We define the diffusion delay for the Ci as

δj(i) = Tj(Ci)−
−→
TS(i)

where
−→
TS(i) is the time the source generated Ci, and Tj(Ci) is the time in

which node j receives Ci. The fraction of chunks received via multicast is

affected by a uniform delay, while higher delays are experienced by those

received in pull.

Channel load The channel load measures the fraction of time each node

“see” the channel occupied. The channel is defined as occupied when it is:

1. Sensed busy or occupied by other stations,

2. Used by the node for transmitting or receiving frames,

3. Unavailable because of MAC protocol internals (Inter Frame Spaces,

Backoff Procedures, etc.),

The channel status is a property defined at each station, as propagation

conditions may lead to different situations in different places. Let η(i) ∈ [0, 1]

be the channel load measured at station i, then the average channel load is

η̄ = E[η(i)] including in the average also the access point or mesh-nodes.

1− η(i) is the fraction of time that the channel at station i is idle, and is the

probability of finding the channel available with a random sampling.

4.12 Simulation Model and Methodology

The notation we use in this work is reported in Table A.1. We have im-

plemented PullCast in ns-3 [43]; the source code will be available in the

public distribution after completing the code documentation and the approval

of the ns-3 board; for the time being it can be obtained from the authors.
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Each simulation is run for 160s, and presented results are averaged over 10

independent runs.

The source node streams at a constant packet rate corresponding to
−→
TS =

12ms, for the sake of simplicity we assume all packets have a payload of

1400B. We set the Pt equal to the
−→
TS , i.e., either chunks are recovered

immediately after their loss has been identified or they are lost. The Ps is

further reduced by a small time guard, resulting in 10ms. We set the number

of pull attempts Pm and the number of pull reply Pr equal to 1, as preliminary

results indicate that different values tend to overload the channel; the true

impact and the optimization of these parameters is left for future work. The

simulation parameters are reported in Table 4.2.

We recall that blind pull cannot achieve 100% chunk delivery; however,

video streaming applications can tolerate a limited amount of lost data pack-

ets, and FEC techniques can be used to compensate these losses. What we

aim at is guaranteeing a good QoE, hence, we define a quality threshold Qthr,

representing the minimum number of chunks each end-user should receive to

experience a good video streaming session.

End-users stations are uniformly distributed within a radius RNm from

the AP/mesh-nodes, which are static, while end-users stations might be static

or mobile, The number of end users stations served by each AP is 100, while

the hello messages timeout ht is 10s.

4.12.1 Scenario

In this work we focus on a simple scenario where one multicast transmitter

(an AP or mesh-node), deliver the stream in a BSS. This allows the evalu-

ation of PullCast in a simple and controlled environment and provides a

benchmark for future, more complex scenarios.

The second scenario consists in a multi-cell wireless access network with

several mesh-nodes. A typical representation of this scenario may be a uni-

113



CHAPTER 4. COOPERATIVE WIRELESS MESH MULTICASTING

versity campus scenario, where students access the network to watch sports

events or news. The mesh-nodes forming the multi-cell are equipped with

two wireless interfaces; the former is used to communicate with other mesh-

nodes, and the latter provides wireless access to end-users stations. In this

work we refer to end-user and backbone network to address the mesh-node-

to-end-users and the mesh-node-to-mesh-node network, respectively. Thus,

the first scenario has only the end-user network, while the second scenario

consists of one backbone network and several end-users networks. We assume

that end-users can move towards their destinations following a given path,

for instance, students moving from one building to another one, following the

sidewalk. Thus, in a chain topology mesh-nodes are placed at a fixed distance

d, forming a chain, providing exactly two neighbors to each mesh-node.

4.12.2 Channel and Radio Model

We use the Log Distance Path Loss to model the radio propagation model,

where the path loss exponent is set to n = 2.6, which is a typical value used

for urban scenario [82], while the path loss at 1m is equal to 52.0597dB. The

radio transmission power is set to 20dBm, while the receiver sensitivity is set

to -95dBi: common values for wireless interfaces. In addition, the end-users

network is affected also by the Rayleigh Fading Model, resulting in an average

AP coverage radius of about 120m. Moreover, the unicast data rate is set

to 54Mbit/s, while the broadcast data rate is a parameter of our study. We

remark our interest in evaluating the PullCast protocol that acts within

the end-users network not the performance of the backbone network; Thus,

we assume a reliable mesh network, where almost all data packets are received

by all the mesh-nodes, otherwise the PullCast evaluation will be biased by

the losses at the mesh network. Finally, we indicate the station short retry

count (SSRC) [11] with STASSRC .
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Radio system IEEE 802.11e

Path Loss Model Log Distance: n = 2.6, L0 = 52.0597dB

Fading Model Rayleigh (only end-users network)

Antenna Gain/Loss Access TxGain=RxGain=1dBi

Antenna Gain/Loss Backbone TxGain=1dBi, RxGain=5.5dBi

Radio TxPower=20dBm, Sensitivity=-95dBm

Mobility Model Random Waypoint: Veu = 1.4m/s, Peu = 30s

Table 4.2: Parameters used for exploring the PullCast protocol.

4.12.3 Mobility Model

A typical representation of the proposed scenarios are university campus,

where roaming students access the network to see sports events or university

news, or shopping areas, where customers watch news or advertisement on

available discounts, while moving towards shops. In our work, end-users

move according to the Random Waypoint Mobility Model [51]: each end-

user selects a destination point and then moves towards the destination at

a pedestrian speed Veu set equal to 1.4m/s. Once the node reaches the

destination, it waits for a pause time Peu set equal to 30s; then it repeats

the process and selects a new destination point. Each node has a set of four

destination points, that are located within a radius RN from mesh-nodes.

4.13 Simulation Results

First, we analyse the influence of some MAC layer parameters on the P2P

overlay and protocol performance. The parameter STASSRC in 802.11 con-

trols the number of retransmission attempts per frame, before discarding the

frame. As 802.11 is extremely sensitive to this parameter and rate fallback al-

gorithms may lead to heavy congestion we want to understand if the standard

value STASSRC = 7 is suitable for our application Fig. 4.10 and Fig. 4.11

show the fraction of end users that receive the target Qthr of 95% of chunks
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Figure 4.10: End users with Qthr ≥ 95% (Top) and Average Channel Load η̄ (Bottom)

for different BC and RN , with STASSRC = 7.

(Top) and the average channel load experienced by end users stations (Bot-

tom), for different multicast data rate and radius RN , comparing the simple

multicast distribution with PullCast for different IP intervals. Fig. 4.10

refers to the standard STASSRC = 7 and Fig. 4.11 to STASSRC = 0.

A few observations are in order. First, PullCast provides improved

performance in all cases. Second, for these applications it is much better to

avoid MAC layer retransmissions as they simply overload the channel, and

do not offer improved performance. Indeed, such retransmission will interfere

with the broadcast delivery of the multicast streaming, intensifying the num-

ber of collisions, thus, increasing the number of lost multicast data packets.

Finally, it is clear that broadcasting the multicast stream at low rates help

increasing the delivery ratio, but it also increase the channel load, so that

additional background traffic would be penalized (if service differentiation is

used) or will interfere with the streaming application. For the remainder of
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Figure 4.11: End users with Qthr ≥ 95% (Top) and Average Channel Load η̄ (Bottom)

for different BC and RN , with STASSRC = 0.

the work we set the broadcast rate to 18Mbit/s, both for multicast and for

Hello messages, and we set STASSRC = 0.

Next we focus on the impact of the clients distance, i.e., RN , and also

try to gain insight on the impact of the recovery interval of the protocol IP .

Fig. 4.12 reports the entire CDF of delivered chunks to all users, for different

values of RN and IP larger than 0.8 and 0.9 respectively. In all combinations

PullCast improves performance, indicating that the protocol is robust and

keep the load of the channel under control even in limit conditions as when

the distance of clients from the AP can be as large as 180 m. The highest gain

is for IP larger than 0.8. Additional results not shown to avoid cluttering

the graph indicate that trying to recover the video more aggressively tends

to saturate the channel in some conditions, indicating that the protocol is

becoming unstable.
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Figure 4.12: Fraction of chunks received for different values of IP and RN : STASSRC = 0

and BC = 18Mbit/s.

Fig. 4.13 reports the chunks diffusion delay, complementing the informa-

tion of Fig. 4.12. The size of the IP interval influences the chunks diffusion

delay: large IP intervals increase delays as more chunks are recovered by

more peers increasing channel contention. The delay is clearly due to con-

tention, as increasing the coverage area delay decreases, because nodes are

less dense, less chunks are recovered as we have seen and in some cases space

diversity transmission may happen.

4.13.1 Impact of Mobility

Fig. 4.14 shows the fraction of clients with Qthr = 95% and IP = [0.90 :

1.00] for different values of BC and RN , under mobility conditions. We

observe that in dense network, the mobility conditions do not influence our

system, sometimes improves the fraction of clients reaching Qthr, as shown

for BC = 6Mbit/s and RN = 90m, where almost all peers reach the Qthrin

118



4.13. SIMULATION RESULTS

0.60

0.70

0.80

0.90

1.00

 0  2  4  6  8  10  12  14  16  18  20  22  24

F
ra

c
ti
o
n
 R

e
c
e
iv

e
d
 c

h
u
n
k
s

CDF End Users

Multicast
Ip[0.80:1.00]
Ip[0.90:1.00]

90m
120m
150m
180m

Figure 4.13: Average chunks diffusion delay varying IP and RN : STASSRC = 0 and

BC = 18Mbit/s.

case of all roaming clients; However, if we move towards sparse networks, by

increasing either the BC or the RN , or both, we observe that the mobility

influence PullCast significantly; In particular, the configuration where all

peers peers are roaming from one AP to another one, always withing RN ,

we observe significant performance reduction, while we limit the performance

reduction when having half of peers static, for instance, for BC = 18Mbit/s

and RN = 120m we have about 42% of peers in Qthr for both static and half

static configurations, while the full mobile has only 32%.

4.13.2 Extending Results to Single Channel Meshes

We consider a very simple topology with a mesh network extending coverage

with four mesh-nodes arranged in a linear topology, and with the very limiting

condition of using a single channel for all four BSS (mesh-nodes’ backbone

is instead on different resources). If BSSs are arranged on different channels,
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Figure 4.14: End users having Qthr=95% with roaming stations for different BC and RN :

IP = [0.90:1.00].

the situation is not much different from a single BSS, as BSSs are independent

one another.

Fig. 4.15 shows the fraction of end-users with Qthr = 95% and the cor-

responding average channel load experienced by such stations, for the chain

topology. We observe that PullCast outperforms the Multicast delivery for

any configuration; for instance, for BC = 18Mbit/s, PullCast serves from

4% to 10% more clients than Multicast, while limiting the average channel

occupancy. The latter, is lower than the previous scenario (i.e., single cell)

because the number of end users stations are uniformly distributed among

the four mesh-nodes, resulting in significant reduction of channel contention;

however, this condition reduces node’s neighborhood, actually limiting the

PullCast properties.

Finally, in Fig. 4.16 we analyze the impact of roaming clients for both

Multicast and PullCast. We remark that we use the Random Waypoint
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Figure 4.15: End users having Qthr = 95% (Top) and Average Channel Load (Bottom) in

a chain topology for different BC, RN , and IP intervals.

Mobility Model, where each node selects a target destination within a radius

RN of a random mesh-node; Moreover, mesh-nodes cells are only partially

overlapped, thus, nodes, while moving, might move through some area that is

not covered by any mesh-node, and this condition is more evident in sparse

networks with lower multicast data rate BC. However, even under this

limited condition, again, PullCast is able to serve more clients than Mul-

ticast; In particular, when 50% of clients are static, PullCast performs

better, since such static nodes provide a good pool on which recover lost

data packets; However, in full roaming scenario, as we expect, the number of

clients served decreases, because clients might cross cells through that areas

that are not well covered: such results suggest to change the design of the

current mesh network, reducing the distance between mesh-nodes, or even

increase the transmission power.
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Figure 4.16: End users having Qthr=95% with roaming stations in chain topology with

different values of BC and RN .

4.14 Conclusion

In this chapter we present the issues that prevent the PIM protocols to work

over wireless mesh networks. We propose the Wired Equivalent Interfaces so-

lution, yielding to a Wireless-PIM-DM protocol version that works properly

and efficiently across a wireless ad-hoc network, while requiring only minor

modifications to be applied to the commonly employed protocol. In illus-

trating the performance of a wireless network system that uses the modified

protocol, we consider a network system that serves static or roaming users

that connect to a wireless mesh network. We show that the multicasting op-

eration under the Wireless-PIM-DM protocol is scaling well with the number

of clients. Moreover, we run an illustrative video streaming session, evaluat-

ing the corresponding throughput and packet delay performance behavior.
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Then, we introduce PullCast, a new peer-assisted video multicasting

protocol for wireless mesh networks. The key idea of PullCast is to com-

plement the standard multicast delivery protocol, by activating peer-to-peer

recovery mechanism, in order to retrieve a small fraction of lost data pack-

ets from nodes’ neighborhood. We observe that the average channel load

induced by the pull recovery mechanism is limited and lead to significant

increasing of peers reaching the target Qthr = 95%, showing that even the

chunks diffusion delay is rather limited to 24ms. We discuss the impact

of mobility, for different fraction of roaming clients: from all static, to half

mobile, to only roaming mobile clients. We observe that in dense network

PullCast gains benefit from mobility, while in sparse network, the mobility

slightly reduces our protocol performance, which always perform better than

Multicast. Finally, we analyze a simple mesh network where mesh-nodes are

placed in a chain topology, under both static and mobile conditions, observ-

ing that PullCast is able to serve more clients than Multicast, obtaining

fairly good results even in case of sparse network where all clients move from

one mesh-node to another one.

Regarding the Wireless-PIM-DM protocol, we plan to examine the impact

of PIM-routers mobility; in particular, it is of interest to characterize the

minimum number of PIM-routers that will have to be activated. We also aim

to analyze the impact of limited bandwidth resources and of noisy channel

features on the resulting construction process of multicast tree layouts and

on multicast delivery, under the use of the Wireless-PIM-DM protocol. In

addition, we intend to investigate the impact of using different unicast routing

protocols, both flat and hierarchical, on multicast tree construction and on

the dynamic convergence behavior of the operation when regulated by the

Wireless-PIM-DM protocol.

The PullCast protocol offers several potential future research directions.

The first of these is to investigate on peer selection and chunk selection
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policies, possibly moving from a blind to a two sided systems, where peers

periodically exchange information about their buffer maps, and pull might

include a list of lost data packets, not only one as done in this study.

Next, we plan to continue our analysis of multi-cell topologies, extend-

ing our work for chain and even grid topologies, investigating on the mesh

network design to guarantee high quality of experience to end-users stations.

Finally, PullCast can be improved through a better definition of the

wireless transmission model, by including building and obstacles that might

either improve or completely block the signal propagation.

Further research include also exploring several streaming rates, as well as

better per-node parameters where the protocol adapts itself to node’s status,

e.g., adapting the Pt to node’s channel experience, maximum number of pull

retries and pull replies per pull slot.
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Chapter 5

GRAPES: Generic Resource-Aware

P2P Environment for Streaming

5.1 Introduction

Peer-to-peer (P2P) technologies are becoming increasingly popular as a way

to overcome the scalability limitations intrinsic in traditional network appli-

cations based on a client/server paradigm. In particular, there is a great

interest in P2P streaming applications (both Video on Demand and TV-

like live broadcasting systems), because they have high demands in terms of

bandwidth requirements. IP-level multicast could help in reducing the net-

work bandwidth required by an audio/video streaming system, but it is not

supported on the Internet.

In the last years the scientific community produced a lot of research work

on improving the P2P streaming technologies to provide better quality and

to better exploit the available resources; however, commonly used P2P TV

applications, such as PPLive, UUsee, and SopCast, do not always follow such

trends, and are still based on architectures deriving from file sharing applica-

tions, whose requirements are far apart from (live)streaming. As a result, the

network bandwidth is not used efficiently, and the P2P TV clients can provide

a good user experience only by being very aggressive in network usage.
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In the authors opinion, such a lack of technology transfer from the research

community to commonly used applications can be solved through the avail-

ability of open-source P2P streaming applications providing the researchers

with a working codebase that can be easily modified to experiment with and

to integrate novel ideas. To target this goal, it is useful to remember how the

free availability of open-source kernels as Linux or FreeBSD helped the OS

research community! Unfortunately, integrating experimental techniques in

an application sometimes requires drastic changes to its structure: for exam-

ple, changing the local chunk selection algorithm can be easy, but changing a

P2P streaming application from “epidemic style” push [12] to pull [42, 109],

or more complex strategies [5] can require a complete redesign.

In other words, developing one single open source application can impose

too many constraints on the research that can be performed on it, requiring

to rewrite the application every time a new solution has to be tested (in [66]

the authors had to implement 5 different P2P streaming application, writing

more than 10000 lines of C++ code).

This work proposes a set of generic and reusable components forming a

codebase to develop P2P streaming applications with (almost) any structure.

Such a toolkit, named GRAPES (Generic Resource Aware P2P Environment

for Streaming), provides a set of building blocks that researchers can use,

combine, and modify to test and compare different solutions fostering the

development of new ideas as it happened in OS research [35]. To the authors’

best knowledge, similar toolkits do not currently exist in the P2P community.

A possibly close work [30] identified a common API for a Key-based Routing

Layer that can be used as a base for various P2P services, but no implemen-

tation of such an API has been freely released to the research community.

This chapter is organized as follows: Section 5.2 discusses the require-

ments for GRAPES, which drove the main design choices and influenced the

GRAPES structure, described in Section 5.3; Section 5.4 describes how to use
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GRAPES, and presents some early experiences (showing how GRAPES can

simplify the development of P2P streaming applications); finally, Section 5.5

presents the conclusions and describes ongoing work.1

5.2 Requirements

First of all, the functionalities provided by GRAPES should be usable by as

many applications as possible in as many different environments as possible.

This means that GRAPES should be able to run in many different platform-

s/operating systems, and should be accessible to many different development

tools and runtime environments. For this reason, GRAPES has been imple-

mented as a C library, since almost every development platform provides a C

compiler, and it is quite easy to develop bindings to other languages such as

python, java, and other high-level languages. In addition, C++ programs can

directly link to the GRAPES library without needing any kind of wrapper or

special bindings. Moreover, C does not requires complex runtime support,

or system libraries.

For the same reason, the amount of dependencies for GRAPES has been

reduced to the minimum (e.g., no dependencies on external libraries). The

result is that GRAPES can be used on many different systems, ranging from

large network servers to small and not-so-powerful embedded devices.

A second requirement, more difficult to fulfill, is that GRAPES should

not impose any particular structure to the applications using it, so that the

library can be used applying different programming paradigms (ranging from

event-based, reactive, programming to thread-based multiprogramming). In

this way, GRAPES supports different programming styles (some program-

1This work is supported by the European Commission through the NAPA-WINE Project (www.napa-

wine.eu), ICT Call 1 FP7-ICT-2007-1, 1.5 Networked Media, grant No. 214412.

Part of this work was published in the proceedings of the 2010 ACM Workshop on Advanced Video

Streaming Techniques For Peer-to-Peer Networks and Social Networking, Pisa, Italy [1].
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mers prefer thread-based multiprogramming because of its simplicity, while

others are against the thread abstraction [95]). This second requirement has

some serious implications on the API exported by the library, since concur-

rency handling and support for parallel activities have to be moved from the

library to the application using it. As it will be shown in the following, this

has been obtained by removing from GRAPES the code for receiving data

from remote peers (and for demultiplexing the received data), and by leaving

such a task to the application. The received data will then be passed to

GRAPES by invoking an appropriate data parsing function.

A third requirement is modularity: GRAPES should provide all the ba-

sic functionalities needed by a generic P2P application, without forcing the

application to use unneeded code. For this reason, the GRAPES function-

alities have been grouped in several modules (that will be described in Sec-

tion 5.3) and described by a well defined API. Each module has its own

API (described by a C header file), and can be used independently from the

others (if a module needs the functionalities of a different one, it will use

them through the public API, so that each module can be easily replaced

by a user-provided implementation). As previously mentioned, all the mod-

ules that need to interact with remote peers export a data parsing function

(named ParseData(), plus a prefix dependent on the module name).

Applications based on GRAPES communicate through messages, which

can contain data to be diffused or signalling information. Such messages are

encapsulated in network packets and sent by using a network abstraction

layer, named network helper, which allows to easily change the protocol used

for transmitting the messages, to port GRAPES to different architectures,

and so on. GRAPES modules can directly send messages (by invoking the

network helper), or can simply construct them, leaving to the application

the responsibility of sending the messages (still through the network helper).

On the receiving side, applications are responsible for invoking the network
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helper to receive messages, and pass them to the correct GRAPES modules

(by invoking the correct ParseData() function). This architecture also en-

ables optimization like embedding multiple messages in a single packet to

reduce the network traffic.

5.3 Design and Structure

Since GRAPES aims at providing the basic blocks needed for building a P2P

streaming application, the most important modules composing such appli-

cations have been identified. A preliminary analysis revealed that a generic

P2P streaming application usually needs, in addition to the net helper, the

following modules.

• A Peer Sampling mechanism, providing each peer with continuously

up-to-date random samples of the entire population of peers;

• A Chunk Trading to send/receive pieces of a media stream (called

chunks);

• A Chunk Buffer to store the received chunks so that they can be for-

warded to the other peers;

• A Chunk ID Set data type to send signalling information about the

received or needed set of chunks;

• Some Scheduling functions to decide which chunk to send/ask, to which

peer;

• A Peer Set data type to store neighbors in a structure describing the

overlay.

The goal of the various GRAPES modules is to hide the implementation

of the mechanisms introduced above, and to make them accessible through
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an uniform and generic programming interface. In this way, implementation

details of the various mechanisms can be easily changed without affecting the

application code.

Note that although the following description of GRAPES is based on

an example using all its functionalities, applications are free to use only

the needed modules. For instance, a streamer based on a tree-like overlay

will probably not use the Peer Sampling module; other applications can use

GRAPES’ Peer Sampling implementing their own chunk buffer.

5.3.1 Peer Sampling

The Peer Sampling module is used by a P2P application for joining an over-

lay: the application provides to the peer sampling mechanism one (or more)

known peers, and can obtain a “view” containing a random sample of all the

peers currently active in the system. Such a mechanism can be implemented

by using a gossipping protocol like NewsCast [48] or CYCLON [100], or

some other mechanism (the use of a centralized database has been proposed

in some situations [65]). Currently, a simple gossipping protocol (similar to

NewsCast) has been implemented, and an implementation of CYCLON will

be released soon. If a specialized peer sampling mechanism is needed, it can

be easily implemented in this module, and made available to all the appli-

cations using the GRAPES API. The most important functions exported by

the Peer Sampling module are:

• Init(), to initialize the peer sampling service, and assign a local address

to it

• ParseData(), invoked when a peer sampling message from a remote

peer is received

• AddNeighbour(), to provide the ID of known peers; mainly used for

bootstrapping
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• RemoveNeighbour(), to remove a peer from the local view

• GetNeighbourhood(), which returns a random sample of the peers (a

list of the known peers)

• GrowNeighbourhood() and ShrinkNeighbourhood(), to modify the

size of the local view (the set of known peers)

• GetMetadata() and ChangeMetadata(), to get and modify the meta-

data associated to a peer.

Moreover, some metadata can be associated to each peer, to describe its

attributes (e.g., upload bandwidth) metadata are application-specific, and

are handled transparently by GRAPES.

5.3.2 Signalling and Chunk Trading

Once an application has a list of some of the peers participating to the P2P

system, it can exchange signalling messages (telling which chunks it needs

and/or which chunks it can provide to the other peers) and chunks with the

other peers.

GRAPES provides powerful and generic signalling protocol primitives,

which allow to implement a large set of different chunk trading mechanisms.

Analyzing the signalling messages required by various chunk trading proto-

cols found in the literature, it is clear that most signalling messages send a

set of chunk IDs, but with different semantics. A buffermap, for example, is

a set of chunk IDs encoded normally as a bitmap, just as a chunk request is

usually a set with only one element.

Therefore, GRAPES provides a Chunk ID Set datatype that can be used

for storing the IDs of the chunks owned (or needed, or offered, or accepted,

. . . , depending on the required semantics) by a peer. The signalling function-

alities also provide a low-level API with a generic encodeChunkSignaling()
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function, that takes a Chunk ID Set as a parameter, transforming it in a mes-

sage to be sent on the network through the network helper. Metadata ex-

plaining the type and the semantic of the message (e.g., whether the chunks

are needed or offered) and information about the chunk trading protocol

(e.g. a transaction ID) can also be encoded by encodeChunkSignaling()

and added to the message. Note that the current implementation supports

different encoding schemes, e.g., Chunk ID Sets can be encoded both as

bitmaps (useful for large dense sets), as well as lists (useful for sparse sets

or for debugging purposes, optionally assigning priorities and other informa-

tion to the various chunk instances. The different encoding schemes support

different trade-offs between bandwidth usage and represented information.

Like the Chunk ID Sets, chunks can be transmitted by using appropriate

encode() (encodeChunk(), for transforming a chunk or a Chunk ID Set

in a message) and decode() functions (decodeChunk(), for transforming a

message in a chunk).

Based on the above low-level function, an API consisting of “high-level”

functions has also been built. Thanks to such a high-level API, GRAPES

implements a large set of signalling protocols, which allow the composition

of very different chunk trading mechanisms. The following signalling func-

tionalities have been implemented based on encodeChunk-Signaling():

• buffermap message (to inform another peer about the status of the chunk

buffer)

• chunk offer (to offer a set of chunks to another peer)

• chunk accept (the response to an offer message)

• chunk request (ask for one or more chunks)

• chunk deliver (response to a request)
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Various chunk trading logics can easily be obtained from the above primitives:

A simple “useful” push protocol [12] uses only buffermap messages; a pull

protocol [42, 109] will use request and deliver messages; and a more complex

one that uses bufferstate information to send pull requests to selected peers

will use all the buffermap, request, and deliver messages. More complex

trading protocols, such as an offer-accept protocol are also supported: The

Technical Report [3] reports examples of streamers built using GRAPES.

At the implementation level, the above messages are rather similar and

therefore easily parseable. Signalling information are encapsulated in mes-

sages by a message type, by using the Chunk ID Set datatype, and some

other information (encoded as metadata) such as a transaction ID and the

maximum number of chunks to be delivered.

5.3.3 The Chunk Buffer

Chunks received by an application are generally stored in a Chunk Buffer,

from which they are taken for forwarding the stream to other peers. GRAPES

provides a Chunk Buffer API which enables to store the received chunks, and

to get a list of the currently stored chunks. The application does not have

to care about the data structure’s internals, and GRAPES is responsible for

ordering the chunks, removing the duplicates, discarding chunks that are too

old, and other operations.

Different buffer management policies are possible:

1. the buffer discards chunks when a maximum size has been reached;

2. chunks are discarded when the difference between their playback time

and the current time is too large.

Other, more advanced, policies can be designed and added to the library

without affecting its interface, or the user code (for example, storing all

the chunks for a larger time, which can be more useful for VoD systems).

133



CHAPTER 5. THE GRAPES LIBRARY

Many parameters, like the buffer size, are configurable through the initial-

ization call.

The functions exported by the Chunk Buffer module are:

• cb_init(), to initialize a chunk buffer, setting its size and some impor-

tant parameters

• cb_add_chunk(), to insert a new chunk in the buffer

• cb_get_chunks(), returning an ordered list of all the chunks which are

currently stored in the buffer

• cb_get_chunk(), returning a specified chunk from a buffer

• cb_clear(), to remove all the chunks from a buffer

• cb_destroy(), to destroy a buffer, freeing all the resources used by it

5.3.4 Scheduling

During the streaming, an application often has to select chunks to send / re-

ceive, or remote peers to contact for chunk trading. All of these decisions are

performed by the peers and chunks scheduler. Note that the scheduling deci-

sions to be taken depend on the chunk trading protocol that the application

implements. For example, when using an epidemic streaming approach an

application periodically sends a chunk to a neighbor. Hence, it needs a chunk

scheduler to select the chunk to be sent and a peer scheduler to select the

target peer to which the chunk will be sent. In alternative if the application

is based on a pull protocol, it has to select a set of chunks to be requested to a

neighbor, and a neighbor to which the chunks are requested: Two scheduling

functions are still needed, but they work in a different way respect to the

“push” schedulers. Finally, more complex protocols (such as an offer/trade

protocol) can be used, but any peer has still to take scheduling decisions

about the chunks to offer, and about the offers that it wants to accept.
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The GRAPES scheduler provides fundamental scheduling functions that

can be used in the situations described above, and are, in the authors’ opin-

ion, generic enough to be used in many other situations. Furthermore, a

scheduling framework that can be used to implement new and more special-

ized schedulers is provided. The final goal is to have a scheduling API which

is compatible with the one used by SSSim [13], so that schedulers can be

easily moved from the simulator to real applications and vice-versa.

5.3.5 Other Modules

Other modules are currently under development and will be available in the

next releases of the software. For example, a new module will contain some

topology management algorithms such as TMan [49] that allow to build a

more structured overlay based on the random view provided by the Peer

Sampling module.

Another important GRAPES module which has not been fully yet al-

lows to connect a P2P application with the libavcodec and libavformat

libraries2, to encode/decode audio and video, and to handle multimedia for-

mats. Such a module can be used in the input and output parts of a P2P

streaming application, to implement media aware streaming (for example,

inserting an integer number of frames in each chunk, or assigning different

importance to different chunks based on the presence of reference frames in

them). The functionalities of this module have already been implemented,

and [56] shows how to use such functionalities together with a simulator, but

they have also been used in a real streamer.

2www.ffmpeg.org
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5.4 Usage and Early Experiences

Applications based on GRAPES can use the library’s public interface (ex-

ported through some C header files) to initialize the network helper and the

various GRAPES modules, to send/receive messages, and to pass them to

the appropriate ParseData() function. The typical application will

1. Initialize the various components

2. Enter a loop in which it:

(a) Receive messages

(b) Demultiplex them and pass them to the appropriate module

(c) Eventually send back messages (this can be done by the module

itself

Listing 5.1 shows how to do this in a single-threaded application. The

wait4data() function, exported by the network helper, allows the appli-

cation to block waiting for a message or for a timeout to fire. If a message

arrives before the timeout fires, the message is received (recv_from_peer()

and is passed to the proper ParseData() function, selected through a is*()

function (in this example, only the handling of the Peer Sampling messages -

identified by isTopology() - is shown; if the application uses more GRAPES

modules, other is*() and *ParseData() functions will be invoked - in place

of the “else check if the message goes to other GRAPES modules” comment).

Based on the structure described above, a simple application which builds

a P2P overlay by using the Peer Sampling service has been written with

about 100 lines of C code. Such a program compiles in an executable large

about 10 kB, which requires less than 2 kB of data to execute.

Listing 5.1: Single-threaded usage of GRAPES.

struct nodeID ∗my_id ;

my_id = net_helper_in i t (my_addr , my_port ) ;
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t op In i t (myID, NULL, 0 , "" ) ;

while ( ! done ) {

new_msg = wait4data ( s , &timeout , NULL) ;

i f (new_msg) {

l en = recv_from_peer ( s , &remote , buf f , BUFFSIZE) ;

i f ( i sTopology ( bu f f ) ) {

topParseData ( buf f , l en ) ;

} /∗ e l s e check i f the message

goes to o ther GRAPES modules ∗/

nodeid_free ( remote ) ;

} else {

/∗ Invoke Parse f unc t i on s wi th NULL

argument , to check f o r t imeouts ∗/

topParseData (NULL, 0) ;

/∗ Other modules ’ Parse ( ) ∗/

}

}

As previously explained, GRAPES does not force any particular appli-

cation structure, so it can also be used in a multi-thread environment, as

shown in Listing 5.2. Note that in this case the application is responsible of

ensuring mutual exclusion on the GRAPES functionalities and data struc-

tures (by using appropriate mutexes), so GRAPES does not depend on any

specific threading library. Alternative implementations of the network helper

which allow to use GRAPES in event-based programs have been developed

and will be integrated in the main codebase soon.

Listing 5.2: Multi-threaded usage of GRAPES.

void ∗ps_thread (void ∗ arg )

{

t op In i t (myID, NULL, 0 , "" ) ;

while ( ! done ) {

pthread_mutex_lock(&topology_mutex ) ;

topParseData ( buf f , l en ) ;

pthread_mutex_unlock(&topology_mutex ) ;

u s l e ep ( gos s ip ing_per iod ) ;
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}

return NULL;

}

/∗ Thread bod i e s f o r o ther GRAPES modules ∗/

void ∗ recv_thread (void ∗ arg )

{

while ( ! done ) {

l en = recv_from_peer ( s , &remote , buf f , BUFFSIZE) ;

i f ( i sTopology ( bu f f ) ) {

pthread_mutex_lock(&topology_mutex ) ;

topParseData ( buf f , l en ) ;

pthread_mutex_unlock(&topology_mutex ) ;

} /∗ e l s e check i f the message

goes to o ther GRAPES modules ∗/

nodeid_free ( remote ) ;

}

return NULL;

}

int main ( int argc , char ∗argv [ ] )

{

my_id = net_helper_in i t (my_addr , my_port ) ;

pthread_create(&id1 , NULL, recv_thread , NULL) ;

pthread_create(&id2 , NULL, ps_thread , NULL) ;

pthread_create ( . . . ) ; /∗ Create th reads

f o r the o ther GRAPES modules . . . ∗/

To test the portability of the library, some tests have been cross-compiled

for an embedded platform (an ARM-based board) and successfully tested

on it. This proves that the library’s dependencies are minimal, and that

GRAPES-based applications can be used in resource-constrained environ-

ments.

By using the GRAPES library, a simple but functional P2P video streamer

(based on epidemic streaming techniques) has been written with about 900

lines of C code. Since it is based on the GRAPES API, it is quite simple to
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change the chunk or peer scheduling algorithms, the chunk buffer implemen-

tation, the peer sampling protocol, or other algorithms without large changes

in the streamer’s code. If compared with some previous works [66] (where

more than 10000 lines of code had to be written), these results represent a

considerable improvement, and enable easier experimentation with novel P2P

streaming approaches. The streamer program has been developed, debugged,

and tested in less than one day, and only depends on GRAPES (additional

dependencies on audio/video libraries can be added to use advanced chunki-

sation strategies - see below); the executable size is about 26 kB (about 21 kB

of code), and it needs less than 2 kB of memory for data to execute.

The generation and the playback of chunks is based on libavcodec and

libavformat (as explained in Section 5.3.5, the corresponding code will be

moved into GRAPES in the next releases, and these functionalities will be

exported through a generic API), and can be easily modified to experiment

with new media-aware chunkisation techniques (for example, using 1 GoP

per chunk, or grouping frames into chunks according to their types, or using

more advanced temporal scalability approaches). Moreover, it is very sim-

ple to change the video codec, or the encoding parameters, to verify which

codecs/parameters are more suitable for P2P streaming applications. If the

dependencies on libavcodec and libavformat are removed (by disabling

support for advanced chunkisation techniques in the input and output mod-

ules), the streamer is still able to receive and forward chunks, and can be used

as a superpeer or to improve the available upload bandwidth in a P2P system.

Thanks to the flexibility of the GRAPES API, the streamer has been

modified to implement different chunk trading protocols [3], allowing to run

experiments to compare such protocols through real tests on the Internet

(and not through simulations).
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5.5 Conclusion

In this chapter we introduced GRAPES, a toolkit for easily and rapidly devel-

oping P2P streaming applications. GRAPES provides a net helper for using

the UDP protocol on POSIX systems (it has been tested on GNU/Linux,

some BSDs, MacOS X, and some other POSIX compliant systems), a sim-

ple but functional implementation of the modules described in Section 5.3,

and some examples and tests. An additional peer sampling algorithm (CY-

CLON) has already been implemented, and some additional modules are

under development.

GRAPES has already been used in PeerStreamer and other experimental

P2P video streaming software.
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Conclusion and Perspectives

The peer-to-peer communication paradigm has changed the way content is

distributed over the Internet. Starting from file sharing all the way to tele-

phony, P2P systems are fully accredited players of the Internet panorama.

Streaming systems, and real time ones in particular, have been the appli-

cations posing the hardest challenges to the P2P paradigm. On the one

hand, the intrinsic scaling properties of P2P seems to fit particularly well

to large scale streaming. On the other hand, the strict timing constraint of

smooth streaming, and in particular the limited latency required by real time

applications, make solutions that are not in-network very critical.

This thesis has contributed to the field of P2P streaming in several ways,

looking both into general issues like blending different approaches to swarm

information diffusion and more specific topics like swarm localization without

harming the application and possible extension to smaller scale (as compared

to the global Internet) wireless access networks.

The first contribution has considered a new class of protocols where peers

alternate push and pull diffusion schemes, called Push/Pull protocols: The

push-based scheme spreads new information across the P2P network while

the pull-based scheme exploits cooperative techniques to recover missed data

packets from neighboring nodes. Push/Pull protocols are suitable for sup-
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porting both file-based and streaming-based communications. The funda-

mental properties of Push/Pull protocols have been investigated, showing

that the proposed asynchronous model outperforms the original cycle-based

one and peers upload bandwidth influences significantly both the distribution

delay and the overall system performance. Furthermore, Push/Pull protocols

has been enhanced through chunks negotiation mechanism, enabling peers

to establish parallel transmissions, resulting in a noteworthy reduction of

the distribution delay, revealing interesting capabilities for supporting video

streaming distribution; Finally, a RTT-based peer selection algorithm has

been proposed to promote communications among closest neighbors. achiev-

ing lower chunks diffusion delay than the random one, showing the impor-

tance of network parameters.

The second contribution has considered the Push/Pull protocols tech-

niques for supporting streaming multicasting in wireless mesh networks. Af-

ter discussing the standard Protocol Independent Multicast and the issues

that prevent PIM to work properly on WMNs, it proposed minor modifi-

cations to overcome such issues, presenting the Wireless-PIM-DM protocol;

This protocol has showed interesting results in term of throughput and packet

diffusion delay, being suitable for video streaming multicasting. However,

multicast packets can be lost between mesh-nodes communications and while

transmitting towards end-users. Therefore, the PullCast cooperative pro-

tocol has been proposed, where the video content is pushed through the mul-

ticast distribution overlay and the end-users exploit cooperative techniques

to recover missed data packets from their neighboring nodes via unicast Pull

transmissions. The PullCast protocol showed a significant increase in the

number of peers achieving the chunks threshold (i.e. 95% of chunks), intro-

ducing a rather low chunks diffusion delay while the corresponding wireless

channel load induced by the pull recovery mechanism is limited.
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Finally, the last contribution has presented the GRAPES library, which

provides basic functionalities for easily and rapidly developing of P2P stream-

ing applications. Such functionalities include a collection of primitives for ex-

changing information among peers, performing chunks negotiation, schedul-

ing chunks, and many other helpful primitives. GRAPES has been employed

as the core library of the PeerStreamer open-source streaming application.

Today, PeerStreamer is one of the most diffused open-source system for P2P

streaming used by researchers and practitioners.
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Appendix A

List of the Symbols Used

Symbol Description

K Set of peers

|K| Peers set size

Kj The j-th Peer

N Neighbors Set

Nj Neighbors Set of j-th node

|N | Neighbors Set Size

η Neighbor relationship

C Set of Chunks

|C| Number of chunks forming the stream

Ci i-th chunk

C(j) Chunks received by the j-th client

Cbits Chunk size in bit

δi Deadline of the i-th chunk

Pω Playout window size

Kω Chunk received withing the playout window Pω
−→
TS Source’s emission time
−→
TS(i) Source’s emission time for i-th chunk

Tj(i) Reception time of the i-th chunk at j-th node

δj(k) Chunk propagation delay between the j-th node and k-th node

δpeers Average chunks delay between any pair of peers

δC(j) Average chunks diffusion Delay at the j-th peer

δp p-th percentile propagation delay

∆ Chunks diffusion delay averaged over all simulations

Bs Source stream rate
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APPENDIX A. LIST OF THE SYMBOLS USED

Bp Peers’ bandwidth

BUP Uplink bandwidth

BDW Downlink bandwidth

αup Number of active uploads (i.e., push transmissions)

ωpush Chunks window size offered in push

ρdw Number of passive downloads (i.e., push received)

αdw Number of active downloads (i.e., pull requested)

ρup Number of passive uploads (i.e., pull received)

ωpull Chunks window size requested in pull

δmin Minumum one-way delay

δmax Maximum one-way delay

ω Set of chunks to either push or pull

RN Clients distribution radius around the AP

ht Hello timeout

hl Hello loss

Ps Time interval between two consecutive chunk injection

Pt Max time to retrieve a chunk in pull

IP Kω range for pull activation

Pm Max number of pull allowed per chunk

Pr Max number of pull reply per Ps

BC Broadcast data rate in Mbit/s

UC Unicast data rate in Mbit/s

Veu Roaming nodes speed

Peu Roaming nodes pause time

Qthr Quality threshold

STASSRC IEEE 802.11 retransmission attemps

S Multicast Source

G Multicast Group

V Set of Pim-Routers

Vi i-th Pim-Router

M Set of Pim-Clients

Mj j-th Pim-Client

Table A.1: Notation used in the thesis.
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