
New Strategies for Computing

Gröbner Bases

Bruno Simões

Department of Mathematics

University Trento

Advisor:

Prof. Lorenzo Robbiano

University of Genova

A thesis submitted for the degree of

PhilosophiæDoctor (PhD)

April 12, 2013

mailto:brunogsimoes@gmail.com
http://www.unitn.it/en/dmath
http://www.unitn.it/en

Abstract

Gröbner bases are special sets of polynomials, which are useful to solve prob-

lems in many fields such as computer vision, geometric modeling, geometric

theorem proving, optimization, control theory, statistics, communications,

biology, robotics, coding theory, and cryptography.

The major disadvantage of algorithms to compute Gröbner bases is that

computations can use a lot of computer power. One of the reasons is the

amount of useless critical pairs that the algorithm has to compute. Hence,

a lot of effort has been put into developing new criteria to detect such pairs

in advance.

This thesis is devoted to describe efficient algorithms for the computation

of Gröbner bases, with particular emphasis to those based on polynomial

signatures. The idea of associating each polynomial with a signature on

which the criteria and reduction steps depend has become extremely popular

in part due to its good performance.

Our main result combines the criteria from Gao-Volny-Wang’s algorithm

with the knowledge of Hilbert Series. A parallel implementation of the al-

gorithm is also investigated to improve the computational efficiency. Our

algorithm is implemented in CoCoALib, a C++ free library for computa-

tions in commutative algebra.

Acknowledgements

It is a pleasure to thank those who have helped and encouraged me through-

out the long and difficult process of completing this thesis. First and fore-

most I am heartily thankful to my supervisor, Prof. Dr. Lorenzo Robbiano,

whose good supervision, encouragement, guidance and support from the

initial to the final level allowed me to develop an understanding of the sub-

ject. I appreciate all his contributions of time, ideas, and suggestions to

make my Ph.D experience productive and stimulating.

I would like to thank Prof. Dr. Patrizia Gianni for her priceless suggestions,

Prof. Dr. Ragni Piene and Prof. Dr. Alicia Dickenstein for extending my

knowledge about Hilbert Series, and Anna Bigatti and John Abbot for their

advise and fruitful discussions during the development of the package for

CoCoALib.

The generous support provided by the European Commission through the

Marie Curie ITN Network SAGA was greatly appreciated. Without the

support, my ambition to study abroad could hardly be realized. Besides,

I would like to acknowledge Fondazione Graphitech for hosting me and for

providing me the opportunity and the resources required to do my research

activity.

Lastly, I owe my deepest gratitude to my whole family, who raise me with

love and knowledge and who supported me in all my pursuits. I have no

suitable word that can fully describe their everlasting love to me.

Finally, I am thankful to all those who supported me in any respect during

the completion of my studies.

Contents

List of Figures v

List of Tables vii

1 Introduction 1

1.1 What is a Gröbner basis? . 3

1.2 Thesis Overview . 3

2 Theoretical Foundations 5

2.1 Polynomial Rings . 6

2.2 Term Orderings . 8

2.3 Monomial Ideals and Dickson’s Lemma 13

2.4 Leading Term Ideals and Modules . 15

2.5 Gradings . 16

2.6 Hilbert Functions and Hilbert Series . 18

3 Gröbner Bases Theory 21

3.1 Introduction to the Theory of Gröbner Bases 21

3.2 Buchberger’s Algorithm . 22

3.3 Uniqueness of Reduced Gröbner Bases 27

3.4 Applications of Gröbner Bases . 29

3.5 Computational Complexity . 36

3.6 Optimization Strategies and Techniques 40

3.6.1 Strategies Involving the Selection of Term Orderings 40

3.6.2 Identification of Useless S-polynomials 41

3.6.3 Selection of Critical Pairs for the Reduction Process 42

3.6.4 Removal of Superfluous Polynomials 42

3.6.5 Selection Strategies for Reducers 43

iii

CONTENTS

3.6.6 Input Transformation Strategies 43

3.6.7 Parallel and Modular Strategies 43

3.6.8 Signature-based Strategies . 44

3.7 Concluding Remarks . 46

4 New Strategies for Computing Gröbner Bases 47

4.1 Syzygies Modules . 47

4.2 Free Resolutions . 49

4.3 Introduction to Signature-based Strategies 52

4.4 The Hilbert-Driven Strategy . 60

4.5 Modular and Parallelization Strategies 66

4.6 Technical Implementation Overview . 76

5 Experimental Results 79

6 Conclusions and Future Work 83

Appendices 85

References 93

iv

List of Figures

2.1 Representation of a monomial ideal with two indeterminates 13

3.1 A uniquely 3-colourable graph . 35

3.2 The most efficient variants of F5 . 45

5.1 Time allocation within the algorithm . 81

v

LIST OF FIGURES

vi

List of Tables

5.1 Timings in F32003 in seconds . 80

5.2 Number of critical pairs and zero reductions 80

5.3 Timings in F32003 for the parallelized algorithm 81

vii

LIST OF TABLES

viii

Chapter 1

Introduction

The wisest mind

has something yet to learn.

(George Santayana)

The fields of Geometric and Solid Modeling have received a lot of attention from

the academic and industrial communities throughout the past four decades because of

their immediate applicability. Yet, many of the issues concerning the representation

and manipulation of the geometric objects remain unsolved. The increasing complexity

of problems emerging from recent applications, which are now higher-dimensional than

before, and the lack of generality of the previous solutions, are some of the obstacles

to an effective solution.

In these fields, the geometric formulations are often described in terms of algebraic

representations, e.g. curves and surfaces. Although there are other representations

like meshes that are more suitable for computer rendering, they lack of geometric com-

pactness. Hence, the understanding and manipulation of the geometrical structure is

usually more difficult. Algebraic representations, on the other hand, are also useful

to describe their respective geometric constraints, e.g. mechanical assembly planning

[Anantha et al., 1996; Cambon et al., 2009], tolerance analysis, constraint-based sketch-

ing and design [Michalik et al., 2002], kinematic analysis of robots [Nielsen and Roth,

1999], collision detection [Jia et al., 2011], geometric manipulation [Cambon et al.,

2009], manipulation of offsets of curves and surfaces [Hoffmann, 1990] and geometric

theorem proving [Kreuzer and Robbiano, 2005; Hoffmann, 1989]. Therefore, these rep-

resentations can be used simultaneously to represent the geometry and to describe their

constraints. The solution to those geometric constraints arises from the solution of the

corresponding algebraic equations.

1

1. INTRODUCTION

Additionally, algebraic solvers have also their advantages, such as generality, di-

mension independence, and the natural ability to deal with symbolic constraints. Some

of these advantages have long been identified as important research problems in these

fields. Unfortunately, most algebraic solvers reduce problems to a search of polynomi-

als roots in the univariate case, which can be ill-conditioned for polynomials of degree

greater than 14, as shown by Wilkinson [1959]. As a result, the implementation of

these algebraic methods with finite arithmetic precision is considered to be challenging

as it constrains the performance of the resulting algorithms. The goal of this thesis is

to investigate new strategies to improve their computational performance.

Algebraic methods can be classified into numerical and symbolic methods. Nu-

meric methods can be sub-categorized into homotopy and iterative methods. Iterative

methods, essentially, compute a sequence of improving approximate solutions to the

problem. In general, they require a good initial guess of the intended solution to guar-

antee convergence, which is often difficult to provide. The most widely used method is

the Newton-Raphson [Ypma, 1995]. Newton-Raphson is a local method and converges

much faster than relaxation [Hillyard and Braid, 1978]. Examples of solvers that use

these methods are, for example, the solvers described by Light and Gossard [1982]; Lin

et al. [1981]. Homotopy or continuation, see for example [Allgower and Georg, 1993],

is a family of methods with a growing popularity that rely mostly on path-following

techniques in the complex space. These methods are global and guarantee convergence.

Moreover, they are exhaustive and allow to determine all solutions of a constraint prob-

lem. However, their efficiency is often worse than that of Newton-Raphson, and usually

they require a solid theoretical background of the subject.

Symbolic methods based on algorithms for computing Gröbner bases or Resultants

can be used for eliminating indeterminates, and thereby reducing problems to a search of

polynomials roots in the univariate case. Alasdair and de Pennington [1993], described

a solver built on top of the Buchberger’s algorithm [Buchberger, 1985], and Kondo

[1992] introduced a symbolic algebraic method that works by generating a polynomial

that summarizes the changes undergone by the system of equations. In this thesis, we

shall focus on algorithms to compute a Gröbner basis. Our choice is justified by the

fact that they have many other properties useful to these fields, see Section 3.4.

Although, algebraic methods based on the computation of Gröbner bases are known

to be efficient only for polynomial systems of low degree, the prevailing viewpoint is

that they usually lead to a better theoretical understanding of the problems, which can

uncover new opportunities in the upcoming paradigms of smart geometry. Moreover,

they can be extremely useful and very practical when used to pre-process and study

2

1.1 What is a Gröbner basis?

specific constraint systems.

This thesis is devoted towards new criteria to improve the overall efficiency of al-

gorithms to compute a Gröbner basis. To that end, we have developed a new strategy

that uses the knowledge about the Hilbert Series. The algorithm is further improved

through parallelization techniques.

1.1 What is a Gröbner basis?

Let J be a set of polynomials. A Gröbner basis for a set of polynomials J is another set

of polynomials, which is equivalent, and has certain computational properties. In fact,

many practical problems involving ideals can be solved once we compute such basis.

For example, we can solve the ideal membership problem, that is, we can check using

conceptually simple algorithms, whether a polynomial f can be written as an algebraic

combination of polynomials of J. In other words, whether f is in the ideal I given by

the polynomials J. Technically speaking, if f is in the ideal I, then there must exist

a sequence of subtractions from f , by multiples of polynomials in a Gröbner basis of

I, that reduces the polynomial to zero. Whether such sequence can be found easily

depends on specific properties of the generators.

The invention of the theory of Gröbner bases can be associated with several mathe-

maticians. In our view, the major step was taken by Bruno Buchberger during his PhD

thesis [Buchberger, 1965]. First, he formulated the concept of Gröbner bases, extending

a suggestion of his advisor Wolfgang Gröbner. Such influence is also acknowledged with

his terminology. Lastly, he found an algorithm to compute them, as well as a proof for

the fundamental theorem on which the correctness and termination of the algorithm

hinges. However, his work was only fully appreciated after the eighties, that is, when

researchers in mathematics and computer science started to realize the importance of

this new theory, mainly due to its simplicity and power.

1.2 Thesis Overview

In 1965, Buchberger introduced the first algorithm for computing a Gröbner basis,

which ended up to be an important tool in computational algebra. The importance of

this milestone is related to the fact that this scholar provided us, for the first time, with

a systematic way of calculating sums of ideals, products of ideals, intersections of ideals,

etc. As mentioned before, his algorithm has the advantage of being easy to understand

and relatively simple to implement, mostly due to the limited theoretical background

3

1. INTRODUCTION

required to use it, and that makes it accessible to wider audiences. However, it suffers

from poor performance on large problems and it is sensitive to several factors such as

the choice of a term ordering, the number of indeterminates, etc.

All algorithms that aim to compute a Gröbner basis follow the basic blueprint of

Buchberger’s algorithm, but recent algorithms introduce a new point of view. We call

these new approaches ”signature-based strategies”, inasmuch as their computations

take ”polynomial signatures” into account. The idea behind our main results is to

combine, without harming the performance or causing wrong results, the criteria from

signature-based strategies with classical improvements based upon the Hilbert Series.

A parallel implementation of the algorithm is also investigated.

This thesis is structured into six chapters. In Chapter 2, we recall some of the

needed vocabulary and concepts, for the benefit of the non-specialist. Once presented

with the roadmap, the reader can refer to books on algebra or algebraic geometry for

further details. The central data structure in the chapter is the one of polynomial,

which is used to construct polynomial rings.

In Chapter 3, we bring the reader into the realms of Gröbner bases. First, we recall

their formal definition and all the details on how to construct them. Then, we describe

a few practical applications, followed by a brief introduction to their computational

complexity. Lastly, we present a survey about existent criteria used to improve their

computational performance.

Chapter 4 begins with an introduction to the concept of syzygies and free reso-

lutions, which are required to fully understand the proposed algorithms. Then, we

introduce a new strategy to compute the Gröbner bases, based on polynomial signa-

tures, and we show that an extension of the current state-of-art is still possible by

taking advantage of the knowledge of Hilbert Series. Parallelization attempts are also

investigated in this chapter.

In Chapter 5, we compare the performance of some of the fastest algorithms to

compute a Gröbner basis. All algorithms are implemented in CoCoALib [2013], and

all examples are commonly used to benchmark Gröbner basis algorithms. We shall see

from the results that proposed algorithms provide a good alternative.

We conclude this thesis with a shortlist of remarks and some future directions

regarding the current results.

4

Chapter 2

Theoretical Foundations

Even the longest journey

begins with the first step.

(Chinese Proverb)

The previous chapter provides us with a glimpse of the subject that we are going

to study, that is, efficient algorithms for computing Gröbner bases. In this chapter, we

craft a roadmap that leads to such a goal. No thesis can be totally self-contained, and

we do not expect this one to be an exception. In particular, we assume that the reader

has some basic knowledge of basic algebra, but we do not think it is harmful if we recall

some fundamental definitions. Also, readers familiar with this topic may want to skim

this chapter for notation and terminology.

We begin this chapter with a short introduction to polynomial rings and their

ideals. Then we bring the reader into the realm of the term orderings. Term orderings

are essential to write polynomials in a well-defined way. Therefore, they are required

to the implementation of polynomials on a computer. Once fixed a term ordering,

their leading terms can be singled out, and used to construct leading term ideals and

modules, which are conceptually simpler to handle. This chapter ends with a brief

introduction to Hilbert functions, which is one of the concepts that is required to fully

understand the proposed criterion. A Hilbert function is said to be a map from the

nonnegative integers to themselves, which stores the dimensions corresponding to the

homogeneous components of a graded module.

For a more detailed introduction to commutative algebra we refer the reader to

Atiyah and MacDonald [1969]; Eisenbud [2008]. Books providing extra emphasis to

the theory of Gröbner bases and their computational aspects are, for example, Kreuzer

and Robbiano [2000, 2005]. The majority of the proofs given in this chapter are ei-

5

2. THEORETICAL FOUNDATIONS

ther easy to deduce or can be found in any introductory book about commutative or

computational algebra (including the aforementioned ones). We focus ourselves on the

theory of Gröbner bases, thus proofs are only provided if they are short, beautiful, and

give some deeper insight on the topics covered, otherwise, we provide only references.

The main notion to retain from this chapter is the one of a polynomial, which plays

a fundamental role in this thesis. None of the statements presented in this chapter are

original. The same can be said also about their proofs.

2.1 Polynomial Rings

In this section, we shall recall the notion of polynomials and polynomial rings. These

are some of the fundamental objects of study in this thesis. Since polynomial rings are

also rings, we will start from that definition.

Let P = R[x1, . . . , xn] be a polynomial ring over a ring R that consists of the

multivariate polynomials of the form:∑
cα1,...,αnx

α1
1 · · ·x

αn
n

where cα1,...,αn ∈ R and αi are non-negative integers. The ring elements cα1,...,αn are

the coefficients of f. All powers products xα1
1 · · ·xαn

n are assumed to be commutative

with other elements of the ring: aix
i = xiai. Since elements of the type xα1

1 · · ·xαn
n are

used frequently throughout this thesis then it is worth giving them a proper name.

Definition 2.1. A term (or a power product) is a product of n indeterminates, each

raised to the power of a non-negative integer. It can be written concisely as

xα = xα1
1 · · ·x

αn
n (2.1)

where α is the coordinate vector (α1, α2, . . . , αn) ∈ Nn0 .

Definition 2.2. The total degree of a term xα is simply defined as deg(xα) = |α| =

α1 + α2 + · · ·+ αn. The degree of xα in any indeterminate xi is degxi(x
α) = αi.

We label the set of all terms involving the indeterminates x1, . . . , xn by the expres-

sion Tn or Tn(x1, x2, . . . , xn). Also, we say that a term p = xα1
1 · · ·xαn

n ∈ Tn is divisible

by q = xβ11 · · ·x
βn
n ∈ Tn, if (

∀ 1 ≤ i ≤ n
) [

βi ≤ αi
]
.

Similarly to the integer case, it is possible to define least common multiples and greatest

common divisors in a factorial domain.

6

2.1 Polynomial Rings

Definition 2.3. Let P = K[x1, . . . , xn] be a polynomial ring over a field K. Let

t1 =
∏n
i=1 x

αi
i ∈ Tn and t2 =

∏n
i=1 x

βi
i ∈ Tn be two terms. Then we define

lcm(t1, t2) =
n∏
i=1

x
max{αi,βi}
i

as the least common multiple of t1 and t2, and

gcd(t1, t2) =

n∏
i=1

x
min{αi,βi}
i

as the greatest common divisor of t1 and t2.

We say that t1 and t2 are co-prime or relatively prime if gcd(t1, t2) = 1.

Definition 2.4. The support of a polynomial f is defined as the set Supp(f) = {xα ∈
Tn | coef(cαx

α) 6= 0}. A polynomial f is said to be homogeneous of degree d if all terms

have the same total degree d.

Example. Let f = 3xy2 + x2 + 1 be a polynomial in P. Then f has degree deg(f) = 3

and a support set Supp(f) = {xy2, x2, 1}.

Another important definition that is worth of our attention is the one called mono-

mial.

Definition 2.5. A monomial is an element of P of the form m = ct, where c ∈ R is its

coefficient and t ∈ Tn is its term. The total degree of the monomial m is simply the

total degree of t.

At the moment, we can rephrased the definition of a polynomial as a sum of a

finite set of monomials, and its total degree is the maximum of the total degrees of the

monomials in it; by convention, deg(0) = −∞. Moreover, two polynomials are equal

only if their set of the non-zero monomials is the same.

As monomials are used to defined polynomials, these last ones can be used to

generate polynomial ideals. The ideal that is generated by a system of polynomials

f1, f2, . . . , fn ∈ P is simply the set of all combinations 〈f1, f2, . . . , fn〉 = {h1f1 +h2f2 +

· · ·+ hnfn}, where h1, h2, . . . hn ∈ P are arbitrary polynomials.

7

2. THEORETICAL FOUNDATIONS

2.2 Term Orderings

One of the questions that remains unanswered is: in how many different ways can we

write a polynomial p ∈ P? This question might not be relevant to many mathematicians

but it fundamental to those who wish to implement and use polynomials in a computer.

Clearly, the terms in the support of a polynomial can be ordered by decreasing or

increasing degree. However, that is not enough since different terms can have the same

degree. Our next task is to equip polynomials with a certain additional property called

a term ordering, which allow us to define them uniquely. This fundamental property is

the key for the finiteness of most algorithms we shall encounter later.

Term Orderings on Polynomial Rings

In the univariate case the operation is straightforward because we can define xa � xb

as being true if and only if a > b. But for the multivariate case we need to find a

new relation that is capable of providing such uniqueness and that is consistent with

polynomial multiplication.

Definition 2.6. A total ordering is a set S and a relation on that set that satisfies the

conditions for a partial ordering plus an additional condition known as the compara-

bility condition. A relation ≤ is said to be a total ordering on a set S if the following

properties hold.

• Reflexivity: a ≤ a for all a ∈ S.

• Antisymmetry: a ≤ b and b ≤ a implies a = b.

• Transitivity: a ≤ b and b ≤ c implies a ≤ c.

• Comparability (trichotomy law): For any a, b ∈ S, either a < b, a > b or b = a.

The first three axioms define only a partial ordering, whereas the addition of the

trichotomy law defines a total ordering. Every totally ordered set that is finite is well

ordered.

Definition 2.7. A well-ordering on a given set is a total ordering such that any

nonempty subset has a smallest element w.r.t �.

Example. The natural numbers are a well-ordered set.

Definition 2.8. An ordering � is an admissible term ordering if it satisfies three

conditions:

8

2.2 Term Orderings

1. An ordering � is a total ordering on the set of all terms Tn.

2. It is multiplicative; i.e., xa � xb implies xa+c � xb+c for all a, b, c ∈ Nn.

3. An ordering � is a well-ordering (every nonempty subset has a smallest element),

namely, the constant term is the smallest.

Previously, we saw that a polynomial can be defined as a linear combination of

terms. Now we learned that we can rearrange them unambiguously in ascending (or

descending) order. We only have to compare the terms to establish their proper relative

positions. That is, given any two terms xα and xβ we have that only one of the three

statements xα > xβ, xα = xβ, xα < xβ hold. Thereby, the first condition in the

above definition is satisfied. The second condition ensures that the relative ordering of

terms in a polynomial remains unchanged after multiplied by a term. Lastly, the third

condition states that every strictly decreasing sequence of terms eventually terminates.

This property is often used to prove that algorithms must terminate. It exploits the

fact that terms strictly decrease at each step of the algorithm. Nevertheless, the reader

should bear in mind that different term orderings exist. Below we define the most

relevant ones, and we leave their proof to the reader.

Definition 2.9. Let � be a term ordering on P. Then � is

1. A global term ordering if and only if xi � 1 for i = 1, . . . , n

2. A local term ordering if and only if xi ≺ 1 for i = 1, . . . , n, and

3. A mixed term ordering if neither 1) nor 2) hold.

One of the simplest examples of a term ordering is the lexicographic ordering,

which is frequently used to order words in the dictionary. There are several other term

orderings of interest in computational algebra. Let us introduce a few among them.

Let α, β ∈ Nn.

• The lexicographic ordering �Lex on Nn s.t.

α �Lex β if and only if the leftmost nonzero in α− β ∈ Zn is positive.

• The degree lexicographic ordering1 �DegLex on Nn s.t.

α �DegLex β if and only if |α| > |β| or |α| = |β| and α �Lex β.

• The degree reverse lexicographic ordering2 �DegRevLex on Nn s.t.

α �DegRevLex β ⇔ |α| > |β| or |α| = |β| and the rightmost nonzero entry in

α− β ∈ Zn is negative.

1 Sort first by total degree, then lexicographic
2 This ordering, somewhat non-intuitive, has some desirable computational properties

9

2. THEORETICAL FOUNDATIONS

Example. Consider the terms α = x3y2z8 and β = x2y9z2. If the indeterminates are

ordered as x � y � z, we have

α �Lex β, α �DevLex β, α �DegRevLex β

An example of a local ordering is the negative lexicographical ordering. For such

term ordering, we have that α � β if and only if the nonzero entry of lowest index in

α− β is negative.

Term orderings have other useful properties. Once we fix an ordering, every poly-

nomial f has a unique leading term. Moreover, that unique leading term is said to be

the largest term in the polynomial (with respect to that term ordering) with a nonzero

coefficient in the expansion of f.

Definition 2.10. Let f = cαx
α +

∑
ckx

βk ∈ P such that xα � xβk and cα 6= 0. Then:

• LC�(f) = cα is the leading coefficient of f . The polynomial f is said to be monic

if cα = 1.

• LT�(f) = xα is the leading term of f.

• LM�(f) = LC�(f) · LT�(f) = cαx
α is the leading monomial of f.

We shall assume our polynomial rings to be always equipped with a well-ordering.

Term Orderings on Free P-modules

Up to now, we saw how to define polynomials uniquely in P. In this section, we extend

the definition of term orderings on polynomial rings to the one on monomial modules.

There are two reasons that can justify our interest in such orderings. First, we are

interested in the computation of Gröbner bases of modules. Lastly, our algorithm work

with elements of such modules. Hence, we start by revising Definition 2.1.

Definition 2.11. Let M be a submodule of the free P-module F = ⊕rj=1Pej , with

canonical basis elements ei. We say that

1. t ∈ F is a term in F , if for some i, the element t is of the form uei, such that u

is a term in P .

2. M is a monomial module, if it is generated by terms t.

3. m = ct is a monomial with coefficient in c ∈ R.

4. index(t) = i is the index of a term t = xαei.

10

2.2 Term Orderings

5. Computing the degree of a term m = xαei can be reduced to the one of the term

xα ∈ P, as defined in 2.4:

deg(m) := deg(xα) =
n∑
i=1

αi.

Clearly, deg(f) := max{deg(t) | t is a term of f}.

The set of all terms Tn〈e1, . . . , er〉 is obviously a disjoint union of r copies of Tn,

where e1, . . . , er merely indicate the copy we are considering.

Definition 2.12. Let xαei and xβej be two terms in Tn〈e1, . . . , er〉. We say that xαei

divides xβej if and only if

i = j and xα | xβ.

for all xα, xβ ∈ Tn. We use xαei | xβej as a shorthand notation for this operation.

We can write a element f ∈M as a sum of monomials

f =
r∑
i=1

(
finite∑
α∈Nn

cαx
α

)
ei

such that cα ∈ R and xα ∈ Tn. However, this representation is again unique only up to

the order of the monomials. Thus, a term ordering on M is also required. Naturally,

this is just a generalization of a term ordering on P that takes into account the canonical

basis elements ei.

Definition 2.13. Let �σ be a term ordering on P and M = ⊕ri=1 = Pei a free P-module

of rank r with canonical basis elements ei. A module term ordering � is a total ordering

on the set of all terms of M such that

• xαej � xβej ⇒ xγxαei � xγxβej and

• xα �σ xβ ⇒ xαei � xβei.

for all α, β, γ ∈ Nn and i, j ∈ {1, . . . , r}.

Clearly, a term ordering on the polynomial ring P can also be understood as a

module term ordering on the module P ∼= Pe1. Therefore, Definition 2.13 is just a

generalization of the former definition of term ordering.

Example. Suppose we fix a term ordering �σ on P that induces the (module) term

ordering � on M.

11

2. THEORETICAL FOUNDATIONS

• �POT denotes an ordering which emphasizes the index of the canonical basis ele-

ment:

xαei �POT xβej implies that i > j or i = j and xα �σ xβ

• �TOP denotes an ordering that gives priority to terms:

xαei �TOP x
βej implies that xα �σ xβ or xα = xβ and i > j.

Later we will see more examples of module orderings but for the moment we will

concentrate our attention to the benefits of having module orderings. Similar to the

polynomial case we can now identify and define special elements of f ∈M.

Definition 2.14. Given a module ordering � on M , every element f ∈ M can be

uniquely represented by f = cαx
αei+f ′, and for all nonzero terms cβx

βej of f ′ it holds

that xαei � xβej .

In analogy to Definition 2.10 we have the following definitions for modules.

Definition 2.15. Let f be a polynomial in a module M .

• the leading term of f is LT�(f) = xαei,

• the leading coefficient of f is LC�(f) = cα,

• the leading monomial of f is LM�(f) = cαx
αei,

Likewise in the polynomial case, we shall always equip a module M with a module

term ordering �. Hence, the use of the notation M implies also the use of a module

term ordering on M.

Next we analyze an example that should help us to understand better the relation-

ship between two module terms.

Example. Let P = R[x, y, z] and M = P2. Then, the representation of f as the sum

of m1 = −2x2ye1, m2 = 4x3yz2e1, and m3 = z4e2 is given by:

• If we pick �POT induced by �DegRevLex, we get the following:

f = (4x3yz2 − 2x2y)e1 + z4e2.

• If instead we pick �TOP induced by �DegRevLex then the sequence of the monomials

obtained is:

f = 4x3yz2e1 + z4e2 − 2x2ye1,

With this, we conclude our introduction to term orderings on polynomial rings and

free modules. For more details see [Kreuzer and Robbiano, 2000].

12

2.3 Monomial Ideals and Dickson’s Lemma

2.3 Monomial Ideals and Dickson’s Lemma

The aim of this section is to show that monomial ideals are finitely generated, and that

follows easily from the Dickson’s Lemma. Then, we provide a generalization of that

theorem to the monomial modules. The importance of such result is self-evident in the

next chapters. However, it should be already clear that statements about ”finiteness”

are extremely valuable from a computational point of view. Let I be an ideal in the

polynomial ring P = R[x1, . . . , xn].

Definition 2.16. An ideal of P is called a monomial ideal if it can be generated by a

set of terms.

The following lemma allows us to characterize all the terms that lie in a given

monomial ideal.

Lemma 2.17. Let I = 〈xα | α ∈ X〉 ⊆ Tn be a monomial ideal. Then a term xβ ∈ Tn

is in I if and only if there is some α ∈ X such that xα | xβ.

Proof. See, for example, Cox et al. [2007].

Observe that the set α + Nn = {α + β | β ∈ Nn} consists of the exponents of all

terms divisible by xα. Hence, the terms in a given monomial ideal can be visualized

as a union of positive and integer coordinate points. For example, in Figure 2.1, the

integer coordinate points inside filled area represent all the terms in the ideal I =

(x5
1, x

3
1x2, x1x

2
2, x

4
2) ⊆ R[x1, x2].

Figure 2.1: Representation of a monomial ideal with two indeterminates

A polynomial f is in a monomial ideal I = 〈xα | α ∈ X〉 if and only if each term

of f is divisible by one of the given generators xα. It follows that a monomial ideal is

uniquely determined by its terms; that is,

13

2. THEORETICAL FOUNDATIONS

Theorem 2.18. Two monomial ideals are the same if and only if they contain the

same collection of terms.

Proof. For more details and proofs, see for example, [Cox et al., 2007].

The main result in this section is given by the Dickson’s lemma, which states that

each monomial ideal is finitely generated.

Theorem 2.19 (Dickson’s Lemma). If I = 〈xα | α ∈ X ⊆ Nn〉, then there is a finite

subset Y ⊂ X for which I = 〈xα | α ∈ Y 〉. In particular, for every polynomial ring P ,

the monomial ideal I has a finite basis.

Proof. Let I = (t1, t2, . . .) ⊆ Tn. Let log :Tn → Nn be the map given by xα1
1 · · ·xαn

n →
(α1, . . . , αn). Such map is clearly an isomorphism of monoids. Hence, the monomial

ideal (log(t1), log(t2), . . .) ⊆ Nn is finitely generated by the Noetherianity condition:

there is no infinite properly ascending chain of ideals of Nn. Thus there exists a number

i > 0 such that this monomial ideal is generated by log(t1), . . . , log(ti) where ti ∈ Tn.
Therefore, the set of terms {t1, . . . , ti} generates the monomial ideal (t1, t2, . . .) ⊆
Tn.

The next theorem give us a generalization of the Dickson’s Lemma for monomial

modules.

Theorem 2.20 (Structure Theorem for Monomial Modules). Let M ⊆ Pr be a mono-

mial module.

1. The module M is finitely generated. That is, M = 〈t1eα1 , . . . , tseαs〉, where s is

finite, t1, . . . , ts ∈ Tn and 1 ≤ αi ≤ r.

2. There are monomial ideals I1, . . . , Ir ⊆ P such that M is of the form M ∼=
⊕ri=1Iiei.

Proof. Assume B ⊆ Tn〈e1, . . . , er〉 to be a system of generators of the monomial module

M. Let Bi = {t | tei ∈ B} ⊆ Tn be a set of terms with 1 ≤ i ≤ r. By Dickson’s Lemma,

the monomial ideal Ii = (Bi) has a finite systems of generators Si ⊆ Bi. Clearly, the

P-module M is then generated by S1e1 ∪ · · · ∪ Srer ⊆ Tn〈e1, . . . , er〉. This proves the

finiteness and also the claim that M =
∑r

i=1 Iiei. The fact that this sum is direct

follows from M ⊆ ⊕ri=1Pei.

14

2.4 Leading Term Ideals and Modules

2.4 Leading Term Ideals and Modules

In the previous section, we have seen that once a term ordering is chosen, the terms in

the support of a polynomial can be uniquely sorted. Therefore, the polynomial can be

uniquely represented as a sum of monomials.

The aim of this section is to recall a few more properties concerning ideals and

modules, such as the relation they have with their leading term ideals and modules.

These properties are useful to answer questions like: let I be an ideal in a polynomial

ring P = K[x1, . . . , xn] over a field K. Obviously, the residue class ring P/I can be

viewed as a K-vector space. So, is it possible to exhibit an explicit basis?

We shall see that with the help of leading terms, the Macaulay’s Basis Theorem

yields a noteworthy answer to this question. However, this theorem is based on the

assumption that the module ordering is a term ordering and the base ring is a field.

The assumption underlines the theoretical importance of term orderings.

Definition 2.21. Let M ⊆ Pr be a P-submodule and � fixed term ordering.

1. The module LT�(M) = 〈LT�(m) | m ∈ M\{0}〉 is said to be the leading term

module of M with respect to �.

2. If M ⊆ P then we say that LT�(M) ⊆ P is the leading term ideal generated by

the leading terms of all the elements in M with respect to �. A term xα is called

standard if it does not belong to LT�(M).

3. The set LT�{M} = {LT�(m) | m ∈M\{0}} is called monomodule.

Example. Assume that M = 〈0〉 is a module generated by the element zero. Then we

have LT�(M) = 〈0〉 and LT�{M} = ∅.

Assume that m1, . . . ,ms ∈ Pr\{0} are monomials and that M = 〈m1, . . . ,ms〉 ⊆
Pr is the submodule generated by them. Then, we have that the inclusion given by

〈LT�(m1), . . . , LT�(ms)〉 ⊆ LT�(M) holds. Now we introduce the most important

result of this section.

Theorem 2.22 (Macaulay’s Basis Theorem). Assume P = K[x1, . . . , xn] to be a

polynomial ring over K. Let M ⊆ Pr be a P-submodule, � a term ordering on

Tn〈e1, . . . , er〉, and B the set of all terms in Tn〈e1, . . . , er〉\ LT�{M}. Then the residue

classes of the elements of B form a basis of the K-vector space Pr/M .

Proof. See, for example, Section 1.5 in Kreuzer and Robbiano [2000].

15

2. THEORETICAL FOUNDATIONS

This theorem shows how to compute effectively Pr/M . First we need to com-

pute LT�(M) for a given term ordering �, and then we represent each element as

a unique and finite linear combination of the residue classes of the elements of B =

Tn〈e1, . . . , er〉\ LT�{M}. Unfortunately, we have not seen yet how to compute effi-

ciently LT�(M). That is one of the subjects of the next chapter.

2.5 Gradings

The main purpose of this section is to recall the definition of gradings. Then, we

shall see that homogeneous ideals and graded submodules can be characterized by the

property that they have homogeneous sets of generators. Last, but not least, we show

that it is also possible to represent homogeneous elements in terms of those generators

using homogeneous coefficients of complementary degree.

We recall again that in this thesis monoids and rings are expected to be commuta-

tive. Let (Γ,+) be a monoid and M a R-module.

Definition 2.23. The ring R is said to be a Γ-graded ring if there exist abelian

subgroups Rγ , and

1. R = ⊕γ∈ΓRγ , and

2. for all γ, γ′ ∈ Γ it holds that RγRγ′ ⊆ Rγ+γ′ .

We say that elements r ∈ Rγ are homogeneous of degree γ, that is, deg(r) = γ.

Additionally, the element 0 is a homogeneous element of R of every degree. Lastly,

the decomposition of every element into its homogeneous components is unique. That

property is a consequence of the direct sum in Definition 2.23.

Example. Let P = R[x1, . . . , xn] be a polynomial ring in n indeterminates over R. Let

Pd = {f ∈ P | deg(t) = d for all t ∈ Supp(f)} for d ≥ 0

The set Pd establishes a relation between P and a N-graded ring. If deg(x1) = · · · =

deg(xn) = 1 then this grading is called the standard grading of P. Again, the elements

of Pd are denoted as homogeneous polynomials of degree d.

A natural way to extend Definition 2.23 to R-modules is to use again the monoid

Γ as the set of possible degrees. However doing so is not sufficiently general. The

following definition underlines for now how to proceed.

Definition 2.24. Let R be a Γ-graded ring and (Ω, ∗) a Γ-monomodule. We say that

M is a Ω-graded R-module if there exist abelian subgroups Mω such that

16

2.5 Gradings

1. M = ⊕ω∈ΩMω, and

2. for all γ ∈ Γ, ω ∈ Ω it holds that RγMω ⊆Mγ∗ω.

Additionally, we say that a R-submodule N of M is a Ω-graded R-submodule of M if

N = ⊕ω∈Ω(N ∩Mω), and that a Γ-graded submodule of R is a Γ-homogeneous ideal

of R. For the sake of simplicity we call it homogeneous ideal of R if Γ is obvious from

the context.

There are other techniques that can be used to define Ω-graded R-modules, called

shifting degrees.

Example. Let γ ∈ Γ be a fixed element such that the multiplication map µγ : Ω −→ Ω

defined by s −→ γ ∗ s is injective. For instance, if the left cancellation law holds in

Ω, this assumption is satisfied for all γ ∈ Γ. Then we define M(γ)s = Mγ∗s for every

s ∈ Ω, and we let M(γ) = ⊕s∈ΩM(γ)s. In this way, we get a Ω-graded R-module

M(γ). We call it the module obtained by shifting degrees by γ. If the map µγ : Ω −→ Ω

is bijective, the set underlying M(γ) agrees with M . For more information concerning

homomorphisms between these objects, see Kreuzer and Robbiano [2000].

The following proposition and its corollary are very handy, especially for practi-

cal purposes. They allow us to quickly prove that some submodules are Ω-graded by

exhibiting a homogeneous system of generators, and at the same time it give us a conve-

nient representation of arbitrary homogeneous elements in terms of those homogeneous

generators.

Proposition 2.25. Let N ⊆ M be a R-submodule and Nω = N ∩Mω for all ω ∈ Ω.

Then the following three conditions are equivalent.

1. N = ⊕ω∈ΩNω

2. Let n =
∑

ω∈Ω nω be the decomposition of n ∈ N into its homogeneous compo-

nents, then nω ∈ N for all ω ∈ Ω.

3. There is a system of generators of N which consists only of homogeneous elements.

Proof. See, for example, Section 1.7 in Kreuzer and Robbiano [2000].

Corollary 2.26. Let N ⊆ M be a Ω-graded R-submodule and {nγ | γ ∈ Γ} be a set

of homogeneous generators of N . Suppose that the right-cancellation law holds in Ω

and that ω ∈ Ω. Then we can say that every element n ∈ Nω has a representation

n =
∑

γ∈Γ rγnγ such that rγ ∈ R are homogeneous elements and deg(rγ) ∗ deg(nγ) = ω

for every γ ∈ Γ.

17

2. THEORETICAL FOUNDATIONS

Proof. See, for example, Section 1.7 in Kreuzer and Robbiano [2000].

We conclude this section with a definition of homogenization and dehomogenization

of polynomials.

Definition 2.27. Given any polynomial p ∈ R[x1, . . . , xn] and an extra indeterminate

x0, we say that,

ph = x
deg(p)
0 p

(
x1

x0
, . . . ,

xn
x0

)
denotes the homogenization of p with respect to x0. Hence, ph is homogeneous polyno-

mial of degree deg(p).

Definition 2.28. Conversely, for every homogeneous polynomial q ∈ R[x0, . . . , xn]

there exists a dehomogenization with respect to x0 defined by

qdeh = q(1, x1, . . . , xn) ∈ R[x1, . . . , xn].

2.6 Hilbert Functions and Hilbert Series

In this section we recall the definition of Hilbert functions and Hilbert Series. These

are two concepts that have an essential role throughout the next chapters. A Hilbert

function is said to be a map from the nonnegative integers to themselves, which stores

the dimensions corresponding to the homogeneous components of a graded module.

In many situations of interest, the Hilbert function attached to a module agrees for

sufficiently large inputs with a polynomial, called a Hilbert polynomial. Thus an infinite

amount of information can be encoded and stored in a finite object. Without a doubt,

the coefficients and the degree of a Hilbert polynomial are important invariants that

can reveal some of the properties of the module.

Let P = K[x0, . . . , xn] be a graded polynomial ring, where each xi is a homogeneous

component of degree one.

Definition 2.29. The Hilbert function of the finitely generated P -module M is defined

by the following map

HF(M,d) : Z −→ Z
v 7→ dim(Md)

where Md is the degree d part of M .

The next proposition shows that the Hilbert function becomes a polynomial in large

enough degree, called the Hilbert polynomial.

18

2.6 Hilbert Functions and Hilbert Series

Proposition 2.30. The Hilbert polynomial q(d) is the unique polynomial in d such

that the equivalence q(d) = HF(M,d) holds for all d >> 0. Let S be the support of M .

Then, the Hilbert polynomial q(d) has the following form

q(d) =
i

r!
dr + · · ·

where i is the degree of S and r is its dimension.

Proof. See, for example, Section 5.1 in Kreuzer and Robbiano [2009].

A compact representation of the dimensions corresponding to the homogeneous

components of M is given by introducing the Hilbert Series. This representation of

the Hilbert function is desirable if we want to manipulate it on a computer. From

now we shall use ”computing the Hilbert function” and ”computing the Hilbert Series”

interchangeably.

Definition 2.31. Let M = ⊕n≥0Mn be a finitely generated P -module M . The Hilbert

Series of M, is defined by the generating function

HS(M, t) =
∞∑

d=−∞
HF(M,d)td =

g(t)

(1− t)n+1

where g(t) ∈ Z[t, t−1] is a Laurent polynomial over Z.

At this point, it is also our greatest interest to analyze how the Hilbert Series of I

relates to the Hilbert Series of quotient rings P/I, since we also want to compute them.

The next theorem claims that, for a polynomial ring P and a homogeneous ideal I, the

Hilbert Series of P/I has always the form of a rational function.

Theorem 2.32 (Hilbert, Serre). Let P = K[x0, . . . , xn] be a graded standard polynomial

ring and I a graded ideal in P. Then, the Hilbert Series of P/I can be expressed as

HS(P/I, t) =
g(t)

(1− t)n+1

where g(t) is a polynomial in t with integer coefficients. Moreover, the following relation

holds,

HS(P/I, t) = HS(P, t)− HS(I, t)

Proof. See, for example, Section 5.2 in Kreuzer and Robbiano [2005].

A practical approach to compute the Hilbert Series of P/I is to compute the Gröbner

basis of I, and then compute the Hilbert Series of P/ LT�(I) using elimination of vari-

ables. In Section 4.4, we shall see that P/I and P/ LT�(I) have the same Hilbert

function. But first, we shall introduce the concept of Gröbner basis.

19

2. THEORETICAL FOUNDATIONS

20

Chapter 3

Gröbner Bases Theory

Any fool can know.

The point is to understand.

(Albert Einstein)

This aim of this chapter is to introduce the reader to the theory of Gröbner bases.

First, we recall the definition of a Gröbner basis as well as all the details on how

to construct them. Then, in Section 3.5, we provide some remarks concerning the

computational complexity of the algorithm. We conclude with a brief review of existent

optimizations to the computation of a Gröbner basis, and with an introduction to

signature-driven strategies.

3.1 Introduction to the Theory of Gröbner Bases

A Gröbner basis is a special basis of a polynomial ideal over a field, which has certain

attractive computational properties. As it turns out, many computational problems

involving ideals can be easily solved once we compute them. For example, let us

assume that we want to compute LT�(I) for a given ideal I = 〈f1, . . . , fs〉. It is worth

mentioning that a direct computation of LT�(I) is impossible because it requires the

computation of the leading term of each polynomial in the ideal I. As an alternative,

we might want to consider the monomial ideal generated by the leading terms of the

generators,

〈LT�(f1), . . . , LT�(fs)〉 ⊆ LT�(I)

In general, these two monomial ideals are distinct yet the equality can sometimes

occur. The example below illustrates a case where the two monomial ideals do not

coincide.

21

3. GRÖBNER BASES THEORY

Example. Consider the ideal I = 〈f1, f2〉 = 〈3x2 +7xy2, 3xy+7y3−1〉 and a fixed term

ordering �. On the one on hand, we have that yf1 − xf2 = x ∈ 〈f1, f2〉 and LT�(x) =

x ∈ 〈LT�(I)〉. However, on the other hand, we have that x /∈ 〈LT�(f1), LT�(f2)〉 =

〈3x2, 3xy〉.

At this point, one might ask if it is possible to produce a set of generators for which

these two ideals are the same. The answer to this question is exactly the notion of a

Gröbner basis.

Definition 3.1. Given an ideal I ⊆ P and a fixed term ordering �. A finite set of

polynomials G ⊆ I\{0} is a Gröbner basis of I\{0} if and only if the leading term of

every element of I is divisible by one term in the set G,

〈LT�(g) | g ∈ G〉 = LT�(I)

Unfortunately, this definition does not tell us how to construct a Gröbner basis

for the ideal generated by a given G. But, in the next section, we shall see other

characterizations that give a systematic way of doing it.

3.2 Buchberger’s Algorithm

Buchberger introduced in his PhD dissertation [Buchberger, 1965] an algorithm to

systematically compute a Gröbner basis G for any ideal I. From his work, it turns out

that the concept of a Gröbner bases is intimately related to the idea of reduction and

normal form.

Definition 3.2. Let G = (g1, . . . , gm) ∈ Pm be an ordered tuple of non-zero polynomi-

als, and f an additional polynomial in P . The algorithm for dividing f by (g1, . . . , gm),

denoted as Division Algorithm, is an algorithm that writes f as f = e1g1+· · ·+emgm+r,

where r has the property that none of its monomials is divisible by the leading term of

any of the gi.

The implementation of the division algorithm is rather simple and it always termi-

nates because there is a term ordering. Hence, we know that the degree of f shall drop

after each reduction step. The algorithm is the following.

22

3.2 Buchberger’s Algorithm

Input:

An ordered tuple of non-zero polynomials (g1, . . . , gm) ∈ Pm.

A polynomial f ∈ P and a term ordering �.

Output:

A polynomial r not divisible by the leading term of any of the gi.

1 Set e1 = e2 = · · · = em = r = 0;

2 while f 6= 0 do

3 foreach i = 1, . . . ,m do

4 if LT�(gi) divides LT�(f) then

5 f = f − LT�(f)
LT�(gi)

;

6 ei = ei +
LT�(f)
LT�(gi)

;

7 Go to step 2;

8 end

9 end

10 r = r + LT�(f);

11 f = f − LT�(f);

12 end

13 return r

Algorithm 1: Division Algorithm

Definition 3.3. Let r be the polynomial, as defined in Definition 3.2, and obtained by

reducing f repeatedly by polynomials of G, until it is irreducible. Then f is called the

normal form of f with respect to G, and it is denoted as r = NR�,G(f).

The next theorem establishes a connection between the previous definitions and the

definition of a Gröbner basis.

Theorem 3.4 (Buchberger). G is a Gröbner basis of an ideal I if and only if the

following holds

f ∈ I⇐⇒ NR�,G(f) = 0

Proof. Let f be an arbitrary polynomial in the ideal I. Then the division of f by G

yields the following form

f = e1g1 + · · ·+ emgm + r

Hence r ∈ I because f − r ∈ I. Assume that r 6= 0. Then we can find a k such that

LT�(gk) divides LT�(r), since G is a Gröbner basis. This is a contradiction to the fact

that r is reduced with respect to G. Thus, r must be equal to zero.

Another characterization of a Gröbner bases is intimately related to the concept

of S-polynomials. The computation of the S-polynomial of two polynomials g1 and

g2 consists in the multiplication of the two polynomials by some monomial factors,

such that the leading term of both polynomials becomes equal. Then, by subsequent

subtraction, we have that this least common multiple term is canceled.

23

3. GRÖBNER BASES THEORY

Definition 3.5. Let g1, g2 ∈ P. The S-polynomial of g1 and g2 is defined to be

S1,2 =
p

LM�(g1)
g1 −

p

LM�(g2)
g2

where p is the least common multiple

p = lcm(LT�(g1), LT�(g2))

Example. Consider the ideal I = 〈g1, g2〉 = 〈xy−z2, y2−z2〉 ⊆ Q [x, y, z] and the term

ordering �DegRevLex

S2,1 = xg2 − yg1 = xy2 − xz2 − xy2 + yz2 = −xz2 + yz2

The result of this computation is a new element g3 = xz2 − yz2.

The intuition behind the notion of S-polynomials is the following: the least com-

mon multiple of the ”leading terms” of g1 and g2 is the first possible polynomial that

allows essentially two different reductions modulo g1, g2. Then the Theorem 3.6 gives

shape to a necessary condition that is sufficient to guarantee that a set of polynomi-

als is a Gröbner basis of some ideal I. That is, we only need compute the finitely

many S-polynomials of a given finite set of polynomials, to master the infinitely many

polynomials that allow two or more essentially different reductions.

Theorem 3.6 (Buchberger’s Criterion). Let I = 〈g1, . . . , gm〉 ⊆ P, G a set of polyno-

mials {g1, . . . , gm}, and B = {(i, j) | 1 ≤ i < j ≤ m, ei = ej}, where LM�(gi) = citiei.

Then the following conditions are equivalent:

1. The set G is a Gröbner basis of I with respect to ≺ .

2. For all pairs (i, j) ∈ B, we have NR≺,G(Si,j) = 0.

Proof. See, for example, Section 2.5 in Kreuzer and Robbiano [2009].

Theorem 3.4 and 3.6 are clearly better characterizations of a Gröbner basis, if

compared to our first definition. In the first definition, we have that every polynomial

must have a unique normal form. Although, the Theorem 3.4 has similar requirements,

they are restricted to polynomials in the ideal. A further improvement is given in

Theorem 3.6, where we only have to consider a finite set of polynomials. Hence, it

gives an effective criterion to test if a given G is indeed a Gröbner basis: given G, for

each pair f, g ∈ G, we compute NR(Sf,g) and see if it is equal to zero. If this is zero for

all f, g then we know G is a Gröbner basis. In other words, it tell us how to recreate

Buchberger’s algorithm.

24

3.2 Buchberger’s Algorithm

Input:

A set F of generators {f1, . . . , fm} of the ideal I.

A term ordering �.

Output:

A Gröbner basis of I.

1 Set G equal to F ;

2 Let B be the set of pairs {(i, j) | gi, gj ∈ G, i > j};
3 while B 6= ∅ do
4 Choose a pair (i, j) ∈ B;

5 Set B := B�{(i, j)};
6 Compute Sij and let h = NR�,G(Sij);

7 if h = 0 then

8 Go to line 3;

9 end

10 if h 6= 0 then

11 Add h to G;

12 Build new all critical pairs containing h and add them to B;

13 Go to step 3;

14 end

15 end

16 return G

Algorithm 2: Buchberger’s Algorithm

Example. Consider I = 〈f1, f2〉 such that f1 = x2 + 2xy2 and f2 = xy + 2y3 − 1 are

two polynomials in P = K[x, y]. Let � be the Lexicographic ordering in P.

1. Set G equal to {f1, f2}.

2. Let B be the set of pairs {(1, 2)}.

3. Choose (1, 2) ∈ B and set B = ∅.

4. Compute the S-polynomial for the critical pair (1, 2): S1,2 = x.

5. Reduce the S-polynomial S1,2 using the set of polynomials G. In this particular

case, S1,2 is already irreducible: NR�,G(x) = x.

6. It is true that x 6= 0, so we must add f3 = x to our generating set G and update

B; we get G = {f1, f2, f3} and B = {(1, 3), (2, 3)}.

7. Pick another pair of B, say (2, 3), and compute S2,3 = 2y3 − 1. Insert S2,3

into the G because S2,3 = f4 = 2y3 + 1 is already completely reduced modulo

G. Generate new critical pairs. As a result we obtain G = {f1, f2, f3, f4} and

B = {(1, 3), (1, 4), (2, 4), (3, 4)}. The computation of the remaining pairs in B re-

25

3. GRÖBNER BASES THEORY

sults in all of them reducing to 0 modulo G = {f1, f2, f3, f4} :

S1,3 = 2xy2 = 2y2f3 so NR�,G(S1,3) = 0;

S1,4 =
1

2
x2 + 2xy5 =

1

2
f1 + xy2f4 so NR�,G(S1,4) = 0;

S2,4 =
1

2
x+ 2y5 − y2 =

1

2
f3 + y2f4 so NR�,G(S2,4) = 0;

S3,4 =
1

2
x =

1

2
f3 so NR�,G(S3,4) = 0.

Hence, the computed Gröbner basis of I is given by:

G = {x2 + 2xy2, xy + 2y3 − 1, x, 2y3 − 1}.

The above algorithm computes Gröbner bases that are usually bigger than neces-

sary. In the above example we could for example eliminate f1 and f2, since their leading

terms are both multiples of the leading term of f3. Hence, we would get

G = {f3, f4} = {x, 2y3 − 1}.

Although, Buchberger’s algorithm is deceptively simple, its theoretical cost is ex-

tremely high. In fact, no general upper bound for the running time is known. However,

Dubé [1990] proved an upper bound for the maximum degree of the Gröbner basis

elements which depends doubly exponentially on the number of variables. Moreover,

he also proved that this doubly exponential behavior cannot be improved. For more

details about upper and lower bounds, see for example, Section 3.4.

In spite of all the bad news, practical experience shows that the algorithm often

terminates after a reasonable time, and in theory it shall always terminate.

Lemma 3.7. The basic algorithm terminates

Proof. Let Gn denote the trial Gröbner basis that is produced by the algorithm at the n-

th iteration step. We know that G1 ⊂ G2 ⊂ G3 ⊂ · · · , however, the most important part

is that the sets of leading terms increase as well: LT�(G1) ⊂ LT�(G2) ⊂ LT�(G3) ⊂ · · · .
By Dickson’s Lemma [1913], this process ends in a finite number of steps, once the

sequence of leading terms stabilizes. See Buchberger [1965] for a complete proof.

Theorem 3.8. The basic algorithm is correct

Proof. Since the algorithm terminates, we only have to show that at termination the

set G is a Gröbner basis. By the previous characterization, we must show that for all

f, g ∈ G, NR(Sf,g) = 0. The loop invariant that we may observe is this: for all f, g ∈ G,

26

3.3 Uniqueness of Reduced Gröbner Bases

if {f, g} /∈ B then NR(Sf,g) = 0. This invariant holds at the beginning of the iterations.

Each iteration preserves the invariant. Since the set B is empty on termination, the set

G is indeed a Gröbner basis.

3.3 Uniqueness of Reduced Gröbner Bases

The previous characterizations of Gröbner bases are not uniquely defined, e.g. they do

not require a Gröbner basis to have a minimal number of generators, relative to the

choice of an admissible ordering. This means that any finite subset of I that contains

a Gröbner basis of I is also a Gröbner basis. Nevertheless, this lack of uniqueness can

be solved by readjusting the definition of Gröbner basis into something called reduced

Gröbner bases.

A reduced Gröbner basis is obtained by iteratively substituting all elements from G

by their normal form with respect to the other elements. After deleting all zero elements

from the resulting set and making all leading coefficients equal to 1, the resulting monic

reduced Gröbner basis is unique, i.e. it only depends on I and the chosen term ordering.

Definition 3.9. G is a minimal Gröbner basis if for all f ∈ G, 〈G〉 6= 〈G − {f}〉. A

Gröbner basis G is self-reduced if for all f ∈ G, f is a 〈G−{f}〉-normal form. A Gröbner

basis G is a reduced Gröbner basis if

1. for each g ∈ G, the coefficient LC�(g) is 1,

2. G is self-reduced, and

3. no trailing term of any g ∈ G lies in LT�(I).

Lemma 3.10. If G,G′ are minimal Gröbner basis of the same ideal, 〈G〉 = 〈G′〉, then

the set of leading terms in G is equal to the set of leading terms in G′.

Proof. Suppose for some g ∈ G, LT�(g) does not occur among the leading terms of

polynomials in G′. Since NR�,G′(g) = 0 and g 6= 0, there is some g′ ∈ G′ such that

LT�(g′) properly divides LT�(g). Again, since NR�,G(g′) = 0, there is some g′′ ∈ G

such that LT�(g′′) divides (not necessarily properly) LT�(g). This means that LT�(g′′)

properly divides LT�(g), contradicting the preceding lemma.

Theorem 3.11. The reduced Gröbner basis of an ideal is unique (relative to the choice

of an admissible ordering).

Proof. Let G,G′ be two reduced minimal Gröbner bases of the same ideal. We obtain a

contradiction by supposing that there is some polynomial g in G− G′. By the previous

27

3. GRÖBNER BASES THEORY

lemma, if they are different then there is some other polynomial g′ in G′ − G such that

LT�(g) = LT�(g′) (recall that LC�(g) = 1 = LC�(g′)). Let h = g − g′. Then h 6= 0

and NR�,G(h) = 0 since G is a Gröbner basis. Hence, some term t occuring in h can

be eliminated by application of some f ∈ G. Now t must occur in g or g′. If t occurs

in g then g is reducible by f , contradicting the assumption that G is reduced. If t

occurs in g” then let g′ ∈ G′ such that LT�(g′) = LT�(g). Again g′ is reducible by f ′,

contradicting the assumption that G′ is reduced.

Theorem 3.12. Every nonzero polynomial ideal has a unique reduced Gröbner basis.

Proof. See, for example, the proof of Theorem 2.4.13 of Section 2.4 in Kreuzer and

Robbiano [2000].

In the next section we shall provide some applications of the Gröbner bases theory,

followed by some glimpses on its computational complexity.

28

3.4 Applications of Gröbner Bases

3.4 Applications of Gröbner Bases

The range of applicability of the Gröbner bases is enormous, e.g. mechanical assembly

planning [Anantha et al., 1996; Cambon et al., 2009], constraint-based sketching and

design [Michalik et al., 2002], kinematic analysis of robots [Nielsen and Roth, 1999],

collision detection [Jia et al., 2011], geometric manipulation [Cambon et al., 2009], ma-

nipulation of offsets of curves and surfaces [Hoffmann, 1990], implicitization of para-

metric representations [Gao and Chou, 1992], algebraic cryptanalysis of cryptosystems

[Buchmann et al., 2006; Ackermann and Kreuzer, 2006; Faugère and Joux, 2003], and

geometric theorem proving [Kreuzer and Robbiano, 2005; Hoffmann, 1989; Chen et al.,

2006; Recio and Vélez, 1999; Montes and Recio, 2007]. In this section, we attempt to

describe a few of them. For additional examples, see for example Winkler [1996]; Cox

et al. [2007].

Performing Calculations in Quotient Rings

Let I be an ideal in P = R[x1, . . . , xn]. Let P/I be the quotient ring defined as the

set of equivalence classes modulo the ideal. Then, the theory of Gröbner bases can be

conveniently used to carry out computations in such ring, as it provides a basis for its

vector space. See Macaulay’s Basis Theorem 2.22 and its proof. In fact, this is one of

the main motivations behind their invention.

Solving the Ideal Membership Problem

The theory of Gröbner bases can also be used to solve the ideal membership problem for

polynomial ideals. That is, given an ideal I ⊂ P and a polynomial f in the polynomial

ring P, we want to verify whenever f ∈ I.

Theorem 3.13. Let I ⊂ P be an ideal and f a polynomial in the polynomial ring P.

If G is a Gröbner basis of I, then the normal form of f with respect to G is zero if and

only if f ∈ I.

Proof. See, for example, the proof of the Theorem 3.4.

Example. Suppose that we have the following polynomial relations (our axioms)

4z − 4xy2 − 16x2 − 1 = 0,

2y2z + 4x+ 1 = 0,

2x2z + 2y2 + x = 0

29

3. GRÖBNER BASES THEORY

and we want to check if the relation g(x, y) = 4xy4 + 16x2y2 + y2 + 8x+ 2 = 0, which

represents our hypothesis, follows from the axioms. In other words, whether g is in the

ideal I generated by the axioms.

If we attempt to perform the normal reduction of g by the given axioms, we get a

normal form different from zero. However, if we compute a Gröbner basis for I with

respect to the lexicographic ordering, then we have that g(x, y) reduces to zero.

Solving the Radical Membership Problem

In some domains like geometry, we are more interested in the radical membership

problem than in the ideal membership problem.

Definition 3.14. Let I = 〈f1, . . . , fs〉 be an ideal of P = K[x1, . . . , xn]. The radical of

I, denoted
√
I, is defined as

√
I = {f ∈ P | there exist α ∈ N such that fα ∈ I}. So,

f ∈
√
I⇐⇒ fn ∈ I for some n ∈ N.

Geometrically f ∈
√
I means that the hypersurface defined by f contains all the

points in the algebraic set defined by f1, . . . , fs. The next theorem relates the radical

of an ideal I to the set of common zeros V (I) of the polynomials contained in I.

Theorem 3.15. (Hilbert’s Nullstellensatz) Let I be an ideal in P = K[x1, . . . , xn],

where K is an algebraically closed field. Then
√
I consists of exactly those polynomials

in P which vanish on all the common zeros of I.

Proof. See, for example, Cox et al. [2007].

It turn out, from the Hilbert’s Nullstellensatz that f ∈
√
I if and only if f vanishes

at every common zero of f1, . . . , fs, in other words,

f ∈
√
I⇐⇒ 1 ∈ 〈f1, . . . , fs, zf − 1〉 ∈ K[x1, . . . , xn, z]

where z is a new additional indeterminate. Consequently, the radical membership

problem can be reduced to the ideal membership problem.

Solution of Algebraic Equations Using Gröbner Bases

The theory of Gröbner bases can answer questions about solvability and number of

zeros of a system of polynomials. Moreover, it can be used to find the solutions of

a system of polynomials. Let f1, . . . , fs ∈ K[x1, . . . , xn] be a system of polynomial

equations. Then, the first step is to check is if the system of polynomial equations has

solutions in K
n
, K being the algebraic closure of K.

30

3.4 Applications of Gröbner Bases

Theorem 3.16. Let I = 〈f1, . . . fs〉. Let G be a reduced Gröbner basis of I. Then the

system of polynomial equations f1(x1, . . . , xn) = · · · = fs(x1, . . . , xn) = 0 is unsolvable

in K
n

if and only if 1 ∈ G.

Proof. See, for example, Winkler [1996], Theorem 8.4.3.

Suppose that the system of polynomial equations is solvable. Then, we have to

determine whether the number of solutions is finite or not.

Theorem 3.17. Let G be a Gröbner basis of I. Then the system of polynomial equations

f1(x1, . . . , xn) = · · · = fs(x1, . . . , xn) = 0 has finitely many solutions if and only if for

every i, 1 ≤ i ≤ n, there is a polynomial gi ∈ G such that LT�(gi) is a pure power of xi.

Moreover, if I is 0–dimensional then the number of zeros of I, counted with multiplicity,

is equal to dim(K[x1, . . . , xn]/I).

Proof. See, for example, Winkler [1996], Theorem 8.4.4.

Gröbner bases are also useful for solving systems of algebraic equations. A crucial

observation is their elimination property, that is, if G is a Gröbner basis of I with respect

to the lexicographic ordering, then the i-th elimination ideal of I, i.e. I∩K[x1 . . . , xi], is

generated by those polynomials in G that depend only on the indeterminates x1, . . . , xi.

Theorem 3.18. (Elimination Property of Gröbner Bases) Let G be a Gröbner basis of

I with respect to the lexicographic ordering. Then I∩K[x1, . . . , xi] = 〈G∩K[x1, . . . , xi]〉,
where the ideal on the right hand side is generated over the ring K[x1, . . . , xi].

Proof. See, for example, Winkler [1996], Theorem 8.4.5.

Another characterization of the elimination property of the Gröbner bases is given

by means of the Shape lemma.

Theorem 3.19 (Shape Lemma). If a system of polynomial equations f1(x1, . . . , xn) =

0, . . . , fm(x1, . . . , xn) = 0 has a finite number of solutions, then the Gröbner basis of

the ideal generated by {f1, . . . , fn}, with respect to the pure lexicographic ordering and

under some suitable assumptions, has a upper triangular structure.

Proof. See, for example, [Becker et al., 1994; Kreuzer and Robbiano, 2000].

31

3. GRÖBNER BASES THEORY

Equality of Ideals

The theory Gröbner bases provides also a systematic way to decide whether two given

ideals are equal. The answer to this problem tell us, for example, if two different

algebraic representations correspond to a certain geometric object. Hence, they have a

wide applicability in fields like Computer Vision.

Let I = 〈f1, . . . , fm〉 ∈ K[x1, . . . , xn] and J = 〈g1, . . . , gk〉 ∈ P . Choose any ad-

missible ordering. We know, from Theorem 3.12, that there exist for every nonzero

polynomial ideal a unique reduced Gröbner basis. Hence, let GI,GJ be the unique re-

duced Gröbner bases of I and J, respectively. Then by the Lemma 3.10, I is equal to J

if and only if GI = GJ, that is, they are both generated by the same reduced Gröbner

basis.

Invertibility of Polynomial Mappings

The Jacobian conjecture states that a polynomial mapping has an inverse which is itself

a polynomial mapping if and only if the determinant of the Jacobian of the mapping is

different from zero. Essen, in an attempt of proving the conjecture, found the following

criterion of invertibility:

Corollary 3.20 (Essen, 1991). Let f1, . . . , fn be the coordinate functions of a polyno-

mial mapping in the indeterminates x1, . . . , xn. Let y1, . . . , yn be new indeterminates

and let ≺ be an admissible ordering such that y ≺ x. Then the mapping is invert-

ible if and only if the Gröbner basis of {y1 − f1, y2 − f2, . . . , yn − fn} has the form

{x1 − g1, x2 − g2, . . . , xn − gn}, where g1, g2, . . . , gn are the coordinate functions of the

inverse mapping.

Proof. See, for example, [Essen, 1991].

It turns out that verification of the result by composition of mappings usually takes

more time to compute than the Gröbner basis computation of the inverse mapping.

Integer Programming Problems

Integer programming problems are much harder to solve than linear programming prob-

lems. Nevertheless, they can be solved by means of Gröbner bases techniques.

Let aij , bi ∈ Z, and cj ∈ R, where 1 ≤ i ≤ n and j = 1 ≤ j ≤ m. Our goal is to find

a solution (σ1, σ2, . . . , σm) ∈ Nm of the system bellow, that minimizes the cost function

32

3.4 Applications of Gröbner Bases

c(σ1, σ2, . . . , σm) =
∑m

j=1 cjσj .

a11σ1 + a12σ2 + · · ·+ a1mσm = b1

a21σ1 + a22σ2 + · · ·+ a2mσm = b2
... =

...

an1σ1 + an2σ2 + · · ·+ anmσm = bn

Suppose we consider only the case when the aij and bi are non-negative integers. Then

we can write the previous system as a system of equations

xa11σ1+a12σ2+···+a1mσm
i = xb1i , for i = 1 . . . n

which can be reduced to a single equation

(xa111 xa212 · · ·xan1
n)σ1 · · · (xa1m1 xa2m2 · · ·xanm

n)σm = xb11 x
b2
2 · · ·x

bn
n

Now consider the polynomial map

K[y1, . . . , ym] −→ K[x1, . . . , xn]

defined by

φ(yσ11 · · · y
σm
m) = (xa111 xa212 · · ·xan1

n)σ1 · · · (xa1m1 xa2m2 · · ·xanm
n)σm

The next statements provide an algorithm for determining solutions for these polyno-

mial systems.

Lemma 3.21. There exists an integer solution (σ1, σ2, . . . , σm) ∈ Nm if and only if the

term xb11 x
b2
2 · · ·xbnn is the image φ of a term yσ11 yσ22 · · · yσmm ∈ K[y1, . . . , ym].

Proof. See, for example, Adams and Loustaunau [1994] p.107-108.

The proof given by Adams and Loustaunau introduces all the necessary tools re-

quired to describe an algorithm capable of addressing this problem, which is as follows:

• Compute a Gröbner basis G of I = 〈yi − xa111 xa212 · · ·xan1
n | j = 1, . . . ,m〉 with

respect to an elimination ordering, such that y ≺ x.

• Compute the remainder r = yσ11 yσ22 · · · yσmm of the division of xb11 x
b2
2 · · ·xbnn by G.

• If r /∈ K[y1, . . . , ym] then the system does not have non-negative integer solutions.

Otherwise, (σ1, σ2, . . . , σm) ∈ Nm is the solution.

For a more detailed discussion on the use of Gröbner bases techniques to solve

integer programming problems, see for example Adams and Loustaunau [1994], as well

as the expository papers [Thomas, 1995, 1998].

33

3. GRÖBNER BASES THEORY

Classical Graph Vertex Colorability Problem

Vertex coloring is described as the following optimization problem. Let G be a simple,

undirected graph with vertices V = {1, . . . , n}. Let E ∈ V 2 be the set of edges of G,

and

fG =
∏

(i,j)∈E, i<j

(xi − xj)

The polynomial representation of a given graph G. Let Ck = {c1, . . . , ck} be a set of

colors for some natural number k < n. The graph G is said to be k-colorable if there

exists a map γ : V −→ Ck such that all adjacent vertices receive different colors. In

that case, we say that a k-coloring γ is proper. Otherwise, it is called improper. Now,

consider the following ideals:

In,k = 〈xki − 1 | i ∈ V 〉,

IG,k = In,k + 〈xk−1
i + xk−2

i xj + · · ·+ xix
k−2
j + xk−1

j | (i, j) ∈ E〉.

In order to solve the colorability problem, one should think of the zeros of In,k and

IG,k. Suppose that we want to color the vertices of a given graph G. Then how many

different colors do we need if adjacent vertices cannot receive the same color? The next

theorem gives an answer to the problem.

Theorem 3.22. The k-colorability of a graph G is equivalent to have 1 ∈ IG,k for a

certain ideal IG,k ⊆ P.

Proof. See, for example, Mnuk [2002].

Let l ≤ k be the number of distinct colors in a proper k-coloring γ(V). Let cl(i) be

the color class of a vertex i ∈ V , that is, the set of vertices having the same color as

i. Let max{cl(i)} be the maximum of a color class. In other words, the largest vertex

contained in it. Let m1 < m2 < · · · < ml = n be the maximum of each l color class,

and let U ⊆ V be a subset of vertices. Then, the next theorem gives a result for graphs

that have a unique proper k-coloring up to permutation of the colors in Ck.

Theorem 3.23. A graph G with n vertices is uniquely k-colorable if and only if the

reduced Gröbner basis of IG,k with respect to any term order with xn ≺ · · · ≺ x1 has

the form {g1, . . . , gn}, where

g =

xki − 1 if i = ml

hj{mj ,...,ml} if i = mj for some j 6= l,

h1
{i,m2,...,ml} if i ∈ cl(m1),

xi − xmax{cl(i)} otherwise.

34

3.4 Applications of Gröbner Bases

and where hdU is the sum of all terms of degree d in the indeterminates {xi | i ∈ U}.

Proof. See, for example, Mnuk [2002].

The next figure shows a uniquely 3-colourable graph.

Figure 3.1: A uniquely 3-colourable graph

Many practical applications like the TDMA MAC protocol for wireless networks,

depend heavily on algorithms to solve the graph vertex colourability problem. For a

more detailed introduction to this problem, see for example, Mnuk [2002] and Loera

et al. [2009].

35

3. GRÖBNER BASES THEORY

3.5 Computational Complexity

This section aims at reviewing the literature concerning the computational complexity

of a Gröbner basis. The main result on this subject has given by Thomas W. Dubé

in [Dubé, 1990]. He has proved for the first time an upper bound for the degrees of

elements in a reduced Gröbner basis, which depends on the maximum degree d of the

generators of the ideal and on the number indeterminates.

Before we continue, it is necessary to know how to present the computational com-

plexity of an algorithm, which can be describe through two different strategies: time

complexity and space complexity. The Big O Notation, which was first used by Bach-

mann in 1894 and then popularized by Landau, is one of the simplest and most in-

tuitive way of providing computational measurements. Basically, the Big O Notation

describes the asymptotic behavior of functions, and informally, it tells us how fast a

function grows or declines.

Definition 3.24. The Big O Notation can be defined as the set of functions g mapping

N to R, and for which there exists a real positive number c and a natural number a

such that for all n ≥ a, |g(n)| ≤ c|f(n)|. In other words, O(f) is the set of functions

N −→ R

O(f) := {g : N −→ R | ∃c ∈ R>0, ∃a ∈ N,∀n≥a|g(n)| ≤ c|f(n)|}

eventually bounded by f to within a constant factor.

Example. Assume that the time complexity f(n) of an algorithm is given by the fol-

lowing formula f(n) = 64537n6 + 23n3 + 12. If we take c = 2 and a = 1, then it is true

that ∀n≥a, n6 ≤ c|f(n)|, so n6 ∈ O(f) by definition. Moreover, n6 multiplied by a scalar

c is an upper bound for the whole set, hence the time complexity of this algorithm is

said to be f(n) = O(n6), or simply O(n6).

Algorithms are also grouped according to complexity classes. Next, we recall the

relation between some of the standard complexity classes,

P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ NEXP ⊆ EXPSPACE

Although, we recall only the definition of those classes we are interested in, we refer

the reader to Papadimitriou [2003] for a complete reading.

Definition 3.25. The complexity class of a problem is called:

1. P if the algorithm has complexity O(g(n)), where g is a polynomial in n.

36

3.5 Computational Complexity

2. SPACE(g(n)) if all problems are solvable using O(g(n)) bits of memory.

3. PSPACE if the corresponding algorithm is solvable in polynomial space (but

unlimited time). In other words, PSPACE is ∪k SPACE(nk).

4. EXPSPACE if the corresponding algorithm has complexity O(2g(n)), where g is

a polynomial in n.

Next, we discuss the computational complexity for some of the problems presented

in the previous section. But first, we recall again the problems that we are going to

analyze. The reader should also be aware that lower bounds of the complexity of these

problems yield lower bounds for the complexity of Buchberger’s Algorithm.

Definition 3.26. Let P = K[x1, . . . , xn] be a polynomial ring over K. We define the

following problems:

1. The ideal membership problem is defined by

Sim = {(f, f1, . . . , fs) ∈ Ps+1 | f ∈ 〈f1, . . . , fs〉}

2. The consistency problem is defined by

Scons = {(f1, . . . , fs) ∈ Ps | 1 ∈ 〈f1, . . . , fs〉}

3. The radical membership problem is defined by

Srm = {(f, f1, . . . , fs) ∈ Ps+1 | f ∈
√
〈f1, . . . , fs〉}

An upper bound for the ideal membership problem was first given by Hermann,

and it claims that it is double exponential in the number of indeterminates.

Theorem 3.27 (Hermann, 1926). Let I be an ideal 〈f1, . . . , fs〉 ⊆ Q[x1, x2, . . . , xn]

and assume d = max{deg(f1), . . . ,deg(fs)}. If f ∈ I then there are q1, . . . , qs ∈
Q[x1, x2, . . . , xn] such that f = q1f1 + · · ·+ qsfs and

deg(qi) ≤ deg(f) + (sd)2nfor all i = 1, . . . , s.

Proof. See Hermann [1998]; Seidenberg [1974]; Mayr and Meyer [1982] for a proof.

This bound can be used to enumerate all the terms that can appear as qi. Therefore

the ideal membership problem leads to a system of linear equations that can be reduced

to a rank computation of a matrix of size double exponential in the input size. At this

37

3. GRÖBNER BASES THEORY

point, there exist algorithms on a parallel random access machine with a polynomial

number of processors using polylogarithmic time, e.g see for example Mulmuley [1986].

Hence, it yields an algorithm in exponential space, assuming as hypothesis the parallel

computation thesis, which claims that the time used by a parallel machine is polyno-

mially related to the space used by a sequential machine. Recently, Mayr [1989] has

shown that the entries of such matrix can be generated on the fly from the polynomial

description. Moreover, that does not affect the algorithm used to compute the rank.

Corollary 3.28 (Mayr, 1989). The complexity of the ideal membership problem is

Sim ∈ EXPSPACE

Proof. See, for example, the proof given by Mayr [1989].

For the consistency problem the upper degree bound can be improved to be single

exponential in the number of indeterminates. Again, by the Rabinovich trick, this also

yields an upper bound for the radical membership problem.

Theorem 3.29. Let P be a polynomial ring over K in n indeterminates and I an ideal

〈f1, . . . , fs〉 ⊆ P . Let µ = min{s, n} and d = max{deg(f1), . . . ,deg(fs)}.

1. Assume that fi has no common zero in Cn, then there are q1, . . . , qs ∈ P with

1 = q1f1 + · · ·+ qsfs such that

deg(qi) ≤ µndµ + µd for i = 1, . . . , s.

2. Assume that h(x) = 0 for all common zeros x of the fi in Cn, where h ∈ P . Then

there are

e ∈ N+ s.t. e ≤ (µ+ 1)(n + 2)(d + 1)µ+1, and

qi ∈ P with deg(qi) ≤ (µ+ 1)(n + 2)(d + 1)µ+2 for i = 1, . . . , s

such that

he = q1f1 + · · ·+ qsfs

Proof. For proofs of these exponential degree bounds, see [Berenstein and Yger, 1990;

Brownawell, 1987].

Similar techniques can be combined with these bounds to show the following result,

Corollary 3.30. Both consistency and the radical membership problem have PSPACE

complexity.

Scons ∈ PSPACE and Srm ∈ PSPACE.

38

3.5 Computational Complexity

Proof. See, for example, the proof given by Mayr [1989].

An upper bound for the degree of elements in the reduced Gröbner basis is also

known, and was first presented by Dubé [1990].

Theorem 3.31 (Dubé, 1990). Let G be the reduced Gröbner basis for an ideal I =

〈f1, . . . , fs〉 ⊆ P and ≺ any term ordering on P. Let d = max{deg(f1), . . . ,deg(fs)}.
Then the degree of polynomials in the reduced Gröbner basis is upper bounded by

d = max{deg(g) | g ∈ G} ≤ 2

(
d2

2
+ d

)2n−1

Proof. See, for example, the proof given by Dubé [1990].

Roughly, this means that we have a doubly-exponential bound on the degrees of

the elements in the Gröbner basis. However, it should also be clear that these bounds

strongly depend on the input data. For example, Caniglia et al. studied the the bounds

associated with the lexicographical ordering, and the graded reverse lexicographical

ordering.

Theorem 3.32 (Caniglia et al., 1989). The complexity of computing a Gröbner basis

for I, with respect to the graded reverse lexicographical ordering is O(dk), where k = n2

if #({a ∈ Kn | fi(a) = 0 for all fi ∈ I}) < ∞, and k = n if the solutions at infinity

are also finite.

Proof. See, for example, Caniglia et al. [1989, 1993].

The same computations with respect to the lexicographical ordering leads to com-

putations with a complexity of k = n3.

Theorem 3.33 (Caniglia et al., 1989). The complexity of computing a Gröbner basis

for I, with respect to the lexicographical ordering is O(dn
3
).

Proof. See, for example, Caniglia et al. [1989, 1993].

We encourage the reader to read some of the most relevant results in this subject,

such as [Bayer and Stillman, 1988; Giusti, 1985, 1987, 1990; Möller and Mora, 1984],

which present more special cases where upper bounds can be given.

39

3. GRÖBNER BASES THEORY

3.6 Optimization Strategies and Techniques

The Buchberger algorithm requires several decisions during the computational process.

At the beginning, we have to fix a particular admissible term ordering. Then at each

step of the while-loop, we have to choose a critical pair. Lastly, we have a reduction

process that is in general not unique. Hence, it might be possible to have different

reduction steps leading to different normal forms.

Although the choices made in the computational process do not have influence in the

final reduced Gröbner basis, they are relevant to the performance of the algorithm. De-

pending on the choices, we might have to compute more S-polynomials than necessary,

which are simply discarded after the reduction process (see Theorem 3.6). However,

from a computational point of view this is something that we need to avoid.

In this section, we recall a few strategies to improve the computation of a Gröbner

basis. The interested reader is also encouraged to read some of the most relevant

results on this topic, such as Buchberger [1979, 1985]; Lazard [1983]; Gebauer and

Möller [1986]; Giovini et al. [1991]; Möller et al. [1992]; Faugère [1999, 2002]; Caboara

et al. [2004, 2002, 1996]; Bigatti et al. [2011]; Gao et al. [2010b], and Gianni et al.

[1994].

3.6.1 Strategies Involving the Selection of Term Orderings

The time and space complexity of an algorithm to compute a Gröbner basis is highly

dependent on the term ordering used. Experiments show that the total degree in-

verse lexicographic ordering (DegRevLex) is among the most efficient orderings for the

Buchberger algorithm. However, the lexicographic ordering is more useful for solving

systems of equations. Hence, it might happen that we have to compute a Gröbner

basis with respect to a particular term ordering that is computationally less efficient.

A feasible strategy is to compute a Gröbner basis with respect to some computation-

ally efficient ordering and then transform it into a Gröbner basis for the desired term

ordering.

The most efficient algorithms for basis conversion are the Gröbner walk algorithm

[Collart et al., 1997], see Amrhein et al. [1997] and Tran [2000] for additional variants;

the Faugère-Gianni-Lazard-Mora algorithm [Faugère et al., 1993] for zero-dimensional

systems, which can be used to convert Gröbner bases with respect to any ordering

into Gröbner bases with respect to the pure lexicographic ordering, by means of linear

algebra; and by means of the Hilbert functions, see Gianni et al. [1994], Traverso [1996]

or the Section 4.4 of this thesis.

40

3.6 Optimization Strategies and Techniques

Another strategy to optimize the computation of a Gröbner basis, if no particular

term ordering is required, is to determine a good term ordering to start with, see, for

example, Tran [2005; 2007]; or to seek a more efficient term ordering than the one it has

started with, see for example, Caboara and Perry [2012]. If a particular term ordering

is required, then we have to convert the basis as mentioned above.

3.6.2 Identification of Useless S-polynomials

The computation and reduction of a S-polynomial to a normal form, is a time-consuming

task that should be avoided whenever possible. The worst case is when the normal form

is zero, which means that such S-polynomial is not necessary to the final Gröbner ba-

sis. A possible computational improvement is to reduce the number of S-polynomials

that has to be considered, hence reducing the number of divisions required. In 1979,

Buchberger introduced two inexpensive criteria to identify certain pairs of polynomials

whose S-polynomials will reduce to zero. An implementation of both criteria is given

by Gebauer and Möller [1988].

• Criterion 1: Let f and g be two polynomials with disjoint leading terms, i.e.

gcd(LM�(f), LM�(g)) = 1. Then Sf,g reduces to zero with respect to {f, g}.

• Criterion 2: Suppose there are elements p, f , and g in the current basis G such

that LM�(p) divides lcm(LM�(f), LM�(g)), and (f, p), (g, p) 6∈ B. Then the pair

(f, g) can be simply discarded.

Another way to predict if a S-polynomial reduces to zero involves syzygies. The

use of syzygies can be easily understood by using an observation by Lazard [1983].

Lazard pointed out the connection between Gröbner basis and linear basis of the same

ideal. Since the Buchberger’s algorithm can be considered as a triangularisation of a

linear basis by Gaussian elimination, the reduction of a polynomial to zero means a

linear dependence of this polynomial on the polynomials employed in the reduction

procedure. Because polynomials are of type tifi, where fi ∈ R and ti is a term, the

linear dependence relation can be written as a syzygial relation∑
fi∈R

gifi = 0

where the gi are linear combinations of terms tij . Assuming that a suitable basis of the

module of syzygies is known, then we can predict every S-polynomial zero reduction.

For more details see Möller et al. [1992].

41

3. GRÖBNER BASES THEORY

The connection between Gröbner bases and linear algebra methods is the key aspect

in many algorithms such as the F4 algorithm by Faugère [1999], and the XL (eXtended

Linearization) type algorithms by Courtois et al. [2000]; Ding et al. [2008]; Mohamed

et al. [2008], and Mohamed et al. [2010].

3.6.3 Selection of Critical Pairs for the Reduction Process

At each reduction step we have to choose a critical pair for processing, and different

choices might lead to different normal forms. Another useful strategy lies on how to

order and how to choose critical pairs for processing.

• Normal strategy [Buchberger, 1985]. If the input is composed of homogeneous

polynomials, then choose a pair (f, g) such that the least common multiple of the

leading terms LT�(f) and LT�(g) is minimal in the current term ordering. Some

variants use properties such as the total degree [Kreuzer and Robbiano, 2000],

indices of the generators of the critical pair, or the age of the critical pairs.

• ”Sugar” and ”Double sugar” strategy [Giovini et al., 1991]. For inhomogeneous

polynomials, the sugar and double sugar strategy give a good choice (refinement

and heuristics). In the sugar strategy, critical pairs are ordered with respect to

a phantom degree called sugar, which is the degree that a pair would have if the

input is homogenized. Hence, we can sort the pairs as they would be sorted in

the case of a homogenization, but without the overhead that is required by the

homogenization process.

• Self-saturation strategy [Bigatti et al., 2011]. This strategy aims at inhomoge-

neous computations, and describes how an idea centered on the concept of self-

saturation allows several improvements in the computation of Gröbner bases via

Buchberger’s Algorithm. In general, we can say that it seeks the balance between

the advantages of homogeneous strategies and the idea of the sugar strategy.

3.6.4 Removal of Superfluous Polynomials

The last step of the computation of the reduced Gröbner basis is to remove all the

superfluous polynomials from the basis. Nevertheless, the removal of superfluous poly-

nomials during the computation of an intermediate basis G is often a good strategy. In

other words, at each reduction step, we have to reduce the S-polynomial to the normal

form by means of a smaller list of elements G. The removal process can be executed

in the following way: for g, g′ ∈ G, g 6= g′, if LM�(g) divides LM�(g′), then g′ can be

42

3.6 Optimization Strategies and Techniques

expressed by g and the S-polynomial Sg,g′ . Once we reduce Sg,g′ into normal form, g′

is superfluous and all pairs (g′, g′′) can be deleted from B. Although g′ is discarded,

you can still use it in the normal form algorithm.

3.6.5 Selection Strategies for Reducers

The aim of this strategy is to render useless computations useful for further reduction

steps. There exists an extensive literature regarding this topic; however, we restrict

ourselves to methods that are known to be also applicable for signature-based algo-

rithms. Brickenstein [2004, 2010] discovered during a deeper inspection of F4, a few

methods to select good reducers. The idea is to use properties related to the possible

reducers, e.g the number of elements in the support, the combination of the length of

the support with the information concerning the leading coefficient, to decide which

one is the best. The main drawback is the amount of memory that is required, since

we have to keep a huge amount of data related to the reducers.

3.6.6 Input Transformation Strategies

It is also possible to benefit from faster computations by working with a transformed

input. An optimization for symmetric ideals using this type of strategy was proposed

in Steidel [2012]. The idea is to construct and use an appropriate linear transformation

that exploits the symmetric properties of the input ideal to obtain smoother operations

while performing the Buchberger algorithm. Another known optimization is based on

the transformation of non-homogeneous ideals into homogeneous ones, so we can sort

polynomials by degree. Then, at the end of computation, we perform the dehomoge-

nization.

3.6.7 Parallel and Modular Strategies

Another optimization strategy concerns the integration of modular computations into

the Gröbner bases algorithm. This idea was originally influenced by the work of Borosh

and Fraenkel [1966] and Ebert [1983], and initially presented by Traverso [1989] and

Winkler [1988].

The motivation behind modular computations is strongly associated to the coeffi-

cient growth during the computation steps of a Gröbner basis. In each single reduction

step, the leading coefficient c1 of the reducer p1 has to be adjusted to match the leading

coefficient c2 of the element to be reduced. Therefore, not only the fraction c2
c1

must

be computed, but also every coefficient in p1 must be multiplied by this fraction. This

43

3. GRÖBNER BASES THEORY

can lead to enormous numbers, whose calculations slow down the Gröbner basis com-

putation tremendously. This is where the concept of modular computations comes into

play. The idea is to compute many Gröbner bases over fields of prime characteristic

p <∞, and then, with the help of algorithms for the reconstruction of rational numbers

[Collins and Encarnación, 1994; Kornerup and Gregory, 1983; Pan and Wang, 2004;

Wang et al., 1982; Wang and Pan, 2003], merge these modular Gröbner bases together

and lift the coefficients using the Chinese Remainder Theorem.

The use of parallelization has also been suggested. Although the idea is not com-

pletely new, it is coming back to fashion again, mainly due to the development of

multicore and multiprocessor computers, on which the independent modular computa-

tions can be run in parallel. For example, some authors such as Chakrabarti and Yelick

[1993] and Vidal [1990] have constructed general algorithms for distributed memory

and shared memory machines respectively. Reasonable speedups were obtained on a

small numbers of processors. Another approach has been using factorization of polyno-

mials; all generated S-polynomials are factorized on a master node, and the reductions

of its factors are carried out on the slave nodes, see Siegl [1994]; Bradford [1990]; Gräbe

and Lassner [1994]. In a paper by Reeves [1998] a parallelization at the compiler level

for modular coefficient fields is presented. Moreover, in a paper by Leykin [2004] a

coarse grained parallelism was studied and implemented both in the commutative and

non-commutative case. Recently, Faugère and Lachartre [2010] presented a strategy on

how to parallelize the F4 matrix operations in polynomial rings over finite fields, e.g.

grouping the matrix into different blocks, using different attempts for sparse, semis-

parse, and dense blocks. Independently, Arnold [2003] and Idrees et al. [2011] presented

also similar works.

See surveys by Mityunin and Pankratiev [2007] and Amrhein et al. [1998] for more

information regarding parallel and modular strategies.

3.6.8 Signature-based Strategies

In 2002, Faugère proposed together with an algorithm called F5 [Faugère, 2002], the

concept of signature of a polynomial. This algorithm was considered for a while the

fastest algorithm to compute a Gröbner basis. However, its termination was unclear.

Faugère, Hashemi and Ars tried to prove the F5’s finite termination problem in their

papers [Faugère, 2002; Hashemi and Ars, 2010], but the termination itself was proved

only for the case of input being regular polynomial sequence. The correctness of F5

was also shown for any input that terminates. In 2012, Galkin proved the termination

for any homogeneous input without any reference to regularity.

44

3.6 Optimization Strategies and Techniques

Recently, new variants and termination proofs were presented by Stegers [2005];

Eder [2008]; Zobnin [2010]; Eder and Perry [2010]; Eder et al. [2011]; Eder and Perry

[2011]; Arri and Perry [2011]; Sun and Wang [2011b,a]; Roune and Stillman [2012];

Eder [2012]; Sun and Wang [2012]. Many of these variants simply add extra criteria to

F5, and most of these proofs assume the input to be homogeneous, or the critical pair

that is associated to the smallest signature to be computed first.

Worth mentioning are the variants presented by Gao et al. [2010b,a], since they

propose new conceptions and techniques to compute a Gröbner basis. e.g., they propose

the conception of pairs; generalize the signature order to be an arbitrary one; use

arbitrary top reductions instead of F5 reductions; etc. At that time, the termination

of Gao-Volny-Wang (GVW) algorithm has an open problem. However, a termination

proof was recently given by Huang [2010].

In Chapter 4, we recall the ideas behind signature-based strategies, and we analyse

the main differencies between most variants. For now, we close this section with an

overview of the relations between signature-based variants.

AP

Arri, Perry

(2009)

AP2

Arri,

Perry,

Eder

(2012)

AP1

Arri,

Perry,

Eder

(2011)

SB

Roune,

Stillmann

(2012)

nF5

Eder

(2012)

F5

Faugére

(2002)

F5E

Hashemi

and Ars

(2010)

G2V

Gao, Guan,

Volny

(2010)

iG2V

Eder

(2012)

GVW

Gao, Volny,

Wang

(2011)

F5C

Perry, Eder

(2009)

F5A

Perry, Eder

(2011)

iF5C

Eder

(2012)

iF5A

Eder

(2012)

Figure 3.2: The most efficient variants of F5

45

3. GRÖBNER BASES THEORY

3.7 Concluding Remarks

In this chapter we have presented a wide range of strategies that can be used to improve

the computation of a Gröbner basis. Despite any benefit that these approaches might

have, they often have drawbacks, too. For example, one has often to consider restric-

tions on the input. Moreover, the efficiency of these methods is highly dependent on

the behavior of the data during the computations, which cannot be known beforehand.

The signature-based algorithms are not an exception. However, we can see that in

most cases they will find more useless critical pairs than Buchberger’s Criteria. Within

the signature-based algorithms, performance is affected by restrictions on the reduction

process and by the overhead that is generated due to how aggressive is the signature-

based criteria chosen. Thus, again the question is not about getting a universal best

algorithm, but even more about how to combine the signature-based world with already

highly efficient improvements of the classic world without harming the performance or

causing wrong results.

46

Chapter 4

New Strategies for Computing

Gröbner Bases

The mind that opens to a new idea never returns to its original size.

(Albert Einstein)

This chapter is the connecting link between the theory of Gröbner bases and the

concept of signature-based strategies for computing a Gröbner basis, whose introduction

follows in Section 4.3. First we recall the notion of syzygies and free resolutions, which

are fundamental to fully understand the signature-based algorithms proposed. Then,

we introduce the theory on which signature-based algorithms are based. Lastly, we

introduce two new optimization techniques for such algorithms. One is a criterion

based on the Hilbert Series, and the other one benefits from computer parallelization.

4.1 Syzygies Modules

In this section, we shall see how to compute a system of generators for a given module

of syzygies. We start by recalling the concept of the exact sequence of the module of

syzygies Syz(G) and the exact sequence of Syz(LT�(G)). Then we establish a connection

between the module of syzygies Syz(G) and the Gröbner basis G.

In Chapter 2, we said that a P-moduleM is finitely generated if there exists elements

m1, . . . ,mn in M such that ∀m ∈M, ∃r1, . . . , rn elements in P with:

m = r1m1 + · · ·+ rnmn

In this section, we recall the notion of modules of syzygies, which is given by the

following definition.

47

4. NEW STRATEGIES FOR COMPUTING GRÖBNER BASES

Definition 4.1. Given a P-module M , the first syzygy module of M on a set of

generators (m1, . . . ,mn) is the kernel the following presentation of M :

Pn
×(m1,...,mn)−−−−−−−−→ M −→ 0

(r1, . . . , rn) 7−→ (r1m1 + · · ·+ rnmn)

In other words, we have that SyzP (m1, . . .mn) := {(r1, . . . rn) ∈ Pn |
∑

i rimi = 0},
and M ' Pn/SyzP (m1, . . .mn). The elements (r1, . . . rn) are denoted syzygies of M .

Next we recall the concept of principal syzygies, whose computation is required in

our algorithm.

Definition 4.2. Let M = 〈m1, . . . ,mr〉. Then any element mjei −miej , where j < i,

is called a principal syzygy of M. We denote the module of all principal syzygies by

PSyz(m1, . . . ,mr).

In the previous chapter, we have seen that it is usually a good strategy to reduce

questions about polynomials to questions about their leading terms. So, the next

definition recalls the concept of syzygies on the leading terms of some ideal I. Then,

we shall see its relation to the definition of Gröbner bases.

Definition 4.3. Let I = (f1, . . . fn) be a tuple of n polynomials. The syzygies on the

leading terms of I are denoted by:

SyzP (LT�(f1), . . . , LT�(fn)) :=

{
(h1, . . . , hn) ∈ Pn |

∑
i

hi LT�(fi) = 0

}
.

The proposition bellow gives a result analogous to the definition of S-polynomial,

which is necessary to introduce our next theorem.

Proposition 4.4. Let Syz(f1, . . . , fs) be the syzygy module on the leading terms of

f1, . . . , fs. Consider the pair (fi, fj) such that 1 ≤ i ≤ j ≤ s, and define tµ :=

lcm(LT�(fi), LT�(fj)). Let

Sij :=
tµ

LM�(fi)
ei −

tµ

LM�(fj)
ej ∈ Pn

The syzygies {Sij}1≤i,j≤s generate Syz(f1, . . . , fs) as a P-module.

Proof. See, for example, Kreuzer and Robbiano [2009].

48

4.2 Free Resolutions

Theorem 4.5. Let G = {g1, . . . , gs} be a tuple of polynomials, and Syz(LT�(G)) the

Syzygy module on the leading terms of G. Let S be a homogeneous generating set of

Syz(LT�(G)). Then we have:

G is a Gröbner basis if and only if for all z ∈ S, z · G = NRG

(
s∑
i=1

higi

)
= 0

Proof. See, for example, Eisenbud [1995].

The advantage of using this criterion is the possibility to take a smaller generating

set for Syz(LT�(G)) than the {Sij}. Hence, we can avoid more useless pairs than the

Buchberger criterion.

4.2 Free Resolutions

The computation of syzygies is fundamental for free resolution of ideals and modules.

A free resolution of a module M (or ideal) is simply a representation of M in terms of

generators, the relations between the generators (denoted first syzygies), the relations

between the relations of the generators (denoted second syzygies), etc.

Definition 4.6. Consider a sequence of R-modules and homomorphisms

· · · −→Mk+1
φk+1−→ Mk

φk−→Mk−1 −→ · · ·

The expression is called an exact sequence if Im(φk) = Ker(φk+1). The inclusion

Im(φk) ⊂ Ker(φk+1) is equivalent to the equality φkφk+1 = 0. A sequence of sev-

eral mappings is called exact if and only if it is exact at each Mi that is not located at

the beginning or the end of the sequence.

Definition 4.7. Let M be a R-module. A free resolution of M is an exact sequence

of the form

· · · −→ Rn2
φ2−→ Rn1

φ1−→ Rn0
φ0−→M −→ 0

Observe that all modules in this sequence except M are free. If there is an l ∈ N s.t.

nl 6= 0 but nk = 0 for all k > l, then we say that the resolution is finite. More precisely,

the resolution has length l. A finite resolution of length l is usually written as

0 −→ Rnl −→ Rnl−1 −→ · · · −→ Rn1 −→ Rn0 −→M −→ 0.

49

4. NEW STRATEGIES FOR COMPUTING GRÖBNER BASES

Now, we shall see how to construct a free resolution of a finitely generated module

M = 〈m1, . . . ,mn0〉. We determine a generating set {s1, . . . , sn1} of Syz(m1, . . . ,mn0),

the syzygy module of (m1, . . . ,mn0). Let

φ0 : Rn0 −→ M

(r1, . . . , rn0)t 7→
∑
rimi

φ1 : Rn1 −→ Rn0

(r1, . . . , rn1)t 7→
∑
risi

Then we have Im(φ1) = Syz(mi) = Ker(φ0), so the sequence

Rn1
φ1−→ Rn0

φ0−→M −→ 0

is exact. Continuing this process with Syz(mi) instead of M , we finally get a free

resolution of M .

Example. Consider the following ideal, which is also a module

I = 〈x2 − x, xy, y2 − y〉︸ ︷︷ ︸
F

in R = K[x, y]. In geometric terms, I is the ideal of {(0, 0), (1, 0), (0, 1)} in K2. Let

φ0 : R3 −→ I 1

r2

r3

 7→ 〈x2 − x, xy, y2 − y〉︸ ︷︷ ︸
F

·

 1

r2

r3

The mapping φ0 represents the generation of I from the free module R3. Next we

shall determine the relations between the generators, i.e. (first) syzygies. The columns

of the matrix

B =

 y 0

−x+ 1 y − 1

0 −x

generate the syzygy module Syz(F). So for φ1 we have that,

φ1 : R2 −→ R3(
1

r2

)
7→ B ·

(
1

r2

)

50

4.2 Free Resolutions

we get the exact sequence

R2 φ1−→ R3 φ0−→ I −→ 0.

Hence, the resolution procedure terminates. If (c1, c2) is any syzygy of the columns

of B, i.e. a second syzygy of F , then

c1

 y

−x+ 1

0

+ c2

 0

y − 1

−x

 =

 0

0

0

By looking at the first component, we get that c1y = 0, so c1 = 0. Similarly, from

the third component we have c2 = 0. Hence the kernel of φ1 is the zero module 0. There

are no non-trivial relations between the columns of B, so the first syzygy module Syz(F)

is the free module R2. Finally this leads to the free resolution

0 −→ R2 φ1−→ R3 φ0−→ I −→ 0.

of length 1 of the module I in R = K[x, y].

Lastly, we recall Hilbert’s famous ”Syzygy Theorem”, published in 1890, which

states that every finitely generated graded module M over the polynomial ring P =

K[x1, . . . , xn] has a free resolution of length at most n, that is, its n-th syzygy is free.

Theorem 4.8 (Hilbert’s Syzygy Theorem). Every finitely generated graded P-module M

has a finite free resolution of finitely generated free graded P-modules, which has length

at most n.

Proof. Proof of the above theorem can be found in Eisenbud [1995][Corollary 19.7].

The length is one less than the number of free modules in the resolution. Hilbert

used this result to prove that the Hilbert function i −→ dimP (Mi) is, for large i, a

polynomial function of i. For more details, see Section 2.6.

51

4. NEW STRATEGIES FOR COMPUTING GRÖBNER BASES

4.3 Introduction to Signature-based Strategies

The main idea of the signature-based strategies for computing a Gröbner basis is to

associate each polynomial with a signature on which the criteria and reduction steps

depend. Such a concept it was initially proposed by Faugère together with his F5

algorithm [Faugère, 2002], and has become extremely popular partly due to its good

performances.

The most efficient variants of F5 are: the F5C algorithm by Eder and Perry [2010],

the F5 with extended criteria by Hashemi and Ars [2010], the Gao-Guan-Volny (G2V)

[Gao et al., 2010a], and the Gao-Volny-Wang (GVW) [Gao et al., 2010b]. The main

differences between these algorithms are the extra conditions implemented to ensure

correctness of the strategy.

Suppose, for example, that f and g are two polynomials, where tf and tg are terms

such that the leading terms of tff and tgg are the same. Then a necessary condition

to reject the critical pair of f and g is that, there exists some known polynomial h

such that its signature is a factor of tff
′s or tgg

′s signature. We shall see that this

condition alone is not sufficient to ensure correctness. Thus, existing implementations

use different extra conditions.

In this section, we give a brief introduction to signature-based strategies. First, we

recall the concept of polynomial signature. Then, we describe a generic footprint for

signature-based algorithms. Lastly, we introduce a detailed description of the GVW

algorithm. For proofs of the correctness and termination, see for example, Faugère

[2002]; Stegers [2005]; Eder [2008]; Eder and Perry [2010]; Hashemi and Ars [2010], and

Gao et al. [2010a].

Generic Signature-based Algorithm

Let P = K[x1, . . . , xn] be a polynomial ring over a field K with n indeterminates. Let

� be a fixed term ordering in P, which equips its elements with a unique representation.

Let F = {g1, . . . , gm} such that gi ∈ P, and I be the ideal generated by the elements of

F,

I = 〈g1, . . . , gm〉 = {u1g1 + · · ·+ umgm : u1, . . . , um ∈ P} ⊆ P (4.1)

Then we can define the following map

φ : Pm −→ I∑m
i=1 uiei 7→

∑m
i=1 uigi

such that the ui
′s are polynomials in P, and e1, . . . , em are the canonical generators of

the free P-module Pm. From Definition 4.1, we have that the elements u ∈ Pm with

52

4.3 Introduction to Signature-based Strategies

φ(u) = 0 are called syzygies of g1, . . . , gm. We denote the module of all such syzygies

by the short notation H.

H := Syz(F) = {(u1, . . . , um) ∈ Pm : u1g1 + · · ·+ umgm = 0} (4.2)

Moreover, we denote elements of Pm, which we see as row vectors, with bold letters

e.g. g,u etc. Next, we consider the following P-submodule of Pm × P :

M = {(u, v) ∈ Pm × I : ugt = v} (4.3)

generated by

(e1, g1), (e2, g2), . . . , (em, gm) (4.4)

Now that all the settings are in place, we introduce our first definition of polynomial

signature.

Definition 4.9 (Faugère). Let P = K[x1, . . . , xn] and v ∈ I ⊆ P a polynomial. Let

u1, . . . , um ∈ P and u ∈ Pm such that v = φ(u), where u :=
∑m

i=1 uiei. We say that

LT�(u) is a signature of (u, v) ∈ Pm × P.

We can easily deduce from definition that each polynomial v ∈ P has a unique

minimal signature once we fix a term ordering. Now, we recall the concept of signatures

for critical pairs.

Definition 4.10. Suppose (u1, v1), (u2, v2) ∈ Pm×P are two pairs with v1 and v2 both

nonzero. Let

t1 =
lcm(LT�(v1), LT�(v2))

LT�(v1)
, t2 =

lcm(LT�(v1), LT�(v2))

LT�(v2)

Suppose max(t1 LT�(u1), t2 LT�(u2)) = ti LT�(ui). Then

• ti LT�(ui) is the J-signature of (u1, v1) and (u2, v2), and

• ti(ui, vi) = (tiui, tivi) is a J-pair1 of (u1, v1) and (u2, v2), and

Again, we have that a J-signature of (u1, v1) and (u2, v2) is unique. Due to the

uniqueness of the J-signature, we only need to keep a J-pair per distinct J-signature.

Moreover, we are free to pick between t1(u1, v1) and t2(u2, v2) if the equality t1 LT�(u1) =

t2 LT�(u2) holds.

The terms t1 and t2 used in J-pairs are exactly the same as those used in Buch-

berger’s S-polynomial t1v1 − ct2v2, where c = LC�(v1)/ LC�(v2). The main difference

1J means ”joint” of the two pairs

53

4. NEW STRATEGIES FOR COMPUTING GRÖBNER BASES

between these two concepts is that J-pairs postpone the computation of S-polynomials

until the reduction phase, as we work with their signatures. This idea should become

more clear with the introduction of the GVW algorithm.

Lastly, we revise the reduction process, which shall also depend on the concept of

signature.

Definition 4.11. Let (u1, v1) and (u2, v2) be two J-pairs in M. Moreover, let G ⊂ M

with #G = k. We say that (u1, v1) reduces signature-safely to (u2, v2) modulo G if

there exist a sequence r0, . . . , rk, where r0 = (u1, v1) and rk = (u2, v2), such that for

all i ∈ {1, . . . , k} there exist gi = (u, v) ∈ G, ti ∈ Pm, and ci ∈ K fulfilling the following

properties:

1. ri = ri−1 − citigi,

2. LT�(vi) � LT�(vi−1), and

3. ti LT�(u) � LT�(ui−1)

If there exists a pair (s, h) ∈ G such that LT�(s) divides LT�(u1) and LT�(h) divides

LT�(v1), then we say that (u1, v1) is signature-redundant to G.

So far, we have introduced the notion of J-pair and a procedure to reduce them.

However, a Gröbner basis algorithm without any criteria to discard useless critical pairs,

is not efficient at all. In the signature-based strategies there exist two main criteria to

discard useless critical pairs:

1. The non-minimal signature criterion is mainly based on the knowledge of syzygies,

respectively of their leading terms, and their comparison to the signatures of the

critical pairs.

2. The rewritable signature criterion is based on the fact that we can detect relations

between polynomials to be computed, simply by looking at the corresponding

signatures.

The exact details on how to implement these criteria depend on the specific im-

plementation. However, it should be clear by now how to implement them trivially.

Later, we shall see a concrete example with the introduction of the GVW algorithm.

For additional details, see for example Faugère [2002]; Stegers [2005]; Eder [2008]; Eder

and Perry [2010]; Hashemi and Ars [2010], and Gao et al. [2010a].

The generic footprint of the signature-based strategies is described by the following

algorithm.

54

4.3 Introduction to Signature-based Strategies

Input: A set of polynomials F = {g1, . . . , gm} and a fixed term ordering � in P

Output: A Gröbner basis G of the ideal I = 〈F〉
Algorithm:

1 Initialize G as {(e1, g1), . . . , (em, gm)};
2 Compute all the J-pairs of (e1, g1), . . . , (em, gm) to S;

3 while S is not empty do

4 Take a minimal J-pair (u, v) from S (with respect to signature);

5 Delete the J-pair (u, v) from the list S;

6 while (u, v) reduces signature-safely by the pairs in G do

7 Reduce (u, v) signature-safely to (ui, vi);

8 Set (u, v) := (ui, vi);

9 end

10 if v 6= 0 and (u, v) is not signature-redundant to G then

11 Append (u, v) to G;

12 Form new J-pairs between (u, v) and S;

13 Add to S only the J-pair with minimal LT�(v) for each distinct signature

LT�(u);

14 end

15 end

16 return v-part of G;

Algorithm 3: Generic Signature-based Algorithm

The GVW Algorithm

The main results of this thesis, which are introduced throughout the next sections, are

built on top of the GVW algorithm. Hence, we shall also give a technical introduction

to this algorithm.

The main difference between signature-based algorithms concerns the way they

implement the criteria. This algorithm is not an exception. The definition of signature-

safely has now in two particular cases: when v2 is nonzero and when it is not.

Definition 4.12. Let (u1, v1), (u2, v2) ∈ Pm × P be any two pairs. If v2 is nonzero,

LT�(v2) divides LT�(v1) and LT�(tu2) � LT�(u1) then we say (u1, v1) is top-reducible

by (u2, v2). The corresponding top-reduction is

(u1, v1)− ct(u2, v2) = (u1 − ctu2, v1 − ctv2), (4.5)

where t = LT�(v1)/ LT�(v2) and c = LC�(v1)/ LC�(v2).

When v2 is zero and u1,u2 6= 0, then we say that (u1, v1) is top-reducible by (u2, 0) if

LT�(u2) divides LT�(u1). For such scenario the top-reduction is

(u1, v1)− ct(u2, v2) =

(
u1 −

LM�(u1)

LM�(u2)
u2, v1

)

55

4. NEW STRATEGIES FOR COMPUTING GRÖBNER BASES

Every time we perform a top-reduction, we cancel the leading term in the v-part

without increasing the signature of (u1, v1). Moreover, we can say that,

Definition 4.13. A top-reduction is called regular top-reduction, if

LT�(u1 − ctu2) = LT�(u1),

and super top-reduction otherwise. This means that the signature of (u1, v1) be-

comes smaller under a super top-reduction and remains unchanged under a regular

top-reduction. Observe that a super top-reduction happens if

LT�(tu2) = LT�(u1) and
LC�(u1)

LC�(u2)
=

LC�(v1)

LC�(v2)

Furthermore, if a pair (u1, v1) is top-reducible by (u2, 0), then the top-reduction is

always a super top-reduction. Moreover, one can also claim that a pair (u1, 0) is never

top-reducible by (u2, v2) for v2 6= 0. Note that we do not have to perform reductions

for the super top-reduction case.

The definition of top-reductions given by Faugère [2002] corresponds to these regular

top-reductions. However, some of the regular top-reductions allowed in this definition

are not allowed in F5 algorithm (e.g. when LT�(u1) = t LT�(u2)).

Lemma 4.14. Let t be a term in P. If a pair t(u1, v1) is (regular) top-reducible by

(u2, v2), where both v1 and v2 are nonzero, then t1(u1, v1) is a J-pair of (u1, v1) and

(u2, v2), where

t1 =
lcm(LT�(v1), LT�(v2))

LT�(v1)

and t1 is a divisor of t. Furthermore, t1(u1, v1) is (regular) top-reducible by (u2, v2).

Proof. See Gao et al. [2010a]

Proposition 4.15. Suppose that L = {(u1, v1), . . . , (uk, vk)} is a strong Gröbner basis

of M , that is, every pair (u, v) ∈ M is top-reducible by some pair in L. Then one can

derive the following conclusions

• The set G0 = {vi : 1 ≤ i ≤ k} is a Gröbner basis of the ideal I = 〈g1, . . . , gm〉

• The set G1 = {ui : vi = 0, 1 ≤ i ≤ k} is a Gröbner basis of the syzygy module of

g = (g1, . . . , gm)

A strong Gröbner basis of M ⊂ Pm×P is a Gröbner basis of M as a submodule of

Pm+1. However the converse may not be true for an arbitrary submodule M of Pm+1.

This is why we call the basis a strong Gröbner basis.

56

4.3 Introduction to Signature-based Strategies

Proof. In order to prove that G1 is a Gröbner basis of the syzygy module of g, one

can deduce from equations (4.2) and (4.3) that we must have (u, 0) ∈ M for any

u = (u1, . . . , um) in the syzygy module of g. Now, suppose that (u, 0) is top-reducible

by some pair (ui, vi) in L. Then by Definition (4.13), vi must be zero. Therefore,

ui ∈ G1 and LT�(u) is reducible by LT�(ui).

Now, to prove that G0 is a Gröbner basis of I, assume v ∈ I and nonzero. Then we

know there exists u = (u1, . . . , um) ∈ Pm so that ugt = v, hence (u, v) ∈ M. Among

all such u, we pick the one having the smallest leading term. Since (u, v) ∈ M, it

is top-reducible by some (ui, vi) where 1 ≤ i ≤ k. Assume, by absurd, that vi = 0.

Then we could use (ui, 0) to reduce (u, v) to get a u′ such that u′gt = v, with LT�(u′)

smaller than LT�(u), which contradicts the initial minimality of LT�(u). So vi 6= 0 and

LT�(vi) divides LT�(v). Therefore, we have that G0 is a Gröbner basis of I.

Lastly, we recall the definition of eventually super top-reducible and we introduce

an analogous theorem to Buchberger’s theorem.

Definition 4.16. Let L be any set of pairs in M as defined in (4.3). We say that (u, v)

is eventually super top-reducible by L if there is a sequence of regular top-reductions

of (u, v) by pairs in L that reduce (u, v) to a pair (u′, v′) that is no longer regular

top-reducible by L but is super top-reducible by at least one pair in L.

Theorem 4.17. Let L be any set of pairs in M as defined in (4.3). Then L is a strong

Gröbner basis of M if and only if for every distinct J-signature from L there is at least

one J-pair from L with the same J-signature that is eventually super top-reducible by

L.

Proof. See Gao et al. [2010a] for a proof of this theorem.

The algorithm that puts together all the pieces follows next.

57

4. NEW STRATEGIES FOR COMPUTING GRÖBNER BASES

Input:

List of polynomials g1, . . . , gm ∈ P = K[x1, . . . , xn],

A term ordering for P, and a term ordering on Pm

Output:

A Gröbner basis V of I = 〈g1, . . . , gm〉, and

A Gröbner basis H of LT�(Syz(g1, . . . , gm)), the leading terms of the syzygy module

Variables:

U a list of terms Ti, representing signatures of (ui, vi) ∈M,

V a list of polynomials vi for (ui, vi) ∈M,

H a list of LT�(u) were u ∈ Rm is a syzygy found so far,

JP a list of pairs (t, i) s.t. t(ui, vi) is the J-pair of (ui, vi) and (uj , vj) for some j 6= i.

Algorithm:

1 Initialize U as {e1, . . . , em};
2 Initialize V as {g1, . . . , gm};
3 Add the leading terms of the principle syzygies gjei − giEj for 1 ≤ i < j ≤ m to H ;

4 Compute all the J-pairs of (e1, g1), . . . , (em, gm);

5 Add to the list JP all J-pairs whose signatures are distinct and not reducible by H ;

6 while JP is not empty do

7 Take a minimal pair (t, i) from JP (with respect to signature) ;

8 Delete the pair (t, i) from the list JP ;

9 while t(Ti, vi) is regular top-reducible by the pairs in(U, V) do

10 Perform regular top-reduction, say to get(T, v) ;

11 end

12 if v = 0 then

13 Append T to H ;

14 Delete every J-pair (t, j) in JP whose signature tTj is divisible by T ;

15 end

16 if v 6= 0 and (T, v) is not super top-reducible by (U, V) then

17 Append T to U and v to V ;

18 Form all J-pairs for (T, v) and (Tj , vj), 1 ≤ j ≤ |U | − 1,and ;

19 Consider only J-pairs whose signatures are not reducible by H, and ;

20 Add to JP only the J-pair with minimal LT�(v) for each distinct signature T

;

21 Add leading terms of the principle syzygies, vTj − vjT for 1 ≤ j ≤ |U | − 1, to

H ;

22 end

23 end

24 return V and H;

Algorithm 4: The GVW algorithm

We conclude this section with a proof for the correctness, which is based on the

proof presented by Gao et al. [2010b]. For a termination proof, see for example Huang

[2010].

58

4.3 Introduction to Signature-based Strategies

Theorem 4.18. If the Algorithm 4 terminates, then V is a Gröbner basis of I =

〈g1, g2, . . . , gm〉 and LT�(Syz(g1, . . . , gm)) is a Gröbner basis of the leading terms of the

syzygy module of (g1, g2, . . . , gm).

Proof. To prove the correctness of the algorithm we have to show that:

1. One is allowed to delete J-pairs at line 5, 14, and 20, whose signatures are divisible

by LT�(u), where u ∈ Syz(g1, . . . , gm);

Proof: Let (u, v) be any pair whose signature LT�(u) is divisible by LT�(u′) for

some u′ ∈ Syz(g1, . . . , gm). Then we have that (u, v) is top-reducible by (u′, 0).

Moreover, regular top-reductions of (u, v) would not change the LT�(u), thus,

the pair obtained from (u, v) after we perform regular top-reductions will be

super top-reducible by (u′, 0). Hence (u, v) is eventual super top-reducible by the

current basis. Since it is worthless to reduce (u, v), we can simply discard it.

2. A pair that is eventually super top-reducible by an intermediate basis is always

eventually super top-reducible by the final basis;

Proof: Let us suppose that the final Gröbner basis computed for M is Gk =

{(u1, v1), . . . , (uk, vk)}.At any intermediate step, only Gp = {(u1, v1), . . . , (up, vp)}
is known for some p < k. Suppose that the smallest J-pair from JP is (t, i). If

t(ui, vi) is eventually super top-reducible by Gp, then t(ui, vi) remains eventually

super top-reducible by Gk, since every (uj , vj), j > p, has strictly larger signature

than t(ui, vi). If t(ui, vi) is not eventually super top-reducible by Gp, then a new

pair (up+1, vp+1), which is obtained from t(ui, vi) via regular top-reductions by

Gp, will be added to Gp. Hence the J-pair t(ui, vi) is eventually super top-reducible

by the new basis Gp+1 = Gp ∪ {(up+1, vp+1)}.

Observe that (up+1, vp+1) has exactly the same signature as the J-pair t(ui, vi).

Furthermore, all new J-pairs formed using (up+1, vp+1) will have strictly greater

signature than that of (up+1, vp+1), because we discard all future J-pairs having

the same signature. Hence (up+1, vp+1) can not be top-reducible by any pair

(uj , vj), j > p + 1, so the J-pair t(ui, vi) remains eventually super top-reducible

by Gk. Therefore, any pair that is eventually super top-reducible by current basis

remains super top-reducible by the final basis.

3. It is only required to store one J-pair for each signature, which follows directly

from Theorem 4.17. Note that the initial basis consists of pairs in (U, V) and

(Syz(g1, . . . , gm), 0).

59

4. NEW STRATEGIES FOR COMPUTING GRÖBNER BASES

4.4 The Hilbert-Driven Strategy

In this section, we introduce a new criterion to signature-based strategies that is

based on the so-called Hilbert-driven Gröbner basis algorithm, originally presented

by Traverso [1996].

Current attempts based on this strategy have a common drawback: one needs to

know the Hilbert Series beforehand in order to take advantage of it. Some work about

how to compute it efficiently can be found in Bigatti [1997]. In some special cases,

we have all the information we need about the Hilbert Series without any further

computations.

Theorem 4.19. Let � be a term ordering on P, and I ⊂ P a homogeneous ideal. Then

we have the following relation

HP(P/I, t) = HP(P/ LT�(I), t)

Proof. See for example Section 5.2 in Greuel and Pfister [2007] or Kreuzer and Robbiano

[2000].

Using the above theorem one can derive a few other properties, which are nicely

described through the following statement.

Corollary 4.20. Let I ∈ P be an ideal and � a term ordering. Let G = {g1, . . . , gs} ⊂ I.

Then it holds:

1. HF(P/ LT�(I), d) ≤ HF(P/ LT�(G), d) for all d.

2. If HF(P/ LT�(I), d) = HF(P/ LT�(G), d) for all d, then G is a Gröbner basis of I.

Proof. The proof is based on the fact that LT�(G) ⊂ LT�(I). Having LT�(G) ⊂ LT�(I),

the equality of the Hilbert functions follows from the equality of the leading ideals, i.e.

LT�(G) = LT�(I). But this is just the definition of G being a Gröbner basis of I.

Corollary 4.21. Let �1 and �2 be two term orderings on P and I ⊆ P an ideal.

1. If I is homogeneous, then HF(P/ LT�1(I), d) = HF(P/I, d) = HF(P/ LT�2(I), d)

for all d.

2. If I is inhomogeneous, then HF(P/ LT�1(I), d) = HF(P/I, d) − HF(P/I, d − 1) =

HF(P/ LT�2(G), d) for all d.

Proof. See for example Traverso [1996].

60

4.4 The Hilbert-Driven Strategy

Another important corollary, which is given by Traverso in [Traverso, 1996], de-

scribes how to use the Hilbert Series to improve the computations of Gröbner bases for

inhomogenous ideals.

Corollary 4.22. Let I ⊂ P be an ideal and �1 and �2 two term orderings on P. Let

G1 be a Gröbner basis of I with respect to �1. Let G2 be the Gröbner basis of G1 with

respect to �2. Then we can use the following variant algorithm:

1. Consider critical pairs by increasing degree.

2. If the degree decreases during a reduction step, then the reduced element can be

deleted and the next pair can be computed.

Proof. See for example Traverso [1996].

This corollary is very useful when the computation of a Gröbner basis with respect

to �1 is easier than the computation with respect to �2 .

The next theorem from Traverso [1996] gives one of the most important results of

this section.

Theorem 4.23. Let I and J be two homogeneous ideals in P such that J ⊂ I. By

Theorem 2.32 there exist polynomials p(t) =
∑v

i=0 pit
i and q(t) =

∑w
j=0 qjt

j such that

the corresponding Hilbert Series are

HS(P/I, t) =
p(t)

(1− t)n
and HS(P/J, t) =

q(t)

(1− t)n
.

Then the following conditions are equivalent:

1. HF(P/I, t) = HF(P/J, t) for all 1 ≤ t ≤ d− 1 and HF(P/I, d) < HF(P/J, d).

2. p(i) = q(i) for 1 ≤ i ≤ d− 1 and p(d) < q(d).

Proof. See for example Traverso [1996].

An important observation is that we can compute the corresponding Hilbert Series

of I without computing a Gröbner basis of I beforehand, that if, V (I) is a complete

intersection. The following lemma shows how.

Lemma 4.24. If V (I) is a complete intersection for I = 〈f1, . . . , fr〉 where fi is ho-

mogeneous of degree deg(fi) = di for all 1 ≤ i ≤ r, then the Hilbert Series is given by

HS(P/I, t) =

∏r
i=1(1− tdi)
(1− t)n

(4.6)

61

4. NEW STRATEGIES FOR COMPUTING GRÖBNER BASES

Proof. See for example Section 5 of Kreuzer and Robbiano [2005].

Before we introduce the last criterion of this section, it might be useful to describe

the Hilbert-driven Gröbner basis algorithm proposed by Traverso. The description bel-

low is based on the implementation suggested by Gebauer-Möller, which is considered

to be the most efficient.

Hilbert-driven Gröbner basis algorithm

Let �1 be a term ordering on P and let I be the ideal for which we want to compute

a Gröbner basis. Assume that we know the Hilbert function HF(P/I, t). Keep in mind

that it can be a consequence of one of the following facts:

1. A previous Gröbner basis computation for I with respect to some other term

ordering.

2. Or a special shape of the ideal I: a complete intersection where the formula is

known (see Equation 4.6).

Let HF(P/I, t) be the known Hilbert function of I. If I is homogeneous and �1 is a

term ordering on P, then we can compute the Gröbner basis G of I by increasing degree

(see Section 3.6.3). Let us assume that we have already an intermediate Gröbner basis

G for some degree d ≥ 0. Then, we compute the Hilbert function HF(P/ LT�(G), t). It

holds that

HF(P/ LT�(G), t) = HF(P/I, t) for all t ≤ d.

Analogously, we have the following correspondence

HF(P/ LT�(G), t) = HF(P/I, t) +mt for all t,mt ≥ 0.

In the Algorithm 5, we initially set the variable mt to infinity because we do not have

any information about G. However, the value shall be readjusted once we compute the

first reduction step and the Hilbert function HF(P/ LT�(G), t) (Line 32).

62

4.4 The Hilbert-Driven Strategy

Input:

An ideal I = 〈f1, . . . , fr〉 ⊂ P, of homogeneous elements, and � a term ordering on P

HF(P/I, t) the Hilbert function of I

Output: G a Gröbner basis of I with respect to ≺
Algorithm:

1 mt :=∞ ;

2 G← f1;

3 B ← ∅;
4 d′ ← 0;

5 for i = 2, . . . , r do

6 B ← UpdateCriticalPairs(B,G, fi);

7 G← G ∩ {fi};
8 end

9 l←− r;
10 while B is not empty do

11 d← min{d | d = deg(Sfg), (f, g) ∈ B};
12 B′ ← {(f, g) ∈ B | deg(Sfg) = d′};
13 B ← B\B′;
14 while B’ is not empty and mt > 0 do

15 (f, g)← First element of B’;

16 B′ ← B′\{(f, g)};
17 h← Sfg ;

18 h← NR(h,G);

19 if h 6= 0 then

20 fl+1 ← h;

21 B ← UpdateCriticalPairs(B,G, fl+1);

22 G← G ∪ {fl+1} ;

23 l← l + 1;

24 mt ← mt − 1 ;

25 end

26 end

27 if HF(P/ LT�(G), t) = HF(P/I, t) for all t then

28 return G;

29 end

30 else

31 d′ ← min{t ∈ N | HF(P/ LT�(G), t) > HF(P/I, t)} ;

32 mt ← HF(P/ LT�(G), d′)− HF(P/I, d′) ;

33 B′′ ← {(f, g) ∈ B | deg(Sfg)) < d′} ;

34 B ← B\B′′ ;

35 end

36 end

37 return G;

Algorithm 5: Hilbert-driven variant of Gebauer-Möller

The idea of Algorithm 5 is the following: if mt = 0 for all t, then G is a Gröbner

basis of I, see lines 27-28. Otherwise we know from Theorem 4.23 that there exists

some d′ > d such that mt = 0 for all t < d′ and md′ 6= 0. This means that in order to

become a d’-Gröbner basis of I,G needs md′ more elements in degree d′. Thus we know

63

4. NEW STRATEGIES FOR COMPUTING GRÖBNER BASES

that exactly md′ critical pairs are useful. If we have added md′ elements of degree d′

to G, we can stop treating any more critical pairs of degree d′. We check the value of

mt before a new critical pair is treated for reduction (Line 14) with that goal. We only

have to process critical pairs as long as mt > 0, otherwise we are free to remove all

remaining critical pairs of degree d′. After adding those md′ elements to G we recompute

HF(P/ LT�(G), t) and we proceed with the next higher degree.

Unfortunately, this idea cannot be directly applied to inhomogeneous ideals. How-

ever, if one has already computed a Gröbner basis G2 of I with respect to another term

ordering �2 on P, then the ideas of Corollary 4.22 can be applied. Another suggestion

is to homogenize the generators of I, compute the Gröbner basis Gh of the homogenized

input as mentioned before, and dehomogenize Gh in the end to receive the requested

Gröbner basis (Gh)deh. Other minor ideas concerning the use of the Hilbert Series, can

be found in Chapter 5 of [Traverso, 1996], and in [Kreuzer and Robbiano, 2000].

Hilbert Series and the Signature-based Strategy

Now, we shall see how to incorporate this strategy into signature-based algorithms.

Our implementation is based on the footprints of the algorithm of Gao et al. [2010b].

Thereby, the output of the algorithm not only returns a Gröbner basis of the ideal I,

but also a Gröbner basis of the leading terms of the syzygy module of the same ideal.

The idea of Algorithm 6 is the following. Let αk and βk be two variables used to keep

track of the number of generators of degree k in the Gröbner basis and in the leading

terms of the syzygy module, which shall then used to avoid unnecessary computations

of the Hilbert Series. Then, if the equality HF(P/ LT�(G), k) = HF(k)−HF(P/H, k−d)

holds for all k, we have that G is a Gröbner basis of I and H is a Gröbner basis for the

leading terms of the syzygy module. See lines 28-29. Otherwise, we know that there

exists a minimal degree d for each we need to compute more generators. That degree

d also gives us a bound for the minimal degree of the S-polynomials that we need to

compute.

Next we give the pseudo-code of the algorithm that puts together all the ideas

discussed. The reader should keep in mind that this strategy highly depends on the

order in which the J-pairs are processed. If the first J-pairs are the useful ones, the

optimization is best. If those are at the end of the list of pairs to be reduced, then we

still have to compute the zero reductions of all useless pairs before them.

64

4.4 The Hilbert-Driven Strategy

Input:

An ideal I = 〈g1, . . . , gm〉 ∈ P = K[x1, . . . , xn],

A term ordering for P, and a term ordering on Pm

HF(w) := HF(P/I, w) the Hilbert function of I (Optional)

Output:

A Gröbner basis V for I and,

A Gröbner basis H for LT�(H), the leading terms of the syzygy module

Variables:

U a list of terms Ti, representing sig. of (ui, vi) ∈M,

V a list of polynomials vi for (ui, vi) ∈M,

H a list of LT�(u) were u ∈ Pm is a syzygy found so far,

JP a list of pairs (t, i) s.t. t(ui, vi) is the J-pair of (ui, vi) and (uj , vj) for some j 6= i.

Algorithm:

1 U = {e1, . . . , em} and V = {g1, . . . , gm};
2 Add the leading terms of the principle syzygies gjei − giej for 1 ≤ i < j ≤ m to H ;

3 Compute all the J-pairs of (e1, g1), . . . , (em, gm);

4 Add to the list JP all J-pairs whose signatures are distinct and not reducible by H ;

5 Initialize d with the minimal degree in JP ;

6 while JP is not empty do

7 Take a minimal pair (t, i) from JP (with respect to signature) ;

8 Delete the pair (t, i) from the list JP ;

9 while t(Ti, vi) is regular top-reducible by the pairs in (U, V) do

10 Perform regular top-reductions if the degree is ≥ d, say to get (T, v)

of degree k. Else Goto 6 ;

11 end

12 if v = 0 then

13 Append T to H ;

14 Delete every J-pair (t, j) in JP whose signature tTj is divisible by T ;

15 βk ← βk + 1 ;

16 end

17 if v 6= 0 and (T, v) is not super top-reducible by (U, V) then

18 Append T to U and v to V ;

19 Form all J-pairs for (T, v) and (Tj , vj), 1 ≤ j ≤ |U | − 1, and ;

20 Consider only J-pairs whose signatures are not reducible by H, and ;

21 Add to JP J-pairs with minimal LT�(v) for each distinct signature T ;

22 Add LTs of the principle syzygies, vTj − vjT for 1 ≤ j ≤ |U | − 1, to H ;

23 Update βk ;

24 αk ← αk + 1 ;

25 end

26 if HF(P/ LT�(V), w) = HF(w)− HF(P/H,w − d) for all w then

27 return V and H;

28 end

29 d← min{w ∈ N | HF(P/ LT�(V), w) 6= HF(w)− HF(P/H,w − d)} ;

30 end

31 return V and H;

Algorithm 6: Signature-based algorithm using Hilbert Series

65

4. NEW STRATEGIES FOR COMPUTING GRÖBNER BASES

4.5 Modular and Parallelization Strategies

Technology is constantly changing at a fast pace. With the amount of modern multi-

core and multiprocessor computers available these days, the question of parallelization

of signature-based algorithms comes up quite naturally. There are two different strate-

gies to optimize an algorithm at instruction level: modular and parallelization based

strategies.

Introduction to Modular Algorithms

Modular algorithms have the following footprint. First, we have to find a ”lucky prime”

with high probability, that is, a prime number that does not lead to a great lost of

algebraic information; secondly, we compute the object modulo a prime number and

we ”lift” the coefficients to the integers or rationals; and finally, we check the correctness

of result.

Hence, we start by recalling the definition of ”lucky” prime. Let P = Q[x1, . . . , xn]

be the polynomial ring defined over the rationals, and � a fixed term ordering in P.

Definition 4.25. Let G a Gröbner basis of I = 〈f1, . . . , fr〉, with respect to some term

ordering � in P. Let p ∈ N be prime number that does not divide the denominator of

any coefficient of fi for 1 ≤ i ≤ r.

1. The ideal I modulo p, corresponds to Ip = 〈f1 +pZ, . . . , fr+pZ〉 ⊂ Zp[x1, . . . , xn].

2. The set Gp ⊂ Zp[x1, . . . , xn] denotes the Gröbner basis of Ip.

3. p is said lucky for I if and only if LM�(Gp) = LM�(G).

4. p is Hilbert-lucky for I if and only if HF(I) = HF(Ip).

Lemma 4.26. Let p be a prime number, and I an ideal in P. Then for any degree d,

it holds that

HF(I, d) ≤ HF(Ip, d)

Proof. See, the proof of Theorem 5.3 in [Arnold, 2003].

Next, we define the m-Farey rational map, which can be used to recover the rational

coefficients of G from the Zpi coefficients of Gpi [Kornerup and Gregory, 1983].

Definition 4.27. Let m > 0 be an integer and p ∈ N a prime number. The m-Farey

rational map φm is defined by

φm : Fm −→ Zp
a
b 7→ (a+mZ)(b+mZ)−1

66

4.5 Modular and Parallelization Strategies

where Fm is the set defined by

Fm :=
{a
b
| gcd(a, b) = 1, 0 ≤ a ≤ m, 0 < |b| ≤ m

}
.

Additionally, under certain conditions, we have that the m-Farey rational map is

bijective.

Proposition 4.28. Let m be an integer greater than zero, and p ∈ N a prime number.

The m-Farey rational map φm : Fm −→ Zp is bijective if and only if m is the largest

integer satisfying m ≤
√

p−1
2 .

Proof. For a proof, see for example, Kornerup and Gregory [1983].

Bellow, we describe the basic structure of the modular algorithm to compute a

Gröbner basis.

Input: An ideal I ⊂ P

Output: A Gröbner basis G for I = 〈f1, . . . , fr〉
Algorithm:

1 G← ∅;
2 B ← {p prime numbers | p chosen heuristically};
3 while true do

4 while B 6= ∅ do
5 Choose p from B;

6 B ← B\{p};
7 Gp ← GrobnerBasis(Ip);

8 G← G ∪ {Gp};
9 end

10 RemoveNotLucky(G);

11 G← Lift(G);

12 if Test(G, I, Q) then

13 return G;

14 end

15 B ← B ∪ { p prime numbers | p /∈ B and p chosen heuristically };
16 end

17 return G;

Algorithm 7: Modular Gröbner basis algorithm (ModGB)

The Algorithm 7 can be translated into the following textual instructions:

1. First, we define a set of prime numbers B, such that, ∀p∈B, p does not divide the

denominator of any coefficient of the elements fi. See, line 2.

2. Then, we compute a Gröbner basis for every Ip in Zp[x1, . . . , xn] such that p ∈ B,
and we store it in G. See, lines 5-8.

67

4. NEW STRATEGIES FOR COMPUTING GRÖBNER BASES

3. Next, we have to identify those Gp whose p’s are clearly not lucky for I. Unfortu-

nately, our goal is to compute G. Hence, G is not known beforehand, and therefore

we cannot use the Definition 4.25. Instead, we need a criteria to identify lucky

primes with high probability, out of G. One solution is to build sets Sp using the

algorithm described by Arnold [2003]. First, we take an element p out of B and

we define the set Sp:

Sp := {q ∈ B | LM�(Gp) = LM�(Gq)}.

Then, we choose the first element p′ ∈ B that is not in the set Sp, and we build

the set Sp′ analogously to Sp. We repeat this process until all elements of B are

added to exactly one set Sp. Then we keep in G only those Gröbner bases Gp,

whose index prime is in the set Sp0 ∈ S, where S is the set that contains all Sp,

and

#(Sp0) ≥ #(Sp) for all Sp ∈ S.

Once we remove all those Gp whose p are not lucky for I, we get the Gröbner bases

corresponding to lucky primes for I with a high probability. This step corresponds

to line 10, RemoveNotLucky.

4. Let us assume that, after Step 4, we obtain G = {Gp1 , . . . ,Gps}. The next step,

is to lift the results. Let W be the polynomial ring Zr[x1, . . . , xn] over Z, where

r =
∏s
i=1 pi. Once we use the Chinese Remainder Theorem, we get a Gröbner

basis Gr ⊂W .

Zp1 [x1, . . . , xn] × . . . × Zps [x1, . . . , xn] −→ Zn[x1, . . . , xn]

Gp1 × . . . × Gps 7→ Gr

Lastly, we use the Farey rational map φk to get back to P.

5. Now, we must check that G is really a Gröbner basis for I with respect to �.

Otherwise, we cannot ensure that we have enough modular Gröbner bases Gp.

Nevertheless, there exists an upper bound for the number of primes that has to

be considered. If G is a Gröbner basis for I then the number of primes p ∈ B is

enough if ∑
p∈B

p ≥ max{2 · |c|2 | c any coefficient of an element g ∈ G}

Unfortunately, we do not know G beforehand. Therefore, we have to test if the set

G, which is constructed in Step 4, is the requested Gröbner basis. Consequently,

G = {g1, . . . , gt} has to pass three different tests. See function Test, Line 12.

68

4.5 Modular and Parallelization Strategies

First, we choose a prime number q /∈ B that does not divide the numerator or

the denominator of any coefficient of the generating polynomials fi for I. We

consider the first test passed if {g1 + qZ, . . . , gt + qZ} is a Gröbner basis for Iq.

However, this is not a sufficient condition for checking if G is a Gröbner basis

for I. If G fails the test, then we do not have enough modular Gröbner basis

computed. Hence, we have to compute more; as a second test, we have to check

if I ⊂ 〈g1, . . . , gt〉; lastly, we check if G is a Gröbner basis for 〈g1, . . . , gt〉. Sadly,

this test that must be computed in P. Therefore this test can be very expensive

if we have not considered enough modular Gröbner basis Gp.

If G passes all the tests, then G is the Gröbner basis for I with respect to �, and

the algorithm terminates. Otherwise, we have to compute more modular Gröbner

basis.

Clearly, the Algorithm 7 is not optimized, it focuses only on the general idea. In

a real implementation one can reuse the already computed Gröbner basis Gp, and the

Gröbner basis Gr, already lifted by the Chinese Remainder Theorem. Thus, if the test

fails, we only have to compute those new Gq.

Having understood this algorithm, the idea of combining it with signature-based

algorithms, comes quite easy. The ModGB algorithm does not impose any restric-

tions on the implementation of GrobnerBasis. Hence, it can be implemented using the

signature-based strategy. Next, we shall see a further optimization to ModGB.

Introduction to Parallel Algorithms

A parallel algorithm, as opposed to the traditional sequential one, can execute several

operations at the same time. However, the parallelization is only possible if the tasks

being parallelized do not have computational dependencies between them. Some of

the instructions in ModGB that can be parallelized are the computation of a modular

Gröbner basis, and the tests that are required during the computation:

1. Test whether Gq := {g + qZ | g ∈ G} is a Gröbner basis for Iq, for some prime

q ∈ B. For this, we have to show that fi + qZ ∈ 〈Gq〉 and Gq ⊆ GrobnerBasis(Ip),

2. Test if I ⊆ 〈G〉. That is, I ⊆ 〈G〉 ⇔ fi ∈ 〈G〉 for all fi generating I,

3. Test if G is a Gröbner basis for 〈G〉. Check if all S-polynomials not detected by

the Buchberger criteria reduce to zero with respect to G.

Clearly, this parallelization pattern is based on the fact that all parallelized compu-

tations complete in a similar timespan. The very same holds for the inclusion checks

69

4. NEW STRATEGIES FOR COMPUTING GRÖBNER BASES

for the generators of I and the S-polynomials. Although, the modular Gröbner basis

computations of the Gp can be parallelized easily using one process per computation,

one needs to use multiple threads doing the parallelized tests. Otherwise the over-

head of sending and receiving data from one process to the other takes longer than the

complete reduction itself. Next, we extend the idea behind the ModGB algorithm.

The Gröbner trace algorithm

In 1988, Traverso presented the so-called Gröbner trace algorithm [Traverso, 1989]. On

the one hand, many see this algorithm as the origin of the already presented ModGB

because the idea of lucky prime numbers and modular attempts are noted first. On the

other hand, the Gröbner trace algorithm is a more aggressive implementation of those

ideas. Whereas ModGB uses only the idea of finding lucky primes p modulo whose

the Gröbner basis computations are done independently, the Gröbner trace algorithm

enforces upon all modular computations the same trace.

Definition 4.29. Let I = 〈f1, . . . , fr〉 be an ideal and � a fixed term ordering in P.

The Gröbner trace T (m,S, n, λ) is defined during the computation of a Gröbner basis

G = {g1, . . . , gs} of I when fi = gi for i ∈ {1, . . . , r}, such that

1. m is a finite sequence of the leading terms of G : m = (m1, . . . ,ms),

2. S is a finite sequence of all generated critical pairs: S = (Sr+1, . . . , Ss),

3. n is a finite sequence of finite sequences of integers nj,k : n = (nr+1, . . . , ns) such

that nj = (nj,1, . . . , nj,kj) where nj,k < j for all j ∈ {r + 1, . . . , s}. Each nj,k

represents the index of the reducer in G for the k-th reduction of the the j-th

element.

4. λ is a finite sequence of finite sequences of terms λj,k : λ = (λr+1, . . . , λs) such

that λj = (λj,1, . . . , λj,kj) for all j ∈ {r + 1, . . . , s}. Analogously, this also means

that λj,k is the corresponding multiplier for this reduction step.

The main idea of the Gröbner trace algorithm is to store all the essential information

related to the computation of a Gröbner basis G, in the Gröbner trace. This includes the

leading term of each element in G, which is stored in m, and all computed S-polynomial,

which are stored in S. Then reduction steps can be uniquely determined by n and λ.

Assume we have to compute a Gröbner basis G of an ideal I, but we already have

a Gröbner trace T , which could come from another Gröbner basis computation of I.

Then G can be computed through the following algorithm,

70

4.5 Modular and Parallelization Strategies

Input:

An ideal I = {f1, . . . , fr} ⊂ P, and an ordering � on P

A Gröbner trace T = (m,S, n, λ) of the ideal I

Output:

G a set of polynomials including {f1, . . . , fr},
R and E two integer values

Algorithm:

1 G← {f1, . . . , fr} ;

2 R← 0, E ← 0 ;

3 for i = r + 1, . . . , s do

4 h← Si ;

5 for j = 1, . . . , ji do

6 if LT�(f) = λi,j LT�(gni,j) then

7 f ← LC�(gnij)f − LC�(f)λi,jgni,j ;

8 end

9 else if LT�(f) < λi,j LT�(gni,j) then

10 R← 1;

11 end

12 else

13 E ← 1;

14 return (G, R,E);

15 end

16 end

17 if LT�(f) = mi then

18 gi ← f ;

19 G← G ∪ {gi};
20 end

21 else if LT�(f) > mi then

22 E ← 1;

23 end

24 else

25 E ← 2;

26 return (G, R,E);

27 end

28 end

29 return (G, R,E);

Algorithm 8: GBTrace - Gröbner trace algorithm

The important idea to be retained is that we only have to compute reduction steps.

Everything else is already provided by the Gröbner trace. That is,

1. We choose S-polynomials from T (m,S, n, λ), see line 4.

2. We choose, see line 6, the corresponding reducers from T, which are identified by

ni,j and λi,j .

3. Since the whole set of S-polynomials to be investigated is already given by T in

S, this means that we do not compute new critical pairs after line 19.

This algorithm has several advantages when compared to a usual Gröbner basis

71

4. NEW STRATEGIES FOR COMPUTING GRÖBNER BASES

computation: it gives the advantage that we do not have to search for any element,

and we do not have to use any criteria to check the existence of useless critical pairs.

However, it cannot react to changes or unforeseen steps. Thus we have to extend it with

two new boolean variables R and E that shall keep track of any problems happening

during the computations.

1. We set the variable R to 1 if the leading term of f is lower than expected (Line

9). Hence we are not required to interrupt the computations, since it is might

happen that LT�(f) is equal to the leading term of the next reducer pair stored

in T. So even if a redundancy takes place, LT�(gi) = ti can still be fulfilled in

Line 17.

2. We set the variable E to 1 or 2 whenever we get an error or not. This happens

only if

(a) If LT�(f) > λi,j LT�(gni,j), then the computation cannot go on from this

point (Line 12). All following reducers, generated by the lists ni and λi in

the Gröbner trace T, have a leading term smaller than λi,j LT�(gni,j), thus

no further reduction for f takes place. At this point the algorithm returns

the already computed set G and marks the error with E = 1.

(b) If LT�(f) 6= ti (see Line 21), then we are required to terminate the algorithm

with an error, as the following S-polynomials in S ∈ T would be no longer

valid. Here we distinguish between two possible errors: If LT�(f) > ti then

E = 1, otherwise E = 2. The motivation behind such distinction is explained

after we discuss the algorithm TraceModGB.

Traverso presented several approaches on how to use GBTrace in Gröbner basis

computations in [Traverso, 1989]. We will restrict ourselves to the one we are interested

most, the modular Gröbner trace computation. The Algorithm 9 (see next page), which

contains the pseudo-code for a modular Gröbner trace computation, should also be of

clear understanding to the reader, since it is similar to the one already presented,

ModGB. The main differences are:

1. We compute a first modular Gröbner basis modulo the prime number p0 (see

Line 5). The function TGB denotes a Gröbner basis algorithm that stores all

necessary data for the corresponding Gröbner trace T.

2. We proceed with other modular computations (see Line 11). However, we only

have to perform normal Gröbner basis computations. The GBTrace will be used

72

4.5 Modular and Parallelization Strategies

Input:

An ideal I = {f1, . . . , fr} ⊂ P, an ordering � on P

Output:

A Gröbner basis G of I w.r.t �
Algorithm:

1 G← ∅, R← 0, E ← 0, b← 1;

2 B ← {p prime numbers | p chosen heuristically} ;

3 Choose p0 from B.;

4 B ← B\{p0};
5 (Gp0 , T)← TGB(Ip0);

6 G← G ∪ {Gp0};
7 while b = 1 do

8 while B 6= ∅ do
9 Choose p from B;

10 B ← B\{p};
11 (Gp, R,E)← GBTrace(Ip,T);

12 if E = 0 then

13 G← G ∪ {Gp}
14 end

15 else if E = 1 then

16 G← ∅;
17 (Gp, T)← TGB(Ip,NF);

18 end

19 end

20 RemoveNotLucky(G);

21 G← Lift(G);

22 if Test(G, I,B) then

23 return G;

24 end

25 R← {p prime numbers | p /∈ Q and p chosen heuristically};
26 B ← B ∪R;

27 end

Algorithm 9: TraceModGB - Modular Gröbner trace algorithm

to compute the corresponding sets Gp, which will speed up the computations by

large factors.

3. For every error reported from GBTrace, we have to identify how to proceed:

(a) If E = 1 (Line 15), then at some point the leading term of an element

computed for Gp is greater than the corresponding one stored in T. So we

must assume that p is lucky and all beforehand used primes were not lucky.

At this point we delete all previously computed Gröbner basis from G (Line

16) and we compute a new Gröbner trace using the lucky prime number p.

(b) If E = 2 we just discard the computed modular Gröbner basis Gp and we

proceed with the remaining computations. We hope for the previous prime

73

4. NEW STRATEGIES FOR COMPUTING GRÖBNER BASES

numbers to be lucky and p not lucky.

Clearly, we can add Gp to G only if no errors are reported. Then we can go on

with the next prime number.

It is clear that one has to think about how to recover T in Line 20, possibly without

a complete Gröbner basis computation, which leave us with lot of space for new opti-

mizations. Also, the balance between computing and testing shall be investigated in

more detail to receive a better performance. Moreover, Joux and Vitse [2011] showed

the potential of this theory by trying to combine together the ideas of tracing with the

improved reduction process of F4. Like ModGB, this strategy can be combined with

signature-based algorithms.

Parallelization of Signature-based Algorithms

The structure of signature-based algorithms can be parallelized ”easily” if a Gröbner

basis is computed incrementally. Some strategies that can be implemented to accom-

plish such goal are the following.

1. Once a Gröbner basis for 〈f1, . . . , fi〉 is computed one could start several calls of

the next incremental step with different initial input elements, say one computes

a Gröbner basis for 〈f1, . . . , fi, fj〉, the other for 〈f1, . . . , fi, fk〉, and so on. Then,

we choose the one that finishes first. We repeat this step recursively.

2. A more sophisticated approach is to completely divide the computations and

merge them back together step by step. Assume we want to compute a Gröbner

basis for I = 〈f1, . . . , fr〉 ⊂ P.

(a) Then one could compute the ceiling k = d r2e and start the computation of

Gröbner basis for 〈f1, . . . , fk〉 and 〈fk+1, ..., fr〉. Depending on the number

of available processors unities. We repeat this step recursively.

(b) As a result, we get a couple of Gröbner basis G1, . . . ,Gm where m denotes

number of processors available. The next step is to merge them together, i.e.

we can, in parallel compute Gröbner basis for G1,2 = G1 ∪ G2, . . . ,Gm−1,m =

Gm−1 ∪ Gm.

(c) After all the recursive steps, we will eventually get a Gröbner basis G for I.

Although, these two ideas can be combined together, the main problem concerns

their incremental structure. The Gröbner basis Gi tend to have lots of elements, thus

the algorithm has to process lots of merging steps.

74

4.5 Modular and Parallelization Strategies

Another way of parallelizing signature-based computations is to parallelize the code

using different threads in a single process. Hence, the goal is not about the paralleliza-

tion of the whole Gröbner basis computation. Instead, the idea is to parallelize only

some specific parts such as:

1. Critical pair generation.

2. Criteria checks.

3. Reduction process.

4. Parallelization of multiplication and division of polynomials1.

Although our aim is to implement these strategies on signature-based algorithms,

nearly all of these ideas can or are already applied to standard algorithms for computing

a Gröbner basis. Next, we shall see which operations of the former algorithm can be

computed in parallel.

1. Line 4, 20, 21 - The criterion that allow us to remove J-Pairs that are reducible by

the leading term of the syzygy module, can be computed simultaneously for each

J-Pair in JP. Hence, the time complexity is reduced from O(n) to a theoretical

O(1). Additionally, we can filter and sort the J-Pairs that have distinct signatures

in O(n log2(n)) instead of O(n log n).

2. Line 9, 10, 14, 17, 21 - The criterion to verify if the signature is redundant can

also be parallelized, as well as the subsequent reduction process. Although, we

did not test any specific strategy for reducers, their implementation would have

smaller penalizations under this implementation, since the comparison and search

time is minimal. The same idea is used in the internal reduction process. If there

is a reducer, then it can be found in O(1) time.

3. Line 22 - The computation of the principle syzygies can also be parallelized.

Again, the time complexity of the whole operation is reduced from O(n) to a

theoretical O(1) time.

1The reader should be aware that this task can be really complex and may require several imple-

mentation workarounds to be addressed.

75

4. NEW STRATEGIES FOR COMPUTING GRÖBNER BASES

4.6 Technical Implementation Overview

The aim of this section is to explain some of the computational tricks that were used

to increase the efficiency of our algorithms. Briefly, we describe the strategy that is

used to choose J-Pairs, some of the arithmetic simplifications, and an overview of the

data-structure used to store the list of J-Pairs.

J-Pair Selection Strategy

We have seen that in signature-based strategies we only have to retain a J-pair for each

signature. However, if we have multiple J-pairs with the same signature, then we have

to choose the one we want to keep. Some of the possible criteria are:

1. The most recent J-pair encountered with each signature.

2. The J-pair ti(ui, vi) with the smallest or largest index i.

3. The J-pair t(u, v) with the largest scale t.

4. The J-pair with a v that has the most/fewest terms.

In our algorithms, we have decided to implement the strategy that keeps the first

J-pair encountered. Hence, we are not required to update the search graph, which has

to be maintained during the computation of the Gröbner basis. Yet, this topic deserves

more attention and further benchmarks.

Simplification of Arithmetic Operations

Our algorithms implement also the arithmetic optimization suggested by Gao et al.

[2010a]. The idea is to make all pairs (u, v) monic, such that the leading coefficient of

u will be equal to 1. Suppose (u1, v1) and (u2, v2) are any two monic pairs. Then a

top-reduction would be determined only by LT�(ui) and vi where i ∈ {1, 2}. Any other

terms of u1 and u2 are not necessary at all.

Search Graph Implementation

The fastest known algorithm for sorting a list of n elements has complexity time of

O(n log n). Merge sort belongs to the list of such algorithms, but with the advantage

that it is easy to understand and implement. Given a list of n elements, the merge

sort algorithm splits the list into two sublists of roughly the same size, and sorts each

of them separately. The number of recursions, that is, the amount splits required to

76

4.6 Technical Implementation Overview

reach the trivial case list is O(log n). Each level of the recursion requires O(n) work

to split and assemble all lists, which makes it an O(n log n) algorithm.

We generalize this sorting algorithm by splitting a list of length kt into k sublists

of roughly equal size. Each sublist of length t can be sorted ascendingly in O(t log t)

time, so that all k sublists can be sorted in O(kt log t). Assume that we have k sorted

lists. We say that list L1 is smaller than list L2 if L1’s first element is smaller than L2’s

first element. With this O(1) comparison defined for all k lists, we insert them into a

minimum priority queue in O(k) time.

Consider now a typical priority queue, then the dequeue operation would return the

smallest of the k lists in O(log k) time. Our implementation can give us the smallest

element in O(1) time. However, after a dequeue operation, the smallest list may no

longer be the smallest within the queue, so we must update its position for a total

of O(log k) time. Since there are kt total elements within all the lists contained in

the priority queue, it takes kt dequeue operations to sort all kt elements, thus taking

O(kt log k) time. Therefore this version of merge sort runs in O(kt log t + kt log k) =

O(kt log(kt)) time, which is exactly the time that we initially claimed.

77

4. NEW STRATEGIES FOR COMPUTING GRÖBNER BASES

78

Chapter 5

Experimental Results

If you think dogs cannot count,

try putting three dog biscuits in your pocket and

then giving Fido only two of them.

(Phil Pastoret)

In this chapter, we shall benchmark some of the fastest algorithms to compute a

Gröbner basis. In order to assess their performance, we consider a set of examples

that is commonly used to benchmark Gröbner basis algorithms. For more information

about the examples that are used, see the Appendix.

We have implemented both the GVW algorithm and new criteria in CoCoALib

[2013], and observed that both provide reasonable results. In order to ease the identi-

fication of our algorithm against other algorithms, we label it as New Alg. Also, the

reader should keep in mind that this algorithm returns more than just a Gröbner basis

for the input ideal. All tests were run on a Mac OS X with a 2.6 GHZ Intel Core i7

processor and 8GB DDR3 of memory.

Our first benchmark compares the computation times of a Gröbner basis over a field

F32003. See results in Table 5.1. There are two conclusions that can be drawn from

this benchmark. First, the GVW algorithm with our criteria is in general faster than

the original algorithm. Moreover, in some cases the gains can be up to six times faster

than GGV. Finally, we can see that there is no clear winner. However, at comparable

times, we have that our algorithm provides a Gröbner basis for the input ideal, and a

Gröbner basis for the leading terms of the syzygy module of the ideal.

79

5. EXPERIMENTAL RESULTS

System F5 F5E GGV GVW New Alg. CoCoALib

Katsura 9 14.98 14.87 17.63 14.95 15.35 15.12

Katsura 10 153.35 152.39 192.20 152.32 165.32 142.21

Eco 8 2.24 0.38 0.49 0.69 0.35 0.44

Eco 9 77.13 8.19 13.51 8.23 7.21 13.26

F744 19.35 8.79 26.86 10.65 8.69 8.11

Cyclic 7 7.01 7.22 33.85 9.12 7.12 7.78

Cyclic 8 7310.39 4961.58 26242.12 5961 6267.58 4410.39

Table 5.1: Timings in F32003 in seconds

Another way to compare the algorithm’s performance is to use a computer inde-

pendent measure, were we take into consideration the number of J-pairs processed and

the number of J-pairs reducing to zero; therefore not producing any useful data. The

data belonging to this measure can also be used to relate the amount of time required

to compute the Gröbner basis (see Table 5.1) with the number of zero reductions pre-

dicted.

System F5 F5E GGV GVW New Alg.

Katsura 9 886 0 886 0 886 0 886 0 886 0

Katsura 10 1781 0 1781 0 1781 0 1781 0 1781 0

Eco 8 830 322 565 57 2012 57 602 57 532 50

Eco 9 2087 929 1278 120 5794 120 1778 120 1572 116

F744 1324 342 1151 169 2145 169 1351 169 1091 162

Cyclic 7 1018 76 978 36 3072 36 1073 36 978 30

Cyclic 8 7066 244 5770 244 24600 244 7760 244 7592 239

Table 5.2: Number of critical pairs and zero reductions

A benchmark that might be worth checking is the benefit of using parallelization.

Table 5.3 illustrates the performance between the implementation recurring to paral-

lelization and the base implementation.

We can observe performance gains in almost all tests performed. However, we still

believe that better results can be obtained if we spend more time optimizing the imple-

mentation. The slower times with F744 are a clear indication that further investigation

is needed.

80

System Without Parallelization With Parallelization

Katsura 9 15.35 15.22

Katsura 10 165.32 153.11

Eco 8 0.35 0.32

Eco 9 7.21 7.16

F744 8.69 8.92

Ciclic 7 7.12 7.04

Ciclic 8 6267.58 6010.39

Table 5.3: Timings in F32003 for the parallelized algorithm

Figure 5.1 provides visual insights on how the computation time is distributed

within the algorithm. We can see that the polynomial reduction is still one of the most

critical parts of the algorithm (see Top-Reduction). However, is with surprise that we

see that forming and maintaining the list of J-Pairs is also a very expensive process.

It is important to highlight that the procedure that is used to create and update new

pairs is also responsible for keeping only those signatures that are distinct. Also, it

turns out that, with the right heuristics, the computation of the Hilbert Series comes

at a very low price.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Butcher

Camera1s

Caprasse

Cassou

Chandra4

Time in PercentageUpdate of J-Pairs Top-Reduction Sig-Criteria
Syzygies-Reduction Hilbert Function

Figure 5.1: Time allocation within the algorithm

For more benchmarks see Appendix 6.

81

5. EXPERIMENTAL RESULTS

82

Chapter 6

Conclusions and Future Work

I am not only convinced that what I say is false, but

also that what one might say against it is false. Despite

this, one must begin to talk about it. In such a case the

truth lies not in the middle, but rather all around, like a

sack, which, with each new opinion one stuffs into it,

changes its form, and becomes more and more firm.

(Albert Musil, Das Hilflose Europa)

In this thesis, we presented a wide range of strategies to improve the efficiency of the

computation of a Gröbner basis. Despite any benefit that theses approaches might have,

they often have drawbacks, too. For example, one has often to consider restrictions

on the input. Moreover, the efficiency of these methods is highly dependent upon the

behavior of the data during the computations, which cannot be known beforehand.

Thus, these improvements do not provide us with a fail-proof optimization to compute

Gröbner bases. To get a Gröbner basis in an efficient way, one has to implement and

combine most of the presented ideas with well-designed heuristics.

The signature-based algorithms are not an exception. However, we can see that in

most cases they will find more useless critical pairs than Buchberger’s Criteria. Within

the signature-based algorithms, performance is affected by restrictions on the reduction

process and by the overhead that is generated due to how aggressive is the signature-

based criteria chosen. Thus, again the question is not about getting an universal best

algorithm, but even more about how to combine the signature-based world with already

highly efficient improvements of the classic world without harming the performance or

causing wrong results.

We developed a new strategy to signature-based algorithms built on top of previ-

ous literature about Hilbert functions. This strategy was further improved through

83

6. CONCLUSIONS AND FUTURE WORK

parallelization.

There are two easy conclusions that can be drawn from the benchmarks. First, the

our algorithm is in general faster than the original algorithm - GVW, and in some cases

it can be up to six times faster than GGV. Finally, we can see that there is not a clear

winner, but at comparable times our algorithm provides a Gröbner basis for the input

ideal and a Gröbner basis for the leading terms of the syzygy module of the ideal.

84

Appendices

85

A. Extended List of Benchmarks

CoCoALib GVW New Algorithm

Algorithm Generators Timings Generators Timings Generators Timings

vermeer 7 24.514 11 52.985 11 27.968

rose 7 0.264 15 1.942 15 0.661

Katsura5 6 0.073 8 0.447 8 0.179

Cyclic6 17 0.212 25 0.2311 25 0.237

6x7-4-h 525 0.771 529 4.769 529 0.806

6x7-4-hDL 525 0.796 530 0.823 530 1.63

7x8-2-h 588 0.897 590 0.871 590 0.866

boon 12 0.017 15 0.117 15 0.017

aubry2 135 29.712 145 29.993 145 29.791

butcher8 64 0.792 64 0.894 64 0.781

des18 3 104 6.652 114 7.252 114 7.142

geneig 16 0.001 18 0.002 18 0.002

hunecke 588 12.004 798 22.105 798 17.214

kinema 45 0.256 48 2.143 48 2.161

wright 31 0.002 31 0.102 31 0.051

solotarev 10 0.0 12 0.012 12 0.0

rbpl24 55 60.153 56 59.126 56 59.115

noon8 3385 1231.457 4385 1545.613 4385 1415.315

mckay 126 132778.001 146 112370.21 146 102172.127

redeco12 1536 1370.753 1536 1561.821 1536 1491.711

Table A.1. Timings and number of generators using DegRevLex

B. Description of Benchmark Examples

Example

Boon
Description Title: Neurofysiology, posted by Sjirk Boon

References

• The system has been posted to the newsgroup sci.math.num-analysis

by Sjirk Boon.

• P. Van Hentenryck, D. McAllester and D. Kapur: ‘Solving Polynomial

Systems Using a Branch and Prune Approach’ SIAM J. Numerical

Analysis, Vol. 34, No. 2, pp 797-827, 1997.

Butcher Description Title: Butcher’s problem

Continued on next page

87

Table 1 – Continued from previous page

Example

References
• The example has been retrieved from the POSSO test suite, available

by anonymous ftp from the site gauss.dm.unipi.it.

Butcher8
Description

Title: 8-variables version of Butcher’s problem

The system has 16 regular solutions. Four paths converged to highly singular

solutions, which indicates that the system probably has an infinite component

of solution.

References

• W. Boege, R. Gebauer, and H. Kredel: ’Some examples for solving

systems of algebraic equations by calculating Groebner bases’, J. Sym-

bolic Computation, 2:83-98, 1986.

• C. Butcher: ’An application of the Runge-Kutta space’. BIT, 24,

pages 425440, 1984.

Camera1s
Description

Title: Camera displacement between two positions, scaled first frame.

This system models the displacement of a camera between two positions in

a static environment, coordinates of matched points in first instance. The

coordinates of the frames have been scaled, i.e., all components have been

divided by 10.

References

• Ioannis Z. Emiris. ‘Sparse Elimination and Application in Kinemat-

ics’. PhD Thesis, Computer Science, University of California at Berke-

ley, 1994.

• Ioannis Z. Emiris. ‘A general Solver Based on Sparse Resultants:

Numerical Issues and Kinematic Applications’, INRIA Rapport de

Recherche no 3110, January 1997, 29 pages. Available via anonymous

ftp to ftp.inria.fr.

Caprasse
Description

Title: The system caprasse of the PoSSo test suite.

There are 54 isolated solutions, 6 with zero components which are not counted

by the mixed volume.

References • The PoSSo test suite

Continued on next page

88

Table 1 – Continued from previous page

Example

Cassou
Description

Title: The system of Pierrette Cassou-Noguès

The system is deficient with respect to face normal (0, 0, 0,−1), with cor-

responding double component of solutions at infinity (b, c, c, e). The corre-

sponding face system is

−8 ∗ b2 ∗ c2 ∗ e− 28 ∗ b2 ∗ c ∗ d ∗ e+ 36 ∗ b2 ∗ d2 ∗ e = 0

16 ∗ c2 ∗ e2 − 32 ∗ c ∗ d ∗ e2 + 16 ∗ d2 ∗ e2 = 0

40 ∗ c2 ∗ e2 − 80 ∗ c ∗ d ∗ e2 + 40 ∗ d2 ∗ e2 = 0

22 ∗ c ∗ e− 22 ∗ d ∗ e = 0

References

• T.Y. Li, Tianjun Wang, Xiaoshen Wang. ’Random Product Homo-

topy with Minimal BKK Bound’, in: ’The Mathematics of Numerical

Analysis’, Edited by Renegar, J. and Shub, M. and Smale, S., Lectures

in Applied Mathematics vol 32, 1996. Proceedings of the AMS-SIAM

Summer Seminar in Applied Mathematics, Park City, Utah, July 17-

August 11, 1995, Park City, Utah.

Chandra4
Description Title: The Chandrasekhar H-Equation for n=4 and c = 0.51234

References

• Laureano Gonzalez-Vega: ’Some examples on problem solving by us-

ing the symbolic viewpoint when dealing with polynomial systems of

equations’. in: ’Computer Algebra in Science and Engineering’, Edi-

tors: J. Fleischer, J. Grabmeier, F.W. Hehl and W. Kuechlin. Pages

102-116. World Scientific Publishing, 1995.

• S. Chandrasekhar: ’Radiative Transfer’, Dover, NY, 1960.

• C.T. Kelley. ’Solution of the Chandrasekhar H-equation by Newton’s

method’. J. Math. Phys., 21 (1980), pp. 1625-1628.

Cyclic5-Cyclic9 Description Title: Cyclic n-roots problem

Continued on next page

89

Table 1 – Continued from previous page

Example

References

• Góran Bjórck and Ralf Fróberg: ‘A faster way to count the solutions

of inhomogeneous systems of algebraic equations, with applications to

cyclic n-roots’, in J. Symbolic Computation (1991) 12, pp 329336.

• Backelin, J. and Froeberg, R.: ’How we proved that there are exactly

924 cyclic 7-roots’ , Proceedings of ISSAC-91, pp 103-111, ACM, New

York, 1991.

• G. Bjórck and R. Fróberg, R.: ’Methods to “divide out” certain so-

lutions from systems of algebraic equations, applied to find all cyclic

8-roots ’, In: Analysis, Algebra and Computers in Math. research, M.

Gyllenberg and L.E.Persson eds., Lect. Notes in Applied Math. vol.

564, pp 57-70, Dekker, 1994.

• J. Canny and P. Pedersen. An algorithm for the Newton resultant.

Technical Report 1394, Comp. Science Dept., Cornell University,

1993.

• I.Z. Emiris and J.F. Canny. Efficient incremental algorithms for the

sparse resultant and the mixed volume. J. Symbolic Computation,

20(2):117-149, August 1995.

• L. Pottier. Bounds for degree of the n-cyclic system. INRIA Sophia-

Antipolis, Manuscript, 1995.

Des18-3
Description

Title: A ’dessin d’enfant’, called des18-3

There are six real and forty complex conjugated solutions.

References

• Raphael Nauheim. ’Systems of Algebraic Equations with Bad Reduc-

tion’, Universitaet Heidelberg, Interdisziplinaeres Zentrum fuer wis-

senschaftliches Rechnen, Preprint 95-46, Dezember 1995.

• Birch, B: ’Noncongruence Subgroups, Covers and Drawings’, In ’The

Grothendieck Theory of Dessins d’Enfants’, editor: Schneps, L., Lon-

don Mathematical Society Lecture Series, Cambridge University Press,

pages 25-46, 1994.

Eco8-Eco10
Description

Title: n-dimensional economics problem

Transform u = 1/x− n and the total degree equals the number of solutions.

References

• Alexander Morgan. ‘Solving polynomial systems using continuation

for engineering and scientific problems’, Prentice-Hall, Englewood

Cliffs, New Jersey, 1987, p. 148.

Geneig Description Title: Generalized eigenvalue problem

Continued on next page

90

Table 1 – Continued from previous page

Example

References

• M. Chu, T.-Y. Li and T. Sauer, ’Homotopy method for general

lambda-matrix problems’, SIAM J. Matrix Anal. Appl., vol. 9, No.

4, pp 528-536.

Katsura6-Katsura10 Description Title: Katsura n, a problem of magnetism in physics.

Kinema Description Title: Robot kinematics problem

References

• Bellido, A.M.:’ Construction de fonctions d’iteration pour le calcul

simultane des solutions d’equations et de systemes d’equations alge-

briques’, These 1992, Universite Paul Sabatier, Toulouse.

• Anne-Mercedes Bellido: ’Construction of iteration functions for the

simultaneous computation of the solutions of equations and algebraic

systems’. Numerical Algorithms Vo. 6.

Noon8
Description

Title: A neural network modeled by an adaptive Lotka-Volterra system,

n = 3. The coefficients have been chosen so that full permutation symmetry

was obtained. The parameter c = 1.

References

• Karin Gatermann. ’Symbolic solution of polynomial equation systems

with symmetry’, Proceedings of ISSAC-90, pp 112-119, ACM New

York, 1990.

• V. W. Noonburg. ’A neural network modeled by an adaptive Lotka-

Volterra system’, SIAM J. Appl. Math., Vol. 49, No. 6, 1779-1792,

1989.

• Jan Verschelde and Ann Haegemans. ‘The GBQ-Algorithm for con-

structing start systems of homotopies for polynomial systems, SIAM

J. Numer. Anal., Vol. 30, No. 2, pp 583-594, 1993.

Rbpl24 Description Title: parallel robot with 24 real solutions

References From the FRISCO test suite.

Redeco7-Redeco12 Description
Title: n-dimensional economics problem. This is the reduced economics

problem (u− n = 1/x− n).

References

• Alexander Morgan: ‘Solving polynomial systems using continuation

for engineering and scientific problems’, Prentice-Hall, Englewood

Cliffs, New Jersey, 1987, p. 148.

Continued on next page

91

Table 1 – Continued from previous page

Example

Solotarev Description Title: The system of Solotarev from the PoSSo test suite

References See the PoSSo test suite

Wright Description Title: System of A.H. Wright

References

• M. Kojima and S. Mizuno. ‘Computation of all solutions to a system

of polynomial equations’, Math. Programming, vol 25, pp 131-157,

1983.

• A.H. Wright. ‘Finding all solutions to a system of polynomial equa-

tions’, Math. Comp., vol 44, pp 125-133, 1985.

• W. Zulehner. ‘A simple homotopy method for determining all isolated

solutions to polynomial systems’, Math. Comp., vol 50, no 161, pp

167-177.

92

References

Abbott, J. and Bigatti, A. M. (2013). Cocoalib: a c++ library for doing computations

in commutative algebra. 4, 79

Ackermann, P. and Kreuzer, M. (2006). Gröbner basis cryptosystems. Applicable

Algebra in Engineering, Communication and Computing, 17(3):173–194. 29

Adams, W. W. and Loustaunau, P. (1994). An introduction to Gröbner bases, volume 3.

Amer Mathematical Society. 33

Alasdair, B. S. and de Pennington, A. (1993). Constraint definition system: a computer-

algebra based approach to solving geometric-constraint problems. Computer-Aided

Design, 25(12):741–750. 2

Allgower, E. L. and Georg, K. (1993). Continuation and path following. Acta numerica,

2(1):1–64. 2

Amrhein, B., Bündgen, R., and Küchlin, W. (1998). Parallel completion techniques.,

pages 1–34. Basel: Birkhäuser Verlag. 44

Amrhein, B., Gloor, O., and Küchlin, W. (1997). On the walk. Theoretical Computer

Science, 187(1–2):179 – 202. 40

Anantha, R., Kramer, G. A., and Crawford, R. H. (1996). Assembly modelling by

geometric constraint satisfaction. Computer-Aided Design, 28(9):707 – 722. 1, 29

Arnold, E. (2003). Modular algorithms for computing gröbner bases. J. Symb. Comput.,

35(4):403–419. 44, 66, 68

Arri, A. and Perry, J. (2011). The f5 criterion revised. Journal of Symbolic Computa-

tion, 46(9):1017 – 1029. 45

Atiyah, M. F. and MacDonald, I. G. (1969). Introduction to Commutative Algebra.

Addison-Wesley, London. 5

93

REFERENCES

Bayer, D. and Stillman, M. (1988). On the complexity of computing syzygies. Journal

of Symbolic Computation, pages 135–147. 39

Becker, E., Mora, T., Marinari, M. G., and Traverso, C. (1994). The shape of the shape

lemma. In Proceedings of the international symposium on Symbolic and algebraic

computation, pages 129–133. ACM. 31

Berenstein, C. A. and Yger, A. (1990). Bounds for the degrees in the division problem.

Mich. Math. J., 37(1):25–43. 38

Bigatti, A., Caboara, M., and Robbiano, L. (2011). Computing inhomogeneous gröbner

bases. Journal of Symbolic Computation, 46(5):498 – 510. 40, 42

Bigatti, A. M. (1997). Computation of Hilbert-Poincaré series. Journal of Pure and

Applied Algebra, 119(3):237–253. 60

Borosh, I. and Fraenkel, A. S. (1966). Exact solutions of linear equations with rational

coefficients by congruence techniques. Mathematics of Computation, 20(93):pp. 107–

112. 43

Bradford, R. (1990). A parallelization of the buchberger algorithm. In Proceedings

of the international symposium on Symbolic and algebraic computation, ISSAC ’90,

pages 296–, New York, NY, USA. ACM. 44

Brickenstein, M. (2004). Neue varianten zur berechnung von gröbner basens. In Diploma

thesis. University of Kaiserslauter. 43

Brickenstein, M. (2010). Grob̈ner bases with slim polynomials. In Revista Matematica

Complutense, pages 453–466. Springer. 43

Brownawell, W. D. (1987). Bounds for the degrees in the nullstellensatz. Annals of

Mathematics, 126(3):pp. 577–591. 38

Buchberger, B. (1965). An Algorithm for Finding the Bases Elements of the Residue

Class Ring Modulo a Zero Dimensional Polynomial Ideal (German). Univ. of Inns-

bruck (Austria). 3, 22, 26

Buchberger, B. (1979). A criterion for detecting unnecessary reductions in the con-

struction of gröbner basis. In In Proceedings of EUROSAM’79, pages 3–21. Springer.

40, 41

94

REFERENCES

Buchberger, B. (1985). Gröbner-Bases: An Algorithmic Method in Polynomial Ideal

Theory. Reidel Publishing Company, Dodrecht - Boston - Lancaster. 2, 40, 42

Buchmann, J., Pyshkin, A., and Weinmann, R.-P. (2006). Block ciphers sensitive

to gröbner basis attacks. In Topics in Cryptology–CT-RSA 2006, pages 313–331.

Springer. 29

Caboara, M., DeDominicis, G., and Robbiano, L. (1996). Multigraded hilbert functions

and buchberger algorithm. In Lakshman, Y. N., editor, ISSAC 96, pages 72–78, New

York. ACM Press. 40

Caboara, M., Kreuzer, M., and Robbiano, L. (2002). Minimal set of critical pairs. In

Cohen, B., Gao, X., and Takayama, N., editors, International Congress of Mathe-

matical Software 2002 (ICMS 2002), pages 390–404. World Scientific. 40

Caboara, M., Kreuzer, M., and Robbiano, L. (2004). Efficiently computing minimal

sets of critical pairs. In Special Issue of Journal of Symbolic Computation for ICMS

2002 (The First International Congress of Mathematical Software), volume 38, pages

1169–1190. 40

Caboara, M. and Perry, J. (2012). Reducing the size and number of linear programs in

a dynamic gröbner basis algorithm. arXiv. 41

Cambon, S., Alami, R., and Gravot, F. (2009). A hybrid approach to intricate motion,

manipulation and task planning. The International Journal of Robotics Research,

28(1):104–126. 1, 29

Caniglia, L., Galligo, A., and Heintz, J. (1989). Some new effectivity bounds in compu-

tational geometry. In In Proceedings of the 6th International Conference, on Applied

Algebra, Algebraic Algorithms and Error Correcting Codes, pages 131–151. 39

Caniglia, L., Galligo, A., and Heintz, J. (1993). Equations for the projective closure

and effective nullstellensatz. In Discrete Appl. Math, pages 11–23. 39

Chakrabarti, S. and Yelick, K. (1993). Implementing an irregular application on a

distributed memory multiprocessor. In In Proceedings of the Fourth ACM/SIGPLAN

Symposium on Principles and Practices of Parallel Programming, pages 169–178. 44

Chen, X., Li, P., Lin, L., and Wang, D. (2006). Proving geometric theorems by

partitioned-parametric gröbner bases. In Proceedings of the 5th international

conference on Automated Deduction in Geometry, ADG’04, pages 34–43, Berlin, Hei-

delberg. Springer-Verlag. 29

95

REFERENCES

Collart, S., Kalkbrener, M., and Mall, D. (1997). Converting bases with the gröbner

walk. Journal of Symbolic Computation, 24:465–469. 40

Collins, G. E. and Encarnación, M. J. (1994). Efficient rational number reconstruction.

Journal of Symbolic Computation, 20:287–297. 44

Courtois, N., Klimov, E., Patarin, J., and Shamir, A. (2000). Efficient algorithms for

solving overdefined systems of multivariate polynomial equations. In In Advances in

Cryptology, Eurocrypt’2000, LNCS 1807, pages 392–407. Springer-Verlag. 42

Cox, D. A., Little, J., and O’Shea, D. (2007). Ideals, Varieties, and Algorithms: An

Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e

(Undergraduate Texts in Mathematics). Springer-Verlag New York, Inc., Secaucus,

NJ, USA. 13, 14, 29, 30

Ding, J., Buchmann, J., Mohamed, M., Moahmed, W., and Weinmann, R. (2008).

Mutantxl. Proceedings of the 1st international conference on Symbolic Computation

and Cryptography (SCC08), pages 16–22. 42

Dubé, T. W. (1990). The structure of polynomial ideals and gröbner bases. SIAM

Journal of Computation, 19:750–773. 26, 36, 39

Ebert, G. L. (1983). Some comments on the modular approach to gröbner-bases.

SIGSAM Bull., 17(2):28–32. 43

Eder, C. (2008). On the criteria of the f5 algorithm. In arXiv:0804.2033v1. 45, 52, 54

Eder, C. (2012). Sweetening the sour taste of inhomogeneous signature-based groebner

basis computations. arXiv preprint arXiv:1203.6186. 45

Eder, C., Gash, J., and Perry, J. (2011). Modifying faugère’s f5 algorithm to ensure

termination. ACM Commun. Comput. Algebra, 45(1/2):70–89. 45

Eder, C. and Perry, J. (2010). F5c: a variant of faugère’s f5 algorithm with reduced

gröbner bases. In Journal of Symbolic Computation, pages 1442–1458. 45, 52, 54

Eder, C. and Perry, J. E. (2011). Signature-based algorithms to compute gróbner

bases. In Proceedings of the 36th international symposium on Symbolic and algebraic

computation, ISSAC ’11, pages 99–106, New York, NY, USA. ACM. 45

Eisenbud, D. (1995). Commutative algebra with a view toward algebraic geometry.

Springer Verlag. 49, 51

96

REFERENCES

Eisenbud, D. (2008). Commutative Algebra: with a View Toward Algebraic Geometry.

Springer Verlag. 5

Essen, A. (1991). Polynomial maps and the jacobian conjecture. Computational Aspects

of Lie Groups and Related Topics, pages 29–44. 32

Faugère, J.-C. (1999). A new efficient algorithm for computing gröbner bases (f4). In

J. Pure Appl. Algebra, pages 61–88. 40, 42

Faugère, J.-C. (2002). A new efficient algorithm for computing gröbner bases without

reduction to zero (f5). In In Proceedings of ISSAC’02, pages 75–82. ACM Press, New

York, USA. 40, 44, 52, 53, 54, 56

Faugère, J. C., Gianni, P., Lazard, D., and Mora, T. (1993). Efficient computation of

zero-dimensional groöbner bases by change of ordering. J. Symb. Comput., 16(4):329–

344. 40

Faugère, J.-C. and Joux, A. (2003). Algebraic cryptanalysis of hidden field equation

(hfe) cryptosystems using gröbner bases. Advances in Cryptology-CRYPTO 2003,

pages 44–60. 29

Faugère, J.-C. and Lachartre, S. (2010). Parallel gaussian elimination for gröbner bases

computations in finite fields. In Proceedings of the 4th International Workshop on

Parallel and Symbolic Computation, pages 89–97. 44

Galkin, V. (2012). Termination of original f5. arXiv preprint arXiv:1203.2402. 44

Gao, S., Guan, Y., and Volny, F. I. (2010a). A new incremental algorithm for computing

gröbner bases. In Proceedings of the 2010 International Symposium on Symbolic and

Algebraic Computation, ISSAC ’10, pages 13–19, New York, NY, USA. ACM. 45,

52, 54, 56, 57, 76

Gao, S., Volny, F. I., and Wang, M. (2010b). A new algorithm for computing gröbner

bases. In Cryptology ePrint Archive: Report. 40, 45, 52, 58, 64

Gao, X.-S. and Chou, S.-C. (1992). Implicitization of rational parametric equations.

Journal of Symbolic Computation, 14(5):459–470. 29

Gebauer, R. and Möller, H. (1986). Buchberger’s algorithm and staggered linear bases.

In In Proceedings of SYMSAC’86, pages 218–221. ACM press, New York, USA. 40

97

REFERENCES

Gebauer, R. and Möller, H. (1988). On an installation of buchberger’s algorithm. In

Journal of Symbolic Computation, pages 275–2861. 41

Gianni, P., Mora, F., Robbiano, L., and Traverso, C. (1994). Hilbert functions and

Buchberger algorithm. 40

Giovini, A., Mora, T., Niesi, G., Robbiano, L., and Traverso, C. (1991). ”one sugar

cube, please” or selection strategies in the buchberger algorithm. In In Proceedings

of ISSAC’91, pages 49–54. ACM Press, New York, USA. 40, 42

Giusti, M. (1985). Note on the complexity of constructing standard bases. European

Conference on Computer Algebral, pages 411–412. 39

Giusti, M. (1987). Complexity of standard bases in projective dimension zeros. EURO

CAL, pages 333–335. 39

Giusti, M. (1990). Complexity of standard bases in projective dimension zero ii.

AAECC, pages 322–3280. 39

Gräbe, H.-G. and Lassner, W. (1994). A parallel gröbner factorizer. In IN HONG,

pages 5–3. 44

Greuel, G. and Pfister, G. (2007). A Singular Introduction to Commutative Algebra.

Springer. 60

Hashemi, A. and Ars, G. (2010). Extended f5 criteria. In Journal of Symbolic compu-

tationt, pages 1330–1340. 44, 52, 54

Hermann, G. (1998). The question of finitely many steps in polynomial ideal theory.

SIGSAM Bull., 32(3):8–30. 37

Hillyard, R. C. and Braid, I. C. (1978). Characterizing non-ideal shapes in terms of

dimensions and tolerances. In Proceedings of the 5th annual conference on Computer

graphics and interactive techniques, SIGGRAPH ’78, pages 234–238, New York, NY,

USA. ACM. 2

Hoffmann, C. M. (1989). Geometric and solid modeling: an introduction. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA. 1, 29

Hoffmann, C. M. (1990). A dimensionality paradigm for surface interrogations. Comput.

Aided Geom. Des., 7(6):517–532. 1, 29

98

REFERENCES

Huang, L. (2010). A new conception for computing gröbner basis and its applications.

CoRR, abs/1012.5425. 45, 58

Idrees, N., Pfister, G., and Steidel, S. (2011). Parallelization of modular algorithms. J.

Symb. Comput., 46(6):672–684. 44

Jia, X., Choi, Y.-K., Mourrain, B., and Wang, W. (2011). An algebraic approach

to continuous collision detection for ellipsoids. Computer Aided Geometric Design,

28(3):164 – 176. 1, 29

Joux, A. and Vitse, V. (2011). A variant of the f4 algorithm. In Proceedings of the 11th

international conference on Topics in cryptology: CT-RSA 2011, CT-RSA’11, pages

356–375, Berlin, Heidelberg. Springer-Verlag. 74

Kondo, K. (1992). Algebraic method for manipulation of dimensional relationships in

geometric models. Computer-Aided Design, 24(3):141–147. 2

Kornerup, P. and Gregory, R. T. (1983). Mapping integers and hensel codes onto farey

fractions. BIT, 23(1):9–20. 44, 66, 67

Kreuzer, M. and Robbiano, L. (2000). Computational Commutative Algebra 1. Springer.

5, 12, 15, 17, 18, 28, 31, 42, 60, 64

Kreuzer, M. and Robbiano, L. (2005). Computational Commutative Algebra 2. Springer,

0 edition. 1, 5, 19, 29, 62

Kreuzer, M. and Robbiano, L. (2009). Computational Commutative Algebra 1. Springer

Verlag, 2 edition. 19, 24, 48

Lazard, D. (1983). Gröbner-bases, gaussian elimination and resolution of systems of

algebraic equations. In Proceedings of the European Computer Algebra Conference

on Computer Algebra, pages 146–156, London, UK. Springer-Verlag. 40, 41

Leykin, A. (2004). On parallel computation of gröbner bases. In ICPP Workshops,

pages 160–164. 44

Light, R. and Gossard, D. (1982). Modification of geometric models through variational

geometry. Computer-Aided Design, 14(4):209 – 214. 2

Lin, V. C., Gossard, D. C., and Light, R. A. (1981). Variational geometry in computer-

aided design. In Proceedings of the 8th annual conference on Computer graphics and

interactive techniques, SIGGRAPH ’81, pages 171–177, New York, NY, USA. ACM.

2

99

REFERENCES

Loera, J., Lee, J., Margulies, S., and Onn, S. (2009). Expressing combinatorial problems

by systems of polynomial equations and hilbert’s nullstellensatz. Combinatorics,

Probability & Computing, 18(4):551. 35

Mayr, E. W. (1989). Membership in polynomial ideals over q is exponential space

complete. In Proceedings of the 6th Annual Symposium on Theoretical Aspects of

Computer Science on STACS 89, pages 400–406, New York, NY, USA. Springer-

Verlag New York, Inc. 38, 39

Mayr, E. W. and Meyer, A. R. (1982). The complexity of the word problem for com-

mutative semigroups and polynomial ideals. 37

Michalik, P., Kim, D. H., and Bruderlin, B. D. (2002). Sketch- and constraint-based

design of b-spline surfaces. In Proceedings of the seventh ACM symposium on Solid

modeling and applications, SMA ’02, pages 297–304, New York, NY, USA. ACM. 1,

29

Mityunin, V. and Pankratiev, E. (2007). Parallel algorithms for gröbner-basis construc-

tion. Journal of Mathematical Sciences, 142(4):2248–2266. 44

Mnuk, M. (2002). On an algebraic description of colorability of planar graphs. In Logic,

Mathematics and Computer Science: Interactions. Proceedings of the Symposium in

Honor of Bruno Buchberger’s 60th Birthday. RISC, Linz, Austria, pages 177–186.

34, 35

Mohamed, M., Cabarcas, D., Ding, J., Buchmann, J., and Bulygin, S. (2010). Mxl

3: an efficient algorithm for computing gröbner bases of zero-dimensional ideals.

Information, Security and Cryptology–ICISC 2009, pages 87–100. 42

Mohamed, M., Mohamed, W., Ding, J., and Buchmann, J. (2008). Mxl2: Solving

polynomial equations over gf (2) using an improved mutant strategy. Post-Quantum

Cryptography, pages 203–215. 42

Möller, H. and Mora, T. (1984). Upper and lower bounds for the degree of gröbner

bases. In EUROSAM 84, pages 172–183. 39

Möller, H., Mora, T., and Traverso, C. (1992). Gröbner bases computation using

syzygies. In In Proceedings of ISSAC’92, pages 320–328. ACM Press, New York,

USA. 40, 41

100

REFERENCES

Montes, A. and Recio, T. (2007). Automatic discovery of geometry theorems using

minimal canonical comprehensive gröbner systems. In Proceedings of the 6th

international conference on Automated deduction in geometry, ADG’06, pages 113–

138, Berlin, Heidelberg. Springer-Verlag. 29

Mulmuley, K. (1986). A fast parallel algorithm to compute the rank of a matrix over an

arbitrary field. In Proceedings of the eighteenth annual ACM symposium on Theory

of computing, STOC ’86, pages 338–339, New York, NY, USA. ACM. 38

Nielsen, J. and Roth, B. (1999). On the kinematic analysis of robotic mechanisms. The

International Journal of Robotics Research, 18(12):1147–1160. 1, 29

Pan, V. Y. and Wang, X. (2004). On rational number reconstruction and approxima-

tion. SIAM J. Comput., 33(2):502–503. 44

Papadimitriou, C. H. (2003). Computational complexity. In Encyclopedia of Computer

Science, pages 260–265. John Wiley and Sons Ltd., Chichester, UK. 36

Recio, T. and Vélez, M. P. (1999). Automatic discovery of theorems in elementary

geometry. Journal of Automated Reasoning, 23(1):63–82. 29

Reeves, A. A. (1998). A parallel implementation of buchberger’s algorithm overZpforp ≤
31991. J. Symb. Comput., 26(2):229–244. 44

Roune, B. H. and Stillman, M. (2012). Practical groebner basis computation. 45

Seidenberg, A. (1974). Constructions in algebra. Transactions of the American Math-

ematical Society, 197:pp. 273–313. 37

Siegl, K. (1994). A Parallel Factorization Tree Gröbner Basis Algorithm. Johannes

Kepler University Linz, Johannes Kepler University, Linz, Austria, 0 edition. 44

Stegers, T. (2005). Faugère’s F5 algorithm revisited. 45, 52, 54

Steidel, S. (2012). Gröbner Bases of Symmetric Ideals. 43

Sun, Y. and Wang, D. (2011a). The f5 algorithm in buchberger’s style. Journal of

Systems Science and Complexity, 24:1218–1231. 45

Sun, Y. and Wang, D. (2011b). A generalized criterion for signature related gröbner

basis algorithms. CoRR, abs/1101.3382. 45

101

REFERENCES

Sun, Y. and Wang, D. (2012). A new proof for the correctness of the f5 algorithm.

Science China Mathematics, pages 1–12. 45

Thomas, R. R. (1995). A geometric buchberger algorithm for integer programming.

Mathematics of Operations Research, 20(4):864–884. 33

Thomas, R. R. (1998). Applications to integer programming. 33

Tran, Q.-N. (2000). A fast algorithm for gröbner basis conversion and its applications.

Journal of Symbolic Computation, 30(4):451 – 467. 40

Tran, Q.-N. (2005). Ideal-specified term orders for elimination and applications in im-

plicitization. Tenth International Conference on Applications of Computer Algebra,

pages 15–24. 41

Tran, Q.-N. (2007). A new class of term orders for elimination. Journal of Symbolic

Computation, pages 533–548. 41

Traverso, C. (1989). Gröbner trace algorithms. In Proceedings of the International

Symposium ISSAC’88 on Symbolic and Algebraic Computation, ISAAC ’88, pages

125–138, London, UK, UK. Springer-Verlag. 43, 70, 72

Traverso, C. (1996). Hilbert functions and the buchberger algorithm. J. Symb. Comput.,

22(4):355–376. 40, 60, 61, 64

Vidal, J.-P. (1990). The computation of Gröbner bases on a shared memory multipro-

cessor. Number v. 90-163 in The computation of Gröbner bases on a shared memory

multiprocessor. School of Computer Science, Carnegie Mellon University. 44

Wang, P. S., Guy, M. J. T., and Davenport, J. H. (1982). P-adic reconstruction of

rational numbers. SIGSAM Bull., 16(2):2–3. 44

Wang, X. and Pan, V. Y. (2003). Acceleration of euclidean algorithm and rational

number reconstruction. SIAM Journal on Computing, 32:2003. 44

Wilkinson, J. H. (1959). The evaluation of the zeros of ill-conditioned polynomials.

part i. Numerische Mathematik, 1:150–166. 2

Winkler, F. (1988). A p-adic approach to the computation of gröbner bases. Journal

of Symbolic Computation, 6(2–3):287 – 304. 43

Winkler, F. (1996). Polynomial Algorithms in Computer Algebra. 29, 31

102

REFERENCES

Ypma, T. J. (1995). Historical development of the newton-raphson method. SIAM

review, 37(4):531–551. 2

Zobnin, A. (2010). Generalization of the f5 algorithm for calculating grb̈ner bases for

polynomial ideals. Programming and Computer Software, 36:75–82. 45

103

	List of Figures
	List of Tables
	1 Introduction
	1.1 What is a Gröbner basis?
	1.2 Thesis Overview

	2 Theoretical Foundations
	2.1 Polynomial Rings
	2.2 term orderings
	2.3 Monomial Ideals and Dickson's Lemma
	2.4 Leading term ideals and Modules
	2.5 Gradings
	2.6 Hilbert Functions and Hilbert Series

	3 Gröbner Bases Theory
	3.1 Introduction to the Theory of Gröbner Bases
	3.2 Buchberger's Algorithm
	3.3 Uniqueness of Reduced Gröbner Bases
	3.4 Applications of Gröbner Bases
	3.5 Computational Complexity
	3.6 Optimization Strategies and Techniques
	3.6.1 Strategies Involving the Selection of Term Orderings
	3.6.2 Identification of Useless S-polynomials
	3.6.3 Selection of Critical Pairs for the Reduction Process
	3.6.4 Removal of Superfluous Polynomials
	3.6.5 Selection Strategies for Reducers
	3.6.6 Input Transformation Strategies
	3.6.7 Parallel and Modular Strategies
	3.6.8 Signature-based Strategies

	3.7 Concluding Remarks

	4 New Strategies for Computing Gröbner Bases
	4.1 Syzygies Modules
	4.2 Free Resolutions
	4.3 Introduction to Signature-based Strategies
	4.4 The Hilbert-Driven Strategy
	4.5 Modular and Parallelization Strategies
	4.6 Technical Implementation Overview

	5 Experimental Results
	6 Conclusions and Future Work
	Appendices
	References

