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Introduction

In recent years there has been a big development of many-valued logic, and more
generally, of many-valued mathematics, encouraged by their usefulness for the applica-
tions in the context of different scientific disciplines.
The growing interest for the reasoning under uncertainty and partial knowledge condi-
tions [10, 45, 74] urged producing a considerable variety of approaches to non-classical
logics and to related mathematics; the in-depth study of algebraic structures associated
to logic, that has led to various modifications, settlements and evolutions, is due to the
fact that these algebras are strictly related to fundamental aspects of mathematics, like
set theory and topology [59].
The algebras that occur in classical logic essentially depend on the notion of order
and on the related operations that characterize various types of lattices, including the
well-known boolean and Heyting algebras, whose structure is, in fact, determined by
operations strongly connected with the connectives of classical and intuitionistic logic.
Considerable work has been done to investigate in detail the algebraic operations directly
or indirectly connected with the logical connectives and with the lattice structures and
to study interrelationships between these different operations; moreover, the possibility
to deduce all the operations from one or some of them has been exploited and it de-
pends on the properties of these and on the underlying lattice structure. The main tools
allowing to clarify interrelations and to construct new binary operations from old ones
are undoubtedly isotone and antitone classical Galois connections.
The connective generally used as a starting point is the logical conjunction, whose al-
gebraic counterpart provides a monoidal structure, that has interesting connections and
similarities with analogous structures, related to several mathematical contexts: impor-
tant examples are residuated lattices and quantales, originally considered in relation
with the ideals of rings of operators [28, 29, 68, 75], and t-norms, originally connected
to the theory of probabilistic metric spaces [63, 64]. Moreover, this kind of structures
has been moved into the context of category theory, to build a categorical approach to
logic (see [65]).
In such monoidal structures it has become usual to drop the commutativity, besides the
idempotency of the operation, though for applications of logics in the classical context
these are fundamental conditions.
On the other hand the associativity condition, whose motivations are not clear enough,
in our opinion, seems to cannot be given up, due to its permanent use in logics and in
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INTRODUCTION 4

various other contexts. The unique exception, to our knowledge, is the trend, devel-
oped recently, to consider semi-quantales (actually, quantales without associativity and
distributivity conditions) or arbitrary varieties of algebras as reference structures for cat-
egories of L-sets, L-topological spaces and topological systems (see [21, 23, 79, 81]); this
trend however seems to aim essentially the goal of generality. The monoidal associative,
and distributive as well, structures have been explicitly considered as fundamental by J.
A. Goguen, one of the pioneers of fuzzy sets theory [44].
The second connective most frequently used as a reference and starting point to build
algebras for many-valued logics is the implication: so called implication algebras, among
which the Hilbert algebras, have been studied since the fifties (see [26]) and they are
widely described in [74], in their algebraic aspects and in their application to non-classical
logics; however, the “implication” operation that characterizes these structures turns out
to be the one connected, by classical adjunction, to the meet operation ∧, whenever the
underlying structure is also a complete lattice with respect to the induced order, which
strongly reduces the application fields.
Nowadays, residuated lattices (a kind of lattice ordered, both monoidal and implicative
structure) first considered in [28, 29] are commonly used (see [9, 58]); they have two
operations (the multiplication-conjunction and the implication) that form an adjunc-
tion (i.e. an isotonic Galois connection). An equivalent approach to these structures
and to implication algebras, as well, is preferred by those moving in the universe of
(pseudo-)BCK algebras (an extensive approach and a detailed description can be found
in [56, 57]). However, these structures, based on a pair of operations, are partially
justified in absence of completeness of the underlying ordered set, whose assumption,
instead, would allow to obtain either operation from the other one by the quite standard
procedures of residuation and deresiduation. What is important to us is to note that the
multiplication is always assumed to be associative and if it is not commutative then the
existence of two implications, both connected, though in two symmetrical ways, with
the multiplication, is assumed.
This approach includes structures that satisfy additional conditions of the two opera-
tions, such as the prelinearity or the divisibility, or the double negation principle (see
[12, 52, 56, 57]).
Recently it has been proposed by C. Guido and P. Toto in [50] an order-theoretic ap-
proach to residuated structures, going from the implicative structures of lower level
(implicative algebras in [74], w-eo algebras in [50]) to various kinds of residuated al-
gebras, in particular to integral residuated lattices, that, in theirs turn, include most
algebras used in logic, either classical or not.
The basic idea is rather suggestive, even if simple: once considered that every lattice
structure is completely determined by the underlying (crisp) order relation (so that a
fixed partially ordered set either is or is not a lattice of some kind) one can believe that
any extension (not necessarily crisp) of an order relation can determine completely the
algebraic structures mostly used in logics, including many-valued logic.
More explicitly, given any ordered set L with a greatest element ⊺, (L,≤,⊺), an extension
of ≤ is a function
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→∶ L ×L→ L

such that

a→ b = ⊺⇔ a ≤ b, for all a, b ∈ L.

The structure (L,→,⊺), that is an implicative algebra according to the terminology of
[74], is called weak extended-order algebra in [50], due to its motivating idea.
The first part of this thesis, mainly Chapter 2, describes in details the study of weak
extended-order algebras started in [50], continued in my master thesis and fully developed
in the first year of my PhD studies, including some applications of weak extended-order
algebras to the theory of fuzzy implicators; the obtained results have been published in
[13, 14]. This approach to the algebras of logics produces a clear framework to under-
stand which are the fundamental conditions that allow to define and study the various
operations and the associated algebraic structures related to logics.
First of all, in a weak extended-order algebra the following two axioms are considered:
(o5) a→ b = ⊺ ⇒ (c→ a) → (c→ b) = ⊺ (weak isotonic condition in the second variable);
(o′5) a→ b = ⊺ ⇒ (b→ c) → (a→ c) = ⊺ (weak antitonic condition in the first variable).
If these axioms are satisfied, the algebra is called extended-order algebra.
Such conditions on → are needed to obtain an embedding of the algebra (L,→,⊺) into its
Dedekind-MacNeille completion, which, moreover, preserves further properties possibly
assumed on L. Hence, this result allows to consider the completeness requirement not
restrictive for extended-order algebras.
Properties stronger than those expressed by the axioms (o5) and (o′5) are the right-
distributivity, the left-distributivity and the distributivity. The results of [50] and our
studies lead to consider the right-distributivity as a key-condition: in fact, it allows to
define on L, by using the adjoint functor theorem, an operation ⊗ ∶ L × L → L, called
adjoint product of L, that can be viewed as a logical connective of conjunction.
This multiplication has good properties, usually asked to classical conjunction, except
the idempotency, the commutativity and the associativity, which are not obtained, in
general. On the contrary, it is proved in [50] that the associativity of the multiplication
is characterized in a quite general context by a condition that is, actually, a second order
formula, which shows its weakness and its unpleasant character.
Furthermore, the distributivity condition allows to build further operations, starting
from ⊗ and using the implication → that can be interpreted as disjunction connectives.
Also these operations, as well as the negation, which we have defined and studied, have
a good behavior in a quite general context of distributive extended-order algebras; we
prove further good properties by adding on L assumptions like the double negation prin-
ciple.
The algebras considered, unlike residuated lattices and (pseudo-)BCK algebras, are not
necessarily symmetrical, since the product has not the same properties on both argu-
ments; this is in fact one of the main motivations of [50].
We investigate the question of symmetry by considering algebras that are not symmetri-
cal and characterize those which are. More precisely, we say that a weak extended-order
algebra (L,→,⊺) is symmetrical if there exists a binary operation ¨∶ L × L → L, called
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dual implication, such that (L,¨,⊺) is a weak extended-order algebra, → and ¨ induce
the same order and a ≤ b¨ c⇔ b ≤ a→ c, for all a, b, c ∈ L.
The introduction of the dual implication allows to define a dual negation and, if the
distributivity is assumed, the dual product and the dual disjunctions. In the context
of symmetrical extended-order algebras, the various operations introduced undergo im-
provements, without assuming commutativity and associativity. We note also, that the
symmetry condition is a weakening of the commutativity; in fact, (L,→,⊺) is commuta-
tive if and only if it is symmetrical and ¨=→.
Particular attention has been devoted to the possibility of dropping the associativity
assumption, which is instead a well established requirement in all the approaches to
structures related to logical connectives, including residuated lattices [9, 28, 29, 52, 58],
(pseudo-)BCK algebras [56, 57], quantales [75], t-norms [30, 52, 63, 64] and (monoidal)
closed categories [32, 65, 68, 89]. The effective power of associativity turns out rather to
allow the strong version of several properties, provided that those are satisfied in their
weak version. For instance, if L is symmetrical, the associativity is equivalent to the
equality a → (b ¨ c) = a ¨ (b → c), for all a, b, c ∈ L, that is the strong version of that
Galois connection which is the required link between the two implications considered
(see further details in Subsections 2.1.5 and 2.1.6).
An immediate application of weak extended-order algebras occurs in the study of impli-
cators; we have reconsidered the notion as it is presented in the literature, taking into
account the point of view of extended-order algebras.
Usually, an implicator is defined as a map I ∶ [0,1] × [0,1] → [0,1] that extends the
classical logic implication; in fact an implicator has to satisfy the boundary conditions

(b) I(0,0) = I(0,1) = I(1,1) = 1 and I(1,0) = 0.

As already explained, the implication of a weak extended-order algebra satisfies the
equivalence a ≤ b ⇔ a → b = ⊺, for all a, b ∈ L; this criterion states exactly when the
implication a → b has value “true” (the top element ⊺), but it says almost nothing, in
general, on when the implication is false, even if the existence of the value “false” (the
least element �) is assumed in the algebra. Moreover, to obtain the condition I(⊺,�) = �
it is necessary to assume the symmetry condition on (L,→,⊺).
Hence, we have proposed an alternative definition of implicator and a different arrange-
ment of the axioms usually assumed on it. The obtained results are described in Section
2.2 and have been published in [14].
Starting from the second year of the Doctoral School we have directed our work to-
ward the study of the fundamental mathematical tool of binary relations between sets,
exploiting in this field the effect of using extended-order algebras as the range for the
evaluation of the relationships between related elements.
Though non-classical logics give the main motivation for our work, our study is devel-
oped essentially in the framework of classical mathematics being, in this respect, in the
line of abstract algebraic logic. This is quite usual also for fuzzy logic (see [52]), and even
when a purely logical-theoretic approach on relations in fuzzy class theory is developed
(see [4]), a corresponding description of the results in classical mathematical terms is
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explained, to allow an easier reading and a more effective usefulness in their possible
applications.
Our interest for (many-valued) binary relations has a twofold link with the first part of
our work. On one hand, it is natural to start using the structure we propose for the
algebra of the truth values in one of the most basic tools useful to develop a qualitative
approach to mathematics and its applications. On the other hand, binary relations have
a fundamental role, both in the origin of extended-order algebras, in particular for the
order-theoretic approach, and in their development, based essentially on Galois connec-
tions.
So, most of our work is devoted to evaluate the application of extended-order algebras in
the context of both homogeneous and heterogeneous binary relations, either in the clas-
sical case or in the many-valued one; binary relations are fundamental tools to describe
any kind of situations under uncertain and incomplete knowledge and their treatment
involves their composition and the powerset operators they generate (see also [4]).
In Chapter 3 it is developed a non-commutative and non-associative approach to many-
valued relations taking values in some kind of extended-order algebras; most considered
notions in the algebras of relations are already known and well developed (see for in-
stance [4, 6, 87]), but our framework is more general than the usual ones; hence it has
been highlighted the advantages to consider weaker structures in order to describe the
manifold aspects of algebras of relations with values in extended-order algebras. In par-
ticular, in Section 3.3, we have considered some extensions of the notion of function
among many-valued relations and we have checked under which conditions the consid-
ered generalizations characterize, in fact, functions. These notions are related to the
structure of the underlying algebra: in fact, a first notion is given in the context of
complete lattices, without assuming the existence of other structures on it, while the
second is studied enriching the lattice with the structure of distributive extended-order
algebra and the third involves symmetrical, possibly associative, algebras.
As already remarked, fundamental tools in the context of residuated structures are the
isotone and antitone Galois connections. These have been first introduced while studying
the properties of the powerset operators, now also called Birkhoff operators, associated
to binary relations, in particular to functions (see [8]). Then, Galois connections have
reached a wider framework within posets [70] and, more generally, in category theory
where they, in fact, correspond to adjunctions [1, 51]. Meanwhile, the notion of con-
jugated pairs (of functions) have been introduced, once more dealing with powerset
operators, by Tarski [83] and formalized in the framework of boolean algebras [60, 61].
This latter notion, being related by a sort of duality to Galois connections in the classical
framework of boolean algebras, have received not much attention until the big develop-
ment of Galois connections within fuzzy set theory, seemed to have broken the above
mentioned duality. Then, G. Georgescu and A. Popescu considered in [42] fuzzy Galois
connections and fuzzy conjugated pairs, looking for a possible duality that they could
not find, as the title of their paper (Non dual fuzzy connections) suggests.
In Chapter 4 we restore a perfect duality between Galois connections and conjugated
pairs, thanks to a quite general approach and a new, more appropriate view of the topic.
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In fact, we have considered an approach to global and relative connections between
weakly structured sets, giving a unified and elegant framework for Galois connections
and conjugated pairs, which we have called Tarski connections. This common frame-
work allows to clarify the interrelationships between these notions, which find out to be
order-dual.
In order to understand the sense of these notions, it is useful to eliminate what seems
to be redundant in the considered context, leaving only the (pre)order structure in the
right place.
Even more, looking only at the essence of the structure, it is possible to observe that
both Galois and Tarski connections are connections of the same type. We remark that,
once more, binary many-valued relations have a fundamental role in Chapter 4.
Having in our hands a unified approach to all types of connections, which have important
roles both for algebraic residuated structures and for the algebras of binary relations,
in Chapter 5 we introduce a quite simple, but very effective tool, consisting in suitable
diagrams, namely relational and double relational triangles of relations. These have been
used to describe and characterize the structure of the extended-order algebras using the
implication → and its derived operations. Moreover, these triangles give information on
the algebra of many-valued relations, involving not only the algebraic operations lifted
from the algebra of truth values, but also the richer structure given by the compositions
of many-valued relations. As just remarked, connections, in particular Galois and Tarski
connections, described in Chapter 4 have a fundamental role in this context, too.
We note, moreover, that thanks to this particular constructions we can synthesize also
the properties of powerset operators associated to many-valued relations, considered up
to now in less general contexts than the symmetrical distributive extended-order alge-
bras we use.
In Chapter 6 we present a categorical accommodation of the main topics we have treated
that involve binary, possibly many-valued, relations, moving into two directions. In both
directions we fall into the need to weaken the requirements usually asked to categorical
structures.
First, as previously noted, the lack of associativity has highlighted that the notion of
category may be not appropriate to describe the class of relations taking values in some
kind of extended-order algebras. So, we have proposed the notion of pseudo-category
that misses the associativity of the composition of morphisms and the existence of iden-
tity morphisms, too. This might be useful to construct abstract models for algebras and
categories of many-valued relations, more general than Dedekind categories [37, 69] and
MV-relation algebras [71, 72].
The second followed direction leads to devote considerable attention to some kinds of
relational systems, in particular of tied relational systems and to their morphisms. These
notions are closely related to most concepts we have developed in the previous Chapters,
since many objects we have considered, among which weak extended-order algebras, are
particular types of relational systems, while connections considered in Chapter 4 are
special types of morphisms of suitable relational systems.
A comprehensive view of these aspects of the topics we have treated leads to a de-
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scription of a class of relational systems largely used in several contexts, including for-
mal concept analysis [39, 40, 85], Chu spaces [73], topological and interchange systems
[23, 24, 25, 79, 81, 82] and, more closely related to our work, implicative groupoids and
extended-order algebras [13, 49, 50]. Doing this we can provide meaningful examples of
semicategories and precategories, which have been introduced and studied in [53, 54, 76]
as particular multiplicative graphs in the sense of C. Ehresman [31].
We note, in particular, that tied relational systems considered in Section 6.4 are gen-
eralizations of weak extended-order algebras; looking at the semicategory having those
as objects, one can see that morphisms between them are not functions, in the style of
universal algebra as they have been considered in [49, 80], but pairs of functions which
form global connections. We have not exploited the usefulness of this kind of morphisms,
which are also mentioned in [49] and would be the topic of our future researches.
Summing up, one could say that the path gone along the last three Sections of Chapter
6 closes the circle including the whole content of this thesis in a coherent and compre-
hensive framework.



Chapter 1

Preliminary classical notions and

results

1.1 Preliminaries on order and lattices

To fix notation, which is slightly different from the usual one, we recall some notions
and properties of classical binary relations (a classical reference is [67]) and, in particular
of order and preorder relations and the lattice structures determined by them (for these
topics we refer to [8, 34, 43, 59].
Let X,Y be two sets. A binary relation from X to Y , denoted by r ∶X ⇁ Y , is a subset
of the cartesian product, that is r ⊆ X × Y ; if (x, y) ∈ r, then we also write xry. The
empty subset of X × Y is called empty relation from X to Y and it is denoted by áXY ;
X × Y is the universal relation denoted by ãXY .
A function (or map) from X to Y , denoted by f ∶ X → Y , is a relation from X to Y

such that for any x ∈X, a unique y ∈ Y exists such that (x, y) ∈ f ; in this case we write(x)f = y. Y X is the set of all functions from X to Y . We shall identify a subset A ⊆ X
with its characteristic function, that we shall denote by A ∶ X → 2 (2 = {�,⊺} is the
trivial boolean algebra), where (x)A = ⊺⇔ x ∈ A. Thus, the powerset P(X) of a set X
is also denoted by 2X .
We shall identify the binary relation r ∶ X ⇁ Y , as a subset, with its characteristic
function, that we shall denote by r ∶ X × Y → 2; so, (x, y) ∈ r, xry and (x, y)r = ⊺ are
equivalent notations.
The identity relation iX ∶ X ⇁ X is defined by (x, x′)iX = ⊺ if and only if x = x′, for all
x, x′ ∈X (of course, iX is a function). The opposite or reverse relation of r is r− ∶ Y ⇁X

defined by (y, x)r− = (x, y)r. Obviously (r−)− = r.
A preorder relation in X is a function ≤∶X×X → 2 such that x = y⇒ (x, y)≤ = (y, x)≤ = ⊺
and (x, y)≤ = (y, z)≤ = ⊺ ⇒ (x, z)≤ = ⊺, while an order relation requires the converse
implication (x, y)≤ = (y, x)≤ = ⊺ ⇒ x = y, too.
A set with a preorder relation is called preordered set and it is denoted by (L,≤); an
ordered set is also called poset, which stands for partially ordered set.
The elements a and b in a preordered set are called comparable if either a ≤ b or b ≤ a.

10
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An ordered set (L,≤) in which all elements are comparable is called totally ordered or
linearly ordered or it is said to be a chain and ≤ is a total order relation.
An equivalence relation on X is a function ≡∶X ×X → 2 such that (x, x)≡ = ⊺, (x, y)≡=
⊺ ⇒ (y, x)≡ = ⊺ and (x, y)≡ = (y, z)≡ = ⊺ ⇒ (x, z)≡ = ⊺.
For every E ⊆ X, we denote by ⟨E⟩≡ = {x ∈X ∣∃a ∈ E ∶ x ≡ a} the saturation of E with
respect to ≡. We note that the map

⟨⋅⟩≡ ∶ 2X → 2X , E ↦ ⟨E⟩≡
is a topological closure operator, that, moreover, commutes with arbitrary unions and
intersections. The fixed points of such operator are the saturated subsets of L.
If (L,≤) is a preordered set, the binary relation ≡ on L, defined, for all x, y ∈ L, by

x ≡ y⇔ x ≤ y ∧ y ≤ x

is an equivalence relation on L which is said to be induced by ≤.
The map

x↦ ⟨x⟩≡ ∈ L≡
is the canonical surjection of L onto the quotient set L≡. Obviously, for all x, x′, y, y′ ∈ L,
it follows from x ≡ x′, y ≡ y′, x ≤ y that x′ ≤ y′; hence, the relation ≤ on L induces on L≡
an order relation ⪯ defined, for all x, y ∈ L, by ⟨x⟩≡ ⪯ ⟨y⟩≡ ⇔ x ≤ y. The relation ⪯ on
L≡ is called the order relation induced on L≡ by the preorder ≤ and (L≡,⪯) is called the
induced ordered set by (L,≤).
Let (L,≤) be a preordered set and X ⊆ L. An element a ∈ L is a lower bound for X if
the following implication is true

x ∈X ⇒ a ≤ x.

We denote by LbX the set of all lower bounds of X.
a ∈ L is a greatest lower bound or an infimum for X if a ∈ LbX and the following
implication holds

a′ ∈ LbX ⇒ a′ ≤ a.

We denote by InfX or by ⋀X the set of all infima of X. If ⋀X ≠ ∅, one says that X
has infimum.
Moreover, a ∈ L is a minimum for X if a ∈ X ∩ LbX. We denote by MinX = X ∩ LbX
the set of all minima for X. If MinX ≠ ∅, one says that X has minimum.
An element a ∈ L is an upper bound for X if the following implication is true

x ∈X ⇒ x ≤ a.

We denote by UbX the set of all upper bounds of X.
a ∈ L is a least upper bound or a supremum for X if a ∈ UbX and the following implication
holds

a′ ∈ UbX ⇒ a ≤ a′.

We denote by SupX or by ⋁X the set of all suprema of X. If ⋁X ≠ ∅, one says that
X has supremum.
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Moreover, a ∈ L is a maximum for X if a ∈ X ∩UbX. We denote by MaxX = X ∩UbX
the set of all maxima for X. If MaxX ≠ ∅, one says that X has maximum.

Remark 1.1.1. 1. For any subset X ⊆ L, UbX,LbX,⋀X and ⋁X are saturated,
while MinX and MaxX need not to be so, unless X itself is saturated. The
elements of ⋀X and those of ⋁X, MinX, MaxX, as well, are equivalent to each
other.

2. Elements equivalent to a minimum or to a maximum of X need not to be minima
or maxima, since they might not be in X but, clearly, X has a minimum if and
only if ⟨X⟩≡ ∩LbX ≠ ∅ and X has a maximum if and only if ⟨X⟩≡ ∩UbX ≠ ∅.

3. For X ⊆ L one has ⋀X = Max(LbX) and ⋁X = Min(UbX), while MaxX =

X ∩⋁X and MinX = X ∩⋀X. In particular, we note that Ub∅ = Lb∅ = L and,
hence, ⋁∅ is non-empty if and only if MinL is non-empty and they coincide;
similarly, ⋀∅ is non-empty if and only if MaxL is non-empty and they coincide.

4. If (L,≤) is an ordered set, there exist at most one infimum and at most one supre-
mum for X ⊆ L. Similarly, there exist at most one minimum and one maximum
for X ⊆ L.
Even more, the uniqueness of infimum, or supremum, characterizes orders among
preorders, by the equivalent statements:

(a) ≤ is an order relation;

(b) for every X ⊆ L: ∣⋀X ∣ ≤ 1;

(c) for every X ⊆ L: ∣⋁X ∣ ≤ 1.

Definition 1.1.2. A preordered set (L,≤) is a bounded prelattice (in the sequel only
prelattice) if, for all finite subsets F ⊆ L, ⋁F and ⋀F are non-empty. If ≤ is an order
relation, (L,≤) is called bounded lattice.

In the sequel we omit the attribute bounded for bounded lattice.
In case of a lattice, it is well known that the operations ∨ and ∧ defined by

a ∨ b = ⋁{a, b} and a ∧ b = ⋀{a, b}
are associative, commutative, idempotent, satisfy the absorption conditions and have �
and ⊺ as units, respectively; conversely, these properties characterize a lattice among the
algebras (L,∨,∧,�,⊺) of signature (2,2,0,0).
From the above definition it follows that, in every lattice (L,≤), there exist � = ⋁∅ =
MinL and ⊺ = ⋀∅ =MaxL. Of course, ∣L∣ ≥ 2 if and only if ⊺ ≠ �.
If ⊺ = � the lattice is said to be inconsistent ; otherwise it is consistent.

Definition 1.1.3. A preordered (ordered) set (L,≤) is a complete prelattice (lattice) if,
for all subsets F ⊆ L, ⋁F and ⋀F are non-empty.
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Definition 1.1.4. A lattice (L,≤) is distributive if the following equalities hold (which
are equivalent to each other)(D1) a ∧ (x ∨ y) = (a ∧ x) ∨ (a ∧ y), for all a, x, y ∈ L;(D2) a ∨ (x ∧ y) = (a ∨ x) ∧ (a ∨ y), for all a, x, y ∈ L.

Definition 1.1.5. A (complete) distributive lattice (L,≤) is a boolean lattice, usually
called (complete) boolean algebra, if there is a unary operation ¬ ∶ L → L, a ↦ a¬ such
that a¬ ∧ a = � and a¬ ∨ a = ⊺, for every a ∈ L. The function [⋅]¬ (uniquely determined
by the order relation ≤) is called complementation and a¬ is the complement of a.

Proposition 1.1.6. If (L,≤) is a boolean lattice, then the following hold.

1. [⋅]¬ is an involution;

2. [⋅]¬ reverses order. ◻

Of course, as for every order reversing involution, the De Morgan laws are satisfied,
then in particular [⋅]¬ satisfies the De Morgan laws, both in the finite and in the infinite
form, the latter in case of complete boolean lattices.

Definition 1.1.7. A (complete) lattice (L,≤) is an Heyting lattice, usually called (com-
plete) Heyting algebra, if, for all a, b ∈ L, max{x ∈ L∣x ∧ a ≤ b} exists.

The binary operation → that can be defined in an Heyting lattice as follows

→∶ L ×L→ L, (a, b)↦ a→ b =max{x ∈ L∣x ∧ a ≤ b},
is called implication.

Remark 1.1.8. An Heyting lattice may be defined as a lattice with a binary operation
→ that satisfies the condition

x ≤ a→ b⇔ a ∧ x ≤ b, for all a, b, x ∈ L.

Proposition 1.1.9. If (L,≤) is an Heyting lattice, then, for all a, b, c ∈ L, the following
hold

1. a→ a = ⊺;

2. a ∧ (a→ b) = a ∧ b;
3. b ∧ (a→ b) = b;
4. a→ (b ∧ c) = (a→ b) ∧ (a→ c). ◻

Proposition 1.1.10. If (L,≤) is a lattice with a binary operation →∶ L × L → L that
satisfies the properties (1), (2), (3) and (4) of Proposition 1.1.9, then the following hold

1. b ≤ b′ ⇒ a→ b ≤ a→ b′, for all a ∈ L;

2. b ≤ a→ b. ◻



CHAPTER 1. PRELIMINARY CLASSICAL NOTIONS AND RESULTS 14

Proposition 1.1.11. A lattice (L,≤) with a binary operation → is an Heyting lattice if
and only if → satisfies the conditions (1)-(4) of Proposition 1.1.9. ◻

Proposition 1.1.12. Every Heyting lattice is distributive. ◻

Corollary 1.1.13. If (L,≤) is an Heyting lattice, then the following properties hold, for
all a, a′, b ∈ L

1. (a ∨ a′)→ b = (a→ b) ∧ (a′ → b);
2. a ≤ a′ ⇒ a′ → b ≤ a→ b. ◻

Proposition 1.1.14. Every boolean lattice L is an Heyting lattice, whose implication is
defined by a→ b = a¬ ∨ b, for all a, b ∈ L. ◻

Definition 1.1.15. Let (L,≤) be an Heyting lattice. The unary operation

[⋅]¬ ∶ L→ L, a↦ a¬ = a→ �

is called pseudo-complementation or negation.

Proposition 1.1.16. In any Heyting lattice (L,≤) the negation satisfies the following
properties, for all a, b ∈ L:

1. a ∧ a¬ = �;

2. [⋅]¬ reverses order;

3. (a ∨ b)¬ = a¬ ∧ b¬;

4. �¬ = ⊺ and ⊺¬ = �. ◻

Proposition 1.1.17. Let (L,≤) be an Heyting lattice and [⋅]¬ its negation. Then

(L,≤) is a boolean lattice ⇔ [⋅]¬ is an involution. ◻

Definition 1.1.18. Let (L,≤) be a complete lattice.(L,≤) satisfies the first infinite distributivity law if it satisfies the condition(1DL∞) a ∧ (⋁S) = ⋁{a ∧ s∣s ∈ S}, for all a ∈ L and S ⊆ L.(L,≤) satisfies the second infinite distributivity law if it satisfies the condition(2DL∞) a ∨ (⋀S) = ⋀{a ∨ s∣s ∈ S}, for all a ∈ L and S ⊆ L.
A complete lattice that verifies (1DL∞), ((2DL∞), respectively), is called frame,
(coframe, respectively).

Proposition 1.1.19. Every complete Heyting lattice is a frame. ◻

Proposition 1.1.20. If (L,≤) is a frame, then it is an Heyting lattice. ◻

Proposition 1.1.21. If (L,≤) is a complete boolean lattice, then it is a frame and a
coframe. ◻
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1.2 Galois connections and conjugated pairs

In this Section we describe, in their classical version, the notion of Galois connections
and conjugated pairs that are fundamental tools for the study of residuated structures,
within which are framed the algebras studied in this thesis.
Galois connections, also known as adjunctions, have been considered, with a different
terminology by G. Birkhoff already in 1940 in the first edition of [8] and by O. Ore [70];
the conjugated pairs have been introduced by A. Tarski in [83] and subsequently studied
by B. Jónsson and A. Tarski in [61].
An unitary and more general study of these notions has been developed in [18, 19].

Definition 1.2.1. An adjuction, also called isotonic Galois connection, between partially
ordered sets L and M , denoted by f ⊣ g ∶ (L,≤) → (M,≤) or simply by f ⊣ g, is a pair
of maps f ∶ L→M and g ∶M → L satisfying the condition

∀x ∈ L, y ∈M : x ≤ (y)g⇔ (x)f ≤ y.

The map f is called left adjoint of g and g right adjoint of f .

Remark 1.2.2. Equivalently, f ⊣ g if and only if f and g are isotonic and satisfy the
adjoint inequalities:(AD1) x ≤ ((x)f)g, for any x ∈ L;(AD2) ((y)g)f ≤ y, for any y ∈M .
In the following we denote (A)f = {(a)f ∈M ∣ a ∈ A} and (B)f− = {a ∈ L∣ (a)f ∈ B}, for
every function f ∶ L→M and subsets A ⊆ L, B ⊆M .

Proposition 1.2.3. (Adjoint functor theorem) Let (L,≤) and (M,≤) be posets. If
f ∶ L→M and g ∶M → L are maps such that f ⊣ g, then the following hold:

1. for any A ⊆ L, if ⋁A exists, then (⋁A)f = ⋁(A)f ;

2. for any B ⊆M , if ⋀B exists, then (⋀B)g = ⋀(B)g;

3. for any x ∈ L, (x)f = ⋀{y ∈M ∣ x ≤ (y)g} and f is the unique left adjoint of g;

4. for any y ∈M , (y)g = ⋁{x ∈ L∣ (x)f ≤ y} and g is the unique right adjoint of f . ◻

Proposition 1.2.4. Let (L,≤) and (M,≤) be posets.

1. If (L,≤) is a complete lattice and f ∶ L→M preserves ⋁, then the function

g ∶M → L, y ↦ (y)g = ⋁{x ∈ L∣ (x)f ≤ y}
is the unique right adjoint of f .

2. If (M,≤) is a complete lattice and g ∶M → L preserves ⋀, then the function

f ∶ L→M , x↦ (x)f = ⋀{y ∈M ∣ x ≤ (y)g}
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is the unique left adjoint of g. ◻

Definition 1.2.5. A Galois connection, also called antitonic Galois connection, between
two posets (L,≤) and (M,≤), denoted by [f, g] ∶ (L,≤)↔ (M,≤) or simply by [f, g], is
a pair of maps f ∶ L→M and g ∶M → L satisfying the condition

∀x ∈ L, y ∈M : x ≤ (y)g⇔ y ≤ (x)f .

Remark 1.2.6. Equivalently, [f, g] if and only if f and g are antitonic and satisfy the
inequalities:(GC1) x ≤ ((x)f)g, for any x ∈ L;(GC2) y ≤ ((y)g)f , for any y ∈M .
Of course [g, f] is a Galois connection if and only if [f, g] is.

Proposition 1.2.7. Let [f, g] be a Galois connection between the posets (L,≤) and(M,≤). Then, for every A ⊆ L the following hold:

1. if ⋁A exists, then (⋁A)f = ⋀(A)f ;

2. if ⋀A exists, then (⋀A)f ∈ Ub((A)f);
3. for any y ∈ M , (y)g = ⋁{x ∈ L∣ y ≤ (x)f} and g is the unique function such that[f, g] is a Galois connection. ◻

Proposition 1.2.8. Let (L,≤) be a complete lattice, (M,≤) a poset and f ∶ L → M a
function such that (⋁A)f = ⋀(A)f , for every A ⊆ L. The function g ∶M → L defined by

(y)g = ⋁{x ∈ L∣ y ≤ (x)f}, for any y ∈M ,

is the unique function such that [f, g] is a Galois connection. ◻

Let X and Y be two sets and f ∶X → Y be a function. The following are two classical
and important examples of Galois connection and adjunction.

1. Denoting by Lb ∶ P(X)→ P(X) the function that to each subset S ⊆X associates
LbS and the function Ub ∶ P(X) → P(X) the function that to each subset S ⊆ X
associates UbS, we have that

[Lb,Ub] ∶ (P(X),⊆)↔ (P(Y ),⊆) for any X,Y .

2. Denoting again with f the function that to each subset A ⊆X associates its image
by f and with f− the function that to each subset B ⊆ Y associates its reciprocal
image, we have that

f ⊣ f− ∶ (P(X),⊆)→ (P(Y ),⊆) for any X,Y , f ∶X → Y .

Now we consider an boolean algebra (A,+,0, ⋅,1) and the notion of conjugated pair
introduced in [83].
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Definition 1.2.9. Let A = (A,+,0, ⋅,1) be a boolean algebra. Two functions f, g ∶ A→ A

form a conjugated pair, denoted by ⟨f, g⟩ if, for all a, b ∈ A, the following equivalence
holds: (a)f ⋅ b = 0⇔ (b)g ⋅ a = 0.

If, in particular, a function f is a conjugated of itself, then we call f self-conjugated.

Theorem 1.2.10. Let A = (A,+,0, ⋅,1) be a boolean algebra.

1. If f and g are two functions from A to A such that ⟨f, g⟩, then ⟨g, f⟩.
2. Let f ∶ A → A be a function. Then there exists at most one g ∶ A → A such that⟨g, f⟩. If such g exists, it can be determined, for every y ∈ A, by the formula(y)g = ⋁{x¬∣ (x)f ⋅ y = 0}.
3. Let f ∶ A → A be a function. There exists g ∶ A → A such that ⟨g, f⟩ if and only if(⋁S)f = ⋁(Sf), for every S ⊆ A. ◻

1.3 MacNeille completion of posets

In [66], MacNeille presents a completion process of ordered sets that generalizes the
Dedekind completion of rational numbers, by using the sections or cuts of ordered set,
after adding to it a maximum and a minimum, if it is devoid of them.
In this Section, we recall the MacNeille completion of a poset with a greatest element
as it has been described in [50]. This process is a variant of the Dedekind-MacNeille
completion proposed in [66] which requires only the existence of the maximum in the
ordered set and which allows to build a completion that is isomorphic to that of Mac-
Neille.
Let (L,≤,⊺) be a partially ordered set with greatest element ⊺.
Define in P(L) the equivalence relation

A ≈ A′ if Lb(A) = Lb(A′), for all A,A′ ⊆ L

and denote by K the quotient set, i.e. K =
P(L)
≈ , and by [A] the equivalence class of

A ⊆ L; [a] stands for [{a}], if a ∈ L.

Lemma 1.3.1. [50]

1. If α = [Ai], for every i ∈ I, then α = [⋃i∈I Ai];
2. if α = [A], then Ub(Lb(A)) = ⋃{X ∣ [X] = α} is the largest representative of α;

3. if a = ⋀A ∈ L exists, then [A] = [a] = [↑ a];
4. if [a] = [a′], then a = a′;

5. for every α ∈K there exists A ≠ ∅: α = [A]. ◻
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Consider the binary relation in K defined, for all α,β ∈K, α = [A], β = [B], by

α ≤K β if and only if Lb(A) ⊆ Lb(B).
We note that

- [A] ≤K [B] if B ⊆ A; moreover, if B is the largest representative of β, then
α ≤K β⇔ B ⊆ A.

- The map ϕ ∶ L→K, a↦ (a)ϕ = [a] is an embedding of posets.

- (K,≤K) is a complete lattice with greatest element ⊺K = [⊺], least element �K = [L]
and, moreover, for any S ⊆K,

⋁K S = [⋂{Ub(Lb(A))∣ [A] ∈ S}]
and

⋀K S = [Ub(⋂{Lb(A)∣ [A] ∈ S})].
- It is clear that (K,≤K) is isomorphic to the MacNeille completion of the poset(L,≤) as it is described in [66].

Remark 1.3.2. [50]

1. If B ⊆K, then it follows from the properties of the Galois connection [Lb,Ub] that

⋀
K

B = [Ub(Lb(⋃{A∣ [A] ∈ B}))] = [⋃{A∣ [A] ∈ B}]
and

⋁
K

B = [Ub(⋃{Lb(A)∣ [A] ∈ B})] .
2. If A ⊆ L, then ⋀K(A)ϕ = ⋀K {[a] ∣ a ∈ A} = [Ub(Lb(A))] = [A].

Hence ⋀K A = ⋀K A
′ if and only if [A] = [A′].

Similarly, if B ⊆ L, then ⋁K(B)ϕ = [⋂{Ub(Lb(b))∣ b ∈ B}] = [⋂{Ub(b)∣ b ∈ B}] =[Ub(⋃{{b} ∣ b ∈ B})] = [Ub(B)].
1.4 Classical binary relations and powerset operators

As just recalled in the previous Section, a binary relation from the set X to the set
Y , denoted by r ∶ X ⇁ Y , is a subset of their cartesian product, that is r ⊆ X × Y ={(x, y)∣ x ∈X, y ∈ Y }.
We can give an alternative definition, by considering the set {0,1} that is generally de-
noted by 2. It is well known that 2 is a boolean algebra, with respect to the obvious
order relation ≤ such that 0 ≤ 1.



CHAPTER 1. PRELIMINARY CLASSICAL NOTIONS AND RESULTS 19

Let X,Y ∈ ∣Set∣. The binary relation r from X to Y is a map r ∶ X × Y → 2 such
that, for all x ∈X,y ∈ Y :

(x, y)r = { 1 if xry

0 otherwise
.

As usual, for all sets X,Y , we define:

1. the identity relation iX ∶X ⇁X: (x, x′)iX = 1 if and only if x = x′, for all x, x′ ∈X;

2. the universal relation ãXY ∶X ⇁ Y : (x, y)ãXY = 1, for all x ∈X,y ∈ Y ;

3. the zero or empty relation áXY ∶X ⇁ Y : (x, y)áXY = 0, for all x ∈X,y ∈ Y .

We note that the empty relation is the unique relation from X to Y if and only if
either X or Y is empty, that is if and only if áXY = ∅. Moreover, we note that for every
X ∈ ∣Set∣ ãXX= iX if and only if X = {x}.
In the following we consider the class of all binary relations between two arbitrary sets
and we denote it by R2 = {r ∶X ⇁ Y ∣ ∀X,Y ∈ ∣Set∣} . Moreover, for all X,Y ∈ ∣Set∣ we
denote by R2(X,Y ) = {r ∶X ⇁ Y } the set of all binary relation from X to Y .
Let X,Y ∈ ∣Set∣ and let r ∈ R2(X,Y ). The opposite relation of r is r− ∶ Y ⇁ X defined
by (y, x)r− = (x, y)r. Obviously (r−)− = r.
Let X ∈ ∣Set∣. A binary relation r ∈ R2(X,X) is called preorder if it satisfies the
following conditions:

1. (x, x)r = 1, for every x ∈X (reflexivity condition);

2. if (x, y)r = 1 and (y, z)r = 1, then (x, z)r = 1, for all x, y, z ∈ X (transitivity
condition).

An order relation r ∈ R2(X,X) is a preorder that verifies the following condition: if(x, y)r = 1 and (y, x)r = 1, then x = y, for all x, y ∈X (antisymmetry condition).
An equivalence relation r ∈R2(X,X) is a preorder that verifies the following condition:
if (x, y)r = 1 then (y, x)r = 1, for all x, y ∈X (symmetry condition).

Remark 1.4.1. 1. The opposite relation of an order relation is an order, too.

2. Every symmetrical relation, and hence every equivalence, coincides with its oppo-
site.

3. The identity is the unique relation that is both an order and an equivalence.

4. The empty relation ∅ from X to X is an order and an equivalence if and only if
X = ∅.

Definition 1.4.2. Let X,Y ∈ ∣Set∣ and let r ∈ R2(X,Y ). For all A ⊆ X,B ⊆ Y we
define the set

Ar = {y ∈ Y ∣∃x ∈ A ∶ (x, y)r = 1}
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as the direct cone or image of A with respect to r and the set

rB = {x ∈X ∣∃y ∈ B ∶ (x, y)r = 1}
as the inverse cone or inverse image of B with respect to r.
In particular, for all {x} ⊆X,{y} ⊆ Y we define the set

{x} r = xr = {y ∈ Y ∣ (x, y)r = 1}
as the direct cone or image of x with respect to r and the set

r {y} = ry = {x ∈X ∣ (x, y)r = 1}
as the inverse cone or inverse image of y with respect to r.

Note that rB = Br− and Ar = {y ∈ Y ∣ ry ∩A ≠ ∅}.
Moreover, their characteristic functions are (y)Ar = ⋁x∈X(x, y)r ∧ (x)A and (x)rB =
⋁y∈Y (x, y)r ∧ (y)B.

Definition 1.4.3. Let X,Y ∈ ∣Set∣ and let r ∈R2(X,Y ). We say that:

1. r is left total if and only if for every x ∈X: xr ≠ ∅;

2. r is right total or surjective if and only if for every y ∈ Y : ry ≠ ∅;

3. r is left univocal if and only if for all x, x′ ∈X, x ≠ x′: xr ∩ x′r = ∅;

4. r is right univocal if and only if for all y, y′ ∈ Y , y ≠ y′: ry ∩ ry′ = ∅;

5. r is injective if and only if for all x, x′ ∈X, x ≠ x′: xr ≠ x′r;

6. r is back injective if and only if for all y, y′ ∈ Y , y ≠ y′: ry ≠ ry′;

7. r is bijective if and only if r is injective and surjective.

8. r is function if and only if r is right univocal and left total (in this case we denote
r by r ∶X → Y );

9. r is biunivocal if and only if r is an injective function.

Proposition 1.4.4. Let X,Y ∈ ∣Set∣ and let r ∈R2(X,Y ). The following hold:

1. r is left univocal if and only if r− is right univocal;

2. r is left total if and only if r− is right total;

3. r is back injective if and only if r− is injective;

4. if r is a function, then r− is function if and only if r is injective and surjective (in
this case we denote r− by r−1);
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5. if r is a function, then r is injective if and only if r is left univocal. ◻

Remark 1.4.5. 1. The biunivocality is not equivalent to the bijectivity.

2. The identity relation is bijective.

There are different ways to compose two relations (see [4, 6]).

Definition 1.4.6. Let X,Y,Z ∈ ∣Set∣; let r ∈ R2(X,Y ) and s ∈ R2(Y,Z). For all
x ∈X,z ∈ Z, we define the following relations compositions:

1. x(r ⋅ s)z ⇔ xr ∩ sz ≠ ∅;

2. x(r� s)z⇔ xr ⊆ sz;

3. x(r� s)z⇔ xr ⊇ sz;

4. x(r� s)z⇔ xr = sz.

Remark 1.4.7. 1. The relations compositions � and � are related by the following
equality r� s = (s− � r−)−.

2. If r ∈R2(X,Y ) and s ∈R2(Y,Z) are functions, then r ⋅ s = r� s.

Proposition 1.4.8. Let X,Y,Z,W ∈ ∣Set∣ and let r ∈ R2(X,Y ), s ∈ R2(Y,Z) and
t ∈R2(Z,W ). The following hold.

1. iX ⋅ r = r ⋅ iY = r;

2. r ⋅ (s ⋅ t) = (r ⋅ s) ⋅ t;
3. r⋅ áY Z=áXY ⋅s =áXZ ;

4. s is right total if and only if ãXY ⋅s =ãXZ ;

5. r is left total if and only if r⋅ãY Z=ãXZ ;

6. r is right (left, respectively) univocal if and only if r−⋅r ≤ iY (r⋅r− ≤ iX , respectively);

7. r is right (left, respectively) total if and only if r− ⋅ r ≥ iY (r ⋅ r− ≥ iX , respectively);

8. r is a function if and only if r ⋅ r− ≥ iX and r− ⋅ r ≤ iY . ◻

Remark 1.4.9. The Proposition 1.4.8 allows to say that the triple R⋅
2 = (∣Set∣ ,R2, ⋅)

where the objects are the sets, the morphisms are the binary relations, ⋅ is the composi-
tion above defined and the identity morphisms are the identity relations, is a category.

Since r � s = (s− � r−)−, for all X,Y,Z ∈ ∣Set∣, r ∈ R2(X,Y ) and s ∈ R2(Y,Z), we
list the properties involving the composition �, from which are deduced those of �.

Proposition 1.4.10. Let X,Y,Z ∈ ∣Set∣; let r ∈ R2(X,Y ) and s ∈ R2(Y,Z). The
following hold.
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1. iX � r = r;

2. r� ãY Z=ãXZ ;

3. áXY �s =ãXZ ;

4. ãXY �s = ãXZ if and only if s =ãY Z ;

5. r� áY Z= ãXZ if and only if r =áXY ;

6. ãXX�r ≤ r;

7. ãXY � iY = { ãXY if Y = {y}
áXY otherwise

8. r is right (left, respectively) univocal if and only if r ≤ r � iY (r ≤ iX � r, respec-
tively);

9. r is left total if and only if r� áY Z=áXZ ;

10. r is a function if and only if r� áY Z=áXZ and r ≤ r� iY . ◻

Proposition 1.4.11. Let X,Y,Z ∈ ∣Set∣; let r ∈ R2(X,Y ) and s ∈ R2(Y,Z). The
following hold.

1. r� ãY Z=ãXZ if and only if r =ãXY ;

2. áXY �s = ãXZ if and only if s =ãY Z ;

3. r� áY Z= ãXZ if and only if r =áXY ;

4. áXY �s = ãXZ if and only if s =áY Z ;

5. r is right (left, respectively) univocal if and only if r � iY = r (iX � r = r, respec-
tively);

6. r is right (left, respectively) total if and only if áZX �r =áZY (r� áY Z=áXZ ,
respectively);

7. r is a function if and only if r� áY Z=áXZ and r� iY = r. ◻

We note that �, � and � are not associative, in general.

Definition 1.4.12. The correspondence mapping any subset A ⊆ X to its direct image
is a function called weak (or existential or angelic) forward powerset operator, which we
denote by r∧ ∶ 2X → 2Y ; hence (A)r∧ = Ar.
The strong (or universal or demonic) left forward powerset operators ≤r may be de-
fined by (y)(A)≤r = ⋀x∈X((x)A, (x, y)r)≤. In more usual, classical terms, (A)≤r ={y ∈ Y ∣ A ⊆ ry}.
The strong (or universal or demonic) right forward powerset operators r≤ may be de-
fined by (y)(A)r≤ = ⋀x∈X((x, y)r, (x)A)≤. In more usual, classical terms, (A)r≤ =
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{y ∈ Y ∣ ry ⊆ A}.
The backward powerset operators of r are the corresponding forward powerset operators
of r−.

We recall that it is possible to characterize functions among binary relations by
means of their backward powerset operators as follows.

Proposition 1.4.13. Let r ∶X ⇁ Y . Then r is a function if and only if r∧− = r
≤
−. ◻



Chapter 2

Extended-order algebras and the

implicators

2.1 Extended-order algebras

In this Section we develop the study of extended-order algebras, recently introduced
by C. Guido and P. Toto, which are implication algebras that generalize all the widely
considered integral residuated structures. Particular care is devoted to the requirement
of completeness that can be obtained by the MacNeille completion process. Associativity,
commutativity and symmetry assumptions are characterized and their role is discussed
toward the structure of the algebra and of its completion. As an application, further
operations corresponding to the logical connectives of conjunction, negation and disjunc-
tion are considered and their properties are investigated, either assuming or excluding
the additional conditions of associativity, commutativity and symmetry. An overlook is
also devoted to the relationship with other similar structures already considered such as
implication algebras (in particular Heyting algebras), BCK algebras, quantales, residu-
ated lattices and closed categories.

2.1.1 Basic definition and results

In this Subsection we give the basic definitions, examples and results concerning
the algebraic structures we shall deal with all along this thesis. In fact, for the sake
of completeness we recall the basic notions from [50] where extended-order algebras
have been first considered: we only change slightly the approach to the distributivity
conditions, which allows to strengthen most results of [50] related to distributivity.

Definition 2.1.1. [50] Let L be a non-empty set, →∶ L×L→ L a binary operation and ⊺
a fixed element of L. The triple (L,→,⊺) is a weak extended-order algebra, shortly
w-eo algebra, if for all a, b, c ∈ L the following conditions are satisfied:(o1) a→ ⊺ = ⊺ (upper bound condition);(o2) a→ a = ⊺ (reflexivity condition);

24
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(o3) a→ b = ⊺ and b→ a = ⊺⇒ a = b (antisymmetry condition);(o4) a→ b = ⊺ and b→ c = ⊺⇒ a→ c = ⊺ (weak transitivity condition).

Proposition 2.1.2. [50] For every w-eo algebra (L,→,⊺) the relation determined by the
operation →, by means of the equivalence

a ≤ b if and only if a→ b = ⊺, for all a, b ∈ L

is an order relation in L. Moreover ⊺ is the greatest element in (L,≤). This order rela-
tion is called the natural ordering in L.
Conversely, if (L,≤,⊺) is a partially ordered set with a greatest element ⊺ and
→∶ L ×L→ L extends ≤, i.e. a → b = ⊺ ⇔ a ≤ b, for all a, b ∈ L, then (L,→,⊺) is a
w-eo algebra. ◻

Weak extended-order algebras are called implicative algebras in [74].
The next two stronger axioms on L have been also considered in [50]:(o5) a→ b = ⊺⇒ (c→ a)→ (c→ b) = ⊺ (weak isotonic condition in the second variable);(o′5) a→ b = ⊺⇒ (b→ c)→ (a→ c) = ⊺ (weak antitonic condition in the first variable).

We note that in a w-eo algebra (o5) and (o′5) are independent of each other and that(o4) does not imply any of them, even if (o1), (o2) and (o3) are also assumed. It is easy
to show that (o5) and (o′5) imply (o4), if (o1) and (o3) are assumed (see [50] and the
structures 24, 25 and 26 of Appendix).

Definition 2.1.3. [50] (L,→,⊺) is a right w-eo algebra if it satisfies the axioms (o1),(o2), (o3) and (o5).(L,→,⊺) is a left w-eo algebra if it satisfies the axioms (o1), (o2), (o3) and (o′5).(L,→,⊺) is an extended-order algebra, shortly eo algebra, if it is a right and a left
w-eo algebra.

In the following we denote P → Q = {p→ q∣ p ∈ P, q ∈ Q}, for any P,Q ⊆ L.

Definition 2.1.4. Let (L,→,⊺) be a w-eo algebra.(L,→,⊺) is right-distributive if it satisfies the right distributivity condition:(dr) for any a ∈ L,B,B′ ⊆ L, if Lb(B) = Lb(B′) then Lb(a→ B) = Lb(a→ B′).(L,→,⊺) is left-distributive if it satisfies the left distributivity condition:(dl) for any A,A′ ⊆ L, b ∈ L, if Ub(A) = Ub(A′) then Lb(A→ b) = Lb(A′ → b).(L,→,⊺) is distributive if it satisfies the distributivity condition:(d) for any A,A′,B,B′ ⊆ L, if Ub(A) = Ub(A′) and Lb(B) = Lb(B′) then Lb(A → B) =
Lb(A′ → B′).

We also say that the operation → is (right-)(left-)distributive if (dr)(dl)d is satisfied.
We adopt the short notation deo for distributive extended-order algebras.
Of course (L,→,⊺) is distributive if and only if it is left-distributive and right-distributive.
Moreover it is easily seen that a right-distributive (left-distributive) w-eo algebra is a
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right (left) w-eo algebra hence a deo algebra is an eo algebra. All the above defined
and the subsequently considered algebras (L,→ ⊺) are said to be complete if L with
the natural ordering ≤ induced by → is a complete lattice; so we shall consider, with a
short obvious notation, w-ceo algebras, ceo algebras and cdeo algebras. The result below
extends Proposition 21 of [50] and has a similar proof.

Proposition 2.1.5. Let (L,→ ⊺) be a w-ceo algebra. Then

- the condition (dr) is equivalent to(d′r) for any a ∈ L,B ⊆ L: a→ ⋀B = ⋀(a→ B);
- the condition (dl) is equivalent to(d′l) for any b ∈ L,A ⊆ L: (⋁A)→ b = ⋀(A→ b);
- the condition (d) is equivalent to(d′) for any A,B ⊆ L: ⋁A→ ⋀B = ⋀(A→ B). ◻

Remark 2.1.6. We note that in any w-ceo algebra (L →,⊺) the condition (d), or
equivalently (d′), can be expressed by means of the two conditions (d′r) and (d′l).

The inception of fuzzy set theory and the consequent incredible development of theory
and applications of lattice-valued mathematics and logics have produced a big interest in
several kinds of lattice-ordered algebraic structures. Our work, following [50], proposes
an approach to these structures based on the notion of order and its extension to the
many-valued case: such an extension, described as an implication operator, completely
determines the algebraic structure, in a similar way as the order determines completely
the lattice structure.
It is quite evident that in many-valued mathematics the underlying lattice structure and
its completeness are fundamental requirements for most applications; so eo algebras have
been studied since [50] in connection with the completeness condition of their natural
ordering. The Dedekind-MacNeille completion process has turned out to suit well for
getting the completeness requirement of eo algebras.
The next results we present in this Subsection come from [50] except for a few of them
on right-distributive eo algebras.

Definition 2.1.7. [50] Let (L,→,⊺) be a w-eo algebra and let (K,≤K) be the MacNeille
completion of (L,≤). For all α = [A] , β = [B] ∈K, define

α →K β = [Lb(A)→ Ub(Lb(B))].
Proposition 2.1.8. [50] With the above notation the following hold.

1. →K is an extension of ≤K , i.e. for all α,β ∈K α →K β = ⊺K ⇔ α ≤K β.

2. (K,→K ,⊺K) is a complete w-eo algebra. ◻

We call (K,→K ,⊺K) the MacNeille completion of the w-eo algebra (L,→,⊺).
The next lemma and proposition are extensions of similar results obtained in [50].
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Lemma 2.1.9. Let (L,→,⊺) be a w-eo algebra. With the above notation the following
hold.

1. If α = [A] , β = [B] ∈ K and B is the largest representative of β, then α →K β =[Lb(A)→ B].
2. If (L,→,⊺) is right-distributive, then for all α = [A] , β = [B] ∈K one has α →K β=[Lb(A)→ B].
3. If (L,→,⊺) is an eo algebra, then →K is an extension of →, i.e. [a] →K [b] =[a→ b], for all a, b ∈ L.

Proof. We only prove item (2) since (1) is trivial and (3) is proved in [50].
In fact, it follows by the assumption and by the equality Lb(Ub(Lb(B))) = Lb(B) that
Lb(Lb(A)→ Ub(Lb(B))) = Lb(Lb(A)→ B) which proves (2).

It is shown in [50] that the assumption that (L,→,⊺) be a left or a right w-eo algebra
would be not enough to prove that →K is an extension of → (see the structure 27 of
Appendix).

Proposition 2.1.10. Let (L,→,⊺) be an eo algebra. Then, assuming the above notation,
the following hold.

1. (K,→K ,⊺K) is a complete eo algebra and the map ϕ ∶ L→K defined by ϕ(a) = [a]
is an embedding of eo algebras;

2. (L,→,⊺) is right-distributive if and only if (K,→K ,⊺K) is right-distributive;

3. (L,→,⊺) is left-distributive if and only if (K,→K ,⊺K) is left-distributive;

4. (L,→,⊺) is distributive if and only if (K,→K ,⊺K) is distributive.

Proof. 1. It is proved in [50].

2. Assume (L,→,⊺) to be right-distributive and let α = [A] , T ⊆K.
It follows from ⋀K T = [⋃{B∣ [B] ∈ T}] and from Lemma 2.1.9 that α →K ⋀K T =[Lb(A)→ ⋃{B∣ [B] ∈ T}]. On the other hand α →K T = {α →K [B] ∣ [B] ∈ T} ={[Lb(A)→ B] ∣ [B] ∈ T}. Therefore ⋀K(α→K T ) = [⋃{Lb(A)→ B∣ [B] ∈ T}].
Clearly ⋃{Lb(A)→ B∣ [B] ∈ T} = Lb(A) → ⋃{B∣ [B] ∈ T}, hence α →K ⋀K T =
⋀K(α →K T ).
The converse follows by (1) and the equivalence (dr)⇔ (d′r) in (K,→K ,⊺K).

3. Assume now that (L,→,⊺) be left-distributive. For all β = [B] ∈K,S ⊆K, we now
prove that ⋁K S →K β = ⋀K(S →K β).
Assume that B is the largest representative of β.
Since ⋁k S = [Ub(⋃{Lb(A)∣ [A] ∈ S})], then, by Lemma 2.1.9, one has that:

⋁K S →K β = [Lb(Ub(⋃{Lb(A)∣ [A] ∈ S}))→ B].
On the other hand S →K β = {[A]→K β∣ [A] ∈ S} = {[Lb(A)→ B] ∣ [A] ∈ S}.
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Thence ⋀K(S →K β) = [⋃{Lb(A)→ B∣ [A] ∈ S}].
Since Ub(Lb(Ub(⋃{Lb(A)∣ [A] ∈ S}))) = Ub(⋃{Lb(A)∣ [A] ∈ S}), it follows by
the distributivity assumption on L that:

⋁K S →K β = [Lb(Ub(⋃{Lb(A)∣ [A] ∈ S}))→ B] = [⋃{Lb(A)∣ [A] ∈ S}→ B] =[⋃{Lb(A)→ B∣ [A] ∈ S}] = ⋀K(S →K β).
The converse follows by (1) and the equivalence (dl)⇔ (d′l) in (K,→K ,⊺K).

4. It follows trivially from (2) and (3).

2.1.2 The adjoint product and the idempotency conditions

The algebras we consider in this thesis correspond to an approach to many-valued
logic based on the fundamental connective of implication which can generate other con-
nectives, more precisely other operations in our algebraic context.
In other approaches, more frequently addressed, a multiplication corresponding to con-
junction is the basic tool, for instance in t-norm based logics (see [45] and [52]).
The implication-based approach to non-classical logics, however, goes back to long time
ago (see [74]) but it has been developed by means of quite strong assumptions that
characterize (positive) implication algebras and lead to the meet operation as the only
possible conjunction.
Our approach, instead, though starting from the common base of implicative algebras,
i.e. w-eo algebras described in the previous Subsection, produces a big variety of al-
gebras for many-valued logics, having as a main tool the isotonic and antitonic Galois
connections.
In this Subsection we define, following once more [50], a product which is the left adjoint
of the implication. The results proved in the previous Subsection allow to consider the
completeness condition a not too strong requirement for eo algebras thanks to the em-
bedding described in Proposition 2.1.10 and to realize that the right-distributivity and
the left-distributivity conditions of eo algebras are not invalidated by the completion
process leading to the completeness condition.
However, we remark that for w-eo algebras the completeness assumption has to be con-
sidered quite restrictive. This is why we shall devote our interest in (right-)distributive
ceo algebras that one can see as the algebraic counterpart of a logical system.
Nevertheless some of our constructions only need to assume (L,→,⊺) to be a right-
distributive w-ceo algebra; stronger assumptions will be specified when they will be
necessary.

Let (L,→,⊺) be a right-distributive w-ceo algebra. Thus, by adjunction applied to
the function

ga ∶ L→ L, y ↦ (y)ga = a→ y

that preserves ⋀, we consider the left adjoint fa and define the product ⊗ ∶ L×L→ L by

a⊗ x = (x)fa = ⋀{t ∈ L∣ x ≤ a→ t}.
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Then ⊗ and → form an adjoint pair, i.e. for all x, y, z ∈ L:

x⊗ y ≤ z⇔ y ≤ x→ z.

This operation ⊗ is called adjoint product of the right-distributive w-ceo algebra; the
properties listed in the following Proposition have been already proved in [50], where the
stronger distributivity condition (d) is assumed; their proof in the more general case we
consider is similar, hence it is omitted.

Proposition 2.1.11. Let (L,→,⊺) be a right-distributive w-ceo algebra and let ⊗ be the
adjoint product. The following properties hold, for all a, b, c ∈ L,A,B ⊆ L.

1. a⊗ b ≤ a;

2. a⊗ ⊺ = a;

3. a⊗ � = �;

4. � ⊗ a = �;

5. ⊺ ⊗ a ≤ a if and only if ⊺→ a ≥ a;

6. ⊺ ⊗ a ≥ a if and only if (∀x ∈ L ∶ ⊺→ x ≥ a⇒ x ≥ a);
7. ⊺ ⊗ a = a if and only if (∀x ∈ L ∶ ⊺→ x ≥ a⇔ x ≥ a);
8. a⊗ (⋁B) = ⋁(a⊗B);
9. if b ≤ c, then a⊗ b ≤ a⊗ c;

10. a⊗ (a→ b) ≤ b ≤ a→ (a⊗ b).
If, moreover, L is a ceo algebra, then

11. if a ≤ b, then a⊗ c ≤ b⊗ c;

12. (⋁A)⊗ b ≥ ⋁(A⊗ b). ◻
Remark 2.1.12. We note that the equivalence ∀x ∈ L ∶ ⊺ → x ≥ a⇔ x ≥ a considered
in the item (7) of the Proposition 2.1.11 is equivalent to the equality ∀x ∈ L ∶ ⊺→ x = x.
This statement is an easy consequence of the criterion for which, for all x, y ∈ L x = y if
and only if ∀a ∈ L, x ≥ a⇔ y ≥ a.

The above results enlighten the main differences between (right-)distributive com-
plete weak extended-order algebras and complete residuated lattices.
We recall from [9, 58] that a complete integral residuated lattice is a complete lattice L
with additional binary operations ⊗, →, ¨ such that ⊗ gives a monoidal structure whose
unit is the top element ⊺ and such that, for all a, b, c ∈ L:

a ≤ b¨ c⇔ a⊗ b ≤ c⇔ b ≤ a→ c.
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If ⊗ is commutative, then clearly → and ¨ coincide.
As it is well known the product ⊗ is distributive over arbitrary joins (and hence isotonic)
in both arguments in every complete residuated lattice. So this product has a symmetri-
cal character (the same properties on both arguments) even when it is not commutative.
We are not aware of good motivations for the strong assumptions of associativity and
symmetry of the product; on the contrary, our results show that (right-)distributive
(w-)ceo algebras are a well motivated framework where such conditions do not necessar-
ily occur.
We shall discuss the symmetrical character of our algebras in the next Subsection.
Associativity and commutativity conditions will be considered in Subsection 2.1.5.

Now we approach the idempotency condition in eo algebras.

Definition 2.1.13. A w-eo algebra (L,→,⊺) is idempotent if the following equivalence
holds, for all a, b ∈ L:

a→ b = ⊺⇔ a→ (a→ b) = ⊺.

Note that the implication a → b = ⊺ ⇒ a → (a → b) = ⊺ is trivially satisfied, so the
above definition consists, in fact, in requiring the converse implication.

Proposition 2.1.14. 1. The MacNeille completion of an idempotent w-eo algebra is
idempotent.

2. An eo-algebra is idempotent if and only if its MacNeille completion is idempotent.

Proof. 1. Let (L,→,⊺) be an idempotent w-eo algebra, (K,→K ,⊺K) its MacNeille
completion. We need to prove that for all α,β ∈ K: α ≤K α →K β ⇒ α ≤K β, i.e.
that for all non-empty subsets A,B ⊆ L,B = Ub(Lb(B)) the implication

Lb(A) ⊆ Lb(Lb(A)→ B)⇒ Lb(A) ⊆ Lb(B)
is true.
So, let x ∈ Lb(A). Then x ≤ a′ → b,∀a′ ∈ Lb(A), b ∈ B, hence x ≤ x→ b,∀b ∈ B and,
by assumption, x ≤ b,∀b ∈ B, i.e. x ∈ Lb(B).

2. We only need to prove that (L,→,⊺) is idempotent if its MacNeille completion is
idempotent, which follows easily from Proposition 2.1.10 (1).

The following result explains why we have used the attribute “idempotent” in Defi-
nition 2.1.13.

Proposition 2.1.15. A right-distributive w-ceo algebra is idempotent if and only if its
adjoint product is idempotent.

Proof. Let (L,→,⊺) be a right-distributive w-ceo algebra and ⊗ the adjoint product.
If the algebra is idempotent, then the following equalities are true, for every a ∈ L:
a⊗ a = ⋀{t ∈ L∣ a ≤ a→ t} = ⋀{t ∈ L∣ a ≤ t} = a.
Conversely, if ⊗ is idempotent, then, for all a, b ∈ L, one has the following equivalences:
⊺ = a→ (a→ b)⇔ a ≤ a→ b⇔ a⊗ a ≤ b⇔ a ≤ b⇔ ⊺ = a→ b.
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Now we consider the strong idempotency condition, i.e. a→ (a→ b) = a→ b, for
all a, b ∈ L; then the following holds.

Proposition 2.1.16. Let (L,→,⊺) be a right-distributive eo algebra and (K,→K ,⊺K)
its MacNeille completion. Assuming that (L,≤) is a ⋁-semilattice with respect to the
natural ordering in L, then the following are equivalent:

1. a→ (a→ b) = a→ b, for all a, b ∈ L;

2. α →K (α →K β) = α →K β, for all α,β ∈K.

Proof. “(1) ⇒ (2)”. Let α,β ∈ K and let A,B ⊆ L be representatives of α and β, i.e.
α = [A] and β = [B]. We prove that [Lb(A)→ (Lb(A)→ B)] = [Lb(A)→ B].
Let x ∈ Lb(Lb(A)→ (Lb(A)→ B)); then x ≤ a→ (a′ → b), for all a, a′ ∈ Lb(A), b ∈ B and
in particular, x ≤ a → (a → b), for all a ∈ Lb(A), b ∈ B. By assumption x ≤ a → b, for all
a ∈ Lb(A), b ∈ B, hence x ∈ Lb(Lb(A)→ B).
Conversely, let x ∈ Lb(Lb(A)→ B); then x ≤ t→ b, for all t ∈ Lb(A), b ∈ B.
By assumption x ≤ t → (t → b), for all t ∈ Lb(A), b ∈ B. Now for all a, a′ ∈ Lb(A),
a∨a′ ∈ Lb(A) hence x ≤ (a∨a′)→ ((a∨a′)→ b) ≤ a→ (a′ → b) for all a, a′ ∈ Lb(A), b ∈ B.
Thus, x ∈ Lb(Lb(A)→ (Lb(A)→ B)).
“(2) ⇒ (1)”. (1) follows trivially from (2), thanks to Proposition 2.1.10 (1), taking
α = [a] and β = [b].
2.1.3 Symmetrical extended-order algebras

In this Subsection we shall see that the symmetrical character of the adjoint product
partially bridges the gap between cdeo algebras and complete residuated lattice, as
already remarked in the previous Subsection.
However we shall approach the symmetry condition in the quite general context of w-eo
algebras and give an internal characterization of symmetrical w-ceo algebras in terms
of the implication only; the behavior toward the MacNeille completion will be discussed,
too.

Definition 2.1.17. A w-eo algebra (L,→,⊺) is called symmetrical if there exists a
binary operation ¨∶ L×L→ L such that (L,¨,⊺) is a w-eo algebra, → and ¨ induce the
same order and y ≤ x ¨ b⇔ x ≤ y → b, for all b, x, y ∈ L. The w-eo algebras (L,→,⊺),(L,¨,⊺) and their implications →, ¨ are said to be dual to each other and they form a
Galois pair [→,¨].

The above Definition has a symmetrical character, so, with the above notation,(L,¨,⊺) is symmetrical if and only if (L,→,⊺) is symmetrical.

Lemma 2.1.18. If (L,→,⊺) is a symmetrical w-eo algebra and ¨ is the dual implication,
then for all a, b ∈ L one has:

a ≤ (a¨ b)→ b and a ≤ (a→ b)¨ b.
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Proof. The inequalities are equivalent to the obvious inequalities a ¨ b ≤ a ¨ b and
a→ b ≤ a→ b, respectively.

Proposition 2.1.19. Let (L,→,⊺) and (L,¨,⊺) be symmetrical w-eo algebras dual to
each other. Then:

1. each of them is left-distributive;

2. for all a, x ∈ L ∶ a ≤ ⊺→ x⇔ a ≤ x⇔ a ≤ ⊺¨ x;

3. if one of them is a right w-eo algebra then each of them is an eo algebra;

4. if one of them is right-distributive then each of them is distributive.

Proof. 1. Let A,A′ be subsets of L, b ∈ L and Ub(A) = Ub(A′).
Then x ∈ Lb(A ¨ b)⇔ ∀a ∈ A ∶ x ≤ a ¨ b⇔ ∀a ∈ A ∶ a ≤ x → b⇔ x → b ∈ Ub(A) =
Ub(A′)⇔ ∀a′ ∈ A′ ∶ a′ ≤ x → b⇔ ∀a′ ∈ A′ ∶ x ≤ a′ ¨ b⇔ x ∈ Lb(A′ ¨ b). It can be
proved similarly that (L,→,⊺) is left-distributive.

2. Since (L,¨,⊺) is a w-eo algebra it follows from the equivalence y ≤ x ¨ b ⇔
x ≤ y → b, for all b, x, y ∈ L, that a ≤ ⊺ → x⇔ ⊺ ≤ a ¨ x⇔ a ≤ x, for all a, x ∈ L.
The second equivalence can be proved similarly.

3. Assume (L,→,⊺) to be a right w-eo algebra and let x, y ∈ L, x ≤ y. Then for every
a ∈ L one has a ≤ (a¨ x)→ x ≤ (a¨ x)→ y; hence a¨ x ≤ a¨ y.
The statement then follows by also considering (1), since (dl)⇒ (o′5).

4. Assume (L,→,⊺) to be a right-distributive w-eo algebra and prove that (L,¨,⊺)
is right-distributive.
Let a ∈ L and B,B′ be subsets of L and assume Lb(B) = Lb(B′).
Then x ∈ Lb(a ¨ B)⇔ ∀b ∈ B ∶ x ≤ a ¨ b⇔ ∀b ∈ B ∶ a ≤ x → b⇔ a ∈ Lb(x → B) =
Lb(x→ B′)⇔ ∀b′ ∈ B′ ∶ a ≤ x→ b′⇔ ∀b′ ∈ B′ ∶ x ≤ a¨ b′⇔ x ∈ Lb(a¨ B′).

Since → and ¨ form a Galois pair, each of them is uniquely determined by the other
one. So one gets the following, by also considering item (3) of the above Proposition.

Corollary 2.1.20. A w-eo algebra (eo algebra, respectively) (L,→,⊺) is symmetrical
if and only if there exists a unique symmetrical w-eo algebra (eo algebra, respectively)(L,¨,⊺) such that → and ¨ induce the same order and y ≤ x ¨ b⇔ x ≤ y → b, for all
b, x, y ∈ L. ◻

The following Theorem gives an internal characterization of symmetrical w-ceo alge-
bras.

Theorem 2.1.21. Let (L,→,⊺) be a w-ceo algebra. L is symmetrical if and only if it is
left-distributive and the following equality ⊺→ x = x holds, for every x ∈ L.
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Proof. Assume (L,→,⊺) to be a symmetrical w-ceo algebra. By Proposition 2.1.19
(1) and (2) and by Remark 2.1.12 it follows trivially that the required conditions are
necessary.
Conversely, assume (L,→,⊺) to be a left-distributive w-ceo algebra such that ⊺→ x = x,
for every x ∈ L, that is equivalent, by Remark 2.1.12, to the equivalence a ≤ ⊺ → x⇔
a ≤ x, for all a, x ∈ L.
From Proposition 1.2.8 applied to the function defined by (y)hb = y → b, there exists a
unique function gb such that [hb, gb] is a Galois connection; denote (x)gb = x¨ b.
Then the equivalence y ≤ x¨ b⇔ x ≤ y → b holds, for all b, x, y ∈ L.
Moreover, by the assumption that (L,→,⊺) be a w-ceo algebra and from the equivalence
a ≤ ⊺ → x⇔ a ≤ x, for all a, x ∈ L, it follows that ¨ is an extension of the partial order
≤, since the equivalence ⊺ ≤ a ¨ b ⇔ a ≤ ⊺ → b ⇔ a ≤ b holds, for all a, b ∈ L. This
proves that (L,¨,⊺) is a complete weak extended-order algebra, hence the assertion
follows.

We observe that in the above Theorem we need the completeness condition only to
prove that the required conditions are sufficient.

Theorem 2.1.22. Let (L,→,⊺) be a w-eo algebra. If (L,→,⊺) is symmetrical, then its
MacNeille completion (K,→K ,⊺K) is symmetrical, too.

Proof. Assume (L,→,⊺) to be a symmetrical w-eo algebra. By definition, there exists
¨∶ L×L→ L such that (L,¨,⊺) is a w-eo algebra, → and ¨ induce the same order ≤ and
y ≤ x¨ b⇔ x ≤ y → b, for all x, y, b ∈ L. Then from Proposition 2.1.8 (2) (K,¨K ,⊺K) is
a w-eo algebra. Since ¨ extends ≤ then ¨K extends ≤K as →K does. So we only need
to prove that γ ≤K α ¨K β⇔ α ≤K γ →K β, for all α,β, γ ∈K.
Let X,Y be representatives of α and γ, respectively, and let B be the largest represen-
tative of β, i.e. α = [X], β = [B] and γ = [Y ].
Suppose [Y ] ≤K [X]¨K [B], i.e. Lb(Y ) ⊆ Lb(Lb(X)¨ B) and prove the inequality:[X] ≤K [Y ]→K [B], i. e. Lb(X) ⊆ Lb(Lb(Y )→ B).
Let p ∈ Lb(X); then, for all q ∈ Lb(Y ), b ∈ B one has that q ≤ p¨ b. Hence p ≤ q → b, for
all q ∈ Lb(Y ), b ∈ B. Then p ∈ Lb(Lb(Y )→ B).
Conversely, assuming that Lb(X) ⊆ Lb(Lb(Y ) → B) it can be proved in a similar way
that Lb(Y ) ⊆ Lb(Lb(X)¨ B).

We are not able to prove the converse of the implication in the above Theorem even
restricting to the case of eo algebras. Nevertheless we can characterize those eo algebras
whose MacNeille completion is symmetrical. First we prove the following.

Lemma 2.1.23. Let (L,→,⊺) be an eo algebra and (K,→K ,⊺K) its MacNeille comple-
tion. Then the following are equivalent:

1. a ≤ ⊺→ x⇔ a ≤ x, ∀a, x ∈ L;

2. α ≤K ⊺K →K γ⇔ α ≤K γ, ∀α, γ ∈K.
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Proof. “(1) ⇒ (2)”. Let α = [A] and let X be the largest representative of γ; then
⊺K →K γ = [L→X]. By the assumptions the following holds, for every a ∈ L:
a ∈ Lb(L → X)⇔ a ≤ t → x, ∀t ∈ L,∀x ∈ X ⇔ a ≤ ⊺ → x, ∀x ∈ X ⇔ a ≤ x, ∀x ∈ X ⇔
a ∈ Lb(X).
Hence Lb(L→X) = Lb(X) and (2) is true since Lb(A) ⊆ Lb(L→X)⇔ Lb(A) ⊆ Lb(X).
“(2) ⇒ (1)”. (1) follows trivially from (2), thanks to Proposition 2.1.10 (1), taking
α = [a] and γ = [x].
Proposition 2.1.24. An eo algebra (L,→,⊺) has a symmetrical MacNeille completion if
and only if it is left-distributive and satisfies the condition a ≤ ⊺→ x⇔ a ≤ x,∀a, x ∈ L.

Proof. It follows easily from Proposition 2.1.10, Theorem 2.1.21 and Lemma 2.1.23.

Corollary 2.1.25. If (L,→,⊺) is a symmetrical eo algebra, then it is left-distributive
and the following equivalence holds a ≤ ⊺→ x⇔ a ≤ x, for all a, x ∈ L.

Proof. It follows from the above Theorem 2.1.22 that the MacNeille completion(K,¨K ,⊺K) is symmetrical. Then the assertion follows from Proposition 2.1.24.

Proposition 2.1.26. If (L,→,⊺) is a symmetrical right-distributive w-ceo algebra, ¨
the dual implication and ⊗ the adjoint product then:

1. (L,→,⊺) is a cdeo algebra;

2. (L,¨,⊺) is a cdeo algebra;

3. ⊺ ⊗ a = a for every a ∈ L;

4. (⋁B)⊗ a = ⋁(B ⊗ a), for all a ∈ L,B ⊆ L.

Proof. (1) and (2) These follow by the assumption and from Proposition 2.1.19 (4).
(3) It is a trivial consequence of Propositions 2.1.19 and 2.1.11 (7).
(4) By symmetry and by the adjunction between ⊗ and →, the following equivalences
hold: x ≤ a¨ y⇔ a ≤ x→ y⇔ x⊗ a ≤ y, for all a, x, y ∈ L.
In particular x ≤ a ¨ y ⇔ x ⊗ a ≤ y, for all a, x, y ∈ L; from this equivalence it follows
that the functions defined by (x)fa = x⊗a and (y)ga = a¨ y form an adjunction fa ⊣ ga.
By this adjunction it follows that the map fa preserves sups, i. e. (⋁B)⊗a = ⋁(B⊗a),
for all a ∈ L,B ⊆ L .

Remark 2.1.27. With the assumption of the above Proposition, the adjoint product
of the cdeo algebra (L,¨,⊺) is the opposite ⊗op of ⊗, i. e. a⊗op b = b⊗ a. Of course ⊗
and ¨ are related by the equivalence a ≤ b¨ c⇔ a⊗ b ≤ c.

One cannot say that the cdeo algebras are symmetrical. However the structures
described in 17 and 18 of Appendix and subsequent results show that what cdeo algebras
miss is that ⊺ is a left unit of the adjoint product.

Proposition 2.1.28. If (L,→,⊺) is a cdeo algebra and ⊗ is the adjoint product, then(⋁B)⊗ a = ⋁(B ⊗ a), for all a ∈ L,B ⊆ L.
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Proof. By left-distributivity, from Proposition 1.2.8 applied to the function hb defined
by (y)hb = y → b, there exists a function gb such that [hb, gb]. Then the binary operation
¨ defined by (x)gb = x¨ b is such that x ≤ y ¨ b⇔ y ≤ x→ b, for all b, x, y ∈ L.
Since the adjoint product is such that a⊗ x ≤ y⇔ x ≤ a → y, for all a, x, y ∈ L, then the
following equivalences hold x ≤ a¨ y⇔ a ≤ x→ y⇔ x⊗ a ≤ y, for all a, x, y ∈ L.
So the function fa defined by (x)fa = x⊗ a is left adjoint to the function g′a defined by(y)g′a = a¨ y and hence it preserves ⋁. Then, (⋁B)⊗a = (⋁B)fa = ⋁(B)fa = ⋁(B⊗a),
for all a ∈ L,B ⊆ L.

The following Proposition characterizes the symmetrical cdeo algebras in terms of
the adjoint product.

Proposition 2.1.29. Let (L,→,⊺) be a right-distributive w-ceo algebra and let ⊗ be
the adjoint product. Then L is a symmetrical cdeo algebra if and only if the following
conditions hold:(s1) (⋁B)⊗ a = ⋁(B ⊗ a), for all a ∈ L,B ⊆ L;(s2) ⊺ ⊗ b = b, for all b ∈ L.

Proof. Assume that (L,→,⊺) be a symmetrical cdeo algebra. Then, (s1) follows from
Proposition 2.1.28.
From Theorem 2.1.21 the following equivalence holds

b ≤ ⊺→ x⇔ x ≥ b, for all b, x ∈ L

which is equivalent to (s2), by Proposition 2.1.11 (7).
Conversely, assume that (L,→,⊺) be a right-distributive w-ceo algebra such that (s1)
and (s2) hold. From Proposition 2.1.11 (7), (s2) is equivalent to the equivalence

b ≤ ⊺→ x⇔ x ≥ b, for all b, x ∈ L.

Moreover, from (s1) it follows that the map fa defined by (x)fa = x ⊗ a preserves ⋁.
Then there exists a right adjoint ga that determines a binary operation ¨, defined by(y)ga = a ¨ y, such that x ≤ a ¨ y ⇔ x ⊗ a ≤ y, for all a, x, y ∈ L. By also considering
the adjunction between ⊗ and → the following equivalences hold x ≤ y ¨ b⇔ x ⊗ y ≤
b ⇔ y ≤ x → b, for all b, x, y ∈ L. Thus, the maps defined by (y)g′b = y ¨ b and(x)hb = x → b form a Galois connection [g′b, hb]. Therefore, from Proposition 1.2.7 it
follows that (⋁A) → b = (⋁A)hb = ⋀(A)hb = ⋀(A → b), for any b ∈ L, A ⊆ L, i.e. → is
left-distributive. From Theorem 2.1.21 and Proposition 2.1.26 it follows that (L,→,⊺)
is a symmetrical cdeo algebra.

As already claimed in the Introduction and in the previous Subsections, we are inter-
ested in right-distributive w-ceo algebras, where an adjoint product can be defined. So,
the above Proposition 2.1.26 shows that the symmetry condition, when needed, has to
be considered directly in cdeo algebras. The possible further assumption of associativity
condition, that will be discussed in Subsection 2.1.5, would produce exactly the structure
of an integral residuated lattice as it is defined in [9, 58].
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The results of this Subsection also show that the completeness assumption in residu-
ated lattices is not a too strong restriction, by also considering that the associativity is
preserved by the MacNeille completion as it is shown in [50] (see also Subsection 2.1.6
below for further details).

Proposition 2.1.30. Let (L,→,⊺) be a symmetrical cdeo algebra, ¨ the dual implication
and ⊗ the adjoint product. Then, for all a, b, c ∈ L, the following properties hold.

1. a⊗ b ≤ b;

2. a⊗ b ≤ a ∧ b;

3. (a¨ b)⊗ a ≤ b ≤ a¨ (b⊗ a);

4. (a¨ b)⊗ a ≤ a ∧ b;

5. b ≤ a→ b;

6. b ≤ a¨ b;

7. ⊺→ a = a;

8. ⊺¨ a = a;

9. a ≤ (a→ b) ¨ b;

10. a ≤ (a¨ b) → b;

11. a→ (b→ c) = ⊺⇔ b¨ (a¨ c) = ⊺;

12. a¨ (b→ c) = ⊺⇔ b→ (a¨ c) = ⊺.

Proof. 1. From (o2) it follows that a ≤ b¨ b, hence a⊗ b ≤ b.

2. From (1) and Proposition 2.1.11 (1) the inequality trivially follows.

3. From a ¨ b ≤ a ¨ b it follows (a ¨ b) ⊗ a ≤ b; from b ⊗ a ≤ b ⊗ a it follows that
b ≤ a¨ (b⊗ a).

4. It follows easily by (1) and (3).

5. It follows from (1) by adjunction, according to Remark 2.1.27.

6. It follows from Proposition 2.1.11 (1) by adjunction.

7. From (5) a ≤ ⊺ → a; moreover the following equivalences hold ⊺ → a ≤ ⊺ → a ⇔
⊺ ⊗ (⊺→ a) ≤ a⇔ ⊺→ a ≤ a.

8. Similarly to (7).

9. See Lemma 2.1.18.



CHAPTER 2. EXTENDED-ORDER ALGEBRAS AND THE IMPLICATORS 37

10. See Lemma 2.1.18.

11. It follows easily by the equivalence a ≤ b→ c⇔ b ≤ a¨ c.

12. Similarly to (11).

Remark 2.1.31. Let (L,→,⊺) be a w-ceo algebra. Consider the coimplication operation
defined as follows, for all a, b ∈ L: a↔ b = (a→ b)∧(b→ a). If (L,→,⊺) is a symmetrical
cdeo algebra and ⊗ is its adjoint product, then, for all a, b ∈ L, the following equivalence
holds:

a⊗ b ≤ a↔ b⇔ a ∧ b ≤ a↔ b.

In fact, by Proposition 2.1.30 (2), we have that a ∧ b ≤ a↔ b⇒ a⊗ b ≤ a ∧ b ≤ a↔ b, for
all a, b ∈ L.
Conversely, by Proposition 2.1.30 (5), for all a, b ∈ L: a∧b ≤ a ≤ b→ a and a∧b ≤ b ≤ a→ b.

One can see, by means of the above Proposition, that symmetrical cdeo algebras
have the main properties of residuated lattices, except the associativity of the product.
As we shall see in Subsection 2.1.5, the assumption of associativity (and commutativity,
as well) will add not so much to our investigations.
So we argue that the associativity and commutativity assumptions in residuated lattices
have to be considered restrictive and, maybe, not necessary; in any case we have not
found good motivations for associativity and commutativity coming from the structure
of the algebra we consider, as we have done instead for the symmetry condition, naturally
arising by means of Galois connections. Nevertheless the role and the strength of the
associativity condition will be discussed in Subsections 2.1.5 and 2.1.6.

2.1.4 The negation and the disjunction connectives

It is quite natural to define a negation ¬ in a bounded implicative structure (L,→,⊺)
by setting ¬a = a→ �. This of course can be done in any w-ceo algebra but, taking into
account the symmetry condition and the consequent topics discussed in the previous
Subsection we state the following definition and notation.

Definition 2.1.32. Let (L,→,⊺) a w-ceo algebra. We define the following unary oper-
ation

[⋅]− ∶ L→ L,x↦ x− = x→ �.

If (L,→,⊺) is a symmetrical w-ceo algebra, then we can define a further unary operation

[⋅]∼ ∶ L→ L,x↦ x∼ = x¨ �

Both these operations are called negations and they are said to be dual to each other.
The negation [⋅]− ([⋅]∼, respectively) is involutive if x−− = x (x∼∼ = x, respectively), for
every x ∈ L.
The negations [⋅]− and [⋅]∼, and the symmetrical w-ceo algebra as well, are said to be
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cross-involutive if x∼− = x−∼ = x, for every x ∈ L.
A symmetrical w-ceo algebra is said to be good if x∼− = x−∼, for every x ∈ L.

Notation and the term “good” in the above Definition are borrowed from [12, 56, 57]
where, indeed, the cross-involutivity condition is expressed in terms of the so called
“double negation properties” x∼− = x and x−∼ = x.
The following Proposition states basic properties of the negation in a quite general
context; all the properties we shall state for a negation also hold for the dual negation,
under the assumption of symmetry, in a dual form which consists in interchanging [⋅]−
with [⋅]∼, → with ¨ and each term of the product ⊗ with the other one.

Proposition 2.1.33. Let (L,→,⊺) be a left w-ceo algebra. Then the following hold, for
all x, y ∈ L,{xi}i∈I ⊆ L.

1. �− = ⊺;

2. x ≤ y⇒ y− ≤ x−;

3. (⋁i∈I xi)− ≤ ⋀i∈I x−i ;

4. (⋀i∈I xi)− ≥ ⋁i∈I x−i ;

5. if (L,→,⊺) is a ceo algebra, then x− ≤ x→ y.

If the negation [⋅]− is involutive, then:

6. ⊺− = �;

7. (⋁i∈I xi)− = ⋀i∈I x−i ;

8. (⋀i∈I xi)− = ⋁i∈I x−i .

Proof. 1. From (o1) �− = �→ � = ⊺.

2. Let x ≤ y; from (o′5) it follows that y → � ≤ x→ �.

3. From (o′5) it follows that (⋁i∈I xi)− = (⋁i∈I xi) → � ≤ xi → �, for any i ∈ I. Then(⋁i∈I xi)− ≤ ⋀i∈I(xi → �) = ⋀i∈I x−i .

4. From (o′5) it follows that (⋀i∈I xi)− = (⋀i∈I xi) → � ≥ xi → �, for any i ∈ I. Then(⋀i∈I xi)− ≥ ⋁i∈I(xi → �) = ⋁i∈I x−i .

5. From (o5) it follows that x− = x→ � ≤ x→ y.

6. By assumption �−− = �; from (1) it follows that � = �−− = (�−)− = ⊺−.

7. From (2), (4) and by the assumption one has ⋀i∈I x
−
i = ((⋀i∈I x−i )−)− ≤ (⋁i∈I x−−i )− =(⋁i∈I xi)−.
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8. From (2), (3) and by the assumption it follows that ⋁i∈I x
−
i = ((⋁i∈I x−i )−)− ≥(⋀i∈I x−−i )− = (⋀i∈I xi)−.

It is clear that the properties of the negation depend essentially on the behavior of
the implication with respect to the first argument; so the left-distributivity condition
has further effects on the negation.
We exploit such effects by also assuming the right-distributivity condition, which pro-
vides the adjoint product, in the next Proposition; of course this means that we consider
cdeo algebras.

Proposition 2.1.34. If (L,→,⊺) is a cdeo algebra, then the following hold, for all
x, y ∈ L,{xi}i∈I ⊆ L.

1. x⊗ x− = �;

2. x ≤ y−⇔ y ⊗ x = �;

3. (⋁i∈I xi)− = ⋀i∈I x−i .

Proof. 1. From Proposition 2.1.11 (10) it follows that x⊗ (x→ �) ≤ �.

2. It follows by adjunction.

3. From (dl) it follows that (⋁i∈I xi)− = (⋁i∈I xi)→ � = ⋀i∈I(xi → �) = ⋀i∈I x−i .

Eventually, we list and prove further properties involving the pair of dual negations
of a symmetrical cdeo algebra, by omitting the dual version of those already considered
in Propositions 2.1.33 and 2.1.34.

Proposition 2.1.35. Let (L,→,⊺) be a symmetrical cdeo algebra. Then the following
hold, for all x, y ∈ L.

1. ⊺− = �, ⊺∼ = �;

2. x ≤ x−∼, x ≤ x∼−;

3. x ≤ y∼⇔ y ≤ x−;

4. x ≤ x− ¨ y, x ≤ x∼ → y;

5. x−∼− = x−, x∼−∼ = x∼.

Proof. 1. It follows from Proposition 2.1.30 (7) and (8).

2. From adjunction and from Proposition 2.1.34 (1), the equivalences x ≤ x−∼ ⇔
x ≤ x− ¨ �⇔ x⊗ x− ≤ � hold; hence the first part of (2) is true and the second
part follows by duality.
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3. Since → and ¨ form a Galois connection the following equivalence x ≤ y ¨ �⇔
y ≤ x→ � holds.

4. The first part follows from the true equivalence x ≤ x− ¨ y⇔ x⊗ x− = � ≤ y. The
second part is dual.

5. From (4) and Proposition 2.1.33 (2) it follows that x−∼− ≤ x−. Moreover the
inequality (x− ¨ �)⊗x− ≤ � is true, by Proposition 2.1.30 (3); hence by adjunction
x− ≤ (x− ¨ �)→ �. So x−∼− = x−. The second equality follows by duality.

Proposition 2.1.36. Let (L,→,⊺) be a symmetrical cdeo algebra and assume that it is
good.

1. If the negation [⋅]− is involutive, then the dual negations are cross-involutive.

2. If the negation [⋅]∼ is involutive, then the dual negations are cross-involutive.

3. If both the dual negations are involutive, then they coincide.

Proof. 1. By assumption it follows from Proposition 2.1.35 (5) that x∼− = x−∼ =(x−∼)−− = (x−∼−)− = x, for every x ∈ L.

2. It follows similarly from Proposition 2.1.35 (5).

3. By assumption and Proposition 2.1.35 (5), the following implications hold x−− =

x = x∼∼⇒ x−−∼ = x∼∼∼⇒ x−∼− = x∼∼∼⇒ x− = x∼, for every x ∈ L.

The disjunction connective ⊕ in the algebras frequently used in many-valued logics
is usually derived from the conjunction ⊗ and the negation ¬ by means of the formula

a⊕ b = ¬(¬a⊗¬b)
as it is done for instance in MV -algebras (see [10] and [52]). Something similar has been
done in pseudo-MTL algebras, that are, in our terminology, symmetrical associative
(see Subsection 2.1.5 for the notion of associativity) cdeo algebras with the pseudo-
prelinearity condition (see [12]). In fact the disjunction operation is defined in [12] by

a⊕ b = (b∼ ⊗ a∼)−
under the additional property of goodness, i.e. assuming a∼− = a−∼.
The above formulas are motivated by the classical equality, in a boolean algebra,

A ∨B = −(−A ∧ −B)
that, indeed, holds thanks to the double negation property − −A = A.
In this sense we find correct what is done in MV -algebras where, in fact, the double
negation law holds; on the contrary we think that the definition of disjunction given in
[12] is not well motivated.
We prefer to consider the classical equivalences
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A ⊆ B⋃C⇔ A ∖B ⊆ C⇔ A⋂−B ⊆ C⇔ −B⋂A ⊆ C

whose first and forth terms form indeed an adjunction (considering fB = −B⋂ [⋅] and
gB = B⋃ [⋅], the equivalence becomes A ⊆ (C)gB ⇔ (A)fB ⊆ C), as a motivating
suggestion to get disjunction connectives through conjunction and negation.
In fact, this can be done in quite general algebras (right-distributive w-ceo algebras)
by simply applying the adjoint condition (in particular Proposition 1.2.4); this can be
done in several, different but closely related ways, mainly when the symmetry condition
is assumed.
Doing so, we shall not need to assume the algebra to be either commutative or
associative: only the symmetry assumption and the involutive and cross-involutive
conditions will be useful to prove that the disjunction connectives have quite good
properties, resembling those which are satisfied in the classical context.

Let (L,→,⊺) be a right-distributive w-ceo algebra.
Then we can consider the operator a−⊗[⋅]; it preserves ⋁ so it has a unique right adjoint
that is

(y)h−a = ⋁{x ∈ L∣ a− ⊗ x ≤ y} = ⋁{x ∈ L∣ x ≤ a− → y} = a− → y

which can be meant as disjunction either of a and y or of y and a.

Definition 2.1.37. Let (L,→,⊺) be a right-distributive w-ceo algebra. The following
binary operations

⊎(−)→ ∶ L ×L→ L, (a, b)↦ a ⊎(−)→ b = b− → a;
(−)⊎→ ∶ L ×L→ L, (a, b)↦ a(−) ⊎→ b = a− → b

are called disjunction operations or simply disjunctions.

Remark 2.1.38. With the above notation, for all a, b ∈ L the following equality holds:

a(−) ⊎→ b = b ⊎
(−)
→ a.

So we shall say that these operations are opposite to each other. We devote our

investigation mainly to one of the two disjunctions, namely to ⊎(−)→ ; corresponding results
will hold for (−)⊎→, that we shall not list explicitly.

Proposition 2.1.39. Let (L,→,⊺) be a right-distributive w-ceo algebra. The following
properties hold, for all a, b, c ∈ L,{bi}i∈I ⊆ L.

1. � ⊎(−)→ a = a−−;

2. a ⊎(−)→ � = ⊺→ a;

3. ⊺ ⊎(−)→ a = ⊺;

4. a− ⊎(−)→ a = ⊺;
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5. a ⊎(−)→ a− = ⊺⇔ a−− ≤ a;

6. if a ≤ b, then a ⊎(−)→ c ≤ b ⊎(−)→ c;

7. (⋀i∈I bi) ⊎(−)→ a = ⋀i∈I(bi ⊎(−)→ a);
8. (⋁i∈I bi) ⊎(−)→ a ≥ ⋁i∈I(bi ⊎(−)→ a).

If the negation [⋅]− is involutive, then:

9. � ⊎(−)→ a = a;

10. a ⊎(−)→ b ≥ b;

11. a ⊎(−)→ ⊺ = ⊺;

12. a ⊎(−)→ a− = ⊺.

Proof. We note that L satisfies the axiom (o5).
1. By definition � ⊎(−)→ a = a− → � = a−−.

2. From Proposition 2.1.33 (1) it follows easily that a ⊎(−)→ � = �− → a = ⊺→ a.

3. From (o1) ⊺ ⊎(−)→ a = a− → ⊺ = ⊺.

4. From (o2) a− ⊎(−)→ a = a− → a− = ⊺.

5. From Proposition 2.1.2 it follows trivially that a ⊎(−)→ a− = a−− → a = ⊺⇔ a−− ≤ a.

6. Let a ≤ b; from (o5) it follows that a ⊎(−)→ c = c− → a ≤ c− → b = b ⊎(−)→ c.

7. From (dr) it follows that (⋀i∈I bi) ⊎(−)→ a = a− → (⋀i∈I bi) = ⋀i∈I(a− → bi) =
⋀i∈I(bi ⊎(−)→ a).

8. From (o5) it follows that (⋁i∈I bi) ⊎(−)→ a = a− → (⋁i∈I bi) ≥ a− → bi, for every i ∈ I.

Then (⋁i∈I bi) ⊎(−)→ a ≥ ⋁i∈I(a− → bi) = ⋁i∈I(bi ⊎(−)→ a).
9. It follows trivially by assumption and from (1).

10. It follows from (6) and (9) that a ⊎(−)→ b ≥ � ⊎(−)→ b = b.

11. From Proposition 2.1.33 (6) it follows that a ⊎(−)→ ⊺ = ⊺− → a = �→ a = ⊺.

12. By assumption it follows that a ⊎(−)→ a− = a−− → a = a→ a = ⊺.
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Proposition 2.1.40. Let (L,→,⊺) be a right-distributive ceo algebra. The following
properties hold, for all a, b, c ∈ L,{bi}i∈I ⊆ L.

1. if a ≤ b, then c ⊎(−)→ a ≤ c ⊎(−)→ b;

2. a ⊎(−)→ (⋀i∈I bi) ≤ ⋀i∈I(a ⊎(−)→ bi);
3. a ⊎(−)→ (⋁i∈I bi) ≥ ⋁i∈I(a ⊎(−)→ bi).

Proof. 1. Let a ≤ b; from (o′5) and from Proposition 2.1.33 (2) it follows that c⊎(−)→ a =

a− → c ≤ b− → c = c ⊎(−)→ b.

2. It follows easily from (1).

3. It follows easily from (1).

Proposition 2.1.41. Let (L,→,⊺) be a cdeo algebra. If the negation [⋅]− is involutive,
then the following property holds, for all a ∈ L,{bi}i∈I ⊆ L:

a ⊎(−)→ (⋀i∈I bi) = ⋀i∈I(a ⊎(−)→ bi).
Proof. By assumption and left-distributivity of L, it follows that a ⊎(−)→ (⋀i∈I bi) =(⋀i∈I bi)− → a = (⋁i∈I b−i )→ a = ⋀i∈I(b−i → a) = ⋀i∈I(a ⊎(−)→ bi).

Let (L,→,⊺) be a symmetrical cdeo algebra. Then, in addition to the disjunction
operations already defined, the above discussed motivation allows to consider three fur-
ther pairs of such operations as follows.
We consider the operator [⋅]⊗ b−; since, by Proposition 2.1.29, ⊗ preserves ⋁ on the left
side, we can consider its right adjoint

(y)g−b = ⋁{x ∈ L∣ x⊗ b− ≤ y} = ⋁{x ∈ L∣ x ≤ b− ¨ y} = b− ¨ y.

Similarly, we consider the operator [⋅] ⊗ b∼ which preserves ⋁ and then its right
adjoint

(y)g∼b = ⋁{x ∈ L∣ x⊗ b∼ ≤ y} = ⋁{x ∈ L∣ x ≤ b∼ ¨ y} = b∼ ¨ y.

If we consider the operator a∼ ⊗ [⋅] then, it preserves ⋁ and its right adjoint is

(y)h∼a = ⋁{x ∈ L∣ a∼ ⊗ x ≤ y} = ⋁{x ∈ L∣ x ≤ a∼ → y} = a∼ → y.

We list all the disjunction operations that can be considered in a symmetrical cdeo
algebra, including those already considered in Definition 2.1.37.

Definition 2.1.42. Let (L,→,⊺) be a symmetrical right-distributive w-ceo algebra. The
following binary operations
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⊎(−)¨ ∶ L ×L→ L, (a, b)↦ a ⊎(−)¨ b = b− ¨ a;
(−)⊎¨ ∶ L ×L→ L, (a, b)↦ a(−) ⊎¨ b = a− ¨ b;

⊎(−)→ ∶ L ×L→ L, (a, b)↦ a ⊎(−)→ b = b− → a;
(−)⊎→ ∶ L ×L→ L, (a, b)↦ a(−) ⊎→ b = a− → b;

⊎(∼)¨ ∶ L ×L→ L, (a, b)↦ a ⊎(∼)¨ b = b∼ ¨ a;
(∼)⊎¨ ∶ L ×L→ L, (a, b)↦ a(∼) ⊎¨ b = a∼ ¨ b;

⊎(∼)→ ∶ L ×L→ L, (a, b)↦ a ⊎(∼)→ b = b∼ → a;
(∼)⊎→ ∶ L ×L→ L, (a, b)↦ a(∼) ⊎→ b = a∼ → b

are called disjunction operations or simply disjunctions of the algebra (L,→,⊺).
Remark 2.1.43. With the above notation, the following equalities hold, for all a, b ∈ L

1. a(−) ⊎¨ b = b ⊎
(−)
¨ a;

2. a(−) ⊎→ b = b ⊎
(−)
→ a;

3. a(∼) ⊎¨ b = b ⊎
(∼)
¨ a;

4. a(∼) ⊎→ b = b ⊎
(∼)
→ a.

The above equalities and the already discussed symmetry of → and ¨ allows clearly
to get quite similar, or at least related, properties of these operations: in this sense one
would not need to list all of them, but only one of each pair of opposite disjunctions. It

has to be expected, by the symmetrical character of → and ¨, that ⊎(−)→ and ⊎(∼)¨ have

similar properties; ⊎(∼)→ and ⊎(−)¨ have similar properties to each other, too.
So, one could say in some sense that in a symmetrical cdeo algebra there are two types

of disjunctions, said the linear disjunctions (which are ⊎(−)→ , ⊎(∼)¨ , (−)⊎→ and (∼)⊎¨)

and the cross disjunctions (which are ⊎(∼)→ , ⊎(−)¨ , (∼)⊎→ and (−)⊎¨).

Our choice is to list and prove the properties of the linear disjunction ⊎(−)→ (partly already
considered in Propositions 2.1.39, 2.1.40 and 2.1.41) and those of the cross disjunction

⊎(−)¨ . It would be an easy exercise to express and prove corresponding properties of the
other disjunctions.

Proposition 2.1.44. Let (L,→,⊺) be a symmetrical cdeo algebra. The following prop-
erties hold, for all a, b, c ∈ L,{bi}i∈I ⊆ L.

1. a ⊎(−)¨ b ≥ a;

2. a ⊎(−)¨ b ≥ b;

3. a ⊎(−)¨ b ≥ a ∨ b;

4. a ⊎(−)¨ � = a;

5. � ⊎(−)¨ a = a−∼;
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6. a ⊎(−)¨ ⊺ = ⊺;

7. ⊺ ⊎(−)¨ a = ⊺;

8. a− ⊎(−)¨ a = ⊺;

9. a ⊎(−)¨ a− = ⊺⇔ a−− ≤ a;

10. a∼ ⊎(−)¨ a = ⊺⇔ a ≤ a−−;

11. a ⊎(−)¨ a∼ = ⊺⇔ a∼− ≤ a;

12. if a ≤ b, then a ⊎(−)¨ c ≤ b ⊎(−)¨ c;

13. if a ≤ b, then c ⊎(−)¨ a ≤ c ⊎(−)¨ b;

14. a ⊎(−)¨ (⋀i∈I bi) ≤ ⋀i∈I(a ⊎(−)¨ bi);
15. (⋀i∈I bi) ⊎(−)¨ a = ⋀i∈I(bi ⊎(−)¨ a);
16. a ⊎(−)¨ (⋁i∈I bi) ≥ ⋁i∈I(a ⊎(−)¨ bi);
17. (⋁i∈I bi) ⊎(−)¨ a ≥ ⋁i∈I(bi ⊎(−)¨ a).

If the negations [⋅]∼ and [⋅]− are cross-involutive, then:

18. � ⊎(−)¨ a = a;

19. a ⊎(−)¨ a∼ = ⊺.

If the negation [⋅]− is involutive, then:

20. a ⊎(−)¨ (⋀i∈I bi) = ⋀i∈I(a ⊎(−)¨ bi);
21. a ⊎(−)¨ a− = ⊺;

22. a∼ ⊎(−)¨ a = ⊺.

Proof. We note that, from Proposition 2.1.26 (2) it follows that (L,¨,⊺) is distributive.
Then (L,¨,⊺) satisfies the axioms (o5) and (o′5).

1. From Proposition 2.1.30 (6) it follows trivially that a ⊎(−)¨ b = b− ¨ a ≥ a.

2. From Proposition 2.1.35 (4) it follows trivially that a ⊎(−)¨ b = b− ¨ a ≥ b.

3. It follows easily from (1) and (2).
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4. From Propositions 2.1.33 (1) and 2.1.30 (8) it follows that a ⊎(−)¨ � = �− ¨ a=

⊺¨ a = a.

5. By definition � ⊎(−)¨ a = a− ¨ � = a−∼.

6. From Proposition 2.1.35 (1) it follows easily that a ⊎(−)¨ ⊺ = ⊺− ¨ a = �¨ a = ⊺.

7. From (o1) it follows that ⊺ ⊎(−)¨ a = a− ¨ ⊺ = ⊺.

8. From (o2) it follows that a− ⊎(−)¨ a = a− ¨ a− = ⊺.

9. From Proposition 2.1.2 it follows trivially that a ⊎(−)¨ a− = a−− ¨ a = ⊺⇔ a−− ≤ a.

10. From Proposition 2.1.2 and Definition 2.1.17 the following equivalences hold:

a∼ ⊎(−)¨ a = a− ¨ a∼ = ⊺⇔ a− ≤ a∼⇔ a− ≤ a¨ �⇔ a ≤ a− → �⇔ a ≤ a−−.

11. From Proposition 2.1.2 it follows trivially that a ⊎(−)¨ a∼ = a∼− ¨ a = ⊺⇔ a∼− ≤ a.

12. Let a ≤ b; from (o5) it follows that a ⊎(−)¨ c = c− ¨ a ≤ c− ¨ b = b ⊎(−)¨ c.

13. Let a ≤ b; from (o′5) and from Proposition 2.1.33 (2) it follows that:

c ⊎(−)¨ a = a− ¨ c ≤ b− ¨ c = c ⊎(−)¨ b.

14. From distributivity, (o′5) and from Proposition 2.1.33 (4) it follows that:

a ⊎(−)¨ (⋀i∈I bi) = (⋀i∈I bi)− ¨ a ≤ (⋁i∈I b−i )¨ a = ⋀i∈I(b−i ¨ a) = ⋀i∈I(a ⊎(−)¨ bi).
15. From (dr) it follows that (⋀i∈I bi) ⊎(−)¨ a = a− ¨ (⋀i∈I bi) = ⋀i∈I(a− ¨ bi) =

⋀i∈I(bi ⊎(−)¨ a).
16. From Proposition 2.1.34 (3) and (o′5) it follows that:

a ⊎(−)¨ (⋁i∈I bi) = (⋁i∈I bi)− ¨ a = (⋀i∈I b−i )¨ a ≥ b−i ¨ a, for every i ∈ I.

Then a ⊎(−)¨ (⋁i∈I bi) ≥ ⋁i∈I(b−i ¨ a) = ⋁i∈I(a ⊎(−)¨ bi).
17. From (o5) it follows that (⋁i∈I bi) ⊎(−)¨ a = a− ¨ (⋁i∈I bi) ≥ a− ¨ bi, for any i ∈ I.

Then (⋁i∈I bi) ⊎(−)¨ a ≥ ⋁i∈I(a− ¨ bi) = ⋁i∈I(bi ⊎(−)¨ a).
18. By assumption and from (5), it follows trivially.

19. By assumption and from (11) it follows that a ⊎(−)¨ a∼ = a∼− ¨ a = a¨ a = ⊺.

20. By assumption and left-distributivity of L, it follows that:

a ⊎(−)¨ (⋀i∈I bi) = (⋀i∈I bi)− ¨ a = (⋁i∈I b−i )¨ a = ⋀i∈I(b−i ¨ a) = ⋀i∈I(a ⊎(−)¨ bi).
21. By assumption it follows that a ⊎(−)¨ a− = a−− ¨ a = a¨ a = ⊺.

22. By assumption and from (10) it follows trivially.
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We note that the properties of the operator ⊎(−)→ already listed in Propositions 2.1.39,
2.1.40 and 2.1.41 hold, obviously, in a symmetrical cdeo algebra.
Now we list and prove the additional properties that we can obtain, by assumption of
symmetry.

Proposition 2.1.45. Let (L,→,⊺) be a symmetrical cdeo algebra. The following prop-
erties hold, for all a, b ∈ L.

1. a ⊎(−)→ b ≥ a;

2. a ⊎(−)→ � = a;

3. a ⊎(−)→ ⊺ = ⊺;

4. a∼ ⊎(−)→ a = ⊺⇔ a ≤ a−−;

5. a ⊎(−)→ a∼ = ⊺⇔ a∼− ≤ a;

6. if the negation [⋅]− is involutive, then a∼ ⊎(−)→ a = ⊺;

7. if the negations [⋅]− and [⋅]∼ are cross-involutive, then a ⊎(−)→ a∼ = ⊺.

Proof. 1. From Proposition 2.1.30 (5) it follows trivially that a ⊎(−)→ b = b− → a ≥ a.

2. From Propositions 2.1.33 (1) and 2.1.30 (7) it follows that a ⊎(−)→ � = �− → a =

⊺→ a = a.

3. From Proposition 2.1.35 (1) it follows that a ⊎(−)→ ⊺ = ⊺− → a = �→ a = ⊺.

4. From Proposition 2.1.2 and Definition 2.1.17 the following equivalences hold:

a∼ ⊎(−)→ a = a− → a∼ = ⊺⇔ a− ≤ a∼⇔ a− ≤ a¨ �⇔ a ≤ a− → �⇔ a ≤ a−−.

5. From Proposition 2.1.2 it follows trivially that a ⊎(−)→ a∼ = a∼− → a = ⊺⇔ a∼− ≤ a.

6. It follows trivially by assumption and from (4).

7. It follows trivially by assumption and from (5).

Remark 2.1.46. 1. We have already quoted, at the beginning of this Subsection,
a different approach to disjunction done in [12]; the associativity condition there
assumed on the product allows to prove that the (unique defined there) disjunction
⊕ is associative too.
We remark that the associativity is the only property of ⊕ proved in [12] that we
cannot obtain for our disjunctions; all the other properties of ⊕ are satisfied by
our types of disjunctions under suitable involutivity assumptions on the negations:
nevertheless we do not need either associativity or pseudo-prelinearity which are
assumed in [12].
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2. It is also relevant that the disjunction ⊕ considered in [12], under the conditions
there assumed on the algebra, can be expressed also by the equalities

x⊕ y = x− ¨ y−∼ = y∼ → x−∼

which shows that ⊕ coincides with two of our cross disjunctions in case the nega-
tions are cross-involutive.

3. If all the involutivity conditions are satisfied in a symmetrical cdeo algebra, then
by Proposition 2.1.36 there is a unique negation, whose basic properties can be
deduced by the above Propositions.

2.1.5 Commutativity and associativity of w-eo algebras

In this Subsection we shall deal with the commutativity and associativity condi-
tions of the various kinds of w-eo algebras we have considered, in a more general setting
than in [50]; we shall slightly improve most results given in [50] so, in fact, we restate all
of those replacing the distributivity condition, assumed there, by the right-distributivity
condition. We omit the proofs of these results since they are similar to those given in
[50]. New results will be stated and proved mainly in connection with the symmetry
condition.
What we are mainly interested to note is that the commutativity and the associativity
assumptions do not allow much better results than those obtained under the symmetry
assumption: commutativity adds essentially the equality a− ⊗ a = � while associativity
adds a lot of technical but somehow unessential results. Nevertheless it will become evi-
dent which is the fundamental role of associativity, that we shall discuss in the concluding
Subsection.

Definition 2.1.47. [50] A w-eo algebra (L,→,⊺) is commutative if and only if it
satisfies the weak exchange condition:(c) a→ (b→ c) = ⊺⇔ b→ (a→ c) = ⊺, for all a, b, c ∈ L.

Proposition 2.1.48. The MacNeille completion of a commutative and right-distributive
w-eo algebra is commutative. ◻

Corollary 2.1.49. If (L,→,⊺) is a right-distributive eo algebra, then (L,→,⊺) is com-
mutative if and only if its MacNeille completion (K,→K ,⊺K) is. ◻

Proof. It follows trivially by the embedding described in Proposition 2.1.10 and by the
above Proposition.

Proposition 2.1.50. A right-distributive w-ceo algebra (L,→,⊺) is commutative if and
only if its adjoint product ⊗ is commutative. ◻

Proposition 2.1.51. Let (L,→,⊺) be a right-distributive w-ceo algebra. If it is commu-
tative the following hold.
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1. (L,→,⊺) is symmetrical;

2. ¨ coincides with →.

Proof. Assume that (L,→,⊺) to be a right-distributive commutative w-ceo algebra.

1. From Proposition 2.1.11 (2),(8) and by assumption it follows that:(s1) (⋁B)⊗ a = a⊗ (⋁B) = ⋁(a⊗B) = ⋁(B ⊗ a), for all a ∈ L,B ⊆ L;(s2) ⊺ ⊗ b = a⊗ ⊺ = b, for all b ∈ L.
Then, from Proposition 2.1.29 (L,→,⊺) is symmetrical.

2. We consider the map fa(x) = x ⊗ a; its right adjoint is ha(y) = a ¨ y. The map
f ′a(x) = a ⊗ x has right adjoint ga(y) = a → y. By commutativity, fa = f

′
a and,

hence, by uniqueness of adjoint, ga = ha.

Corollary 2.1.52. If (L,→,⊺) is a right-distributive commutative w-ceo algebra, then
it is a commutative cdeo algebra.

Proof. From Proposition 2.1.51 (L,→,⊺) is symmetrical. Hence, from Proposition 2.1.26
(1) it is a commutative cdeo algebra.

From the previous results it follows that the commutative cdeo algebras and the
related connectives have all the properties that are satisfied in symmetrical cdeo algebras,
in particular those we have obtained in the previous Subsections.
We can obtain only a few additional properties that we list below, among which the
commutativity condition itself.

Proposition 2.1.53. If (L,→,⊺) is a commutative cdeo algebra, then the following hold,
for all a, b ∈ L:

1. a⊗ b = b⊗ a;

2. a− ⊗ a = �.

Proof. (1) is a trivial consequence of Proposition 2.1.50. Thence (2) follows by also using
Proposition 2.1.34 (1).

Definition 2.1.54. [50] A w-eo algebra (L,→,⊺) is associative if and only if it satisfies
the following condition:(a) Lb(Lb(A) → (Lb(B) → C)) = Lb(Lb({x∣ Lb(A) ⊆ Lb(Lb(B) → x)}) → C), for all
A,B,C ⊆ L.

Lemma 2.1.55. If (L,→,⊺) is a right-distributive w-ceo algebra, then the condition (a)
can be formulated in the following equivalent way:(a′) a→ (b→ c) = (⋀{x∣ a→ (b→ x) = ⊺})→ c, for all a, b, c ∈ L. ◻
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Proposition 2.1.56. Let (L,→,⊺) be a right-distributive w-eo algebra and let(K,→K ,⊺K) be its MacNeille completion, with the above notation. Then K is asso-
ciative if and only if L is associative.

Proof. It is proved in [50], Proposition 38, that the associativity condition is preserved
by the MacNeille completion under the assumption of distributivity of L; however, such
a proof only needs the right-distributivity.
The converse is also claimed in [50], Corollary 44, without any proof, once more assuming
distributivity. Now, we give a proof in our case. So, let (K,→K ,⊺K) be associative, let
A,B,C ⊆ L and assume Lb(A), Lb(B), C be non-empty (otherwise, the proof is trivial).
By Lemma 2.1.55 the assumption implies that:

[A]→K ([B]→K [C]) = (⋀K {[D] ∣ D ⊆ L, [A] ≤K [B]→K [D]})→K [D]
hence, by Remark 1.3.2 and Lemma 2.1.9 (2)

[Lb(A)→ (Lb(B)→ C)] = [⋃{D ⊆ L∣ Lb(A) ⊆ Lb(Lb(B)→D)}]→K [C]
= [{x ∈ L∣ Lb(A) ⊆ Lb(Lb(B)→ x)}]→K [C]
= [Lb({x ∈ L∣ Lb(A) ⊆ LB(Lb(B)→ x)}→ C] .

So the condition of Definition 2.1.54 is satisfied.

Remark 2.1.57. Let (L,→,⊺) be a right-distributive w-ceo algebra. If ⊗ denotes the
adjoint product, then the associativity condition (a) is equivalent to:(a′′) a→ (b→ c) = (b⊗ a)→ c, for all a, b, c ∈ L.

Proposition 2.1.58. Let (L,→,⊺) be a right-distributive w-ceo algebra. Its adjoint
product ⊗ is associative if and only if L is associative. ◻

Corollary 2.1.59. Let (L,→,⊺) be a symmetrical cdeo algebra and ¨ the dual implica-
tion. Then (L,→,⊺) is associative if and only if (L,¨,⊺) is associative. ◻

Proposition 2.1.60. Let (L,→,⊺) be a cdeo algebra and let ⊗ be its adjoint product. If
L is associative, then, for all a, b, c ∈ L:

1. (a→ b)⊗ (b→ c) ≤ a→ c;

2. (b→ c) ≤ (a→ b)→ (a→ c);
3. a→ b− = (b⊗ a)−;

4. a− ⊎(−)→ b = (a⊗ b−)−.

Proof. (1) and (2) are proved in [50], Proposition 42.
(3) From (a′′) it follows that a→ b− = a→ (b→ �) = (b⊗ a)→ � = (b⊗ a)−.
(4) It follows easily from (3).
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Proposition 2.1.61. Let (L,→,⊺) be a symmetrical cdeo algebra. If it is associative,
then the following properties hold, for all a, b, c ∈ L.

1. (b¨ c)⊗ (a¨ b) ≤ a¨ c;

2. (b¨ c) ≤ (a¨ b)¨ (a¨ c);
3. a¨ (b¨ c) = (a⊗ b)¨ c;

4. a¨ b∼ = (a⊗ b)∼;

5. a∼ ⊎(∼)¨ b = (b∼ ⊗ a)∼.

Proof. 1. By associativity it follows from Proposition 2.1.30 (3) that:[(b¨ c)⊗ (a¨ b)]⊗ a = (b¨ c)⊗ [(a¨ b)⊗ a] ≤ (b¨ c)⊗ b ≤ c.
Then the statement follows by adjunction.

2. It is clearly equivalent to (1).

3. The first inequality is true since the following equivalence holds:
a¨ (b¨ c) ≤ (a⊗ b)¨ c⇔ (a¨ (b¨ c))⊗ (a⊗ b) ≤ c.
In fact, by assumption and from Proposition 2.1.30(3) we have that:(a¨ (b¨ c))⊗ (a⊗ b) = [(a¨ (b¨ c))⊗ a]⊗ b ≤ (b¨ c)⊗ b ≤ c.
The second inequality (a ⊗ b) ¨ c ≤ a ¨ (b ¨ c) follows from the equivalences(a⊗ b) ¨ c ≤ a ¨ (b ¨ c)⇔ [(a⊗ b)¨ c]⊗ a ≤ b ¨ c⇔ {[(a⊗ b)¨ c]⊗ a}⊗ b ≤ c.
In fact, by assumption and from Proposition 2.1.30 (3) {[(a⊗ b)¨ c]⊗ a} ⊗ b =[(a⊗ b)¨ c]⊗ (a⊗ b) ≤ c.

4. From (3), it follows that a¨ b∼ = (a⊗ b)∼⇔ a¨ (b¨ �) = (a⊗ b)¨ �.

5. From (4) it follows that a∼ ⊎(∼)¨ b = b∼ ¨ a∼ = (b∼ ⊗ a)∼.

Proposition 2.1.62. Let (L,→,⊺) be a symmetrical cdeo algebra. If it is associative,
then the following properties hold, for all a, b, c ∈ L.

1. a¨ b ≤ b∼ → a∼, a→ b ≤ b− ¨ a−;

2. a¨ b− = b→ a∼, a→ b∼ = b¨ a−;

3. a¨ a− = a→ a∼;

4. b∼ → a∼ = a∼− ¨ b∼− = a¨ b∼−, b− ¨ a− = a−∼ → b−∼ = a→ b−∼;

5. a¨ (b→ c) = b→ (a¨ c);
6. a→ b ≤ (b→ c)¨ (a→ c);
7. a¨ b− = b−∼ → a∼ = a∼− ¨ b−;
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8. a→ b∼ = b∼− ¨ a− = a−∼ → b∼;

9. (a¨ b−∼)−∼ = a¨ b−∼, (a→ b∼−)∼− = a→ b∼−;

10. if the negations [⋅]∼ and [⋅]− are cross-involutive, then b∼ → a∼ = a ¨ b, b− ¨ a− =

a→ b.

Proof. 1. From Proposition 2.1.61 (1) the following equivalence holds:
a¨ b ≤ b∼ → a∼⇔ a¨ b ≤ (b¨ �)→ (a¨ �)⇔ (b¨ �)⊗ (a¨ b) ≤ a¨ �.
From Proposition 2.1.60 (1) it follows that:
a→ b ≤ b− ¨ a−⇔ a→ b ≤ (b→ �)¨ (a→ �)⇔ (a→ b)⊗ (b→ �) ≤ a→ �.

2. The first inequality a ¨ b− ≤ b → a∼ holds since this equivalence is true a ¨ b− ≤

b → a∼ ⇔ a ¨ b− ≤ b → (a ¨ �)⇔ b ⊗ (a ¨ b−) ≤ a ¨ �⇔ [b⊗ (a¨ b−)] ⊗ a ≤ �.
In fact, from Propositions 2.1.30 (3) and 2.1.34 (1) and by assumption it follows
that [b⊗ (a¨ b−)]⊗ a = b⊗ [(a¨ b−)⊗ a] ≤ b⊗ b− = �.
The second inequality b→ a∼ ≤ a¨ b− holds since this equivalence is true
b → a∼ ≤ a ¨ (b → �) ⇔ (b → a∼) ⊗ a ≤ b → � ⇔ b ⊗ [(b→ a∼)⊗ a] ≤ �. In
fact, from Propositions 2.1.11(10) and 2.1.34(1) and by assumption it follows that
b⊗ [(b→ a∼)⊗ a] = [b⊗ (b→ a∼)]⊗a ≤ a∼⊗a = �. It follows from the first equality,
changing a with b.

3. From (2), with a = b.

4. From (2) it follows that b∼ → a∼ = a ¨ b∼−. From (2) and from Proposition 2.1.35
(5) a∼− ¨ b∼− = b∼ → a∼−∼ = b∼ → a∼. From (2) b− ¨ a− = a → b−∼. From (2) and
from Proposition 2.1.35 (5) a−∼ → b−∼ = b− ¨ a−∼− = b− ¨ a−.

5. The first inequality a ¨ (b → c) ≤ b → (a ¨ c) holds since this equivalence is true
a¨ (b→ c) ≤ b→ (a¨ c)⇔ b⊗[a¨ (b→ c)] ≤ a¨ c⇔ {b⊗ [a¨ (b→ c)]}⊗a ≤ c.
In fact, by assumption and from Propositions 2.1.11 (10) and 2.1.30 (3) it follows
that {b⊗ [a¨ (b→ c)]}⊗ a = b⊗ {[a¨ (b→ c)]⊗ a} ≤ b⊗ (b→ c) ≤ c.
The second inequality b → (a ¨ c) ≤ a ¨ (b → c) holds since the following
equivalence is true b → (a ¨ c) ≤ a ¨ (b → c) ⇔ [b→ (a¨ c)] ⊗ a ≤ b → c ⇔
b⊗ {[b→ (a¨ c)]⊗ a} ≤ c.
In fact, by assumption and from Propositions 2.1.11 (10) and 2.1.30 (3) it follows
that b⊗ {[b→ (a¨ c)]⊗ a} = {b⊗ [b→ (a¨ c)]}⊗ a ≤ (a¨ c)⊗ a ≤ c.

6. It follows from Proposition 2.1.60 (2) by symmetry.

7. From Proposition 2.1.35 (5) and from (4) (b−)∼ → a∼ = a∼− ¨ (b−)∼− = a∼− ¨ b− =

a¨ (b−)∼− = a¨ b−.

8. From (4) and from Proposition 2.1.35 (5) (b∼)− ¨ a− = a−∼ → (b∼)−∼ = a−∼ → b∼ =

a→ (b∼)−∼ = a→ b∼.
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9. From Proposition 2.1.35 (2) it follows that a ¨ b−∼ ≤ (a ¨ b−∼)−∼. The inequality(a¨ b−∼)−∼ ≤ a¨ b−∼ follows from (5), (8) and the following equalities:
⊺ = (a¨ b−∼)→ (a¨ b−∼) = a¨ [(a¨ b−∼)→ b−∼] = a¨ [(a¨ b−∼)−∼ → b−∼] =(a¨ b−∼)−∼ → (a¨ b−∼).
From Proposition 2.1.35 (2) it follows that a→ b∼− ≤ (a→ b∼−)∼−.
The inequality (a → b∼−)∼− ≤ a → b∼− follows from (8), (10) and the follow-
ing equalities: ⊺ = (a → b∼−) ¨ (a → b∼−) = a → [(a→ b∼−)¨ b∼−] = a →[(a→ b∼−)∼− ¨ b∼−] = (a→ b∼−)∼− ¨ (a→ b∼−).

10. It follows trivially from (4) and by assumption. It follows trivially from (4) and
by assumption.

The property (5) of the above Proposition, which is the “strong” version of the sym-
metry condition of Definition 2.1.17, has a very important feature, in fact it characterizes
the associativity condition of symmetrical cdeo algebras, as follows.

Proposition 2.1.63. Let (L,→,⊺) be a symmetrical cdeo algebra. Then it is associative
if and only if for all a, b, c ∈ L one has

a¨ (b→ c) = b→ (a¨ c).
Proof. Of course, we only have to prove that the given condition is sufficient.
So, let a, b, c ∈ L. Clearly, a ⊗ (b ⊗ c) ≤ (a ⊗ b) ⊗ c ⇔ b ≤ c ¨ (a → ((a ⊗ b) ⊗ c)) ⇔
b ≤ a→ (c¨ ((a⊗ b)⊗ c)) and the latter inequality is true thanks to Propositions 2.1.11
(10) and 2.1.30 (3); in fact a→ (c¨ ((a⊗ b)⊗ c)) ≥ a→ (a⊗ b) ≥ b.
The inequality (a⊗ b)⊗ c ≤ a⊗ (b⊗ c) can be proved similarly.

Corollary 2.1.64. A commutative cdeo algebra satisfies the strong exchange condition
if and only if it is associative. ◻

Proposition 2.1.65. Let (L,→,⊺) be a symmetrical cdeo algebra. If it is associative,
then the following properties hold, for all a, b ∈ L.

1. a− ⊎(∼)→ b = (a⊗ b∼)−;

2. a∼ ⊎(−)¨ b = (b− ⊗ a)∼;

3. a∼ ⊎(−)→ b = a¨ b−−;

4. a∼ ⊎(∼)→ b = a∼− ¨ b∼− = a¨ b∼−;

5. a− ⊎(−)¨ b = a−∼ → b−∼ = a→ b−∼;

6. a− ⊎(∼)¨ b = a→ b∼∼;

7. if the negation [⋅]− is involutive, then a∼ ⊎(−)→ b = a¨ b;
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8. if the negation [⋅]∼ is involutive, then a− ⊎(∼)¨ b = a→ b.

If the negations [⋅]∼ and [⋅]− are cross-involutive, then:

9. a∼ ⊎(∼)→ b = a¨ b;

10. a− ⊎(−)¨ b = a→ b.

Proof. 1. From Proposition 2.1.60 (3) it follows that a− ⊎(∼)→ b = b∼ → a− = (a⊗ b∼)−.

2. From Proposition 2.1.61 (4) it follows that a∼ ⊎(−)¨ b = b− ¨ a∼ = (b− ⊗ a)∼.

3. From Proposition 2.1.62 (5) it follows that a∼ ⊎(−)→ b = b− → a∼ = b− → (a¨ �) =
a¨ (b− → �) = a¨ b−−.

4. From Proposition 2.1.62 (4) it follows easily that a∼ ⊎(∼)→ b = b∼ → a∼ = a∼− ¨ b∼− =

a¨ b∼−.

5. From Proposition 2.1.62 (4) it follows easily that a− ⊎(−)¨ b = b− ¨ a− = a−∼ → b−∼ =

a→ b−∼.

6. From Proposition 2.1.62 (5) it follows easily that a− ⊎(∼)¨ b = b∼ ¨ a− = b∼ ¨ (a →
�) = a→ (b∼ ¨ �) = a→ b∼∼.

7. It follows easily by assumption and from (3).

8. It follows easily by assumption and from (6).

9. It follows easily by assumption and from (4).

10. It follows easily by assumption and from (5).

Remark 2.1.66. Of course, all the statements we have proved that involve the dual im-
plications and negations and the conjunction in a symmetrical associative cdeo algebra
still hold in any commutative and associative cdeo algebra with respect to the (unique)
implication, the conjunction and the (unique) negation: these are already known proper-
ties in commutative complete residuated lattices. The results involving the disjunctions
are new, though in good pseudo-MTL algebras these lead to similar results as in [12].

2.1.6 Some remarks on extended-order algebras

Lattice ordered, in particular residuated structures have been introduced and con-
sidered in several kinds of contexts that have determined different approaches giving
motivation for various sets of axioms. The point of view of implicative algebras is moti-
vated by the study of algebraic aspects of logics, in particular of deductive systems, and
it has also been put into the context of category theory to develop a categorical approach
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to logic. The detailed study of extended-order algebras aims to motivate and justify or to
critically discuss basic requirements of residuated structures and further conditions such
as order-completeness, associativity, commutativity and symmetry frequently assumed
within lattice valued mathematics and logics.

It is noteworthy that just like every lattice-structure on a set L is completely deter-
mined by the underlying order relation ≤ in L, it can be seen, since [50], that the prop-
erties and even the existence of an integral residuated structure on the upper bounded
poset (L,≤,⊺) are determined by the way of the order relation is extended to get an
implication in L with true value ⊺.
The fundamental result that every extended-order algebra (w-eo algebra whose impli-
cation is antitonic in the first and isotonic in the second argument) can be embedded
into its MacNeille completion allows to consider the completeness condition a not too
strong assumption, which is very important in most applications. Moreover it is possi-
ble to recognize since the first step of extending the order relation of (L,≤,⊺) whether
the obtained implication → originates a complete residuated structure, in particular an
adjoint product ⊗, and which properties they have. Particular attention is devoted to
associativity, commutativity and symmetry (as a good substitute of commutativity) of
the product with a critical view of their motivation.
Relevant discussion and results aimed to exploit the possibility of dropping the associa-
tivity assumption, which is instead a well established requirement in all the approaches
to structures related to logical connectives, including residuated lattices, (pseudo-)BCK
algebras, quantales, t-norms and (monoidal) closed categories.
The effective power of associativity turns out rather to allow the “strong” version
of several properties, provided that those are satisfied in their “weak” version: ex-
amples are given in [50], in the previous Subsections (see, for instance, Proposi-
tions 2.1.60, 2.1.61 and 2.1.63) and in the next Claim, where we observe that the
strong idempotency condition is a consequence of the weak idempotency condition

under the assumption of associativity, as follows.

Claim 2.1.67. Let (L,→,⊺) be an idempotent right-distributive w-ceo algebra. If it is
associative, then it satisfies the strong idempotency condition.

In fact, by assumption the following equalities hold:
a→ (a→ b) = ⋁{t ∈ L∣ a⊗ t ≤ a→ b}

= ⋁{t ∈ L∣ a⊗ (a⊗ t) ≤ b}
= ⋁{t ∈ L∣ a⊗ t ≤ b}
= ⋁{t ∈ L∣ t ≤ a→ b} = a→ b.

As further most relevant examples, if (L,→,⊺) is complete with a distributive impli-
cation, the adjoint product ⊗ and, possibly, the dual implication ¨ are related to → by
“weak” conditions expressed by the equivalences

(i) a→ (b→ c) = ⊺ ⇔ (b⊗ a)→ c = ⊺;

(ii) a¨ (b→ c) = ⊺ ⇔ b→ (a¨ c) = ⊺.
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Then it can be seen that the associativity assumption is equivalent to ask that the
“strong” version of (i) and (ii) are satisfied; more precisely:

Claim 2.1.68. The following are equivalent for a right-distributive, possibly symmetri-
cal, ceo algebra

1. (L,→,⊺) is associative;

2. for all a, b, c ∈ L: a→ (b→ c) = (b⊗ a)→ c;

3. for all a, b, c ∈ L: a¨ (b→ c) = b→ (a¨ c).
As a consequence the following is true.

Claim 2.1.69. A right distributive eo algebra is associative and commutative if and only
if it satisfies the strong exchange condition: a→ (b→ c) = b→ (a→ c).

In fact it has been shown in [50] that the condition is necessary. Conversely, the
strong exchange condition implies commutativity (hence symmetry) and, by Proposition
2.1.63, associativity, too.

We close this Subsection with a few remarks that relate some of our results with
other residuated structures.
We have already explained that w-eo algebras are exactly the implicative algebras con-
sidered in [74] that have been specialized to get positive implication algebras, also called
Hilbert algebras; so our results on idempotency allow to characterize eo algebras whose
MacNeille completion are Heyting algebras as follows.

Claim 2.1.70. A right-distributive eo algebra (L,→,⊺) is symmetrical and idempotent
if and only if its MacNeille completion (K,→K ,⊺K) is a complete Heyting algebra.

In fact if K is a complete Heyting algebra, then it is idempotent and commutative,
so by Proposition 2.1.14 and Corollary 2.1.49 L is idempotent and commutative, hence
symmetrical. Conversely, if L is idempotent and symmetrical then the adjoint product ⊗
in its MacNeille completion is the meet operation ∧ since clearly a∧ b = (a∧ b)⊗(a∧ b) ≤
a⊗ b and a⊗ b ≤ a ∧ b (see Proposition 2.1.30).

As a special case of closed categories (see [32]) implication structures (L, e,→) have
been considered in [89] assuming that L is a poset (ordered category), e is an element
of L and for all a, b, c ∈ L the following conditions are satisfied

1. a→ b ≤ a→ c, if b ≤ c;

2. a→ c ≤ b→ c, if a ≥ b;

3. a→ b ≤ (c→ a)→ (c→ b);
4. e ≤ a→ b⇔ a ≤ b;

5. e→ a ≤ a.
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Also, a structure of adjoint implications (L, e,→,¨), where → and ¨ are implications
related to the same order in L and form a Galois pair, has been considered in [89]. Such
a structure is said to be symmetric if → and ¨ coincide.

It is evident that this approach, which is closely related to ordered categories and
to quantales as well, is quite similar to ours. Nevertheless there are fundamental and
important differences (which concern quantale and closed category theory, too) that can
be summarized as follows.

On one hand, the closed-category and quantale-like approach is more general than
extended-order algebras approach since the former does not assume that the identity
(or unit) e is necessarily the greatest element of L. Such an assumption, i.e. consider-
ing integral structures, would render (adjoint) implication structures a special kind of
(symmetrical) eo algebras. Also, note that the integral symmetric (in the sense of [89])
adjoint implication structures are commutative eo algebras.

On the other hand, taking into consideration the integral structures, w-eo algebras
are by far more general since these reduce to assuming the above condition (4) of impli-
cation structures only; eo algebras would add conditions (1) and (2).
But what is most relevant is that all along the development of the study of (w-)eo alge-
bras, since [50] through our works [13, 14] and the present thesis, we have not assumed
conditions of the “strong-type” such as the above condition (3) that correspond to the
composition law of closed categories; this is called “strong isotonic condition” in [50],
where it is shown to be a consequence of the “weak isotonic condition” (1) under the
assumption of associativity (see the above discussion about this feature of the associa-
tivity axiom, that allows the extension of most conditions assumed in a “weak” form to
their “strong” version).
These remarks confirm that, roughly speaking, the associativity condition of the product-
conjunction allows the strong version of conditions once these are satisfied in their weak
version and moreover it seems to be required as a fundamental tool within the context
of category theory. A new evidence comes from [33], where it is shown that fuzzy Galois
connections (in fact, “strong versions” of the classical Galois connections) and functorial
conditions of powerset operators, determined by cdeo algebra-valued relations, require
associativity, and from [48], where good examples of cdeo algebra-valued categories ben-
efit of the associativity assumption.

Our last comment concerns residuated lattices (see [9, 58]), that are ordered algebraic
structures (L,∧,∨, ⋅, e,→,¨) such that

1. (L,∧,∨) is a lattice;

2. (L, ⋅, e) is a monoid;

3. → and ¨ are binary operations for which the equivalences a ⋅ b ≤ c⇔ a ≤ b ¨ c⇔
b ≤ a→ c hold, for all a, b, c ∈ L.

If we reduce, once more, to the integral case, then the following is trivially true.

Claim 2.1.71. The complete integral residuated lattices are exactly the symmetrical
associative cdeo algebras.
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Hence also the relationship in the non-complete case can be stated.

Claim 2.1.72. Every integral residuated lattice is a symmetrical associative deo algebra.

In fact, if (L,∧,∨, ⋅,⊺,→,¨) is a residuated lattice, then clearly (L,→,⊺) is a
symmetrical, hence left-distributive eo algebra (see Proposition 2.1.19); moreover, if
a ∈ L, B,B′ ⊆ L and Lb(B) = Lb(B′), then the right-distributivity follows by the equiv-
alences x ∈ Lb(a→ B) ⇔ a⊗ x ∈ Lb(B) = Lb(B′) ⇔ x ∈ Lb(a→ B′).
Now, the MacNeille completion (K,→K ,⊺K) of (L,→,⊺) is symmetrical, with dual im-
plication ¨K , and it is associative since for all α = [A], β = [B], γ = [X] ∈ K it is true
that

α →K (β ¨K γ) = [Lb(A)→ (Lb(B)¨X)]
= [Lb(B)¨ (Lb(A)→X)]
= β ¨K (α →K γ).

In fact, by the associativity of the product ⋅, we have that:
t ∈ Lb(Lb(A) → (Lb(B) ¨ X)) ⇔ (a′ ⋅ t) ⋅ b′ ≤ x,∀a′ ∈ Lb(A), b′ ∈ Lb(B), x ∈ X ⇔
a′ ⋅ (t ⋅ b′) ≤ x, ∀a′ ∈ Lb(A), b′ ∈ Lb(B), x ∈X ⇔ t ∈ Lb(Lb(B)¨ (Lb(A)→X)).
As a conclusion (L,→,⊺) is associative, by Proposition 2.1.56.

Eventually, we remark that assuming the completeness condition (and consequently
the distributivity of the product over joins on both arguments) for integral residuated
lattices is not a strong restriction since the following holds, which justify the use of such
a condition in most applications to lattice-valued mathematics and logics.

Claim 2.1.73. 1. The MacNeille completion of an integral residuated lattice(L,∧,∨, ⋅,⊺,→,¨) is a complete integral residuated lattice.

2. (L,∧,∨, ⋅, e,→,¨) is embedded in its MacNeille completion.

In fact, under the given assumptions, (L,→,⊺) is a symmetrical associative deo
algebra then it is embedded in its MacNeille completion (K,→K ,⊺K) that has a structure
of a symmetrical associative cdeo algebra, i.e. is a complete integral residuated lattice
and the dual implication ¨K extends ¨. Eventually, it can be seen that the product
⊗K in K extends the one given in L. In fact, for all a, b ∈ L:

[a ⋅ b] = [⋀{t ∈ L∣ b ≤ a→ t}] = [{t ∈ L∣ b ≤ a→ t}],

[a]⊗K [b] =⋀
K

{γ ∈K ∣ [b] ≤K [a]→K γ}
= [⋃{X ⊆ L∣ ↓ b ⊆ Lb(↓ a→X)}]
= [⋃{X ⊆ L∣ b ≤ a→ x,∀x ∈X}]

and since clearly {t ∈ L∣ b ≤ a→ t} = ⋃{X ⊆ L∣ b ≤ a→ x,∀x ∈X}, then [a ⋅b] = [a]⊗K [b].



CHAPTER 2. EXTENDED-ORDER ALGEBRAS AND THE IMPLICATORS 59

2.2 Implicators

This Section deals with a first application of extended-order algebras in connection
with the fundamental concepts of implicators and conjunctors largely used and studied
in many contexts (see, for instance, [2, 3, 30, 77, 78]).
The notion of implicator will be reconsidered in the light of the conditions that the
implication of an extended-order algebra satisfies, and the notion of relative implication
is also introduced.
Moreover, we introduce and study the notion of conditional conjunction, which is
strictly related to the divisibility condition of BL-algebras.

2.2.1 Fuzzy implicators and the conditional implication

In the literature the term fuzzy implication operator, shortly fuzzy implicator, usually
is meant as an extension of the implication defined in classical logic; in fact in the most
general sense it is defined as a map I ∶ [0,1] × [0,1] → [0,1] that satisfies the boundary
conditions

(b) (0,0)I = (0,1)I = (1,1)I = 1 and (1,0)I = 0.

Further properties are considered and assumed on I in different theoretical approaches
and applications; a detailed list of the most important (some of which imply the
equalities in the boundary condition (b)) is given in [78] as follows:(fi1) a ≤ b⇒ (b, c)I ≤ (a, c)I, for all a, b, c ∈ [0,1];(fi2) a ≤ b⇒ (c, a)I ≤ (c, b)I, for all a, b, c ∈ [0,1];(fi3) (0, b)I = 1, for every b ∈ [0,1];(fi4) (a,1)I = 1, for every a ∈ [0,1];(fi5) (1,0)I = 0;(fi6) (1, b)I = b, for every b ∈ [0,1];(fi7) (a, (b, c)I)I = (b, (a, c)I)I, for all a, b, c ∈ [0,1];(fi8) (a, b)I = 1⇔ a ≤ b, for all a, b ∈ [0,1];(fi9) the map N ′, defined as (a)N ′ = (a,0)I, for every a ∈ [0,1], is an involutive fuzzy
negation;(fi10) (a, b)I ≥ b, for all a, b ∈ [0,1];(fi11) (a, a)I = 1, for every a ∈ [0,1];(fi12) (a, b)I = ((b)N, (a)N)I, for every a ∈ [0,1], where N is an involutive fuzzy
negation;(fi13) I is a continuous mapping.

Evidently there are several interrelationships among these axioms. In [78] there is
a complete view of these: there, taking (fi1)-(fi5) as the basic system of axioms for a
fuzzy implicator the authors investigate the dependence and independence of the other
axioms, given the first five that, in their turn, implies the boundary condition (b).
In this Subsection we reconsider the above conditions and we give a definition of an
internal implicator in a complete lattice L, taking into account the point of view of the
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implication operation of extended-order algebras.
This leads to a different arrangement and grouping of the basic requirements a fuzzy
implicator should satisfy, according to the interpretation of the implication operation in
the semantic of many-valued logic that motivated the introduction [50] and development
of extended-order algebras, strictly related to implicative algebras considered in [74].
We recalled in Section 2.1 that the implication of a w-eo algebra (i.e. implicative algebra)
is any internal extension of the order relation of any poset with a greatest element (true
value ⊺), as stated in Proposition 2.1.2. This criterion states exactly in which cases the
implication a → b is true saying nothing, in general, on when the implication is false,
even if the existence of the value “false” (the least element �) in the algebra is assumed.
So our feeling is that we should agree with the requirement (0,0)I = (0,1)I = (1,1)I = 1
without asking to (1,0)I nothing but to be different from ⊺, in general, which makes
the implication of a w-ceo algebra a bounded implicator, as we shall see. Nevertheless,
we shall weaken further the requirements of an implicator, making it more general than
the implication operation of a w-ceo algebra.

Definition 2.2.1. Let (L,≤) be a complete lattice, with greatest element ⊺ and least
element �. A map I ∶ L ×L→ L is an implicator in L if it satisfies the axiom:(i) (a, b)I = ⊺⇒ a ≤ b⇒ (b, a)I ≤ (a, b)I, for all a, b ∈ L.
The implicator I is bounded if it satisfies the following axioms:(i1) (�, b)I = ⊺, for every b ∈ L;(i2) (a,⊺)I = ⊺, for every a ∈ L.
The implicator I is weak-ordered if it satisfies the axiom:(i3) (a, b)I = ⊺⇔ a ≤ b, for all a, b ∈ L.
The implicator I is isotonic if it satisfies the following axioms:(i4) a ≤ b⇒ (c, a)I ≤ (c, b)I, for all a, b, c ∈ L;(i5) a ≤ b⇒ (b, c)I ≤ (a, c)I, for all a, b, c ∈ L .
The implicator I is crisp-bounded if it satisfies the axiom:(b) (�,�)I = (�,⊺)I = (⊺,⊺)I = ⊺ and (⊺,�)I = �.
The implicator I is ordered if it satisfies the axioms (i3), (i4) and (i5).
The implicator I is distributive if it satisfies the following axioms:(i6) (a,⋀i∈I bi)I = ⋀i∈I((a, bi)I), for all a ∈ L,{bi}i∈I ⊆ L;(i′6) (⋁i∈I ai, b)I = ⋀i∈I((ai, b)I), for all b ∈ L,{ai}i∈I ⊆ L.
The implicator I is continuous if it satisfies (i6), (i′6) and the following axioms:(i7) (a,⋁i∈I bi)I = ⋁i∈I((a, bi)I), for all a ∈ L,{bi}i∈I ⊆ L;(i′7) (⋀i∈I ai, b)I = ⋁i∈I((ai, b)I), for all b ∈ L,{ai}i∈I ⊆ L.
The implicator I is commutative or interchanging if it satisfies the axiom:(i8) (a, (b, c)I)I = ⊺⇔ (b, (a, c)I)I = ⊺, for all a, b, c ∈ L.
The implicator I is involutive if it satisfies the axiom:(i9) the map N , defined by (a)N = (a,�)I, for every a ∈ L, is an order reversing
involution.
The implicator I is contrapositive if it satisfies the axiom:(i10) (a, b)I = ((b)N, (a)N)I, for all a, b ∈ L.
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Eventually we list the other axioms for a fuzzy implicator considered in [78].(i11) (⊺, b)I ≤ b, for every b ∈ L;(i12) (⊺, b)I ≥ b, for every b ∈ L;(i13) (a, b)I ≥ b, for all a, b ∈ L.

Some examples of implicators can be found in Appendix of this thesis.
The following Proposition shows in the item (1) that the implication of every one of the
complete algebras we have considered in Section 2.1 is a weak-ordered, hence bounded,
implicator; the subsequent statements (2)-(11) only state the further properties it satis-
fies depending on which kind of w-ceo algebra is considered.

Proposition 2.2.2. 1. If (L,→,⊺) is a w-ceo algebra, then the operation → is a
bounded weak-ordered implicator.

2. If (L,→,⊺) is a right w-ceo algebra, then the implicator → satisfies the axiom (i4),
too.

3. If (L,→,⊺) is a left w-ceo algebra, then the implicator → satisfies the axiom (i5),
too.

4. If (L,→,⊺) is a ceo algebra, then → is an ordered implicator, too.

5. If (L,→,⊺) is a right-distributive w-ceo algebra, then the implicator → satisfies the
axioms (i4) and (i6), too.

6. If (L,→,⊺) is a left-distributive w-ceo algebra, then the implicator → satisfies the
axioms (i5) and (i′6), too.

7. If (L,→,⊺) is a cdeo algebra, then → is an ordered distributive implicator, too.

8. If (L,→,⊺) is a symmetrical cdeo algebra, then both → and ↝ are ordered, distribu-
tive and crisp-bounded implicators that satisfy the axioms (i11), (i12) and (i13).

9. If (L,→,⊺) is an involutive left w-ceo algebra, then → is an involutive implicator,
too.

10. If (L,→,⊺) is a commutative cdeo algebra, then → is an ordered, distributive, crisp-
bounded and commutative implicator that satisfies the axioms (i11), (i12) and (i13).

11. If (L,→,⊺) is a commutative, associative and involutive cdeo algebra, then → is
an ordered, distributive, crisp-bounded, commutative and contrapositive implicator
that satisfies (i11), (i12) and (i13).

Proof. 1. From Proposition 2.1.2 → satisfies the following equivalence a → b = ⊺⇔
a ≤ b and, in particular, it follows trivially that a→ b = ⊺⇔ a ≤ b⇒ b→ a ≤ a→ b,
for all a, b ∈ L . Hence it satisfies the axioms (i) and (i3).
Moreover the following equivalences are true � ≤ b⇔ �→ b = ⊺, a ≤ ⊺⇔ a→ ⊺ = ⊺,
for all a, b ∈ L. Therefore, → satisfies (i1) and (i2).
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2. From (o5) it follows that a ≤ b⇔ a→ b = ⊺⇒ c→ a ≤ c→ b, for all a, b, c ∈ L. Then
→ satisfies (i4).

3. From (o′5) it follows that a ≤ b⇔ a→ b = ⊺⇒ b→ c ≤ a→ c, for all a, b, c ∈ L. Then
→ satisfies (i5).

4. It follows easily from (2) and (3).

5. Since (dr) implies (o5), it follows that (L,→,⊺) is right w-ceo algebra.
Then from (2) one has that→ satisfies (i4). From (dr) it follows that a→ (⋀i∈I bi) =
⋀i∈I(a→ bi); hence → satisfies (i6).

6. Since (dl) implies (o′5) it follows that (L,→,⊺) is left w-ceo algebra. Then from
(3) one has that → satisfies (i5).
From (dl) it follows that (⋁i∈I bi)→ a = ⋀i∈I(a→ bi); hence → satisfies (i′6).

7. Since (d) implies (o5) and (o′5), it follows that (L,→,⊺) is a ceo algebra. Then the
statement follows from (4), (5) and (6).

8. By assumption and from Proposition 2.1.26 it follows that (L,→,⊺) and (L,↝,⊺)
are cdeo algebras. Hence, from (7) → and ↝ are ordered and distributive implica-
tors.
From Proposition 2.1.30 (5) it follows that → and ↝ satisfy (i11), (i12) and (b).
Moreover, from Proposition 2.1.30 (4) it follows that → and ↝ satisfy (i13).

9. It follows trivially from Definitions 2.1.32, 2.2.1 and Proposition 2.1.33 (2).

10. From Proposition 2.1.50 it follows that (L,→,⊺) is a symmetrical cdeo algebra.
Then from (8) → is an ordered, distributive and crisp-bounded implicator that
satisfies (i11), (i12) and (i13). Moreover it is commutative by Definition 2.2.1.

11. From (10) it follows that → is an ordered, distributive, commutative and crisp-
bounded implicator that satisfies (i11), (i12) and (i13). Moreover, by assumption
and from Propositions 2.1.50 and 2.1.62 (4) it follows that → is a contrapositive
implicator.

The above Proposition explains and suggests the possibility to think of an implicator
as nothing but the implication operation of some w-ceo algebra. In particular, if L is a
complete lattice and I ∶ L ×L→ L, then

- I is a weak-ordered implicator if and only if (L,I,⊺) is a w-ceo algebra;

- I is an ordered implicator if and only if (L,I,⊺) is a ceo algebra.

Fuzzy implicators have been mostly considered, since [3], to express and to evaluate
the inclusion between fuzzy sets. Classically, crisp inclusion between fuzzy (or lattice-
valued) sets has been considered to be the order relation point-wisely induced by the
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lattice-order of L in the L-powerset LX of any set X.
In order to determine the inclusion degree between two L-sets A,B with respect to
an implicator → in L it seems reasonable, of course, to evaluate the extended-order
relationship between A and B; this is usually done by means of the so called subsethood
degree (A,B)S = ⋀x(x)A→ (x)B, that extends to the many-valued context the following
classical equivalence:

∀A,B ⊆ L ∶ A ⊆ B⇔ (a ∈ A⇒ a ∈ B).

Here we further propose the possibility to evaluate the inclusion of A in B by seeing to
which extent A is included in the conjunction of A and B (or how much of A is in B).
In terms of the right-distributive (w-)ceo algebra structure this purpose can be realized
using the relative implication given by the following Definition; this operator extends to
the many-valued context the following classical equivalence:

∀A,B ⊆ L ∶ A ⊆ B⇔ (a ∈ A⇒ a ∈ A ∩B).
Definition 2.2.3. Let (L,→,⊺) be a right-distributive w-ceo algebra. The relative im-
plication is the binary operation

→⊗∶ L ×L→ L(a, b)↦ a→⊗ b = a→ (a⊗ b),
where ⊗ is the adjoint product of L.

Lemma 2.2.4. If (L,→,⊺) is a right-distributive w-ceo algebra, then the relative impli-
cation satisfies the axioms (i1), (i2), (i4) and (i12).
Proof. From (o2) and Proposition 2.1.11 (3) it follows that � →⊗ b = � → (� ⊗ b) =
�→ � = ⊺.
From (o2) and Proposition 2.1.11 (2) one has that a→⊗ ⊺ = a→ (a⊗ ⊺) = a→ a = ⊺.
From (o5) and Proposition 2.1.11 (6) it follows that a ≤ b⇒ c⊗ a ≤ c⊗ b⇒ c→ (c⊗ a) ≤
c→ (c⊗ b); hence c→⊗ a ≤ c→⊗ b.
From Proposition 2.1.11 (7) one has that ⊺→⊗ b = ⊺→ (⊺ ⊗ b) ≥ b.
Hence →⊗ satisfies the axioms (i1), (i2), (i4) and (i12).
Proposition 2.2.5. If (L,→,⊺) is a symmetrical cdeo algebra that satisfies the condition
a ≤ b⇒ b ⊗ a ≤ a ⊗ b, then the relative implications →⊗ and ↝⊗ are bounded and crisp-
bounded implicators that satisfy the axioms (i4), (i11) (i12).
Proof. From Proposition 2.1.30 (2), (o5) and the assumption it follows that a →⊗ b =

⊺⇔ a ≤ a ⊗ b ≤ b ⇒ a ≤ b ⇒ b →⊗ a ≤ a →⊗ b. Hence →⊗ is an implicator; trivially, by
the above Lemma →⊗ is bounded and satisfies (i4) and (i12).
Moreover, from Propositions 2.1.29 and 2.1.30 (5) it follows that ⊺→⊗ b = ⊺→ (⊺ ⊗ b) =
⊺→ b = b, for every b ∈ L and, in particular, ⊺→⊗ � = ⊺→ (⊺⊗�) = ⊺→ � = �. Hence →⊗

satisfies the axioms (i11) and (b). Similarly for ↝⊗.
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Clearly a commutative cdeo algebra satisfies the assumption of Proposition 2.2.5;
but even the symmetry condition, and hence the commutativity are not necessary for
→⊗ to be an implicator, as the structure 22 of Appendix shows.

Proposition 2.2.6. Let (L,→,⊺) be a cdeo algebra. Then →⊗ is a weak-ordered impli-
cator if and only if the equivalence a ≤ b ⇔ a = a⊗ b holds, for all a, b ∈ L.

Proof. Assume →⊗ to be a weak-ordered implicator. Then it follows from a ≤ b that
a→ (a⊗ b) = ⊺, hence a ≤ a⊗ b ≤ a. Conversely, from a = a⊗ b one has a→⊗ b = ⊺, hence
a ≤ b. Now assume the stated equivalence.
Then the equivalence a→⊗ b = ⊺⇔ a ≤ a⊗b ≤ a⇔ a ≤ b proves that→⊗ is a weak-ordered
implicator.

Corollary 2.2.7. If (L,→,⊺) is a symmetrical cdeo algebra, then the dual relative im-
plication ↝⊗ defined by

a↝⊗ b = a↝ (b⊗ a), for all a, b ∈ L

is a weak-ordered implicator if and only if the equivalence a ≤ b ⇔ a = b⊗ a holds, for
all a, b ∈ L.

Proof. It follows trivially by the above Proposition since, under the assumption, (L,↝,⊺)
is a cdeo algebra with adjoint product ⊗̃ defined by a⊗̃b = b⊗ a.

Corollary 2.2.8. If (L,→,⊺) is a symmetrical cdeo algebra and ⊗ is idempotent, then
→⊗ and ↝⊗ are weak-ordered implicators.

Proof. Under the assumption, for all a ≤ b in L one has a = a ⊗ a ≤ a ⊗ b ≤ a and
a = a ⊗ a ≤ b ⊗ a ≤ a. Conversely, it follows from a = a ⊗ b that a = a ⊗ b ≤ b and from
a = b⊗ a that a = b⊗ a ≤ b.
Now the statement follows from Proposition 2.2.6 and Corollary 2.2.7.

Remark 2.2.9. The idempotency condition is necessary for each of →⊗ and ↝⊗ to be
a weak-ordered implicator. In fact, if this is the case it follows from either Proposition
2.2.6 or Corollary 2.2.7 and from a ≤ a that a = a⊗ a, for every a ∈ L.
However idempotency is not necessary for →⊗ to be an implicator (see structure 22 of
Appendix) and the symmetry condition is not necessary for →⊗ to be a weak-ordered
implicator, as the structure 23 of Appendix shows.

2.2.2 The conditional conjunction

In this last Subsection we consider a new binary operator that can be read as: “a”
and “b, given a” which motivates the term we have chosen to denote it.

Definition 2.2.10. Let (L,→,⊺) be a right-distributive w-ceo algebra. The related con-
ditional conjunction is the binary operation
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⊗→ ∶ L ×L→ L(a, b)↦ a⊗→ b = a⊗ (a→ b),
where ⊗ is the adjoint product of L.

Proposition 2.2.11. Let (L,→,⊺) be a right-distributive w-ceo algebra. The conditional
conjunction has the following properties, for all a, b ∈ L,{bi} ⊆ L.

1. a ≤ b⇒ x⊗→ a ≤ x⊗→ b, ∀x ∈ L;

2. � ⊗→ b = �;

3. b⊗→ � = �;

4. a⊗→ ⊺ = a;

5. a⊗→ x ≤ b⊗→ x,∀x ∈ L⇒ a ≤ b;

6. ⊺ ⊗→ b ≤ b;

7. a⊗→ a = a;

8. a⊗→ b ≤ a ∧ b;

9. a ≤ b⇔ a⊗→ b = a;

10. a⊗→ x ≤ b⊗→ x,∀x ∈ L⇒ a⊗→ b = b⊗→ a = a;

11. a⊗→ b = ⊺⇔ a = b = ⊺;

12. (a⊗ b)⊗→ a = a⊗ b;
13. a⊗→ (a⊗ b) = a⊗ b;
14. a⊗→ (a⊗→ b) = a⊗→ b;
15. (a⊗→ b)⊗→ b = a⊗→ b.

If moreover (L,→,⊺) is a right-distributive ceo algebra, then:

16. ⊺→ x ≥ x,∀x ∈ L⇒ a⊗ b ≤ a⊗→ b;

17. if ⊗ is distributive over ⋀ on the right side, then a⊗→ (⋀i∈I bi) = ⋀i∈I(a⊗→ bi).
If (L,→,⊺) is a symmetrical cdeo algebra, then:

18. ⊺ ⊗→ b = b;

19. a⊗ b ≤ a⊗→ b;

20. a ≤ b⇔ x⊗→ a ≤ x⊗→ b,∀x ∈ L.

If → satisfies the axiom (i7), then:
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21. a⊗→ (⋁i∈I bi) = ⋁i∈I(a⊗→ bi).
Proof. 1. Let a ≤ b; from (o5) x → a ≤ x → b. Then from Proposition 2.1.11 (6) one

has x⊗→ a = x⊗ (x→ a) ≤ x⊗ (x→ b) = x⊗→ b.
2. From Proposition 2.1.11 (3) it follows that � ⊗→ b = � ⊗ (�→ b) = �.

3. From Proposition 2.1.11 (7) one has that b⊗→ � = b⊗ (b→ �) ≤ �.

4. From (o1) and Proposition 2.1.11 (2) it follows that a⊗→⊺ = a⊗(a→ ⊺) = a⊗⊺ = a.

5. Taking x = ⊺, the assumption gives a ≤ b by (4).

6. From Proposition 2.1.11 (7) one has that ⊺ ⊗→ b = ⊺ ⊗ (⊺→ b) ≤ b.
7. From Proposition 2.1.11 (2) and (o2) it follows that a⊗→a = a⊗(a→ a) = a⊗⊺ = a.

8. From Proposition 2.1.11 (1) a ⊗→ b ≤ a; moreover, from Proposition 2.1.11 (9)
a⊗→ b ≤ b. Hence a⊗→ b ≤ a ∧ b.

9. Let a ≤ b. Then a→ b = ⊺ and hence, from Proposition 2.1.11 (2) a⊗→ b = a⊗ (a→
b) = a⊗⊺ = a. Conversely, from Proposition 2.1.11 (7) a = a⊗→ b = a⊗ (a→ b) ≤ b.

10. The assumption gives a ≤ b by (5); then a⊗→ b = a by (9).
Moreover, taking x = a, by the assumption, (7) and (8) one has a ≤ b⊗→ a ≤ a.

11. Assume a⊗→ b = ⊺; from (8) it follows that ⊺ ≤ a ∧ b and hence a = b = ⊺.
Conversely, it is clear that ⊺ ⊗→ ⊺ = ⊺.

12. From Proposition 2.1.11 (1),(2) one has that (a⊗b)⊗→ a = (a⊗b)⊗ [(a⊗ b)→ a] =(a⊗ b)⊗ ⊺ = (a⊗ b).
13. From Proposition 2.1.11 (7) a → (a ⊗ b) ≥ b; hence, from Proposition 2.1.11 (6)

a ⊗→ (a ⊗ b) = a ⊗ [a→ (a⊗ b)] ≥ a ⊗ b. The converse inequality follows from (8),
so a⊗→ (a⊗ b) = a⊗ b.

14. From Proposition 2.1.11 (6),(7) one has that a⊗→(a⊗→b) = a⊗[a→ (a⊗ (a→ b))] ≥
a⊗ (a→ b) = a⊗→ b. The converse inequality follows from (8).

15. By (8) a⊗→ b ≤ b, hence by (9) (a⊗→ b)⊗→ b = a⊗→ b.
16. From (o′5) and Proposition 2.1.11 (6) and by assumption the following inequality

holds a⊗→ b = a⊗ (a→ b) ≥ a⊗ (⊺→ b) ≥ a⊗ b.
17. By assumption and condition (dr) it follows that a⊗→(⋀i∈I bi) = a⊗[a→ (⋀i∈I bi)] =

a⊗ [⋀i∈I(a→ bi)] = ⋀i∈I [a⊗ (a→ bi)] = ⋀i∈I(a⊗→ bi).
18. From Propositions 2.1.29 and 2.1.30 (5) it follows that ⊺⊗→b = ⊺⊗(⊺→ b) = ⊺⊗b = b.
19. By assumption the equality ⊺→ x = x,∀x ∈ L, follows from Proposition 2.1.30 (5),

hence the statement follows by (16).
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20. The implication “⇒ ” comes from (1); the converse implication follows by (7) and
(8), in fact by the assumption for x = a one has a = a⊗→ a ≤ a⊗→ b ≤ b.

21. By assumption and Proposition 2.1.11 (5) it follows that:
a⊗→ (⋁i∈I bi) = a⊗ [a→ (⋁i∈I bi)] = a⊗ [⋁i∈I(a→ bi)] = ⋁i∈I(a⊗→ bi).

The properties listed in the above Proposition show that ⊗→ satisfies most conditions
usually asked to a conjunction operator and moreover it is well related to the operator ⊗,
the main conjunction operator of a right-distributive w-ceo algebra, and to the classical
conjunction operator ∧; in fact x⊗→y ≤ x∧y in any case and if (L,→,⊺) is a symmetrical
cdeo algebra then

x⊗ y ≤ x⊗→ y ≤ x ∧ y, for all x, y ∈ L.

We also recall that the equality x ∧ y = x ⊗→ y, for all x, y ∈ L is just the so called
divisibility condition that is assumed in BL-algebras and in MV -algebras, as well (see
for instance [52]).
We can show that whenever L is a chain the divisibility condition is necessary for the
conditional conjunction ⊗→ to be isotonic in the first argument; more precisely the only
conditional conjunction in a right-distributive w-ceo chain that is isotonic in the first
argument is the meet operation. In fact, the following holds.

Proposition 2.2.12. Let (L,→,⊺) be a right-distributive w-ceo algebra and let L be a
chain in the natural ordering. If the related conditional conjunction is isotonic in the
first argument, then a⊗→ b = a ∧ b, for all a, b ∈ L.

Proof. Consider a, b ∈ L and assume a ∧ b = a. Then a ≤ b and by the assumption the
inequality a⊗→ x ≤ b⊗→ x, for every x ∈ L, holds.
Then from Proposition 2.2.11 (10) a⊗→ b = b⊗→ a = a = a ∧ b.

Corollary 2.2.13. A right-distributive w-ceo chain is a BL-algebra if and only if the
related conditional conjunction is isotonic in the first argument. ◻



Chapter 3

Many-valued relations

3.1 L-relations

In Chapter 1 we have recalled some basic notions concerning binary relations in the
classical mathematical context.
Now we approach the study of binary many-valued relations taking values in some kind
of extended-order algebras.
Though the considered notions are already known and well developed, our framework,
based on extended-order algebras, is more general than the usual ones and allows a non-
commutative and non-associative approach, which has been already considered only in
[33] where, however, the structure of symmetrical cdeo algebras has not been exploited
in its full power.

3.1.1 Algebras of L-relations

For any complete lattice (L,≤), and any set X, L-sets on X, or L-subsets of X, are
maps from X to L (see [44]), which generalize Zadeh’s fuzzy sets; LX has the complete
lattice structure pointwisely induced by L; we follow notation of [35, 44], in particular,
for any subset Y ⊆X we denote by αY the L-set on X that takes value α ∈ L on Y and
value � elsewhere; αx stands for α{x} and it is called L-point with support x and value
α.
The binary many-valued relations from a set X to a set Y taking values in L are
functions R ∶X ×Y → L, i.e. L-sets on X ×Y . The opposite or reverse R− ∶ Y ×X → L

of R is defined by (y, x)R− = (x, y)R, for all x ∈ X,y ∈ Y . An L-relation is crisp if ⊺
and � are the only values it may take.
Most researchers using L-valued relations for several kinds of applications (for instance
[4, 6, 11, 20, 35]) assume L to be a “complete residuated lattice”, which is a simplified
notation for “complete, integral, commutative residuated lattice”, that is a commutative,
associative cdeo algebra, as shown in Subsection 2.1. In particular, [37] and [87] deal
with complete Heyting algebras which are idempotent, commutative, associative cdeo
algebras.

68
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In this chapter, we shall assume L to be, in any case, a complete lattice, possibly with
a w-ceo algebra structure (L,→,⊺) with further specified properties; in this last case,
the set LX×Y of L-valued relations has a w-ceo algebra structure of the same kind as(L,→,⊺), getting all the needed elements and properties pointwisely from L, as we shall
specify below.
We start considering RL, the class of all L-relations between two sets taking values in a
w-ceo algebra (L,→,⊺):

RL = {R ∶X × Y → L∣ X,Y ∈ ∣Set∣} ;

sometimes we denote R ∶ X × Y → L by R ∶ X ⇁ Y and (x, y)R by xRy, for all x ∈ X,
y ∈ Y .
We recall the following notation and pointwise definitions in RL.

Definition 3.1.1. Let (L,→,⊺) be a w-ceo algebra. For all X,Y ∈ ∣Set∣, R,R′ ∶X ⇁ Y ,{Rj ∶X ⇁ Y }j∈J and for all x, x′ ∈X,y ∈ Y one has:

1. R ≤R′ ⇔ (x, y)R ≤ (x, y)R′;

2. áXY ∶X ⇁ Y : (x, y)áXY = �;

3. ãXY ∶X ⇁ Y :(x, y)ãXY = ⊺;

4. IX ∶X ⇁X : (x, x′)IX = { ⊺ if x = x′

� otherwise
;

5. ⋁j∈J Rj ∶X ⇁ Y : (x, y)(⋁j∈J Rj) = ⋁j∈J(x, y)Rj;
6. ⋀j∈J Rj ∶X ⇁ Y : (x, y)(⋀j∈J Rj) = ⋀j∈J(x, y)Rj;
7. R→R′ ∶X ⇁ Y : (x, y)(R→R′) =R(x, y)→ (x, y)R′;

8. R− ∶X ⇁ Y : (x, y)R− =R(x, y)→ �.

If we consider RL(X,Y ), the set of all L-relations between two arbitrary fixed sets
X,Y , then the triple (RL(X,Y ),→,ãXY ) is a w-ceo algebra, with respect to the impli-
cation → defined above, which has as a top element the constant relation ãXY .
Indeed, this algebra of L-relations inherits all the properties which (L,→,⊺) has. More
precisely, the following hold.

Proposition 3.1.2. The following equivalences are true.

1. (L,→,⊺) is a w-ceo algebra if and only if (RL(X,Y ),→,ãXY ) is a w-ceo algebra,
for all X,Y ∈ ∣Set∣;

2. (L,→,⊺) is a (right)(left)(w-)ceo algebra if and only if (RL(X,Y ),→,ãXY ) is a
(right)(left)(w-)ceo algebra, for all X,Y ∈ ∣Set∣;
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3. (L,→,⊺) is a (right-)(left-) distributive (w-)ceo algebra if and only if(RL(X,Y ),→,ãXY ) is a (right-)(left-) distributive (w-)ceo algebra, for all X,Y ∈∣Set∣;
4. (L,→,⊺) is a symmetrical w-ceo algebra if and only if (RL(X,Y ),→,ãXY ) is a

symmetrical w-ceo algebra, for all X,Y ∈ ∣Set∣;
5. (L,→,⊺) is a symmetrical cdeo algebra if and only if (RL(X,Y ),→,ãXY ) is a

symmetrical cdeo algebra, for all X,Y ∈ ∣Set∣;
6. (L,→,⊺) is a commutative w-ceo algebra if and only if (RL(X,Y ),→,ãXY ) is a

commutative w-ceo algebra, for all X,Y ∈ ∣Set∣;
7. (L,→,⊺) is an associative w-ceo algebra if and only if (RL(X,Y ),→,ãXY ) is an

associative w-ceo algebra, for all X,Y ∈ ∣Set∣. ◻
Remark 3.1.3. If either X = ∅ or Y = ∅, then there is only the empty relation from
X to Y , that is the inclusion function ∅↪ L; hence RL(X,Y ) = {∅} is the inconsistent
order algebra. In previous works any kind of w-eo algebra has been assumed to be
consistent, i.e. such that the carrier L has at least two elements; now we do not exclude
to consider the trivial case ({⊺} ,→,⊺), in order to cover the algebra of L-relations from
X to Y in case either X or Y is the empty set ∅, that is, in fact the inconsistent w-eo
algebra ({∅} ,→,∅).
Note that, for all X,Y , the w-ceo algebra of L-relations from X to Y is inconsistent if
L is.

Obviously, the properties stated in the Subsection 2.1 (see also [13, 50]) hold in the
algebra of L-relations.

3.1.2 Compositions of L-relations

Let X,Y,Z,L be sets and let χ ∶ L×L→ L be an operation on L. Starting from χ it
is possible to consider the following partial compositions, for all R ∶X ⇁ Y , S ∶ Y ⇁ Z:

1. the universal (L,χ)-composition Rχ̂S ∶X ⇁ Z, defined by

(x, y)(Rχ̂S) = ⋀
y∈Y

((x, y)R, (y, z)S)χ, ∀x ∈X,z ∈ Z;

2. the existential (L,χ)-composition Rχ̌S ∶X ⇁ Z, defined by

(x, y)(Rχ̌S) = ⋁
y∈Y

((x, y)R, (y, z)S)χ, ∀x ∈X,z ∈ Z.

In the context of w-ceo algebras, we can introduce in RL the following partial com-
positions (that are particular universal or existential (L,χ)-compositions) between L-
relations in a similar way as it has been done in [4, 6]. We adopt specific notations.
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Definition 3.1.4. Let (L,→,⊺) be a w-ceo algebra. For all X,Y,Z ∈ ∣Set∣, R ∶ X ⇁ Y ,
S ∶ Y ⇁ Z define:

1. R ⋅ S ∶X ⇁ Z: (x, y)(R ⋅ S) = ⋁y∈Y (x, y)R ∧ (y, z)S, ∀x ∈X,z ∈ Z;

2. R� S ∶X ⇁ Z: (x, z)(R� S) = ⋀y∈Y (x, y)R→ (y, z)S, ∀x ∈X,z ∈ Z;

3. R� S ∶X ⇁ Z: (x, z)(R� S) = ⋀y∈Y (y, z)S → (x, y)R, ∀x ∈X,z ∈ Z;

4. R� S ∶X ⇁ Z: (x, z)(R� S) = ⋀y∈Y (x, y)R↔ (y, z)S, ∀x ∈X,z ∈ Z.

Remark 3.1.5. It is easy to show that, for all X,Y,Z ∈ ∣Set∣, R ∶ X ⇁ Y , S ∶ Y ⇁ Z:(R�S) = (R�S)∧(R�S). Hence the properties of � can be deduced fro the properties
of � and �.

Proposition 3.1.6. Let (L,→,⊺) be a ceo algebra. Then the following hold, for all
X,Y,Z ∈ ∣Set∣, R,R′ ∶X ⇁ Y and S,S ′ ∶ Y ⇁ Z.

1. (R−)− =R;

2. if R ≤R′, then R− ≤R′
−;

3. (R→R′)− =R− →R′
−;

4. R� ãY Z = ãXZ ;

5. ãXY �S = ãXZ⇔S = ãY Z ;

6. áXY �S = ãXZ ;

7. R� áY Z= ãXZ⇔R =áXY ;

8. if R′ ≤R, then R� S ≤R′
� S;

9. if S ≤ S ′, then R� S ≤R� S ′;

10. R�R− ≥ IX ;

11. R− �R ≥ IY ;

12. R� S = (S− �R−)−;

13. if ⊺→ a = a, for every a ∈ L, then IX �R =R =R� IY .

Proof. 1. ∀x ∈X,y ∈ Y : (x, y)((R−)−) = (y, x)R− = (x, y)R.

2. ∀x ∈X,y ∈ Y : (y, x)R− = (x, y)R ≤ (x, y)R′ = (y, x)R′
−.

3. ∀x ∈ X,y ∈ Y : (y, x)(R → R)− = (x, y)(R → R′) = (x, y)R → (x, y)R′ =(y, x)R− → (y, x)R′
− = (x, y)(R− →R′

−).
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4. ∀x ∈ X,z ∈ Z: (x, z)(R� ãY Z) = ⋀y∈Y (x, y)R →(y, z)ãY Z= ⋀y∈Y (x, y)R → ⊺ =
⋀y∈Y ⊺ = ⊺ =(x, z)ãXZ .

5. ∀x ∈X,z ∈ Z, we have that:

(x, z)(ãXY � S) = (x, z)ãXZ ⇔ ⋀
y∈Y

(x, y)ãXY → (y, z)S = (x, z)ãXZ
⇔ ⋀

y∈Y

⊺→ (y, z)S = ⊺
⇔ ∀y ∈ Y, z ∈ Z ⊺→ (y, z)S = ⊺
⇔ ∀y ∈ Y, z ∈ Z (y, z)S = ⊺
⇔ ∀y ∈ Y, z ∈ Z (y, z)S = (y, z)ãY Z .

6. ∀x ∈ X,z ∈ Z: (x, z)(áXY �S) = ⋀y∈Y (x, y)áXY→ (y, z)S = ⋀y∈Y � → (y, z)S =
⋀y∈Y ⊺ = ⊺ =(x, z)ãXZ .

7. ∀x ∈X,z ∈ Z, one has that:

(x, z)(R�áY Z) = (x, z)ãXZ ⇔ ∀x ∈X,z ∈ Z ⋀
y∈Y

(x, y)R→ (y, z)áY Z = ⊺
⇔ ∀x ∈X,z ∈ Z ⋀

y∈Y

(x, y)R→ � = ⊺

⇔ ∀x ∈X,y ∈ Y (x, y)R→ � = ⊺

⇔ ∀x ∈X,y ∈ Y (x, y)R = �
⇔ ∀x ∈X,y ∈ Y (x, y)R = (x, y)áXY

8. If R′ ≤ R, then ∀x ∈ X,y ∈ Y (x, y)R′ ≤ (x, y)R. Hence, from (o′5) it follows that
∀x ∈ X,z ∈ Z (x, z)(R� S) = ⋀y∈Y (x, y)R → (y, z)S ≤ ⋀y∈Y (x, y)R′ → (y, z)S =(x, z)(R′

� S).
9. If S ≤ S ′, then ∀y ∈ Y, z ∈ Z (y, z)S ≤ (y, z)S ′. Hence, from (o5) it follows that

∀x ∈ X,z ∈ Z (x, z)(R� S) = ⋀y∈Y (x, y)R → (y, z)S ≤ ⋀y∈Y (x, y)R → (y, z)S ′ =(x, z)(R� S ′).
10. For every x ∈ X we have that: (x, x)(R � R−) = ⋀y∈Y (x, y)R → (y, x)R− =

⋀y∈Y (x, y)R → (x, y)R = ⊺ = (x, x)IX ; moreover, if x ≠ x′ (x, x′)(R � R−) ≥
� = (x, x′)IX .

11. This proof is similar to (10).

12. ∀x ∈X,z ∈ Z: (x, z)(R� S) = ⋀y∈Y (y, z)S → (x, y)R = ⋀y∈Y (z, y)S− → (y, x)R− =(z, x)(S− �R−) = (x, z)(S− �R−)−.

13. ∀x ∈ X,y ∈ Y , one has that: (x, y)(IX � R) = ⋀x′∈X(x, x′)IX → (x′, y)R =(⋀x′≠x∈X � → (x′, y)R) ∧ (⊺ → (x, y)R) = ⊺ ∧ (x, y)R = (x, y)R. Similarly, we
can prove that R =R� IY .
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Remark 3.1.7. We note that in the above Proposition the assumption on L to satisfy(o5) and (o′5) is needed only to prove the properties (7) and (8), respectively.

Now we consider on L the right-distributivity condition, that allows to define the
adjoint product and the disjunction connectives in L, as it is done in the previous
Chapter.
By using these, we can give pointwisely further operations on RL.

Definition 3.1.8. Let (L,→,⊺) be a right-distributive ceo algebra. For all X,Y ∈ ∣Set∣,
R,R′ ∶X ⇁ Y , define:

1. R⊗R′ ∶X ⇁ Y : (x, y)(R⊗R′) = (x, y)R⊗ (x, y)R′, x ∈X,y ∈ Y ;

2. R ⊎(−)→ R′ ∶X ⇁ Y : (x, y)(R ⊎(−)→ R′) = (x, y)R ⊎(−)→ (x, y)R′, x ∈X,y ∈ Y ;

3. R(−) ⊎→R′ ∶X ⇁ Y : (x, y)(R(−) ⊎→R′) = (x, y)R(−) ⊎→ (x, y)R′, x ∈X,y ∈ Y .

Also in this case the properties satisfied in L are inherited by the pointwise operations
defined in RL. For instance, the constant relation ãXY is a right unit with respect to

⊗ and the reverse operation []− commutes with ⊗, ⊎(−)→ and (−)⊎→.
The adjoint product of L allows to define as follows another partial composition that
has also been considered by Bělohlávek in [6], in the less general context of commutative
integral residuated lattices.

Definition 3.1.9. Let (L,→,⊺) be a right-distributive ceo algebra. For all X,Y,Z ∈ ∣Set∣,
R ∶X ⇁ Y , S ∶ Y ⇁ Z, we can define the following composition:

1. R� S ∶X ⇁ Z: (x, z)(R� S) = ⋁y∈Y (x, y)R⊗ (y, z)S, x ∈X,z ∈ Z;

2. R�
op S ∶X ⇁ Z: (x, z)(R�

op S) = ⋁y∈Y (x, y)R⊗op (y, z)S, x ∈X,z ∈ Z.

These compositions have good properties, even if the associativity and commutativity
conditions are not assumed on L.

Proposition 3.1.10. Assume (L,→,⊺) to be a right-distributive ceo algebra. The fol-
lowing hold, for all X,Y,Z,W ∈ ∣Set∣, R,R′,Ri ∶ X ⇁ Y , S,S ′,Si ∶ Y ⇁ Z, T ∶ X ⇁ Z,
Q ∶ Z ⇁W and for every i ∈ I.

1. R� IY =R;

2. R�áY Z =áXY ;

3. áXY �S =áXZ ;

4. if R ≤R′, then R� S ≤R′
� S;

5. if S ≤ S ′, then R� S ≤R� S ′;

6. R� (⋀i∈I Si) ≤ ⋀i∈I(R� Si);
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7. (⋀i∈IRi)� S ≤ ⋀i∈I(Ri � S);
8. R� (⋁i∈I Si) = ⋁i∈I(R� Si);
9. T ≤R� S ⇔R− � T ≤ S;

10. if moreover L is left-distributive, then (⋁i∈IRi)� S = ⋁i∈I(Ri � S);
11. if moreover L is associative, then R� (S �Q) = (R� S)�Q;

12. if moreover L is associative and commutative, then the following hold:

(a) (R⊗R′)� (S ⊗ S ′) ≤ (R� S ′)⊗ (R′
� S);

(b) (R⊗R′)� (S ⊗ S ′) ≤ (R′
� S)⊗ (R� S ′).

Proof. 1. ∀x ∈ X,y ∈ Y , (x, y)(R� IY ) = ⋁y′∈Y (x, y)R′ ⊗ (y′, y)IY = (x, y)R ⊗ ⊺ =(x, y)R.

2. ∀x ∈ X,z ∈ Z, (x, z)(R�áY Z)= ⋁y∈Y (x, y)R⊗(y, z)áY Z= ⋁y∈Y (x, y)R ⊗ � =
⋁y∈Y � = � =(x, z)áXZ .

3. ∀x ∈ X,z ∈ Z, (x, z)(áXY �S) = ⋁y∈Y (x, y)áXY ⊗(y, z)S = ⋁y∈Y � ⊗ (y, z)S =
⋁y∈Y � = � =(x, z)áXZ .

4. LetR ≤R′; then for all x ∈X,y ∈ Y (x, y)R ≤ (x, y)R′. So, for all x ∈X,y ∈ Y, z ∈ Z
we have that (x, z)(R � S) = ⋁y∈Y (x, y)R ⊗ (y, z)S ≤ (x, y)R′ ⊗ (y, z)S ≤
⋁y∈Y (x, y)R′ ⊗ (y, z)S = (x, z)(R′

� S).
5. This proof is similar to above.

6. ∀x ∈ X,z ∈ Z, i ∈ I, (x, z)(R � (⋀i∈I Si)) = ⋁y∈Y (x, y)R ⊗ (y, z)(⋀i∈I Si) =
⋁y∈Y (x, y)R⊗(⋀i∈I(y, z)Si) ≤ ⋁y∈Y (x, y)R⊗(y, z)Si. Then (x, z)(R�(⋀i∈I Si)) ≤
⋀i∈I(⋁y∈Y (x, y)R⊗ (y, z)Si) = ⋀i∈I(x, z)(R� Si).

7. This proof is similar to (6).

8. ∀x ∈X,z ∈ Z, we have that:

(x, z)(R� (⋁
i∈I

Si)) = ⋁
y∈Y

(x, y)R⊗ [(y, z)(⋁
i∈I

Si)]
= ⋁
y∈Y

(x, y)R⊗ [⋁
i∈I

(y, z)Si]
= ⋁
y∈Y

⋁
i∈I

(x, y)R⊗ (y, z)Si
=⋁
i∈I

⋁
y∈Y

(x, y)R⊗ (y, z)Si
=⋁
i∈I

(x, z)(R� Si)
= (x, z)(⋁

i∈I

(R� Si)).
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9. ∀x ∈X,z ∈ Z, we have that:

(x, z)T ≤ (x, y)(R� S)⇔ ∀x ∈X,∀z ∈ Z (x, z)T ≤ ⋀
y∈Y

(x, y)R→ (y, z)S
⇔ ∀x ∈X,∀y ∈ Y,∀z ∈ Z (x, z)T ≤ (x, y)R→ (y, z)S
⇔ ∀x ∈X,∀y ∈ Y,∀z ∈ Z (x, y)R⊗ (x, z)T ≤ (y, z)S
⇔ ∀x ∈X,∀y ∈ Y,∀z ∈ Z (y, x)R− ⊗ (x, z)T ≤ (y, z)S
⇔ ∀y ∈ Y,∀z ∈ Z ⋁

x∈X

(y, x)R− ⊗ (x, z)T ≤ (y, z)S
⇔ ∀y ∈ Y,∀z ∈ Z (y, z)(R− � T ) ≤ (y, z)S.

10. This proof is similar to (8).

11. ∀x ∈ X,w ∈ W : (x,w)(R � (S � Q)) = ⋁y∈Y (x, y)R ⊗ (y,w)(S � Q)=
⋁y∈Y (x, y)R ⊗ ⋁z∈Z(y, z)S ⊗ (z,w)Q = ⋁y∈Y ⋁z∈Z(x, y)R ⊗ [(y, z)S ⊗ (z,w)Q] =
⋁y∈Y ⋁z∈Z [(x, y)R⊗ (y, z)S]⊗(z,w)Q = ⋁z∈Z ⋁y∈Y [(x, y)R⊗ (y, z)S]⊗(z,w)Q =
⋁z∈Z(x, z)(R� S)⊗ (z,w)Q = (x,w)((R� S)�Q).

12. (a) ∀x ∈X,z ∈ Z, one has that:

(x, z) [(R⊗R′)� (S ⊗ S ′)] = ⋁
y∈Y

(x, y)(R⊗R′)⊗ (y, z)(S ⊗ S ′)

= ⋁
y∈Y

[(x, y)R⊗ (x, y)R′]⊗ [(y, z)S ⊗ (y, z)S ′]
= ⋁
y∈Y

(x, y)R⊗ [(x, y)R′ ⊗ (y, z)S]⊗ (y, z)S ′
≤ ⋁
y∈Y

(x, y)R⊗ [ ⋁
y′∈Y

(x, y′)R′ ⊗ (y′, z)S]⊗ (y, z)S ′
= ⋁
y∈Y

(x, y)R⊗ (x, z)(R′
� S)⊗ (y, z)S ′

= ⋁
y∈Y

(x, z)(R′
� S)⊗̃(x, y)R⊗ (y, z)S ′

= (x, z)(R′
� S)⊗ ⋁

y∈Y

(x, y)R⊗ (y, z)S ′
= (x, z)(R′

� S)⊗ (x, z)(R� S ′)
= (x, z) [(R′

� S)⊗ (R� S ′)] .
(b) This follows from (a) and commutativity of ⊗.

Now we consider the L-relations taking values in a symmetrical cdeo algebra. So,
we consider RL, the class of binary L-valued relations, where (L,→,⊺) is a symmetrical
cdeo algebra. Then, in RL we can define further pointwise operations.

Definition 3.1.11. Let (L,→,⊺) be a symmetrical cdeo algebra. For all X,Y ∈ ∣Set∣,
R,R′ ∶X ⇁ Y , define:
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1. R¨R′ ∶X ⇁ Y : (x, y)(R¨R′) = (x, y)R¨ (x, y)R′, ∀x ∈X,y ∈ Y ;

2. R⊗̃R′ ∶X ⇁ Y : (x, y)(R⊗̃R′) = (x, y)R⊗̃(x, y)R′, ∀x ∈X,y ∈ Y ;

3. R ⊎(∼)¨ R′ ∶X ⇁ Y : (x, y)(R ⊎(∼)¨ R′) = (x, y)R ⊎(∼)¨ (x, y)R′, ∀x ∈X,y ∈ Y ;

4. R(∼) ⊎¨R′ ∶X ⇁ Y : (x, y)(R(∼) ⊎¨R′) = (x, y)R(∼) ⊎¨ (x, y)R′, ∀x ∈X,y ∈ Y ;

5. R ⊎(−)¨ R′ ∶X ⇁ Y :(x, y)(R ⊎(−)¨ R′) = (x, y)R ⊎(−)¨ (x, y)R′, ∀x ∈X,y ∈ Y ;

6. R(−)⊎¨ ∶X ⇁ Y : (x, y)(R(−) ⊎¨R′) = (x, y)R(−) ⊎¨ (x, y)R′, ∀x ∈X,y ∈ Y ;

7. R ⊎(∼)→ R′ ∶X ⇁ Y : (x, y)(R ⊎(∼)→ R′) = (x, y)R ⊎(∼)→ (x, y)R′, ∀x ∈X,y ∈ Y ;

8. R(∼) ⊎→R′ ∶X ⇁ Y : (x, y)(R(∼) ⊎→R′) = (x, y)R(∼) ⊎→ (x, y)R′, ∀x ∈X,y ∈ Y .

Also in this case all the properties proved on L in Section 2.1 hold for the pointwise
operations defined on RL. For example, the constant relation ãXY become also a left

unit with respect to ⊗ and the reverse operation []− commutes with ⊗̃, ⊎(∼)¨ , (∼)⊎¨, ⊎(−)¨ ,
(−)⊎¨, ⊎(∼)→ and (∼)⊎→.

Moreover, the symmetry assumption on L allows to define further partial composi-
tions.

Definition 3.1.12. Let (L,→,⊺) be a symmetrical cdeo algebra. For all X,Y ∈ ∣Set∣,
R ∶X ⇁ Y , S ∶ Y ⇁ Z, define:

1. R�̃S ∶X ⇁ Z: (x, z)(R�̃S) = ⋀y∈Y (x, y)R¨ (y, z)S, ∀x ∈X,z ∈ Z;

2. R�̃S ∶X ⇁ Z: (x, z)(R�̃S) = ⋀y∈Y (y, z)S ¨ (x, y)R, ∀x ∈X,z ∈ Z;

3. R�̃S ∶X ⇁ Z: (x, z)(R�̃S) = ⋀y∈Y (x, y)R↭ (y, z)S, ∀x ∈X,z ∈ Z;

4. R�̃S ∶X ⇁ Z: (x, z)(R�̃S) = ⋁y∈Y (x, y)R⊗̃(y, z)S, ∀x ∈X,z ∈ Z;

5. R�̃
opS ∶X ⇁ Z: (x, z)(R�̃

opS) = ⋁y∈Y (y, z)S⊗̃(x, y)R, ∀x ∈X,z ∈ Z.

Remark 3.1.13. Under symmetry assumption on (L,→,⊺), an immediate verification
allows to show that ⊗op = ⊗̃ and ⊗̃op = ⊗. Moreover, we recall that (L,¨,⊺) is a
symmetrical cdeo algebra if and only if (L,→,⊺) is and that ⊗̃ is the adjoint product
of (L,¨,⊺). So ¨ and ⊗̃ have exactly the same properties as → and ⊗. This allow to
extend most result we have considered up to now for the algebra of L-relations.

Proposition 3.1.14. Consider a symmetrical cdeo algebra (L,→,⊺). The following
hold, for all X,Y,Z ∈ ∣Set∣, R,R′,Ri ∶ X ⇁ Y , S,S ′,Si ∶ Y ⇁ Z, T ∶ X ⇁ Z, Q ∶ Z ⇁W

and i ∈ I.

1. R�̃IY =R, IX�̃R =R and IX �R =R;

2. R�̃áY Z =áXY and áXY �̃S =áXZ ;
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3. R�̃(⋀i∈I Si) ≤ ⋀i∈I(R�̃Si) and (⋀i∈IRi)�̃S ≤ ⋀i∈I(Ri�̃S);
4. R�̃(⋁i∈I Si) = ⋁i∈I(R�̃Si) and (⋁i∈IRi)�̃S = ⋁i∈I(Ri�̃S);
5. (R� S)− = S−�̃R− and (R�̃S)− = S− �R−;

6. T ≤R�̃S ⇔R−�̃T ≤ S;

7. T ≤R�̃S ⇔R ≤ T � S− and T ≤R� S ⇔R ≤ T �̃S−;

8. R�̃S = (S−�̃R−)−;

9. if moreover L is associative, then the following hold:

(a) R�̃(S�̃Q) = (R�̃S)�̃Q;

(b) R� (S �Q) = (R�̃S)�Q;

(c) R�̃(S�̃Q) = (R� S)�̃Q;

(d) (R� S)⊗ T =áXZ⇔ (T �̃S−)⊗̃R =áXY .

Proof. Most items are immediate consequences of corresponding results already listed
in previous statements, by means of Remark 3.1.13. So, we only verify explicitly the
remaining items.(5) ∀x ∈X,z ∈ Z, we have that: (z, x)(R�S)− = (x, z)(R�S) = ⋁y∈Y (x, y)R⊗(y, z)S =
⋁y∈Y (y, x)R−⊗(z, y)S− = ⋁y∈Y (z, y)S−⊗̃(y, x)R− = (z, x)(S−�̃R−). The second equality
can be similarly proved.(7) ∀x ∈X,z ∈ Z, we have that:

(x, z)T ≤ (x, z)(R�̃S)⇔ ∀x ∈X,z ∈ Z (x, z)T ≤ ⋀
y∈Y

(x, y)R¨ (y, z)S
⇔ ∀x ∈X,y ∈ Y, z ∈ Z (x, z)T ≤ (x, y)R¨ (y, z)S
⇔ ∀x ∈X,y ∈ Y, z ∈ Z (x, y)R ≤ (x, z)T → (y, z)S
⇔ ∀x ∈X,y ∈ Y, z ∈ Z (x, y)R ≤ (x, z)T → (z, y)S−
⇔ ∀x ∈X,y ∈ Y (x, y)R ≤ ⋀

z∈Z

(x, z)T → (z, y)S−
⇔ ∀x ∈X,y ∈ Y (x, y)R ≤ (x, y)(T � S−).

The second equivalence can be similarly proved.(8) ∀x ∈ X,z ∈ Z: (x, z)(R�̃S) = ⋀y∈Y (y, z)S ¨ (x, y)R = ⋀y∈Y (z, y)S− ¨ (y, x)R− =(z, x)(S−�̃R−) = (x, z)(S−�̃R−)−.



CHAPTER 3. MANY-VALUED RELATIONS 78

(9)(b) ∀x ∈X,w ∈W , one has that:

(x,w)(R� (S �Q)) = ⋀
y∈Y

(x, y)R→ (y,w)(S �Q)
= ⋀
y∈Y

(x, y)R→ (⋀
z∈Z

(y, z)S → (z,w)Q)
= ⋀
y∈Y

⋀
z∈Z

(x, y)R→ [(y, z)S → (z,w)Q]
= ⋀
y∈Y

⋀
z∈Z

[(y, z)S ⊗ (x, y)R]→ (z,w)Q
= ⋀
y∈Y

⋀
z∈Z

[(x, y)R⊗̃(y, z)S]→ (z,w)Q
= ⋀
z∈Z

⋀
y∈Y

[(x, y)R⊗̃(y, z)S]→ (z,w)Q
= ⋀
z∈Z

(⋁
y∈Y

(x, y)R⊗̃(y, z)S)→ (z,w)Q
= ⋀
z∈Z

(x, z)(R�̃S)→ (z,w)Q
= (x,w)((R�̃S)�Q).

(9)(c) The proof is similar to the above.(9)(d) ∀x ∈X,∀z ∈ Z, we have that:

(x, z)[(R� S)⊗ T ] = (x, z)áXZ ⇔ ∀x ∈X,z ∈ Z (x, z)(R� S)⊗ (x, z)T = �
⇔ ∀x ∈X,z ∈ Z [⋁

y∈Y

(x, y)R⊗ (y, z)S]⊗ (x, z)T = �
⇔ ∀x ∈X,z ∈ Z ⋁

y∈Y

{[(x, y)R⊗ (y, z)S]⊗ (x, z)T } = �
⇔ ∀x ∈X,y ∈ Y, z ∈ Z [(x, y)R⊗ (y, z)S]⊗ (x, z)T = �
⇔ ∀x ∈X,y ∈ Y, z ∈ Z (x, y)R⊗ [(y, z)S ⊗ (x, z)T ] = �
⇔ ∀x ∈X,y ∈ Y, z ∈ Z (x, y)R⊗ [(x, z)T ⊗̃(y, z)S] = �
⇔ ∀x ∈X,y ∈ Y, z ∈ Z [(x, z)T ⊗̃(y, z)S]⊗̃(x, y)R = �
⇔ ∀x ∈X,y ∈ Y, z ∈ Z [(x, z)T ⊗̃(z, y)S−]⊗̃(x, y)R = �
⇔ ∀x ∈X,y ∈ Y [⋁

z∈Z

(x, z)T ⊗̃(z, y)S−]⊗̃(x, y)R = �
⇔ ∀x ∈X,y ∈ Y (x, y)(T �̃S−)⊗̃(x, y)R = �
⇔ ∀x ∈X,y ∈ Y (x, y)[(T �̃S−)⊗̃R] = (x, y)áXY .

3.2 L-relations and associated operators on L-sets

In this Section we reconsider well known concepts concerning L-relations and some
operators they induce, either directly or by means of the algebraic structure on L, in the
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L-powersets of involved sets. First we introduce the notion of many-valued (pre)order,
based on extended-order algebras; however, its weakest version may be simply based on
(pre)ordered sets.

3.2.1 L-order, subsethood and intersection degree

L-preorder and L-order on X have been approached usually assuming L to have some
kind of lattice ordered algebraic structure and assuming X to be a set equipped with an
L-equality (possibly the usual crisp equality, which will be the case we shall consider).
In the spirit of weak extended-order algebras and of the more general implicative
groupoids considered in [49] and described later in Section 6.4, we begin with a weak
notion of L-preorder and of L-order on a set X based on an ordered set (L,≤), though
a preordered set could be enough.

Definition 3.2.1. Let (L,≤) be an ordered set, X a set, F ⊆ L an upperset. An L-
relation α ∶ X × X → L is a weak (L,F)-preorder if the following conditions are
satisfied, for all x, y, z ∈X:(r)F (x, x)α ∈ F ;(wt)F (x, y)α ∈ F, (y, z)α ∈ F ⇒ (x, z)α ∈ F ;
α is a weak (L,F)-order if, moreover, the following holds, for all x, y ∈X:(as)F (x, y)α ∈ F, (y, x)α ∈ F ⇒ x = y.

Of course, if the top element ⊺ exists in (L,≤), then {⊺} is an upperset and we
may consider the above conditions (r)⊺, (wt)⊺ and (as)⊺ in the specific case F = {⊺},
speaking of weak (L,⊺)-preorder and weak (L,⊺)-order.
In fact, one can say that α is a weak (L,F )-(pre)order if and only if it induces on X a
(pre)order ⪯ by means of the equivalence

x ⪯ y⇔ (x, y)α ∈ F
as it happens for relational groupoids (see Section 6.4) and, in case F = {⊺}, for weak
extended-order algebras (see Subsection 2.1.1).
Stronger versions of L-(pre)order require stronger assumptions on L.

Definition 3.2.2. Let (L,≤) be an ∧-semilattice, X a set and α ∶ X ×X → L. Then α

is a strong L-preorder if the following hold, for all x, y, z ∈X:(r) (x, x)α = ⊺;(t)∧ (x, y)α ∧ (y, z)α ≤ (x, z)α;
α is a strong L-order if, moreover, it satisfies the condition, for all x, y ∈X:(as) (x, y)α = (y, x)α = ⊺⇒ x = y.

Definition 3.2.3. Let (L,→,⊺) be a right-distributive w-ceo algebra, X a set and α ∶
X ×X → L. Then α is an (L,⊗)-preorder if it satisfies (r) and the following, for all
x, y, z ∈X:(t)⊗ (x, y)α⊗ (y, z)α ≤ (x, z)α;
α is a (L,⊗)-order if it satisfies (r), (t)⊗ and (as).
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Remark 3.2.4. The attributes “weak” and “strong” are only partially motivated by
the relationships between the above Definitions. In fact, despite the attribute “weak”,
the condition (as)F is stronger than (as), whenever F ≠ {⊺}.
However, the following results restore the right meaning of the above attributes.

Proposition 3.2.5. Let X be any set, (L,≤) an ∧-semilattice and α ∶X ×X → L. Then

1. if α is a strong L-order, then α is an (L,⊺)-order;

2. α is a strong L-preorder if and only if α is a (L,F )-preorder, for every filter F in
L;

3. if (L,→,⊺) is a symmetrical cdeo algebra and α is a strong L-(pre)order, then α

is an (L,⊗)-(pre)order.

Proof. 1. Clearly (r)⊺ and (as)⊺ are exactly (r) and (as). From (t)∧ follows easily(wt)⊺.

2. If α is a strong L-preorder and F is a filter of L, then, for every x ∈ X, (x, x)α =
⊺ ∈ F .
Moreover, if (x, y)α ∈ F and (y, z)α ∈ F , then (x, z)α ≥ (x, y)α ∧ (y, z)α ∈ F ⇒(x, z)α ∈ F .
Conversely, since {⊺} is a filter, (r) holds since (r)⊺ holds. Now, let x, y, z ∈ X
and consider the filter F = ((x, y)α ∧ (y, z)α)[↑]; evidently, (x, y)α, (y, z)α ∈ F so,
by assumption, (x, z)α ∈ F , i.e. (x, y)α ∧ (y, z)α ≤ (x, z)α.

3. The proof follows easily by the inequality a⊗ b ≤ a ∧ b, which holds for all a, b ∈ L.

Remark 3.2.6. The notion of ⊗-filter has been sometimes used in connection with
many-valued order; we recall that a ⊗-filter F in a right-distributive w-ceo algebra L is
an upperset F ⊆ L which is closed under ⊗.
Now, if α is an (L,⊗)-(pre)order and F is a ⊗-filter in L, then α is an (L,F )-(pre)order,
which can be proved in a similar way as in the first part of the proof in the item (2) of
the above proposition.

Consider, now, the following L-relations, defined by using an operation on L.

Definition 3.2.7. Let L be a set and let χ ∶ L × L → L an operation on it. For ev-
ery set X, we call universal (L,χ)-aggregation the L-relation Rχ,∧ ∶ LX × LX → L

defined by (A,B)Rχ,∧X = ⋀x∈X((x)A, (x)B)χ, for all A,B ∈ LX and existential (L,χ)-
aggregation the L-relation Rχ,∨X ∶ LX × LX → L defined, for all A,B ∈ LX , by(A,B)Rχ,∨ = ⋁x∈X((x)A, (x)B)χ.

Particular (L,χ)-aggregations have already been considered in the literature; the
following definition recall the one, well known, used to evaluate the inclusion between
L-sets.
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Definition 3.2.8. Let X be a set and let (L,→,⊺) be a w-ceo algebra. We consider the
L-relation SX ∶ LX ×LX → L, called subsethood L-relation and defined by (A,B)SX =
⋀x∈X(x)A→ (x)B, for all A,B ∈ LX ; (A,B)SX is called subsethood degree of A and
B.
If (L,→,⊺) is a symmetrical cdeo algebra, we also consider the dual subsethood L-
relation, S̃X ∶ LX ×LX → L such that (A,B)S̃X = ⋀x∈X(x)A¨ (x)B, for all A,B ∈ LX .

Of course, SX = R
→,∧
X and we shall denote S∨X = R

→,∨
X and, if L is symmetrical,

S̃X =R
¨,∧
X and S̃∨X =R

¨,∨
X .

We note that S∨X is not frequently used, since it is trivial in some cases; for instance,
we have that it is sufficient that there is at least x̄ ∈ X such that (x̄)A → (x̄)B = ⊺, i.e.(x̄)A ≤ (x̄)B, to conclude that (A,B)S∨X = ⊺.

Proposition 3.2.9. The following statements are true.

1. If (L,→,⊺) is a w-ceo algebra, then the following hold, for all A,B,C ∈ LX :

(a) (A,A)SX = ⊺;

(b) (A,B)SX = (B,A)SX = ⊺⇒ A = B;

(c) (A,B)SX = (B,C)SX = ⊺⇒ (A,C)SX = ⊺.

2. If L is a right-distributive ceo algebra, then (A,B)SX = ⊺ ⇒ (C,A)SX →(C,B)SX = (B,C)SX → (A,C)SX = ⊺, for all A,B,C ∈ LX .

3. If L is a symmetrical cdeo algebra, then the following hold, for all A,B,C ∈ LX :

(a) (A,A)S̃X = ⊺;

(b) (A,B)S̃X = (B,A)S̃X = ⊺⇒ A = B;

(c) (A,B)S̃X = (B,C)S̃X = ⊺⇒ (A,C)S̃X = ⊺.

(d) (A,B)S̃X = ⊺⇒ (C,A)S̃X → (C,B)S̃X = (B,C)S̃X → (A,C)S̃X = ⊺.

4. If L is an associative and right-distributive ceo algebra, then the following hold, for
all A,B,C ∈ LX :

(a) (A,B)SX ⊗ (B,C)SX ≤ (A,C)SX and (B,C)SX ≤ (A,B)SX → (A,C)SX ;

(b) if, moreover, L is symmetrical, then (B,C)S̃X ⊗ (A,B)S̃X ≤ (A,C)S̃X .

Proof. 1. Let (L,→,⊺) be a w-ceo algebra and let A,B,C ∈ LX .

(a) From (o2) it follows easily that (A,A)SX = ⋀x∈X(x)A→ (x)A = ⊺.

(b) By assumption (A,B)SX = ⋀x∈X(x)A → (x)B = ⊺ and (B,A)SX =

⋀x∈X(x)B → (x)A = ⊺; hence, for every x ∈X (x)A→ (x)B = (x)B → (x)A =
⊺ that implies, thanks to the antisymmetry condition (o3) that (x)A = (x)B,
for every x ∈X, i.e. A = B.
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(c) By assumption (A,B)SX = ⋀x∈X(x)A → (x)B = ⊺ and (B,C)SX =

⋀x∈X(x)B → (x)C = ⊺; so, for every x ∈ X (x)A → (x)B = (x)B → (x)C = ⊺.
Hence, from the weak transitivity condition (o4) it follows that, for every
x ∈ X, (x)A → (x)C = ⊺ and then (A,C)SX = ⋀x∈X(x)A → (x)C = ⊺, i.e.(A,C)SX = ⊺.

2. Let (L,→,⊺) be a right-distributive ceo algebra and let A,B,C ∈ LX such that(A,B)SX = ⊺. By using the right-distributivity assumption and the axioms (o2),(o5) and (o5)′ we can deduce the following:

(C,A)SX → (C,B)SX = (⋀
x∈X

(x)C → (x)A)→ ( ⋀
x′∈X

(x′)C → (x′)B)
= ⋀
x′∈X

((⋀
x∈X

(x)C → (x)A)→ ((x′)C → (x′)B))
≥ ⋀
x′∈X

(((x′)C → (x′)A)→ ((x′)C → (x′)B))
= ⊺.

So, the first statement is proved.
Similarly, we can prove that (B,C)SX → (A,C)SX = ⊺.

3. By Proposition 2.1.19 we have that (L,¨,⊺) is a cdeo algebra, too. So the items
(a), (b), (c) (d) of (3) follow from the items (1) and (2).

4. Let (L,→,⊺) be an associative and right-distributive ceo algebra and let A,B,C ∈
LX .

(a) By Propositions 2.1.11 (9), (10) and 2.1.60 (1), the following holds:(A,B)SX ⊗ (B,C)SX = (⋀x∈X(x)A→ (x)B) ⊗ (⋀x′∈X(x′)B → (x′)C) ≤((x)A→ (x)B)⊗ ((x)B → (x)C) ≤ (x)A→ (x)C.
Hence, (A,B)SX ⊗ (B,C)SX ≤ ⋀x∈X(x)A→ (x)C = (A,C)SX .
The second inequality is equivalent to the first one.

(b) The proof is similar to the above and it can be given recalling that ⊗̃ = ⊗op

and by using the Proposition 2.1.61 (1).

Corollary 3.2.10. 1. If (L,→,⊺) is a w-ceo algebra, then → is an (L,⊺)-order in L

and SX is a weak (L,⊺)-order in LX . Under symmetry assumption, ¨ and S̃X
are weak (L,⊺)-orders, too.

2. If (L,→,⊺) is an associative cdeo algebra, then → is an (L,⊗)-order in L and SX is
an (L,⊗)-order in LX ; moreover, if L is symmetrical and associative cdeo algebra,
then ¨ and S̃X are (L,⊗)-orders, too. ◻

In the following definition we recall a further particular (L,χ)-aggregations used in
many-valued mathematics to evaluate the intersection between L-sets.
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Definition 3.2.11. Let X be a set and let (L,→,⊺) be a w-ceo algebra. The intersec-
tion L-relation TX ∶ LX ×LX → L is defined by (A,B)TX = ⋁x∈X(x)A⊗ (x)B, for all
A,B ∈ LX .
If (L,→,⊺) is a symmetrical cdeo algebra, we can define the dual intersection L-
relation T̃X ∶ LX ×LX → L such that (A,B)T̃X = ⋁x∈X(x)A⊗̃(x)B, for all A,B ∈ LX .

Of course TX = R
⊗,∨
X and we use the notation T ∧X = R

⊗,∧
X and, if L is symmetrical,

we denote T̃X = R
⊗̃,∨
X , T̃ ∧X = R

⊗̃,∧
X and we call T ∧X and T̃ ∧X overlap and dual overlap

L-relation, respectively.
We note that T ∧X is not frequently used, since it is trivial in some cases; in fact, for
instance, we have that (A,B)T ∧X = ⊺⇔ (x)A = (x)B = ⊺, ∀x ∈X.

Proposition 3.2.12. Let (L,→,⊺) be a symmetrical cdeo algebra. Then the following
hold, for all A,B,C ∈ LX .

1. (A,B)TX = (B,A)T̃X ;

2. (A,áX)TX = (áX ,A)TX = �;

3. (A,áX)T̃X = (áX ,A)T̃X = �;

4. L is associative if and only if one of the following conditions holds:

(a) (A,B ⊗C)TX = (A⊗C,B)TX , ∀X ∈ ∣Set∣;
(b) (A,B ⊗C)T̃X = (A⊗C,B)T̃X , ∀X ∈ ∣Set∣;
(c) (A,B⊗̃C)TX = (A⊗̃C,B)TX , ∀X ∈ ∣Set∣;
(d) (A,B⊗̃C)TX = (C⊗̃A,B)TX , ∀X ∈ ∣Set∣;
(e) (A,B⊗̃C)TX = (B,A⊗C)T̃X , ∀X ∈ ∣Set∣;
(f) (A,B ⊗C)T̃X = (C ⊗A,B)T̃X , ∀X ∈ ∣Set∣;
(g) (A,B ⊗C)T̃X = (B,A⊗̃C)TX , ∀X ∈ ∣Set∣.

Proof. 1. The equality follows easily from the definition of TX and T̃X and recalling
that ⊗̃ = ⊗op.

The items (2) and (3) follows from Proposition 2.1.11 (2), (3) and by ⊗̃ = ⊗op. 4. We
prove the equivalence between the associativity of L and the equality of item (a); the
other equivalences can be similarly proved, recalling ⊗̃ = ⊗op.
Assuming L to be associative, let A,B,C ∈ LX ; then the following holds:(A,B ⊗C)T = ⋁x∈X(x)A⊗ ((x)B⊗ (x)C) = ⋁x∈X((x)A⊗ (x)B)⊗ (x)C = (A⊗B,C)T .
The converse implication can be easily proved considering a singleton X = {x}.
3.2.2 L-powerset operators

L-powerset operators associated to functions or to L-valued relations are somehow
defined in [4, 6, 16, 22, 25, 33, 35, 45, 90] assuming in any case that L is a complete
lattice, sometimes with a lattice ordered algebraic structure. We adopt notation similar
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to those of [33, 35], omitting the attribute “powerset”, with weaker assumptions on the
algebraic structure of L.

Definition 3.2.13. [35] Let (L,→,⊺) be a right-distributive ceo algebra and R ∶X ⇁ Y

be an L-relation, with X,Y ∈ ∣Set∣.
The right forward weak operator of R is R⊗ ∶ LX → LY , such that, for every A ∈ LX

and y ∈ Y : (y)(A)R⊗ = ⋁
x∈X

(x, y)R⊗ (x)A.
The left forward weak operator of R is ⊗R ∶ LX → LY , such that, for every A ∈ LX

and y ∈ Y : (y)(A)⊗R = ⋁
x∈X

(x)A⊗ (x, y)R.
The right forward strong operator of R is R→ ∶ LX → LY , such that, for every
A ∈ LX and y ∈ Y : (y)(A)R→ = ⋀

x∈X

(x, y)R→ (x)A.
The left forward strong operator of R is →R ∶ LX → LY , such that, for every A ∈ LX

and y ∈ Y : (y)(A)→R = ⋀
x∈X

(x)A→ (x, y)R.
If R− is the reverse L-relation of R, we denote the backward operators of R by the
following notation.

The right backward weak operator of R is R⊗
− = (R−)⊗ ∶ LY → LX , such that,

for every B ∈ LY and x ∈X:

(x)(B)R⊗
− = ⋁

y∈Y

(y, x)R− ⊗ (y)B.
The left backward weak operator of R is ⊗R− =

⊗ (R−) ∶ LY → LX , such that,
for every B ∈ LY and x ∈X:

(x)(B)⊗R− = ⋁
y∈Y

(y)B ⊗ (y, x)R−.

The right backward strong operator of R is R→− = (R−)→ ∶ LY → LX , such
that, for every B ∈ LY and x ∈X:

(x)(B)R→− = ⋀
y∈Y

(y, x)R− → (y)B.
The left backward strong operator of R is →R− =

→ (R−) ∶ LY → LX , such that,
for every B ∈ LY and x ∈X:

(x)(B)→R− = ⋀
y∈Y

(y)B → (y, x)R−.
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With further assumption on L we can define more powerset operators as follows.

Definition 3.2.14. Let (L,→,⊺) be a symmetrical cdeo algebra and R ∶ X ⇁ Y be an
L-relation, with X,Y ∈ ∣Set∣.
The dual right forward weak operator of R is R⊗̃ ∶ LX → LY , such that, for every
A ∈ LX and y ∈ Y : (y)(A)R⊗̃ = ⋁

x∈X

(x, y)R⊗̃(x)A.
The dual left forward weak operator of R is ⊗̃R ∶ LX → LY , such that, for every
A ∈ LX and y ∈ Y : (y)(A)⊗̃R = ⋁

x∈X

(x)A⊗̃(x, y)R.
The dual right forward strong operator of R is R¨ ∶ LX → LY , such that, for every
A ∈ LX and y ∈ Y : (y)(A)R¨ = ⋀

x∈X

(x, y)R¨ (x)A.
The dual left forward strong operator of R is ¨R ∶ LX → LY , such that, for every
A ∈ LX and y ∈ Y : (y)(A)¨R = ⋀

x∈X

(x)A¨ (x, y)R.
If R− is the reverse L-relation of R, we denote the dual backward operators of R by
the following notation.

The dual right backward weak operator of R is R⊗̃
− = (R−)⊗̃ ∶ LY → LX , such

that, for every B ∈ LY and x ∈X:

(x)(B)R⊗̃
− = ⋁

y∈Y

(y, x)R−⊗̃(y)B.

The dual left backward weak operator of R is ⊗̃R− =
⊗̃ (R−) ∶ LY → LX , such

that, for every B ∈ LY and x ∈X:

(x)(B)⊗̃R− = ⋁
y∈Y

(y)B⊗̃(y, x)R−.

The dual right backward strong operator of R is R¨− = (R−)¨ ∶ LY → LX ,
such that, for every B ∈ LY and x ∈X:

(x)(B)R¨− = ⋀
y∈Y

(y, x)R− ¨ (y)B.

The dual left backward strong operator of R is ¨R− =
¨ (R−) ∶ LY → LX ,

such that, for every B ∈ LY and x ∈X:

(x)(B)¨R− = ⋀
y∈Y

(y)B ¨ (y, x)R−.
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Remark 3.2.15. It is easy to show that in case of a symmetrical cdeo algebra, R⊗̃ =⊗ R
and ⊗̃R = R⊗. Hence, the results proved for ⊗R and R⊗ can be restated for R⊗̃ and
⊗̃R.
Clearly, if L is a commutative cdeo algebra, then ¨=→ and ⊗̃ = ⊗; hence R⊗̃ = R⊗ =⊗

R =⊗̃ R, R¨ =R→ and ¨R =→ R.

The following extends some results of [33].

Proposition 3.2.16. 1. Let (L,→,⊺) be a right-distributive ceo algebra. The follow-
ing hold, for every R ∶X ⇁ Y for all A,B ∈ LX .

(a) R⊗, ⊗R and R→ are isotonic;

(b) →R is antitonic.

2. Let (L,→,⊺) be a symmetrical right-distributive ceo algebra. The following hold,
for every R ∶X ⇁ Y for all A,B ∈ LX .

(a) R⊗̃, ⊗̃R and R¨ are isotonic;

(b) ¨R is antitonic.

Proof. 1. Let (L,→,⊺) be a right-distributive ceo algebra, R ∶X ⇁ Y and A,B ∈ LX

such that A ⊆ B, i.e. (x)A ≤ (x)B, for every x ∈X.

(a) By Proposition 2.1.11 (9), (10) and by assumption, for every y ∈ Y , we have
that (y)(A)R⊗ = ⋁x∈X(x, y)R ⊗ (x)A ≤ ⋁x∈X(x, y)R ⊗ (x)B = (y)(B)R⊗;
similarly we can prove that ⊗̃R is isotonic.
From (o5) and by assumption, it follows that:(y)(A)R→ = ⋁x∈X(x, y)R→ (X)A ≤ ⋁x∈X(x, y)R→ (X)B = (y)(B)R→.

(b) From (o5)′ and by assumption, it follows that:(y)(A)→R = ⋁x∈X(x)A→ (x, y)R ≥ ⋁x∈X(x)B → (x, y)R = (y)(B)→R.

2. The proof of the item (a) and (b) of (2) is similar to above.

Proposition 3.2.17. 1. Let (L,→,⊺) be a right-distributive ceo algebra. For every
R ∶X ⇁ Y , the following hold.

(a) R⊗ ⊣ R→− ;

(b) R⊗
− ⊣ R

→.

2. Let (L,→,⊺) be a symmetrical right-distributive ceo algebra. For every R ∶X ⇁ Y ,
the following hold.

(a) R⊗̃ ⊣ R¨− ;

(b) R⊗̃
− ⊣ R

¨.
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Proof. 1. Let (L,→,⊺) be a symmetrical right-distributive ceo algebra and let A ∈ LX

and B ∈ LY .

(a) Let x ∈ X; by Proposition 2.1.11 (11) and from (o5), the follow-
ing hold: (x)((A)⊗R)R→− = ⋀y∈Y ((x, y)R→ (⋁x′∈X((x′, y)R⊗ (x′)A)) ≥
⋀y∈Y (x, y)R→ ((x, y)R⊗ (x)A) ≥ (x)A.
Now, let y ∈ Y ; by Proposition 2.1.11 (9) (11), we have that (y)((B)R→− )R⊗ =

⋁x∈X(x, y)R⊗ (⋀y′∈Y (x, y′)R→ (y′)B) ≤ ⋁x∈X(x, y)R⊗ ((x, y)R→ (y)B) ≤(y)B.

(b) This statement follows by applying the item (a) to the reverse L-relation R−.

2. The items (a) and (b) of (2) can be proved similarly.

The equalities stated in Remark 3.2.15 allow to prove the following.

Corollary 3.2.18. If (L,→,⊺) is a symmetrical cdeo algebra and R ∶ X × Y → L, then
one has the following adjunctions:

1. ⊗R ⊣ R¨− ;

2. ⊗̃R ⊣ R→− . ◻

Proposition 3.2.19. Let (L,→,⊺) be a symmetrical cdeo algebra and let R ∶X×Y → L.
The following hold.

1. [→R,¨R−];
2. [¨R,→R−].

Proof. 1. Let A ∈ LX and x ∈ X; by Propositions 2.1.26 (2) and
2.1.30 (9) and by applying (o5)′, we have that (x)((A)→R)¨R− =

⋀y∈Y ((⋀x′∈X(x′)A→ (x′, y)R)¨ (x, y)R) ≥ ⋀y∈Y ((x)A → (x, y)R) ¨ (x, y)R ≥(x)A.
Now, let B ∈ LY and y ∈ Y ; by Propositions 2.1.26 (2) and 2.1.30 (10) and by (o5)′,
similarly we can prove that (y)((B)¨R−)→R ≥ (y)B. So, by Proposition 3.2.16, we
have that →R and ¨R− are antitonic and satisfy the inequalities A ≤ ((A)→R)¨R−

and B ≤ ((B)¨R−)→R. Hence, by Remark 1.2.6 it follows that [→R,¨R−].
2. The proof is similar to above.

We note that, if (L,→,⊺) is a commutative cdeo algebra (and hence, →=¨), we have
also that [→R,→R−]. Moreover, this condition characterizes the commutativity of cdeo
algebra, as the following result shows.

Proposition 3.2.20. Let (L,→,⊺) be a right-distributive ceo algebra. The following are
equivalent.
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(i) L is commutative;

(ii) for all X,Y non-empty sets and for every R ∶X ⇁ Y : [→R,→R−].
Proof. (i) ⇒ (ii) Thanks to commutativity assumption, we have that →=¨; hence (ii)
follows from Proposition 3.2.19.(ii)⇒ (i) If [→R,→R−], then →R is uniquely determined by →R− and hence, by Propo-
sition 3.2.19 we have that →R =¨ R.
Consider now the set X = {x}, the L-point A = aX and the L-relation R ∶X ⇁ Y defined
by (x, x)R = b, for some b ∈ L. Then, we have that a → b =→ R =¨ R = a ¨ b, for all
a, b ∈ L. Hence →=¨, i.e. L is commutative.

Proposition 3.2.21. 1. If (L,→,⊺) is a cdeo algebra, then, for every set X:
⊗IX = ILX .

2. If (L,→,⊺) is a symmetrical cdeo algebra, for every set X:

(a) I⊗X = ILX ;

(b) ⊗̃IX = ILX ;

(c) I⊗̃X = ILX .

Proof. 1. Let (L,→,⊺) be a cdeo algebra; for all A ∈ LX and x ∈ X, the following
equalities hold: (x)(A)⊗IX = ⋁x′∈X(x′)A⊗ (x′, x)I = (x)A⊗ ⊺ = (x)A.

2. Let (L,→,⊺) be a symmetrical cdeo algebra.

(a) Since ⊺ is left neutral with respect to the adjoint product ⊗, for all A ∈ LX

and x ∈X, the following equalities hold: (x)(A)I⊗X = ⋁x′∈X(x, x′)I ⊗ (x′)A =
⊺ ⊗ (x)A = (x)A.

The items (b) and (c) of (2) follows easily recalling that ⊗̃ = ⊗op.

Lemma 3.2.22. 1. Let (L,→,⊺) be a cdeo algebra. L is associative if and only if
⊗(R� S) =⊗ R ⋅⊗ S, for all R ∶X × Y → L and S ∶ Y ×Z → L.

2. Let (L,→,⊺) be a symmetrical cdeo algebra. L is associative if and only if
⊗̃(R�̃S) =⊗̃ R ⋅ ⊗̃S, for all R ∶X × Y → L and S ∶ Y ×Z → L.

Proof. 1. “ ⇒ ” By Propositions 2.1.11 (8) and 2.1.28, applying the associativity
condition, the following equalities hold, for all R ∶ X × Y → L, S ∶ Y × Z → L,
A ∈ LX and z ∈ Z: (z)(A)⊗(R � S) = ⋁x∈X(x)A ⊗ (⋁y∈Y (x, y)R⊗ (y, z)S) =
⋁x∈X ⋁y∈Y (x)A ⊗ ((x, y)R ⊗ (y, z)S) = ⋁y∈Y ⋁x∈X((x)A ⊗ (x, y)R) ⊗ (y, z)S =
⋁y∈Y ((⋁x∈X(x)A⊗ (x, y)R)⊗ (y, z)S) = (z)(A)(⊗R ⋅⊗ S).
“ ⇐ ” Consider now the L-point A = aX , with a ∈ L, R ∶ X × Y → L defined by(x, y)R = b, for all x ∈X,y ∈ Y , with b ∈ L and S ∶ Y ×Z → L defined by (y, z)S = c,
for all y ∈ Y, z ∈ Z, with c ∈ L. By assumption, the following hold, for every z ∈ Z:(z)(A)⊗(R� S) = (z)(A)(⊗R ⋅⊗ S)⇒ a⊗ (b⊗ c) = (a⊗ b)⊗ c.
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2. The proof of the equivalence is similar to above, recalling that ⊗̃ = ⊗op.

Proposition 3.2.23. If (L,→,⊺) is an associative and symmetrical cdeo algebra, then

1. the maps
X ∈ ∣Set∣↦ (X)⊗[⋅] = LX

R ∈RL(X,Y )↦ (R)⊗[⋅] =⊗ R ∶ LX → LY

define a functor ⊗[⋅] between the categories R�

L = (∣Set∣ ,RL,�) and ⋁−CSLat.

2. the maps
X ∈ ∣Set∣↦ (X)⊗̃[⋅] = LX

R ∈RL(X,Y )↦ (R)⊗̃[⋅] =⊗̃ R ∶ LX → LY

define a functor ⊗̃[⋅] between the categories R�̃

L = (∣Set∣ ,RL, �̃) and ⋁−CSLat.

Proof. First we note that, if (L,→,⊺) is an associative and symmetrical cdeo algebra,

then both R�

L
= (∣Set∣ ,RL,�) and R�̃

L
= (∣Set∣ ,RL, �̃) are categories, by Propositions

3.1.10 and 3.1.14. The statement of both items follows from Lemma 3.2.22.

We note that, in general, (R � S)⊗ ≠ R⊗ ⋅ S⊗ and (R�̃S)⊗̃ ≠ R⊗̃ ⋅ S⊗̃. But, the
following results hold.

Lemma 3.2.24. Let (L,→,⊺) be a cdeo algebra and R ∶ X × Y → L and S ∶ Y ×Z → L.(R� S)⊗ =R⊗ ⋅ S⊗ if and only if (a⊗ b)⊗ c = b⊗ (c⊗ a), for all a, b, c ∈ L.

Proof. The proof can be given with the similar arguments of Lemma 3.2.22.

Proposition 3.2.25. If (L,→,⊺) is an associative and symmetrical cdeo algebra, the
following are equivalent:

1. the maps
X ∈ ∣Set∣↦ (X)[⋅]⊗ = LX

R ∈RL(X,Y )↦ (R)[⋅]⊗ =R⊗ ∶ LX → LY

define a functor [⋅]⊗ between the categories R�

L = (∣Set∣ ,RL,�) and ⋁−CSLat;

2. (a⊗ b)⊗ c = b⊗ (c⊗ a), for all a, b, c ∈ L;

3. L is commutative;

4. ⊗[⋅] = [⋅]⊗.

Proof. “(1)⇒ (2)” This implication follows from Lemma 3.2.24.
“(2)⇒ (3)” The commutativity of ⊗ follows easily from (2), choosing c = ⊺.
“(3)⇒ (4)” This implication follows easily from Remark 3.2.15.
“(4)⇒ (1)” It follows from Proposition 3.2.23.
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Lemma 3.2.26. Let (L,→,⊺) be a symmetrical cdeo algebra and R ∶ X × Y → L and
S ∶ Y ×Z → L. (R�̃S)⊗̃ =R⊗̃ ⋅S⊗̃ if and only if (a⊗ b)⊗ c = (a⊗ c)⊗ b, for all a, b, c ∈ L.

Proof. The proof is an immediate consequence of Remark 3.1.13 and Lemma 3.2.22.

Proposition 3.2.27. If (L,→,⊺) is an associative and symmetrical cdeo algebra, the
following are equivalent:

1. the maps
X ∈ ∣Set∣↦ (X)[⋅]⊗̃ = LX

R ∈RL(X,Y )↦ (R)[⋅]⊗̃ =R⊗̃ ∶ LX → LY

define a functor [⋅]⊗̃ between the categories R�

L = (∣Set∣ ,RL,�) and ⋁−CSLat;

2. a⊗ (b⊗ c) = (a⊗ c)⊗ b, for all a, b, c ∈ L;

3. L is commutative;

4. ⊗̃[⋅] = [⋅]⊗̃.

Proof. The equivalences follow soon by Remark 3.1.13 and Proposition 3.2.25.

Proposition 3.2.28. If (L,→,⊺) is a symmetrical cdeo algebra, then, for every non-
empty set X, the following hold.

1. I→X = ILX ;

2. I¨X = ILX .

Proof. 1. Let X be a non-empty set and let A ∈ LX . Then, for every x ∈ X, by
Proposition 2.1.30 (7), the following hold: (x)(A)I→X = ⋀x′∈X(x′, x)IX → (x′)A =(⋀x′≠x∈X �→ (x′)A) ∧ (⊺→ (x)A) = ⊺→ (x)A = (x)A.

2. The proof is similar, by using Proposition 2.1.30 (8).

Lemma 3.2.29. 1. Let (L,→,⊺) be a cdeo algebra. L is associative if and only if(R� S)→ =R→ ⋅ S→, for all R ∶X × Y → L and S ∶ Y ×Z → L.

2. Let (L,→,⊺) be a symmetrical cdeo algebra. L is associative if and only if(R�̃S)¨ =R¨ ⋅ S¨, for all R ∶X × Y → L and S ∶ Y ×Z → L.

Proof. 1. “ ⇒ ” By distributivity and associativity conditions, for every z ∈ Z,
the following hold: (z)(A)(R ⋅ S)→ = ⋀x∈X ((⋁y∈Y (x, y)R⊗ (y, z)S)→ (x)A) =
⋀x∈X ⋀y∈Y ((x, y)R⊗(y, z)S)→ (x)A = ⋀x∈X ⋀y∈Y ((y, z)S → ((x, y)R→ (x)A)) =
⋀y∈Y ((y, z)S → (⋀x∈X(x, y)R→ (x)A)) = (z)(A)(R→ ⋅ S→).
“⇐ ” Consider now the L-point A = cX , the L-relations R ∶X ×Y → L defined by(x, y)R = a, for all x ∈ X,y ∈ Y and S ∶ Y × Z → L defined by(y, z)S = b, for all
y ∈ Y, z ∈ Z, where a, b, c ∈ L. Then, for all non-empty sets X,Y,Z, by assumption
the following hold: (z)(A)(R�S)→ = (z)(A)(R→ ⋅S→)⇒ (a⊗b)→ c = b→ (a→ c).
Hence ⊗ is associative, i.e. L is associative, too.
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2. The proof is similar, by using Proposition 2.1.61 (3).

Proposition 3.2.30. If (L,→,⊺) is an associative and symmetrical cdeo algebra, the
maps

X ∈ ∣Set∣↦ (X)[⋅]→ = LX
R ∈RL(X,Y )↦ (R)[⋅]→ =R→ ∶ LX → LY

define a functor [⋅]→ between the categories R�

L = (∣Set∣ ,RL,�) and ⋀−CSLat.

Proof. Since (L,→,⊺) is an associative and symmetrical cdeo algebra, R�

L
=(∣Set∣ ,RL,�) is a category, by Propositions 3.1.10 and 3.1.14. The statement follows

from Lemma 3.2.29.

Proposition 3.2.31. If (L,→,⊺) is an associative and symmetrical cdeo algebra, the
maps

X ∈ ∣Set∣↦ (X)[⋅]¨ = LX
R ∈RL(X,Y )↦ (R)[⋅]¨ =R¨ ∶ LX → LY

define a functor [⋅]¨ between the categories R�

L = (∣Set∣ ,RL,�) and ⋀−CSLat.

Proof. Similarly to the above Proposition.

3.2.3 Powerset operators as compositions

Developing an original hint, which can be found in [44], the authors of [4] show
how the composition of many-valued relations may be used to express many concepts
involving L-sets. In fact, one can represent L-sets as L-relations and, then, the powerset
operators can be expressed using the compositions considered in the Subsection 3.1.2.
For this goal, let (L,→,⊺) be a right-distributive w-ceo algebra and consider an L-set
A, i.e. A ∶ X → L, for any set X. Fixing an element p, consider the singleton P = {p};
then we can see an L-set on X A ∶X → L as an L-relation A ∶ P ×X → L from P to X,
identifying them by means of the following bijective correspondence:

LX →RL(P,X)
A ∶X → L↦ A ∶ P ⇁X, such that (x)A = (p, x)A, for every x ∈X.

In this way it is possible to express the powerset operators in terms of compositions
between L-relations. More precisely, the following results hold, which show that notation
adopted in [33] for powerset operators anticipated their link with the compositions of
relations.

Proposition 3.2.32. Let (L,→,⊺) be a right-distributive ceo algebra, R ∶ X ⇁ Y be an
L-relation and A an L-set on X, with X,Y ∈ ∣Set∣. The following equalities hold:

1. (A)R⊗ = (R− �A−)−;
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2. (A)⊗R = A�R;

3. (A)R→ = (R− �A−)−;

4. (A)→R = A�R.

Proof. 1. For every y ∈ Y , (y)(A)R⊗ = ⋁x∈X(x, y)R⊗(x)A = ⋁x∈X(x, y)R⊗(i, x)A =
⋁x∈X(y, x)R−⊗(x, p)A− = (y, p)(R−�A−) = (p, y)((R−�A−)−) = (y)(R−�A−)−.

2. For every y ∈ Y , (y)(A)⊗R = ⋁x∈X(x)A ⊗ (x, y)R = ⋁x∈X(p, x)A ⊗ (x, y)R =(p, y)(A�R) = (y)(A�R).
3. For every y ∈ Y , (y)(A)R→ = ⋀x∈X(x, y)R → (x)A = ⋀x∈X(x, y)R → (p, x)A =

⋀x∈X(y, x)R− → (x, p)A− = (y, p)(R−�A−) = (p, y)((R−�A−)−) = (y)(R−�A−)−.

4. For every y ∈ Y , (y)(A)→R = ⋀x∈X(x)A → (x, y)R = ⋀x∈X(p, x)A → (x, y)R =(p, y)(A�R) = (y)(A�R).
Proposition 3.2.33. Let (L,→,⊺) be a symmetrical cdeo algebra, R ∶ X ⇁ Y be an
L-relation and A an L-set on X, with X,Y ∈ ∣Set∣. The following equalities hold:

1. (A)R⊗̃ = (R−�̃A−)− = A�R;

2. (A)⊗̃R = A�̃R;

3. (A)R¨ = (R−�̃A−)−;

4. (A)¨R = A�̃R.

Proof. This proof is similar to above.

We shall consider again this notation for powerset operators in a more general view
of the algebra of L-relations, their compositions and properties in Chapter 5.

3.3 Functorial many-valued relations

Since the inception of fuzzy set theory [90] and, more generally, of lattice-valued
mathematics, through the big development of many-valued logic there have been several
attempts to present and study suitable generalizations of the concept of function within
the universe of many-valued relations.
In the many-valued setting it is useful to recognize whether the involved many-valued
relations are, or at least resemble functions, for instance, in case one has to check whether
a predicate transformer is deterministic or not (see [27]); as another example, functional
relations are used to characterize the points that allow a representation of Dedekind
categories as categories of relations [37].
It is not the purpose of this thesis to discuss and compare the numerous generalizations
of functions and to present a list of them, even; we only quote some papers where this
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topic has been addressed, mainly [6, 11, 20, 35, 37, 45, 87, 89].
Our purpose is to present some generalizations of functions, among many-valued relations
and to check under which conditions these generalizations characterize, in fact, functions.
This is done in classical mathematical terms, using nothing but sets, whose elements are
related, and extended-order algebras (in the first step, simply complete lattices), where
the relations take their values. We shall obtain different results, depending on the
properties the extended-order algebra satisfies.

3.3.1 Functionality by cuts

In this Subsection we consider L-relations taking values in a complete lattice L.

Let R ∶X × Y → L be an L-relation. If x ∈X,y ∈ Y,α ∈ L denote

xR[α] = {y ∈ Y ∣ (x, y)R ≥ α} ;

xR(α) = {y ∈ Y ∣ (x, y)R ≰ α} ;

R[α]y = {x ∈X ∣ (x, y)R ≥ α} ;

R(α)y = {x ∈X ∣ (x, y)R ≰ α} .
The above described sets are widely used types of α-cuts of the R-cone of x ∈ X,

that is the L-set (x,−)R on Y , and of the R-cone of y ∈ Y , that is the L-set (−, y)R on
X.

Definition 3.3.1. With the above notation, we state the following:

1. R is left [α]-univocal ((α)-univocal) if y ∈ Y ⇒ ∣R[α]y∣ ≤ 1 (∣R(α)y∣ ≤ 1);

2. R is right [α]-univocal ((α)-univocal) if x ∈X ⇒ ∣xR[α]∣ ≤ 1 (∣xR(α)∣ ≤ 1);

3. R is left [α]-total ((α)-total) if x ∈X ⇒ xR[α] ≠ ∅ (xR(α) ≠ ∅);

4. R is right [α]-total ((α)-total) if y ∈ Y ⇒R[α]y ≠ ∅ (R(α)y ≠ ∅).

From now on, we use the term function to denote any crisp L-relation R ∶X×Y → L

that satisfies the condition:

x ∈X ⇒ ∃∣y ∈ Y such that (x, y)R = ⊺.
In case L = 2, this means that we identify a function, as a subset R ⊆ X × Y , with

its characteristic function.

Remark 3.3.2. It can be easily seen that an L-relation R is a function if and only if it
is right (�)-univocal and left [⊺]-total.
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Since we are interested in functions and their generalizations, we simplify notation of
the above Definition dropping the attribute right for right [α]-(or (α)-)univocal relations
and the attribute left for left [α]-(or (α)-) total relations; also, we may avoid speaking
at all of left univocality and right totality, since R is left [α]-(or (α)-)univocal (right[α]-(or (α)-)total, respectively) if and only if its reverse relation R− is right [α]-(or(α)-)univocal (left [α]-(or (α)-)total, respectively).
An easy inspection shows how the above defined notions depend on the considered value
α ∈ L. First we note that, for x ∈ X, xR(⊺) = ∅ and xR[�] = Y , so, it is clear that R
is [�]-univocal if and only if ∣Y ∣ ≤ 1 and it is (⊺)-total if and only if X = ∅. Moreover,
every R is (⊺)-univocal and it is [�]-total, unless Y = ∅ and X ≠ ∅.
For arbitrary sets X and Y , the following results hold.

Lemma 3.3.3. Let R ∶ X × Y → L be an L-relation. With the above notation, the
following is true:

1. R is (α)-univocal ([α]-univocal) if and only if R is (β)-univocal ([β]-univocal) for
every β ≥ α;

2. R is (α)-total ([α]-total) if and only if R is (γ)-total ([γ]-total) for every γ ≤ α;

3. if R is (α)-univocal, then R is [α′]-univocal for every α′ ≰ α;

4. if R is [α]-total, then R is (α′′)-total for every α ≰ α′′.

Proof. 1. The sufficiency is trivial. Conversely, if X ≠ ∅ and β ≥ α, then clearly
x ∈ X ⇒ xR(β) ⊆ xR(α) and xR[β] ⊆ xR[α]. So, by assumption, the implication
x ∈X ⇒ ∣xR(β)∣ ≤ ∣xR(α)∣ ≤ 1 (∣xR[β]∣ ≤ ∣xR[α]∣ ≤ 1, respectively) is true.

2. Once more, the sufficiency is trivial. Conversely, by the same argument used in
the proof of the item (1), it follows from the assumption that the implication
x ∈X ⇒ xR(γ) ⊇ xR(α) ≠ ∅ (xR[γ] ⊇ xR[α] ≠ ∅, respectively) is true, which proves
the stated assertion.

3. If x ∈ X and α′ ≰ α, then the inclusion xR[α
′] ⊆ xR(α) is easily proved. Then, by

assumption, the implication x ∈X ⇒ ∣xR[α′]∣ ≤ ∣xR(α)∣ ≤ 1 is true.

4. The assumption and the inclusion considered in the item (3) show that the impli-
cation x ∈X ⇒ xR(α

′′) ⊇ xR[α] ≠ ∅ is true.

As a consequence we can remark that if R is a function then it is (α)-univocal and[α]-total, for every α ∈ L, [γ]-univocal for every γ ≠ � and (β)-total, for every β ≠ ⊺.
It is easy to see that in case L is a chain every [α]-univocal L-relation is (α)-univocal
and every (α)-total L-relation is [α]-total, while the converse need not be true. In the
general case, (α)-univocality((α)-totality, respectively) and [α]-univocality ([α]-totality,
respectively) are independent of each other, as the following Example 3.3.4 shows.
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Example 3.3.4. Let X,Y be non-empty sets, assume α,β ∈ L be incomparable and
consider the L-relation R from X to Y with the constant value α. Then, clearly, R is[α]-total and (β)-total but it is neither (α)-total nor [β]-total.
If Y has at least two elements, then R is (α)-univocal and [β]-univocal, but it is neither[α]-univocal nor (β)-univocal.

There are several ways to extend the concept of function within the context of re-
lations between two sets X and Y , with values in a complete lattice L, which depend
either on some additional tools on the sets X and Y or on some lattice-ordered algebraic
structure on L. We shall consider only the case when X and Y are nothing but simply
sets, while L is a complete lattice, possibly with a structure (L,→,⊺) of right distributive
ceo algebra.
The first extension of functions we consider in this Subsection, is based on the above
generalizations of univocality and totality and requires only the lattice structure on L.
In the next subsections we shall consider further possibilities assuming (L,→,⊺) to be a
right-distributive ceo algebra.

Definition 3.3.5. Let R ∶X × Y → L be an L-relation and let α ∈ L.

1. R is (α)-functional, α ≠ ⊺, if it is (α)-univocal and (α)-total.

2. R is [α]-functional, α ≠ �, if it is [α]-univocal and [α]-total.

We note that �-functional and ⊺-functional L-relations considered in [35] are, in
fact, (�)-functional and [⊺]-functional, respectively. (�)-functional L-relations are called
simply functional in [45], a term that we shall use for a different notion in the next
Subsection.

Example 3.3.6. No relationship between (α)-functionality and [α]-functionality exists
in general. In fact, for X non-empty set and α,β ∈ L incomparable, the L-relation R
from X to Y defined by R = αX×X ∧ IX is [α]-functional and (β)-functional but it is
neither (α)-functional nor [β]-functional.

It is clear that for every L-relation R and for all α ≠ ⊺, β ≠ �, if R is a function,
then it is (α)-functional and [β]-functional; so, the latter notions are more general than
functions. For crisp L-relations, each of (α)-functionality, α ≠ ⊺, and [β]-functionality,
β ≠ �, characterizes functions but, in general, there is no α ∈ L such that either (α)-
functional or [α]-functional L-relations need to be functions. In fact, assuming X ≠ ∅,
L ≠ {�,⊺} and � ≠ α ≠ ⊺, αX×X ∧IX is [α]-functional while αX×X ∨IX is (α)-functional,
but none of them is a function.
Even more, the case ∣L∣ = 3 shows easily that R may be (α)-functional, for every α ≠ ⊺,
and [β]-functional, for every β ≠ � without being a function.
So, the notion of function cannot be gotten as a particular case of any of the notions con-
sidered in Definition 3.3.5, unless L = {�,⊺}. It seems that a better suited approximate
notion of function is provided by the following Definition.
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Definition 3.3.7. Let X,Y be arbitrary sets and α,β ∈ L, β ≰ α. The L-relation
R ∶X × Y → L is α-β functional if it is (α)-univocal and [β]-total.

Of course functions are just �-⊺ functional relations; so, the above Definition gives a
generalization of functions which, moreover, is proper; in fact, the L-relation αX×X ∧IX
of Example 3.3.6 is β-α functional but not a function. Also note that every α-β functional
L-relation is (α)-functional and [β]-functional, as a consequence of Lemma 3.3.3.
The following results give further explanation of the feature of α-β functionality.

Proposition 3.3.8. Let us consider R ∶X × Y → L. Then:

1. If R is α-β functional, α ≤ α′, β′ ≤ β, β′ ≰ α′, then R is α′-β′ functional.

2. If R is a function, β ≰ α, then R is α-β functional.

3. For every (α,β) ∈ L2\{(�,⊺)}, β ≰ α, there exist α-β functional L-relations that
are not functions.

Proof. Item (1) follows easily from Lemma 3.3.3 and consequently (2) holds, too, since
a function is �-⊺ functional.
As for (3), if X ≠ ∅ and β ≠ ⊺, then βX×X ∧ IX is α-β functional but not a function,
while, in case α ≠ �, αX×X ∨ IX is, once more, α-β functional but not a function.

The functionality conditions considered in this Subsection characterize L-relations
having a suitable approximation that is a function, as follows.

Definition 3.3.9. Let α,β ∈ L, β ≰ α, R ∶X × Y → L. The (α)-approximation R(α),
the [β]-approximation R[β] and the α-β approximation Rα−β of R are defined by

(x, y)R(α) = { � if (x, y)R ≤ α
⊺ otherwise

(x, y)R[β] = { ⊺ if (x, y)R ≥ β
� otherwise

(x, y)Rα−β =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
� if (x, y)R ≤ α
⊺ if (x, y)R ≥ β(x, y)R otherwise

It is easy to prove how the above defined approximations are related to the considered
functionality conditions.

Proposition 3.3.10. For any R ∶ X × Y → L the following equivalences hold, for all
α,β ∈ L, β ≰ α:

1. R is (α)-functional if and only if R(α) is a function;

2. R is [β]-functional if and only if R[β] is a function;

3. R is α-β functional if and only if Rα−β is a function. ◻
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3.3.2 Functionality by composition

The characterization of classical relations that are functions, by means of composi-
tion (see Proposition 1.4.8), motivates another way to generalize the notion of function
(we explain details in Definition 3.3.11, below). To this extent, in this Subsection we
consider L-relations taking values in a right-distributive ceo algebra. Further conditions
considered on L, when needed, will be explicitly marked.

Definition 3.3.11. Let R ∶X × Y → L be an L-relation.

1. R is (right) univocal if R− �R ≤ IY .

2. R is (left) total if R�R− ≥ IX .

3. R is functional if it is (right) univocal and (left) total.

Left univocal and right total L-relations can be defined interchanging R and R−;
for the use of the attributes left and right, or, rather, for their omission, we refer to the
discussion expressed after Definition 3.3.1.
Functional L-relations above defined, as particular morphisms of Dedekind or Goguen
categories, are called functions in [37, 87]; as remarked soon after Definition 3.3.1, we
do not follow such a terminology.

Lemma 3.3.12. Let R ∶X × Y → L be an L-relation.

1. R is univocal if and only if the implication

x ∈X, y, y′ ∈ Y, y ≠ y′ ⇒ (x, y)R⊗ (x, y′)R = �
is true;

2. R is total if and only if the implication

x ∈X ⇒ ⋁y∈Y (x, y)R⊗ (x, y)R = ⊺
is true.

Proof. We note that an L-relation R from X to Y , including the trivial cases when
either X or Y is empty, is univocal if and only if the implication

y, y′ ∈ Y, y ≠ y′ ⇒ (y, y′)(R− �R) = �
is true, while R is total if and only if the implication

x ∈X ⇒ (x, x)(R�R−) = ⊺
is true.
Hence, the stated conditions follow easily since (y, y′)(R−�R) = ⋁x∈X(x, y)R⊗(x, y′)R,
for all y, y′ ∈ Y and (x, x)(R�R−) = ⋁y∈Y (x, y)R⊗ (x, y)R, for every x ∈X.
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Similar characterizations as in Lemma 3.3.12 can be proved for right totality and left
univocality, switching the above conditions from R to R−.

Remark 3.3.13. Of course, every function is a functional L-relation and every func-
tional crisp L-relation is a function, but there are functional L-relations that are not
functions as the following Example 3.3.14 shows.

Example 3.3.14. Consider the sets X = {x1, x2}, Y = {y1, y2} and the boolean algebra
L = {�, a, b,⊺}. Let R ∶ X × Y → L be the L-relation described as follows: (x1, y1)R =(x2, y2)R = a, (x1, y2)R = (x2, y1)R = b. R is a functional L-relation, but it is neither[⊺]-total nor (�)-univocal. This example also shows that a functional L-relation need
not be either (�)-univocal or [⊺]-total.

To give a characterization of functions, involving functional L-relations, we prove the
following results, for any L-relation R ∶X × Y → L.

Lemma 3.3.15. R is (�)-univocal ⇒ R is univocal ⇒ for every α ∈ L, α⊗α ≠ �, R is[α]-univocal.

Proof. From (�)-univocality ofR, if y, y′ ∈ Y , y ≠ y′, then, in case X ≠ ∅, for every x ∈X,
either (x, y)R = � or (x, y′)R = �, so (y, y′)(R− �R) = ⋁x∈X(x, y)R ⊗ (x, y′)R = �; in
case X = ∅, (y, y′)(R− �R) = ⋁x∈∅(y, x)R− ⊗ (x, y′)R = ⋁∅ = �. Hence in any case
R− �R ≤ IY .
Assuming R to be not [ᾱ]-univocal, for some ᾱ ∈ L, there exist x̄ ∈ X, y, y′ ∈ Y , y ≠ y′,
such that (x̄, y)R ∧ (x̄, y′)R ≥ ᾱ; then, since R is univocal, � = (y, y′)(R− � R) ≥(x̄, y)R⊗ (x̄, y′)R ≥ ᾱ⊗ ᾱ. So, the second implication holds, too.

Example 3.3.16. 1. Let L = [0,1] be the  Lukasievicz algebra (i.e. α → β = max{α +
β − 1,0}, and α⊗β =min{1−α+β,1}, for all α,β ∈ [0,1]), X ≠ ∅ and ∣Y ∣ > 1. Consider
the L-relation R ∶ X × Y → L with the constant value 1

2
. R is univocal, but it is not(�)-univocal. We note, moreover, that R is [α]-univocal, for every α ∈ L, α⊗α ≠ � (i.e.

for every α > 1
2
), but it is not [α′]-univocal, if α′ ≤ 1

2
.

2. Let L be the  Lukasievicz algebra, X = {x1, x2} , Y = {y1, y2}. Consider the L-relation
R ∶ X × Y → L such that (x1, y1)R = (x2, y2)R = ⊺ and (x1, y2)R = (x2, y1)R = 1

2
. R is[α]-univocal, for every α ∈ L, α⊗ α ≠ �, but it is not univocal.

Lemma 3.3.17. R is [⊺]-total ⇒ R is total ⇒ for every α ≠ ⊺, R is (α)-total.

Proof. For the first implication, note that, by assumption, if x ∈ X, then there exists
yx ∈ Y such that (x, yx)R = ⊺; then one has that: (x, x)R�R− = ⋁y∈Y (x, y)R⊗(y, x)R− ≥(x, yx)R⊗ (x, yx)R = ⊺; hence R is total.
Now, in case R is not (ᾱ)-total, for some ᾱ ∈ L, one can find x̄ ∈X such that (x̄, y)R ≤ ᾱ,
for every y ∈ Y . As a consequence, by assumption one has ⊺ = (x̄, x̄)(R � R−) =
⋁y∈Y (x̄, y)R⊗ (x̄, y)R ≤ ᾱ⊗ ᾱ ≤ ᾱ. So, the second implication is true.
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Example 3.3.18. 1. Let X = {x}, Y = N and L = [0,1] with the product algebra

structure (i.e. α → β = { 1 if α ≤ β
β
α

otherwise
and α ⊗ β = α ⋅ β, for all α,β ∈ [0,1]). Consider

the L-relation R ∶X × Y → L defined by (x,n)R = n
n+1 , for n ∈ N.

One has ⋁n∈N(x,n)R⊗ (x,n)R = ⋁n∈N n
n+1 ⋅

n
n+1 = 1, hence R is total, by Lemma 3.3.12.

R is not [1]-total, since {n ∈ N∣ (x,n)R ≥ 1} = {n ∈ N∣ n
n+1 ≥ 1} = ∅.

2. Let X = {x}, Y = {y1, y2} and let L = {�, a, b,⊺} be the right-distributive ceo algebra
with implication and product described in 19 of Appendix. Consider the L-relation
R ∶ X × Y → L such that (x, y1)R = a and (x, y2)R = b. R is (α)-total, for every α ≠ ⊺,
but it is not total.

Remark 3.3.19. A necessary condition for an L-relation R ∶ X × Y → L, with X and
Y non-empty, to be (α)-total, for every α ∈ L, α ≠ ⊺, is the following

∀x ∈X ∶ ⋁
y∈Y

(x, y)R = ⊺;

in fact, if x ∈ X, no α ∈ L, α ≠ ⊺, can be an upper bound for the set {(x, y)R∣ y ∈ Y },
since, by the assumption, yx,α exists such that (x, yx,α)R ≰ α; note also that, to the
same extent, the equality ⋁L\{⊺} = ⊺ is needed, under the further assumption for R to
be not [⊺]-total.
If the lattice L satisfies the implication

S ⊆ L, ⋁S = ⊺⇒ ⋁
a∈S

a⊗ a = ⊺,

the second implication in Lemma 3.3.17 is reversible; in such a case in fact, for every
x ∈ X, one has ⋁y∈Y (x, y)R = ⊺ ⇒ ⋁y∈Y (x, y)R ⊗ (x, y)R = ⊺, which implies that R is
total, if it is (α)-total, for every α ∈ L, α ≠ ⊺.

Now, the following characterization is an immediate consequence.

Proposition 3.3.20. For any L-relation R ∶X × Y → L, the following are equivalent.

(i) R is a function;

(ii) R is univocal and [⊺]-total;

(iii) R is (�)-univocal and total.

Proof. Since (i) clearly implies both (ii) and (iii), we only need to prove the converse
implications; in both cases, by Remark 3.3.13 and the first implication of Lemmas 3.3.15
and 3.3.17 it is enough to prove that R is crisp, whenever X ≠ ∅.
So, assume R univocal and [⊺]-total, hence for every x ∈ X there exists yx ∈ Y such
that (x, yx)R = ⊺; then, for every y′ ∈ Y , y′ ≠ yx, it follows from R− �R ≤ IY that
� = ⋁x′∈X(x′, y′)R⊗(x′, yx)R ≥ (x, y′)R⊗(x, yx)R = (x, y′)R⊗⊺ = (x, y′)R; so, (x, y)R ∈{�,⊺}, for all x ∈X,y ∈ Y .
Now assumeR (�)-univocal and total and let x ∈X; then it follows from (x, x)(R�R−) =
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⊺ that Y ≠ ∅; now consider y ∈ Y and assume (x, y)R ≠ �; since R is (�)-univocal,(x, y′)R = �, for every y′ ≠ y, and, by R �R− ≥ IX , one gets ⊺ = (x, x)(R �R−) =[(x, y)R⊗ (x, y)R] ∨ [⋁y≠y′∈Y (x, y′)R⊗ (x, y′)R] = (x, y)R ⊗ (x, y)R ≤ (x, y)R. Hence
R is crisp.

Remark 3.3.21. The first implication in Lemma 3.3.15 and in Lemma 3.3.17, as well,
still hold under the weaker assumption for L to be a right-distributive w-ceo algebra.

Now, we consider a further composition of relations, just defined in Subsection
3.1.2, according to what is given in the context of Dedekind Categories in [37], with
respect to the L-relations taking values in a complete Heyting algebra. However, such
a composition can be considered in case L is any complete lattice. Recall its definition.

Definition 3.3.22. Let L be a complete lattice. For all R ∶ X × Y → L, S ∶ Y × Z → L

define R ⋅ S ∶ X ⇁ Z by setting (x, z)(R ⋅ S) = ⋁y∈Y (x, y)R ∧ (y, z)S, for all x ∈ X,y ∈
Y, z ∈ Z.

All the notions and statements of this Subsection can be rephrased with respect
to the composition ⋅; in fact one can call R ∧-univocal or ∧-total if R− ⋅R ≤ IY or
R ⋅R− ≥ IX , respectively, and say that R is ∧-functional if it is ∧-univocal and ∧-
total .
All the results already obtained in this Subsection by means of the composition � still
hold for these new notions for any complete lattice L; even more, the restriction on α in
Lemma 3.3.15 can be relaxed to α ≠ �. In particular, we note that if L is any complete
lattice, the following holds.

Proposition 3.3.23. If L is a complete lattice, for any L-relation R the following are
equivalent

1. R is a function;

2. R is ∧-univocal and [⊺]-total;

3. R is (�)-univocal and ∧-total. ◻

For relations with values in a right-distributive w-ceo algebra, univocality, totality,
functionality can be considered together with their ∧-related versions . Of course, in
case of relations with values in a complete Heyting algebra, the compositions ⋅ and �

coincide (we get new notions only when ⊗ ≠ ∧). We clarify relationships of these different
notions.

First we note that, since a ⊗ a ≤ a, for every a ∈ L, in any right-distributive w-ceo
algebra L, one has that if R is total, then R is ∧-total, for every R ∶X × Y → L.
Moreover, if L is a symmetrical cdeo algebra, then the inequality α⊗β ≤ α∧β holds, for
all α,β ∈ L, which implies clearly that if R is ∧-univocal then R is univocal, for every
R ∶X × Y → L.
However, in general, there is no relationship between functionality and ∧-functionality.
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Example 3.3.24. 1. Example 3.3.18 (2) provides an L-relation that is ∧-functional
but not functional.

2. A functional L-relation that is not ∧-functional can be obtained as follows.
Consider L = {�, a, b, c,⊺} with the structure of right-distributive w-ceo algebra
described in 20 of Appendix and consider X = {x}, Y = {y1, y2}. It is easy to
check, by means of Lemma 3.3.12, that the L-relation R ∶ X × Y → L such that(x, y1)R = b and (x, y2)R = c is functional; instead, it is not ∧-functional since(x, y1)R ∧ (x, y2)R = a ≠ �, though it is ∧-total.

The above discussion allows to slightly improve the results of Propositions 3.3.20 and
3.3.23.

Proposition 3.3.25. If L is a right-distributive ceo algebra, for any L-relation R the
following are equivalent

1. R is a function;

2. R is univocal and [⊺]-total;

3. R is (�)-univocal and ∧-total. ◻

3.3.3 Power-functionality

In this Subsection we consider L-relations taking values in a symmetrical cdeo alge-
bra, unless otherwise stated. Further conditions on L, when needed, will be explicitly
marked.
In fact, we need two adjoint operations ⊗ and →, possibly with the properties they have
in a symmetrical cdeo algebra. So, the notions treated in this Subsection, unlike the cor-
responding one considered in Subsections 3.3.1 and 3.3.2, cannot be expressed in terms of
the complete lattice structure only, unless the meet operation distributes over arbitrary
joins; in this last case, the complete lattice is a frame (according to the terminology of
[59]) and the residual implication → of the meet operation ∧ gives a structure of Heyting
algebra, i.e. of a commutative (hence symmetrical) cdeo algebra, with adjoint product
∧, which is, moreover, associative and idempotent.
Most result we shall obtain, however, do not require either idempotency or associativity,
which motivates the more general framework we consider.
The following result for crisp L-relations, which can be found in [35], motivate a further
generalization of the notions of univocality, totality and functionality.

Proposition 3.3.26. [35] Let (L,→,⊺) be a symmetrical cdeo algebra. If R ∶X ×Y → L

is a crisp L-relation, then the following equivalences hold.

1. R is univocal if and only if R⊗
− ≤R

→
− ;

2. R is total if and only if R⊗
− ≥R

→
− ;

3. R is a function if and only if R⊗
− =R

→
− . ◻
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Hence, taking into account the above results, we give the following definition.

Definition 3.3.27. Let R ∶X × Y → L be an L-relation.

1. R is right (left) power-univocal if R⊗
− ≤R

→
− (R⊗ ≤R→).

2. R is left (right) power-total if R⊗
− ≥R

→
− (R⊗ ≥R→).

3. R is power-functional if R⊗
− =R

→
− .

Once more, we are interested and may reduce to consider only right power-univocal
and left power-total L-relations, for which, as stated after Definition 3.3.1, we shall also
omit the attributes right and left.
We shall see that these notions play the same role as those introduced in Definition
3.3.11, to which they are somehow related, in the characterization of functions among
L-relations. We start showing a general relationship.

Proposition 3.3.28. Let R ∶X × Y → L be an L-relation.

1. If R is power-univocal, then R is univocal.

2. If R is power-total, then R is total.

3. If R is power-functional, then R is functional.

Proof. 1. If x ∈ X, y1, y2 ∈ Y , y1 ≠ y2, then applying the assumption R⊗
− ≤R

→
− to the

crisp L-point ⊺y2 , one has the following:(x, y2)R = ⋁y∈Y (x, y)R ⊗ (y)⊺y2 ≤ ⋀y∈Y (x, y)R → (y)⊺y2 ≤ (x, y1)R → (y1)⊺y2 =(x, y1)R → �; hence (x, y1)R ⊗ (x, y2)R = � and it follows by arbitrariness of
x, y1, y2 and Lemma 3.3.12 that R is univocal.

2. If R is power-total, then for all B ∈ LY , x ∈X, one has that: ⋁y∈Y (x, y)R⊗(y)B ≥
⋀y∈Y (x, y)R→ (y)B.
If, in particular, for every x ∈ X, we consider the L-set Bx ∶ Y → L de-
fined by: (y)Bx = (x, y)R, for every y ∈ Y , then ⋁y∈Y (x, y)R ⊗ (y)Bx ≥
⋀y∈Y (x, y)R → (y)Bx, that is ⋁y∈Y (x, y)R ⊗ (x, y)R ≥ ⋀y∈Y (x, y)R → (x, y)R;
hence ⋁y∈Y (x, y)R⊗ (x, y)R ≥ ⊺ for every x ∈ X and then, from Lemma 3.3.12, it
follows that R is total.

3. The stated implication follows trivially from (1) and (2).

Note that the statement and the proof of the above Proposition do not require the
symmetry assumption, but only require that L be a right-distributive ceo algebra. Under
such an assumption, the converse implication of that given in the item (3) of the above
Proposition does not hold, as the following example shows.
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Example 3.3.29. Let (L,→,⊺) be the right-distributive ceo algebra with the set L ={�, b1, b2, b3, c1, c2, d,⊺}, implication and adjoint product described in 21 of Appendix;
consider X = {x}, Y = {y1, y2}. The L-relation R ∶ X × Y → L such that (x, y1)R = b1
and (x, y2)R = b3 is functional, but it is not power-functional; in fact, for B ∈ LY ,(y1)B = (y2)B = b2, one has (x)(B)R⊗

− = (b1⊗b2)∨(b3⊗b2) = b1∨b3 = ⊺ and (x)(B)R→− =(b1 → b2) ∧ (b3 → b2) = b3 ∧ b1 = �, hence R is not power-univocal.

The following statement strengthens some results of [35] and of Lemmas 3.3.15,
3.3.17.

Lemma 3.3.30. With the above notation, the following results hold:

1. R is (�)-univocal ⇒ R is power-univocal ⇒ R is univocal ⇒ for every α ∈ L,
α⊗ α ≠ �, R is [α]-univocal.

2. R is [⊺]-total ⇒ R is power-total ⇒ R is total ⇒ for every α ∈ L, α ≠ ⊺, R is(α)-total.

Proof. 1. The first implication is Proposition 8.5 in [35]; the second implication is
Proposition 3.3.28(1); the third implication is in Lemma 3.3.15.

2. The first implication is Proposition 8.11 in [35]; the second implication is Propo-
sition 3.3.28(2); the third implication is in Lemma 3.3.17.

Remark 3.3.31. The results of Proposition 3.3.26 and pieces of Lemma 3.3.30 are
proved in [35] assuming L to be a complete residuated lattice (i.e. a commutative,
associative cdeo algebra); however, their proofs do not need associativity, while symmetry
replaces commutativity.

Now a similar result as in Proposition 3.3.20 holds trivially, using Propositions 3.3.26,
3.3.28; recall that, now, L is assumed to be symmetrical.

Corollary 3.3.32. For any L-relation R ∶X × Y → L, the following are equivalent.

1. R is a function;

2. R is (�)-univocal and power-total;

3. R is power-univocal and [⊺]-total. ◻

If L is an associative symmetrical cdeo algebra, the reciprocal relationships of those
described in Proposition 3.3.28 hold, too.

Proposition 3.3.33. Let L be an associative symmetrical cdeo algebra, R ∶ X × Y → L

an L-relation. The following hold:

1. if R is univocal, then R is power-univocal;
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2. if R is total, then R is power-total.

Proof. 1. In order to prove that, for all x ∈ X, B ∈ LY , (x)(B)R⊗
− ≤ (x)(B)R→− it is

enough to verify that for all x ∈ X,y, y′ ∈ Y (x, y)R⊗ (y)B ≤ (x, y′)R → (y′)B. If
y = y′, then for every x ∈X the inequality (x, y)R⊗(y)B ≤ (x, y)R→ (y)B follows
from Proposition 2.1.30 (1). If y ≠ y′, by adjunction the following equivalence(x, y)R⊗ (y)B ≤ (x, y′)R → (y′)B⇔ (x, y′)R⊗ ((x, y)R⊗ (y)B) ≤ (y′)B is true,
for every x ∈X.
Under associativity assumption on L and univocality of R, it follows from Lemma
3.3.12 (1) that (x, y′)R⊗((x, y)R⊗(y)B) = ((x, y′)R⊗(x, y)R)⊗(y)B = �⊗(y)B =
� ≤ (y′)B, for every x ∈X, thence the assertion follows.

2. To prove that for all x ∈X, B ∈ LY , (x)(B)R→− ≤ (x)(B)R⊗
− , we verify that if x ∈X,

B ∈ LY , k ∈ L, then k ≤ (x)(B)R→− ⇒ k ≤ (x)(B)R⊗
− . So, let k ∈ L and B ∈ LY ;

for every x ∈ X one has that k ≤ (x)(B)R→− ⇔ k ≤ (x, y)R → (y)B, for every
y ∈ Y ⇔ (x, y)R⊗ k ≤ (y)B, for every y ∈ Y ; then, by associativity and symmetry
of L and totality ofR, from Lemma 3.3.12 (2) one has, for every x ∈X: (x)(B)R⊗

− =

⋁y∈Y (x, y)R⊗ (y)B ≥ ⋁y∈Y (x, y)R⊗ [(x, y)R⊗ k] = [⋁y∈Y (x, y)R⊗ (x, y)R]⊗k =
⊺ ⊗ k = k.

Of course, every functional L-relation is power-functional, if L is an associative,
symmetrical cdeo algebra, as a consequence of the above Proposition. Nevertheless, we
give an alternative, more elegant proof of this relationship, using directly the properties
of powerset operators described in Section 3.2; this makes the proof holds in an abstract
approach to relations as in [37, 87].

Proposition 3.3.34. Let L be an associative symmetrical cdeo algebra, R ∶ X × Y → L

an L-relation. If R is functional, then ⊗R− =R¨− and ⊗̃R− =R→− .

Proof. By Proposition 3.2.22 and the inequalities R�R− ≥ IX and R− �R ≤ IY , for
every A ∈ LX , B ∈ LY one has (⊗R�

⊗ R−)(A) ≥ A and (⊗R− �
⊗ R)(B) ≤ B. Then,

since both ⊗R and ⊗R− are isotonic, it is easy to check that ⊗R ⊣ ⊗R−. On the other
hand, by Corollary 3.2.18, ⊗R ⊣ R¨− and, by uniqueness of right adjoint, it follows that
⊗R− =R¨− . The second equality can be proved in a similar way.

The short discussion after Definitions 3.2.13 and 3.2.14 allows to state the following
consequence.

Corollary 3.3.35. Let L be an associative symmetrical cdeo algebra, R ∶ X × Y → L

an L-relation. If R is functional, then R⊗
− = R

→
− , R⊗̃

− = R
¨
− and, in particular, R is

power-functional. ◻

We can further clarify relationships between the considered notions, under suitable
assumptions on the lattice or on the algebraic structure of L.
To this extent we need to extend classical notions usually considered in complete lattices,
as follows.
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Definition 3.3.36. Let (L,→,⊺) be a right-distributive ceo algebra, a, b ∈ L. Then

- a is ⊗-prime if, for all x, y ∈ L such that x⊗ y = y⊗x = a, one has either x = a or
y = a;

- b is completely ⊗-coprime if, for every S ⊆ L such that ⋁s∈S s ⊗ s = b ⇒ b ∈ S

(recall that we assume ⊺ ≠ �).

Note that for ⊗ = ∧ the above Definition gives classical, well known notions in
(completely) distributive lattices. These generalizations are motivated by the following
results.

Proposition 3.3.37. Let R ∶X ×Y → L be an L-relation. If � is ⊗-prime, the following
are equivalent:

1. R is univocal;

2. R is (�)-univocal;

3. R is power-univocal.

Proof. By Lemma 3.3.30 (1) and Proposition 3.3.28 (1) we only need to prove the impli-
cation “(1) ⇒ (2)”. If R is univocal, then, by Lemma 3.3.12 (2) the implication x ∈ X,
y, y′ ∈ Y, y ≠ y′ ⇒ (x, y)R⊗ (x, y′)R = (x, y′)R⊗ (x, y)R = � is true. Since � is ⊗-prime,
it follows that, for all x ∈ X, y, y′ ∈ Y , y ≠ y′ either (x, y)R = � or (x, y′)R = �. Hence,
for every x ∈X: ∣R(�)y∣ ≤ 1, that is R is (�)-univocal.

Proposition 3.3.38. Let R ∶X ×Y → L be an L-relation. If ⊺ is completely ⊗-coprime,
the following are equivalent:

1. R is total;

2. R is [⊺]-total;

3. R is power-total.

Proof. By Lemma 3.3.30 (2) and Proposition 3.3.28 (2) it is enough to prove “(1)⇒ (2)”.
By assumption, from Lemma 3.3.30 (2) one has that R is (α)-total, ∀α ∈ L, α ≠ ⊺;
moreover, ⋁y∈Y (x, y)R⊗ (x, y)R = ⊺, for every x ∈ X. Since ⊺ is completely ⊗-coprime,

for every x ∈X there exists yx ∈ Y such that (x, yx)R = ⊺; so the set xR[α] is non-empty
and hence R is [⊺]-total.

Combining the above Propositions 3.3.37 and 3.3.38 with previous results one can
obtain sufficient conditions on L under which power-functional and, possibly, functional
L-relations are functions (for instance requiring either � to be ⊗-prime or ⊺ to be com-
pletely ⊗-coprime and, possibly, L to be associative). However, better results can be
obtained by means of the following Lemma (recall that an element a in a lattice L is
said to be ∨-irreducible or coprime, if for all x, y ∈ L, if x ∨ y ≥ a, then either x ≥ a or
y ≥ a).
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Lemma 3.3.39. Let R ∶X ×Y → L be an L-relation. If ⊺ is coprime, then the following
implication holds:

R is power-functional ⇒ R is a crisp L-relation.

Proof. Excluding the trivial cases, let us assume X,Y to be non-empty sets and R to
be power-functional. Let (x̄, ȳ)R = b̄ ≠ ⊺ for some x̄ ∈X, ȳ ∈ Y . Then by Remark 3.3.19,
Lemma 3.3.30 (2) and by assumption that ⊺ is coprime, X has at least two elements
and ⊺ = ⋁y∈Y (x̄, y)R = (x̄, ȳ)R ∨ ⋁ȳ≠y∈Y (x̄, y)R; since ⊺ is coprime, it follows that

⋁ȳ≠y∈Y (x̄, y)R = ⊺.
Now consider the crisp L-point ⊺ȳ; then

(x)(⊺ȳ)R⊗
− = ⋁

y∈Y

(x̄, y)R⊗ (y)⊺ȳ = (x̄, ȳ)R⊗ ⊺ = b̄

and (x)(⊺ȳ)R→− = ⋀
y∈Y

(x̄, y)R→ (y)⊺ȳ = ((x̄, ȳ)R→ ⊺) ∧ ⋀
ȳ≠y∈Y

((x̄, y)R→ �)
= ⊺ ∧ (( ⋁

ȳ≠y∈Y

(x̄, y)R)→ �) = ⊺ ∧ (⊺→ �) = �.
By the assumption, b̄ = �.

Proposition 3.3.40. Let R ∶ X × Y → L be an L-relation. If either � is ⊗-prime or ⊺
is coprime, then

R is power-functional ⇔ R is a function.

Proof. In the first case, by Corollary 3.3.32 and Proposition 3.3.37

R is power-functional ⇔ R is (�)-univocal and power-total ⇔ R is a function.

In the second case, the stated equivalence follows by Proposition 3.3.26 (3), Definition
3.3.27 (3) and Lemma 3.3.39.

The above results allow to prove easily the following.

Corollary 3.3.41. Let R ∶ X × Y → L be an L-relation. If � is ⊗-prime and ⊺ is
completely ⊗-coprime, then the following are equivalent:

1. R is a function;

2. R is functional;

3. R is power-functional.

Proof. The implications “(1)⇒ (2)” and “(1)⇒ (3)” are obvious.
The converse implications “(2)⇒ (1)” and “(3)⇒ (1)” follows easily by Remark 3.3.2
and Propositions 3.3.37, 3.3.38.
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Corollary 3.3.42. Let R ∶ X × Y → L be an L-relation, L an associative symmetrical
cdeo algebra. If either � is ⊗-prime or ⊺ is coprime, then the following are equivalent:

1. R is a function;

2. R is functional;

3. R is power-functional.

Proof. “(1)⇒ (2)” Obvious.
“(2)⇒ (3)” See Corollary 3.3.35.
“(3)⇒ (1)” See Corollary 3.3.40.

3.3.4 Some remarks on functorial L-relations

To illustrate the usefulness of the characterizations stated in Corollary 3.3.42 we
remark that the conditions there required are satisfied by all the so called fuzzy relations
(i.e. relations with values in the unit interval [0,1]). In particular, we note the following.

- Every complete chain L is completely distributive hence, in particular, it is a
complete Heyting algebra, i.e. an associative and commutative cdeo algebra. Such
a structure is in fact the so called Gödel algebra in case L = [0,1], with implication

a→G b = { 1 if a ≤ b

b otherwise
and adjoint product a⊗Gb = a∧b. Evidently 0 is ⊗G-prime

and 1 is coprime.

- The product algebra has the same carrier [0,1]; the implication a →P b =

{ 1 if a ≤ b
b
a

otherwise
gives a structure of associative and commutative cdeo algebra

whose adjoint product ⊗P is the ordinary product. This is not an Heyting algebra,
but 0 is ⊗P -prime and 1 is coprime in this case, too.

- The  Lukasievicz algebra on L = [0,1], with implication a→L b =max{a + b − 1,0},
and adjoint product a ⊗L b = min{1 − a + b,1}, for all α,β ∈ [0,1], is, once more,
an associative and commutative cdeo algebra, not an Heyting algebra. Of course,
1 is coprime though 0 is not ⊗L-prime, in this case.

These are the algebraic structures frequently used for fuzzy relations; in all the three
cases, functional and power-functional fuzzy relations are functions.
The equivalences of Proposition 3.3.37 are not true for relations taking values in the
 Lukasievicz algebra while, independently of which of the three algebraic structures is
considered, total fuzzy relations need not be [⊺]-total. Indeed, we can prove the following
results, assuming (L,→,⊺) to be a symmetrical cdeo algebra.

Remark 3.3.43. The implication

R ∶X × Y → L, R power-univocal ⇒ R (�)-univocal
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forces � to be ⊗-prime.
In fact, let α,β ∈ L, α ⊗ β = β ⊗ α = �; consider X = {x} , Y = {y, y′} and the L-relation
R ∶X × Y → L defined by (x, y)R = α, (x, y′)R = β.
Obviously, (x, y)R ⊗ (y)B ≤ (x, y)R → (y)B and (x, y′)R ⊗ (y′)B ≤ (x, y′)R → (y′)B,
for every B ∈ LY . Since β ⊗ α = �, one has that α ≤ β → �.
So, for every B ∈ LY it follows that (x, y)R⊗(y)B = α⊗(y)B ≤ α ≤ β → � ≤ β → (y′)B =(x, y′)R→ (y′)B; from the equivalence α⊗ β = �⇔ β ≤ α → �, it follows that, for every
B ∈ LY , (x, y′)R⊗ (y′)B ≤ β ⊗ (y′)B ≤ β ≤ α → � ≤ α → (y)B = (x, y)R → (y)B. Hence
R⊗
− ≤ R

→
− , i.e. R is power-univocal; by assumption R is (�)-univocal and then either

α = � or β = �.

Remark 3.3.44. Of course, by Proposition 3.3.28 (1), one can argue easily that the
implication

R ∶X × Y → L, R univocal ⇒ R (�)-univocal

forces � to be ⊗-prime, too.

Up to now, we are not able to prove a similar result as in Remark 3.3.43 for the
notions of power-totality and [⊺]-totality; however, the weaker version, as in Remark
3.3.44, holds.

Remark 3.3.45. The implication

R ∶X × Y → L, R total ⇒ R [⊺]-total

forces ⊺ to be completely ⊗-coprime.
In fact, let S ⊆ L, ⋁s∈S s ⊗ s = ⊺; then S ≠ ∅, since ⋁∅ = � ≠ ⊺. Consider the sets
X = {x} , Y = S and the L-relation R ∶ X × Y → L, defined by (x, s)R = s,∀s ∈ S. It
follows from Lemma 3.3.12 that R is total and then, by assumption, R is [⊺]-total, that
is xR[⊺] ≠ ∅. Hence, there exists s ∈ S such that s = (x, s)R = ⊺; by arbitrariness of S,
⊺ is completely ⊗-coprime.



Chapter 4

Galois and Tarski connections

4.1 Lower and upper hulls in preordered sets

In this Section we recall basic notions on preordered sets and, in particular, on order
filters and ideals. In fact we wish to give a detailed description of the folklore on these
topics, which are only seldom found in textbooks and monographs; we do this taking
into account the concepts and results needed in the sequel of our work. We refer to
Section 1.1 for preliminary notions and notation.

Definition 4.1.1. Let (L,≤) be a preordered set and X a subset of L. X is an upperset
(lowerset, respectively) or preorder filter (preorder ideal, respectively) of L if, for
all x, y ∈ L, the following implication is true:

x ∈X,x ≤ y⇒ y ∈X (x ∈X,y ≤ x⇒ y ∈X, respectively).
The set of all uppersets (lowersets, respectively) of a preordered set (L,≤) is denoted by
F(L) (I(L), respectively).

In the following X¬ stands for L/X, for any X ⊆ L.

Proposition 4.1.2. Let (L,≤) be a preordered set and X a subset of L. The following
equivalences hold.

X is an upperset (lowerset) of L if and only if X¬ is a lowerset (upperset) of L.

Proof. Assume X to be an upperset and let x ∈ X¬, y ∈ L, y ≤ x. Then y ∈ X¬. In fact,
if we suppose by contradiction that y ∉ X¬, we have that y ∈ X and, since y ≤ x and X

is an upperset, it follows that x ∈X, which contradicts the assumption x ∉X.
The other part of the statement can be similarly proved.

Proposition 4.1.3. Let (L,≤) be a preordered set and Xi ⊆ L, for every i ∈ I. The
following hold.

1. If Xi is an upperset of L, for every i ∈ I, then ⋃i∈I Xi and ⋂i∈I Xi are uppersets of
L.

109
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2. If Xi is a lowerset of L, for every i ∈ I, then ⋃i∈I Xi and ⋂i∈I Xi are lowersets of
L.

Proof. 1. The proof is trivial for I = ∅, since ∅ and L are uppersets and lowersets in
L. Assume every Xi to be an upperset of L. If x ∈ ⋃i∈I Xi, y ∈ L and x ≤ y, then,
there exists j ∈ I such that x ∈Xj , x ≤ y. Hence, by assumption, y ∈Xj ⊆ ⋃i∈I Xi.
If x ∈ ⋂i∈I Xi, y ∈ L and x ≤ y, then, for every i ∈ I, x ∈ Xi, x ≤ y. By assumption,
y ∈Xi, for every i ∈ I and hence y ∈ ⋂i∈I Xi.

2. Similarly to item (1).

The above Proposition allows to give the following Definition.

Definition 4.1.4. Let (L,≤) be a preordered set and E a subset of L.

1. The including upper (lower, respectively) hull of E, denoted by E[↑] (E[↓],
respectively) is the smallest upperset (lowerset, respectively) containing E.

2. The excluding upper (lower, respectively) hull of E, denoted by E(↑) (E(↓),
respectively) is the largest upperset (lowerset, respectively) disjoint from E.

Remark 4.1.5. Let (L,≤) be a preordered set.

- For any E ⊆ L one has UbE ⊆ E[↑] and LbE ⊆ E[↓].

- The operators [⋅][↑] and [⋅][↓] are isotonic, while the operators [⋅](↑) and [⋅](↓) are
antitonic.

- For any A ⊆ L one has that A is an upperset if and only if A = A[↑], hence for any
E ⊆ L: E(↑) = (E(↑))[↑] and E[↑] = (E[↑])[↑].

- The notions of including (excluding) upper and lower hull of E ⊆ L are order-dual
to each other. So, the properties which can be proved for E[↑] (E(↑)) have a dual
version for E[↓] (E(↓)), too.

- In case of singletons, it is useful to consider the following notation and equalities,
for every e ∈ L:

e[↑] = {x ∈ L∣ e ≤ x} ; e[↓] = {x ∈ L∣ x ≤ e} ; e(↑) = {x ∈ L∣ x ≰ e} ; e(↓) = {x ∈ L∣ e ≰ x} .
Proposition 4.1.6. Let (L,≤) be a preordered set and I any, possibly empty, set. Then
for all subsets E,F and Ei, i ∈ I, of L one has:

1. E ⊆ F ⇒ E[↑] ⊆ F [↑];

2. E ⊆ E[↑];

3. (E[↑])[↑] = E[↑];
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4. (⋃i∈I Ei)[↑] = ⋃i∈I E[↑]i .

Proof. 1. See Remark 4.1.5.

2. By definition, it follows trivially that E ⊆ E[↑].

3. See Remark 4.1.5.

4. From item (2) we have that Ei ⊆ ⋃i∈I Ei,∀i ∈ I ⇒ E
[↑]
i ⊆ (⋃i∈I Ei)[↑],∀i ∈ I ⇒

⋃i∈I E
[↑]
i ⊆ (⋃i∈I Ei)[↑]. Furthermore, by definition, (⋃i∈I Ei)[↑] is the small-

est upperset containing ⋃i∈I Ei and, so, it is an upperset containing Ei, ∀i ∈ I.

Moreover, ⋃i∈I E
[↑]
i is an upperset, since it is the join of the uppersets E

[↑]
i and

Ei ⊆ E
[↑]
i ⊆ ⋃i∈I E

[↑]
i , ∀i ∈ I. So ⋃i∈I E

[↑]
i is an upperset containing ⋃i∈I Ei; hence,

by definition, (⋃i∈I Ei)[↑] ⊆ ⋃i∈I E[↑]i .

Corollary 4.1.7. If (L,≤) is a preordered set, the maps

[⋅][↑] ∶ 2L → 2L, E ↦ E[↑] and [⋅][↓] ∶ 2L → 2L, E ↦ E[↓]

are topological closure operators. The fixed points of each of such operators, i.e. the
uppersets of L in the first case and the lowersets in the second case, are the closed sets
of an Alexandroff topological space on L.

Corollary 4.1.8. Let (L,≤) be a preordered set and E ⊆ L. The following equalities
hold:

1. E[↑] = ⋃e∈E e
[↑];

2. E[↓] = ⋃e∈E e
[↓].

Proof. It is an easy consequence of Proposition 4.1.6 (4) and of its dual version, since
E = ⋃e∈E {e}.
Corollary 4.1.9. Let (L,≤) be a preordered set and E ⊆ L.

1. E[↑] = {x ∈ L∣ ∃e ∈ E ∶ e ≤ x};
2. E[↓] = {x ∈ L∣ ∃e ∈ E ∶ x ≤ e}.

Proof. 1. Since E[↑] = ⋃e∈E e
[↑], one has that y ∈ E[↑] ⇔ ∃ey ∈ E ∋′ y ∈ e

[↑]
y ⇔

∃ey ∈ E ∋′ ey ≤ y ⇔ y ∈ {x ∈ L∣ ∃e ∈ E ∶ e ≤ x}.
2. Dual to item (1).

Lemma 4.1.10. Let (L,≤) be a preordered set and X,E ⊆ L. If X is a lowerset (up-
perset) such that X ∩E = ∅, then X ∩E[↑] = ∅ (X ∩E[↓] = ∅).
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Proof. Suppose, by contradiction, that there exists x̄ ∈X∩E[↑]; then, x̄ ∈X and x̄ ∈ E[↑],
so, there exists ex̄ ∈ E such that ex̄ ≤ x̄. Since X is a lowerset, it follows that ex̄ ∈ X,
that is in contradiction with the assumption X ∩E = ∅.

Proposition 4.1.11. Let (L,≤) be a preordered set and E ⊆ L.

1. E(↓) and E[↑] are complement of each other, that is [E](↓) = [E][↑]¬ and [E][↑] =
[E](↓)¬;

2. E(↑) and E[↓] are complement of each other, that is [E](↑) = [E][↓]¬ and [E][↓] =
[E](↑)¬.

Proof. 1. We prove that (E[↑])¬ is the largest lowerset disjoint from E. In fact,(E[↑])¬ is a lowerset disjoint from E, since it is the complement of the upperset
E[↑] that contains E. If, moreover, B ⊆ L is a lowerset of L such that B ∩E = ∅,
then by the above Lemma 4.1.10, it follows that B ∩E[↑] = ∅; so B ⊆ (E[↑])¬.

2. Dual to item (1).

Corollary 4.1.12. Let (L,≤) be a preordered set and E ⊆ L.

1. E(↑) = {x ∈ L∣ ∀e ∈ E ∶ x ≰ e};
2. E(↓) = {x ∈ L∣ ∀e ∈ E ∶ e ≰ x}.

Proof. 1. Since E(↑) = (E[↓])¬, y ∈ E(↑) ⇔ y ∉ E[↓] ⇔ ∀e ∈ E ∶ y ≰ e ⇔
y ∈ {x ∈ L∣ ∀e ∈ E ∶ x ≰ e}.

2. Dual to item (1).

Proposition 4.1.13. Let (L,≤) be a preordered set and E ⊆ L.

1. E(↓) = ⋂e∈E e
(↓) = ⋃e∉E[↑] e

[↓];

2. E(↑) = ⋂e∈E e
(↑) = ⋃e∉E[↓] e

[↑].

Proof. 1. By the Propositions 4.1.11 (1) and 4.1.8 (1), the following equalities hold:
E(↓) = (E[↑])¬ = (⋃e∈E e[↑])¬ = ⋂e∈E(e[↑])¬ = ⋂e∈E e(↓).
Moreover, E(↓) = (E[↑])¬ = ((E[↑])¬)[↓] = ⋃e∉E[↑] e[↓].

2. Dual to item (1).

Proposition 4.1.14. Let (L,≤) be a preordered set, E ⊆ L. Then, for all e, d ∈ L:

1. e ∈ ⟨MinE⟩≡⇔ e[↑] = E[↑];
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2. d ∈ ⟨MaxE⟩≡⇔ d[↓] = E[↓].

Proof. 1. “⇒ ” Let e ∈ ⟨MinE⟩≡ = ⟨E⟩≡ ∩LbE, i.e. there exists ē ∈ E such that e ≡ ē
and e ≤ e′, for every e′ ∈ E. Then:
− x ∈ e[↑] ⇒ e ≤ x⇒ ē ≤ x⇔ x ∈ E[↑];
− x ∈ E[↑]⇒ ∃e′ ∈ E ∋′ e′ ≤ x⇒ e ≤ e′ ≤ x⇒ x ∈ e[↑].
“⇐ ” Since e ∈ e[↑] = E[↑], there exists e′ ∈ E ∶ e′ ≤ e. Moreover, e′ ∈ E ⊆ E[↑] = e[↑]

implies that e ≤ e′; so, e ∈ ⟨E⟩≡. Furthermore, x ∈ E ⊆ E[↑] = e[↑] ⇒ e ≤ x, i.e.
e ∈ LbE.

2. Dual to item (1).

The uppersets and the lowersets of L, which are the fixed points of the operators[⋅][↑] and [⋅][↓], respectively, can be also characterized as follows.

Proposition 4.1.15. Let (L,≤) be a preordered set and E ⊆ L. The following are
equivalent.

1. E is an upperset;

2. E = (E¬)(↑);
3. (E¬)(↑) = (E(↓))¬.

Proof. “(1) ⇒ (2)” Since E is an upperset, then E¬ is a lowerset, so (E¬)[↓] = E¬.
Then, by Proposition 4.1.11, (E¬)(↑) = ((E¬)[↓])¬ = (E¬)¬ = E.
“(2) ⇒ (3)” It follows by assumption and Proposition 4.1.11 that ((E)(↓))¬ = E[↑] =((E¬)(↑))[↑] = (E¬)(↑).
“(3)⇒ (1)” Of course, E ⊆ E[↑]. Conversely, it follows by assumption and by Proposition
4.1.11 that E[↑] = (E(↓))¬ = (E¬)(↑) ⊆ E.

Proposition 4.1.16. Let (L,≤) be a preordered set and E ⊆ L. The following are
equivalent.

1. E is a lowerset;

2. E = (E¬)(↓);
3. (E¬)(↓) = (E(↑))¬.

Proof. Dual to Proposition 4.1.15.

Corollary 4.1.17. Let (L,≤) be a preordered set and E ⊆ L. Then

1. E(↑) = ((E)[↓])(↑);
2. E[↑] = (E(↓))(↑);
3. E(↓) = (E[↑])(↓);
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4. E[↓] = (E(↑))(↓).
Proof. Since E(↑) is an upperset, by Propositions 4.1.11 and 4.1.15 E(↑) = ((E(↑))¬)(↑) =(E[↓])(↑), then (1) is true. Similarly, since E[↑] is an upperset, E[↑] = ((E[↑])¬)(↑) =(E(↓))(↑), then (2) is true.
(3) and (4) can be proved by duality.

Remark 4.1.18. - The item (2) of Propositions 4.1.15 and 4.1.16 show that every
upperset (lowerset) is an excluding upper (lower) hull. As a consequence, the

operators [⋅](↑) and [⋅](↓) have the same image as [⋅][↑] and [⋅][↓], respectively;
more explicitly one has

F (L) = {E[↑]∣ E ∈ 2L} = {E(↑)∣ E ∈ 2L}
and

I (L) = {E[↓]∣ E ∈ 2L} = {E(↓)∣ E ∈ 2L} .
- Of course, there are subsets of (L,≤) which are both uppersets and lowersets: ∅

and L are among these subsets.
However, in quite general situations ∅ and L are the only uppersets that are
lowersets, too. The following example describes two cases.

Example 4.1.19. If (L,≤) satisfies one of the following conditions:

(i) there exists either a minimum or a maximum in L;

(ii) for all x, y ∈ L, either x ∨ y ≠ ∅ or x ∧ y ≠ ∅ in L,

then ∅ and L are the only subsets that are both lowersets and uppersets.
In fact, assume ∅ ≠ X ⊆ L to be both a lowerset and an upperset. If L has a minimum
�, then � ∈X, hence L = �[↑] ⊆X[↑] =X; dually, if L has a maximum, then X = L, too.
If (ii) holds, consider a fixed element x ∈ X and any y ∈ L. If z ∈ x ∨ y exists in L, then
z ∈X and y ≤ z hence y ∈X; dually, y ∈X if t ∈ x∧y exists. By arbitrariness of y, X = L.

Remark 4.1.20. - As already remarked, the uppersets of a preordered set (L,≤)
are the closed sets of a topology on L, which we call lower Alexandroff topology
of (L,≤), since its open sets are the lowersets.
Dually, the upper Alexandroff topology of (L,≤) can be defined, whose closed
sets are the lowersets.
The statements we list below concern the lower Alexandroff topology and each of
them has a dual statement for the upper Alexandroff topology.

- Since the closed sets of the lower Alexandroff topological space on (L,≤) are the
uppersets of L, one has, by Proposition 4.1.11, that the open sets are the excluding
lower hulls E(↓), for every E ⊆ L, i.e. the lowersets of L. Then, by Remark 4.1.18
and Corollary 4.1.8, E ⊆ L is an open set if and only if E = E[↓] = ⋃e∈E e

[↓]. So,
the family of subsets {e[↓]∣ e ∈ E} is a basis of the lower Alexandroff space.
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- It is clear that the closure operator of the lower Alexandroff topology is cll [⋅] =[⋅][↑]; hence, by Proposition 4.1.11, the interior operator is [⋅]¬[↑]¬ = [⋅]¬(↓).
As a consequence, by Corollary 4.1.8 and Proposition 4.1.13, it is possible to express
the closure and the interior of any subset X ⊆ L as follows:

- cllX = ⋃{x[↑]∣ x ∈X};
- intlX = ⋂{y(↓)∣ y ∉X} = ⋃{z[↓]∣ z ∉X¬[↑]} = ⋃{z[↓]∣ z[↓] ⊆X}.

4.2 Equivalences and connections

Let L be a set and let ≡ be an equivalence relation on L.
For any set Z we consider in LZ the equivalence induced pointwisely by ≡, i.e. we recall
that the functions h, k ∶ Z → L are equivalent with respect to ≡ and write h ≡ k if(z)h ≡ (z)k, for every z ∈ Z.
We may also specify that in such a case h and k are globally equivalent, or that there is a
global equivalence between them. However, we also consider much weaker equivalences,
namely relative equivalences in LZ , with respect to a subset of L; these notions will
allow to give a unified presentation of all types of Galois connections considered up
to now (see [35, 42, 51]) together with their dual forms, which we shall call Tarski
connections, since they extend conjugated pairs introduced by Tarski in [83] and also
studied in [42, 61].

Definition 4.2.1. Let Z,L be two sets, h, k ∶ Z → L two functions, ≡ an equivalence
relation on L and E ⊆ L. We say that h and k are E-equivalent and write h ≡E k if
for every z ∈ Z, the following equivalence holds:

(z)h ∈ ⟨E⟩≡⇔ (z)k ∈ ⟨E⟩≡.

If a ∈ L, we write h ≡a k for h ≡{a} k.
Of course, h ≡E k if and only if ⟨E⟩≡ h− = ⟨E⟩≡ k−. Note also that h ≡E k if and only if
h ≡⟨E⟩

≡

k, by the idempotency of the closure operator ⟨⋅⟩≡.

Proposition 4.2.2. Let Z be a set, h, k ∶ Z → L be functions.
Then the following are equivalent:

1. h ≡ k;

2. h ≡E k, ∀E ⊆ L;

3. h ≡a k, ∀a ∈ L.

Proof. “(1)⇒ (2)” Assume h ≡ k, i.e. (z)h ≡ (z)k, for every z ∈ Z. Then for all E ⊆ L
and z ∈ Z one has (z)h ∈ ⟨E⟩≡⇔ ∃a ∈ E ∶ a ≡ (z)h ≡ (z)k⇔ (z)k ∈ ⟨E⟩≡.
“(2)⇒ (3)” Obvious.
“(3) ⇒ (1)” For every z ∈ Z it follows that (z)h ∈ ⟨{(z)h}⟩≡, hence, by assumption,(z)k ∈ ⟨{(z)h}⟩≡, i.e. (z)h ≡ (z)k.
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Remark 4.2.3. We note that every subset E ⊆ L determines, by means of Definition
4.2.1, an equivalence ≡E in LZ which is coarser than ≡, in the sense that, as subsets of
LZ ×LZ , ≡ ⊆ ≡E ; moreover, Proposition 4.2.2 states that ≡ = ⋂E⊆L ≡E = ⋂a∈L ≡a.
Sometimes we shall call ≡ the global equivalence and each of ≡E the equivalence relative
to E; more generally, we say that ∼ is a relative equivalence (with respect to ≡) if there
is E ⊆ L such that ∼ = ≡E .
Note also that ≡ coincides with the (global) equivalence pointwisely induced in LZ by
the equivalence on L whose classes are either E or L/E.

We shall deal mostly with a preordered set (L,≤), in which case we consider the
equivalence relation ≡ induced by ≤ on L, which is the equality if ≤ is an order.
In this case, with the above notation, we give the following definitions.

Definition 4.2.4. Let (L,≤) be a preordered set, E ⊆ L and let h, k ∶ Z → L be two
functions.
− h and k are upper (lower) equivalent with respect to ≡ if there exists an upperset
F ⊆ L (a lowerset I ⊆ L) such that h ≡F k (h ≡I k).
− h and k are E-including (E-excluding) upper equivalent with respect to ≡ if for
every z ∈ Z one has (z)h ∈ E[↑]⇔ (z)k ∈ E[↑] ((z)h ∈ E(↑)⇔ (z)k ∈ E(↑)).
− Dually, h and k are E-including (E-excluding) lower equivalent with respect to
≡ if for every z ∈ Z one has (z)h ∈ E[↓]⇔ (z)k ∈ E[↓] ((z)h ∈ E(↓)⇔ (z)k ∈ E(↓)).

Remark 4.2.5. Definitions 4.2.1 and 4.2.4 do not exclude the trivial cases when E is
either empty or the whole set L.
However, one can note that if Γ ∈ {∅, L} then each of ⟨Γ⟩≡, Γ[↑], Γ(↑), Γ[↓] and Γ(↓)

belongs to {∅, L}.
As a consequence, for Γ ∈ {∅, L}, any two functions h, k ∶ Z → L are trivially Γ-equivalent,
Γ-including and Γ-excluding upper and lower equivalent.
In the subsequent discussions, statements and proofs we may consider these trivial cases
without mentioning.

Remark 4.2.6. 1. Since every upperset and every lowerset set is saturated, it is clear
that E-including or E-excluding, upper or lower equivalences may be denoted by
one of the symbols ≡E[↑] , ≡E(↑) , ≡E[↓] and ≡E(↓) , among which the right one can be
easily understood.

2. If F is an upperset, then F = F [↑] = (F¬)(↑). So any upper equivalence is both an
E-including and E′-excluding upper equivalence, for suitable E,E′ ⊆ L; then, by
Corollary 4.1.17, it is an E(↓)-excluding and an E′(↑)-including upper equivalence,
too.
The dual statement for lower equivalences hold, too.

3. As a consequence of Lemma 4.1.14, if E ⊆ L and either e ∈ ⟨MinE⟩≡ or d ∈⟨MaxE⟩≡, then either ≡E[↑]=≡e[↑] or ≡E[↓]=≡d[↓] .

Looking at the proof of Proposition 4.2.2, it is easy to realize the following.
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Proposition 4.2.7. Let (L,≤) be a preordered set and let h, k ∶ Z → L be functions.
With the above notation, the following statements are equivalent:

1. h ≡ k;

2. ∀E ⊆ L ∶ h ≡E[↑] k;

2’. ∀e ∈ L ∶ h ≡e[↑] k. ◻

Dually, the following proposition holds.

Proposition 4.2.8. Let (L,≤) be a preordered set and let h, k ∶ Z → L be functions.
With the above notation, the following statements are equivalent:

1. h ≡ k;

2. ∀E ⊆ L ∶ h ≡E[↓] k;

2’. ∀d ∈ L ∶ h ≡d[↓] k. ◻

On the base of equivalences of functions with values in a preordered set (L ≤), in
particular of L-relations, we shall present a quite general approach to Galois connec-
tions, including their classification in four types, related to each other by analogies and
dualities, as in [42, 51]. Our general approach will further allow to include the classical
notion of conjugated pairs of functions introduced by Tarski in [83] and developed in
[61]; this will be the topic of Section 4.3 where, not only the notion of conjugated pairs
(also considered recently in [30, 33, 42]) will be extended, but it will be also obtained
their classification into four types (we shall call them Tarski connections) that are
perfectly order-dual to Galois connections.
Both Galois and Tarski connections will be defined by considering two special cases, dual
to each other, of the relative connections we consider below.

Let (L,≤) be a preordered set, (X,α), (Y, β) be two sets, each equipped with a fixed
binary L-relation on it and f ∶ X → Y , g ∶ Y → X be two functions. Consider the
L-relations from X to Y defined as follows:

Rβf ∶X × Y → L, (x, y)↦ (x, y)Rβf = (y, (x)f)β;

Rfβ ∶X × Y → L, (x, y)↦ (x, y)Rfβ = ((x)f, y)β;

Rαg ∶X × Y → L, (x, y)↦ (x, y)Rαg = (x, (y)g)α;

Rgα ∶X × Y → L, (x, y)↦ (x, y)Rgα = ((y)g, x)α.
Remark 4.2.9. Note that

- (Rβf)− =Rfβ− ;
- (Rfβ)− =Rβ−f ;

- (Rαg)− =Rgα− ;
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- (Rgα)− =Rα−g.
With the above notations, we state the following.

Definition 4.2.10. - f and g form a type I (global) connection from (X,α) to(Y, β), denoted by [f -g] ∶ (X,α)→ (Y, β), if Rβf ≡Rαg.

- f and g form a type II (global) connection from (X,α) to (Y, β), denoted by]f -g[∶ (X,α)→ (Y, β), if Rfβ ≡Rgα.

- f and g form a type III (global) connection from (X,α) to (Y, β), denoted by(f, g) ∶ (X,α)→ (Y, β), if Rfβ ≡Rαg.

- f and g form a type IV (global) connection from (X,α) to (Y, β), denoted by)f, g(∶ (X,α)→ (Y, β), if Rβf ≡Rgα.

Proposition 4.2.11. With the above notation, the following are equivalent:

1. [f -g] ∶ (X,α)→ (Y, β);
2. [g-f] ∶ (Y, β)→ (X,α);
3. ]f -g[∶ (X,α−)→ (Y, β−);
4. ]g-f[∶ (Y, β−)→ (X,α−);
5. (f, g) ∶ (X,α)→ (Y, β−);
6. (g, f) ∶ (Y, β)→ (X,α−);
7. )f, g(∶ (X,α−)→ (Y, β);
8. )g, f(∶ (Y, β−)→ (X,α).

Proof. The equivalence between all the items can be obtained by the following equiva-
lences, that are true thanks to Remark 4.2.9 and the symmetry of ≡, for all considered
elements: Rβf ≡ Rαg ⇔Rαg ≡ Rβf ⇔Rfβ− ≡ Rgα− ⇔Rgα− ≡ Rfβ− ⇔Rfβ− ≡ Rαg ⇔
Rgα− ≡Rβf ⇔Rβf ≡Rgα− ⇔Rαg ≡Rfβ− .

Relative connections from (X,α) to (Y, β) can be also considered as follows using,
once more, the above notation, with respect to any subset E ⊆ L.

Definition 4.2.12. - f and g form a type I E-connection from (X,α) to (Y, β),
denoted by [f -g]E ∶ (X,α)→ (Y, β), if Rβf ≡E Rαg.

- f and g form a type II E-connection from (X,α) to (Y, β), denoted by]f -g[E ∶ (X,α)→ (Y, β), if Rfβ ≡E Rgα.

- f and g form a type III E-connection from (X,α) to (Y, β), denoted by(f, g)E ∶ (X,α)→ (Y, β), if Rfβ ≡E Rαg.
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- f and g form a type IV E-connection from (X,α) to (Y, β), denoted by)f, g(E ∶ (X,α)→ (Y, β), if Rβf ≡E Rgα.

Roughly speaking, a pair of maps is a relative connection of one of the four types if
there exists E ⊆ L such that those maps form an E-connection of that type.
It is clear that the properties proved in Proposition 4.2.11 hold for all types of (relative)
E-connections; in fact, the equivalences proved for global connections only depend on
the symmetry of the considered equivalence relation on L and on the links between the
L-relations Rβf , Rfβ , Rαg and Rgα and their opposite observed in Remark 4.2.9.
Also note that we shall sometimes simplify notation into [f -g]E , ]f -g[E , (f, g)E , )f, g(E
if the two connected sets (X,α), (Y, β) are clearly meant.

Proposition 4.2.13. With the above notation, the following are equivalent:

1. [f -g]E ∶ (X,α)→ (Y, β);
2. [g-f]E ∶ (Y, β)→ (X,α);
3. ]f -g[E ∶ (X,α−)→ (Y, β−);
4. ]g-f[E ∶ (Y, β−)→ (X,α−);
5. (f, g)E ∶ (X,α)→ (Y, β−);
6. (g, f)E ∶ (Y, β)→ (X,α−);
7. )f, g(E ∶ (X,α−)→ (Y, β);
8. )g, f(E ∶ (Y, β−)→ (X,α).

Proof. The proof uses the same equivalences as Proposition 4.2.11.

The classification of connections of Definitions 4.2.10 and 4.2.12 has been arranged
in such a way as to agree with a similar classification done in [51] for fuzzy Galois
connections, to which our notions are closely related, as will be clear going on with the
development of the next Sections.

4.3 Galois connections

In this Section we define Galois connections between (possibly structured) sets as
upper connections, i.e. connections considered in Definition 4.2.12, relative to uppersets;
we apply, as well, the classification there considered.
According to the discussion already done for upper equivalences in Section 4.2, every
Galois connection is both an E-including and an E′-excluding upper connection, for
suitable subsets E,E′ ⊆ L.
Conversely, every subset E ⊆ L determines two classes of Galois connections by means
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of the upper hulls E[↑] and E(↑). To involve explicitly the interrelation between a Galois
connection and any subset may determine it, we give the following Definition in a form
that may seem redundant but will give practical advantages.

Definition 4.3.1. Let E ⊆ L be a subset of the preordered set (L,≤), (X,α), (Y, β) be
two possibly structured sets, each with a fixed binary L-relation on it and f ∶ X → Y ,
g ∶ Y →X be two functions.

- f and g form a type I E-including (E-excluding) Galois connection from(X,α) to (Y, β), denoted by [f -g]E[↑] ∶ (X,α)→ (Y, β) ([f -g]E(↑) ∶ (X,α)→ (Y, β)),
if Rβf ≡E[↑] Rαg (Rβf ≡E(↑) Rαg).

- f and g form a type II E-including (E-excluding) Galois connection from(X,α) to (Y, β), denoted by ]f -g[E[↑] ∶ (X,α)→ (Y, β) (]f -g[E(↑) ∶ (X,α)→ (Y, β)),
if Rfβ ≡E[↑] Rgα (Rfβ ≡(E)↑ Rgα).

- f and g form a type III E-including (E-excluding) Galois connection from(X,α) to (Y, β), denoted by (f, g)E[↑] ∶ (X,α)→ (Y, β) ((f, g)E(↑) ∶ (X,α)→ (Y, β)),
if Rfβ ≡E[↑] Rαg (Rfβ ≡E(↑) Rαg).

- f and g form a type IV E-including (E-excluding) Galois connection from(X,α) to (Y, β), denoted by )f, g(E[↑] ∶ (X,α)→ (Y, β) ()f, g(E(↑) ∶ (X,α)→ (Y, β)),
if Rβf ≡E[↑] Rgα (Rβf ≡E(↑) Rgα).

If F ⊆ L is an upperset, we shall call F -Galois connection (of any of the four types)
any upper connection relative to F .
As already remarked in the previous Section, the classification of connections of Defini-
tion 4.2.10, and of Definition 4.3.1 as well, has been arranged in such a way as to agree
with a similar classification done in [51] for fuzzy Galois connections.
Of course, most statements concerning relative upper equivalences and connections in
Section 4.2 might be restated now for Galois connections, including those listed in Propo-
sitions 4.2.11 and 4.2.13.
Among Galois connections, we highlight those that can be determined by singletons in
L and that we call point-including or point-excluding depending on whether they
are relative to e[↑] or to e(↑), for some e ∈ L.
Some results stated in Section 4.1 allow to realize when a Galois connection is point-
including or point-excluding, as follows.

Proposition 4.3.2. With the above notation and terminology, the following hold, for
any type of Galois connections.

1. If E has a minimum, then any E-including Galois connection is point-including.

2. If E(↓) has a maximum, then any E-including Galois connection is point-excluding.

3. If E(↑) has a minimum, any E-excluding Galois connection is point-including.

4. If E has a maximum, then any E-excluding Galois connection is point-excluding.
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Proof. 1. If E has a minimum, then there exists e ∈ ⟨MinE⟩≡; so, by Proposi-
tion 4.1.14, e[↑] = E[↑] and hence, every E-including Galois connection is point-
including, in particular it is e-including.

2. If E(↓) has a maximum, then there exists e ∈ MaxE(↓) = ⟨MaxE(↓)⟩
≡
; so, by

Proposition 4.1.14 and since E(↓) is a lower hull, we have that e[↓] = (E(↓))[↓] = E(↓).
Moreover, by Corollary 4.1.17, it follows that E[↑] = (E(↓))(↑) = (e[↓])(↑) = e(↑).
Hence, any E-including Galois connection is point-excluding, more precisely, it is
e-excluding.

3. If E(↑) has a minimum, then there exists e ∈MinE(↑) = ⟨MinE(↑)⟩
≡
; so, by Propo-

sition 4.1.14 e[↑] = (E(↑))[↑] = E(↑). Hence, every E-excluding Galois connection is
point-including, more precisely, it is e-including.

4. If E has a maximum, then there exists e ∈ ⟨MaxE⟩≡; so, by Proposition 4.1.14,
e[↓] = E[↓]. Moreover, by Corollary 4.1.17, it follows that E(↑) = (E[↓])(↑) =(e[↓])(↑) = e(↑). Hence, any E-excluding Galois connection is point-excluding, more
precisely, it is e-excluding.

Remark 4.3.3. We note that if e ∈ L, then the type I e-including and e-excluding Galois
connections can be expressed as follows, with the above notation.

- [f -g]e[↑] , if and only if for all x ∈X,y ∈ Y (x, y)Rβf ≥ e⇔ (x, y)Rαg ≥ e;
- [f -g]e(↑) , if and only if for all x ∈X,y ∈ Y (x, y)Rβf ≰ e⇔ (x, y)Rgα ≰ e.

The other types can be expressed similarly.

Our approach to Galois connections and to their dual Tarski connections takes its
main motivations from a more general reading of the conditions expressed in the above
Remark and of the corresponding dual conditions.
Galois connections arise in several, different contexts and we believe that the algebraic
structure of logic is the one which motivates and illustrates all their fundamental aspects;
the implicative structure of logic and, in particular, their order-theoretic approach de-
veloped in [13, 50] give a suitable framework to explain details of our viewpoint.
In the classical approaches to Galois connections (X,α) and (Y, β) are posets, possibly
complete, and L = 2. However, it appears clearly from our general approach that Galois
connections from (X,α) to (Y, β) do not require α and β to be order (or preorder) rela-
tions but, rather, they require a (pre)order in the set L of evaluation of such connections
(which is ensured in the classical case, where L = 2).
Classical Galois connections are, in our terminology, 1-including Galois connections be-
tween posets; more precisely, antitonic Galois connections are 1-including Galois con-
nections of type I while isotonic Galois connections are 1-including Galois connections
of type III (the above Propositions show that those of type II and IV are closely related
to the ones of type I and III, respectively).
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More generally, the classical formulation of Galois connections can be obtained assum-
ing (L,≤) to be a preordered set and α, β binary L-relations on X and Y , respectively,
under the following notations.
Let F ⊆ L be a non-empty upperset of L and let (X,α) and (Y, β) be sets, each
equipped with an L-relation and consider the relations ≤α,F and ≤β,F defined, for all
x1, x2 ∈X,y1, y2 ∈ Y , by x1 ≤α,F x2⇔ (x1, x2)α ∈ F and y1 ≤β,F y2⇔ (y1, y2)β ∈ F .
Under such assumptions, the four types of F -Galois connections from (X,α) to (Y, β)
can be expressed as follows.

Proposition 4.3.4. With the above notation, for all f ∶X → Y , g ∶ Y →X, the following
hold:

- [f -g]F ∶ (X,α)→ (Y, β)⇔ ∀x ∈X,y ∈ Y : y ≤β,F (x)f ⇔ x ≤α,F (y)g;

- ]f -g[F ∶ (X,α)→ (Y, β)⇔ ∀x ∈X,y ∈ Y : (x)f ≤β,F y⇔ (y)g ≤α,F x;

- (f, g)F ∶ (X,α)→ (Y, β)⇔ ∀x ∈X,y ∈ Y : (x)f ≤β,F y⇔ x ≤α,F (y)g;

- )f, g(F ∶ (X,α)→ (Y, β)⇔ ∀x ∈X,y ∈ Y : y ≤β,F (x)f ⇔ (y)g ≤α,F x. ◻

In the classical case ≤α,F and ≤β,F are (pre)order relations; in such a case the four
types of Galois connections may be characterized as pairs of “functors” that form “ad-
junctions” (as in [51]), i.e. as isotonic or antitonic maps that satisfy suitable adjoint
inequalities. However, the only assumption needed to characterize Galois connections
by means of such kind of inequalities is the transitivity of the relations ≤α,F and ≤β,F .
One may think of such an assumption and extend the usual notation saying that a
function f ∶ (X,≤α)→ (Y,≤β) is isotonic if f preserves relations, i.e.

∀x, y ∈X ∶ x ≤α y⇒ (x)f ≤β (y)f.
Similarly, f is said to be antitonic if f reverses relations, i.e.

∀x, y ∈X ∶ x ≤α y⇒ (y)f ≤β (x)f.
Then one has easily the following characterization.

Proposition 4.3.5. With the above notation, assuming ≤α,F and ≤β,F to be transitive
relations, the following hold.

1. [f -g]F ∶ (X,α) → (Y, β) if and only if f , g are antitonic and satisfy the following
Galois conditions:(GC1) x ≤α,F ((x)f)g, for every x ∈X;(GC2) y ≤β,F ((y)g)f , for every y ∈ Y .

2. ]f -g[F ∶ (X,α) → (Y, β) if and only if f , g are antitonic and satisfy the following
Galois conditions:(GCop1 ) ((x)f)g ≤α,F x, for every x ∈X;(GCop2 ) ((y)g)f ≤β,F y, for every y ∈ Y .
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3. (f, g)F ∶ (X,α) → (Y, β) if and only if f , g are isotonic and satisfy the following
Galois conditions:(GC1) x ≤α,F ((x)f)g, for every x ∈X;(GCop2 ) ((y)g)f ≤β,F y, for every y ∈ Y .

4. )f, g(F ∶ (X,α) → (Y, β) if and only if f , g are isotonic and satisfy the following
Galois conditions:(GCop1 ) ((x)f)g ≤α,F x, for every x ∈X;(GC2) y ≤β,F ((y)g)f , for every y ∈ Y .

Proof. (1) “⇒ ” If [f -g]F , from Proposition 4.3.4 the following hold:(GC1) (x)f ≤β,F (x)f ⇒ x ≤α,F ((x)f)g, for every x ∈X;(GC2) (y)g ≤α,F (y)g⇒ y ≤β,F ((y)g)f , for every y ∈ Y .
Moreover, let a, b ∈X be such that a ≤α,F b; by (GC1), we have that:
a ≤α,F b ≤α,F ((b)f)g⇒ (b)f ≤β,F (a)f .
Similarly, we can prove that g is antitonic, too.
“ ⇐ ” Let f, g ∶ L → L be two antitonic functions that satisfy (GC1) and (GC2).
So, for all x ∈X,y ∈ Y the following implications hold:

y ≤β,F (x)f ⇒ ((x)f)g ≤α,F (y)g⇒ x ≤α,F ((x)f)g ≤α,F (y)g⇒ x ≤α,F (y)g
x ≤α,F (y)g⇒ ((y)g)f ≤β,F (x)f ⇒ y ≤β,F ((y)g)f ≤β,F (x)f ⇒ y ≤β,F (x)f.

Hence, for all x ∈X,y ∈ Y ∶ y ≤β,F (x)f ⇔ x ≤α,F (y)g, i.e. [f -g]F .
The items (2), (3) and (4) are proved dually by using Proposition 4.2.13.

With the above notation and assuming ≤α,F and ≤β,F to be preorders, each term of
a Galois connection can be determined by the other one, up to equivalence in X or in
Y , as follows.

Proposition 4.3.6. With the above notation, assuming ≤α,F and ≤β,F to be preorder
relations, the following hold, if the needed sups and infs are non-empty.

1. If [f -g]F ∶ (X,α)→ (Y, β), then

∀x ∈X,y ∈ Y ∶ (y)g ∈ ⋁{x∣ y ≤β,F (x)f} and (x)f ∈ ⋁{y∣ x ≤α,F (y)g}.
2. If ]f -g[F ∶ (X,α)→ (Y, β), then

∀x ∈X,y ∈ Y ∶ (y)g ∈ ⋀{x∣ (x)f ≤β,F y} and (x)f ∈ ⋀{y∣ (y)g ≤α,F x}.
3. If (f, g)[F ∶ (X,α)→ (Y, β), then

∀x ∈X,y ∈ Y ∶ (y)g ∈ ⋁{x∣ (x)f ≤β,F y} and (x)f ∈ ⋀{y∣ x ≤α,F (y)g}.
4. )f, g(F ∶ (X,α)→ (Y, β), then
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∀x ∈X,y ∈ Y ∶ (y)g ∈ ⋀{x∣ y ≤β,F (x)f} and (x)f ∈ ⋁{y∣ (y)g ≤α,F x}.
Proof. (1) If [f -g]F ∶ (X,α) → (Y, β), then ∀x ∈ X,y ∈ Y : (y, (x)f)β ∈ F ⇔(x, (y)g)α ∈ F , i.e. ∀x ∈X,y ∈ Y : y ≤β,F (x)f ⇔ x ≤α,F (y)g.

Hence, for every y ∈ Y : (y)g ∈ Ub{x∣ y ≤β,F (x)f}. Moreover, let x′ ∈X,x ≤α,F x
′,

for every x ∈X such that y ≤β,F (x)f , i.e. such that x ≤α,F (y)g. In particular, for
x = (y)g, we have that (y)g = x ≤α,F x′ and hence (y)g ∈ ⋁{x∣ y ≤β,F (x)f}. Simi-
larly, or recalling Proposition 4.2.13, we can prove that (x)f ∈ ⋁{y∣ x ≤α,F (y)g}.

(2) If ]f -g[F ∶ (X,α) → (Y, β), then ∀x ∈ X,y ∈ Y : ((x)f, y)β ∈ F ⇔ ((y)g, x)α ∈ F ,
i.e. ∀x ∈X,y ∈ Y : (x)f ≤β,F y⇔ (y)g ≤α,F x.
Hence, for every y ∈ Y (y)g ∈ Lb{x∣ (x)f ≤β,F y}. Moreover, let x′ ∈ X,x′ ≤α,F x,
for every x ∈X such that (x)f ≤β,F y, i.e. such that (y)g ≤α,F x. In particular, for
x = (y)g, we have that x′ ≤α,F x = (y)g and hence (y)g ∈ ⋀{x∣ (x)f ≤β,F y}. Simi-

larly, or recalling Proposition 4.2.13, we can prove that (x)f ∈ ⋀{y∣ (y)g ≤β,F x}.
The items (3) and (4) are proved dually or by using Proposition 4.2.13.

From Corollary 4.1.17, we have that E[↑] = (E(↓))(↑) and hence f and g form a (type
I, II, III or IV) E-including Galois connection if and only if f and g form a (type I, II,
III or IV) E(↓)-excluding Galois connection.
Moreover, since E(↑) is an upperset and hence E(↑) = (E(↑))[↑], we have that f and g

form a (type I, II, III or IV) E-excluding Galois connection if and only if f and g form
a (type I, II, III or IV) E(↑)-including Galois connection.
With the above notations and thanks to these properties we can extend the results of
Proposition 4.3.6 to E-including (E-excluding, respectively) Galois connections, assum-
ing that the relations ≤α,E[↑] and ≤β,E[↑] (≤α,E(↑) and ≤β,E(↑) , respectively), defined as
above, are preorders.
With the same assumptions as in Proposition 4.3.6, functions that may be terms of Ga-
lois connections can be characterized by their behavior with respect to infs and sups as
stated in the following Proposition, which extends well known results of classical Galois
connections. To simplify notation and proofs, we add the completeness assumption and
denote both ≤α,F and ≤β,F by ≤ and their infs and sups by ⋀ and ⋁.

Proposition 4.3.7. With the above notation and assumptions, let f ∶X → Y be a map
and let (X,≤) be a complete prelattice.

1. There exists a map g ∶ Y → X such that [f -g]F ∶ (X,α) → (Y, β) if and only if(⋁S)f ⊆ ⋀(Sf), for every S ⊆X.

2. There exists a map g ∶ Y → X such that ]f -g[F ∶ (X,α) → (Y, β) if and only if(⋀S)f ⊆ ⋁(Sf), for every S ⊆X.

3. There exists a map g ∶ Y → X such that (f, g)F ∶ (X,α) → (Y, β) if and only if(⋁S)f ⊆ ⋁(Sf), for every S ⊆X.

4. There exists a map g ∶ Y → X such that )f, g(F ∶ (X,α) → (Y, β) if and only if(⋀S)f ⊆ ⋀(Sf), for every S ⊆X.
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Proof. (1) “ ⇒ ” Let a ∈ ⋁S; hence (a)f ∈ (⋁S)f and b ≤ a, for every b ∈ S. Since[f -g]F , by Proposition 4.3.5, we have that f is antitonic and then (a)f ≤ (b)f , for
every b ∈ S. So, (a)f ∈ Lb(Sf). In order to see that (a)f ∈ ⋀(Sf), we prove the
following implication z ≤ (b)f,∀b ∈ S ⇒ z ≤ (a)f . Let z ≤ (b)f ; since [f -g]F the
following holds: z ≤ (b)f ⇔ b ≤ (z)g,∀b ∈ S. Hence (z)g ∈ UbS; since a ∈ ⋁S, we
have that a ≤ (z)g, hence z ≤ (a)f .
“ ⇐ ” For any y ∈ Y , chose (y)g in ⋁{t∣ y ≤ (t)f}. By definition of g, we have
easily that, for all x ∈ X,y ∈ Y ∶ y ≤ (x)f ⇒ x ≤ (y)g. Moreover, by the assumed
condition saying that f is antitonic, we have that x ≤ (y)g ⇒ ((y)g)f ≤ (x)f , for
all x ∈ X,y ∈ Y . Since (y)g ∈ ⋁{t∣ y ≤ (t)f}, for every y ∈ Y and f maps sups
into infs by assumption, it is clear that ((y)g)f ∈ ⋀{(t)f ∣ y ≤ (t)f} and hence,
y ≤ ((y)g)f , for every y ∈ Y . So, x ≤ (y)g⇒ y ≤ ((y)g)f ≤ (x)f ⇒ y ≤ (x)f , for all
x ∈X,y ∈ Y . Hence, for all x ∈X,y ∈ Y ∶ y ≤ (x)f ⇔ x ≤ (y)g, i.e. [f -g]F .

Items (2), (3) and (4) can be proved by using Proposition 4.2.13 and taking into
account that ≤α−,F= (≤α,F )− and ≤β−,F= (≤β,F )−.

Proposition 4.3.8. With the same notation and assumptions recalled in Proposition
4.3.7, let g ∶ Y →X be a map and let (Y,≤) be a complete prelattice.

1. There exists a map f ∶ X → Y such that [f -g]F ∶ (X,α) → (Y, β) if and only if(⋁S)g ⊆ ⋀(Sg), for every S ⊆ L.

2. There exists a map f ∶ X → Y such that ]f -g[F ∶ (X,α) → (Y, β) if and only(⋀S)g ⊆ ⋁(Sg), for every S ⊆ L.

3. There exists a map f ∶ X → Y such that (f, g)F ∶ (X,α) → (Y, β) if and only if(⋀S)g ⊆ ⋀(Sg), for every S ⊆ L.

4. There exists a map f ∶ X → Y such that )f, g(F ∶ (X,α) → (Y, β) if and only if(⋁S)g ⊆ ⋁(Sg), for every S ⊆ L.

Proof. (1) Since by Proposition 4.2.13 the equivalence [f -g]F ∶ (X,α) → (Y, β) ⇔[g-f]F ∶ (Y, β) → (X,α) is true, the stated assertion follows easily by Proposition
4.3.7 interchanging f and g.

Items (2), (3) and (4) can be proved similarly by using Propositions 4.2.13 and
4.3.7.

We can give, as an example, a quite general framework where the conditions required
in the Propositions 4.3.6 and 4.3.7 are satisfied, considering a w-ceo algebra.
Let (L,→,⊺) be a w-ceo algebra and let e ∈ L be an element that satisfies the following
condition:

(n) x ≤ y⇔ e ≤ x→ y, ∀x, y ∈ L.

We note that ⊺ is such an element and, moreover, the following characterization holds.
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Lemma 4.3.9. If L is right-distributive and ⊗ is its adjoint product, then e ∈ L satisfies(n) if and only if x ⊗ e = x, for every x ∈ L (i.e. e is a right-unit with respect to the
adjoint product of L).

Proof. Assuming (n) one has that for every x ∈ L: x ≤ x ⊗ e ⇔ e ≤ x → (x ⊗ e) ⇔
x ⊗ e ≤ x ⊗ e, which is true. The inequality x ⊗ e ≤ x follows from Proposition 2.1.11.
Conversely, assume x ⊗ e = x, for every x ∈ L. Then a ≤ b ⇒ a → b = ⊺ ≥ e and
e ≤ a→ b⇒ a⊗ e ≤ b⇒ a ≤ b.

Of course, in a symmetrical cdeo algebra, ⊺ is a unit, hence it is the only element
satisfying (n).
Now, if e ∈ L satisfies (n) it is an easy exercise to express the conditions listed in Remark
4.3.3 for e-including Galois connections, assuming X = Y = L and α = β =→, exactly in
the classical form, with respect to the natural ordering ≤ of (L,→,⊺). Moreover, we can
restate easily all the properties seen in the general case, getting, in fact, the main classical
results. For example, the following holds, for type I e-including Galois connections.

Proposition 4.3.10. Let (L,→,⊺) be a w-ceo algebra and let e ∈ L satisfy (n). The
following hold.

1. f, g ∶ L→ L are two functions such that [f, g]e[↑] ∶ (L,→)→ (L,→) if and only if f ,
g are antitonic and satisfy the following Galois conditions:(GC1) x ≤ ((x)f)g, for every x ∈X;(GC2) y ≤ ((y)g)f , for every y ∈ Y .

2. If f, g ∶ L → L are two functions such that [f, g]e[↑] ∶ (L,→) → (L,→), then(x)f = ⋁{y∣ x ≤ (y)g} and (y)g = ⋁{x∣ y ≤ (x)f}.
3. Let f ∶ L → L be a function. There exists a map g ∶ L → L such that[f, g]e[↑] ∶ (L,→)→ (L,→) if and only if (⋁S)f = ⋀(Sf), for every S ⊆ L.

4. Let g ∶ L → L be a function. There exists a map f ∶ L → L such that[f, g]e[↑] ∶ (L,→)→ (L,→) if and only if (⋁S)g = ⋀(Sg), for every S ⊆ L. ◻

Similar results can be stated for the other types of e-including Galois connections.

4.4 Tarski connections

In this Section we consider the notion which is the order-dual of Galois connections,
by means of relative lower equivalences. We call the new notion Tarski connection
because in some special cases, that we shall describe below, they become conjugated
pairs introduced by Tarski in [83] and studied in [61].
Most discussions already done in the preceding Section for Galois connections with
respect to the more general notion of global and relative connections are still appropriate
for Tarski connections, for which, moreover, technical results dual to those proved for
Galois connections hold.
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What will be completely new is the way Tarski connections are related to the classical
notion of conjugated pairs.

Definition 4.4.1. Let E ⊆ L be a subset of the preordered set (L,≤), (X,α), (Y, β) be
two sets, each with a fixed binary L-relation on it and f ∶ X → Y , g ∶ Y → X be two
functions.

- f and g form a type I E-including (E-excluding) Tarski connection from(X,α) to (Y, β), denoted by [f -g]E[↓] ∶ (X,α)→ (Y, β) ([f -g]E(↓) ∶ (X,α)→ (Y, β)),
if Rβf ≡E[↓] Rαg (Rβf ≡E(↓) Rαg).

- f and g form a type II E-including (E-excluding) Tarski connection from(X,α) to (Y, β), denoted by ]f -g[E[↓] ∶ (X,α)→ (Y, β) (]f -g[E(↓) ∶ (X,α)→ (Y, β)),
if Rfβ ≡E[↓] Rgα (Rfβ ≡E(↓) Rgα).

- f and g form a type III E-including (E-excluding) Tarski connection from(X,α) to (Y, β), denoted by (f, g)E[↓] ∶ (X,α)→ (Y, β) ((f, g)E(↓) ∶ (X,α)→ (Y, β)),
if Rfβ ≡E[↓] Rαg (Rfβ ≡E(↓) Rαg).

- f and g form a type IV E-including (E-excluding) Tarski connection from(X,α) to (Y, β), denoted by )f, g(E[↓] ∶ (X,α)→ (Y, β) ()f, g(E(↓) ∶ (X,α)→ (Y, β)),
if Rβf ≡E[↓] Rgα (Rβf ≡E(↓) Rgα).

If I ⊆ L is a lowerset, we shall call I-Tarski connection (of any of the four types)
any, of course lower, connection relative to I.
Of course, most statements concerning relative lower equivalences and connections in
Section 4.2 might be restated now for Tarski connections, including those listed in Propo-
sitions 4.2.11 and, in particular, 4.2.13.
From Corollary 4.1.17, we have that E[↓] = (E(↑))(↓); so, f and g form a (type I, II, III
or IV) E-including Tarski connection if and only if f and g form a (type I, II, III or IV)
E(↑)-excluding Tarski connection.
Moreover, since E(↓) is a lowerset, we have that E(↓) = (E(↓))[↓], hence f and g form a
(type I, II, III or IV) E-excluding Tarski connection if and only if f and g form a (type
I, II, III or IV) E(↓)-including Tarski connection.
Among Tarski connections, similarly to what has been done for Galois connections in
the previous Section, we underline those determined by singletons in L, which we call
point-including or point-excluding depending on whether they are relative to d[↓]

or to d(↓), for some d ∈ L.
Some results stated in Section 4.1 allow to realize when a given Tarski connection is

point-including or point-excluding, as follows.

Proposition 4.4.2. With the above notation and terminology, the following hold, for
any type of Tarski connection.

1. If E has a maximum, then any E-including Tarski connection is point-including.

2. If E(↓) has a maximum, then any E-excluding Tarski connection is point-including.
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3. If E(↑) has a minimum, then any E-including Tarski connection is point-excluding.

4. If E has a minimum, then any E-excluding Tarski connection is point-excluding.

Proof. It is easy to dualize the proof of Proposition 4.3.2.

Remark 4.4.3. We note that if E = d[↓] or E = d(↓), d ∈ L, the definition of type I
Tarski connections can be restated in this way.

- [f -g]d[↓] , if and only if for all x ∈X,y ∈ Y (x, y)Rfβ ≤ d⇔ (x, y)Rgα ≤ d;

- [f -g]d(↓) , if and only if for all x ∈X,y ∈ Y d ≰ (x, y)Rβf ⇔ d ≰ (x, y)Rαg.
The other types can be described similarly.

As already claimed, Tarski connections generalize conjugated pairs whose classical
formulation in [60, 61, 83] required (L,≤) to be a boolean algebra, (X,α) = (Y, β) = (L,∧)
and I = {�}. In fact, Tarski’s conjugated pairs are �-including Tarski connections from
a boolean algebra equipped with the meet operation to itself.
To give more details of this relationship we consider now Tarski connections in a
quite general context where most results on conjugated pairs in [61] can be extended.
Eventually, such a context is shown to be provided by symmetrical cdeo algebras,
making these algebras the most general framework where the main features of both
Galois connection (as shown in the previous Section) and conjugated pairs hold.

With the general notation already used, consider the preordered set (L,≤), a non-
empty lower set I ⊆ L, the pairs (X,α), (Y, β), with α ∶X×X → L, β ∶ Y ×Y → L; assume
each of X and Y to be equipped with a bijection onto itself, in both cases denoted by[⋅]−, while both the inverse bijections are denoted by [⋅]∼; eventually, assume that for all
x1, x2 ∈X,y1, y2 ∈ Y the following equivalences hold:

(x1, x−2)α ∈ I⇔ (x∼2, x1)α ∈ I
and (y1, y−2 )β ∈ I⇔ (y∼2 , y1)β ∈ I.
With respect to the fixed pairs of bijections ([⋅]−, [⋅]∼), both in X and in Y , define binary
relations in X and in Y denoted by ≤α,I and ≤β,I as follows:

x1 ≤α,I x2⇔ (x1, x−2)α ∈ I ⇔ (x∼2, x1)α ∈ I, ∀x1, x2 ∈X
and

y1 ≤β,I y2⇔ (y1, y−2 )β ∈ I ⇔ (y∼2 , y1)β ∈ I, ∀y1, y2 ∈ Y.
Remark 4.4.4. 1. Under the stated assumptions, it is easy to prove that [⋅]− and[⋅]∼ are antiisomorphisms inverse of each other both in (X,≤α,I) and (Y,≤β,I). In

fact, by definition and since [⋅]− and [⋅]∼ are inverse of each other, we have that
x1 ≤α,I x2⇔ (x1, x−2)α ∈ I ⇔ (x−∼1 , x−2)α ∈ I ⇔ x−2 ≤α,I x

−
1 , for all x1, x2 ∈ X. In a

similar way, we can prove that [⋅]∼ reverses ≤α,I and the same happens in Y .
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2. It is also useful to note that the following equivalences hold, for all x1, x2 ∈X:

- x1 ≤α,I x2⇔ (x1, x∼2)α− ∈ I⇔ (x−2 , x1)α− ∈ I;

- x1 ≤α,I x
−
2 ⇔ x2 ≤α,I x

∼
1.

Similar equivalences hold in Y with respect to β, β−,≤β,I .

Under such notations and assumptions, the four types of E-including Tarski con-
nections from (X,α) to (Y, β) may be characterized as follows (note that, despite the
notation resembling that used for orderings, ≤α,I and ≤β,I are nothing but binary rela-
tions).

Proposition 4.4.5. With the above notation and assumptions, the following are equiv-
alent.

1. [f -g]I ∶ (X,α)→ (Y, β).
2. For all x ∈X,y ∈ Y : (x)f ≤β,I y−⇔ (y)g ≤α,I x−.

3. For all x ∈X,y ∈ Y : (x)f ≤β,I y−⇔ x ≤α,I (y)g∼.

4. For all x ∈X,y ∈ Y : y ≤β,I (x)f∼⇔ x ≤α,I (y)g∼.

5. For all x ∈X,y ∈ Y : y ≤β,I (x)f∼⇔ (y)g ≤α,I x−.

Proof. With the above notation, [f -g]I ∶ (X,α)→ (Y, β) if and only if for all x ∈X,y ∈ Y :(y, (x)f)β ∈ I⇔ (x, (y)g)α ∈ I. Then the statement follows easily from the equivalences(x)f ≤β,I y− ⇔ (y, (x)f)β ∈ I ⇔ y ≤β,I (x)f∼ and (y)g ≤α,I x− ⇔ (x, (y)g)α ∈ I ⇔
x ≤α,I (y)g∼.

Proposition 4.4.6. With the above notation, the following are equivalent.

1. ]f -g[I ∶ (X,α)→ (Y, β).
2. For all x ∈X,y ∈ Y : y ≤β,I (x)f−⇔ x ≤α,I (y)g−.

3. For all x ∈X,y ∈ Y : y ≤β,I (x)f−⇔ (y)g ≤α,I x∼.

4. For all x ∈X,y ∈ Y : (x)f ≤β,I y∼⇔ (y)g ≤α,I x∼.

5. For all x ∈X,y ∈ Y : (x)f ≤β,I y∼⇔ x ≤α,I (y)g−.

Proof. The proof of these equivalences is similar to that of Proposition 4.4.5.

Proposition 4.4.7. With the above notation, the following are equivalent.

1. (f, g)I ∶ (X,α)→ (Y, β).
2. For all x ∈X,y ∈ Y : y ≤β,I (x)f−⇔ (y)g ≤α,I x−.

3. For all x ∈X,y ∈ Y : y ≤β,I (x)f−⇔ x ≤α,I (y)g∼.
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4. For all x ∈X,y ∈ Y : (x)f ≤β,I y∼⇔ x ≤α,I (y)g∼.

5. For all x ∈X,y ∈ Y : (x)f ≤β,I y∼⇔ (y)g ≤α,I x−.

Proof. The proof of these equivalences is similar to that of Proposition 4.4.5.

Proposition 4.4.8. With the above notation, the following are equivalent.

1. )f, g([I]↓ ∶ (X,α)→ (Y, β).
2. For all x ∈X,y ∈ Y : (x)f ≤β,I y−⇔ x ≤α,I (y)g−.

3. For all x ∈X,y ∈ Y : (x)f ≤β,I y−⇔ (y)g ≤α,I x∼.

4. For all x ∈X,y ∈ Y : y ≤β,I (x)f∼⇔ (y)g ≤α,I x∼.

5. For all x ∈X,y ∈ Y : y ≤β,I (x)f∼⇔ x ≤α,I (y)g−.

Proof. The proof of these equivalences is similar to that of Proposition 4.4.5.

Proposition 4.4.9. With the above notation and assumptions, if ≤α,I and ≤β,I are
transitive, the following hold.

1. [f -g]I ∶ (X,α)→ (Y, β) if and only if f , g are isotonic and they satisfy the following
Tarski conditions:(TC∼∼

1 ) x ≤α,I ((x)f∼)g∼, for every x ∈X;(TC∼∼
2 ) y ≤β,I ((y)g∼)f∼, for every y ∈ Y .

2. ]f -g[I ∶ (X,α)→ (Y, β) if and only if f , g are isotonic and they satisfy the following
Tarski conditions:(TC−−

1 ) x ≤α,I ((x)f−)g−, for every x ∈X;(TC−−
2 ) y ≤β,I ((y)g−)f−, for every y ∈ Y .

3. (f, g)I ∶ (X,α)→ (Y, β) if and only if f , g are isotonic and they satisfy the following
Tarski conditions:(TC−∼

1 ) x ≤α,I ((x)f−)g∼, for every x ∈X;(TC∼−
2 ) y ≤β,I ((y)g∼)f−, for every y ∈ Y .

4. )f, g(I ∶ (X,α)→ (Y, β) if and only if f , g are isotonic and they satisfy the following
Tarski conditions:(TC∼−

1 ) x ≤α,I ((x)f∼)g−, for every x ∈X;(TC−∼
2 ) y ≤β,I ((y)g−)f∼, for every y ∈ Y .

Proof. (1) “ ⇒ ” By assumptions and the Proposition 4.4.5 (3), for every x ∈ X:(x)f = (x)f∼− ⇒ x ≤α,I ((x)f∼)g∼, i.e. (TC∼∼
1 ). Similarly, by Proposition 4.4.5

(5), for every y ∈ Y : (y)g = (y)g∼−⇒ y ≤β,I ((y)g∼)f∼, i.e. (TC∼∼
2 ).

Now, let a, b ∈ X,a ≤α,I b; then a ≤α,I b ≤α,I ((b)f∼)g∼ ⇒ (a)f ≤β,I (b)f∼− = (b)f .
Similarly, (a)g ≤α,I (b)g.
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“⇐ ” Let f, g ∶ L→ L be isotonic functions that satisfy (TC∼∼
1 ) and (TC∼∼

2 ). Then
f∼ and g∼ are antitonic and, for all x ∈X,y ∈ Y the following implications hold:

(x)f ≤β,I y− ⇒ y ≤ (x)f∼⇒ x ≤ ((x)f∼)g∼ ≤ (y)g∼ ⇒ x ≤α,I (y)g∼
x ≤α,I (y)g∼ ⇒ y ≤β,I ((y)g∼)f∼ ≤β,I (x)f∼⇒ y ≤β,I (x)f∼⇒ (x)f ≤β,I y−.

Hence, for all x ∈X,y ∈ Y ∶ (x)f ≤β,I y−⇔ x ≤α,I (y)g∼, i.e. [f -g]I .
The items (2), (3) and (4) can be proved in a similar way.

The following results generalize those proved in [61]. In these results we assume ≤α,I
and ≤β,I to be preorders and denote both of them by ≤ to simplify notation. ⋁ and ⋀
are referred to the appropriate preorder and are assumed to be non-empty, when this is
needed.

Proposition 4.4.10. With the above notation and specified assumptions, the following
hold, if the needed infs and sups are non-empty.

1. If [f -g]I ∶ (X,α)→ (Y, β), then

∀x ∈X,y ∈ Y ∶ (x)f ∈ ⋀{y−∣ (y)g ≤ x−} and (y)g ∈ ⋀{x−∣ (x)f ≤ y−}.
2. If ]f -g[I ∶ (X,α)→ (Y, β), then

∀x ∈X,y ∈ Y ∶ (x)f ∈ ⋀{y∼∣ (y)g ≤ x∼} and (y)g ∈ ⋀{x∼∣ (x)f ≤ y∼}.
3. If (f, g)I ∶ (X,α)→ (Y, β), then

∀x ∈X,y ∈ Y ∶ (x)f ∈ ⋀{y∼∣ (y)g ≤ x−} and (y)g ∈ ⋀{x−∣ (x)f ≤ y∼}.
4. )f, g(I ∶ (X,α)→ (Y, β), then

∀x ∈X,y ∈ Y ∶ (x)f ∈ ⋀{y−∣ (y)g ≤ x∼} and (y)g ∈ ⋀{x∼∣ (x)f ≤ y−}.
Proof. (1) If [f -g]I ∶ (X,α) → (Y, β), then ∀x ∈ X,y ∈ Y : (y, (x)f)β ∈ I ⇔(x, (y)g)α ∈ I, i.e. (x)f ≤ y− ⇔ (y)g ≤ x−. So, ∀x ∈ X,y ∈ Y (y)g is a lower

bound of the set {x−∣ (x)f ≤ y−}. Let x′ ∈ X, such that x′ ≤ x−, for every x ∈ X,
such that (x)f ≤ y−, i.e. such that x ≤ (y)g∼. For x = (y)g∼, we have that
x′ ≤ ((y)g∼)− = (y)g. So, (y)g ∈ ⋀{x−∣ (x)f ≤ y−}. Similarly, we can prove that(x)f ∈ ⋀{y−∣ (y)g ≤ x−}, ∀x ∈X,y ∈ Y .

The items (2), (3) and (4) can be proved similarly.

Proposition 4.4.11. With the notation and assumption already recalled in Proposition
4.4.10, let f ∶ X → Y be a map and (X,≤) a complete prelattice. Then the following
hold.
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1. There exists a map g ∶ Y → X such that [f -g]I ∶ (X,α) → (Y, β) if and only if(⋁S)f ⊆ ⋁(Sf), for every S ⊆X.

2. There exists a map g ∶ Y → X such that ]f -g[I ∶ (X,α) → (Y, β) if and only if(⋁S)f ⊆ ⋁(Sf), for every S ⊆X.

3. There exists a map g ∶ Y → X such that (f, g)I ∶ (X,α) → (Y, β) if and only if(⋁S)f ⊆ ⋁(Sf), for every S ⊆X.

4. There exists a map g ∶ Y → X such that )f, g(I ∶ (X,α) → (Y, β) if and only if(⋁S)f ⊆ ⋁(Sf), for every S ⊆X.

Proof. (1) “ ⇒ ” Let x ∈ ⋁S. For any s ∈ S one has s ≤ x and (s)f ≤ (x)f , so(x)f ∈ Ub((S)f). Now, let y ∈ Y belongs to Ub((S)f). Then, for every s ∈ S,(s)f ≤β,I y = y∼−; hence s ≤ (y∼)g∼. So, (y∼)g∼ ∈ Ub(S) and since x ∈ ⋁S, we have
that x ≤ (y∼)g∼ and hence, by Proposition 4.4.5 (3), for every y ∈ Y , (x)f ≤ y∼− = y.
“⇐ ” For any y ∈ Y , chose (y)g in ⋀{a−∣ (a)f ≤ y−}. By definition of g, we have
easily that, for all x ∈ X,y ∈ Y ∶ (x)f ≤ y− ⇒ (y)g ≤ x−. Moreover, it can be
seen that f is isotonic. In fact, for all x1, x2 ∈ X, it follows by assumption that
x1 ≤ x2 ⇒ x2 ∈ ⋁{x1, x2} ⇒ (x2)f ∈ ⋁{(x1)f, (x2)f} ⇒ (x1)f ≤ (x2)f . Now
assume (y)g ≤ x−, i.e. x ≤ (y)g∼; then (x)f ≤ ((y)g∼)f , for all x ∈X,y ∈ Y .
Since (y)g ∈ ⋀{a−∣ (a)f ≤ y−}, for every y ∈ Y , by Remark 4.4.4 we have that(y)g∼ ∈ ⋁{a−∼∣ (a)f ≤ y−} = ⋁{a∣ (a)f ≤ y−}, for every y ∈ Y . So, by the assump-
tion, ((y)g∼)f ∈ ⋁{(a)f ∣ (a)f ≤ y−} and then ((y)g∼)f ≤ y−, for every y ∈ Y , since
y− ∈ Ub{(a)f ∣ (a)f ≤ y−}. Hence, (y)g ≤ x− ⇒ (x)f ≤ ((y)g∼)f ≤ y− ⇒ (x)f ≤ y−,
for all x ∈X,y ∈ Y . So, for all x ∈X,y ∈ Y ∶ (x)f ≤ y−⇔ (y)g ≤ x−, i.e. [f -g]I .

Items (2), (3) and (4) can be proved similarly.

Proposition 4.4.12. With the notation and assumptions already recalled in Proposi-
tions 4.4.10 and 4.4.11, let g ∶ Y →X be a map and let (Y,≤) be a complete prelattice.

1. There exists a map f ∶ X → Y such that [f -g]I ∶ (X,α) → (Y, β) if and only if(⋁S)g ⊆ ⋁(Sg), for every S ⊆ Y .

2. There exists a map f ∶ X → Y such that ]f -g[I ∶ (X,α) → (Y, β) if and only(⋁S)g ⊆ ⋁(Sg), for every S ⊆ Y .

3. There exists a map f ∶ X → Y such that (f, g)I ∶ (X,α) → (Y, β) if and only if(⋁S)g ⊆ ⋁(Sg), for every S ⊆ Y .

4. There exists a map f ∶ X → Y such that )f, g(I ∶ (X,α) → (Y, β) if and only if(⋁S)g ⊆ ⋁(Sg), for every S ⊆ Y .

Proof. For items (1) and (2), note that, by Propositions 4.2.13, 4.4.11, there is a map f
such that [f -g]I ∶ (X,α)→ (Y, β) or ]f -g[I ∶ (X,α)→ (Y, β) if and only if there is a map
f such that [g-f]I ∶ (Y, β)→ (X,α) or ]g-f[I ∶ (Y, β)→ (X,α), respectively, which holds
if and only if (⋁S)g ⊆ ⋁(Sg), for every S ⊆ Y .
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For items (3) and (4) consider that, by Proposition 4.2.13, the statements hold if and
only if there is a map f such that (g, f)I ∶ (Y, β−)→ (X,α−) or )g, f(I ∶ (Y, β−)→ (X,α−),
respectively.
Now, it can be seen that the pair of bijections ([⋅]∼, [⋅]−), both in X and in Y , has the
same role with respect to α− and β− as the pair([⋅]−, [⋅]∼) has with respect to α and β.
In fact, the following equivalences hold, for all x1, x2 ∈X,y1, y2 ∈ Y :

(x1, x∼2)α− ∈ I⇔ (x∼2, x1)α ∈ I⇔ (x1, x−2)α ∈ I⇔ (x−2 , x1)α− ∈ I;

(y1, y∼2)β− ∈ I⇔ (y∼2 , y1)β ∈ I⇔ (y1, y−2 )β ∈ I⇔ (y−2 , y1)β− ∈ I.
So, the binary relations ≤α,I and ≤β,I may be characterized as follows, for all x1, x2 ∈
X,y1, y2 ∈ Y :

x1 ≤α,I x2⇔ (x1, x∼2)α− ∈ I⇔ (x−2 , x1)α− ∈ I
and

y1 ≤β,I y2⇔ (y1, y∼2)β− ∈ I⇔ (y−2 , y1)β− ∈ I.
With the simplified notation of Proposition 4.4.11, one gets a map f such that(g, f)I ∶ (Y, β−)→ (X,α−) if and only if (⋁S)g ⊆ ⋁(Sg), for every S ⊆ Y .

As for Galois connections, extended-order algebras give a context where the require-
ments are satisfied, which allows to extend the classical results of conjugated pairs to
Tarski connections. We generalize the notion of negation, just introduced in Section
2.1, speaking of d-negation, i.e. of negation relative to an element d of the considered
algebra.
In the following Definition we list and explain terms and symbols most of which are
widely used by people working with algebraic aspects of many-valued logics.

Definition 4.4.13. Let (L,→,⊺) a w-eo algebra. For every d ∈ L the d-negation is the
unary operation [⋅]−d ∶ L→ L, x↦ x−d = x→ d, for every x ∈ L.
If L is symmetrical, we can define a dual d-negation [⋅]∼d ∶ L → L, x ↦ x∼d = x ¨ d,
for every x ∈ L.
The d-negation [⋅]−d ([⋅]∼d, respectively) is said to be involutive if x−d−d = x (x∼d∼d = x),
for every x ∈ L.
The d-negations [⋅]−d and [⋅]∼d are said to be cross-involutive if x∼d−d = x−d∼d = x, for
every x ∈ L.
An element d ∈ L that determines cross-involutive d-negations, i.e. that satisfies the
condition x∼d−d = x−d∼d = x, for every x ∈ L, is called dualizing (see also [51]). A
symmetrical w-eo algebra is said to be d-good if x∼d−d = x−d∼d, for every x ∈ L.

Remark 4.4.14. 1. We recall that, if L has the minimum �, the �-negations [⋅]−�
and [⋅]∼� are simply called negations and are denoted by [⋅]− and [⋅]∼.
A symmetrical w-eo algebra is called good if x∼− = x−∼, for every x ∈ L and it is
called cross-involutive if the negations [⋅]− and [⋅]∼ are.



CHAPTER 4. GALOIS AND TARSKI CONNECTIONS 134

2. In the classical case of boolean algebras, the involutivity of the complementation
is equivalent to require that the element � is dualizing with respect to the �-
negation (the usual complementation), that is self-dual, due to the commutativity
assumption which implies →=¨.

Now consider a symmetrical cdeo algebra (L,→,⊺) and let d ∈ L be a dualizing
element. Looking at notation used above for Tarski connections, let us reduce to the
case where (L,≤) has the natural ordering of the algebra, X = Y = L and α = β = ⊗.
The d-negations [⋅]−d and [⋅]∼d are bijections inverse of each other, thanks to the cross-
involutivity assumption. Moreover, for all x1, x2 ∈ L the following equivalences hold:(x1, x−d

2 )⊗ ∈ d[↓]⇔ x1 ⊗ x
−d

2 ≤ d⇔ x1 ⊗ (x2 → d) ≤ d⇔ x1 ≤ (x2 → d) ¨ d⇔ x1 ≤ x2⇔
x1 ≤ (x2 ¨ d) → d⇔ x

∼d
2 ⊗ x1 ≤ d⇔ (x∼d2 , x1)⊗ ∈ d[↓]. Eventually, the binary relation

induced on L by ⊗ and d[↓] is the natural ordering ≤; in fact it is determined, for all
x1, x2 ∈ L, by:

x1 ≤⊗,d[↓] x2⇔ (x1, x−2)⊗ ∈ d[↓]⇔ x1 ⊗ (x2 → d) ≤ d⇔ x1 ≤ (x2 → d)¨ d⇔ x1 ≤ x2.

So, all the requirements needed to let the statements of Propositions 4.4.5-4.4.12 be true
are satisfied. Moreover, with the above notation, all the results proved in the general case
can be proved for Tarski connections between symmetrical cdeo algebras, now involving
the adjoint product which corresponds to the boolean product of the classical case. We
only give as an example, the following statement, which is expressed in the shape of a
similar result in [61].

Proposition 4.4.15. Let (L,→,⊺) be a symmetrical cdeo algebra, with adjoint product
⊗ and let d be a dualizing element of L.

1. If f, g ∶ L→ L are two functions such that [f, g]d[↓] ∶ (L,⊗)→ (L,⊗), then

(y)g =⋀{x∼d ∣(x)f ⊗ y ≤ d} = (⋁{x∣(x)f ≤ y∼d})∼d
and (x)f =⋀{y∼d ∣(y)g ⊗ x ≤ d} = (⋁{y∣x ≤ (y)g−d})∼d .

2. If f ∶ L → L is any function, then there exists a map g ∶ L → L such that[f, g]d[↓] ∶ (L,⊗)→ (L,⊗) if and only if f preserves ⋁. ◻

Remark 4.4.16. Assuming (L,→,⊺) to be a symmetrical cross-involutive cdeo algebra,
the �-including Tarski connections from (L,⊗) to (L,⊗) generalize the conjugated pairs
considered in [61] and recalled in Definition 1.2.9.
Nevertheless, unlike in the classical case of boolean algebras, there are the following four
types of �-including Tarski connections from (L,⊗) to (L,⊗):

- [f, g]�[↓] ∶ (L,⊗)→ (L,⊗): y ⊗ (x)f = �⇔ x⊗ (y)g = �, for all x, y ∈ L;

- ]f, g[�[↓] ∶ (L,⊗)→ (L,⊗): (x)f ⊗ y = �⇔ (y)g ⊗ x = �, for all x, y ∈ L;

- (f, g)�[↓] ∶ (L,⊗)→ (L,⊗): (x)f ⊗ y = �⇔ x⊗ (y)g = �, for all x, y ∈ L;
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- )f, g(�[↓] ∶ (L,⊗)→ (L,⊗): y ⊗ (x)f = �⇔ (y)g ⊗ x = �, for all x, y ∈ L.

These four types of Tarski connections coincide if ⊗ is commutative. Moreover the four
equivalent characterizations of each type described in Propositions 4.4.5-4.4.8 coincide
if the negation is involutive. For instance, reducing to refer to Proposition 4.4.5, the
following equivalent characterizations of [f, g]�[↓] ∶ (L,⊗)→ (L,⊗):

- (x)f ≤ y−⇔ (y)g ≤ x−, for all x, y ∈ L;

- (x)f ≤ y−⇔ x ≤ (y)g−, for all x, y ∈ L;

- y ≤ (x)f−⇔ x ≤ (y)g−, for all x, y ∈ L;

- y ≤ (x)f−⇔ (y)g ≤ x−, for all x, y ∈ L;

coincide under involutivity assumption of negation, which, in fact, implies that(x)f ≤ y−⇔ y ≤ (x)f− and (y)g ≤ x−⇔ x ≤ (y)g−, for all x, y ∈ L.
So, for instance, conjugated pairs behave in MV -algebras just like in boolean algebras.

4.5 Some remarks on connections

In the classical mathematical context Galois connections (two types, the one isotonic
and the other antitonic) and conjugated pairs (one type only) have been considered in
quite specific contexts (see Section 1.2 for these classical notions). The original moti-
vating framework for both concepts is related to the powerset operators (various types
of image and preimage operators) determined by functions or, more generally, by binary
relations [8, 83]. These operators are functions between the powersets of the domain
and of the codomain of the relation originating them, i.e. are functions between boolean
algebras. It is well known how, in such a framework, each Galois connection determines
a Galois connection of the other type or a conjugated pair and how to proceed conversely,
by means of the complementation in the boolean algebras (see details, for instance, in
[42]).
In fact, let X,Y two sets and consider the functions f ∶ 2X → 2Y and g ∶ 2Y → 2X . As-
sume that f and g form an antitonic Galois connection; the condition that characterizes
it, that is

∀A ∈ 2X ,B ∈ 2Y ∶ A ⊆ (B)g⇔ B ⊆ (A)f
is equivalent to the following

∀A ∈ 2X ,B ∈ 2Y ∶ A ∩ (B)g¬ = ∅⇔ B ∩ (A)f¬ = ∅.
So the functions h ∶ 2X → 2Y ,A ↦ (A)h = (A)f¬ and k ∶ 2Y → 2X ∶ B ↦ (B)k = (B)g¬
form a conjugated pair.
Furthermore, if f and g form an isotonic Galois connection, the functions
h ∶ 2X → 2Y ,A↦ (A)h = (A)f¬ and k ∶ 2Y → 2X ∶ B ↦ (B)k = (B¬)g form an anti-
tonic Galois connection.
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This process establishes a bijection between the classes of the two types of Galois con-
nections and between each of them and the class of conjugated pairs.
Also, the class of any type of connections as well as the class of conjugated pairs, in this
framework, is in a bijective correspondence with the class of binary relations.
In fact, the correspondence

r ∈ 2X×Y ↦ (fr, gr)
where fr ∶ 2X → 2Y and gr ∶ 2Y → 2X are defined by

∀A ∈ 2X ∶ (A)fr = {y∣ ∀x ∈X ∶ x ∈ A⇒ xry}
∀B ∈ 2Y ∶ (B)gr = {x∣ ∀y ∈ Y ∶ y ∈ B ⇒ xry}

is a bijection between the class of binary relations and the class of antitonic Galois
connections.
Moreover, the correspondence

r ∈ 2X×Y ↦ (f ′r, g′r)
where f ′r ∶ 2

X → 2Y and g′r ∶ 2
Y → 2X are defined by

∀A ∈ 2X ∶ (A)f ′r = {y∣ ∃x ∈X ∶ x ∈ A, xry}
∀B ∈ 2Y ∶ (B)g′r = {x∣ ∀y ∈ Y ∶ xry⇒ y ∈ B}

is a bijection between the class of binary relations and the class of isotonic Galois con-
nections.
Similarly, the correspondence

r ∈ 2X×Y ↦ (hr, kr)
where hr ∶ 2X → 2Y and kr ∶ 2Y → 2X are defined by

∀A ∈ 2X ∶ (A)hr = {y∣ ∃x ∈X ∶ x ∈ A, xry}
∀B ∈ 2Y ∶ (B)kr = {x∣ ∃y ∈ Y ∶ x ∈ B, xry}

is a bijection between the class of binary relations and the class of conjugated pairs.
The development of fuzzy set theory and lattice-valued mathematics has changed the
algebraic feature of the main framework where connections are considered, moving from
classical logic to many-valued logics and, consequently, from boolean algebras to more
general lattice-ordered algebras. This has not only changed the algebraic aspects of the
framework but has also led to a more general formulation of the concepts, which are
widely known as fuzzy Galois connections.
In the classical approach we have recalled in Section 1.2, which extends that briefly dis-
cussed above, Galois connections, unlike conjugated pairs, have been described as pairs
of maps between posets.
This general framework of posets or, as one should say, of preordered sets clearly re-
lates Galois connections to the important mathematical concept of adjunctions between
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categories and, in fact, isotonic Galois connections are also called adjunctions, since the
isotonic maps that form such connections are functors that form an adjunction between
the skeletal categories determined by the involved posets. Antitonic Galois connections
may be reduced to the same framework, by means of opposite categories (see also [1]).
This point of view has been further developed in the fuzzy version in [51] where the
authors introduce and classify Galois connections as adjunctions between some trivial
kinds of categories enriched over suitable monoidal-closed categories. This and that
considered in [33] are the only approaches to Galois connections which use explicitly
some kinds of lattice-ordered implicative structure: we do the same to relate our general
approach to the classical frameworks (see the last part of Sections 4.3 and 4.4).
Among the so many approaches to Galois connections, [33, 35, 42] are the only, to our
knowledge, that consider also conjugated pairs, without clarifying, however, how these
are related to Galois connections. Even if G. Georgescu and A. Popescu have arranged in
[42] a common framework for both concepts, they claim that such a framework is rather
“artificious” and does not establish any “duality” or, as they should say, any “triality”
linking the apparently different notions of isotonic Galois connections, antitonic ones
and conjugated pairs.
It seems that G. Georgescu and A. Popescu tried to find such a duality without success,
as the title of their paper (Non-dual fuzzy connections) proves. Our general approach,
instead, shows clearly how the whole of conjugated pairs (Tarski connections, in our
terminology) is perfectly order-dual to the whole of Galois connections.
Even more, we can say that the essence of both Galois and Tarski connections is the
same, not only because in their global versions both are nothing else than global connec-
tions but also because, yet in their relative versions, each Galois connection is a Tarski
connection, too, and conversely, as the following result shows.

Proposition 4.5.1. Let E ⊆ L be a subset of the preordered set (L,≤), (X,α), (Y, β)
be two possibly structured sets, each with a fixed binary L-relation on it and f ∶ X → Y ,
g ∶ Y → X be two functions. Then, for any Γ ∈ {I, II, III, IV }, f and g form a type Γ
E-including (E-excluding) Galois connection from (X,α) to (Y, β) if and only if f and
g form a type Γ E-excluding (E-including) Tarski connection from (X,α) to (Y, β).
Proof. Considering only the case Γ = I, the statement follows from the equivalences[f -g]E[↑] ∶ (X,α) → (Y, β) ⇔ Rβf ≡E[↑] Rαg ⇔ (Rβf ∈ E[↑] ⇔ Rαg ∈ E[↑]) ⇔(Rβf ∉ E[↑] ⇔ Rαg ∉ E[↑]) ⇔ (Rβf ∈ (E[↑])¬ ⇔ Rαg ∈ (E[↑])¬)⇔ (Rβf ∈ E(↓) ⇔
Rαg ∈ E(↓)) ⇔ [f -g]E(↓) ∶ (X,α)→ (Y, β).
Similarly we can prove the second equivalence.

Here, we have to remark that the above equivalence is due to the classical-mathematical
character of relative connections, for which for any two elements, both belong to a subset
if and only if none of them belongs to the complement of that subset.
However, to restore the meaningful distinction between Galois and Tarski connections,
we remark that it is also important for each of them the way it is related to a subset
that may determine it. In this respect we have to note that with respect to a subset
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E ⊆ L, a relative E-connection cannot be, in general, both a Galois and a Tarski connec-
tion and cannot be simultaneously E-including or E-excluding since, in general, there is
no non-trivial subset which is both a lowerset and an upperset (see Remark 4.1.18 and
Example 4.1.19).
Another important aspect of Galois and Tarski connections that has to be clarified is
the two-fold approach to their classical, or “crisp”, and their “fuzzy” version: the latter
have been seen, up to now, as nothing but generalizations of the former, on the base of
a point of view that is not-appropriate, in our opinion.
The distinction between Galois connections and conjugated pairs has been focused on
the structures in the sets related by the considered connections: the order relation (inclu-
sion) in the powersets, for Galois connection, the meet operation in the boolean algebra,
for conjugated pairs. The structure of the set of the truth values of the order relation
and of the meet operation, in both cases a boolean algebra, has not been considered;
even more, the peculiarity of the subsets that determine Galois connections (the single-
ton {⊺}) and conjugated pairs (the singleton {�}) has not been enlightened.
This inappropriate point of view is confirmed by the main steps of the generalization
of the framework in the big development of Galois connections: since [70], these have
been extended from powersets to ordered sets and, in their so called “fuzzy” approach
the classical powersets with the inclusion relation have been replaced by the L-powersets
with the subsethood L-relation which, as seen in Subsection 3.2.1, is an L-(pre)order
relation.
The recent approach based on enriched categories moves from posets to special kinds
of enriched categories and from order preserving, or reversing, maps to functors that
form adjunctions. This includes and generalizes the case of the so called fuzzy Galois
connections most widely considered between the L-powersets of two sets equipped with
the subsethood degree relations, where L is usually assumed to be a commutative com-
plete integral residuated lattice, i.e. an associative and commutative cdeo algebra (see
[6, 37]); the non-commutative case is considered in [32, 33, 41, 42, 50].
Fuzzy conjugated pairs are only considered in [33, 36, 42] between L-powersets equipped
with the intersection degree relation, which, evidently, extend to the L-powersets the
meet operation of boolean algebras (see Subsection 3.2.1).
In our approach, both fuzzy Galois connections and fuzzy conjugated pairs are global
connections.
Moreover, in our approach to connections, we have remarked that no special kinds of
relations are needed in the sets (X,α) and (Y, β) linked by the connections; the notion
of Galois and Tarski connections and their distinctive character depend simply on the
existence of a (pre)order relation in the set L of truth values for the relations α and β.
Even this weak structure in L is not needed for global connections.
We remark that one can consider connections, in the shape we have defined those, be-
tween any kind of structures that are characterized by binary relations taking values in
a fixed (either preordered or not) set L; these include metric spaces, measurable spaces,
probability spaces, Hilbert spaces, Riemannian manifolds and others.
As well known example we may consider two vector spaces (V ; ⋅) and (W ; ⋅) with
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their scalar product and homomorphisms between those spaces. Two homomorphisms
f ∶ V →W and g ∶W → V are adjoint (or transpose) to each other if, for all x ∈ V, y ∈W
the equality (x)f ⋅ y = x ⋅ (y)g holds, i.e. (f, g) ∶ (V ; ⋅) → (W ; ⋅) is a global connec-
tion of type III; in particular, it is well known that an endomorphism h of (V ; ⋅) is
said to be symmetric if, for all x, y ∈ V , the equality (x)h ⋅ y = x ⋅ (y)h holds, i.e.(h,h) ∶ (V ; ⋅)→ (V ; ⋅) is a type III (global) connection or, equivalently, h is self adjoint.
We close this discussion remarking that we have developed in this Chapter an approach
to global and relative connections, hence to Galois and Tarski connections, too, that is
fixed basis (we consider the preordered set (L,≤) as the basis in question). Moreover, we
have looked at properties of each single connection, without relating two of them either
of the same or of different types.
In the last Chapter, Section 6.2, we shall see how connections can be considered as mor-
phisms of suitable categories and of more general semicategories and precategories.
It will be also the case that a variable basis approach to connections is closely related
to special kinds of relational systems and morphisms between them, which form once
more suitable categories and semicategories.



Chapter 5

The structure of many-valued

relations

In Chapter 3 we have approached the study of binary relations with values in a w-ceo
algebra (L,→,⊺), possibly with further properties. We have already remarked that the
structure on L can be lifted, pointwisely, on each set RL(X,Y ), for each pair (X,Y ) of
sets. Moreover, we have started to look at the structure of the whole class of L-valued
binary relations RL, in particular recalling several compositions that the operations of
the algebra (L,→,⊺), possibly symmetrical, allow to define.
In this chapter we shall see how the structure of the algebra (L,→,⊺), including the
interconnections of the operation → and the derived further operations, can be lifted in
the class of binary L-relations.
To this extent, we introduce a quite simple, but very effective tool, consisting in suitable
triangles. On one hand such triangles characterize the structure of the algebra (L,→,⊺),
including the derived operations, on the other hand they describe fundamental aspects
of the class of binary L-relations involving not only the algebraic operations lifted on
each RL(X,Y ) by L but also the composite structure given by the compositions of L-
relations.
Connections, in particular Galois and Tarski connections, described in Chapter 4 will
have a fundamental role.
Further details on the description of structures for many-valued relations will be given
in Chapter 6, where suitable generalizations of categories, some of which already well
known, will be considered.

5.1 Relational triangles

Definition 5.1.1. Let L be a possibly structured set and (A,α), (B,β) and (C,γ) be
sets, each equipped with a fixed binary L-relation on it. The diagram

140
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(C,γ)
χ

$$IIIIIIIII

(A,α)
ψ

::uuuuuuuuu

ϕ
// (B,β)

with ϕ ∈RC(A,B), i.e. ϕ is a C-valued binary relation from A to B, ψ ∈RB(A,C) and
χ ∈RA(C,B), is called triangle of L-relations or L-triangle.

Definition 5.1.2. Let L be a set equipped with an equivalence relation ≡ on it. The
triangle of L-relations

(C,γ)
χ

$$IIIIIIIII

(A,α)
ψ

::uuuuuuuuu

ϕ
// (B,β)

is called relational L-triangle if for all a ∈ A, b ∈ B, c ∈ C the following conditions hold:

(a, (c, b)χ)α ≡ ((a, c)ψ, b)β ≡ (c, (a, b)ϕ)γ.
Remark 5.1.3. It is clear that the equivalences of the above Definition can be expressed,
for all a ∈ A, b ∈ B, c ∈ C, as follows

((c, b)χ, a)α− ≡ (b, (a, c)ψ)β− ≡ ((a, b)ϕ, c)γ−.
Proposition 5.1.4. Let L be a set and assume ≡ to be an equivalence relation on it.
Each of the following triangles of L-relations is a relational L-triangle if and only if any
one of them is.

1. (C,γ)
χ

$$IIIIIIIII

(A,α)
ψ

::uuuuuuuuu

ϕ
// (B,β)

2. (C,γ)
ψ−

$$JJJJJJJJJ

(B,β−)
χ−

::ttttttttt

ϕ−
// (A,α−)

3. (A,α)
ϕ

$$IIIIIIIII

(C,γ)
ψ−

::uuuuuuuuu

χ
// (B,β)
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4. (B,β−)
ϕ−

%%KKKKKKKKKK

(C,γ)
χ

::ttttttttt

ψ−

// (A,α−)
5. (B,β−)

χ−

%%KKKKKKKKK

(A,α)
ϕ

::ttttttttt

ψ
// (C,γ−)

6. (A,α)
ψ

$$JJJJJJJJJ

(B,β−)
ϕ−

::ttttttttt

χ−
// (C,γ−)

Proof. Consider the equivalences:

1. (a, (c, b)χ)α ≡ ((a, c)ψ, b)β ≡ (c, (a, b)ϕ)γ;

2. (b, (c, a)ψ)β− ≡ ((b, c)χ−, a)α− ≡ (c, (b, a)ϕ−)γ;

3. (c, (a, b)ϕ)γ ≡ ((c, a)ψ−, b)β ≡ (a, (c, b)χ)α;

4. (c, (b, a)ϕ−)γ ≡ ((c, b)χ, a)α− ≡ (b, (c, a)ψ−)β−;

5. (a, (b, c)χ−)α ≡ ((a, b)ϕ, c)γ− ≡ (b, (a, c)ψ)β−;

6. (b, (a, c)ψ)β− ≡ ((b, a)ϕ−, c)γ− ≡ (a, (b, c)χ−)α,

that in each item characterize the relational L-triangle described in the corresponding
item. Then, it is easily seen that the equivalences in the item (1) hold if and only if the
equivalences in each of the other items (2), (3), (4), (5), and (6) hold, too, by using the
obvious equalities

- (a, (c, b)χ)α = (a, (b, c)χ−)α = ((c, b)χ, a)α− = ((b, c)χ−, a)α−;

- ((a, c)ψ, b)β = ((c, a)ψ−, b)β = (b, (a, c)ψ)β− = (b, (c, a)ψ−)β−;

- (c, (a, b)ϕ)γ = (c, (b, a)ϕ−)γ = ((a, b)ϕ, c)γ− = ((b, a)ϕ−, c)γ−.

Definition 5.1.5. Let L be a set equipped with an equivalence relation ≡ and let E be a
subset of L. The triangle of L-relations

(C,γ)
χ

$$IIIIIIIII

(A,α)
ψ

::uuuuuuuuu

ϕ
// (B,β)
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is called E relational L-triangle or relational L-triangle relative to E, if for all
a ∈ A, b ∈ B, c ∈ C the following conditions hold:

(a, (c, b)χ)α ≡E ((a, c)ψ, b)β ≡E (c, (a, b)ϕ)γ.
Of course, the E relational L-triangles of the above Definition may be expressed in

six equivalent forms, according to Proposition 5.1.4.
The whole terminology we have introduced in Chapter 4 for equivalences and, in particu-
lar, for connections may be borrowed for relational L-triangles; so, assuming the needed
requirements on L, we shall speak of

- relative relational L-triangles (E relational L-triangles, for some E ⊆ L);

- upper or lower relational L-triangles (relational L-triangles relative to some
upperset or to some lowerset);

- E-including and E-excluding upper or lower relational L-triangles;

- point-including and point-excluding upper or lower relational L-triangles.

We shall also call every kind of upper relational L-triangle Galois L-triangle of
that kind and every kind of lower relational L-triangle Tarski L-triangle of that kind.
One can restate for L-relational triangles most results proved for equivalences and for
connections in Sections 4.2, 4.3 and 4.4 , except those involving the classification into
four types of connections. In fact, relational L-triangles have the feature to gather all
together the four types of connections as the following results shows. To give details of
this feature we note that each arrow of a triangle of L-relations determines two families
of maps from each of the two vertices adjacent to the arrow into the opposite vertex; so,
with notation of Definition 5.1.2, for any a ∈ A, b ∈ B, c ∈ C we consider

ϕa = (a,−)ϕ ∶ B → C, ψa = (a,−)ψ ∶ C → B;

ϕb = (−, b)ϕ ∶ A→ C, χb = (−, b)χ ∶ C → A;

ψc = (−, c)ψ ∶ A→ B, χc = (c,−)χ ∶ B → A.

Then in case of relational L-triangles one has four families of connections of the four
different types; in fact, the assumed equivalences of Definition 5.1.2 give soon

{)ϕa, ψa(∶ (B,β)→ (C,γ)∣ a ∈ A} ;

{[ϕb-χb] ∶ (A,α)→ (C,γ)∣ b ∈ B} ;

{(ψc, χc) ∶ (A,α)→ (B,β)∣ c ∈ C}
and the forth family of connections comes from Remark 5.1.3 (of course, Proposition
4.2.11 could be invoked, too)

{]ϕb-χb[∶ (A,α−)→ (C,γ−)∣ b ∈ B} .
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Similarly, every E relational L-triangle, or every F Galois L-triangle, F ⊆ L any
upperset, or every I Tarski L-triangle, I ⊆ L any lowerset, gives four families of relative
or Galois or Tarski L-connections of the four different types.

The results of Section 4.2 on equivalences allow to state the following result, where
we assume, for items (3), (3’), (4), (4’) that ≡ is induced by a preorder relation in L.

Proposition 5.1.6. With the already stated notation, for the triangle of L-relations

(C,γ)
χ

$$IIIIIIIII

(A,α)
ψ

::uuuuuuuuu

ϕ
// (B,β)

the following are equivalent:

(1) it is a relational L-triangle;

(2) it is an E relational L-triangle, for every E ⊆ L;

(2’) it is an {x} relational L-triangle, for every x ∈ L;

(3) it is an F Galois L-triangle, for every upper set F ⊆ L;

(3’) it is an x-including Galois L-triangle, for every x ∈ L;

(4) it is an I Tarski L-triangle, for every lower set I ⊆ L;

(4’) it is an x-including Tarski L-triangle, for every x ∈ L.

5.1.1 Relational triangles and cdeo algebras

In this Subsection we show how the crucial properties of distributivity, symmetry,
associativity and commutativity for w-ceo algebras may be characterized by suitable
relational triangles.
In order to clarify the results and their proofs that we present in the following, we make
a few preliminary comments.
Consider the structured sets (X,α) and (X,β), where α,β ∶ X ×X → L, L is a poset
with the equality = and maximum and minimum ⊺ and �, respectively.

- If (iX , iX)⊺[↑] ∶ (X,α) → (X,β) is a type III ⊺-including Galois connection, then
⊺ ≤ (x, y)α⇔ ⊺ ≤ (x, y)β, for all x, y ∈X;

- If (iX , iX)�(↓) ∶ (X,α) → (X,β) is a type III �-excluding Tarski connection, then

(x, y)α ≠ �⇔ (x, y)β ≠ �, for all x, y ∈X;

(iX , iX) ∶ (X,α) → (X,β) is a type III global connection, then (x, y)α = (x, y)β,
for all x, y ∈X, i.e. α = β.
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Proposition 5.1.7. Let L = (L,→,⊺) be a w-ceo algebra. L is distributive if and only
if there exist and are unique ψ,χ ∶ L × L → L such that, for all α1, α2, α3 ∶ L × L → L

such that (iL, iL)⊺[↑] ∶ (L,→) → (L,αj) is a type III ⊺-including Galois connection, for
j = 1,2,3, the diagram

(L,α3)
χ

%%JJJJJJJJJ

(L,α1)
ψ

99ttttttttt

→
// (L,α2)

is a ⊺-including Galois L-triangle.

Proof. “ ⇒ ” From right-distributivity of L, it follows that there exists the (unique)
adjoint product ⊗; so, fixing a ∈ L we can define ψa ∶ L → L, (c) ↦ (c)ψa = a⊗ c and we
have that c ≤ a→ b⇔ (c)ψa ≤ b, for all b, c ∈ L.
Moreover, from left-distributivity of L, fixing b ∈ L, there exists (a unique) χb ∶ L → L

such that c ≤ a→ b⇔ a ≤ (c)χb, for all a, c ∈ L.
Now consider the functions ψ ∶ L×L→ L, (a, b)↦ (b)ψa and χ ∶ L×L→ L, (a, b)↦ (a)χb.
Hence, by arbitrariness of a, b ∈ L we have the following equivalences: c ≤ a → b ⇔(a, c)ψ ≤ b⇔ a ≤ (c, b)χ, for all a, b, c ∈ L.
This equivalences can be rewritten in this way ⊺ ≤ (c, (a, b)→)→⇔ ⊺ ≤ ((a, c)ψ, b)→⇔
⊺ ≤ (a, (c, b)χ) →, for all a, b, c ∈ L and, hence, by assumption on αj , for j = 1,2,3, we
have that ⊺ ≤ (c, (a, b) →)α3⇔ ⊺ ≤ ((a, c)ψ, b)α2⇔ ⊺ ≤ (a, (c, b)χ)α1, for all a, b, c ∈ L,
i.e. the diagram

(L,α3)
χ

%%JJJJJJJJJ

(L,α1)
⊗

99ttttttttt

→
// (L,α2)

is a ⊺-including Galois L-triangle.
“⇐ ” Consider α1 = α2 = α3 =→∶ L ×L → L; obviously, (iL, iL)⊺[↑] ∶ (L,→) → (L,→) and
hence, by assumption there exist and are unique ψ,χ ∶ L×L→ L such that the diagram

(L,→)
χ

$$JJJJJJJJJ

(L,→)
ψ

::uuuuuuuuu

→
// (L,→)

is a ⊺-including Galois L-triangle. Then, by definition, we have that for all a, b, c ∈ L:
⊺ ≤ (a, (c, b)χ) →⇔ ⊺ ≤ ((a, c)ψ, b) →⇔ ⊺ ≤ (c, (a, b) →) →. Fixing ā ∈ L, the following
equivalence holds: c ≤ ā→ b⇔ (ā, c)ψ ≤ b.
So, the functions ψā ∶ L → L, c ↦ (c)ψā = (ā, c)ψ and ϕā ∶ L → L, b ↦ (b)ϕā = ā → b

form an adjunction and, hence, ϕā preserves infs, i.e. → is right-distributive. Similarly,
fixing b̄ ∈ L, we have that, for all a, c ∈ L the following holds: a ≤ (c)χb̄ ⇔ c ≤ (a)ϕb̄,
where ϕb̄ ∶ L → L,a ↦ (a)ϕb̄ = a → b̄ and χb̄ ∶ L → L, c ↦ (c)χb̄ = (c, b̄)χ; so the functions
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ϕb̄ and χb̄ form a Galois connection and hence ϕb̄ transforms infs into sups, i.e. → is
left-distributive.

Remark 5.1.8. 1. Let (L,→,⊺) be a w-ceo algebra.
The requirement (iL, iL)⊺[↑] ∶ (L,→) → (L,α) can be rewritten by means of the
equivalence ⊺ ≤ a → b⇔ ⊺ ≤ (a, b)α, for all a, b ∈ L. Hence, a ≤ b⇔ ⊺ ≤ (a, b)α,
for all a, b ∈ L, i.e. α, just like →, is an extension of the natural ordering of the
algebra (L,→,⊺).

2. Since, obviously, (iL, iL)⊺[↑] ∶ (L,→)→ (L,→), by Proposition 5.1.7, the diagram

(L,→)
χ

$$JJJJJJJJJ

(L,→)
ψ

::uuuuuuuuu

→
// (L,→)

is a ⊺-including Galois L-triangle if and only if (L,→,⊺) is a cdeo algebra.

3. If (L,→,⊺) is a symmetrical cdeo algebra, then, by definition, the dual implication
¨∶ L × L → L induces the same order as →, i.e. (iL, iL)⊺[↑] ∶ (L,→) → (L,¨).
Hence, by Proposition 5.1.7, in the diagram of the above item (2), in each vertex
of the triangle → may be replaced by ¨; moreover, χ =¨, so further ⊺-including
Galois triangles can be obtained, among which the following

(L,¨)
¨

$$JJJJJJJJJ

(L,¨)
ψ

::uuuuuuuuu

→
// (L,¨)

It is possible to characterize the symmetry of cdeo algebra by means of the following
result.

Proposition 5.1.9. Let L = (L,→,⊺) be a w-ceo algebra. L is a symmetrical cdeo
algebra if and only if there exist and are unique ψ,χ ∶ L × L → L such that, for all
α1, α2, α3 ∶ L × L → L such that (iL, iL)⊺[↑] ∶ (L,→) → (L,αj) is type III ⊺-including
Galois connection, for j = 1,2,3, the diagram

(L,α3)
χ

%%JJJJJJJJJ

(L,α1)
ψ

99ttttttttt

→
// (L,α2)

is a ⊺-including Galois L-triangle and (iL, iL)⊺[↑] ∶ (L,→) → (L,χ) is a type III
⊺-including Galois connection.
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Proof. “ ⇒ ” Since, by assumption, L is a symmetrical cdeo algebra, then there exists
⊗ ∶ L×L→ L and ¨∶ L×L→ L such that the following equivalences hold, for all a, b, c ∈ L:
c ≤ a → b ⇔ a ⊗ c ≤ b ⇔ a ≤ c ¨ b, i.e. ⊺ ≤ (c, (a, b) →) →⇔ ⊺ ≤ ((a, c)⊗, b) →⇔
⊺ ≤ (a, (c, b)¨)→.
Hence, for all α1, α2, α3 ∶ L × L → L such that (iL, iL)⊺[↑] ∶ (L,→) → (L,αj) are type III
⊺-including Galois connections, for j = 1,2,3, by Remark 5.1.8 (1), it follows that:
⊺ ≤ (c, (a, b)→)α3⇔ ⊺ ≤ ((a, c)⊗, b)α2⇔ ⊺ ≤ (a, (c, b)¨)α1, for all a, b, c ∈ L.
Therefore, the diagram

(L,α3)
¨

%%JJJJJJJJJ

(L,α1)
⊗

99ttttttttt

→
// (L,α2)

is a ⊺-including Galois L-triangle and, by Remark 5.1.8 (1), (iL, iL)⊺[↑] ∶ (L,→)→ (L,¨)
is a type III ⊺-including Galois connection, since ¨ induces the same order as →.
“ ⇐ ” By Proposition 5.1.7, it follows that L is a cdeo algebra; in particular, we have
that, for all a, b, c ∈ L: c ≤ a→ b⇔ (a, c)ψ ≤ b⇔ a ≤ (c, b)χ.
By assumption (iL, iL)⊺[↑] ∶ (L,→) → (L,χ) and by using the Remark 5.1.8 (1), the
following equivalences hold, for all b, c ∈ L: c ≤ ⊺ → b⇔ ⊺ ≤ (c, b)χ⇔ b ≤ c; hence, for
all b, c ∈ L: c ≤ ⊺→ b⇔ b ≤ c, i.e. L is symmetrical.

Proposition 5.1.10. Let L = (L,→,⊺) be a w-ceo algebra. L is an associative cdeo
algebra if and only if there exist and are unique ψ,χ ∶ L × L → L such that, for all
α1, α2, α3 ∶ L × L → L such that (iL, iL)⊺[↑] ∶ (L,→) → (L,αj) is type III ⊺-including
Galois connection, for j = 1,2,3, the diagram

(L,α3)
χ

%%JJJJJJJJJ

(L,α1)
ψ

99ttttttttt

→
// (L,α2)

is a ⊺-including Galois L-triangle and, for every b ∈ L, the functions ψb ∶ L → L,
a↦ (a)ψb = (a, b)ψ and →b∶ L → L,a ↦ (a)→b= b → a form a type III global connec-
tion (ψb,→b) ∶ (L,→)→ (L,→).
Proof. “⇒ ” If L is an associative cdeo algebra, then, from Proposition 5.1.7, it follows
that there exist and are unique ψ,χ ∶ L ×L → L such that, for all α1, α2, α3 ∶ L ×L → L

such that (iL, iL)⊺[↑] ∶ (L,→) → (L,αj) is type III ⊺-including Galois connection, for
j = 1,2,3, the diagram

(L,α3)
χ

%%JJJJJJJJJ

(L,α1)
ψ

99ttttttttt

→
// (L,α2)
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is a ⊺-including Galois L-triangle and, in particular, ψ = ⊗.
Moreover, from associativity condition, the following equality holds, for all a, b, c ∈ L:(b⊗ a)→ c = a→ (b→ c).
Fixing b ∈ L, the equality becomes: ((a)⊗b, c) →= (a, (c) →b) →, where →b∶ L → L,
c↦ (c)→b= b→ c and ⊗b ∶ L→ L,a↦ (a)⊗b = b⊗a. Hence the functions ψb = ⊗b and →b
form a type III global connection from (L,→) to (L,→).
“ ⇐ ” By Proposition 5.1.7, it follows that L is a cdeo algebra and ψ = ⊗. Moreover,
since, by assumption, (⊗b,→b) ∶ (L,→)→ (L,→) is a type III global connection, for every
b ∈ L, we have that, for all a, c ∈ L ((a)⊗b, c) →= (a, (c) →b) →. Hence, for all a, b, c ∈ L,(b ⊗ a) → c = a → (b → c), that is equivalent to the associativity for cdeo algebras, by
Remark 2.1.57.

As a consequence of the above propositions, we state the following result.

Corollary 5.1.11. Let L = (L,→,⊺) be a w-ceo algebra. L is an associative symmetrical
cdeo algebra if and only if there exist and are unique ψ,χ ∶ L × L → L such that, for all
α1, α2, α3 ∶ L × L → L such that (iL, iL)⊺[↑] ∶ (L,→) → (L,αj) is a type III ⊺-including
Galois connection, for j = 1,2,3, the diagram

(L,α3)
χ

%%JJJJJJJJJ

(L,α1)
ψ

99ttttttttt

→
// (L,α2)

is a ⊺-including Galois L-triangle and the following conditions hold:

(a) for every b ∈ L, (ψb,→b) ∶ (L,→)→ (L,→) is a type III global connection;

(b) (iL, iL)⊺[↑] ∶ (L,→)→ (L,χ) is a type III ⊺-including Galois connection. ◻

Moreover, we can give an alternative characterizations of associative symmetrical
cdeo algebras. In fact, the following hold.

Proposition 5.1.12. Let L = (L,→,⊺) be a w-ceo algebra. L is an associative symmet-
rical cdeo algebra if and only if there exist and are unique ψ,χ ∶ L×L→ L such that, for
all α1, α2, α3 ∶ L×L→ L such that (iL, iL)⊺[↑] ∶ (L,→)→ (L,αj) is a type III ⊺-including
Galois connection, for j = 1,2,3, the diagram

(L,α3)
χ

%%JJJJJJJJJ

(L,α1)
ψ

99ttttttttt

→
// (L,α2)

is a ⊺-including Galois L-triangle and the following conditions hold:

(a) for every b ∈ L, [→b -χb] ∶ (L,χ)→ (L,→) is a type I global connection from (L,χ)
to (L,→);
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(b) (iL, iL)⊺[↑] ∶ (L,→)→ (L,χ) is a type III ⊺-including Galois connection.

Proof. “ ⇒ ” By Proposition 5.1.9, there exist and are unique ψ,χ ∶ L × L → L such
that, for all α1, α2, α3 ∶ L × L → L such that (iL, iL)⊺[↑] ∶ (L,→) → (L,αj) is a type III
⊺-including Galois connections, for j = 1,2,3, the diagram

(L,α3)
χ

%%JJJJJJJJJ

(L,α1)
ψ

99ttttttttt

→
// (L,α2)

is a ⊺-including Galois L-triangle, ψ = ⊗, χ =¨ and (iL, iL)⊺[↑] ∶ (L,→) → (L,¨) is a
type III ⊺-including Galois connection.
Moreover, by Proposition 2.1.62 the associativity of a symmetrical cdeo algebra is equiv-
alent to the following equality: c→ (a¨ b) = a¨ (c→ b), for all a, b, c ∈ L, which, fixing
b ∈ L, can be rewritten as follows: (c, (a) ¨b) →= (a, (c) →b) ¨, for all a, c ∈ L, i. e.[→b -¨b] ∶ (L,¨)→ (L,→), for all b ∈ L.
“ ⇐ ” By Proposition 5.1.9, L is a symmetrical cdeo algebra and, in particular, χ =¨;
hence, for every b ∈ L ¨b= χb.
Moreover, by assumption, we have [→b -¨b] ∶ (L,¨)→ (L,→), for every b ∈ L. So it fol-
lows that (a, (c, b)¨)→= (c, (a, b)→)¨, for all a, b, c ∈ L, i.e. a→ (c¨ b) = c¨ (a→ b),
for all a, b, c ∈ L, that is equivalent to the associativity of a symmetrical cdeo algebra L,
by Proposition 2.1.62.

Now we shall see that turning from the ⊺-including Galois connection in the charac-
terization of symmetrical cdeo algebras of Proposition 5.1.9 to the corresponding global
connection we get a characterization of commutative cdeo algebras. To this intent it will
be useful the following remark.

Remark 5.1.13. Let L = (L,→,⊺) be a w-ceo algebra. We note that for any α ∶ L×L→ L

the requirement (iL, iL) ∶ (L,→) → (L,α) is a type III global connection forces α to
coincide with →. In fact, (iL, iL) is a type III global connection from (L,→) to (L,α) if
and only if, for all a, b ∈ L, ((a)iL, b)α = (a, (b)iL)→, i.e. aαb = a→ b, for all a, b ∈ L.

Proposition 5.1.14. Let L = (L,→,⊺) be a w-ceo algebra. L is a commutative cdeo
algebra if and only if there exist and are unique ψ,χ ∶ L × L → L such that, for all
α1, α2, α3 ∶ L × L → L such that (iL, iL)⊺[↑] ∶ (L,→) → (L,αj) is a type III ⊺-including
Galois connection, for j = 1,2,3, the diagram

(L,α3)
χ

%%JJJJJJJJJ

(L,α1)
ψ

99ttttttttt

→
// (L,α2)

is a ⊺-including Galois L-triangle and (iL, iL) ∶ (L,→) → (L,χ) is a type III global
connection.
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Proof. The proof is an easy consequence of Proposition 5.1.9 if one considers that the
L-relation χ has to coincide with ¨, hence the assumption on of the type III global
connection (iL, iL) ∶ (L,→) → (L,χ) is equivalent to the equality a → b = a ¨ b, for all
a, b ∈ L, which, in turn, is equivalent to commutativity in symmetrical cdeo algebras.

Now, the following result is an immediate consequence of Corollary 5.1.11 and Propo-
sition 5.1.14.

Corollary 5.1.15. Let L = (L,→,⊺) be a w-ceo algebra. L is an associative commutative
cdeo algebra if and only if there exist and are unique ψ,χ ∶ L × L → L such that, for all
α1, α2, α3 ∶ L × L → L such that (iL, iL)⊺[↑] ∶ (L,→) → (L,αj) is a type III ⊺-including
Galois connection, for j = 1,2,3, the diagram

(L,α3)
χ

%%JJJJJJJJJ

(L,α1)
ψ

99ttttttttt

→
// (L,α2)

is a ⊺-including Galois L-triangle and the following conditions hold:

(a) for every b ∈ L, (ψb-→b) ∶ (L,→)→ (L,→) is a type III global connection;

(b) (iL, iL) ∶ (L,→)→ (L,χ) is a type III global connection. ◻

Similarly, Proposition 5.1.12 can be modified to have yet another characterization of
associative, commutative cdeo algebras.

Corollary 5.1.16. Let L = (L,→,⊺) be a w-ceo algebra. L is an associative, commuta-
tive cdeo algebra if and only if there exist and are unique ψ,χ ∶ L ×L→ L such that, for
all α1, α2, α3 ∶ L×L→ L such that (iL, iL)⊺[↑] ∶ (L,→)→ (L,αj) is a type III ⊺-including
Galois connection, for j = 1,2,3, the diagram

(L,α3)
χ

%%JJJJJJJJJ

(L,α1)
ψ

99ttttttttt

→
// (L,α2)

is a ⊺-including Galois L-triangle and the following conditions hold:

(a) for every b ∈ L, [→b -χb] ∶ (L,→)→ (L,→) is a type I global connection;

(b) (iL, iL) ∶ (L,→)→ (L,χ) is a type III global connection. ◻

The following result shows that commutativity and associativity of w-ceo algebra(L,→,⊺) can be characterized by a suitable relational L-triangle.

Proposition 5.1.17. Let L = (L,→,⊺) be a w-ceo algebra. L is an associative, com-
mutative cdeo algebra if and only if there exist a unique ψ ∶ L × L → L such that the
diagram
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(L,→)
→

$$JJJJJJJJJ

(L,→)
ψ

::uuuuuuuuu

→
// (L,→)

is a relational L-triangle.

Proof. “⇒ ” The results in Subsection 2.1.5 allow to verify easily that the diagram

(L,→)
→

$$JJJJJJJJJ

(L,→)
⊗

::uuuuuuuuu

→
// (L,→)

is a relational L-triangle.
“⇐ ” If there exists ψ ∶ L ×L→ L such that the diagram

(L,→)
→

$$JJJJJJJJJ

(L,→)
ψ

::uuuuuuuuu

→
// (L,→)

is a relational L-triangle, we have, in particular, that it is a ⊺-including Galois L-triangle.
Hence, by Proposition 5.1.7, L is a cdeo algebra and ψ = ⊗. Then, the relational L-
triangle gives the equality c → (a → b) = (a ⊗ c) → b and c → (a → b) = a → (c → b),
for all a, b, c ∈ L; therefore L is associative and commutative, as remarked in Subsection
2.1.5.

Further relational L-triangles (either relative or global) can be obtained, which in-
volve the product of a right-distributive w-ceo algebra; also, these triangles can be used
to characterize further properties of the algebra.

Proposition 5.1.18. Let (L,→,⊺) be a right-distributive ceo algebra.

1. If (L,→,⊺) is a symmetrical cdeo algebra, for all α1, α2, α3 ∶ L × L → L such that(iL, iL)⊺[↑] ∶ (L,⊗)→ (L,αj), for j = 1,2,3, the triangle of L-relations

(L,α3)
⊗

%%JJJJJJJJJ

(L,α1)
⊗

99ttttttttt

⊗
// (L,α2)

is both a ⊺-including Galois L-triangle and a ⊺-excluding Tarski L-triangle.

2. If � is an element ⊗-irreducible of L, for all α1, α2, α3 ∶ L × L → L such that(iL, iL)�(↑) ∶ (L,⊗)→ (L,αj), for j = 1,2,3, the triangle of L-relations
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(L,α3)
⊗

%%JJJJJJJJJ

(L,α1)
⊗

99ttttttttt

⊗
// (L,α2)

is �-including Tarski L-triangle and a �-excluding Galois L triangle.

3. (L,→,⊺) is an associative and commutative cdeo algebra if and only if for all
α1, α2, α3 ∶ L × L → L such that (iL, iL) ∶ (L,⊗) → (L,αj), for j = 1,2,3, the
triangle of L-relations

(L,α3)
⊗

%%JJJJJJJJJ

(L,α1)
⊗

99ttttttttt

⊗
// (L,α2)

is a relational L-triangle.

Proof. 1. Let α1, α2, α3 ∶ L × L → L be such that (iL, iL)⊺[↑] ∶ (L,⊗) → (L,αj), for
j = 1,2,3; hence, for all a, b ∈ L: ⊺ ≤ (a, b)αj ⇔ ⊺ ≤ a⊗ b.
Since, under symmetry assumption on the cdeo algebra, one has that x⊗ (z⊗ y) =
⊺ ⇔ x = ⊺, y = ⊺, z = ⊺, for all x, y, z ∈ L, it follows that ⊺ ≤ x ⊗ (z ⊗ y) ⇔ ⊺ ≤(x⊗z)⊗y⇔ ⊺ ≤ z⊗ (x⊗y), for all x, y, z ∈ L. By assumption on αj , for j = 1,2,3,
we have that ⊺ ≤ (x, ((z, y)⊗)α1⇔ ⊺ ≤ ((x, z)⊗, y)α2⇔ ⊺ ≤ (z, (x, y)⊗)α3, for all
x, y, z ∈ L, i.e. the diagram in the statement is a ⊺-including Galois L-triangle.
As already seen in Section 4.5, this is equivalent to say that the triangle is a
⊺-excluding Tarski L-triangle.

2. Let α1, α2, α3 ∶ L ×L → L be such that (iL, iL)�(↓) ∶ (L,⊗)→ (L,αj), for j = 1,2,3;
hence, for all a, b ∈ L: (a, b)αj ≠ �⇔ a⊗ b ≠ �.
Since � is ⊗-irreducible, one has that x ⊗ (z ⊗ y) ≠ �⇔ x ≠ �, y ≠ �, z ≠ �, for all
x, y, z ∈ L. So, by assumption on αj , for j = 1,2,3, we have the equivalences:(x, ((z, y)⊗)α1 ≠ �⇔ ((x, z)⊗, y)α2 ≠ �⇔ (z, (x, y)⊗)α3 ≠ �, for all x, y, z ∈ L, i.e.
the diagram in the statement is a �-excluding Galois L-triangle and, consequently,
it is a �-including Tarski L-triangle, too.

3. “ ⇒ ” Assuming L to be an associative and commutative cdeo algebra, let
α1, α2, α3 ∶ L × L → L be such that (iL, iL) ∶ (L,⊗) → (L,αj), for j = 1,2,3;
hence, for all a, b ∈ L: (a, b)αj = (a, b)⊗. So, the assumed condition forces αj = ⊗.
Moreover, if L is associative and commutative x⊗(z⊗y) = y⊗(x⊗z) = z⊗(x⊗y),
for all x, y, z ∈ L and hence, by assumption on αj , we have that (x, (z, y)⊗)α1 =(y, (x, z)⊗)α2 = (z, (x, y)⊗)α3, for all x, y, z ∈ L, i.e. the diagram in the statement
is a relational L-triangle.
“ ⇐ ” If the diagram is a relational L-triangle, since, by assumption, αj = ⊗, for
j = 1,2,3, we have that, for all x, z ∈ L: x ⊗ z = x ⊗ (z ⊗ ⊺) = z ⊗ (x ⊗ ⊺) = z ⊗ x,
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hence ⊗ is commutative; moreover, by using the assumption on the L-triangle, we
have that, for all x, y, z ∈ L: x⊗ (z ⊗ y) = (x⊗ z)⊗ y, i.e. ⊗ is associative. So, L is
an associative and commutative cdeo algebra.

Remark 5.1.19. 1. The assumptions (iL, iL)⊺[↑] ∶ (L,⊗) → (L,αj) and(iL, iL)�(↑) ∶ (L,⊗)→ (L,αj) are equivalent to (iL, iL)⊺[↑] ∶ (L,αj) → (L,⊗) and(iL, iL)�(↑) ∶ (L,αj)→ (L,⊗) and they are satisfied in case αj = ⊗ and, if (L,→,⊺)
is symmetrical, in case αj = ⊗̃, too.
The assumption (iL, iL) ∶ (L,⊗) → (L,αj) which is equivalent to(iL, iL) ∶ (L,αj)→ (L,⊗), is satisfied only in case αj = ⊗.

2. Under symmetry assumption, the diagram

(L, ⊗̃)
⊗̃

$$IIIIIIIII

(L, ⊗̃)
⊗̃

::uuuuuuuuu

⊗̃
// (L, ⊗̃)

is

- both a ⊺-including Galois L-triangle and a ⊺-excluding Tarski L-triangle;

- both a �-including Tarski L-triangle and a �-excluding Galois L triangle, if �
is ⊗-irreducible (equivalently, ⊗̃-irreducible);

- a relational L-triangle if and only if (L,→,⊺) is an associative and commuta-
tive cdeo algebra;

in fact, similarly to ⊗, ⊗̃ satisfies the equivalences x⊗̃(y⊗̃z) = ⊺⇔ x = ⊺, y = ⊺, z = ⊺
and x⊗̃(y⊗̃z) ≠ �⇔ x ≠ �, y ≠ �, z ≠ �.

3. Since x⊗̃(y ⊗ z) = ⊺⇔ x ⊗ (y⊗̃z) = ⊺⇔ x = ⊺, y = ⊺, z = ⊺ and x⊗̃(y ⊗ z) ≠ �⇔
x⊗ (y⊗̃z) ≠ �⇔ x ≠ �, y ≠ �, z ≠ �, taking into account the above item (1) one can
realize that all the diagrams that can be obtained considering arbitrarily either(L,⊗) or (L, ⊗̃) in each vertex and either ⊗ or ⊗̃ on each side, are

- both a ⊺-including Galois L-triangle and a ⊺-excluding Tarski L-triangle;

- both a �-including Tarski L-triangle and a �-excluding Galois L triangle, if �
is ⊗-irreducible (equivalently, ⊗̃-irreducible);

- a relational L-triangle if and only if (L,→,⊺) is an associative and commu-
tative cdeo algebra (in fact, under commutativity assumption, ⊗ = ⊗̃, i.e.(iL, iL) ∶ (L,⊗)→ (L, ⊗̃)).
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5.1.2 Relational triangles and many-valued relations

In this Subsection we shall see how to obtain relational L-triangles, either relative
or global, involving relations and their compositions; these L-triangles may be used to
characterize the structure of L and, moreover, give informations on the more composite
structures of the class of L-relations may have.

Let X,Y,Z be sets, (L,→,⊺) be a symmetrical cdeo algebra and let R ∶ X × Y → L,
S ∶ Y × Z → L be L-relations. We recall the compositions between L-relations we have
defined in Section 3.1 as follows, ∀x ∈X,z ∈ Z:

1. R� S ∶X ⇁ Z: (x, y)(R ⋅ S) = ⋁y∈Y (x, y)R⊗ (y, z)S;

2. R�̃S ∶X ⇁ Z: (x, z)(R�̃S) = ⋁y∈Y (x, y)R⊗̃(y, z)S;

3. R� S ∶X ⇁ Z: (x, z)(R� S) = ⋀y∈Y (x, y)R→ (y, z)S;

4. R�̃S ∶X ⇁ Z: (x, z)(R�̃S) = ⋀y∈Y (x, y)R¨ (y, z)S;

5. R� S ∶X ⇁ Z: (x, z)(R� S) = ⋀y∈Y (y, z)S → (x, y)R;

6. R�̃S ∶X ⇁ Z: (x, z)(R�̃S) = ⋀y∈Y (y, z)S ¨ (x, y)R.

Moreover, we recall that, starting from an arbitrary operation on L, χL ∶ L ×L→ L, we
have defined in Section 3.1 the universal and the existential (L,χL)-compositions
of L-relations defined, respectively, as follows, ∀x ∈X,z ∈ Z:

1. Rχ̂LS ∶X ⇁ Z: (x, y)(Rχ̂LS) = ⋀y∈Y ((x, y)R, (y, z)S)χL;

2. Rχ̌LS ∶X ⇁ Z: (x, y)(Rχ̌LS) = ⋁y∈Y ((x, y)R, (y, z)S)χL.

Conversely, if χ ∶ RL(X,Y ) × RL(Y,Z) → RL(X,Z) is a composition be-
tween L-relations, we can induce an operation on L, χL ∶ L × L → L, defined by(a, b)χL = aX×Y χbY ×Z , where aX×Y ∈ RL(X,Y ), bY ×Z ∈ RL(Y,Z) are the constant
L-relations, with values a, b ∈ L, respectively, provided that the result does not depend
on the choice of the triple of sets.
Moreover, let X be a set and let (L,→,⊺) be a w-ceo algebra.
From Section 3.2, we recall that the subsethood relation SX ∶ LX ×LX → L is defined
by (A,B)SX = ⋀x∈X(x)A→ (x)B, for all A,B ∈ LX .
More generally, we have considered in Section 3.2 the (L,χL)-relation
SχL,∧
X ∶ LX ×LX → L defined by (A,B)SχL,∧

X = ⋀x∈X((x)A, (x)B)χL, for all A,B ∈ LX .

In particular S¨,∧X = S̃X is the dual subsethood relation determined by the dual
implication of a symmetrical cdeo algebra.

Proposition 5.1.20. Let L = (L,→,⊺) be a w-ceo algebra.
L is distributive if and only if for any triple of sets (X,Y,Z) there exist and are unique
ψ ∶ RL(Z,X) × RL(X,Y ) → RL(Y,Z), χ ∶ RL(X,Y ) × RL(Y,Z) → RL(Z,X) such
that, for all S1 ∶ RL(Z,X) × RL(Z,X) → L, S2 ∶ RL(Y,Z) × RL(Y,Z) → L and
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S3 ∶RL(X,Y ) ×RL(X,Y )→ L such that:
- (IRL(Z,X),IRL(Z,X))⊺[↑] ∶ (RL(Z,X),SZ×X)→ (RL(Z,X),S1);
- (IRL(Y,Z),IRL(Y,Z))⊺[↑] ∶ (RL(Y,Z),SY ×Z)→ (RL(Y,Z),S2);
- (IRL(X,Y ),IRL(X,Y ))⊺[↑] ∶ (RL(X,Y ),SX×Y )→ (RL(X,Y ),S3),
are type III ⊺-including Galois connections, the diagram

(RL(X,Y ),S3)
χ

))RRRRRRRRRRRRR

(RL(Z,X),S1)
ψ

55lllllllllllll

ϕ
// (RL(Y,Z),S2)

where ϕ ∶ RL(Z,X) ×RL(Y,Z) → RL(X,Y ) is defined by (ρ, σ)ϕ = ρ− � σ−, for all
ρ ∈RL(Z,X), σ ∈RL(Y,Z), is a ⊺-including Galois L-triangle.

Proof. “⇒ ” Assume L to be a cdeo algebra and let (X,Y,Z) be a triple of sets.
The assumed conditions on S1, S2 and S3 imply that, for all ρ, ρ′ ∈ RL(Z,X), σ, σ′ ∈
RL(Y,Z), τ, τ ′ ∈RL(X,Y ):

(a) ⊺ ≤ (ρ, ρ′)S1⇔ ⊺ ≤ (ρ, ρ′)SZ×X ;

(b) ⊺ ≤ (σ, σ′)S2⇔ ⊺ ≤ (σ, σ′)SY ×Z ;

(c) ⊺ ≤ (τ, τ ′)S3⇔ ⊺ ≤ (τ, τ ′)SX×Y .

From distributivity assumption on L, similarly to Proposition 5.1.7, it follows that there
exist the adjoint product ⊗ and a function χL ∶ L ×L→ L such that c ≤ a→ b⇔ a⊗ c ≤
b⇔ a ≤ (c, b)χL, for all a, b, c ∈ L.
Hence, for all x ∈ X,y ∈ Y, z ∈ Z and for all ρ ∈ RL(Z,X), σ ∈ RL(Y,Z), τ ∈ RL(X,Y ),
the following equivalences hold: (x, y)τ ≤ (z, x)ρ → (y, z)σ ⇔ (z, x)ρ ⊗ (x, y)τ ≤(y, z)σ ⇔ (z, x)ρ ≤ ((x, y)τ, (y, z)σ)χL that is ⊺ ≤ (x, y)τ → ((z, x)ρ → (y, z)σ) ⇔
⊺ ≤ ((z, x)ρ⊗ (x, y)τ)→ (y, z)σ⇔ ⊺ ≤ (z, x)ρ→ ((x, y)τ, (y, z)σ)χL.
Hence, by arbitrariness of x, y, z:
⊺ ≤ ⋀x∈Xy∈Y z∈Z ((x, y)τ → ((z, x)ρ→ (y, z)σ))⇔
⊺ ≤ ⋀x∈Xy∈Y z∈Z (((z, x)ρ⊗ (x, y)τ)→ (y, z)σ)⇔
⊺ ≤ ⋀x∈Xy∈Y z∈Z ((z, x)ρ→ ((x, y)τ, (y, z)σ)χL).
By the distributivity of L, it follows that:
⊺ ≤ ⋀x∈Xy∈Y ((x, y)τ → (⋀z∈Z(z, x)ρ→ (y, z)σ))⇔
⊺ ≤ ⋀y∈Y z∈Z (⋁x∈X((z, x)ρ⊗ (x, y)τ)→ (y, z)σ)⇔
⊺ ≤ ⋀x∈Xz∈Z ((z, x)ρ→ ⋀y∈Y ((x, y)τ, (y, z)σ)χL)
that is
⊺ ≤ ⋀x∈Xy∈Y ((x, y)τ → ((x, y)(ρ− � σ−))⇔
⊺ ≤ ⋀y∈Y z∈Z ((y, z)(ρ� τ)− → (y, z)σ)⇔
⊺ ≤ ⋀x∈Xz∈Z ((z, x)ρ→ ((z, x)((τχσ)−)) = ⊺.
Hence, denoting (τ, σ)χ = (τχσ)−, (ρ, σ)ϕ = ρ− � σ− and (ρ, τ)ψ = (ρ � τ)−, we have
that, for all ρ ∈RL(Z,X), σ ∈RL(Y,Z), τ ∈RL(X,Y ), the following equivalences hold:

⊺ ≤ (τ, (ρ, σ)ϕ)SX×Y ⇔ ⊺ ≤ ((ρ, τ)ψ,σ)SY ×Z ⇔ ⊺ ≤ (ρ, (τ, σ)χ)SZ×X .
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Thanks to the conditions (a), (b) and (c) we have for all ρ ∈RL(Z,X), σ ∈RL(Y,Z), τ ∈
RL(X,Y ), the following equivalences:

⊺ ≤ (τ, (ρ, σ)ϕ)S3⇔ ⊺ ≤ ((ρ, τ)ψ,σ)S2⇔ ⊺ ≤ (ρ, (τ, σ)χ)S1,
i.e. the diagram

(RL(X,Y ),S3)
χ

))RRRRRRRRRRRRR

(RL(Z,X),S1)
ψ

55lllllllllllll

ϕ
// (RL(Y,Z),S2)

is a ⊺-including Galois L-triangle.
“⇐ ” Let (X,Y,Z) be a triple of sets and consider ψ ∶RL(Z,X)×RL(X,Y )→RL(Y,Z),
χ ∶RL(X,Y ) ×RL(Y,Z)→RL(Z,X) that gives the ⊺-including Galois L-triangle

(RL(X,Y ),S3)
χ

))RRRRRRRRRRRRR

(RL(Z,X),S1)
ψ

55lllllllllllll

ϕ
// (RL(Y,Z),S2)

where ϕ ∶ RL(Z,X) ×RL(Y,Z) → RL(X,Y ) is defined by (ρ, σ)ϕ = ρ− � σ−, for all
ρ ∈ RL(Z,X), σ ∈ RL(Y,Z) and S1,S2,S3 satisfy the assumed requirements. So, the
following conditions hold, for all ρ, ρ′ ∈RL(Z,X), σ, σ′ ∈RL(Y,Z), τ, τ ′ ∈RL(X,Y ):

- ⊺ ≤ (τ, (ρ, σ)ϕ)S3⇔ ⊺ ≤ ((ρ, τ)ψ,σ)S2⇔ ⊺ ≤ (ρ, (τ, σ)χ)S1;
- ⊺ ≤ (ρ, ρ′)S1⇔ ⊺ ≤ (ρ, ρ′)SZ×X ;

- ⊺ ≤ (σ, σ′)S2⇔ ⊺ ≤ (σ, σ′)SY ×Z ;

- ⊺ ≤ (τ, τ ′)S3⇔ ⊺ ≤ (τ, τ ′)SX×Y .

Hence, for all ρ ∈RL(Z,X), σ ∈RL(Y,Z), τ ∈RL(X,Y )
⊺ ≤ (τ, (ρ, σ)ϕ)SX×Y ⇔ ⊺ ≤ ((ρ, τ)ψ,σ)SY ×Z ⇔ ⊺ ≤ (ρ, (τ, σ)χ)SX×Y .

Choosing for any a, b, c ∈ L the constant L-relations defined by (z, x)ρ = a, (y, z)σ = b
and (x, y)τ = c, for all x ∈ X,y ∈ Y, z ∈ Z, we have that the following equivalences hold:
⊺ ≤ c → (a → b)⇔ ⊺ ≤ (a, c)ψ → b⇔ ⊺ ≤ a → (c, b)χ, i.e. c ≤ a → b⇔ (a, c)ψ ≤ b⇔ a ≤(c, b)χ. So, there exist ψL, χL ∶ L×L→ L induced from ψ and χ, respectively, such that
c ≤ a → b⇔ (a, c)ψL ≤ b⇔ a ≤ (c, b)χL, for all a, b, c ∈ L. Then, as in Proposition 5.1.7,
we can prove the distributivity of L and, in particular, one has that ψL is the adjoint
product ⊗ of L.
Note that ψL (i.e. ⊗) and χL do not depend on the chosen sets X,Y,Z, being uniquely
determined by →.
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Remark 5.1.21. 1. Let (L,→,⊺) be a w-ceo algebra, X,Y be two sets and let
Ŝ ∶ LX×Y ×LX×Y → L be an L-relation.
If (IRL(X,Y ),IRL(X,Y ))⊺[↑] ∶ (RL(X,Y ),SX×Y ) → (RL(X,Y ), Ŝ) is type III
⊺-including Galois connection, we have that, for all α,α′ ∈RL(X,Y ):
⊺ ≤ (α,α′)ŜX×Y ⇔ ⊺ ≤ (α,α′)SX×Y .
Moreover, the following equivalences, for all α,α′ ∈RL(X,Y ) hold:
⊺ ≤ (α,α′)SX×Y ⇔ ⊺ ≤ ⋀x∈Xy∈Y (x, y)α → (x, y)α′ ⇔ ⊺ ≤ (x, y)α → (x, y)α′,∀x ∈
X,y ∈ Y ⇔ (x, y)α ≤ (x, y)α′⇔ α ≤ α′,∀x ∈X,y ∈ Y .
Hence, ⊺ ≤ (α,α′)Ŝ ⇔ α ≤ α′, i.e. Ŝ induce the same order as SX×Y on RL(X,Y ),
that is the natural ordering of the w-ceo algebra (RL(X,Y ),→,ãXY ).

2. Let (L,→,⊺) be a w-ceo algebra.
Obviously, (IRL(X,Y ),IRL(X,Y ))⊺[↑] ∶ (RL(X,Y ),SX×Y ) → (RL(X,Y ),SX×Y ) is
type III ⊺-including Galois connection, for all X,Y and then the diagram

(RL(X,Y ),SX×Y )
χ

))TTTTTTTTTTTTTTT

(RL(Z,X),SZ×X)
ψ

55jjjjjjjjjjjjjjj

ϕ
// (RL(Y,Z),SY ×Z)

with ϕ,ψ,χ determined as in the proof of Proposition 5.1.20, is a ⊺-including Galois
L-triangle if and only if L is distributive.

3. If (L,→,⊺) is a symmetrical cdeo algebra, the dual implication ¨ induces the
same order as →. Let X,Y be two sets and let α,α′ ∈ RL(X,Y ) be two L-
relations; hence for all x ∈ X,y ∈ Y : ⊺ ≤ (x, y)α → (x, y)α′ ⇔ ⊺ ≤ (x, y)α ¨(x, y)α′. So ⊺ ≤ ⋀x∈Xy∈Y (x, y)α → (x, y)α′ ⇔ ⊺ ≤ ⋀x∈Xy∈Y (x, y)α ¨ (x, y)α′, i.e.

⊺ ≤ (α,α′)SX×Y ⇔ ⊺ ≤ (α,α′)S̃X×Y , for all α,α′ ∈RL(X,Y ).
Therefore, (IRL(X,Y ),IRL(X,Y ))⊺[↑] ∶ (RL(X,Y ),SX×Y ) → (RL(X,Y ), S̃X×Y ) is a
type III ⊺-including Galois connection.
Hence, the diagram

(RL(X,Y ), S̃X×Y )
χ

))SSSSSSSSSSSSSSS

(RL(Z,X), S̃Z×X)
ψ

55kkkkkkkkkkkkkkk

ϕ
// (RL(Y,Z), S̃Y ×Z)

with ϕ,ψ,χ determined as in the proof of Proposition 5.1.20 and all the diagrams
that can be obtained by considering, arbitrarily, in each vertex either the subset-
hood degree L-relation or the dual subsethood degree L-relation are ⊺-including
Galois L-triangle.

The symmetrical cdeo algebras can be characterized as follows.
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Proposition 5.1.22. Let L = (L,→,⊺) be a w-ceo algebra. L is a symmetrical
cdeo algebra if and only if for any triple of sets (X,Y,Z) there exist and are unique
ψ ∶RL(Z,X) ×RL(X,Y )→RL(Y,Z), χ ∶ RL(X,Y ) × RL(Y,Z) → RL(Z,X) such
that, for all S1 ∶ RL(Z,X) × RL(Z,X) → L, S2 ∶ RL(Y,Z) × RL(Y,Z) → L and
S3 ∶RL(X,Y ) ×RL(X,Y )→ L such that:
- (IRL(Z,X),IRL(Z,X))⊺[↑] ∶ (RL(Z,X),SZ×X)→ (RL(Z,X),S1);
- (IRL(Y,Z),IRL(Y,Z))⊺[↑] ∶ (RL(Y,Z),SY ×Z)→ (RL(Y,Z),S2);
- (IRL(X,Y ),IRL(X,Y ))⊺[↑] ∶ (RL(X,Y ),SX×Y )→ (RL(X,Y ),S3),
are type III ⊺-including Galois connections, the diagram

(RL(X,Y ),S3)
χ

))RRRRRRRRRRRRR

(RL(Z,X),S1)
ψ

55lllllllllllll

ϕ
// (RL(Y,Z),S2)

where ϕ ∶ RL(Z,X) ×RL(Y,Z) → RL(X,Y ) is defined by (ρ, σ)ϕ = ρ− � σ−, for all ρ ∈
RL(Z,X), σ ∈ RL(Y,Z), is a ⊺-including Galois L-triangle and the following condition
holds:(a) ∀X,Y ∈ ∣Set∣: (IRL(X,Y ),IRL(X,Y ))⊺[↑] ∶ (RL(X,Y ),SX×Y ) → (RL(X,Y ),SχL

X×Y ),
where χL ∶ ×L→ L, (a, b)↦ (a, b)χL = (aX×Y , bY ×Z)χ.

Proof. “ ⇒ ” The ⊺-including Galois L-triangle may be determined as in the proof of
Proposition 5.1.20; moreover one can see that χ is defined, for any σ ∈ RL(Y,Z), τ ∈
RL(X,Y ), by (τ, σ)χ = (τ�̃σ)− and, if ρ ∈RL(Z,X), (ρ, τ)ψ = (ρ� τ)−. In fact, χL =¨
and consequently SχL

X×Y = S̃X×Y . Now, since → and ¨ induce the same order on L, the
following hold, for all α,α′ ∈RL(X,Y ): ⊺ ≤ (x, y)α→ (x, y)α′⇔ ⊺ ≤ (x, y)α¨ (x, y)α′,
for all x ∈X,y ∈ Y .
Hence, ⊺ ≤ ⋀x∈Xy∈Y (x, y)α → (x, y)α′ ⇔ ⊺ ≤ ⋀x∈Xy∈Y (x, y)α ¨ (x, y)α′, that is equiva-

lent to ⊺ ≤ (α,α′)SX×Y ⇔ ⊺ ≤ (α,α′)S̃X×Y .
So, (IRL(X,Y ),IRL(X,Y ))⊺[↑] ∶ (RL(X,Y ),SX×Y )→ (RL(X,Y ), S̃X×Y ).
“ ⇐ ” As in the proof of Proposition 5.1.20, ψ and χ induce on L two operations ψL
and χL such that, for all a, b, c ∈ L: c ≤ a → b ⇔ (a, c)ψL ≤ b ⇔ a ≤ (c, b)χL. In
fact, L is a cdeo algebra and ψL = ⊗. Now, the condition (a) gives the equivalence
⊺ ≤ (τ, τ ′)SχL

X×Y ⇔ ⊺ ≤ (τ, τ ′)SX×Y , as in Remark 5.1.21. Then, for any b, c ∈ L choosing(x, y)τ = c and (x, y)τ ′ = b, for all x ∈X,y ∈ Y , we have ⊺ ≤ (c, b)χL⇔ ⊺ ≤ c→ b⇔ c ≤ b.
Using the above equivalences, for a = ⊺ and for all b, c ∈ L, the following hold:
c ≤ ⊺ → b ⇔ ⊺ ≤ (c, b)χL ⇔ c ≤ b. So, by Remark 2.1.12 and Theorem 2.1.21, it
follows that L is symmetrical.

Proposition 5.1.23. Let L = (L,→,⊺) be a w-ceo algebra. L is an associative
cdeo algebra if and only if for any triple of sets (X,Y,Z) there exist and are unique
ψ ∶RL(Z,X) ×RL(X,Y )→RL(Y,Z), χ ∶ RL(X,Y ) × RL(Y,Z) → RL(Z,X) such
that, for all S1 ∶ RL(Z,X) × RL(Z,X) → L, S2 ∶ RL(Y,Z) × RL(Y,Z) → L and
S3 ∶RL(X,Y ) ×RL(X,Y )→ L such that:
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- (IRL(Z,X),IRL(Z,X))⊺[↑] ∶ (RL(Z,X),SZ×X)→ (RL(Z,X),S1);
- (IRL(Y,Z),IRL(Y,Z))⊺[↑] ∶ (RL(Y,Z),SY ×Z)→ (RL(Y,Z),S2);
- (IRL(X,Y ),IRL(X,Y ))⊺[↑] ∶ (RL(X,Y ),SX×Y )→ (RL(X,Y ),S3),
are type III ⊺-including Galois connections, the diagram

(RL(X,Y ),S3)
χ

))RRRRRRRRRRRRR

(RL(Z,X),S1)
ψ

55lllllllllllll

ϕ
// (RL(Y,Z),S2)

where ϕ ∶ RL(Z,X) ×RL(Y,Z) → RL(X,Y ) is defined by (ρ, σ)ϕ = ρ− � σ−, for all
ρ ∈RL(Z,X), σ ∈RL(Y,Z), is a ⊺-including Galois L-triangle and the following condi-
tion holds:(b) ∀ρ ∈ RL(Z,X): (ψρ-ϕρ) ∶ (RL(X,Y ),SY ×Z) → (RL(Y,Z),SX×Y ) is a type
III global connection, where ψρ ∶ RL(X,Y ) → RL(Y,Z), τ ↦ (τ)ψρ = (ρ, τ)ψ and
ϕρ ∶RL(Y,Z)→RL(X,Y ), σ ↦ (σ)ϕρ = (ρ, σ)ϕ.

Proof. “⇒ ” The proof runs as in Proposition 5.1.20 to get the required triangle, where,
for all ρ ∈RL(Z,X), σ ∈RL(Y,Z), τ ∈RL(X,Y ) ϕ ∶RL(Z,X) ×RL(Y,Z) →RL(X,Y )
is defined by (ρ, σ)ϕ = ρ− � σ− and ψ ∶ RL(Z,X) ×RL(X,Y ) → RL(Z,Y ) is defined
by (ρ, τ)ψ = (ρ � τ)−, is a ⊺-including Galois L-triangle. Since L is an associative
cdeo algebra, for all ρ ∈ RL(Z,X), σ ∈ RL(Y,Z), τ ∈ RL(X,Y ), x ∈ X,y ∈ Y, z ∈ Z,((z, x)ρ⊗ (x, y)τ)→ (y, z)σ = (x, y)τ → ((z, x)ρ→ (y, z)σ).
Hence, we have that:

⋀x∈Xy∈Y z∈Z((z, x)ρ⊗ (x, y)τ)→ (y, z)σ = ⋀x∈Xy∈Y z∈Z(x, y)τ → ((z, x)ρ→ (y, z)σ).
By using the distributivity assumption, the following equality holds:

⋀y∈Y z∈Z(⋁x∈X(z, x)ρ ⊗ (x, y)τ) → (y, z)σ = ⋀x∈Xy∈Y (x, y)τ → (⋀z∈Z(z, x)ρ → (y, z)σ),
i.e. ⋀y∈Y z∈Z(y, z)(ρ� τ)− → (y, z)σ = ⋀x∈Xy∈Y (x, y)τ → (x, y)(ρ− � σ−).
Fixing ρ ∈ RL(Z,X) and considering ψρ ∶ RL(X,Y ) → RL(Y,Z), τ ↦ (τ)ψρ = (ρ, τ)ψ =(ρ � τ)− and ϕρ ∶ RL(Y,Z) → RL(X,Y ), σ ↦ (σ)χρ = (ρ, σ)ϕ = ρ− � σ−, we have the
following, for all σ ∈ RL(Y,Z), τ ∈ RL(X,Y ) ((τ))ψρ, σ)SY ×Z = (τ, (σ)ϕρ)SX×Y , i.e.(ψρ-ϕρ) ∶ (RL(X,Y ),SX×Y )→ (RL(Y,Z),SY ×Z).
“ ⇐ ” By Proposition 5.1.20, it follows that L is a cdeo algebra and in particular
the operation ψL induced from ψ is the adjoint product. Since, by assumption,(ψρ-ϕρ) ∶ (RL(X,Y ),SY ×Z) → (RL(Y,Z),SX×Y ), for all ρ ∈ RL(Z,X), choosing, in
particular, the constant L-relations ρ, σ, τ defined by (z, x)ρ = b, (x, y)τ = a, (y, z)σ = c,
with a, b, c ∈ L, for all x ∈ X,y ∈ Y, z ∈ Z we have that (b⊗ a) → c = a → (b → c). Hence,
by arbitrariness of a, b, c ∈ L, it follows that L is associative.

The following result is an easy consequence of the above propositions.

Corollary 5.1.24. Let L = (L,→,⊺) be a w-ceo algebra. L is an associative sym-
metrical cdeo algebra if and only if for any triple of sets (X,Y,Z) there exist and are
unique ψ ∶ RL(Z,X) ×RL(X,Y ) → RL(Y,Z), χ ∶ RL(X,Y ) ×RL(Y,Z) → RL(Z,X)
such that, for all S1 ∶ RL(Z,X) ×RL(Z,X) → L, S2 ∶ RL(Y,Z) ×RL(Y,Z) → L and
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S3 ∶RL(X,Y ) ×RL(X,Y )→ L such that:
- (IRL(Z,X),IRL(Z,X))⊺[↑] ∶ (RL(Z,X),SZ×X)→ (RL(Z,X),S1);
- (IRL(Y,Z),IRL(Y,Z))⊺[↑] ∶ (RL(Y,Z),SY ×Z)→ (RL(Y,Z),S2);
- (IRL(X,Y ),IRL(X,Y ))⊺[↑] ∶ (RL(X,Y ),SX×Y )→ (RL(X,Y ),S3),
are type III ⊺-including Galois connections, the diagram

(RL(X,Y ),S3)
χ

))RRRRRRRRRRRRR

(RL(Z,X),S1)
ψ

55lllllllllllll

ϕ
// (RL(Y,Z),S2)

where ϕ ∶ RL(Z,X) ×RL(Y,Z) → RL(X,Y ) is defined by (ρ, σ)ϕ = ρ− � σ−, for all ρ ∈
RL(Z,X), σ ∈RL(Y,Z), is a ⊺-including Galois L-triangle and the following conditions
hold:

(a) ∀X,Y ∈ ∣Set∣: (IRL(X,Y ),IRL(X,Y ))⊺[↑] ∶ (RL(X,Y ),SX×Y )→ (RL(X,Y ),SχL

X×Y ).
(b) ∀ρ ∈RL(Z,X), (ψρ-ϕρ) ∶ (RL(X,Y ),SY ×Z)→ (RL(Y,Z),SX×Y ).

Proof. The statement is an easy consequence of Propositions 5.1.22 and 5.1.23.

Moreover, it is possible to characterize the associative symmetrical cdeo algebras as
follows.

Proposition 5.1.25. Let L = (L,→,⊺) be a w-ceo algebra. L is an associative sym-
metrical cdeo algebra if and only if for any triple of sets (X,Y,Z) there exist and are
unique ψ ∶ RL(Z,X) ×RL(X,Y ) → RL(Y,Z), χ ∶ RL(X,Y ) ×RL(Y,Z) → RL(Z,X)
such that, for all S1 ∶ RL(Z,X) ×RL(Z,X) → L, S2 ∶ RL(Y,Z) ×RL(Y,Z) → L and
S3 ∶RL(X,Y ) ×RL(X,Y )→ L such that:
- (IRL(Z,X),IRL(Z,X))⊺[↑] ∶ (RL(Z,X),SZ×X)→ (RL(Z,X),S1);
- (IRL(Y,Z),IRL(Y,Z))⊺[↑] ∶ (RL(Y,Z),SY ×Z)→ (RL(Y,Z),S2);
- (IRL(X,Y ),IRL(X,Y ))⊺[↑] ∶ (RL(X,Y ),SX×Y )→ (RL(X,Y ),S3),
are type III ⊺-including Galois connections, the diagram

(RL(X,Y ),S3)
χ

))RRRRRRRRRRRRR

(RL(Z,X),S1)
ψ

55lllllllllllll

ϕ
// (RL(Y,Z),S2)

where ϕ ∶ RL(Z,X) ×RL(Y,Z) → RL(X,Y ) is defined by (ρ, σ)ϕ = ρ− � σ−, for all ρ ∈
RL(Z,X), σ ∈RL(Y,Z), is a ⊺-including Galois L-triangle and the following conditions
hold:

(a) ∀X,Y ∈ ∣Set∣: (IRL(X,Y ),IRL(X,Y ))⊺[↑] ∶ (RL(X,Y ),SX×Y )→ (RL(X,Y ),SχL

X×Y ).
(c) ∀σ ∈ RL(Y,Z): [ϕσ-χσ] ∶ (RL(Z,X),SZ×X) → (RL(X,Y ),SχL

X×Y ) is a type
I global connection, where ϕσ ∶ RL(Z,X) → RL(X,Y ), ρ ↦ (ρ)ϕσ = (ρ, σ)ϕ,
χσ ∶RL(X,Y )→RL(Z,X), τ ↦ (τ)χσ = (τ, σ)χ.
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Proof. By Propositions 5.1.20 and 5.1.22 the symmetry and distributivity of L is equiva-
lent to the existence of the ⊺-including Galois L-triangle described in the statement and
to the condition (a). So, we only need to prove that the associativity of L is equivalent
to the condition (c).
“ ⇒ ” If L is associative, then, for all a, b, c ∈ L: a → (b ¨ c) = b ¨ (a → c). Then, for
all sets X,Y,Z, for all L-relations ρ ∈RL(Z,X), σ ∈RL(Y,Z), τ ∈RL(X,Y ) and for all
x ∈X,y ∈ Y, z ∈ Z, the following equality holds:(z, x)ρ→ ((x, y)τ ¨ (y, z)σ) = (x, y)τ ¨ ((z, x)ρ→ (z, y)σ).
So, ⋀x∈Xy∈Y z∈Z(z, x)ρ→ ((x, y)τ ¨ (y, z)σ) = ⋀x∈Xy∈Y z∈Z(x, y)τ ¨ ((z, x)ρ→ (z, y)σ).
From distributivity, we have that:

⋀x∈Xz∈Z(z, x)ρ → (⋀y∈Y (x, y)τ ¨ (y, z)σ) = ⋀x∈Xy∈Y (x, y)τ ¨ (⋀z∈Z(z, x)ρ → (z, y)σ),
i.e. ⋀x∈Xz∈Z(z, x)ρ→ ((z, x)(τ�̃σ)−) = ⋀x∈Xy∈Y (x, y)τ ¨ ((x, y)(ρ− � σ−).
Hence, for all σ ∈ RL(Y,Z), [ϕσ-χσ] ∶ (RL(Z,X),SZ×X) → (RL(X,Y ), S̃X×Y ) is a
type I global connection, where ϕσ ∶ RL(Z,X) → RL(X,Y ), ρ ↦ (ρ)ϕσ = ρ− � σ−,
χσ ∶RL(X,Y )→RL(Z,X), τ ↦ (τ)χσ = (τ�̃σ)− and S̃X×Y ∶RL(X,Y )×RL(X,Y )→ L

is the dual subsethood degree.
“⇐ ” The symmetry of L assures the existence and uniqueness of ¨; hence χL =¨ and
SχL

X×Y = S̃X×Y . By assumption (c), choosing the constant L-relations ρ ∈ RL(Z,X), σ ∈
RL(Y,Z), τ ∈ RL(X,Y ) defined as follows (z, x)ρ = a, (y, z)σ = b and (x, y)τ = c, with
a, b, c ∈ L, we have that a→ (b¨ c) = b¨ (a→ c). By arbitrariness of elements a, b, c ∈ L,
it follows that L is associative.

Remark 5.1.26. We note that the condition (a) of Proposition 5.1.25 can be replaced
by an equivalent condition, to characterize the symmetry condition.
In fact, by definition, if (L,→,⊺) is symmetrical cdeo algebra, there exists ¨∶ L×L→ L

such that (L,¨,⊺) is a w-ceo algebra, → and ¨ form a Galois connection and they
induce the same order; more explicitly, the latter condition is the following: a ≤ b⇔ ⊺ ≤
a→ b⇔ ⊺ ≤ a¨ b, for all a, b ∈ L.
Consider a triple of sets (X,Y,Z) and the L-relation ρ ∈RL(Z,X), σ ∈RL(Y,Z).
Then the following equivalence hold, for all x ∈ X,y ∈ Y, z ∈ Z: ⊺ ≤ (z, x)ρ → (y, z)σ⇔
⊺ ≤ (z, x)ρ¨ (y, z)σ, i.e. ⊺→ ((z, x)ρ→ (y, z)σ) = ⊺⇔ ⊺→ ((z, x)ρ¨ (y, z)σ) = ⊺.
So, ⋀x∈Xy∈Y z∈Z ⊺→ ((z, x)ρ→ (y, z)σ) = ⊺⇔ ⋀x∈Xy∈Y z∈Z ⊺→ ((z, x)ρ¨ (y, z)σ) = ⊺.
Thanks to right-distributivity, one has that:

⋀x∈Xy∈Y ⊺ → (⋀z∈Z(z, x)ρ → (y, z)σ) = ⊺ ⇔ ⋀x∈Xy∈Y ⊺ → (⋀z∈Z(z, x)ρ ¨ (y, z)σ) = ⊺,
that is equivalent to

⋀x∈Xy∈Y ⊺→ (x, y)(ρ− � σ−) = ⊺⇔ ⋀x∈Xy∈Y ⊺→ (x, y)(ρ−�̃σ−) = ⊺.
Hence, it follows that:

⋀x∈Xy∈Y (x, y)ãXY → (x, y)(ρ− � σ−) = ⊺⇔ ⋀x∈Xy∈Y (x, y)ãXY → (x, y)(ρ−�̃σ−) = ⊺,
which means (ãXY , ρ− � σ−)SX×Y = ⊺⇔ (ãXY , ρ−�̃σ−)SX×Y = ⊺.

Now we see that we can characterize commutativity of a cdeo algebra replacing the
Galois connection of the condition (a) of Proposition 5.1.22 by the corresponding global
connection.
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Proposition 5.1.27. Let L = (L,→,⊺) be a w-ceo algebra. L is a commutative
cdeo algebra if and only if for any triple of sets (X,Y,Z) there exist and are unique
ψ ∶RL(Z,X) ×RL(X,Y )→RL(Y,Z), χ ∶ RL(X,Y ) × RL(Y,Z) → RL(Z,X) such
that, for all S1 ∶ RL(Z,X) × RL(Z,X) → L, S2 ∶ RL(Y,Z) × RL(Y,Z) → L and
S3 ∶RL(X,Y ) ×RL(X,Y )→ L such that:
- (IRL(Z,X),IRL(Z,X))⊺[↑] ∶ (RL(Z,X),SZ×X)→ (RL(Z,X),S1);
- (IRL(Y,Z),IRL(Y,Z))⊺[↑] ∶ (RL(Y,Z),SY ×Z)→ (RL(Y,Z),S2);
- (IRL(X,Y ),IRL(X,Y ))⊺[↑] ∶ (RL(X,Y ),SX×Y )→ (RL(X,Y ),S3),
are type III ⊺-including Galois connections, the diagram

(RL(X,Y ),S3)
χ

))RRRRRRRRRRRRR

(RL(Z,X),S1)
ψ

55lllllllllllll

ϕ
// (RL(Y,Z),S2)

where ϕ ∶ RL(Z,X) ×RL(Y,Z) → RL(X,Y ) is defined by (ρ, σ)ϕ = ρ− � σ−, for all ρ ∈
RL(Z,X), σ ∈ RL(Y,Z), is a ⊺-including Galois L-triangle and the following condition
holds:(a′) ∀X,Y ∈ ∣Set∣: (IRL(X,Y ),IRL(X,Y )) ∶ (RL(X,Y ),SX×Y ) → (RL(X,Y ),SχL

X×Y ),
where χL ∶ ×L→ L, (a, b)↦ (a, b, )χL = (aX×Y , bY ×Z)χ.

Proof. Taking into account the proof of Proposition 5.1.22 we only need to prove that
the stronger requirement here assumed is equivalent to the equality →=¨, where ¨= χL.
In fact, it follows from this equality that for all τ, τ ′ ∈RL(X,Y ) and for all x ∈X,y ∈ Y :(x, y)τ → (x, y)τ ′ = (x, y)τ ¨ (x, y)τ ′ = (x, y)τχL(x, y)τ ′; whence (τ, τ ′)SX×Y =(τ, τ ′)SχL

X×Y .
Conversely, the latter equality applied to the constant relations τ, τ ′ with values a, b ∈ L,
gives the equality a→ b = a¨ b, for all a, b ∈ L.

Corollary 5.1.28. Let L = (L,→,⊺) be a w-ceo algebra. L is an associative commu-
tative cdeo algebra if and only if for any triple of sets (X,Y,Z) there exist and are
unique ψ ∶ RL(Z,X) ×RL(X,Y ) → RL(Y,Z), χ ∶ RL(X,Y ) ×RL(Y,Z) → RL(Z,X)
such that, for all S1 ∶ RL(Z,X) ×RL(Z,X) → L, S2 ∶ RL(Y,Z) ×RL(Y,Z) → L and
S3 ∶RL(X,Y ) ×RL(X,Y )→ L such that:
- (IRL(Z,X),IRL(Z,X))⊺[↑] ∶ (RL(Z,X),SZ×X)→ (RL(Z,X),S1);
- (IRL(Y,Z),IRL(Y,Z))⊺[↑] ∶ (RL(Y,Z),SY ×Z)→ (RL(Y,Z),S2);
- (IRL(X,Y ),IRL(X,Y ))⊺[↑] ∶ (RL(X,Y ),SX×Y )→ (RL(X,Y ),S3),
are type III ⊺-including Galois connections, the diagram

(RL(X,Y ),S3)
χ

))RRRRRRRRRRRRR

(RL(Z,X),S1)
ψ

55lllllllllllll

ϕ
// (RL(Y,Z),S2)
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where ϕ ∶ RL(Z,X) ×RL(Y,Z) → RL(X,Y ) is defined by (ρ, σ)ϕ = ρ− � σ−, for all ρ ∈
RL(Z,X), σ ∈RL(Y,Z), is a ⊺-including Galois L-triangle and the following conditions
hold:

(a’) ∀X,Y ∈ ∣Set∣: (IRL(X,Y ),IRL(X,Y )) ∶ (RL(X,Y ),SX×Y )→ (RL(X,Y ),SχL

X×Y ).
(b) ∀ρ ∈RL(Z,X): (ψρ-ϕρ) ∶ (RL(X,Y ),SY ×Z)→ (RL(Y,Z),SX×Y ). ◻

Corollary 5.1.29. Let L = (L,→,⊺) be a w-ceo algebra. L is an associative commu-
tative cdeo algebra if and only if for any triple of sets (X,Y,Z) there exist and are
unique ψ ∶ RL(Z,X) ×RL(X,Y ) → RL(Y,Z), χ ∶ RL(X,Y ) ×RL(Y,Z) → RL(Z,X)
such that, for all S1 ∶ RL(Z,X) ×RL(Z,X) → L, S2 ∶ RL(Y,Z) ×RL(Y,Z) → L and
S3 ∶RL(X,Y ) ×RL(X,Y )→ L such that:
- (IRL(Z,X),IRL(Z,X))⊺[↑] ∶ (RL(Z,X),SZ×X)→ (RL(Z,X),S1);
- (IRL(Y,Z),IRL(Y,Z))⊺[↑] ∶ (RL(Y,Z),SY ×Z)→ (RL(Y,Z),S2);
- (IRL(X,Y ),IRL(X,Y ))⊺[↑] ∶ (RL(X,Y ),SX×Y )→ (RL(X,Y ),S3),
are type III ⊺-including Galois connections, the diagram

(RL(X,Y ),S3)
χ

))RRRRRRRRRRRRR

(RL(Z,X),S1)
ψ

55lllllllllllll

ϕ
// (RL(Y,Z),S2)

where ϕ ∶ RL(Z,X) ×RL(Y,Z) → RL(X,Y ) is defined by (ρ, σ)ϕ = ρ− � σ−, for all ρ ∈
RL(Z,X), σ ∈RL(Y,Z), is a ⊺-including Galois L-triangle and the following conditions
hold:

(a’) ∀X,Y ∈ ∣Set∣: (IRL(X,Y ),IRL(X,Y )) ∶ (RL(X,Y ),SX×Y )→ (RL(X,Y ),SχL

X×Y ).
(b) ∀σ ∈RL(Y,Z): [ϕσ-χσ] ∶ (RL(Z,X),SZ×X)→ (RL(X,Y ),SχL

X×Y . ◻

Remark 5.1.30. We note that the condition required in the above proposition(IRL(X,Y ),IRL(X,Y )) ∶ (RL(X,Y ),SX×Y ) → (RL(X,Y ),SχL

X×Y ) is equivalent to(β, β′)SX×Y = (β, β′)SχL

X×Y , for all β, β′ ∈ RL(X,Y ). Hence, choosing, in particular,
the constant L-relations β = bX×Y β′ = b′X×Y and for all x ∈ X,y ∈ Y , we have that:

⋀x∈Xy∈Y b → b′ = ⋀x∈Xy∈Y (b, b′)χL ⇔ b → b′ = (b, b′)χL. By arbitrariness of b, b′ ∈ L, it
follow that →= χL.
Hence, the global connection contained in the condition (a′) of the above proposition
forces χL to be equal to →.

Proposition 5.1.31. Let L = (L,→,⊺) be a w-ceo algebra. L is an associative and
commutative cdeo algebra if and only if for any triple of sets (X,Y,Z) there exist and
are unique ψ ∶RL(Z,X)×RL(X,Y )→RL(Y,Z), χ ∶RL(X,Y )×RL(Y,Z)→RL(Z,X)
such that, for all S1 ∶ RL(Z,X) ×RL(Z,X) → L, S2 ∶ RL(Y,Z) ×RL(Y,Z) → L and
S3 ∶RL(X,Y ) ×RL(X,Y )→ L such that:
- (IRL(Z,X),IRL(Z,X)) ∶ (RL(Z,X),SZ×X)→ (RL(Z,X),S1);
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- (IRL(Y,Z),IRL(Y,Z)) ∶ (RL(Y,Z),SY ×Z)→ (RL(Y,Z),S2);
- (IRL(X,Y ),IRL(X,Y )) ∶ (RL(X,Y ),SX×Y )→ (RL(X,Y ),S3),
are type III global connections, the diagram

(RL(X,Y ),S3)
χ

))RRRRRRRRRRRRR

(RL(Z,X),S1)
ψ

55lllllllllllll

ϕ
// (RL(Y,Z),S2)

where ϕ ∶ RL(Z,X) ×RL(Y,Z) → RL(X,Y ) is defined by (ρ, σ)ϕ = ρ− � σ−, for all
ρ ∈RL(Z,X), σ ∈RL(Y,Z), is a relational L-triangle and the following condition holds:(a′) for all sets X,Y : (IRL(X,Y ),IRL(X,Y )) ∶ (RL(X,Y ),SX×Y )→ (RL(X,Y ),SχL

X×Y ).
Proof. We note that the relational L-triangle in the statement is equivalent to the global
connections of conditions (b) and (c) of Corollaries 5.1.28 and 5.1.29.
Then, the proof of the statement follows easily from such Corollaries.

Corollary 5.1.32. Let (L,→,⊺) be a right-distributive w-ceo algebra. (L,→,⊺) is asso-
ciative and commutative if and only if, for any triple of sets (X,Y,Z), the diagram

(RL(X,Y ),SX×Y )
χ

))TTTTTTTTTTTTTTT

(RL(Z,X),SZ×X)
ψ

55jjjjjjjjjjjjjjj

ϕ
// (RL(Y,Z),SY ×Z)

where ϕ,ψ,χ are defined, for all ρ ∈RL(Z,X), σ ∈RL(Y,Z), τ ∈RL(X,Y ) by:

- (ρ, σ)ϕ = ρ− � σ−;

- (ρ, τ)ψ = (ρ� τ)−;

- (τ, σ)χ = (τ � σ)−
is a relational L-triangle. ◻

Further examples of the above defined L-triangles can be obtained involving the
intersection and the overlap degree L-relations defined in Section 3.2 instead of the
subsethood degree L-relations.
We recall from Section 3.2 that given a set X, a rigth-distributive w-ceo algebra (L,→,⊺)
with adjoint product ⊗, the intersection L-relation TX ∶ LX × LX → L is defined by(A,B)TX = ⋁x∈X(x)A ⊗ (x)B, for all A,B ∈ LX . If (L,→,⊺) is a symmetrical cdeo
algebra, we can also consider the dual intersection L-relation T̃X ∶ LX × LX → L

such that (A,B)T̃X = ⋁x∈X(x)A⊗̃(x)B, for all A,B ∈ LX . We notice that the equality(A,B)TX = (B,A)T̃X holds for all A,B ∈ LX .
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Remark 5.1.33. 1. Let X,Y be two sets and consider the L-relation from RL(X,Y )
to itself T ′X×Y ∶RL(X,Y ) ×RL(X,Y )→ L such that:(IRL(X,Y ),IRL(X,Y ))⊺[↑] ∶ (RL(X,Y ),T ′X×Y ) → (RL(X,Y ),TX×Y ) is a type III
⊺-including Galois connection.
Hence, for all α,α′ ∈RL(X,Y ): ⊺ ≤ (α,α′)T ′X×Y ⇔ ⊺ ≤ (α,α′)TX×Y .
Moreover, if (IRL(X,Y ),IRL(X,Y ))�(↑) ∶ (RL(X,Y ),T ′X×Y ) → (RL(X,Y ),TX×Y ),
we have that for all α,α′ ∈RL(X,Y ): (α,α′)T ′X×Y ≠ �⇔ (α,α′)TX×Y ≠ �.
If (IRL(X,Y ),IRL(X,Y )) ∶ (RL(X,Y ),T ′X×Y ) → (RL(X,Y ),TX×Y ) is a global con-
nection, then, obviously, for all α,α′ ∈RL(X,Y ): (α,α′)T ′X×Y = (α,α′)TX×Y , and
hence, T ′X×Y = TX×Y .

2. Let X,Y be two sets and consider T ψL,∨
X×Y ∶ RL(X,Y ) ×RL(X,Y ) → L such that

(IRL(X,Y ),IRL(X,Y ))⊺[↑] ∶ (RL(X,Y ),TX×Y ) → (RL(X,Y ),T ψL,∨
X×Y ) is a type III

⊺-including Galois connection.
Hence, for all α,α′ ∈RL(X,Y ): ⊺ ≤ (α,α′)T ψL,∨

X×Y ⇔ ⊺ ≤ (α,α′)TX×Y .
Choosing, in particular, the constant L-relations α = aX×Y and α′ = bX×Y , it is
easy to seen that ⊺ ≤ (a, b)ψL⇔ ⊺ ≤ a⊗b; by arbitrariness of a, b ∈ L, we have that
⊺ ≤ (a, b)ψL⇔ ⊺ ≤ a⊗ b, for all a, b, ∈ L.
If (IRL(X,Y ),IRL(X,Y )) ∶ (RL(X,Y ),TX×Y ) → (RL(X,Y ),T ψL,∨

X×Y ) is a global con-
nection, then, obviously, (a, b)ψL = a⊗ b, for all a, b, ∈ L and hence, this condition
forces ψL to be ⊗.

Proposition 5.1.34. Let L = (L,→,⊺) be a cdeo algebra.

1. If � is an element ⊗-irreducible of L, for any triple of sets (X,Y,Z) there exist
ψ ∶RL(Z,X)×RL(X,Y )→RL(Y,Z), χ ∶RL(X,Y )×RL(Y,Z)→RL(Z,X) such
that, for all T 1 ∶ RL(Z,X) ×RL(Z,X) → L, T 2 ∶ RL(Y,Z) ×RL(Y,Z) → L and
T 3 ∶RL(X,Y ) ×RL(X,Y )→ L such that:
- (IRL(Z,X),IRL(Z,X))�(↓) ∶ (RL(Z,X),TZ×X)→ (RL(Z,X),T 1);
- (IRL(Y,Z),IRL(Y,Z))�(↓) ∶ (RL(Y,Z),TY ×Z)→ (RL(Y,Z),T 2);
- (IRL(X,Y ),IRL(X,Y ))�(↓) ∶ (RL(X,Y ),TX×Y )→ (RL(X,Y ),T 3),
are type III �-excluding Tarski connections, the diagram

(RL(X,Y ),T 3)
χ

))RRRRRRRRRRRRR

(RL(Z,X),T 1)
ψ

55llllllllllllll

ϕ
// (RL(Y,Z),T 2)

where ϕ ∶ RL(Z,X) × RL(Y,Z) → RL(X,Y ) is defined by (ρ, σ)ϕ = ρ− � σ−,
for all ρ ∈ RL(Z,X), σ ∈ RL(Y,Z), is both a �-including Tarski L-triangle and
�-excluding Galois L-triangle.

2. (L,→,⊺) is an associative and commutative cdeo algebra if and only if for any
triple of sets (X,Y,Z) there exist ψ ∶ RL(Z,X) × RL(X,Y ) → RL(Y,Z),
χ ∶RL(X,Y ) ×RL(Y,Z)→RL(Z,X) such that the diagram
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(RL(X,Y ),TX×Y )
χ

))TTTTTTTTTTTTTTT

(RL(Z,X),TZ×X)
ψ

55jjjjjjjjjjjjjjj

ϕ
// (RL(Y,Z),TY ×Z)

where ϕ ∶ RL(Z,X) ×RL(Y,Z) → RL(X,Y ) is defined by (ρ, σ)ϕ = ρ− � σ−, for
all ρ ∈RL(Z,X), σ ∈RL(Y,Z), is a relational L-triangle.

Proof. 1. If � is ⊗-irreducible, one has that a⊗ (c⊗ b) = �⇔ a = �, b = �, c = �, for all
a, b, c ∈ L. Hence the following equivalences hold, for all a, b, c ∈ L:

a⊗ (c⊗ b) = �⇔ (a⊗ c)⊗ b = �⇔ c⊗ (a⊗ b) = �.
So, for all ρ ∈RL(Z,X), σ ∈RL(Y,Z), τ ∈RL(X,Y ) and for all x ∈X,y ∈ Y, z ∈ Z:(z, x)ρ⊗ ((x, y)τ ⊗ (y, z)σ) = �⇔((z, x)ρ⊗ (x, y)τ)⊗ (y, z)σ = �⇔(x, y)τ ⊗ ((z, x)ρ⊗ (y, z)σ) = �.
Hence, for all ρ ∈RL(Z,X), σ ∈RL(Y,Z), τ ∈RL(X,Y ):
⋁x∈X,y∈Y,z∈Z(z, x)ρ⊗ ((x, y)τ ⊗ (y, z)σ) = �⇔
⋁x∈X,y∈Y,z∈Z((z, x)ρ⊗ (x, y)τ)⊗ (y, z)σ = �⇔
⋁x∈X,y∈Y,z∈Z(x, y)τ ⊗ ((z, x)ρ⊗ (y, z)σ) = �.
From distributivity condition on L,it follows that:

⋁x∈X,z∈Z(z, x)ρ⊗ (⋁y∈Y (x, y)τ ⊗ (y, z)σ) = �⇔
⋁y∈Y,z∈Z(⋁x∈X(z, x)ρ⊗ (x, y)τ)⊗ (y, z)σ = �⇔
⋁x∈X,y∈Y (x, y)τ ⊗ (⋁z∈Z(z, x)ρ⊗ (y, z)σ) = �.
Then, we have that:

⋁x∈X,z∈Z(z, x)ρ⊗ (z, x)(τ � σ)− = �⇔
⋁y∈Y,z∈Z(y, z)(ρ� τ)− ⊗ (y, z)σ = �⇔
⋁x∈X,y∈Y (x, y)τ ⊗ (x, y)(ρ− � σ−)σ) = �,
that is

(ρ, ((τ � σ)−)TZ×X = �⇔ ((ρ� τ)−, σ)TY ×Z = �⇔ (τ, (ρ− � σ−)TX×Y = �.
Hence, for all T 1 ∶RL(Z,X) ×RL(Z,X)→ L, T 2 ∶RL(Y,Z) ×RL(Y,Z)→ L and
T 3 ∶RL(X,Y ) ×RL(X,Y )→ L such that:
- (IRL(Z,X),IRL(Z,X))�(↓) ∶ (RL(Z,X),TZ×X)→ (RL(Z,X),T 1);
- (IRL(Y,Z),IRL(Y,Z))�(↓) ∶ (RL(Y,Z),TY ×Z)→ (RL(Y,Z),T 2);
- (IRL(X,Y ),IRL(X,Y ))�(↓) ∶ (RL(X,Y ),TX×Y )→ (RL(X,Y ),T 3),
by Remark 5.1.33 we have that

(ρ, ((τ � σ)−)T 1 = �⇔ ((ρ� τ)−, σ)T 2) = �⇔ (τ, (ρ− � σ−)T 3 = �.

Hence the diagram in the statement, where ψ ∈R(RL(Y,Z))(R(Z,X),R(X,Y ))
and χ ∈ R(RL(Z,X))(R(Y,Z),R(X,Y )) are defined, for all ρ ∈ RL(Z,X), σ ∈
RL(Y,Z), τ ∈RL(X,Y ) by:
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- (ρ, τ)ψ = (ρ� τ)−;

- (τ, σ)χ = (τ � σ)−
is a �-including Tarski L-triangle. As already seen in Section 4.5, this is equivalent
to say that the diagram is a �-excluding Galois L-triangle, too.

2. Associativity and commutativity of L are equivalent to the equality, for all a, b, c ∈
L, a ⊗ (c ⊗ b) = (a ⊗ c) ⊗ b = c ⊗ (a ⊗ b). So, we can prove easily the statement,
with the similar arguments used in the item (1) and in Proposition 5.1.18, using
Remark 5.1.33.

Remark 5.1.35. We note that the result in the item (1) of Proposition 5.1.18 cannot be
extended to many-valued relations in the shape of the item (1) of the above Proposition,
even if L is symmetrical.
In fact, on one side we have that, for all a, b, c ∈ L:

a⊗ (c⊗ b) = ⊺⇔ (a⊗ c)⊗ b = ⊺⇔ c⊗ (a⊗ b) = ⊺
and, hence, for all ρ ∈RL(Z,X), σ ∈RL(Y,Z), τ ∈RL(X,Y ) and for all x ∈ X,y ∈ Y, z ∈
Z we have that: (z, x)ρ ⊗ ((x, y)τ ⊗ (y, z)σ) = ⊺⇔ ((z, x)ρ ⊗ (x, y)τ) ⊗ (y, z)σ = ⊺⇔(x, y)τ ⊗ ((z, x)ρ⊗ (y, z)σ) = ⊺.
On the other side, however the equivalences:

⋁x∈X,z∈Z(z, x)ρ⊗ (⋁y∈Y (x, y)τ ⊗ (y, z)σ) = ⊺⇔
⋁y∈Y,z∈Z(⋁x∈X(z, x)ρ⊗ (x, y)τ)⊗ (y, z)σ = ⊺⇔
⋁x∈X,y∈Y (x, y)τ ⊗ (⋁z∈Z(z, x)ρ⊗ (y, z)σ) = ⊺
need not be satisfied, for all ρ ∈RL(Z,X), σ ∈RL(Y,Z), τ ∈RL(X,Y ), unless ⊺ is com-
pletely ∨-irreducible.
Nevertheless, we remark that under the stronger assumption of associativity and com-
mutativity of (L,→,⊺), the diagram of the item (2) of the above Proposition is, of course,
an F -Galois L-triangle, for every upperset F ⊆ L, so, in particular, a ⊺-including and
�-excluding Galois L-triangle.

Remark 5.1.36. Of course, under symmetry assumption we can consider the dual
intersection degree L-relation T̃X ; recalling the equality (A,B)TX = (B,A)T̃X , for all
A,B ∈ LX , we have that the diagram

(RL(X,Y ), T̃X×Y )
χ̃

))SSSSSSSSSSSSSS

(RL(Z,X), T̃Z×X)
ψ̃

55kkkkkkkkkkkkkkk

ϕ̃
// (RL(Y,Z), T̃Y ×Z)

where ϕ,ψ,χ are defined for all ρ ∈RL(Z,X), σ ∈RL(Y,Z), τ ∈RL(X,Y ) by:

- (ρ, σ)ϕ̃ = (σ�̃ρ) = ρ− � σ−;
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- (ρ, τ)ψ̃ = τ−�̃ρ− = (ρ� τ)−;

- (τ, σ)χ̃ = σ−�̃τ− = (τ � σ)−,

is both a �-including Tarski L-triangle and a �-excluding Galois L triangle, if � is
⊗-irreducible (equivalently, ⊗̃-irreducible), since T̃X have the similar properties of TX ,
as ⊗̃ has the similar properties of ⊗.
Moreover, all the diagrams that can be obtained considering arbitrarily the intersec-
tion L-relation and the dual intersection in the vertices and ψ,χ,ϕ or ψ̃, χ̃, ϕ̃ on the
sides, are both �-including Tarski L-triangles and �-excluding Galois L triangles, if � is
⊗-irreducible (equivalently, ⊗̃-irreducible).

5.2 Double relational triangles

The results of Propositions 5.1.17, 5.1.18, 5.1.31 and 5.1.34 show how relational L-
triangles may be used to characterize the simultaneous occurrence of associativity and
commutativity of the algebra (L,→,⊺).
To deal with the symmetrical non-commutative case it is more convenient to consider
double L-triangles, as we shall see in this Section.

Definition 5.2.1. Let L be a possibly structured set and let (A,α1, α2), (B,β1, β2) and(C,γ1, γ2) be sets, each equipped with two fixed binary L-relations on it. The diagram

(C,γ1, γ2)
(χ, χ̃)

''NNNNNNNNNNN

(A,α1, α2)
(ψ, ψ̃)

77ppppppppppp

(ϕ, ϕ̃)
// (B,β1, β2)

with ϕ, ϕ̃ ∈ RC(A,B), ψ, ψ̃ ∈ RB(A,C) and χ, χ̃ ∈ RA(C,B) is called double triangle
of L-relations or, simply, double L-triangle.

Definition 5.2.2. Let L be a set and let ≡ be an equivalence relation on it. The double
triangle of L-relations

(C,γ1, γ2)
(χ, χ̃)

''NNNNNNNNNNN

(A,α1, α2)
(ψ, ψ̃)

77ppppppppppp

(ϕ, ϕ̃)
// (B,β1, β2)

is called double relational L-triangle if for all a ∈ A, b ∈ B, c ∈ C the following
equivalences hold:

1. ((a, c)ψ, b)β1 ≡ (c, (a, b)ϕ)γ1;

2. ((a, c)ψ̃, b)β2 ≡ (c, (a, b)ϕ̃)γ2;
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3. (a, (c, b)χ)α1 ≡ ((a, c)ψ̃, b)β1;

4. (a, (c, b)χ̃)α2 ≡ ((a, c)ψ, b)β2;

5. (a, (c, b)χ̃)α1 ≡ (c, (a, b)ϕ)γ2;

6. (a, (c, b)χ)α2 ≡ (c, (a, b)ϕ̃)γ1.

Double relational L-triangles are an enrichment of relational L-triangles. In fact,
there is no choice of the relation in each vertex and of the relation on each side that give
rise to a relational L-triangle; so, a double relational L-triangle cannot be obtained by
merging two relational L-triangles.
Conversely, the class of relational L-triangles may be embedded in that of double ones;
in fact, to any given relational L-triangle as in Definition 5.1.2 one can associate the
following

(C,γ, γ)
(χ, χ)

&&LLLLLLLLLL

(A,α,α)
(ψ, ψ)

88rrrrrrrrrr

(ϕ, ϕ)
// (B,β, β)

which is a double relational L-triangle.

Remark 5.2.3. In a similar way as in Remark 5.1.3 and Proposition 5.1.4, one can get
several equivalent descriptions of the double relational L-triangle of Definition 5.2.2 as
well as of those of the Definition 5.2.4 below.

Definition 5.2.4. With the above notation, the double triangle of L-relations

(C,γ1, γ2)
(χ, χ̃)

''NNNNNNNNNNN

(A,α1, α2)
(ψ, ψ̃)

77ppppppppppp

(ϕ, ϕ̃)
// (B,β1, β2)

is called double E relational L-triangle if for all a ∈ A, b ∈ B, c ∈ C the following
equalities hold:

1. ((a, c)ψ, b)β1 ≡E (c, (a, b)ϕ)γ1;

2. ((a, c)ψ̃, b)β2 ≡E (c, (a, b)ϕ̃)γ2;

3. (a, (c, b)χ)α1 ≡E ((a, c)ψ̃, b)β1;

4. (a, (c, b)χ̃)α2 ≡E ((a, c)ψ, b)β2;

5. (a, (c, b)χ̃)α1 ≡E (c, (a, b)ϕ)γ2;

6. (a, (c, b)χ)α2 ≡E (c, (a, b)ϕ̃)γ1.
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Of course, also in this case, the terminology introduced in Chapter 4 on equivalences
and connections may be borrowed for double relational L-triangles; so, assuming the
needed requirements on L, we shall speak of

- relative double relational L-triangles;

- upper and lower double relational L-triangles;

- E-including and E-excluding upper or lower double relational L-triangles;

- point-including and point-excluding upper or lower double relational L-
triangles.

We shall also call every kind of upper double relational L-triangle Galois double
L-triangle of that kind and every kind of lower double relational L-triangle Tarski
double L-triangle of that kind.
One can restate for double relational L-triangles most results proved for equivalences and
connections in Sections 4.2, 4.3 and 4.4 , except those involving the classification into
four types of equivalences and connections. In fact, double relational L-triangles have the
feature to gather all together the four types of connections as the following results shows.
To give details of this feature, we note that each arrow of a double triangle of L-relations
determines four maps defined on the vertices adjacent to the arrow and taking values in
the opposite vertex; so, with notation of Definition 5.2.2, for any a ∈ A, b ∈ B, c ∈ C we
consider

ϕa = (a,−)ϕ ∶ B → C, ψa = (a,−)ψ ∶ C → B;

ϕ̃a = (a,−)ϕ̃ ∶ B → C, ψ̃a = (a,−)ψ̃ ∶ C → B;

ϕb = (−, b)ϕ ∶ A→ C, χb = (−, b)χ ∶ C → A;

ϕ̃b = (−, b)ϕ̃ ∶ A→ C, χ̃b = (−, b)χ̃ ∶ C → A;

ψc = (−, c)ψ ∶ A→ B, χc = (c,−)χ ∶ B → A.

ψ̃c = (−, c)ψ̃ ∶ A→ B, χ̃c = (c,−)χ̃ ∶ B → A.

Then, in case of a double relational L-triangle, one has four families of connections
of the four different types; in fact, the assumed equivalences give soon

{(ψ̃c, χc) ∶ (A,α1)→ (B,β1)∣ c ∈ C}
{)χ̃c, ψc(∶ (B,β2)→ (A,α2)∣ c ∈ C} ;

{[χ̃b-ϕb] ∶ (C,γ2)→ (A,α1)∣ b ∈ B} ;

and the forth family comes from Proposition 4.2.11 and from Remark 5.2.3

{]χ̃b-ϕb[∶ (C, (γ2)−)→ (A, (α1)−)∣ b ∈ B} .
Similarly, every E double relational L-triangle, or every F double Galois L-triangle,
F ⊆ L any upperset, or every I double Tarski L-triangle, I ⊆ L any lowerset, gives four
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families of corresponding connections of the four different types.

The results of Section 4.2 on equivalences allow to state the following result, where
we assume, for items (3), (3’), (4), (4’) that ≡ is induced by a preorder relation in L.

Proposition 5.2.5. With the already stated notation, for the double triangle of L-
relations

(C,γ1, γ2)
(χ, χ̃)

''NNNNNNNNNNN

(A,α1, α2)
(ψ, ψ̃)

77ppppppppppp

(ϕ, ϕ̃)
// (B,β1, β2)

the following are equivalent:

(1) it is a double relational L-triangle;

(2) it is a double E relational L-triangle, for every E ⊆ L;

(2’) it is a double {x} relational L-triangle, for every x ∈ L;

(3) it is a double F relational L-triangle, for every upper set F ⊆ L;

(3’) it is a double x[↑] relational L-triangle, for every x ∈ L;

(4) it is a double I relational L-triangle, for every lower set I ⊆ L;

(4’) it is a double x[↓] relational L-triangle, for every x ∈ L.

5.2.1 Double relational triangles and cdeo algebras

Proposition 5.2.6. Let L = (L,→,⊺) be a w-ceo algebra.
L is distributive if and only if there exist ϕ̃, χ, χ̃, ψ, ψ̃ ∶ L × L → L such that,
for all α1, α2, β1, β2, γ1, γ2 ∶ L × L → L such that (iL, iL)⊺[↑] ∶ (L,→) → (L,αj),(iL, iL)⊺[↑] ∶ (L,→)→ (L,βj), (iL, iL)⊺[↑] ∶ (L,→)→ (L, γj), for j = 1,2, the diagram

(L, γ1, γ2)
(χ, χ̃)

''NNNNNNNNNNN

(L,α1, α2)
(ψ, ψ̃)

77ppppppppppp

(→, ϕ̃)
// (L,β1, β2)

is a ⊺[↑]-including double Galois L-triangle.

Proof. “⇒ ” As in Proposition 5.1.7, if L is distributive, then there exist ϕ̃ ∶ L ×L → L

and ⊗ ∶ L ×L→ L such that c ≤ a→ b⇔ a⊗ c ≤ b⇔ a ≤ (c, b)ϕ̃, for all a, b, c ∈ L.
Thanks to these equivalences, we can deduce the following conditions, which hold for all
a, b, c ∈ L:
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1. ⊺ ≤ ((a, c)⊗, b)→⇔ ⊺ ≤ (c, (a, b)→)→;

2. ⊺ ≤ ((c, a)⊗, b)→⇔ ⊺ ≤ (c, (a, b)ϕ̃)→;

3. ⊺ ≤ (a, (c, b)→)→⇔ ⊺ ≤ ((c, a)⊗, b)→;

4. ⊺ ≤ (a, (c, b)ϕ̃)→⇔ ⊺ ≤ ((a, c)⊗, b)→;

5. ⊺ ≤ (a, (c, b)ϕ̃)→⇔ ⊺ ≤ (c, (a, b)→)→;

6. ⊺ ≤ (a, (c, b)→)→⇔ ⊺ ≤ (c, (a, b)ϕ̃)→.

Hence, for all α1, α2, β1, β2, γ1, γ2 ∶ L × L → L such that (iL, iL)⊺[↑] ∶ (L,→) → (L,αj),(iL, iL)⊺[↑] ∶ (L,→) → (L,βj), (iL, iL)⊺[↑] ∶ (L,→) → (L, γj), for j = 1,2, there exist

χ, χ̃, ψ, ψ̃ ∶ L ×L→ L determined uniquely, for all a, b, c ∈ L, by:

- (c, b)χ = c→ b;

- (c, b)χ̃ = (c, b)ϕ̃;

- (a, c)ψ = a⊗ c;
- (a, c)ψ̃ = c⊗ a = a⊗op c

such that the following conditions hold:

1. ⊺ ≤ ((a, c)ψ, b)β1⇔ ⊺ ≤ (c, (a, b)ϕ)γ1;
2. ⊺ ≤ ((a, c)ψ̃, b)β2⇔ ⊺ ≤ (c, (a, b)ϕ̃)γ2;
3. ⊺ ≤ (a, (c, b)χ)α1⇔ ⊺ ≤ ((a, c)ψ̃, b)β1;
4. ⊺ ≤ (a, (c, b)χ̃)α2⇔ ⊺ ≤ ((a, c)ψ, b)β2;
5. ⊺ ≤ (a, (c, b)χ̃)α1⇔ ⊺ ≤ (c, (a, b)ϕ)γ2;
6. ⊺ ≤ (a, (c, b)χ)α2⇔ ⊺ ≤ (c, (a, b)ϕ̃)γ1.

Hence, the diagram in the statement is a ⊺[↑]-including double Galois L-triangle.
“⇐ ” By assumption that the diagram in the statement is a ⊺[↑]-including double Galois
L-triangle and by the conditions (1) and (5) of Definition 5.2.4, it follows that, for all
a, b, c ∈ L:

- ⊺ ≤ ((a, c)ψ, b)β1⇔ ⊺ ≤ (c, (a, b)→)γ1;
- ⊺ ≤ (a, (c, b)χ̃)α1⇔ ⊺ ≤ (c, (a, b)ϕ)γ2.

Since, by assumption, (iL, iL)⊺[↑] ∶ (L,→) → (L,αj), (iL, iL)⊺[↑] ∶ (L,→) → (L,βj),(iL, iL)⊺[↑] ∶ (L,→)→ (L, γj), for j = 1,2, we have that, for all a, b, c ∈ L:

- (a, c)ψ ≤ b⇔ c ≤ a→ b;
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- a ≤ (c, b)χ̃⇔ c ≤ a→ b.

So, as in Proposition 5.1.7, we can deduce that L is distributive.

Remark 5.2.7. 1. As in Remark 5.1.8, using the type III connection(iL, iL)⊺[↑] ∶ (L,→)→ (L,→), by Proposition 5.2.6 one can deduce that the
diagram

(L,→,→)
(χ, χ̃)

&&MMMMMMMMMMM

(L,→,→)
(ψ, ψ̃)

88qqqqqqqqqqq

(→, ϕ̃)
// (L,→,→)

is a ⊺[↑]-including double Galois L-triangle if and only if (L,→,⊺) is a cdeo algebra.

2. If (L,→,⊺) is a symmetrical cdeo algebra, ¨∶ L × L → L is the dual implication,
hence it induces the same order as →, then (iL, iL)⊺[↑] ∶ (L,→) → (L,¨), and
c ≤ a→ b⇔ a ≤ c¨ b, for all a, b, c ∈ L. Hence, by Proposition 5.2.6, the diagram

(L,¨,¨)
(χ, χ̃)

&&MMMMMMMMMMM

(L,¨,¨)
(ψ, ψ̃)

88qqqqqqqqqqq

(→,¨)
// (L,¨,→)

is a ⊺[↑]-including double Galois L-triangle.
Further L-triangles of the same kind can be obtained from this one by a free choice,
between → and ¨, of the two operations (e.g. L-relations) in each vertex.

Proposition 5.2.8. Let L = (L,→,⊺) be a w-ceo algebra.
L is a symmetrical cdeo algebra if and only if there exist ϕ̃, χ, χ̃, ψ, ψ̃ ∶ L × L → L such
that, for all α1, α2, β1, β2, γ1, γ2 ∶ L × L → L such that (iL, iL)⊺[↑] ∶ (L,→) → (L,αj),(iL, iL)⊺[↑] ∶ (L,→)→ (L,βj), (iL, iL)⊺[↑] ∶ (L,→)→ (L, γj), for j = 1,2, the diagram

(L, γ1, γ2)
(χ, χ̃)

''NNNNNNNNNNN

(L,α1, α2)
(ψ, ψ̃)

77ppppppppppp

(→, ϕ̃)
// (L,β1, β2)

is a ⊺[↑]-including double Galois L-triangle and the following condition holds:(a) (iL, iL)⊺[↑] ∶ (L,→)→ (L, χ̃).
Proof. “⇒ ” As in Proposition 5.1.9, if L is a symmetrical cdeo algebra, then there exist
ϕ̃ =¨∶ L × L → L, ⊗, ⊗̃ ∶ L × L → L such that c ≤ a → b⇔ a ⊗ c ≤ b⇔ a ≤ c ¨ b, for all
a, b, c ∈ L, → and ¨ induce the same order, i.e.(iL, iL)⊺[↑] ∶ (L,→)→ (L,¨) and ⊗ and ⊗̃
are opposite to each other.
Thanks to these properties, we can deduce the following conditions, which hold for all
a, b, c ∈ L:
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1. ⊺ ≤ ((a, c)⊗, b)→⇔ ⊺ ≤ (c, (a, b)→)→;

2. ⊺ ≤ ((a, c)⊗̃, b)→⇔ ⊺ ≤ (c, (a, b)¨)→;

3. ⊺ ≤ (a, (c, b)→)→⇔ ⊺ ≤ ((a, c)⊗̃, b)→;

4. ⊺ ≤ (a, (c, b)¨)→⇔ ⊺ ≤ ((a, c)⊗, b)→;

5. ⊺ ≤ (a, (c, b)¨)→⇔ ⊺ ≤ (c, (a, b)→)→;

6. ⊺ ≤ (a, (c, b)→)→⇔ ⊺ ≤ (c, (a, b)¨)→.

Hence, for all α1, α2, β1, β2, γ1, γ2 ∶ L × L → L such that (iL, iL)⊺[↑] ∶ (L,→) → (L,αj),(iL, iL)⊺[↑] ∶ (L,→) → (L,βj), (iL, iL)⊺[↑] ∶ (L,→) → (L, γj), for j = 1,2, there exist

χ, χ̃, ψ, ψ̃ ∶ L ×L→ L determined uniquely, for all a, b, c ∈ L, by:

- (c, b)χ = c→ b;

- (c, b)χ̃ = c¨ b;

- (a, c)ψ = a⊗ c;
- (a, c)ψ̃ = c⊗ a = a⊗̃c

such that the following conditions hold:

1. ⊺ ≤ ((a, c)ψ, b)β1⇔ ⊺ ≤ (c, (a, b)ϕ)γ1;
2. ⊺ ≤ ((a, c)ψ̃, b)β2⇔ ⊺ ≤ (c, (a, b)ϕ̃)γ2;
3. ⊺ ≤ (a, (c, b)χ)α1⇔ ⊺ ≤ ((a, c)ψ̃, b)β1;
4. ⊺ ≤ (a, (c, b)χ̃)α2⇔ ⊺ ≤ ((a, c)ψ, b)β2;
5. ⊺ ≤ (a, (c, b)χ̃)α1⇔ ⊺ ≤ (c, (a, b)ϕ)γ2;
6. ⊺ ≤ (a, (c, b)χ)α2⇔ ⊺ ≤ (c, (a, b)ϕ̃)γ1.

Hence, the diagram in the statement is a ⊺[↑]-including double Galois L-triangle.
“⇐ ” By assumption that the diagram in the statement is a ⊺[↑]-including double Galois
L-triangle and by Proposition 5.2.6, we can deduce that L is distributive. Moreover, as
in Proposition 5.1.9, we can prove that the condition (iL, iL)⊺[↑] ∶ (L,→)→ (L, χ̃) implies
that L is symmetrical.

Proposition 5.2.9. Let L = (L,→,⊺) be a w-ceo algebra.
L is an associative cdeo algebra if and only if there exist ϕ̃, χ, χ̃, ψ, ψ̃ ∶ L × L → L such
that, for all α1, α2, β1, β2, γ1, γ2 ∶ L × L → L such that (iL, iL)⊺[↑] ∶ (L,→) → (L,αj),(iL, iL)⊺[↑] ∶ (L,→) → (L,βj), (iL, iL)⊺[↑] ∶ (L,→) → (L, γj), for j = 1,2, there exist

χ, χ̃, ψ, ψ̃ ∶ L ×L→ L, the diagram
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(L, γ1, γ2)
(χ, χ̃)

''NNNNNNNNNNN

(L,α1, α2)
(ψ, ψ̃)

77ppppppppppp

(→, ϕ̃)
// (L,β1, β2)

is a ⊺[↑]-including double Galois L-triangle and the following condition holds:(b) for every b ∈ L, (ψb-→b) ∶ (L,→)→ (L,→).
Proof. By Proposition 5.2.6, the distributivity of L is equivalent to all the conditions
required in the statement, except the type I connection (ψb-→b) ∶ (L,→)→ (L,→).
As in Proposition 5.1.10, we can prove that the associativity of L is equivalent to the
condition (b).
Corollary 5.2.10. Let L = (L,→,⊺) be a w-ceo algebra. L is an associative sym-
metrical cdeo algebra if and only if there exist ϕ̃, χ, χ̃, ψ, ψ̃ ∶ L × L → L such that,
for all α1, α2, β1, β2, γ1, γ2 ∶ L × L → L such that (iL, iL)⊺[↑] ∶ (L,→) → (L,αj),(iL, iL)⊺[↑] ∶ (L,→)→ (L,βj), (iL, iL)⊺[↑] ∶ (L,→)→ (L, γj), for j = 1,2, the diagram

(L, γ1, γ2)
(χ, χ̃)

''NNNNNNNNNNN

(L,α1, α2)
(ψ, ψ̃)

77ppppppppppp

(→, ϕ̃)
// (L,β1, β2)

is a ⊺[↑]-including double Galois L-triangle and the following conditions hold:

(a) (iL, iL)⊺[↑] ∶ (L,→)→ (L, χ̃);
(b) for every b ∈ L, (ψb-→b) ∶ (L,→)→ (L,→).

Proof. The statement is an easy consequence of Propositions 5.2.8 and 5.2.9.

An alternative characterization of associative symmetrical cdeo algebra can be given
as follows.

Proposition 5.2.11. Let L = (L,→,⊺) be a w-ceo algebra. L is an associative sym-
metrical cdeo algebra if and only if there exist ϕ̃, χ, χ̃, ψ, ψ̃ ∶ L × L → L such that,
for all α1, α2, β1, β2, γ1, γ2 ∶ L × L → L such that (iL, iL)⊺[↑] ∶ (L,→) → (L,αj),(iL, iL)⊺[↑] ∶ (L,→)→ (L,βj), (iL, iL)⊺[↑] ∶ (L,→)→ (L, γj), for j = 1,2, the diagram

(L, γ1, γ2)
(χ, χ̃)

''NNNNNNNNNNN

(L,α1, α2)
(ψ, ψ̃)

77ppppppppppp

(→, ϕ̃)
// (L,β1, β2)

is a ⊺[↑]-including double Galois L-triangle and the following conditions hold:
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(a) (iL, iL)⊺[↑] ∶ (L,→)→ (L, χ̃);
(c) for every b ∈ L, [→b -χ̃b] ∶ (L, χ̃)→ (L,→).

Proof. The proof is similar to that of Proposition 5.1.12.

Proposition 5.2.12. Let L = (L,→,⊺) be a w-ceo algebra.
L is a commutative cdeo algebra if and only if there exist ϕ̃, χ, χ̃, ψ, ψ̃ ∶ L × L → L such
that, for all α1, α2, β1, β2, γ1, γ2 ∶ L × L → L such that (iL, iL)⊺[↑] ∶ (L,→) → (L,αj),(iL, iL)⊺[↑] ∶ (L,→)→ (L,βj), (iL, iL)⊺[↑] ∶ (L,→)→ (L, γj), for j = 1,2, the diagram

(L, γ1, γ2)
(χ, χ̃)

''NNNNNNNNNNN

(L,α1, α2)
(ψ, ψ̃)

77ppppppppppp

(→, ϕ̃)
// (L,β1, β2)

is a ⊺[↑]-including double Galois L-triangle and the following condition holds:(a′) (iL, iL) ∶ (L,→)→ (L, χ̃).
Proof. The proof is similar to that of Proposition 5.1.14.

Corollary 5.2.13. Let L = (L,→,⊺) be a w-ceo algebra. L is an associative and
commutative cdeo algebra if and only if there exist ϕ̃, χ, χ̃, ψ, ψ̃ ∶ L × L → L such
that, for all α1, α2, β1, β2, γ1, γ2 ∶ L × L → L such that (iL, iL)⊺[↑] ∶ (L,→) → (L,αj),(iL, iL)⊺[↑] ∶ (L,→)→ (L,βj), (iL, iL)⊺[↑] ∶ (L,→)→ (L, γj), for j = 1,2, the diagram

(L, γ1, γ2)
(χ, χ̃)

''NNNNNNNNNNN

(L,α1, α2)
(ψ, ψ̃)

77ppppppppppp

(→, ϕ̃)
// (L,β1, β2)

is a ⊺[↑]-including double Galois L-triangle and the following conditions hold:

(a’) (iL, iL) ∶ (L,→)→ (L, χ̃);
(b) for every b ∈ L, (ψb-→b) ∶ (L,→)→ (L,→).

Proof. The statement is an easy consequence of Corollary 5.2.10 and Proposition 5.2.12.

Proposition 5.2.14. Let L = (L,→,⊺) be a w-ceo algebra. L is an associative com-
mutative cdeo algebra if and only if there exist ϕ̃, χ, χ̃, ψ, ψ̃ ∶ L × L → L such that
for all α1, α2, β1, β2, γ1, γ2 ∶ L × L → L such that (iL, iL)⊺[↑] ∶ (L,→) → (L,αj),(iL, iL)⊺[↑] ∶ (L,→)→ (L,βj), (iL, iL)⊺[↑] ∶ (L,→)→ (L, γj), for j = 1,2, the diagram
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(L, γ1, γ2)
(χ, χ̃)

''NNNNNNNNNNN

(L,α1, α2)
(ψ, ψ̃)

77ppppppppppp

(→, ϕ̃)
// (L,β1, β2)

is a ⊺[↑]-including double Galois L-triangle and the following conditions hold:

(a’) (iL, iL) ∶ (L,→)→ (L, χ̃);
(b) for every b ∈ L, [→b -χb] ∶ (L,χ)→ (L,→).

Proof. The statement is an easy consequence of Corollary 5.1.12 and Proposition 5.2.12.

As anticipated in the introduction to this section, unlike what happens with L-
triangles, it is possible to characterize associativity of symmetrical cdeo algebra by means
of the existence of a particular double relational L-triangle, without getting the commu-
tativity condition. In fact, the following holds.

Proposition 5.2.15. Let L = (L,→,⊺) be a symmetrical cdeo algebra. L is associative
if and only if the diagram

(L,→,¨)
(→,¨)

&&MMMMMMMMMMM

(L,→,¨)
(⊗, ⊗̃)

88qqqqqqqqqqq

(→,¨)
// (L,→,¨)

is a double relational L-triangle.

Proof. “⇒ ” If L is a symmetrical associative cdeo algebra, then it has been proved in
Subsection 2.1.5 that the following equalities hold, for all a, b, c ∈ L:

1. ((a, c)⊗, b)→= (c, (a, b)→)→;

2. ((a, c)⊗̃, b)¨= (c, (a, b)¨)¨;

3. (a, (c, b)→)→= ((a, c)⊗̃, b)→;

4. (a, (c, b)¨)¨= ((a, c)⊗, b)¨;

5. (a, (c, b)¨)→= (c, (a, b)→)¨;

6. (a, (c, b)→)¨= (c, (a, b)¨)→.

So, the diagram in the statement is a double relational L-triangle.
“⇐ ” It has been seen in Subsection 2.1.5 how the first condition (1) that, by Definition
5.2.2, characterize the double relational L-triangles implies that L is associative.

Proposition 5.2.16. Let (L,→,⊺) be a right-distributive w-ceo algebra.
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1. If (L,→,⊺) is a symmetrical cdeo algebra, for all α1, α2, β1, β2,γ1, γ2 ∶ L ×L→ L

such that (iL, iL)⊺[↑] ∶ (L,⊗) → (L,αj), (iL, iL)⊺[↑] ∶ (L,⊗) → (L,βj),(iL, iL)⊺[↑] ∶ (L,⊗)→ (L, γj), for j = 1,2, the triangle of L-relations

(L, γ1, γ2)
(⊗, ⊗)

''NNNNNNNNNNN

(L,α1, α2)
(⊗, ⊗)

77ppppppppppp

(⊗, ⊗)
// (L,β1, β2)

is both a ⊺-including double Galois L-triangle and a ⊺-excluding double Tarski
L-triangle.

2. If � is ⊗-irreducible, for all α1, α2, β1, β2, γ1, γ2 ∶ L × L → L such
that (iL, iL)�(↓) ∶ (L,⊗)→ (L,αj), (iL, iL)�(↓) ∶ (L,⊗) → (L,βj),(iL, iL)�(↓) ∶ (L,⊗)→ (L, γj), for j = 1,2, the triangle of L-relations

(L, γ1, γ2)
(⊗, ⊗)

''NNNNNNNNNNN

(L,α1, α2)
(⊗, ⊗)

77ppppppppppp

(⊗, ⊗)
// (L,β1, β2)

is �-including double Tarski L-triangle and a �-excluding double Galois L triangle.

3. (L,→,⊺) is an associative and commutative cdeo algebra if and only if for
all α1, α2, β1, β2, γ1, γ2 ∶ L × L → L such that (iL, iL) ∶ (L,⊗) → (L,αj),(iL, iL) ∶ (L,⊗)→ (L,βj), (iL, iL) ∶ (L,⊗) → (L, γj), for j = 1,2, the triangle of
L-relations

(L, γ1, γ2)
(⊗, ⊗)

''NNNNNNNNNNN

(L,α1, α2)
(⊗, ⊗)

77ppppppppppp

(⊗, ⊗)
// (L,β1, β2)

is a double relational L-triangle. ◻

Remark 5.2.17. Of course, under symmetry assumption, the diagram

(L, ⊗̃, ⊗̃)
(⊗̃, ⊗̃)

&&MMMMMMMMMM

(L, ⊗̃, ⊗̃)
(⊗̃, ⊗̃)

88qqqqqqqqqq

(⊗̃, ⊗̃)
// (L, ⊗̃, ⊗̃)

is
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1. both a ⊺-including double Galois L-triangle and a ⊺-excluding double Tarski L-
triangle;

2. both a �-including double Tarski L-triangle and a �-excluding double Galois L
triangle, if � is ⊗-irreducible (equivalently, ⊗̃-irreducible);

3. a double relational L-triangle if and only if (L,→,⊺) is an associative and commu-
tative cdeo algebra.

Moreover, all the diagrams that can be obtained considering arbitrarily (L,⊗, ⊗̃) or(L, ⊗̃,⊗) in the vertices and (⊗, ⊗̃) or (⊗̃,⊗) on the sides, are

1. both a ⊺-including double Galois L-triangle and a ⊺-excluding double Tarski L-
triangle;

2. both a �-including double Tarski L-triangle and a �-excluding double Galois L
triangle, if � is ⊗-irreducible (equivalently, ⊗̃-irreducible);

3. a double relational L-triangle if and only if (L,→,⊺) is an associative and com-
mutative cdeo algebra (in fact, under commutativity assumption, ⊗ = ⊗̃, i.e.(iL, iL) ∶ (L,⊗)→ (L, ⊗̃)).

Proposition 5.2.18. Let (L,→,⊺) be a symmetrical cdeo algebra. L is associative if
and only if the triangle of L-relations

(L,⊗, ⊗̃)
(⊗, ⊗̃)

&&MMMMMMMMMM

(L,⊗, ⊗̃)
(⊗̃, ⊗)

88qqqqqqqqqq

(⊗, ⊗̃)
// (L,⊗, ⊗̃)

is a double relational L-triangle.

Proof. The statement is equivalent to the following equalities that hold, for all a, b, c ∈ L,
if and only if L is an associative symmetrical cdeo algebra:

1. (a⊗̃c)⊗ b = c⊗ (a⊗ b);
2. (a⊗ c)⊗̃b = c⊗̃(a⊗̃b);
3. a⊗ (c⊗ b) = (a⊗ c)⊗ b;
4. a⊗̃(c⊗̃b) = (a⊗̃c)⊗̃b;
5. a⊗ (c⊗̃b) = c⊗̃(a⊗ b);
6. a⊗̃(c⊗ b) = c⊗ (a⊗̃b).
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5.2.2 Double relational triangles and many-valued relations

Results similar to those viewed for relational L-triangles can be given for double
relational L-triangles. The proof of the following propositions use similar arguments as
in Subsection 5.1.2.

Proposition 5.2.19. Let L = (L,→,⊺) be a w-ceo algebra. L is distributive if and only
if for any triple of sets (X,Y,Z) there exist ϕ̃ ∶ RL(Z,X) × RL(Y,Z) → RL(X,Y ),
ψ, ψ̃ ∶RL(Z,X)×RL(X,Y )→RL(Y,Z), χ, χ̃ ∶RL(X,Y )×RL(Y,Z)→RL(Z,X) such
that, for all S1Z×X ∶ RL(Z,X) × RL(Z,X) → L, S2Z×X ∶ RL(Z,X) × RL(Z,X) → L,
S1Y ×Z ∶RL(Y,Z)×RL(Y,Z)→ L, S2Y ×Z ∶RL(Y,Z)×RL(Y,Z)→ L, S1X×Y ∶RL(X,Y )×
RL(X,Y )→ L and S2X×Y ∶RL(X,Y ) ×RL(X,Y )→ L such that:

- (IRL(Z,X),IRL(Z,X))⊺[↑] ∶ (RL(Z,X),SZ×X)→ (RL(Z,X),SjZ×X);
- (IRL(Y,Z),IRL(Y,Z))⊺[↑] ∶ (RL(Y,Z),SY ×Z)→ (RL(Y,Z),SjY ×Z);
- (IRL(X,Y ),IRL(X,Y ))⊺[↑] ∶ (RL(X,Y ),SX×Y )→ (RL(X,Y ),SjX×Y ),
for j = 1,2, are type III ⊺-including Galois connections, the diagram

(RL(X,Y ),S1X×Y ,S2X×Y )
(χ, χ̃)

**TTTTTTTTTTTTTTT

(RL(Z,X),S1Z×X ,S2Z×X)
(ψ, ψ̃)

44jjjjjjjjjjjjjjjj

(ϕ, ϕ̃)
// (RL(Y,Z),S1Y ×Z ,S2Y ×Z)

where ϕ ∶ RL(Z,X) ×RL(Y,Z) → RL(X,Y ) is defined by (ρ, σ)ϕ = ρ− � σ−, for all
ρ ∈RL(Z,X), σ ∈RL(Y,Z), is a ⊺-including double Galois L-triangle.

Proof. The proof runs as in Proposition 5.1.20, after defining the functions
ϕ̃ ∶RL(Z,X) ×RL(Y,Z)→RL(X,Y ), ψ, ψ̃ ∶ RL(Z,X) × RL(X,Y ) → RL(Y,Z),
χ, χ̃ ∶RL(X,Y ) ×RL(Y,Z)→RL(Z,X) as follows:

- (ρ, σ)ϕ̃ = ρ−ϕ̃σ−;

- (ρ, τ)ψ = (ρ� τ)−;

- (ρ, τ)ψ̃ = τ− � ρ− = (ρ�
op τ)−;

- (τ, σ)χ = (τ � σ)−;

- (τ, σ)χ̃ = (τϕ̃σ)−
by using the operations ⊗, ϕ̃L ∶ L×L→ L such that c ≤ a→ b⇔ a⊗ c ≤ b⇔ a ≤ (c, b)ϕ̃L,
for all a, b, c ∈ L, whose existence is equivalent to the distributivity of L.

Remark 5.2.20. 1. The conditions assumed in the above Proposition such as

(IRL(X,Y ),IRL(X,Y ))⊺[↑] ∶ (RL(X,Y ),SX×Y )→ (RL(X,Y ),SjX×Y )
mean that each of SjX×Y and the other L-relations in the vertices of the L-triangle
induce on the set where they are defined, e.g. RL(X,Y ) or RL(Z,X) or RL(Y,Z),



CHAPTER 5. THE STRUCTURE OF MANY-VALUED RELATIONS 181

the same order as the corresponding subsethood degree does, i.e. the natural or-
dering of the w-ceo algebra pointwisely induced by (L,→,⊺).
This means that each of SjZ×X , SjY ×Z , SjX×Y is a weak L-order which is compatible
with the subsethood L-relation.
Of course, each of the subsethood L-relation, and the dual subsethood L-relation,
in case of a symmetrical cdeo algebra, as well, satisfies the above condition, so
each of them may replace each of the L-relation in the vertices of the L-triangle in
Proposition 5.2.19.
Moreover, we remark that the statement of such Proposition holds if and only if
it is true for any single, free choice of the L-orders in each vertex of the double
L-triangle, so we shall formulate next statements only using either the subsethood
or the dual subsethood L-relation.
It has to be meant, however, that in the subsequent statements, except in Propo-
sitions 5.2.28 and 5.2.29, each of the subsethood or dual subsethood L-relation in
the vertices of the double L-triangles may be replaced by corresponding relations
that, in fact, induce the same order as the subsethood L-relation does, i.e. by
corresponding compatible weak L-order on the appropriate set.

2. Now, we also restate the above Proposition, according to item (1) of this remark.
Let (L,→,⊺) be a w-ceo algebra. L is distributive if and only if the diagram

(RL(X,Y ),SX×Y ,SX×Y )
(χ, χ̃)

**TTTTTTTTTTTTTTTT

(RL(Z,X),SZ×X ,SZ×X)
(ψ, ψ̃)

44iiiiiiiiiiiiiiii

(ϕ, ϕ̃)
// (RL(Y,Z),SY ×Z ,SY ×Z)

is a ⊺-including Galois L-triangle, where ϕ, ϕ̃ ∶RL(Z,X)×RL(Y,Z)→RL(X,Y ),
ψ, ψ̃ ∶RL(Z,X)×RL(X,Y )→RL(Y,Z), χ, χ̃ ∶RL(X,Y )×RL(Y,Z)→RL(Z,X)
are defined as in the above Proposition.
We also remark that, if L is a symmetrical cdeo algebra, all the diagrams that can
be obtained by the one above described, considering, arbitrarily, in each vertex one
of the corresponding pairs (S, S̃), (S̃,S), (S̃, S̃) are ⊺-including Galois L-triangles.

Proposition 5.2.21. Let L = (L,→,⊺) be a w-ceo algebra.
L is symmetrical cdeo algebra if and only if for any triple of sets (X,Y,Z) there exist
ϕ̃ ∶ RL(Z,X) × RL(Y,Z) → RL(X,Y ), ψ, ψ̃ ∶ RL(Z,X) × RL(X,Y ) → RL(Y,Z) ,
χ, χ̃ ∶RL(X,Y ) ×RL(Y,Z)→RL(Z,X) such that the diagram

(RL(X,Y ),SX×Y ,SX×Y )
(χ, χ̃)

**TTTTTTTTTTTTTTTT

(RL(Z,X),SZ×X ,SZ×X)
(ψ, ψ̃)

44iiiiiiiiiiiiiiii

(ϕ, ϕ̃)
// (RL(Y,Z),SY ×Z ,SY ×Z)

where ϕ ∶ RL(Z,X) ×RL(Y,Z) → RL(X,Y ) is defined by (ρ, σ)ϕ = ρ− � σ−, for all ρ ∈
RL(Z,X), σ ∈ RL(Y,Z), is a ⊺-including Galois L-triangle and the following condition
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holds:(a) ∀X,Y ∈ ∣Set∣: (IRL(X,Y ),IRL(X,Y ))⊺[↑] ∶ (RL(X,Y ),SX×Y ) → (RL(X,Y ),S χ̃L

X×Y ),
where χ̃L ∶ L ×L→ L, (a, b)↦ (a, b, )χ̃L = (aX×Y , bY ×Z)χ̃.

Proof. The proof runs as in Proposition 5.1.22, after defining the functions
ϕ̃ ∶RL(Z,X) ×RL(Y,Z)→RL(X,Y ), ψ, ψ̃ ∶ RL(Z,X) × RL(X,Y ) → RL(Y,Z),
χ, χ̃ ∶RL(X,Y ) ×RL(Y,Z)→RL(Z,X) as follows:

- (ρ, σ)ϕ = ρ− � σ−;

- (ρ, σ)ϕ̃ = ρ−�̃σ−;

- (ρ, τ)ψ = (ρ� τ)−;

- (ρ, τ)ψ̃ = (ρ�̃τ)−;

- (τ, σ)χ = (τ � σ)−;

- (τ, σ)χ̃ = (τ�̃σ)−.

Proposition 5.2.22. Let L = (L,→,⊺) be a w-ceo algebra.
L is an associative cdeo algebra if and only if for any triple of sets (X,Y,Z) there
exists ϕ̃ ∶RL(Z,X) ×RL(Y,Z) →RL(X,Y ), ψ, ψ̃ ∶RL(Z,X) ×RL(X,Y ) →RL(Y,Z),
χ, χ̃ ∶RL(X,Y ) ×RL(Y,Z)→RL(Z,X) such that the diagram

(RL(X,Y ),SX×Y ,SX×Y )
(χ, χ̃)

**TTTTTTTTTTTTTTTT

(RL(Z,X),SZ×X ,SZ×X)
(ψ, ψ̃)

44iiiiiiiiiiiiiiii

(ϕ, ϕ̃)
// (RL(Y,Z),SY ×Z ,SY ×Z)

where ϕ ∶ RL(Z,X) ×RL(Y,Z) → RL(X,Y ) is defined by (ρ, σ)ϕ = ρ− � σ−, for all
ρ ∈RL(Z,X), σ ∈RL(Y,Z), is a ⊺-including Galois L-triangle and the following condi-
tion hold:(b) ∀ρ ∈ RL(Z,X): (ψρ-ϕρ) ∶ (RL(X,Y ),SY ×Z) → (RL(Y,Z),SX×Y ) is a type
I global connection, where ψρ ∶ RL(X,Y ) → RL(Y,Z), τ ↦ (τ)ψρ = (ρ, τ)ψ and
ϕρ ∶RL(Y,Z)→RL(X,Y ), σ ↦ (σ)ϕρ = (ρ, σ)ϕ.

Proof. The proof runs as in Proposition 5.1.23, after defining the functions
ϕ̃ ∶RL(Z,X) ×RL(Y,Z)→RL(X,Y ), ψ, ψ̃ ∶ RL(Z,X) × RL(X,Y ) → RL(Y,Z),
χ, χ̃ ∶RL(X,Y ) ×RL(Y,Z)→RL(Z,X) as in Proposition 5.2.19.

Corollary 5.2.23. Let L = (L,→,⊺) be a w-ceo algebra. L is a symmetrical
associative cdeo algebra if and only if for any triple of sets (X,Y,Z) there ex-
ist ϕ̃ ∶RL(Z,X) ×RL(Y,Z)→RL(X,Y ), ψ, ψ̃ ∶ RL(Z,X) × RL(X,Y ) → RL(Y,Z),
χ, χ̃ ∶RL(X,Y ) ×RL(Y,Z)→RL(Z,X) such that the diagram
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(RL(X,Y ),SX×Y ,SX×Y )
(χ, χ̃)

**TTTTTTTTTTTTTTTT

(RL(Z,X),SZ×X ,SZ×X)
(ψ, ψ̃)

44iiiiiiiiiiiiiiii

(ϕ, ϕ̃)
// (RL(Y,Z),SY ×Z ,SY ×Z)

where ϕ ∶ RL(Z,X) ×RL(Y,Z) → RL(X,Y ) is defined by (ρ, σ)ϕ = ρ− � σ−, for all ρ ∈
RL(Z,X), σ ∈RL(Y,Z), is a ⊺-including Galois L-triangle and the following conditions
hold:(a) ∀X,Y ∈ ∣Set∣: (IRL(X,Y ),IRL(X,Y ))⊺[↑] ∶ (RL(X,Y ),SX×Y )→ (RL(X,Y ),S χ̃L

X×Y );(b) ∀ρ ∈RL(Z,X): (ψρ-ϕρ) ∶ (RL(X,Y ),SY ×Z)→ (RL(Y,Z),SX×Y ).
Proof. The statement is an easy consequence of the Proposition 5.2.21 and 5.2.22.

Proposition 5.2.24. Let L = (L,→,⊺) be a w-ceo algebra. L is symmetrical as-
sociative cdeo algebra if and only if for any triple of sets (X,Y,Z) there exists
ϕ̃ ∶RL(Z,X) ×RL(Y,Z)→RL(X,Y ), ψ, ψ̃ ∶ RL(Z,X) × RL(X,Y ) → RL(Y,Z),
χ, χ̃ ∶RL(X,Y ) ×RL(Y,Z)→RL(Z,X) such that the diagram

(RL(X,Y ),SX×Y ,SX×Y )
(χ, χ̃)

**TTTTTTTTTTTTTTTT

(RL(Z,X),SZ×X ,SZ×X)
(ψ, ψ̃)

44iiiiiiiiiiiiiiii

(ϕ, ϕ̃)
// (RL(Y,Z),SY ×Z ,SY ×Z)

where ϕ ∶ RL(Z,X) ×RL(Y,Z) → RL(X,Y ) is defined by (ρ, σ)ϕ = ρ− � σ−, for all
ρ ∈RL(Z,X), σ ∈RL(Y,Z), is a ⊺-including Galois L-triangle and the following condi-
tions hold:(a) ∀X,Y ∈ ∣Set∣: (IRL(X,Y ),IRL(X,Y ))⊺[↑] ∶ (RL(X,Y ),SX×Y )→ (RL(X,Y ),S χ̃L

X×Y ).(c) ∀σ ∈ RL(Y,Z): [ϕσ-χ̃σ] ∶ (RL(Z,X),SZ×X) → (RL(X,Y ),SχL

X×Y ) is a type
I global connection, where ϕσ ∶ RL(Z,X) → RL(X,Y ), ρ ↦ (ρ)ϕσ = (ρ, σ)ϕ,
χ̃σ ∶RL(X,Y )→RL(Z,X), τ ↦ (τ)χσ = (τ, σ)χ.

Proof. The proof runs as in Proposition 5.1.25, after defining the functions
ϕ̃ ∶RL(Z,X) ×RL(Y,Z)→RL(X,Y ), ψ, ψ̃ ∶ RL(Z,X) × RL(X,Y ) → RL(Y,Z),
χ, χ̃ ∶RL(X,Y ) ×RL(Y,Z)→RL(Z,X) as in Proposition 5.2.21.

Proposition 5.2.25. Let L = (L,→,⊺) be a w-ceo algebra.
L is commutative cdeo algebra if and only if for any triple of sets (X,Y,Z) there ex-
ist ϕ̃ ∶ RL(Z,X) ×RL(Y,Z) → RL(X,Y ), ψ, ψ̃ ∶ RL(Z,X) ×RL(X,Y ) → RL(Y,Z),
χ, χ̃ ∶RL(X,Y ) ×RL(Y,Z)→RL(Z,X) such that the diagram

(RL(X,Y ),SX×Y ,SX×Y )
(χ, χ̃)

**TTTTTTTTTTTTTTTT

(RL(Z,X),SZ×X ,SZ×X)
(ψ, ψ̃)

44iiiiiiiiiiiiiiii

(ϕ, ϕ̃)
// (RL(Y,Z),SY ×Z ,SY ×Z)
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where ϕ ∶ RL(Z,X) ×RL(Y,Z) → RL(X,Y ) is defined by (ρ, σ)ϕ = ρ− � σ−, for all ρ ∈
RL(Z,X), σ ∈ RL(Y,Z), is a ⊺-including Galois L-triangle and the following condition
holds:(a′) ∀X,Y ∈ ∣Set∣: (IRL(X,Y ),IRL(X,Y )) ∶ (RL(X,Y ),SX×Y ) → (RL(X,Y ),S χ̃L

X×Y ),
where χL ∶ ×L→ L, (a, b)↦ (a, b, )χ̃L = (aX×Y , bY ×Z)χ̃.

Proof. The proof runs as in Proposition 5.1.27, after defining the functions
ϕ̃ ∶RL(Z,X) ×RL(Y,Z)→RL(X,Y ), ψ, ψ̃ ∶ RL(Z,X) × RL(X,Y ) → RL(Y,Z),
χ, χ̃ ∶RL(X,Y ) ×RL(Y,Z)→RL(Z,X) as in Proposition 5.2.19.

Corollary 5.2.26. Let L = (L,→,⊺) be a w-ceo algebra. L is an associative
commutative cdeo algebra if and only if for any triple of sets (X,Y,Z) ther ex-
ists ϕ̃ ∶RL(Z,X) ×RL(Y,Z)→RL(X,Y ), ψ, ψ̃ ∶ RL(Z,X) × RL(X,Y ) → RL(Y,Z),
χ, χ̃ ∶RL(X,Y ) ×RL(Y,Z)→RL(Z,X) such that the diagram

(RL(X,Y ),S1X×Y ,S2X×Y )
(χ, χ̃)

**TTTTTTTTTTTTTTT

(RL(Z,X),S1Z×X ,S2Z×X)
(ψ, ψ̃)

44jjjjjjjjjjjjjjjj

(ϕ, ϕ̃)
// (RL(Y,Z),S1Y ×Z ,S2Y ×Z)

where ϕ ∶ RL(Z,X) ×RL(Y,Z) → RL(X,Y ) is defined by (ρ, σ)ϕ = ρ− � σ−, for all ρ ∈
RL(Z,X), σ ∈RL(Y,Z), is a ⊺-including Galois L-triangle and the following conditions
hold:(a′) ∀X,Y ∈ ∣Set∣: (IRL(X,Y ),IRL(X,Y )) ∶ (RL(X,Y ),SX×Y ) → (RL(X,Y ),S χ̃L

X×Y ),
where χL ∶ ×L→ L, (a, b)↦ (a, b, )χ̃L = (aX×Y , bY ×Z)χ̃.(b) ∀ρ ∈RL(Z,X): (ψρ-ϕρ) ∶ (RL(X,Y ),SY ×Z)→ (RL(Y,Z),SX×Y ).
Proof. The statement is an easy consequence of the Propositions 5.2.22 and 5.2.25.

Corollary 5.2.27. Let L = (L,→,⊺) be a w-ceo algebra. L is an associative
commutative cdeo algebra if and only if for any triple of sets (X,Y,Z) there ex-
ist ϕ̃ ∶RL(Z,X) ×RL(Y,Z)→RL(X,Y ), ψ, ψ̃ ∶ RL(Z,X) × RL(X,Y ) → RL(Y,Z),
χ, χ̃ ∶RL(X,Y ) ×RL(Y,Z)→RL(Z,X) such that the diagram

(RL(X,Y ),SX×Y ,SX×Y )
(χ, χ̃)

**TTTTTTTTTTTTTTTT

(RL(Z,X),SZ×X ,SZ×X)
(ψ, ψ̃)

44iiiiiiiiiiiiiiii

(ϕ, ϕ̃)
// (RL(Y,Z),SY ×Z ,SY ×Z)

where ϕ ∶ RL(Z,X) ×RL(Y,Z) → RL(X,Y ) is defined by (ρ, σ)ϕ = ρ− � σ−, for all
ρ ∈RL(Z,X), σ ∈RL(Y,Z), is a ⊺-including Galois L-triangle and the following condi-
tions hold:(a′) ∀X,Y ∈ ∣Set∣: (IRL(X,Y ),IRL(X,Y )) ∶ (RL(X,Y ),SX×Y ) → (RL(X,Y ),S χ̃L

X×Y ),
where χL ∶ ×L→ L, (a, b)↦ (a, b, )χ̃L = (aX×Y , bY ×Z)χ̃.(c) ∀σ ∈ RL(Y,Z), [ϕσ-χ̃σ] ∶ (RL(Z,X),SZ×X) → (RL(X,Y ),SχL

X×Y is a type
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I global connection, where ϕσ ∶ RL(Z,X) → RL(X,Y ), ρ ↦ (ρ)ϕσ = (ρ, σ)ϕ,
χ̃σ ∶RL(X,Y )→RL(Z,X), τ ↦ (τ)χσ = (τ, σ)χ.

Proof. The statement is an easy consequence of the Propositions 5.2.24 and 5.2.25,
recalling that a commutative cdeo algebra is, of course, symmetrical.

Proposition 5.2.28. Let L = (L,→,⊺) be a symmetrical cdeo algebra. L is associative
if and only if for any triple of sets (X,Y,Z) the diagram

(RL(X,Y ),SX×Y , S̃X×Y )
(χ, χ̃)

))TTTTTTTTTTTTTTT

(RL(Z,X),SZ×X , S̃Z×X)
(ψ, ψ̃)

44jjjjjjjjjjjjjjj

(ϕ, ϕ̃)
// (RL(Y,Z),SY ×Z , S̃Y ×Z)

where the functions ϕ, ϕ̃ ∶ RL(Z,X) × RL(Y,Z) → RL(X,Y ),
ψ, ψ̃ ∶RL(Z,X) ×RL(X,Y )→RL(Y,Z), χ, χ̃ ∶ RL(X,Y ) ×RL(Y,Z) → RL(Z,X) are
defined as follows, for all ρ ∈RL(Z,X), σ ∈RL(Y,Z), τ ∈RL(X,Y ):

- (ρ, σ)ϕ = ρ− � σ−;

- (ρ, σ)ϕ̃ = ρ−�̃σ−;

- (ρ, τ)ψ = (ρ� τ)−;

- (ρ, τ)ψ̃ = (ρ�̃τ)−;

- (τ, σ)χ = (τ � σ)−;

- (τ, σ)χ̃ = (τ�̃σ)−
is a double relational L-triangle. ◻

Proposition 5.2.29. Let L = (L,→,⊺) be a w-ceo algebra. L is an associative
commutative cdeo algebra if and only if for any triple of sets (X,Y,Z) there ex-
ist ϕ̃ ∶RL(Z,X) ×RL(Y,Z)→RL(X,Y ), ψ, ψ̃ ∶ RL(Z,X) × RL(X,Y ) → RL(Y,Z),
χ, χ̃ ∶RL(X,Y ) ×RL(Y,Z)→RL(Z,X) such that the diagram

(RL(X,Y ),SX×Y ,SX×Y )
(χ, χ̃)

**TTTTTTTTTTTTTTTT

(RL(Z,X),SZ×X ,SZ×X)
(ψ, ψ̃)

44iiiiiiiiiiiiiiii

(ϕ, ϕ̃)
// (RL(Y,Z),SY ×Z ,SY ×Z)

where ϕ ∶ RL(Z,X) ×RL(Y,Z) → RL(X,Y ) is defined by (ρ, σ)ϕ = ρ− � σ−, for all
ρ ∈RL(Z,X), σ ∈RL(Y,Z), is a double relational L-triangle and the following condition
hold:(a′) ∀X,Y ∈ ∣Set∣: (IRL(X,Y ),IRL(X,Y )) ∶ (RL(X,Y ),SX×Y ) → (RL(X,Y ),S χ̃L

X×Y ),
where χL ∶ ×L→ L, (a, b)↦ (a, b, )χ̃L = (aX×Y , bY ×Z)χ̃.
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Proof. The proof runs as in Proposition 5.1.31, after defining the functions
ϕ̃ ∶RL(Z,X) ×RL(Y,Z)→RL(X,Y ), ψ, ψ̃ ∶ RL(Z,X) × RL(X,Y ) → RL(Y,Z),
χ, χ̃ ∶RL(X,Y ) ×RL(Y,Z)→RL(Z,X) as in Proposition 5.2.19.

Proposition 5.2.30. Let L = (L,→,⊺) be a cdeo algebra.

1. If � is ⊗-irreducible, for any triple of sets (X,Y,Z) and for all T 1
Z×X ∶RL(Z,X)×

RL(Z,X)→ L, T 2
Z×X ∶RL(Z,X)×RL(Z,X)→ L, T 1

Y ×Z ∶RL(Y,Z)×RL(Y,Z)→
L, T 2

Y ×Z ∶ RL(Y,Z) × RL(Y,Z) → L, T 1
X×Y ∶ RL(X,Y ) × RL(X,Y ) → L and

T 2
X×Y ∶RL(X,Y ) ×RL(X,Y )→ L such that:

- (IRL(Z,X),IRL(Z,X)))�(↓) ∶ (RL(Z,X),TZ×X)→ (RL(Z,X),T jZ×X);
- (IRL(Y,Z),IRL(Y,Z))�(↓) ∶ (RL(Y,Z),TY ×Z)→ (RL(Y,Z),T jY ×Z);
- (IRL(X,Y ),IRL(X,Y ))�(↓) ∶ (RL(X,Y ),TX×Y )→ (RL(X,Y ),T jX×Y ),
for j = 1,2, are type III ⊺-including Galois connections, the diagram

(RL(X,Y ),T 1
X×Y ,T

2
X×Y )

(χ, χ̃)

))TTTTTTTTTTTTTTT

(RL(Z,X),T 1
Z×X ,T

2
Z×X)
(ψ, ψ̃)

44jjjjjjjjjjjjjjj

(ϕ, ϕ̃)
// (RL(Y,Z),T 1

Y ×Z ,T
2
Y ×Z)

where the functions ϕ, ϕ̃ ∶ RL(Z,X) × RL(Y,Z) → RL(X,Y ),
ψ, ψ̃ ∶RL(Z,X) ×RL(X,Y )→RL(Y,Z), χ, χ̃ ∶RL(X,Y )×RL(Y,Z)→RL(Z,X)
are defined as follows, for all ρ ∈RL(Z,X), σ ∈RL(Y,Z), τ ∈RL(X,Y ):

- (ρ, σ)ϕ = ρ− � σ−;

- (ρ, σ)ϕ̃ = (σ� ρ)−;

- (ρ, τ)ψ = τ− � ρ−;

- (ρ, τ)ψ̃ = (ρ� τ)−;

- (τ, σ)χ = (τ � σ)−
- (τ, σ)χ̃ = σ− � τ−

is a �-including double Tarski L-triangle and a �-excluding double Galois L-
triangle.

2. L is an associative cdeo algebra if and only if for any triple of sets (X,Y,Z), the
diagram

(RL(X,Y ),TX×Y , T̃X×Y )
(χ, χ̃)

))TTTTTTTTTTTTTTT

(RL(Z,X),TZ×X , T̃Z×X)
(ψ, ψ̃)

44jjjjjjjjjjjjjjj

(ϕ, ϕ̃)
// (RL(Y,Z),TY ×Z , T̃Y ×Z)



CHAPTER 5. THE STRUCTURE OF MANY-VALUED RELATIONS 187

where the functions ϕ, ϕ̃ ∶ RL(Z,X) × RL(Y,Z) → RL(X,Y ),
ψ, ψ̃ ∶RL(Z,X) ×RL(X,Y )→RL(Y,Z), χ, χ̃ ∶RL(X,Y )×RL(Y,Z)→RL(Z,X)
are defined as in item (1) is a double relational L-triangle.

Proof. The proof runs as in Proposition 5.1.34 using the same equalities as in Proposition
5.2.18, taking into account ⊗̃ = ⊗op.

Remark 5.2.31. Under symmetry assumption, the diagram

(RL(X,Y ), T̃X×Y , T̃X×Y )
(χ, χ̃)

))TTTTTTTTTTTTTTT

(RL(Z,X), T̃Z×X , T̃Z×X)
(ψ, ψ̃)

44jjjjjjjjjjjjjjj

(ϕ, ϕ̃)
// (RL(Y,Z), T̃Y ×Z , T̃Y ×Z)

where the functions ϕ, ϕ̃ ∶ RL(Z,X) × RL(Y,Z) → RL(X,Y ),
ψ, ψ̃ ∶RL(Z,X) ×RL(X,Y )→RL(Y,Z), χ, χ̃ ∶ RL(X,Y ) ×RL(Y,Z) → RL(Z,X) are
defined as follows, for all ρ ∈RL(Z,X), σ ∈RL(Y,Z), τ ∈RL(X,Y ):

- (ρ, σ)ϕ = ρ− � σ−;

- (ρ, σ)ϕ̃ = ρ−�̃σ−;

- (ρ, τ)ψ = (ρ� τ)−;

- (ρ, τ)ψ̃ = (ρ�̃τ)−;

- (τ, σ)χ = (τ � σ)−;

- (τ, σ)χ̃ = (τ�̃σ)−
is

1. both a �-including Tarski L-triangle and a �-excluding Galois L triangle, if � is
⊗-irreducible (equivalently, ⊗̃-irreducible);

2. a relational L-triangle if and only if (L,→,⊺) is an associative and commutative
cdeo algebra,

since T̃X have the similar properties of TX , as ⊗̃ has the similar properties of ⊗.
Moreover, the diagram

(RL(X,Y ),TX×Y , T̃X×Y )
(χ, χ̃)

))TTTTTTTTTTTTTTT

(RL(Z,X),TZ×X , T̃Z×X)
(ψ, ψ̃)

44jjjjjjjjjjjjjjj

(ϕ, ϕ̃)
// (RL(Y,Z),TY ×Z , T̃Y ×Z)

where the functions ϕ, ϕ̃ ∶ RL(Z,X) × RL(Y,Z) → RL(X,Y ),
ψ, ψ̃ ∶RL(Z,X) ×RL(X,Y )→RL(Y,Z), χ, χ̃ ∶ RL(X,Y ) ×RL(Y,Z) → RL(Z,X) are
defined as follows, for all ρ ∈RL(Z,X), σ ∈RL(Y,Z), τ ∈RL(X,Y ):



CHAPTER 5. THE STRUCTURE OF MANY-VALUED RELATIONS 188

- (ρ, σ)ϕ = ρ− � σ−;

- (ρ, σ)ϕ̃ = ρ−�̃σ−;

- (ρ, τ)ψ = (ρ�̃τ)−;

- (ρ, τ)ψ̃ = (ρ� τ)−;

- (τ, σ)χ = (τ � σ)−
- (τ, σ)χ̃ = (τ�̃σ)−

is

1. both a �-including Tarski L-triangle and a �-excluding Galois L-triangle, if � is
⊗-irreducible (equivalently, ⊗̃-irreducible);

2. a relational L-triangle if and only if (L,→,⊺) is an associative cdeo algebra.

5.3 Relational triangles, connections and powerset opera-

tors

In this Section we show how the relational L-triangles contain all the informations
on powerset operators and related notions considered in other works (see, in particular,
[33, 35, 42]).
We recall that powerset operators of an L-relation have been considered and some of
their properties have been studied in Section 3.2, where, after identifying the L-sets
with particular L-relations, we have described the possibility of expressing the powerset
operators by means of the compositions between L-relations considered in Subsection
3.1.2.
So we shall follow notation already introduced, identifying an L-set of X A ∶X → L with
the L-relation A ∶ {p} ×X → L, by setting (p, x)A = (x)A, for every x ∈ X. We shall
consider the singleton P = {p} fixed, from now on, and identify P ×X, with X and LX

with LP×X .
First we consider relations with values in a symmetrical cdeo algebra assuming subse-
quently associativity and/or commutativity of such algebra.
So, let (L,→,⊺) be a symmetrical cdeo algebra and consider the ⊺-including double
Galois L-triangle of Proposition 5.2.21

(RL(X,Y ),SX×Y ,SX×Y )
(χ, χ̃)

**TTTTTTTTTTTTTTTT

(RL(Z,X),SZ×X ,SZ×X)
(ψ, ψ̃)

44iiiiiiiiiiiiiiii

(ϕ, ϕ̃)
// (RL(Y,Z),SY ×Z ,SY ×Z)

where X,Y,Z are sets and for all A ∈ RL(Z,X),B ∈ RL(Y,Z), C ∈ RL(X,Y ) the
following equalities hold:
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- (A,B)ϕ = A− �B− = ((B)A→)− = (A−)→B−;

- (A,B)ϕ̃ = A−�̃B− = ((B)A¨)− = (A−)¨B−;

- (A,C)ψ = (A�C)− = ((A)⊗C)− = (C−)⊗̃A−;

- (A,C)ψ̃ = (A�̃C)− = ((A)⊗̃C)− = (C−)⊗A−;

- (C,B)χ = (C �B)− = (B−)C→− = ((C)→B)−;

- (C,B)χ̃ = (C�̃B)− = (B−)C¨− = ((C)¨B)−.

We note that in the third and forth columns we assume, in turn, that:

- either X is the singleton P and then A− and C are L-sets on Z and Y , respectively;

- or Y is the singleton P and then B and C− are L-sets on Z and X, respectively;

- or Z is the singleton P and then A and B− are L-sets on X and Y , respectively.

Now, recalling Definition 5.2.4 and taking into account that for any set D the sub-
sethood L-relation SD on LD satisfies the equivalence (H,K)SD = ⊺⇔ H ≤ K, for all
H,K ∈ LD, we get the equivalences, for A,B,C as above,

1. ((A,C)ψ,B)SY ×Z = ⊺⇔ (C, (A,B)ϕ)SX×Y = ⊺;

2. ((A,C)ψ̃,B)SY ×Z = ⊺⇔ (C, (A,B)ϕ̃)SX×Y = ⊺;

3. (A, (C,B)χ)SZ×X = ⊺⇔ ((A,C)ψ̃,B)SY ×Z = ⊺;

4. (A, (C,B)χ̃)SZ×X = ⊺⇔ ((A,C)ψ,B)SY ×Z = ⊺;

5. (A, (C,B)χ̃)SZ×X = ⊺⇔ (C, (A,B)ϕ)SX×Y = ⊺;

6. (A, (C,B)χ)SZ×X = ⊺⇔ (C, (A,B)ϕ̃)SX×Y = ⊺.

Assuming Y to be the singleton P and considering B and C− as L-sets on Z and X,
respectively, we get the following type III ⊺-including Galois connections, made by the
weak left backward operators and the strong right forward operators on any L-relation
A,

(⊗̃A−,A
→)⊺[↑] ∶ (LX ,SX)→ (LZ ,SZ) and (⊗A−,A

¨)⊺[↑] ∶ (LX ,SX)→ (LZ ,SZ);
in fact, from (1) and (2) we get the equivalences (C−)⊗̃A− ≤ B ⇔ C− ≤ (B)A→ and(C−)⊗A− ≤ B⇔ C− ≤ (B)A¨.
Assuming Z to be the singleton P and considering A and B− as L-sets on X and Y ,
respectively, we get the following type III ⊺-including Galois connections, made by the
weak left forward operators and the strong right backward operators of any L-relation
C,

(⊗̃C,C→− )⊺[↑] ∶ (LX ,SX)→ (LY ,SY ) and (⊗C,C¨− )⊺[↑] ∶ (LY ,SY )→ (LX ,SX);
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in fact, from (3) and (4) we get the equivalences (A)⊗̃C ≤ B− ⇔ A ≤ (B−)C→− and(A)⊗C ≤ B−⇔ A ≤ (B)C¨− .
Assuming X to be the singleton P and considering C and A− as L-sets on Y and Z,
respectively, we get the following type I ⊺-including Galois connections, made by the
strong left forward operators and the strong left backward operators on any L-relation
B,

[¨B,→B−]⊺[↑] ∶ (LY ,SY )→ (LZ ,SZ) and [→B,¨B−]⊺[↑] ∶ (LY ,SY )→ (LZ ,SZ);
in fact, from (5) and (6) we get the equivalences A− ≤ (C)¨B ⇔ C ≤ (A−)→B− and
A− ≤ (C)→B⇔ C ≤ (A−)¨B−.

Remark 5.3.1. The above obtained ⊺-including Galois connections of type I and III, of
course, determine corresponding ⊺-including connections of type II and IV, respectively,
according to Proposition 4.2.11.
We note also that the equalities ⊗̃R = R⊗ and ⊗R = R⊗̃ allow to express all the above
type III connections using the suitable weak right operators instead of the corresponding
left operators.
Moreover, we remark that in each pair of connections we have obtained, the second one
is the dual to the first one and that the connections of first pair are essentially the same
as those of the second pair.

Consider now a symmetrical and associative cdeo algebra and the double relational
L-triangle of Proposition 5.2.28

(RL(X,Y ),SX×Y , S̃X×Y )
(χ, χ̃)

))TTTTTTTTTTTTTTT

(RL(Z,X),SZ×X , S̃Z×X)
(ψ, ψ̃)

44jjjjjjjjjjjjjjj

(ϕ, ϕ̃)
// (RL(Y,Z),SY ×Z , S̃Y ×Z)

where X,Y,Z are sets and ϕ, ϕ̃χ, χ̃, ψ, ψ̃ are defined as above, for all A ∈RL(Z,X),B ∈
RL(Y,Z), C ∈RL(X,Y ).
Now, recalling Definition 5.2.2 and considering, for any set D, the dual subsethood
L-relation S̃D on LD, we get the following equivalences, for A,B,C as above,

1. ((A,C)ψ,B)SY ×Z = (C, (A,B)ϕ)SX×Y ;

2. ((A,C)ψ̃,B)S̃Y ×Z = (C, (A,B)ϕ̃)S̃X×Y ;

3. (A, (C,B)χ)SZ×X = ((A,C)ψ̃,B)SY ×Z ;

4. (A, (C,B)χ̃)S̃Z×X = ((A,C)ψ,B)S̃Y ×Z ;

5. (A, (C,B)χ̃)SZ×X = (C, (A,B)ϕ)S̃X×Y ;

6. (A, (C,B)χ)S̃Z×X = (C, (A,B)ϕ̃)SX×Y .
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Assuming Y to be the singleton P and considering B and C− as L-sets on Z and X,
respectively, from the equalities (1) and (2) we deduce the following type III global
connections, made by the weak left backward operators and the strong right forward
operators on any L-relation A,

(⊗̃A−,A
→) ∶ (LX ,SX)→ (LZ ,SZ) and (⊗A−,A

¨) ∶ (LX , S̃X)→ (LZ , S̃Z).
Assuming Z to be the singleton P and considering A and B− as L-sets on X and Y ,
respectively, from the equalities (3) and (4) we deduce the following type III global
connections, made by the weak left forward operators and the strong right backward
operators of any L-relation C,

(⊗̃C,C→− ) ∶ (LX ,SX)→ (LY ,SY ) and (⊗C,C¨− ) ∶ (LY , S̃Y )→ (LX , S̃X).
Assuming X to be the singleton P and considering C and A− as L-sets on Y and
Z, respectively, from the equalities (5) and (6) we deduce the following type I global
connections, made by the strong left forward operators and the strong left backward
operators on any L-relation B,

[¨B,→B−] ∶ (LY , S̃Y )→ (LZ ,SZ) and [→B,¨B−] ∶ (LY ,SY )→ (LZ , S̃Z).
Remark 5.3.2. 1. Similarly to what was observed in Remark 5.3.1, the above ob-

tained global connections of type I and III, of course, determine corresponding
global connections of type II and IV, respectively.
Obviously, also in this case the equalities ⊗̃R =R⊗ and ⊗R =R⊗̃ allow to express
all the above type III global connections using the suitable weak right operators
instead of the corresponding left operators.
We note, moreover, that each second term of the pairs of the global connections
obtained is the dual of the corresponding first term. Note that unlike in the com-
mutative case mostly considered dealing with fuzzy Galois connection (the only
exceptions are [33, 51]) both powerset operators and their dual, as well as both the
subsethood and the dual subsethood L-relations are involved in the above obtained
connections.
In [51] and elsewhere, the isotonic connections are also called axialities while the
antitonic ones are also called polarities.

2. Of course, the double relational L-triangle is a �-including double Tarski L-triangle,
too; hence, from the above considered diagram we can deduce type I, II, III
and IV �-including Tarki connections. In particular, we note that if A,B ∈ LX :(A,B)SX = � if there exists x̄ ∈ X such that (x̄)A = ⊺ and (x̄)B = �, i.e. A /⊆ B.
So, the equality (A,B)SX = � is useful to state the “non-inclusion” A /⊆ B between
L-sets, considering that, in the classical case, A /⊆ B⇔ (A,B)SX = 0.

3. Clearly, if L is a commutative cdeo algebra, then →=¨, ⊗ = ⊗̃ and SD = S̃D, for any
set D; hence, we obtain, from the above double relational L-triangle the following
connections between the powerset operators:
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- (⊗A−,A
→) ∶ (LX ,SX)→ (LZ ,SZ);

- (⊗C,C→− ) ∶ (LX ,SX)→ (LY ,SY );
- [→B,→B−] ∶ (LY ,SY )→ (LZ ,SZ).

By using Proposition 5.2.30 and Remark 5.2.31, and, hence, by assuming that � is
⊗-irreducible, we can deduce the corresponding �-including Tarski, or equivalently the
�-excluding Galois connections between appropriate L-powersets LD equipped with the
intersection L-relation TD.
So, in general, we can not obtain the results corresponding to those made using the
subsethood L-relations.
Nevertheless, assuming associativity and symmetry on L, we could drop in Proposition
5.2.30 the condition on � and we could obtain global connections involving the intersec-
tion L-relation an its dual. Obviously, starting from these global connections, we can
deduce, in particular, �-including Tarski and ⊺-excluding Galois connections.

We recall the result of Proposition 5.2.30, using both compositions � and �̃ and
considering the equality α�̃β = (β− � α−)− for any composable relation α,β. So the
diagram

(RL(X,Y ),TX×Y , T̃X×Y )
(χ, χ̃)

))TTTTTTTTTTTTTTT

(RL(Z,X),TZ×X , T̃Z×X)
(ψ, ψ̃)

44jjjjjjjjjjjjjjj

(ϕ, ϕ̃)
// (RL(Y,Z),TY ×Z , T̃Y ×Z)

where X,Y,Z are sets and ϕ, ϕ̃χ, χ̃, ψ, ψ̃ are defined as follows, for all A ∈RL(Z,X),B ∈
RL(Y,Z), C ∈RL(X,Y ):

- (A,B)ϕ = A− �B−;

- (A,B)ϕ̃ = A−�̃B−;

- (A,C)ψ = (A�̃C)−;

- (A,C)ψ̃ = (A�C)−;

- (C,B)χ = (C �B)−;

- (C,B)χ̃ = (C�̃B)−
is a double relational L-triangle.

Then, we deduce the following equalities:

1. ((A,C)ψ,B)TY ×Z = (C, (A,B)ϕ)TX×Y ;

2. ((A,C)ψ̃,B)T̃Y ×Z = (C, (A,B)ϕ̃)T̃X×Y ;
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3. (A, (C,B)χ)TZ×X = ((A,C)ψ̃,B)TY ×Z ;

4. (A, (C,B)χ̃)T̃Z×X = ((A,C)ψ,B)T̃Y ×Z ;

5. (A, (C,B)χ̃)TZ×X = (C, (A,B)ϕ)T̃X×Y ;

6. (A, (C,B)χ)T̃Z×X = (C, (A,B)ϕ̃)TX×Y ;

Assuming Y to be the singleton P and considering B and C− as L-sets on Z and X,
respectively, we deduce from the equalities (1) and (2) the following type III (global)
connections made by the weak operators of any L-relation A

(⊗A−,
⊗̃A) ∶ (LX ,TX)→ (LZ ,TZ) and (⊗̃A−,

⊗A) ∶ (LX , T̃X)→ (LZ , T̃Z).
In fact, from (1) and (2) we get the equivalences:
- ((A�̃C)−,B)T = (C,A− � B−)T ⇔ (C− � A−,B)T = (C−, (B�̃A)−)T ⇔((C−)⊗A−,B)T = (C−, (B)⊗̃A)T ;
- ((A � C)−,B)T̃ = (C−, (A−�̃B−)−)T̃ ⇔ (C−�̃A−,B)T̃ = (C−,B � A)T̃ ⇔((C−)⊗̃A−,B)T̃ = (C−, (B)⊗A)T̃ .
Assuming Z to be the singleton P and considering A and B− as L-sets on X and Y ,
respectively, we deduce from the equalities (3) and (4) the following type III (global)
connections made by the weak operators of any L-relation C

(⊗C,⊗̃C−) ∶ (LX ,TX)→ (LY ,TY ) and (⊗̃C,⊗C−) ∶ (LX , T̃X)→ (LY , T̃Y ).
In fact, from (3) and (4) we get the following equivalences:
- (A, (C � B)−)T = ((A � C)−,B)T ⇔ (A,B−�̃C−)T = (A � C,B−)T ⇔(A, (B−)⊗̃C−)T = ((A)⊗C,B−)T ;
- (A, (C�̃B)−)T̃ = ((A�̃C)−,B)T̃ ⇔ (A,B− � C−)T̃ = (A�̃C,B−)T̃ ⇔(A, (B−)⊗C−)T̃ = ((A)⊗̃C,B−)T̃ .
Assuming X to be the singleton P and considering A− and C as L-sets on Z and Y ,
respectively, we deduce from the equalities (5) and (6) the following type I (global)
connections made by the weak operators of any L-relation B

[⊗̃B,⊗B−] ∶ (LY ,TY )→ (LZ , T̃Z) and [⊗B,⊗̃B−] ∶ (LY , T̃Y )→ (LZ ,TZ).
In fact, from (5) and (6) we get the following equivalences:
- (A, (C�̃B)−)T = (C,A−�B−)T̃ ⇔ (A−, C�̃B)T = (C,A−�B−)T̃ ⇔ (A−, (C)⊗̃B)T =(C, (A−)⊗B−)T̃ ;
- (A, (C�B)−)T̃ = (C,A−�̃B−)T ⇔ (A−, C�B)T̃ = (C,A−�̃B−)T ⇔ (A−, (C)⊗B)T̃ =(C, (A−)⊗̃B−)T .

We close this discussion observing that we can deduce many other connections, start-
ing from the previous ones; this is due to the link between the adjoint product ⊗ and the
dual one ⊗̃ of a symmetrical cdeo algebra (L,→,⊺) (a⊗̃b = b⊗ a, for all a, b ∈ L) and to
the consequent connection between the intersection and the dual intersection L-relations
T and T̃ .



Chapter 6

Structures for many-valued

relations

In this Chapter we will be interested in a categorical accommodation of the main
topics we have treated that involve binary, possibly many-valued, relations. We shall
move into two directions.
The first involves directly the class of binary relations, between sets, taking values in a
w-ceo algebra, which may satisfy further conditions; the obtained results are described
in Section 6.1 and its subsections.
The second concerns some class of relational systems which are closely related to most
concepts we have developed, from the algebras described in Chapter 2 up to the connec-
tions introduced and studied in Chapter 4; the results obtained in this direction are the
main context of Sections 6.2, 6.3 and 6.4.
In any case it will be clear that, unless in the corresponding classical cases, dealing with
many-valued relations, the classical notion of category has too strong requirements that
need to be weakened according to the objects and morphisms to be considered. The
categorical-like structures we shall consider either are already known (in which case we
provide new, relevant examples) or are quite similar to other already considered struc-
tures, with some new and important aspects.
The structure of extended-order algebras, described in Chapter 2, the general approach
to connections introduced in Chapter 4 and the relational triangles defined in Chapter
5 will have a crucial role.

6.1 Pseudo-categories

We have started in Chapter 3 the study of the structure of the class of binary rela-
tions assuming that these take values in a w-ceo algebra, possibly right-distributive and,
may be, symmetrical; moreover, we have seen how (double) relational triangles, which
may be used to characterize various classes of w-ceo algebras, give plenty of information
on the class of relations and their associated operators, all of which may be obtained by
means of suitable compositions.

194
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A categorical accommodation of this matter, where binary many-valued relations are
morphisms and the associated operators depend on various compositions defined be-
tween relations has to take into account that none of those compositions is associative,
in general. In fact, the unique composition of binary relations that is associative in any
case, namely the one denoted by ⋅ in Definition 3.1.4, is not relevant in case of relations
taking values in a w-ceo algebra; the main composition that corresponds to the usual
composition of binary relations in the classical case, i.e. the one denoted � in Definition
3.1.9, is associative if and only if the algebra is associative.
So, categorical structures for many-valued relations should drop the requirement of as-
sociativity on the composition and, moreover, might be equipped with more that one
composition only.
In the present section we propose an extended notion of category, called pseudo-
category, which misses associativity and identities but may have additional tools that
are useful to deal with categories of relations.

6.1.1 Reversible and ordered pseudo-categories

Definition 6.1.1. A pseudo-category C = (Obj (C),Mor (C), ○) consists in the follow-
ing data:

1. a class of objects Obj (C), also denoted by ∣C∣;
2. for each pair of objects (X,Y ), a class C(X,Y ), whose elements, denoted by

X
f
→ Y or by f ∶ X → Y are called morphisms from X (domain) to Y

(codomain); Mor (C) is the disjoint union of such classes of morphisms;

3. a partial morphisms composition, shortly composition, that is a univocal
relation ○ ∶ Mor (C) × Mor (C) ⇁ Mor (C) that assigns to each f ∈ C(X,Y ) and
g ∈C(Y,Z), their composition f ○ g ∈C(X,Z).

Definition 6.1.2. A pseudo-category C = (Obj (C),Mor (C), ○) is said to be right (left,
respectively) if for every X ∈ Obj (C) there exists a unique rX ∈ C(X,X) (a unique
lX ∈C(X,X), respectively), called right (left, respectively) identity morphism on X,
such that, for every f ∈C(X,Y ) one has f ○ rY = f (lX ○ f = f , respectively).

Of course, if the pseudo-category C is right and left, then the right and the left
identity morphisms coincide, for each object of C. So, we give a further definition.

Definition 6.1.3. A pseudo-category C = (Obj (C),Mor (C), ○) is called unital if for
every X ∈ Obj (C) there exists iX ∈ C(X,X), called identity morphism on X, such
that, for every f ∈C(X,Y ) one has iX ○ f = f ○ iY = f .

We observe that, with respect to the well-known notion of category, a pseudo-category
misses the existence of the identity morphisms, unless it is unital, and the associativity
of partial composition.
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Definition 6.1.4. The pseudo-category C = (Obj (C),Mor (C), ○) is said to be associa-
tive if the partial morphisms composition is associative.

Of course, an associative unital pseudo-category is a category in the usual sense.
The notions of (full) pseudo-subcategory and pseudo-functor are obvious exten-
sions of the corresponding notions for categories.

Definition 6.1.5. A pseudo-subcategory D = (Obj (D),Mor (D), ○D) of the pseudo-
category C = (Obj (C),Mor (C), ○) , denoted by D ⊆C is a pseudo-category such that

1. Obj (D) ⊆ Obj (C);
2. for all X,Y ∈ Obj (D), D(X,Y ) ⊆C(X,Y );
3. ○D = ○∣Mor (D);

4. for every X ∈ Obj (D), if rX (lX , iX , respectively) is the right identity (left identity,
identity, respectively) morphism in C, then it is in D(X,X).

The pseudo-subcategory D is said to be full if D(X,Y ) =C(X,Y ), for all X,Y ∈ Obj (D).
The following are examples of pseudo-categories; we shall specify which of them are

categories.

Example 6.1.6. 1. The triple ({X},N, exp) is a right pseudo-category where the
only object is X, the set of morphism is the set of natural numbers, the composition
is defined by n ○m = exp(n,m) = nm and the right unit is 1.

2. The triple R⋅
2 = (∣Set∣ ,R2, ⋅), where the objects are the sets, the morphisms are the

binary relations and ⋅ is the composition defined in Section 1.4, is an associative,
unital pseudo-category, hence it is a category in the usual sense; of course, the
identity morphism on X is the equality IX .

3. The triple R�

2
= (∣Set∣ ,R2,�) where the objects are the sets, the morphisms are

the binary relations and � is the composition defined in the Section 1.4, is a left
pseudo-category; the left unit of R�

2
(X,X) is IX .

4. The triple R�

2
= (∣Set∣ ,R2,�) where the objects are the sets, the morphisms are

the binary relations and � is the composition defined in Section 1.4, is a right
pseudo-category; IX is the right unit of R�

2
(X,X).

5. The triple R�

2
= (∣Set∣ ,R2,�) where the objects are the sets, the morphisms are

the binary relations and � is the composition defined in Section 1.4, is a pseudo-
category, without left or right identity morphism, for most X ∈ ∣Set∣; in fact iX is
neither a left nor a right unit, unless X is a singleton or the empty set.

6. Of course, a pseudo-subcategory D of a category C is a category, too; moreover,
a pseudo-subcategory of a pseudo-category C may be a category, even when C is
not, as the following example shows (trivial examples may also be produced).
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Consider the pseudo-subcategory of R�

2
that have the class ∣Set∣ as objects and

the injective functions as morphisms. The identity relation iX on X is, of course,
an injective function and it is the unit, for every non-empty set X; in fact, for
every r ∈R2(X,Y ) and for all x ∈X,y ∈ Y , we have that:

- x(r� iY )y⇔ xr = iY y⇔ xr = {y}⇔ xry;

- x(iX�)y⇔ xiX = ry⇔ {x} = ry⇔ xry.

Moreover, for all non-empty sets X,Y,Z, r ∈R�

2
(X,Y ) and s ∈R�

2
(Y,Z), if r and

s are injective functions, then r � s ∈ R�

2
(X,Z) is an injective function, too. In

fact, for all x, x′ ∈X, z, z′ ∈ Z, the following hold:

- since r and s are functions, x ∈ X ⇒ ∃∣y ∈ Y ∶ xr = {y} ⇒ ∃∣z ∈ Z ∶ ys = {z}
and, since s is injective, {y} = sz. Then x ∈X ⇒ ∃z ∶ xr = {y} = sz⇒ xr�sz;
so, r� s is left total.

- (x(r�s)z and x(r�s)z′)⇔ (xr = sz and xr = sz′); hence sz = sz′ and then,
since s is a function, we have that z = z′; so, r� s is right univocal;

- (x(r�s)z and x′(r�s)z)⇔ (xr = sz and x′r = sz); hence xr = x′r and then,
since r is injective, it follows that x = x′; so, r� s is left univocal;.

So, r � s is an injective function; moreover, for such relations, the composition
induced by � is associative.

In the next Section we shall consider the notion of multiplicative graph [69], which
is more general than that of pseudo-category, and that of composition graph [76].

Definition 6.1.7. Let C = (Obj (C),Mor (C), ○C) and D = (Obj (D),Mor (D), ○D) be two
pseudo-categories. A pseudo-functor F ∶ C → D from C to D is a pair of maps
F = (F1, F2) such that:

1. F1 ∶ Obj (C)→ Obj (D) and F2 ∶ Mor (C)→ Mor (D);
2. for all X,Y ∈ Obj (C), if f ∈C(X,Y ), then (f)F2 ∈D((X)F1, (Y )F1);
3. for all X,Y,Z ∈ Obj (C), if f ∈ C(X,Y ) and g ∈ C(Y,Z), then (f ○C g)F2 =(f)F2 ○D (g)F2 ∈D((X)F1, (Z)F1).

Definition 6.1.8. A pseudo-functor F ∶ C → D between two pseudo-categories C and
D is said to be a functor if the following conditions hold, for every X ∈ Obj (C):

1. if there exists the right identity morphism rX ∈ C(X,X) on X, then r(X)F1
=(rX)F2 is a right identity morphism on (X)F1 in D;

2. if there exists the left identity morphism lX ∈C(X,X) on X, then l(X)F1
= (lX)F2

is a left identity morphism on (X)F1 in D.
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Of course, if F ∶ C → D is a functor and if there exists the identity morphism
iX ∈C(X,X), then i(X)F1

= (iX)F2 is the identity morphism of (X)F1 in D.
If F ∶C→D is a functor between two pseudo-categories C and D and C is a right (left,
unital, respectively) pseudo-category, or a category, then the full pseudo-subcategory
of D with class of objects {(X)F1∣ X ∈ Obj (C)} is a right (left, unital, respectively)
pseudo-category, or a category, too.

The following are trivial examples of functors and pseudo-functors.

Example 6.1.9. 1. For every pseudo-category C the identity pseudo-functor
IdC = (iObj (C), iMor (C)) is a functor.

2. Let C and D be two pseudo-categories; if there exist D ∈ Obj (D) and kD ∈D(D,D)
such that kD ○kD = kD, we can consider the constant pseudo-functor kD = (kD, kD)
defined as follows

- kD ∶ Obj (C)→ Obj (D): X ↦ (X)kD =D;

- kD ∶ Mor (C)→ Mor (D): f ∈C(X,Y )↦ (f)kD = kD ∈D(D,D).
The composition ⋅ of pseudo-functors is obviously defined by component-wise com-

position of functions.

Definition 6.1.10. A pseudo-functor F ∶ C → D between two pseudo-categories C
and D is an isomorphism if there exists a pseudo-functor F−1 ∶ D → C such that
F ⋅ F−1 = IdC and F−1 ⋅ F = IdD.

It is easily seen the following.

- A pseudo-functor F = (F1, F2) ∶C→D is an isomorphism if and only if F1 and F2

are bijective;

- the identity functor IdC of a pseudo-category C is an isomorphism;

- every isomorphism is a functor.

Definition 6.1.11. Let C = (Obj (C),Mor (C), ○) be a pseudo-category. The opposite
pseudo-category Cop = (Obj (Cop),Mor (Cop), ○op) of C consists in the following data:

1. Obj (Cop) = Obj (C).
2. Mor (Cop) = Mor (C) and, for all X,Y ∈ Obj (C), Cop(X,Y ) =C(Y,X).
3. For all X,Y,Z ∈ Obj (C) and for all f ∈Cop(X,Y ), g ∈Cop(Y,Z): f ○op g = g ○ f .

As usual, a morphism in C(X,Y ) is denoted fop whenever it is considered as a
morphism, fop ∈ Cop(Y,X) in Cop, and conversely, so that (fop)op = f ; this allows
to denote by ○ the composition of Cop, so that if f ○ g exists in C or in Cop then(f ○ g)op = gop ○ fop. Note that if C is a right (left, unital, respectively) pseudo-category,
then Cop is a left (right, unital, respectively) pseudo-category and the obvious notation(rCX)op = lCop

X , (lCX)op = rCop

X , (iCX)op = iCop

X can be used, for every X ∈ Obj (C).
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Definition 6.1.12. An ordered pseudo-category is a pair (C;≤), where C is a
pseudo-category and ≤ is an order relation in the class Mor (C), called natural order
of C, such that:

(i) for all f, g ∈ Mor (C), if f ≤ g, then there exist X,Y ∈ Obj (C) such that f, g ∈
C(X,Y );
(ii) for all X,Y ∈ Obj (C): (C(X,Y ),≤) is a non-empty ordered set;

(iii) the composition is isotonic in the second argument, i.e. for all f ∈ C(X,Y ),
g, g′ ∈C(Y,Z), if g ≤ g′, then one has f ○ g ≤ f ○ g′.

Moreover, we speak of bounded ordered, lattice ordered, complete ordered pseudo-
category in case when, for all X,Y ∈ Obj (C), (C(X,Y ),≤) is a bounded poset or a
lattice or a complete lattice, respectively, in the natural order of C. In these cases the
top element is denoted by ãXY and the bottom element is denoted by áXY .
ãXY and áXY need not be distinct.
If ∣C(X,Y )∣ = 1, for all X,Y ∈ Obj (C), then C is said to be degenerate.
In a non-degenerate ordered pseudo-category C, an object X is said to be empty if∣C(X,X)∣ = 1.

Example 6.1.13. 1. (R⋅
2;≤) and (R�

2
;≤) are complete ordered pseudo-categories

with respect to the order relation induced pointwisely on R2, since ⋅ and � are
isotonic in the second argument. The top element and the bottom element in the
set of morphisms from X to Y are, respectively, the universal relation ãX×Y and
the zero relation áX×Y .

2. (R�

2
;≤) and (R�

2
;≤) are not ordered, since � and �, in general, are not isotonic

in the second argument.

Definition 6.1.14. A reversible pseudo-category is a pair (C; [⋅]−), where C is
a pseudo-category and [⋅]− ∶ Mor (C) → Mor (C) is an involution such that for every
f ∈ C(X,Y ), (f) [⋅]− = f− ∈ C(Y,X). f− is the reverse morphism of f . f ∈ C(X,X) is
symmetric if f− = f .

Definition 6.1.15. The reverse pseudo-category of a reversible pseudo-category(C; [⋅]−) is the reversible pseudo-category C− = (C−; [⋅]−), where C− has the same ob-
jects and morphisms as C, in particular C−(X,Y ) =C(Y,X), for all X,Y ∈ Obj (C), the
same involution [⋅]− ∶ Mor (C−)→ Mor (C−) and the composition ○− defined by

f ○− g = (g− ○ f−)− for all f ∈C−(X,Y ), g ∈C−(Y,Z).
C and C− are said to be reverse to each other.
C is self-reverse if C− =C, i.e. if (g− ○ f−)− = f ○ g, for all f ∈C(X,Y ), g ∈C(Y,Z).

The following are examples of reversible pseudo-categories.
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Example 6.1.16. 1. (R⋅
2; [⋅]−), (R�

2
; [⋅]−), (R�

2
; [⋅]−) and (R�

2
; [⋅]−) are reversible

pseudo-categories, since the function [⋅]− ∶ R2 → R2, r ↦ r− is an involution,
mapping relations from X to Y into relations from Y to X.

2. (R�

2
; [⋅]−) and (R�

2
; [⋅]−) are reverse of each other.

3. (R�

2
; [⋅]−) is self-reverse.

Proposition 6.1.17. Let (C; [⋅]−) be a reversible pseudo-category. Then:

1. (C; [⋅]−) is the reverse pseudo-category of (C−; [⋅]−);
2. leaving fixed the objects and mapping any morphism f to its reverse f− one obtains

an isomorphism

RevC = (idObj (C), [⋅]−) ∶C→Cop
−

whose inverse, RevCop
−
∶Cop

− →C is determined by the same maps;

3. if rX (lX , respectively) is the right (left, respectively) identity morphism in C, then(rX)− ((lX)−, respectively) is the left (right, respectively) identity in C−.

Proof. 1. Obviously, (C−; [⋅]−) is reversible and its reverse is ((C−)−; [⋅]−) = (C; [⋅]−).
In fact, by definition, ((C−)−; [⋅]−) has the same objects, morphism and involution
as (C−; [⋅]−) and hence the same as (C; [⋅]−). Moreover, for all X,Y ∈ Obj (C) one
has (C−)−(X,Y ) =C−(Y,X) =C(X,Y ) and, for all f ∈C(X,Y ), g ∈C(Y,Z) one
has f(○−)−g = (g− ○− f−)− = [(f−)− ○ (g−)−]− = f ○ g.

2. Clearly, RevC ○RevCop
−
= (idObj (C)○idObj (Cop

− ), [⋅]− ○[⋅]−) = (idObj (C), idMor (C)) = IdC.
Similarly RevCop

−
○RevC = IdCop

−
.

3. For every X ∈ Obj (C), let rX be the right identity morphism in C. Then, for every
f ∈ Mor (C), it follows from definition of ○− that (rX)− ○− f− = (f ○ rX)− = f−, i.e.(rX)− is the left identity morphism in C−.

6.1.2 Relational pseudo-categories

Definition 6.1.18. A relational pseudo-category is a reversible ordered pseudo-
category (C;≤, [⋅]−) such that:

1. the involution [⋅]− preserves the order of morphisms;

2. all the existing (right, left) identity morphisms coincide and are symmetric.

Definition 6.1.19. A relational pseudo-category is called multiplicative (implicative,
respectively) if the composition is isotonic (antitonic, respectively) in the first argument.
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Of course, the involution [⋅]− also reflects the order, hence for all f, f ′ ∈ C(X,Y ):
f ≤ f ′ if and only if f− ≤ f

′
−.

It follows from the definition of ○− that the isotonic (antitonic) conditions of the composi-
tion turn from one side in C to the other side in C−. Then, the reverse of a multiplicative
relational pseudo-category is a multiplicative relational pseudo-category, but a similar
result does not hold for implicative relational pseudo-category whose reverse need not
be a relational pseudo-category.

Example 6.1.20. 1. From Proposition 1.4.10 it follows that R⋅
2 is a relational mul-

tiplicative category.

2. R�

2
, R�

2
and R�

2
are not categories, since they miss the associativity of partial

compositions and the existence of identity morphisms. In particular, R�

2
is a

relational implicative pseudo-category, R�

2
and R�

2
are pseudo-categories, but not

relational pseudo-category, since they are not ordered. Nevertheless, we note that
� is antitonic in the first and in the second argument and � is antitonic in the
first argument.

Proposition 6.1.21. Let F ∶C→D be an isomorphism of pseudo-categories. Then the
following hold.

1. If (C; [⋅]−) is reversible, then a unique involution [⋅]−D in Mor (D) exists such that(D; [⋅]−D) is reversible and F preserves and reflects the involution.

2. If (C;≤) is ordered, then a unique order ≤D in Mor (D) exists such that (D;≤D) is
ordered and F preserves and reflects the order.

3. If (C;≤, [⋅]−) is an implicative (multiplicative, respectively) relational pseudo-
category, then (D;≤D, [⋅]−D) is, too.

Proof. 1. Map any h ∈D(X,Y ) to h−D = (((h)F−1)−)F ∈D(Y,X). Then (h−D)−D =(((h−D)F−1)−)F = ((((((h)F−1)−)F )F−1)−)F = (((((h)F−1)−)F ○ F−1)−)F =((((h)F−1)−)−)F = ((h)F−1)F = h.
If [⋅]∼ is an involution in Mor (D) that commutes with F and [⋅]−, then, for any
h ∈ Mor (D), h∼ = (((h)F−1)F )∼ = (((h)F−1)−)F = (((h)F−1)F )−D = h−D.

2. For all h, k ∈D(X,Y ), define h ≤D k⇔ (h)F−1 ≤ (k)F−1.
Then, for all A ∈ Obj (D) and g ∈ D(A,X) one has h ≤D k ⇒ (h)F−1 ≤ (k)F−1 ⇒(g)F−1 ○ (h)F−1 ≤ (g)F−1 ○ (k)F−1 ⇒ (g ○ h)F−1 ≤ (g ○ k)F−1 ⇒ g ○ h ≤D g ○ k.
If ⪯ is an order relation and F preserves and reflects ≤ and ⪯, then h ≤D k ⇔(h)F−1 ≤ (k)F−1⇔ h ⪯ k.

3. (D;≤D, [⋅]−D) is an ordered reversible pseudo-category by items (1) and (2).
Then, for all h, k ∈ D(X,Y ), we have that h ≤D k ⇒ (h)F−1 ≤ (k)F−1 ⇒((h)F−1)− ≤ ((k)F−1)−⇒ h−D = (((h)F−1)−)F ≤ (((k)F−1)−)F = k−D.
If X ∈ Obj (D) and rX is a right identity, then (rX)F−1 is a right identity, hence(rX)−D = (((rX)F−1)−)F = ((rX)F−1))F = rX .
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That the implicative or multiplicative character is inherited by D(X,Y ) can be
shown with a similar argument as in item (2).

Of course, since any reversible pseudo-category is isomorphic to the opposite of its
reverse (see Proposition 6.1.17 (2)), one has that the opposite of the reverse of a relational
pseudo-category of some kind is a relational pseudo-category of the same kind.

Proposition 6.1.22. Let (C; [⋅]−) be a relational pseudo-category. The following hold:

1. for all X,Y ∈ Obj (C), (ãXY )− =ãY X , if C(Y,X) has the top;

2. for all X,Y ∈ Obj (C), (áXY )− =áY X , if C(Y,X) has the bottom.

Proof. To prove the first item, let X,Y ∈ Obj (C) and let f ∈C(Y,X); then f− ∈C(X,Y )
and hence f− ≤ ãXY , since ãXY is the top element. So, f = (f−)− ≤ (ãXY )−, since [⋅]−
is an involution that preserves the order. For the uniqueness of maximum, it follows
that (ãXY )− =ãY X . The proof of the second item is similar.

We note that, in the above Proposition, we use only the compatibility of the involu-
tion [⋅]− with the order, required in the definition of relational pseudo-category; in fact,
the condition (2) of Definition 6.1.18 is not used.

Proposition 6.1.23. Let C be a bounded ordered pseudo-category and assume C(X,X),
C(X,Y ), C(Y,Y ) have their top element.

1. If C is a right, ordered pseudo-category, then ãXY =ãXY ○ãY Y .

2. If C is a left, multiplicative relational pseudo-category, then ãXY =ãXX○ãXY .

Proof. 1. ãXY ≥ãXY ○ãY Y , since ãXY is the top element.
Conversely, ãXY =ãXY ○rY ≤ãXY ○ãY Y , since ○ is isotonic in the second argu-
ment, by assumption.

2. ãXY ≥ãXX○ãXY , since ãXY is a top element.
Conversely, ãXY =lX○ãXX≤ãXX○ãXY , since ○ is isotonic in the first argument,
by assumption.

6.1.3 Pseudo-n-categories

To describe the structure of the class of many-valued relations, it will be also useful
to consider altogether some of the many partial compositions we have defined in Section
3.1. So, we arrange the following Definitions that will be useful in Subsection 6.1.5.

Definition 6.1.24. For n ∈ N, a pseudo-n-category is a tuple

C = (Obj (C),Mor (C), ○1, ○2, ..., ○n)
such that, for every i ∈ {1,2, ..., n}, (Obj (C),Mor (C), ○i) is a pseudo-category.
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Hence, a pseudo-category above defined is a pseudo-1-category; a pseudo-2-category
and a pseudo-3-category are also called pseudo-bicategory and pseudo-tricategory.

Of course, it is meaningful to consider pseudo-n-categories when suitable relation-
ships between (some of) the partial compositions of morphisms are satisfied, or required.
Quite typical are, in case an involution and an order are assigned in the class of mor-
phisms, the requirement of some kinds of connections that extend typical conditions of
residuated algebraic structures. The following Definition includes a few types of pseudo-
n-categories.

Definition 6.1.25. A pseudo-bicategory C = ((Obj (C),Mor (C), ○,∗);≤, [⋅]−), with an
order ≤ and an involution [⋅]− in the class of morphisms, is said to be residuated
if C○ = ((Obj (C),Mor (C), ○);≤, [⋅]−) and C∗ = ((Obj (C),Mor (C),∗);≤, [⋅]−) are rela-
tional pseudo-categories such that for all X,Y,Z ∈ Obj (C) and for all f ∈ C(Z,X), g ∈
C(Z,Y ), h ∈C(X,Y ), the equivalence h ≤ f− ○ g⇔ f ∗ h ≤ g holds.

Remark 6.1.26. 1. The required condition that for all X,Y,Z ∈ Obj (C) and for all
f ∈ C(Z,X), g ∈ C(Z,Y ), h ∈ C(X,Y ): h ≤ f− ○ g ⇔ f ∗ h ≤ g is satisfied, means
that for every f ∈C(Z,X), the functions h↦ f ∗ h and g ↦ f− ○ g form a type III
⊺-including Galois connection (f ∗ [⋅], f− ○ [⋅])⊺[↑] ∶ (C(X,Y ),≤)→ (C(Z,Y ),≤).

2. Since the order ≤ is a 2-relation, we have that, the relative connection of item (1) is
indeed a type III global connection (f ∗ [⋅], f− ○ [⋅]) ∶ (C(X,Y ),≤)→ (C(Z,Y ),≤).

Proposition 6.1.27. Let C = ((Obj (C),Mor (C), ○,∗);≤, [⋅]−) be a residuated pseudo-
bicategory. With the above notation, the following hold.

1. lX is the left identity of the object X in C∗ if and only if it is the left identity of
the object X in C○.

2. C∗ is left if and only if C○ is left.

Proof. 1. Let lX be the left identity of the object X of C∗; then (lX)− = lX and, for
all X,Y ∈ Obj (C) and for every g ∈ C(X,Y ), one has that lX ∗ g = g. Since C is
residuated, by definition it follows that lX ∗g ≤ g⇔ g ≤ lX ○g and lX ○g ≤ lX ○g⇔
lX ∗ (lX ○ g) ≤ g⇔ lX ○ g ≤ g. Hence lX ○ g = g. The converse implication can be
similarly proved.

2. It is an easy consequence of the item (1) and of the assumption on C∗ and C○.

Definition 6.1.28. A pseudo-bicategory C = ((Obj (C),Mor (C), ○, ●);≤, [⋅]−), with an
order ≤ and an involution [⋅]− in the class of morphisms, is said to be symmetrical if
C○ = ((Obj (C),Mor (C), ○);≤, []−) and C● = ((Obj (C),Mor (C), ●);≤, []−) are relational
pseudo-categories such that for all X,Y,Z ∈ Obj (C) and and for all f ∈ C(X,Z), g ∈
C(Z,Y ), h ∈C(X,Y ), the equivalence h ≤ f ○ g⇔ f ≤ h ● g− holds.
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Remark 6.1.29. 1. As observed in Remark 6.1.26, the condition requiring that for
all X,Y,Z ∈ Obj (C) and for all f ∈ C(X,Z), g ∈ C(Z,Y ), h ∈ C(X,Y ) the equiv-
alence h ≤ f ○ g ⇔ f ≤ h ● g− is satisfied, means that, for every g ∈ C(Z,Y ) the
functions f ↦ f ○ g and h ↦ h ● g− form a type I ⊺-including Galois connection[[⋅] ○ g, [⋅] ● g−]⊺[↑] ∶ (C(X,Z),≤)→ (C(X,Y ),≤).

2. As noted for a residuated pseudo-bicategory in Remark 6.1.26, the Galois connec-
tion [[⋅] ○ g, [⋅] ● g−]⊺[↑] ∶ (C(X,Z),≤) → (C(X,Y ),≤) is indeed a type I global
connection [[⋅] ○ g, [⋅] ● g−] ∶ (C(X,Z),≤)→ (C(X,Y ),≤).

Proposition 6.1.30. Let C = ((Obj (C),Mor (C), ○, ●);≤, [⋅]−) be a pseudo-
bicategory. If C is symmetrical, then both C○ = ((Obj (C),Mor (C), ○);≤, []−) and
C● = ((Obj (C),Mor (C), ●);≤, []−) are implicative relational pseudo-categories.

Proof. Since C is a symmetrical pseudo-bicategory, then h ≤ f ○ g ⇔ f ≤ h ● g−, for
all X,Y,Z ∈ Obj (C) and for all f ∈ C(X,Z), g ∈ C(Z,Y ), h ∈ C(X,Y ). This means
that the functions [⋅] ○ g and [⋅] ● g− form a (classical) Galois connection and hence
they are antitonic. So, the composition of morphisms ○ and ● are antitonic in the first
argument; then C○ = ((Obj (C),Mor (C), ○);≤, []−) and C● = ((Obj (C),Mor (C), ●);≤, []−)
are implicative relational pseudo-categories.

Definition 6.1.31. Let C be a symmetrical pseudo-bicategory and let h ∈C(X,Z). We
say that h is crisp in C if it satisfies the condition:(cr) h ≤ f ○ g⇔ h ≤ f ● g, for all f ∈C(X,Y ), g ∈C(Y,Z).
Remark 6.1.32. Clearly, all morphisms of a symmetrical pseudo-bicategory
C = ((Obj (C),Mor (C), ○, ●);≤, [⋅]−) are crisp if and only if ○ = ●. In fact, if ○ = ●,
obviously h ≤ f ○ g ⇔ h ≤ f ● g, for all f ∈ C(X,Y ), g ∈ C(Y,Z). Conversely, if for all
h ∈C(X,Z), f ∈C(X,Y ), g ∈C(Y,Z) we have that h ≤ f ○ g⇔ h ≤ f ● g, then ○ = ●.

Example 6.1.33. 1. In each bounded symmetrical pseudo-bicategory
C = ((Obj (C),Mor (C), ○, ●);≤, [⋅]−), áXY is a crisp morphisms, for all
X,Y ∈ Obj (C); in fact, since it is the bottom element, áXY ≤ f ○ g⇔áXY ≤ f ● g,
for all f ∶X → Z, g ∶ Z → Y .

2. In (R�

2
;≤, [⋅]−) all (crisp) relations are crisp morphism, obviously.

Proposition 6.1.34. Let C = ((Obj (C),Mor (C), ○, ●),≤, [⋅]−) be a symmetrical pseudo-
bicategory. If C has left identity lX for one of the compositions ○ and ●, then lX is a
left identity for the other composition if and only if it is a crisp element.

Proof. Let lX ∈C(X,X) be left identity for both compositions ○ and ●.
So, for all f ∈ C(X,Y ), g ∈ C(Y,X), one has that lX ≤ f ○ g⇔ f ≤ lX ● g−⇔ f ≤ g−⇔
f ≤ lX ○ g−⇔ lX ≤ f ● g. Hence, lX is crisp.
Conversely, suppose that lX is a crisp left identity morphism for ○, that is lX ≤ f ○ g⇔
lX ≤ f ●g and lX ○g− = g−, for all f ∈C(X,Y ), g ∈C(Y,X). By assumption the following
is true: g− ≤ lX ○ g− ⇒ lX ≤ g− ● g ⇒ lX ≤ g− ○ g ⇒ g− ≤ lX ● g; moreover, we have that
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lX ●g− ≤ lX ●g− ⇒ lX ≤ (lX ●g−)○g⇒ lX ≤ (lX ●g−)●g⇒ lX ●g− ≤ lX ○g− ⇒ lX ●g− ≤ g−.
So lX ● g− = g− and hence lX is a left identity with respect to the composition ●.

Remark 6.1.35. By the above proposition if lX is a left identity both for C○ and C●,
the it is a crisp morphism.
The converse does not hold, in general; in fact, in (R�

2
;≤, [⋅]−) all relations are crisp

morphism, but not all are left identities, of course.

Definition 6.1.36. A pseudo-tricategory C = ((Obj (C),Mor (C), ○,∗, ●);≤, [⋅]−), with
an order ≤ and an involution [⋅]− in the class of morphisms, is said to be trian-
gular if C○ = ((Obj (C),Mor (C), ○);≤, [⋅]−), C∗ = ((Obj (C),Mor (C),∗);≤, [⋅]−) and
C● = ((Obj (C),Mor (C), ●);≤, [⋅]−) are relational pseudo-categories such that, for all
X,Y,Z ∈ Obj (C), the diagram

(C(X,Y ),≤)
χ

((QQQQQQQQQQQQ

(C(Z,X),≤)
ψ

66mmmmmmmmmmmm

ϕ
// (C(Y,Z),≤)

where ϕ ∶ C(Z,X) → C(Y,Z), χ ∶ C(X,Y ) → C(Y,Z) and ψ ∶ C(Z,X) → C(X,Y ) are
defined as follows, for all f ∈C(Z,X), g ∈C(Y,Z) and h ∈C(X,Y ):

- (f, g)ϕ = f− ○ g−;

- (h, g)χ = (h ● g)−;

- (f, h)ψ = (f ∗ h)−
is a ⊺-including Galois 2-triangle.

Remark 6.1.37. 1. Comments similar to those made in Remarks 6.1.26 and 6.1.29
allows to say that, in the above definition, requiring that the diagram is a
⊺-including Galois 2-triangle is equivalent to require that it is a relational 2-
triangle.

2. The diagram in the above definition is a ⊺-including Galois 2-triangle if and only
if for all X,Y,Z ∈ Obj (C) and for all f ∈ C(Z,X), g ∈ C(Y,Z) and h ∈ C(X,Y )
the following equivalences hold: f ≤ (h ● g)−⇔ (f ∗ h)− ≤ g⇔ h ≤ f− ○ g−.

Proposition 6.1.38. Let C = ((Obj (C),Mor (C), ○,∗, ●);≤, [⋅]−) be a pseudo-tricategory,
with an order ≤ and an involution [⋅]− that preserves the order in the class of morphisms.

1. C is triangular if and only if C○,∗ = ((Obj (C),Mor (C), ○,∗);≤, [⋅]−) is a residu-
ated pseudo-bicategory and C○,● = ((Obj (C),Mor (C), ○, ●);≤, [⋅]−) is a symmetrical
pseudo-bicategory.

2. If C is triangular, then C●,∗− = ((Obj (C),Mor (C), ●,∗−);≤, [⋅]−) is a residuated
pseudo-bicategory.
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Proof. 1. “ ⇒ ” Let C = ((Obj (C),Mor (C), ○,∗, ●);≤, [⋅]−) be a triangular pseudo-
tricategory. For all X,Y,Z ∈ Obj (C) and for all f ∈ C(Z,X), g ∈ C(Y,Z) and
h ∈ C(X,Y ) the equivalences: f ≤ (h ● g)−⇔ (f ∗ h)− ≤ g⇔ h ≤ f− ○ g− are true.
Hence, the following hold, for all considered elements:

(a) (h ≤ f−○g−⇔ (f∗h)− ≤ g)⇔ (h ≤ f−○g−⇔ f∗h ≤ g−); so, for all f ∈C(Z,X),
g′ = g− ∈ C(Z,Y ) and h ∈ C(X,Y ), one has that h ≤ f− ○ g′⇔ f ∗ h ≤ g′, i.e.
C○,∗ is a residuated pseudo-category.

(b) (f ≤ (h ● g)− ⇔ h ≤ f− ○ g−) ⇔ (f ≤ h ● g ⇔ h ≤ f− ○ g−); so, for all
f ′ = f− ∈ C(X,Z), g′ = g− ∈ C(Z,Y ) and h ∈ C(X,Y ), one has that
f ′ ≤ h ● g′−⇔ h ≤ f ′ ○ g′, i.e. C○,● is a symmetrical pseudo-category.

“⇐ ” Assume that C○,∗ = ((Obj (C),Mor (C), ○,∗);≤, [⋅]−) is a residuated pseudo-
bicategory and C○,● = ((Obj (C),Mor (C), ○, ●);≤, [⋅]−) is a symmetrical pseudo-
bicategory. Then, for all X,Y,Z ∈ Obj (C) and for all f ∈ C(Z,X), g ∈ C(Z,Y )
and h ∈C(X,Y ) the following equivalences hold:

- h ≤ f− ○ g⇔ f ∗ h ≤ g;

- h ≤ f ○ g⇔ f ≤ h ● g−.

Then, for all f ∈C(Z,X), g′ ∈C(Y,Z) and h ∈C(X,Y ) one has that h ≤ f−○g′−⇔
f ∗ h ≤ g′− ⇔ f− ≤ h ● g′; since the involution [⋅]− preserves the order, it follows
that h ≤ f− ○ g′− ⇔ (f ∗ h)− ≤ g′ ⇔ f ≤ (h ● g′)−. Hence the pseudo-tricategory
C = ((Obj (C),Mor (C), ○,∗, ●);≤, [⋅]−) is triangular.

2. By assumption, for all f ∈ C(Z,X), g ∈ C(Y,Z) and h ∈ C(X,Y ), we have that:((f ≤ (h ● g)− ⇔ (f ∗ h)− ≤ g)⇔ (f− ≤ h ● g ⇔ f ∗ h ≤ g−); so, for all h′ = f− ∈
C(X,Z),f ′ = h− ∈C(Y,X) and g ∈C(Y,Z), one has (h′ ≤ f ′− ●g⇔ h′−∗f

′
− ≤ g−)⇔(h′ ≤ f ′− ● g ⇔ (f ′ ∗− h′)− ≤ g−) ⇔ (h′ ≤ f ′− ● g ⇔ f ′ ∗− h′ ≤ g), i.e. C●,∗− is a

residuated pseudo-bicategory.

Proposition 6.1.39. Let C = ((Obj (C),Mor (C), ○,∗, ●);≤, [⋅]−) be a triangular pseudo-
tricategory. Then, the following hold, for every X ∈ Obj (C):

1. lX is a left identity in C∗ if and only if it is the left identity in C○.

2. lX is a left identity in C∗− if and only if lX is a left identity in C●.

3. If lX is a left identity for one of the compositions ○ and ●, then lX is a left identity
for the other composition if and only if it is a crisp morphism.

4. lX is a left identity in C○ and in C● if and only if lX is an identity in C∗.

5. If lX is an identity in C∗, then it is a crisp morphism.
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Proof. The proof of the items (1), (2) and (3) is an easy consequence of Propositions
6.1.27, 6.1.34 and 6.1.38.(4) If lX is a left identity of the object X in C○ and C●, then, by item (1), lX is a left
identity of the object X of C∗; moreover, by item (2) we have that lX is a left identity
in C∗− , i.e. lX is a right identity in C∗. Hence, lX is an identity of C∗.
Conversely, if lX is an identity in C∗, in particular is a left identity and hence, by item
(1) it is a left identity in C○. Moreover, if lX is an identity, in particular a right identity
in C∗, then it is a left identity in C∗− ; hence, by item (2), lX is a left identity in C●.(5) By item (4) if lX is an identity in C∗, then lX is a left identity in C○ and C●. Hence,
by Proposition 6.1.34, lX is a crisp morphism.

Proposition 6.1.40. Let C = ((Obj (C),Mor (C), ○,∗, ●);≤, [⋅]−) be a bounded triangular
pseudo-tricategory. Then áXY and ãXY are crisp morphisms.

Proof. The statement for the bottom element áXY is already stated in Example 6.1.33.
For the top morphism, by Remark 6.1.37 the following equivalences hold, for all
f ∶X → Z, g ∶ Z → Y : ãXY ≤ f ○ g⇔ (f−∗ãXY )− ≤ g−⇔ãXY ≤ f ● g.

6.1.4 Special elements in relational pseudo-categories

In this Subsection we introduce, in the more general framework of relational pseudo-
categories, a few notions, which have been already considered for Dedekind categories
in [37, 87], where they have been revealed to be particularly useful for many purposes,
among which the characterization of those Dedekind categories that are isomorphic to
the category of binary relations with values in a Heyting algebra.
We note that notions corresponding to those considered for Dedekind categories have
been used in the context of MV -algebras by A. Popescu in [71, 72] in order to describe
and characterize MV -relation algebras that are an abstract model for homogeneous
many-valued relations taking values in a MV -algebra.
We start recalling the definition of Dedekind category.

Definition 6.1.41. [37] A Dedekind category D = (Obj(D),Mor(D),∗) is a category
such that:(D1) D(X,Y ) = (D(X,Y ),⊆,∪,∩,⇒,0XY ,∇XY ), is an Heyting algebra, ∀X,Y ∈

Obj(D), where

1. α ⊆ β⇔ α = α ∩ β⇔ β = α ∪ β;

2. α⇒ β is a pseudo-complementation of α relatively to β i.e.

γ ⊆ α⇒ β⇔ α ∩ γ ⊆ β;

3. 0XY and ∇XY are respectively the minimum and the maximum of the lattice.

(D2) There exists an unary operation # ∶ D(X,Y )→ D(X,Y ) such that, ∀α,α′ ∶X ⇁ Y ,
∀β ∶ Y ⇁ Z the following hold:
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1. (α ∗ β)# = β# ∗ α#;

2. (α#)# = α;

3. if α ⊆ α′, then α# ⊆ α′#.

(D3) ∀α ∶X ⇁ Y, β ∶ Y ⇁ Z, γ ∶X ⇁ Z the Dedekind formula or modular law holds:

α ∗ β ∩ γ ⊆ α ∗ (β ∩ α# ∗ γ).

(D4) ∀α ∶X ⇁ Y, β ∶ Y ⇁ Z the residual composition α ○ β ∶X ⇁ Z is such that:

δ ⊆ α ○ β⇔ α# ∗ δ ⊆ β , ∀δ ∶X ⇁ Z.

It is easy to see that (Obj(D),Mor(D),∗, ○);≤, [⋅]#) is a residuated pseudo-
bicategory.

Example 6.1.42. The bicategory R∗,○
2

is a Dedekind category.

In this context, fundamental tools are the following.

Definition 6.1.43. [37] Let D be a Dedekind category.

1. An object J is called unit if it satisfies the following condition:

(a) ∇JJ = idJ ≠ 0JJ ;

(b) ∇XJ ∗∇JX = ∇XX , for every X ∈ Obj(D).
2. A morphism α ∶X ⇁ Y is called ideal if ∇XY ∗ α ∗∇Y Y = α.

Remark 6.1.44. 1. if J is a unit of a Dedekind category D and α ∈ D(J, J), then
α satisfies the condition α ⊆ idJ and it called partial identity in [37, 87] and a
subdiagonal morphism in [71, 72].

2. For all X,Y ∈ Obj(D): ∇XJ ∗∇JY = ∇XY .

3. Units are abstract versions of singleton sets, that are the objects of the Dedekind
category Rel of sets and crisp binary heterogeneous relations and, also, of the
Dedekind category RelL of sets and L-valued binary heterogeneous relations taking
values in a Heyting algebra.

In [37] the notions of ideals, introduced by B. Jónsson and A. Tarski in [61], has been
revised and the one that has been proposed is useful to characterize the set L of truth
values that allows a representation of Dedekind categories as categories of L-relations.
For instance, the least element 0XY and the greatest one ∇XY are the unique ideals of
R∗,○

2
. Moreover, in the Dedekind category RelL, the sublattice of ideals in each hom-

lattice RelL(X,Y ) is isomorphic to the Heyting lattice L. In particular, it is easy to
prove that an L-relation α ∶X ⇁ Y is an ideal of RelL if and only if α is constant.
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In the more general context of pseudo-categories the existence of (right, left) identity
morphism is not assumed; moreover, since the associativity of morphisms composition
is not required, the condition ∇XY ∗ α ∗ ∇Y Y = α which characterizes the ideals of a
Dedekind category is susceptible of to two different readings: ∇XY ∗ (α ∗∇Y Y ) = α and(∇XY ∗ α) ∗∇Y Y = α.
Nevertheless, in a Dedekind category, thanks to the associativity of composition, the
equality ∇XY ∗ α ∗∇Y Y = α is equivalent to ∇XY ∗ α = α ∗∇Y Y = α.
So, taking into account the above comments, we propose the following definition in the
context of pseudo-categories.

Definition 6.1.45. Let C = ((Obj (C),Mor (C), ○);≤, [⋅]−) be a bounded ordered pseudo-
category. A morphism f ∶X ⇁ Y is called

- right ideal if ãXX○f = f ;

- left ideal if f○ãY Y = f ;

- ideal if it is a right and left ideal.

For all X,Y ∈ Obj (C) we denote by I(X,Y ) the set of all ideals from X to Y .

Remark 6.1.46. In any bounded ordered reversible pseudo-category C, if f ∈C(X,Y )
is an ideal, then the equality ãXX○f○ãY Y = f is consistent and true since clearly(ãXX○f)○ãY Y =ãXX○(f○ãY Y ) = f .

Under associativity of the composition we get similar results as in Dedekind cate-
gories.

Proposition 6.1.47. Let C = ((Obj (C),Mor (C), ○);≤, [⋅]−) be a bounded ordered asso-
ciative pseudo-category. Then

1. f ∈C(X,Y ) is an ideal if and only if ãXX○f○ãY Y = f ;

2. if f ∈ I(X,Y ) and g ∈ I(Y,Z) , then f ○ g ∈ I(X,Z).
Proof. 1. The necessity of the condition is stated in the above remark.

As for the sufficiency, by Proposition 6.1.23 and by assumption we have that:
ãXX○f =ãXX○(ãXX○f○ãY Y ) = (ãXX○ãXX) ○ f○ãY Y =ãXX○f○ãXX= f ; sim-
ilarly, f○ãXX= f .

2. Let f ∈ I(X,Y ) and g ∈ I(Y,Z). By assumption, the following equalities hold:
ãXX○(f ○g)○ãY Y = (ãXX○f)○(g○ãZZ) = f ○g. Hence, by item (1), f ○g ∈ I(X,Z).

Definition 6.1.48. Let C = ((Obj (C),Mor (C), ○);≤) be a left (right, unital) bounded
ordered pseudo-category. An object J of C is called singleton if:

1. ãJJ= lJ ≠áJJ (ãJJ= rJ ≠áJJ , ãJJ= iJ ≠áJJ);
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2. ãXJ○ãJX=ãXX , for every X ∈ Obj (C).
Proposition 6.1.49. Let J be a singleton of a left (right, unital) bounded ordered
pseudo-category C. The followings hold.

1. If f ∈C(J, J) then f is subdiagonal.

2. If C is associative, then ãXY =ãXJ○ãJY , for all X,Y ∈ Obj (C).
Proof. 1. Assuming lJ to be the left (right, unital) identity of J ; since J is a singleton,

from definition we have that ãJJ= lJ ; obviously f ≤ lJ =ãJJ , because ãJJ is the
top element.

2. ãXY ≥ãXJ○ãJY , since ãXY is the top element.
Conversely, by Proposition 6.1.23 we have that:
ãXY =ãXY ○ãY Y =ãXY ○(ãY J○ãJY )= ( ãXY ○ãY J)○ãJY ≤ãXJ○ãJY .

It follows clearly from Proposition 6.1.23 that in some bounded pseudo-categories
the top morphisms are left or right ideals. Moreover, the following hold.

Proposition 6.1.50. Let C be a bounded ordered reversible pseudo-category.

1. If C is a unital multiplicative relational pseudo-category, then ãXY ∈ I(X,Y ).
2. If C is a left implicative relational pseudo-category, then áXY is right ideal.

3. If C is a unital bounded ordered pseudo-category and J is a singleton of C, then
C(J, J) = I(J, J).

Proof. 1. The proof follows easily by Proposition 6.1.23.

2. áXY ≤ãXX○áXY , sinceáXY is the bottom element. Moreover, sinceãXX is a top
element and C is left and implicative, we have that ãXX○áXY ≤ lX○áXY =áXY .
Hence áXY ∈ I(X,Y ).

3. Let C be a unital relational pseudo-category. Trivially, C(J, J) ⊇ I(J, J). Let
f ∈C(J, J); we have ãJJ○f = iJ ○ f = f and f○ãJJ= f ○ iJ = f .

The following notion, introduced by H. Furusawa in [36] and also considered by M.
Winter in [86, 87, 88], has been used before the concept of that of ideal were defined.

Definition 6.1.51. [37] Let D be a Dedekind category. A morphism κ ∶X ⇁X is called
scalar if κ ⊆ idX and ãXX∗κ = κ∗ãXX .

It is easy to prove that if α ∶X ⇁X is an ideal, then κ = α∩idX is a scalar morphism.
Conversely, if κ ∶X ⇁X is a scalar, then α = κ∗ãXX is an ideal.
In the Dedekind category RelL, an L-relation α ∶ X ⇁ X is a scalar if and only if(x, x′)α = 0, if x ≠ x′ and there exists p ∈ L such that (x, x)α = p, for every x ∈ X. Also
in our context, we can define the corresponding notion of scalar.
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Definition 6.1.52. Let C be a left (right, unital) bounded ordered pseudo-category. For
every X ∈ Obj (C), a morphism f ∈ C(X,X) is called scalar if it satisfies the following
conditions:

1. f ≤ rX (f ≤ lX , f ≤ iX);
2. ãXX○f = f○−ãXX .

Finally, we recall that in a Dedekind category a notion has been considered that is
an abstract description of element of an object; in fact, an element can be determined by
mapping the element of a singleton to that element. This idea is formalized as follows.

Definition 6.1.53. [37] Let D be a Dedekind category and X,J ∈ Obj (D) such that J
is a unit. A morphism α ∶ J ⇁ X is called J-point of X if it satisfies the conditions
α# ∗ α ⊆ idX and idJ ⊆ α ∗ α#.

The condition 0JJ ≠ idJ ⊆ α∗α# assures that every J-point is non-zero. Hence, every
empty object X, i.e. an object X such that ∇XX = 0XX , has no J-point. Moreover,
note that idJ is the only J-point of J . In the context of a pseudo-category, we give the
following.

Definition 6.1.54. Let C be a left (right, unital, respectively) bounded ordered pseudo-
category and X,J ∈ Obj (C) such that J is a singleton. A morphism f ∈C(J,X) is called
J-point if (f− ○ f ≤ lX and f ○ f− ≥ lJ)((f− ○ f ≤ rX and f ○ f− ≥ rJ), (f− ○ f ≤ iX and
f ○ f− ≥ iJ), respectively).

In the complete ordered unital pseudo-category (R�

L
;≤) of binary relations with

values in a symmetrical cdeo algebra (L,→,⊺), the J-points of X are the functional
relations from J to X, according to the definition given in Subsection 3.3.2.

6.1.5 Examples and remarks

At this point, we have the data and the informations necessary to summarize the
categorical aspects of the class RL of relations with values in some kind of extended-order
algebra. In fact, we can consider R○1,...,○n

L
= (Obj (R○1,...,○n

L
),Mor (R○1,...,○n

L
), ○1, . . . , ○n),

where Obj (R○1,...,○n
L

) = ∣Set∣, Mor (R○1,...,○n
L

) = RL and ○i is one of partial compositions
defined in Section 3.1, for i = 1, . . . , n.
The properties just listed and proved allow to obtain these results.

Proposition 6.1.55. 1. If (L,→,⊺) is a w-ceo algebra, then:

(a) R�

L , R�

L and R�

L are pseudo-categories, neither right nor left, in general;

(b) (R�

L ; [⋅]−) and (R�

L ; [⋅]−) are reversible pseudo-categories, one the reverse of
the other, where the involution is the unary operation of opposite L-relation.

2. If (L,→,⊺) is a w-ceo algebra such that ⊺→ a = a, for every a ∈ L, then:
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(a) R�

L is a left pseudo-category, where the identity morphisms are the identity
L-relations IX , for every X ∈ ∣Set∣;

(b) R�

L is a right pseudo-category, where the identity morphisms are the identity
L-relations IX , for every X ∈ ∣Set∣.

3. If (L,→,⊺) is a right w-ceo algebra, then (R�

L ;≤) is a complete ordered pseudo-
category, where the top and the bottom element are ãXY and áXY , for all X,Y ∈∣Set∣.

4. If (L,→,⊺) is a ceo algebra, then: (R�

L ;≤, [⋅]−) is a complete implicative relational
pseudo-category.

5. If (L,→,⊺) is a right-distributive w-ceo algebra, then:

(a) (R�

L ; [⋅]−), (R�
op

L ; [⋅]−) are respectively right and left reversible pseudo-
categories where the identity morphisms are the identity L-relations and where
the involution is the unary operation of opposite L-relation; moreover, they
are reverse of the other;

(b) (R�

L ;≤) is a complete ordered pseudo-category, where the top and the bottom
element are ãXY and áXY , for all X,Y ∈ ∣Set∣;

(c) (R�

L ;≤, [⋅]−) is a multiplicative relational pseudo-category;

(d) (R�,�
L ;≤, [⋅]−) is a residuated pseudo-bicategory;

(e) if, moreover, ⊺→ a = a, for every a ∈ L, then R�

L is a unital pseudo-category.

6. If (L,→,⊺) is a right-distributive ceo algebra, then:

(a) (R�
op

L ;≤) is a complete ordered pseudo-category, where the top and the bottom
element are ãXY and áXY , for all X,Y ∈ ∣Set∣;

(b) (R�
op

L ;≤, [⋅]−) is a multiplicative relational pseudo-category.

7. If (L,→,⊺) is a symmetrical cdeo algebra, then:

(a) (R�

L ;≤, [⋅]−) and (R�̃

L ;≤, [⋅]−) are complete implicative relational left pseudo-

categories; their reverse (R�

L ;≤, [⋅]−) and (R�̃

L ;≤, [⋅]−) are right reversible
pseudo-categories;

(b) (R�,�̃
L ;≤, [⋅]−) is a symmetrical pseudo-bicategory;

(c) (R�

L ;≤, [⋅]−) and (R�̃

L ;≤, [⋅]−) are complete multiplicative relational unital
pseudo-categories, the one reverse of the other;

(d) (R�,�,�̃
L ;≤, [⋅]−) is a triangular pseudo-tricategory.

8. If (L,→,⊺) is a symmetrical associative cdeo algebra, then R�

L and R�̃

L are cate-
gories.
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Proof. The proof of all statements is an easy consequence of properties proved in Propo-
sitions 3.1.6, 3.1.10 and 3.1.14.

Proposition 6.1.56. Let (L,→,⊺) be a symmetrical cdeo algebra. All crisp L-relations

are crisp morphisms in (R�,�̃
L ;≤, [⋅]−). In particular, áXY and ãXY are crisp mor-

phisms, for all X,Y ∈ ∣Set∣.
Proof. Let r ∈ RL(X,Z), r crisp, i.e. (x, z)r ∈ {�,⊺}, for all x ∈ X,z ∈ Z. Obviously, if(x, z)r = �, the equivalence (x, z)r ≤ (x, z)(R� S)⇔ (x, z)r ≤ (x, z)(R�̃S) is true, for
all R ∈RL(X,Y ),S ∈RL(Y,Z).
Moreover, recalling that → and ¨ satisfy the condition ⊺ ≤ a → b⇔ ⊺ ≤ a ¨ b, for all
a, b ∈ L if (x, z)r = ⊺, we have that:
⊺ ≤ (x, z)(R � S) ⇔ ⊺ ≤ ⋀y∈Y (x, y)R → (y, z)S ⇔ ⊺ ≤ (x, y)R → (y, z)S,∀y ∈ Y⇔
⊺ ≤ (x, y)R¨ (y, z)S,∀y ∈ Y ⇔ ⊺ ≤ ⋀y∈Y (x, y)R¨ (y, z)S ⇔ ⊺ ≤ (x, z)(R�̃S). Hence,
the statement is proved.

Proposition 6.1.57. Let (L,→,⊺) be a w-ceo algebra. The following hold.

1. ãXY is an ideal of the bounded ordered reversible pseudo-category (R�

L ;≤, [⋅]−).
2. If ⊺→ a = a, for every a ∈ L, then:

(a) the constant L-relations in the left bounded ordered reversible pseudo-category(R�;≤, [⋅]−) are right ideals. In particular, áXY is a right ideal.

(b) The singletons of (R�

L ;≤, [⋅]−) are the singletons sets.

(c) A relation R ∶ {j}×X → L is a {j}-point if and only if (j, x)R→ (j, x′)R = �,
for all x, x′ ∈X,x ≠ x′.

Proof. Let (L,→,⊺) be a w-ceo algebra.

1. Let X,Y ∈ ∣Set∣; for all x ∈ X,y ∈ Y , we have that: (x, y)(ãXX�ãXY ) =
⋀x′∈X(x, x′)ãXX→ (x′, y)ãXY = ⋀x′∈X ⊺→ ⊺ = ⊺ = (x, y)ãXY .
Similarly we can prove ãXY �ãY Y =ãXY .

2. Assume that ⊺ → a = a, for every a ∈ L. By Proposition 6.1.55, (R�

L
;≤, [⋅]−) is a

left bounded ordered reversible pseudo-category.

(a) Let X,Y ∈ ∣Set∣ and let R ∶ X × Y → L be a relation such that, for all
x ∈X,y ∈ Y (x, y)R = a, a ∈ L.
Hence (x, y)(ãXX�R) = ⋀x′∈X ⊺→ a = ⋀x′∈X a = a = (x, y)R.

(b) Let J = {j}; hence (j, j)ãJJ≤ (j, j)IJ . Moreover, it is clear that for all
X ∈ ∣Set∣ , x, x′ ∈X: (x, x′)( ãXJ�ãJX) = (x, x′)ãXX .
Conversely, if J is a singleton object, then, for all x, x′ ∈ J one has ⊺ =(x, x′)ãJJ≤ (x, x′)IJ ⇒ x = x′, hence J has to be a singleton set.

(c) Let R ∶ {j}×X → L be an L-relation such that (j, x)R→ (j, x′)R = �, for all
x, x′ ∈X,x ≠ x′.
For all x, x′ ∈X, the following hold:
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- (x, x′)(R− �R) = ⋀j∈J(x, j)R− → (j, x′)R = (j, x)R→ (j, x′)R; if x = x′,(j, x)R → (j, x′)R = ⊺, while, by assumption, if x ≠ x′, (j, x)R →(j, x′)R = �.
In any case, we have that (x, x′)(R− �R) ≤ IX .

- (j, j)(R�R−) = ⋀x∈X(j, x)R → (x, j)R− = ⋀x∈X(j, x)R → (j, x)R = ⊺ ≥(j, j)IJ .

Hence R is a J-point.
The converse can be easily proved.

Proposition 6.1.58. Let (L,→,⊺) be a right-distributive ceo algebra. The following
hold.

1. áXY and ãXY are ideals of the right bounded ordered reversible pseudo-category(R�

L ;≤, [⋅]−).
2. The constant relations are left ideals of the right bounded ordered reversible pseudo-

category (R�

L ;≤, [⋅]−).
3. If ⊺→ a = a, for every a ∈ L, then:

(a) the constant L-relation of the unital bounded ordered reversible pseudo-
category (R�

L ;≤, [⋅]−) are ideals.

(b) The singleton of (R�

L ;≤, [⋅]−) are the singleton sets.

(c) A relation R ∶ {j} ×X → L is a {j}-point if (j, x)R ⊗ (j, x′)R = �, for all
x, x′ ∈X,x ≠ x′ and there exists x̄ ∈X such that (j, x̄)R = ⊺.

Proof. Let (L,→,⊺) be a right-distributive ceo algebra.

1. Let X,Y ∈ ∣Set∣; for all x ∈ X,y ∈ Y we have that: (x, y)(ãXX�ãXY ) =
⋁x′∈X(x, x′)ãXX⊗(x′, y)ãXY = ⋁x′∈X ⊺ ⊗ ⊺ = ⊺ = (x, y)ãXY . So, ãXY is a right
ideal; similarly we can prove that ãXY is a left ideal, too.
Moreover, (x, y)(ãXX�áXY ) = ⋁x′∈X(x, x′)ãXX⊗(x′, y)áXY = ⋁x′∈X ⊺ ⊗ � = � =(x, y)áXY . So, áXY is a right ideal; similarly, we can prove that áXY is a left
ideal, too.

2. Let X,Y ∈ ∣Set∣ and let R ∶X × Y → L be a relation such that, for all x ∈X,y ∈ Y(x, y)R = a, a ∈ L. Hence (x, y)(R�ãY Y ) = ⋁y′∈Y a ⊗ ⊺ = ⋀x′∈X a = a = (x, y)R.
Similarly, we can prove the other equality that characterizes the left ideal, recalling
that a reverse of constant relation is constant, too.

3. Assume that the ⊺→ a = a is satisfied for every a ∈ L. This is equivalent to say that
⊺ is a left and right neutral with respect to the adjoint product. By Proposition
6.1.55, (R�

L ;≤, [⋅]−) is a unital bounded ordered reversible pseudo-category.
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(a) Let X,Y ∈ ∣Set∣ and let R ∶ X × Y → L be a relation such that, for all x ∈
X,y ∈ Y (x, y)R = a, a ∈ L. Hence (x, y)(ãXX�R) = ⋀x′∈X ⊺ ⊗ a = ⋀x′∈X a =
a = (x, y)R. Similarly, we can prove the other equality that characterizes the
ideal.

(b) Let J = {j}; hence (j, j)ãJJ≤ (j, j)IJ . Moreover, it is clear that for every
X ∈ ∣Set∣ , x, x′ ∈X: (x, x′)( ãXJ�ãJX) = (x, x′)ãXX .

(c) Let R ∶ {j} ×X → L be an L-relation such that (j, x)R⊗ (j, x′)R = �, for all
x, x′ ∈X,x ≠ x′ and there exists x̄ ∈X such that (j, x̄)R = ⊺. For all x, x′ ∈X,
the following hold:

- (x, x′)(R− �R) = ⋁j∈J(x, j)R− ⊗ (j, x′)R = (j, x)R⊗ (j, x′)R.
If x = x′, (j, x)R→ (j, x′)R ≤ ⊺, while, by assumption, if x ≠ x′, (j, x)R⊗(j, x′)R = �. In any case, we have that (x, x′)(R− �R) ≤ IX .

- By assumption, we have that:(j, j)(R � R−) = ⋁x∈X(j, x)R ⊗ (x, j)R− = ⋁x∈X(j, x)R ⊗ (j, x)R ≥(j, x̄)R⊗ (j, x̄)R = ⊺ ≥ (j, j)IJ .

Hence R is a J-point.

Remark 6.1.59. By using one of the equivalences that characterize the ⊺-including
Galois L-triangle of the Proposition 5.1.7, we can deduce the property (D4) of Dedekind
categories with respect to the partial compositions � and �. In fact, since the diagram
of Definition 6.1.36 is a ⊺-including Galois L-triangle, then the following equivalence
holds, for all ρ ∈RL(Z,X), σ ∈RL(Y,Z), τ ∈RL(X,Y ):

(τ, ρ− � σ−)SX×Y = ⊺⇔ ((ρ� τ)−, σ)SY ×Z = ⊺
that is equivalent to

τ ≤ ρ− � σ−⇔ (ρ� τ)− ≤ σ.
So, for all ρ ∈RL(Z,X), σ ∈RL(Y,Z), τ ∈RL(X,Y ):

τ ≤ ρ− � σ−⇔ ρ� τ ≤ σ−

that can be rewritten, considering α = ρ−, β = σ− and γ = τ in this way

γ ≤ α� β⇔ α− � γ ≤ β.

Remark 6.1.60. We recall the notions of fuzzy-relation algebra and MV-relation
algebra, as defined in [71, 72].
A fuzzy-relation algebra (FRA) is a structure (A,∨,∧,⊙,→,0,1, ; ,⌣,∆) such that:(A0) (A,∨,∧,⊙,→,0,1)is a BL-algebra;(A1) (A, ; ,∆) is a monoid;(A2) the cycle law holds: ∀x, y, z ∈ A, (x; y)⊙ z = 0⇔ (x⌣; z)⊙ y = 0⇔ (z; y⌣)⊙x = 0.
Moreover, an MV-relation algebra (MVRA) is a structure (A,⊕,⊙, ,̄0,1, ; ,⌣,∆) such
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that:(A0) (A,⊕,⊙, ,̄0,1) is an MV-algebra;(A1) (A, ; ,∆) is a monoid;(A2) the cycle law holds: ∀x, y, z ∈ A, (x; y)⊙ z = 0⇔ (x⌣; z)⊙ y = 0⇔ (z; y⌣)⊙x = 0;(A3) (x⊕ y)⌣ = x⌣ ⊕ y⌣;(A4) (a⊙ x); (b⊙ y) ≤ (a; b)⊙ (x; y);(A5) ∆⊙∆ =∆.

Assuming that � is ⊗-irreducible, by means of the equivalences that characterize the
�-including Tarski L-triangle of the Proposition 5.1.18 (2), we can deduce the generaliza-
tion of the cycle law required in an MV -relation algebra and in a fuzzy-relation algebra.
In fact, since the previous diagram is a �-including Tarski L-triangle, the following hold,
for all ρ ∈RL(Z,X), σ ∈RL(Y,Z), τ ∈RL(X,Y ):

(ρ, (τ � σ)−)TZ×X = �⇔ ((ρ� τ)−, σ)TY ×Z = �⇔ (τ, ρ− � σ−)TX×Y = �.
Hence, for all ρ ∈RL(Z,X), σ ∈RL(Y,Z), τ ∈RL(X,Y ):

ρ⊗ (τ � σ)− = �⇔ (ρ� τ)− ⊗ σ = �⇔ τ ⊗ (ρ− � σ−) = �
that are equivalent to the following, for all ρ ∈RL(Z,X), σ ∈RL(Y,Z), τ ∈RL(X,Y ):

ρ− ⊗ (τ � σ) = �⇔ (τ−�̃ρ−)⊗ σ = �⇔ τ ⊗ (ρ− � σ−) = �.
So, considering α = τ , β = σ and γ = ρ− the following equivalences hold, for all γ ∈
RL(X,Z), β ∈RL(Y,Z), α ∈RL(X,Y ):

γ ⊗ (α� β) = �⇔ (α−�̃γ)⊗ β = �⇔ α⊗ (γ � β−) = �.
The algebra of relation traditionally depends on the principle of the logics involved

in the underlying set (or class) theory and reflects the structures assumed in the set of
the corresponding truth values. In classical logic, relation algebras have been studied
and characterized as algebras of binary homogeneous relations, that are boolean algebras
with operators (see [61]). An approach that deals directly with heterogeneous binary
relations has also developed starting from [69]. Of course, the big development of many-
valued logics and mathematics in the last decades and the relevance of relations in pure
and applied sciences have favored and increased new appropriate approaches to many-
valued binary relations, their algebra and theirs structures including the corresponding
operators (see [6, 87]). An abstract approach to algebras of homogeneous relations
taking values in MV -algebras is developed in [71, 72], while an abstract approach to
heterogeneous relation with values in Heyting algebras is developed in [37, 87]. More
generally, the algebra of relations, their compositions and corresponding operators have
been approached in more general contexts dealing with complete residuated lattices
[6, 4, 35]. This thesis extends the framework to the more general context of w-eo algebras,
which is intended as a first step toward a characterization of algebras and categories of
binary relations in such more general context.
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As we have already remarked, the concept introduced and studied in this Chapter are
intended as a general framework where we would like to develop an abstract approach
to categories of relations with values in some kind of extended-order algebra; this would
be the topic of our future work.

6.2 Composition graphs and connections

Structures made up of objects, morphisms and composition operation that in general
are neither categories nor pseudo-categories are studied, among others, by C. Ehrsmann
[31], H. Herrlich and L. Schöder [53, 54, 76]. In the following we recall the basic notions
of these structures considered in the works of these authors. Now, we recall the basic
notions according to the approach and terminology considered in [76].

Definition 6.2.1. A composition graph is a triple C = (Obj (C ),Mor (C ), ⋅) defined by
the following.

1. Obj (C ) is a class of objects denoted by capital letters A,B, ...;

2. Mor (C ) is a class of morphism and there exist a function C ∶ Obj (C ) × Obj (C ) →
P(Mor (C )) that maps every pair of objects (A,B) into a set C (A,B), whose
elements are called morphisms and are denoted by f ∶ A → B; then the object
A = domf is called domain of f and the object B = codomf is called codomain of
f . Moreover, {C (A,B)∣A,B ∈ Obj (C ),C (A,B) ≠ ∅} is a partition of Mor (C ).

3. A function id ∶ Obj (C ) → Mor (C ) that associates to each object A a morphism
iA ∈ C (A,A).

4. A subclass K of Mor (C ) × Mor (C ) and an operation of composition ⋅ ∶ K →
Mor (C ) that maps any pair (f, g) ∈K into f ⋅g ∈ Mor (C ). Moreover, the following
implication holds: (f, g) ∈ K ⇒ domg = codomf , domf ⋅ g = domf , codomf ⋅ g =
codomg.

We note that in a category, the converse implication of the last condition (4) holds
too.
We observe that no axiom concerning the identity law and the associativity law are
assumed, in general, in a composition graph, but some of the following conditions may
be considered.

Definition 6.2.2. Let C be a composition graph. Then the following conditions may be
satisfied.(wi) If f ∈ C (A,B), f ⋅ iB and iA ⋅ f are defined in C , then f ⋅ iB = iA ⋅ f = f (weak
identity law).(si) If f ∈ C (A,B), then both f ⋅ iB and iA ⋅ f are defined in C and f ⋅ iB = iA ⋅ f = f
(strong identity law).(wa) If f, g, h ∈ Mor (C ), f ⋅ g and g ⋅ h are defined in C and if one of the compositions
f ⋅ (g ⋅h) or (f ⋅ g) ⋅h is defined in C , then there exists also the other one and (f ⋅ g) ⋅h =
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f ⋅ (g ⋅ h) (weak associativity law).(sa) If f, g, h ∈ Mor (C ), f ⋅ g and g ⋅h are defined in C , then both f ⋅ (g ⋅h) and (f ⋅ g) ⋅h
are defined in C and (f ⋅ g) ⋅ h = f ⋅ (g ⋅ h) (strong associativity law).

Remark 6.2.3. 1. It is possible to consider two weaker versions of the weak associa-
tivity law; in fact, we may speak of right weak associativity law, if we consider
the condition:(wa)r if f, g, h ∈ Mor (C ) and f ⋅ g, g ⋅ h and f ⋅ (g ⋅ h) are defined in C , then there
exists (f ⋅ g) ⋅ h and (f ⋅ g) ⋅ h = f ⋅ (g ⋅ h)
and of left weak associativity law if we consider the condition:(wa)l if f, g, h ∈ Mor (C ) and f ⋅ g, g ⋅ h and (f ⋅ g) ⋅ h are defined in C , then there
exists f ⋅ (g ⋅ h) and f ⋅ (g ⋅ h) = (f ⋅ g) ⋅ h.

2. A composition graph that satisfies the strong identity law is a multiplicative
graph considered by Ehresmann [31].

3. Each of the strong versions of the condition considered in Definition 6.2.2 implies
its weak version.

Proposition 6.2.4. A composition graph is a category if and only if it satisfies (si) and(sa).
Proof. The conditions (si) and (sa) are clearly necessary. Conversely, assume that those
are satisfied. Then, for f ∶ A → B and g ∶ B → C, consider iB ∈ C (B,B). By (si), both
f ⋅ iB and iB ⋅ g exist and f ⋅ iB = f and iB ⋅ g = g. Then, by (sa), (f ⋅ iB) ⋅ g = f ⋅ g exists.
Now, it becomes clear that the composition is associative and every identity morphism
is neutral for the composition.

Definition 6.2.5. [76] A composition graph is called precategory if it satisfies the
strong identity law and the weak associativity law and it is called semicategory if it
satisfy the weak identity law and the strong associativity law.

Both precategories and semicategories are proper generalizations of categories, as
subsequent examples we shall describe show.
First, we recall some of the examples described in [76].

Example 6.2.6. 1. Let A and B two partial algebras of the same signature; a ho-
momorphism f ∶ A → B is called full if, for every operation σ of arity n in the
signature, the definedness of ((x1)f, . . . , (xn)f)σ = (x)f in B implies that there
exist x′1, . . . , x

′
n and x′ such that (x′1, . . . , x′n)σ = x′ is defined in A, (x′)f = (x)f

and (x′i)f = (xi)f , for i = 1, . . . , n. We note that in [76] it is shown that the com-
position of full homomorphisms need not be full. The structure where the objects
are the partial algebras, the morphisms are the full homomorphisms equipped with
the composition of functions is a precategory.

2. Let ρ and σ be two n-ary relations on sets X and Y , respectively. A relation
morphism f ∶ (X,ρ) → (Y,σ) is called full if, whenever (x1, . . . , xn)f ∈ σ, there
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exists (x′1, . . . , x′n) ∈ ρ such that (x′i)f = (xi)f , for i = 1, . . . , n. The structure,
denoted by fRel(n), whose objects are the structured sets (X,ρ), for every set X
and every ρ ⊆ Xn, whose morphisms are the full relation morphisms and whose
composition is the composition of functions is a precategory.

3. Let X and Y be two probability spaces; a function f ∶X → Y is called probability
presentation morphism if P ([B]f−1) = P (B∣[X]f), for every B ⊂ Y where P

denotes the probability measure on X as well as on Y . The structure Prob
where the objects are the probability spaces, the morphisms are the probability
presentation morphisms with the composition of functions is a precategory.

4. Let C be a category and let ∼ be a congruence on A (i.e. if f ∼ g, for f ∶ A→ B and
g ∶ C → D, then A ∼ C and B ∼ D, and if f ∼ f ′, g ∼ g′ and fg and f ′g′ are both
defined, then fg ∼ f ′g′). Then the equivalence classes modulo ∼ equipped with the
induced domain and codomain assignments and the induced composition form a
composition graph, that, in general, is neither a precategory nor a semicategory.

Now, we reconsider the notions of global and relative connections introduced in Sec-
tion 4.2, to obtain new, meaningful examples of precategories and semicategories.
First of all, we note that if one considers the set L with an equivalence ≡ and the
structured set (X,α), where X is a set and α is an L-relation on X, then the follow-
ing connections (iX , iX) ∶ (X,α) → (X,α) and )iX , iX(∶ (X,α) → (X,α) are obtained.
Moreover, if α is a symmetrical L-relation (i.e. for every x, x′ ∈ X, (x, x′)α = (x′, x)α),
then further connections [iX -iX] ∶ (X,α) → (X,α) and ]iX -iX[∶ (X,α) → (X,α) are
obtained, too.
In fact, for every x, x′ ∈ X: ((x)iX , x′)α = (x, x′)α = (x, (x′)iX)α, i.e. one has (iX , iX)
and (x′, (x)iX)α = (x′, x)α = ((x′)iX , x)α, which implies )iX , iX(; moreover, the equal-
ities (x′, (x)iX)α = (x, (x′)iX)α and ((x)iX , x′)α = ((x′)iX , x)α, for all x, x′ ∈ X, can
be obtained, if α is symmetrical, which provides the connections [iX -iX] and ]iX -iX[,
respectively.
Clearly, similar statements hold for relative connections; hence, for every E ⊆ L,(iX , iX)E ∶ (X,α) → (X,α) and )iX , iX(E ∶ (X,α) → (X,α), while [iX -iX]E ∶ (X,α) →(X,α) and ]iX -iX[E ∶ (X,α)→ (X,α), if α is symmetrical.
Now we consider, for a fixed set (L,≡) with an equivalence relation, the class of pairs
Obj (Con) = {(X,α)∣ X ∈ ∣Set∣ , α ∈ LX×X}, whose elements we consider as objects.
Connections may be considered as morphisms between such a kind of objects; denote
Mor (Con) the class of such morphisms and Con((X,α), (Y, β)) the set of connections
of any kind which are suitable pairs of functions satisfying the required conditions.
To proceed, we approach the composition between connections. For this goal, we con-
sider the usual composition of functions. It is clear that given three structured sets(X,α), (Y, β) and (Z, γ), f ∶ X → Y and g ∶ Y → X maps that form a connection from(X,α) to (Y, β) of some kind and h ∶ Y → Z and k ∶ Z → Y maps that form a connection
from (Y, β) to (Z, γ) of some kind, we can compose f with h and k with g, but the pair⟨f ⋅ h, k ⋅ g⟩ is not necessarily a connection of any kind.
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In the following Propositions we describe all the compositions that lead surely to some
kind of connection by means of component-wise composition of functions.

Proposition 6.2.7. With the above notation, assuming [f -g] ∶ (Xα) → (Y, β), the
following hold.

1. If ]h-k[∶ (Y, β) → (Z, γ), then there exists [f -g]○]h-k[∶ (X,α) → (Z, γ) and[f -g]○]h-k[= (f ⋅ h, k ⋅ g) ∈Con((X,α), (Z, γ)).
2. If )h, k(∶ (Y, β) → (Z, γ), then there exists [f -g]○)h, k(∶ (X,α) → (Z, γ) and[f -g]○)h, k(= [f ⋅ h, k ⋅ g] ∈Con((X,α), (Z, γ)).

Proof. These statements can be easily proved, but we shall give an explicit verification
in the general case of relational systems in the next Section.

Similarly, the following results can be stated.

Proposition 6.2.8. With the above notation, assuming ]f -g[∶ (Xα) → (Y, β), the fol-
lowing hold.

1. If [h-k] ∶ (Y, β) → (Z, γ), then there exists ]f -g[○[h-k] ∶ (Xα) → (Z, γ) and]f -g[○[h-k] =)f ⋅ h, k ⋅ g(∈Con((X,α), (Z, γ)).
2. If (h, k) ∶ (Y, β) → (Z, γ), then there exists ]f -g[○(h, k) ∶ (Xα) → (Z, γ) and]f -g[○(h, k) =]f ⋅ h, k ⋅ g[∈Con((X,α), (Z, γ)). ◻

Proposition 6.2.9. With the above notation, assuming (f -g) ∶ (Xα) → (Y, β), the
following hold.

1. If [h-k] ∶ (Y, β) → (Z, γ), then there exists (f, g) ○ [h-k] ∶ (Xα) → (Z, γ) and(f, g) ○ [h-k] = [f ⋅ h, k ⋅ g] ∈Con((X,α), (Z, γ)).
2. If (h, k) ∶ (Y, β) → (Z, γ), then there exists (f, g) ○ (h, k) ∶ (Xα) → (Z, γ) and(f, g) ○ (h, k) = (f ⋅ h, k ⋅ g) ∈Con((X,α), (Z, γ)). ◻

Proposition 6.2.10. With the above notation, assuming )f -g(∶ (Xα) → (Y, β), the
following hold.

1. If ]h-k[∶ (Y, β) → (Z, γ), then there exists )f, g(○]h-k[∶ (Xα) → (Z, γ) and)f, g(○]h-k[=]f ⋅ h, k ⋅ g[∈Con((X,α), (Z, γ)).
2. If )h, k(∶ (Y, β) → (Z, γ), then there exists )f, g(○)h, k(∶ (Xα) → (Z, γ) and)f, g(○)h, k(=)f ⋅ h, k ⋅ g(∈Con((X,α), (Z, γ)). ◻
Clearly, the same results hold for relative E-connections, for any E ⊆ L, with respect

to the same componet-wise composition of pairs of functions.
Hence, the composition is a partial operation in the class of global and relative connec-
tions.
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Remark 6.2.11. We note that given (Xα), (Y, β), (Z, γ) and two pairs of functions
< f, g > and < h, k > that form connections of any type from (Xα) to (Y, β) and from(Y, β) to (Z, γ), respectively, the pair < f ⋅ h, k ⋅ g > may be a connection of some type
even if the condition of the above Propositions 6.2.7-6.2.10 do not occur; in fact, such
Propositions give sufficient conditions that are not necessary, in general, to let two
connections be composed.

Now the triple Con = (Obj (Con),Mor (Con), ○) with the class of objects and
of morphisms and composition above defined is a composition graph, for which the
function id ∶ Obj (Con)→ Mor (Con) is defined by (X,α)id = ⟨iX , iX⟩.
Similarly, the composition graph E-Con = (Obj (E-Con),Mor (E-Con), ○)
of connections relative to any subset E ⊆ L can be de-
fined, where Obj (E-Con) = Obj (Con), E-Con((X,α), (Y, β)) ={⟨f, g⟩ ∣ f ∶X → Y, g ∶ Y →X form an E − connection of any type}, ○ is the
component-wise composition and id is defined as for Con.
It is clear that for any (X,α) ∈ Obj (Con) the pair of functions ⟨iX , iX⟩ is both a type
III and a type IV connection.
Unlike the case of arbitrary morphisms, the composition of all types of connections
having (X,α) either as domain or as codomain with the pair of identities functions⟨iX , iX⟩ is still a connection of the same type.
More precisely, if the pair ⟨f, g⟩ is a connection of some kind from (X,α) to (Y, β), then
the composition of such pair either on the left with the pair ⟨iX , iX⟩ or on the right
with the pair ⟨iY , iY ⟩ give the pair ⟨f, g⟩ itself, hence exactly the same connection.
Clearly, the same results hold for relative E-connections, for any E ⊆ L.
Hence, for all types of global and relative connections each pair of identity functions on
any set is neutral with respect to the partial composition, so the strong identity law is
satisfied.

Now, it is easy to show that the strong associativity law is not satisfied in Con. In
fact, if we consider the connections [f -g] ∶ (X,α)→ (Y, β), (iY , iY ) ∶ (Y, β)→ (Y, β) and[h-k] ∶ (Y, β) → (Z, γ), we have that [f -g] ○ (iY , iY ) = [f -g] and (iY , iY ) ○ [h-k] = [h-k]
are defined, but neither [f -g]○((iY , iY )○ [h-k]) nor ([f -g]○(iY , iY ))○ [h-k] are defined,
in general. Similarly, E-Con does not satisfy the strong associativity law.
Instead, the weak associativity law holds.
To prove this, let us denote by ⟨f, g⟩ any connection, either global or relative, of some kind
from (X,α) to (Y, β), where f ∈ Y X , g ∈ XY evidently satisfy the required conditions.
Then the following holds.

Proposition 6.2.12. With the above notation, let ⟨f, g⟩ ∶ (X,α) → (Y, β),⟨h, k⟩ ∶ (Y, β)→ (Z, γ), ⟨l,m⟩ ∶ (Z, γ)→ (W,δ) be connections of any kind.
If one of the compositions (⟨f, g⟩ ○ ⟨h, k⟩) ○ ⟨l,m⟩ and ⟨f, g⟩ ○ (⟨h, k⟩ ○ ⟨l,m⟩) exists in
Mor (Con), then the other also exists and both compositions are equal to each other.

Proof. Assuming that (⟨f, g⟩ ○ ⟨h, k⟩) ○ ⟨l,m⟩ exists means that the functions (f ⋅ h) ⋅ l
and m ⋅ (k ⋅ g) form a connection ⟨(f ⋅ h) ⋅ l,m ⋅ (k ⋅ g)⟩ of some kind; by the associativity
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of the composition of functions this is equivalent to saying that f ⋅ (h ⋅ l) and (m ⋅ k) ⋅ g
form the same connection, which is the composition ⟨f, g⟩ ○ (⟨h, k⟩ ○ ⟨l,m⟩).
Corollary 6.2.13. Con satisfies the (wa) condition.

Proof. If ⟨f, g⟩ ○ ⟨h, k⟩ and ⟨h, k⟩ ○ ⟨l,m⟩ exist, then the codomain of ⟨f, g⟩, say (Y, β),
coincides with the domain of ⟨h, k⟩ and the codomain of < h, k >, say (Z, γ), coincides
with the domain of ⟨l,m⟩.
Denoting by (X,α) the domain of ⟨f, g⟩ and by (W,δ) the codomain of ⟨l,m⟩, the above
Proposition gives the assertion.

Clearly, the same results hold for relative E-connections, for any E ⊆ L.
The above results show that Con = (Obj (Con),Mor (Con), ○) is a composition graph
that satisfies the strong identity law and the weak associativity law; hence C is a
precategory.
Similarly, for any fixed E ⊆ L, the triple E-Con = (Obj (E-Con),Mor (E-Con), ○), that
has the same objects and the same composition of Con, but whose morphisms are the
pairs of maps that are relative E-connections of any type, as in Definition 4.2.12, is a
precategory.
We can consider, moreover, Con∃E = (Obj (Con∃E),Mor (Con∃E), ○),
where Obj (Con∃E) = Obj (Con) is the class of all structured sets{(X,α)∣∀X ∈ ∣Set∣ , α ∈RL(X,X)}, Mor (Con∃E) is the class of pairs of functions
that are relative E-connections of some type between two structured sets, for some
E ⊆ L and ○ is the partial composition above considered.
Clearly, two of their morphisms can be composed according to the rule stated in
Propositions 6.2.7-6.2.10, provided that subsets E,E′ ⊆ L exist such that those
morphisms are a relative E-connection and a relative E′-connection, respectively, and
E and E′ satisfy the following condition, for all X ∈ ∣Set∣ , α ∈ RL(X,X), x, x′ ∈ X:(x, x′)α ∈ E⇔ (x, x′)α ∈ E′.
Then, it can be proved that Con∃E is a precategory and that Con and every E-Con,
with E ⊆ L, are subprecategories of Con∃E .
Now, we proceed in the opposite direction, restricting the class of morphisms. First
we consider the class of objects Obj (Con) and restrict the class of morphisms to
the connections of type III, then the restriction of the partial composition ○ of Con
determines a subprecategory that we denote by ConIII . By Proposition 6.2.8 (2) it is
clear that ConIII = (Ob(ConIII),Mor (ConIII), ○) is a category.
Similarly, by Proposition 6.2.9 (2) the subprecategory of Con whose morphisms are the
connections of type IV is a category ConIV = (Ob(ConIV ),Mor (ConIV ), ○).
Similar categories of relative E-connections of type III and categories of relative
E-connections of type IV can be considered, for any fixed E ⊆ L.

Remark 6.2.14. A special instance of the category E-ConIII has been already con-
structed in [79], where type III Galois connections between posets have been considered.

A different arrangement of the structure of connections, either global or relative,
allows to give interesting examples of semicategories.
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Now, we need to consider connections not simply as pairs of functions satisfying suit-
able conditions, but as labeled pairs of functions whose label, running from I to IV,
corresponds to a type of connection and requires the corresponding conditions on the
functions of the labeled pairs. So, with obvious notation, we denote type Γ connections
by ⟨f, g⟩Γ and type Γ E-connections by E-⟨f, g⟩Γ, where Γ ∈ {I, II, III, IV } and E ⊆ L.
To compose connections ⟨f, g⟩Γ ∶ (X,α)→ (Y, β) and ⟨h, k⟩Γ ∶ (Y, β)→ (Z, γ) we require
the condition (arising from Propositions 6.2.7-6.2.10)

(Γ,Γ′) ∈ {(I, II), (I, IV ), (II, I), (II, III), (III, I), (III, III), (IV, II), (IV, IV )}
then we compose the function f by h and the function k by g getting a connection of
appropriate type, according to the table below, where ○̂ is the symbol to denote the
obtained composition of labeled connections.

- < f, g >I ○̂ < h, k >II=< f ⋅ h, k ⋅ g >III ;

- < f, g >I ○̂ < h, k >IV =< f ⋅ h, k ⋅ g >I ;

- < f, g >II ○̂ < h, k >I=< f ⋅ h, k ⋅ g >IV ;

- < f, g >II ○̂ < h, k >III=< f ⋅ h, k ⋅ g >II ;

- < f, g >III ○̂ < h, k >I=< f ⋅ h, k ⋅ g >I ;

- < f, g >III ○̂ < h, k >III=< f ⋅ h, k ⋅ g >III ;

- < f, g >IV ○̂ < h, k >II=< f ⋅ h, k ⋅ g >II ;

- < f, g >IV ○̂ < h, k >IV =< f ⋅ h, k ⋅ g >IV .

One can have a sample of the different behavior of the compositions ○ of Con and the
composition ○̂ noting that < iX , iX >III and < iX , iX >IV cannot be composed by ○̂ with
all types of connections, as, instead, it happens for the composition ○ previously consid-
ered. The following Proposition list all the possible compositions with the connections
made by the identity functions.

Proposition 6.2.15. With the above notation, the following holds.

1. < f, g >I ○̂ < iY , iY >IV =< f, g >I ;

2. < f, g >II ○̂ < iY , iY >III=< f, g >II ;

3. < f, g >III ○̂ < iY , iY >III=< f, g >III ;

4. < f, g >IV ○̂ < iY , iY >IV =< f, g >IV ;

5. < iX , iX >III ○̂ < f, g >I=< f, g >I ;

6. < iX , iX >III ○̂ < f, g >III=< f, g >III ;
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7. < iX , iX >IV ○̂ < f, g >II=< f, g >II ;

8. < iX , iX >IV ○̂ < f, g >IV =< f, g >IV .

Proof. The proof of all statements follows easily by definition of ○̂.

Obviously, similar results hold for relative E-connections, E ⊆ L.
Of course, to obtain a composition graph whose morphisms are the labeled connec-
tions we need to fix, for every object (X,α), the identity (X,α)id. We have two
alternative choices, the one assigning (X,α)id =< iX , iX >III , the other assigning(X,α)id =< iX , iX >IV : denote by LCon3 the composition graph obtained in the first
case and by LCon4 the composition graph obtained in the second case. We shall see
that both these composition graphs are semicategories, as a consequence of the following
results.

Proposition 6.2.16. The weak identity condition (wi) holds in LCon3 and in LCon4.

Proof. We prove the statement in LCon3; the other case will be similar.
Let ⟨f, g⟩Γ ∶ (X,α)→ (Y, β) be any connection from (X,α) to (Y, β).
If Γ ∈ {I, II, IV }, then either < iX , iX >III ○̂ ⟨f, g⟩Γ or ⟨f, g⟩Γ ○ < iY , iY >III or both are
not defined.
If Γ = III, then < iX , iX >III ○̂ ⟨f, g⟩III = ⟨f, g⟩III ○̂ < iY , iY >III= ⟨f, g⟩III . So, in any
case (wi) is satisfied.

Proposition 6.2.17. The strong associativity condition (sa) holds in LCon3 and in
LCon4.

Proof. The proof is the same in both cases, since it does not depend on the choice of
the identity morphism; so, we consider only LCon3.
Let ⟨f, g⟩Γ ○̂ ⟨h, k⟩Γ′ and ⟨h, k⟩Γ′ ○̂ ⟨l,m⟩Γ′′ be defined.
Then (X,α), (Y, β), (Z, γ), (W,δ) ∈ ∣LCon3∣ exist such that ⟨f, g⟩Γ ∶ (X,α) → (Y, β),⟨h, k⟩Γ′ ∶ (Y, β) → (Z, γ), ⟨l,m⟩Γ′′ ∶ (Z, γ) → (W,δ). Moreover, (Γ,Γ′), (Γ′,Γ′′) ∈{(I, II), (I, IV ), (II, I), (II, III), (III, I), (III, III), (IV, II), (IV, IV )}. Hence

(Γ,Γ′,Γ′′) ∈{ (I, II, I), (I, II, III), (I, IV, II), (I, IV, IV ),
(II, I, II), (II, I, IV ), (II, III, I), (II, III, III),
(III, I, II), (III, I, IV ), (III, III, I), (III, III, III),
(IV, II, I), (IV, II, III), (IV, IV, II), (IV, IV, IV ) } .

Using Propositions 6.2.7-6.2.10, it is easy to check that, in any case, both(⟨f, g⟩Γ ○̂ ⟨h, k⟩Γ′)○̂ ⟨l,m⟩Γ′′ and ⟨f, g⟩Γ ○̂(⟨h, k⟩Γ′ ○̂ ⟨l,m⟩Γ′′) are defined, have the same
type and, of course, coincide being in both case determined by the functions f ⋅ h ⋅ l and
m ⋅ k ⋅ g.

Similar conclusions can be drawn for the relative E-connections, for any E ⊆ L, so
obtaining the semicategories E-LCon3, E-LCon4, with obvious notations.
Of course, the category ConIII is isomorphic to a subsemicategory of LCon3 and the
category ConIV is isomorphic to a subsemicategory of LCon4.
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Remark 6.2.18. Semicategories are the main topic of the papers [53, 54], where, in-
deed, only artificious examples are considered. Composition graphs, precategories and
semicategories are also the considered in [76] but, even there, there is no meaningful
example of semicategories, since examples of composition graphs there considered are
not semicategories. So LCon and E-LCon give a relevant contribution as interesting
examples of precategories.

6.3 Relational systems

Toward the end of the present thesis we have a look at some of the fundamental ideas
we have developed.
It should be quite clear the relevance of binary, possibly many-valued, relations in all
the topics we have treated. On one side we have tried to enlighten the role of extended-
order algebras in the study of (many valued) binary relations. Conversely, we have seen
that the structure itself of such algebras is essentially based on binary relations, either
directly or not; in fact, the primitive operation of implication is defined as an extension
of an order relation and, moreover, the fundamental tools that allow to enrich the struc-
ture of the algebra, namely isotone and antitone Galois connections, have been shown
in Chapter 4 to be properly described and studied by means of (many-valued) relations.
An overall view of the interconnection of most topics we have considered suggests the
opportunity of gathering all together such topics getting considerable advantage in the
comprehension of the whole matter and improvements of the results already obtained.
The last Sections of this thesis are thus devoted to the description of suitable relational
systems that summarize and widen in a unified framework most topics we have ap-
proached and developed.
Of course, relational systems are very general structures largely used in mathematics,
logics and their applications and it will be not surprising that the systems we shall de-
scribe are closely related to some of those well established and studied in quite different
contexts.
We think, in particular, of the formal contexts of formal concept analysis [85], of the
Chu spaces [38, 73] and of the topological systems and the closely related attachment
structures [46, 47].
A unified view of these different contexts, approached by quite similar relational sys-
tems, has been favored by the development of their many-valued version and by their
categorical-theoretic description [82].
We start recalling some basic notions to describe already known relational systems.
Formal concept analysis (FCA) has been introduced by R. Wille [85] and it consists
of many methods for data analysis and knowledge representation; (FCA) is developed
by means of Galois connections between powersets, determined by relations between
underlying sets of objects and of attributes which the objects can have.

Definition 6.3.1. [25] Let X and Y be two sets and r ∶ X × Y → 2 be a (crisp) binary
relation from X to Y . The triple c = (X,Y, r) is called formal context, X the set of
objects and Y the set of attributes.
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We note that the notion of Chu space over 2 [73] is equivalent to that of formal
context.

Definition 6.3.2. [73] A Chu space over 2 is defined as a triple A = (X,r, Y ),
consisting of a set X of points, a set Y of states and a function r ∶X × Y → 2.

Though identical in their formulation and requirements, these two notions have been
independently considered in different contexts and with different purposes. The different
terminology chosen depends on the primary intended field of application. Chu spaces are
usually represented as matrices with rows and columns made by sequences of terms 0 and
1, whose interrelations describe the structure of the space; in this way most mathematical
structures, either geometrical or algebraic or topological, may be represented as Chu
spaces (see [73], Chapters 2 and 3).
It is quite well known the motivation of (FCA), taking its original idea from the study
of concepts in the sense of Port-Royal logic, which requires to lift the formal context(X,Y, r) to the second order level getting a Galois connection between the powersets
of both the objects and the attributes sets; this connection is given by the Birkhoff
operators [8] of r, which are the strong forward and backward left operators we have
described in Section 3.2. Similar structures, which are triples with suitable restrictions
on the second and third terms, were introduced by S. Vickers in 1989.

Definition 6.3.3. [84] A topological system is a triple (X,Y, r), where X is a set, Y
is a frame and r ∶ X × Y → 2 is a binary relation from X to Y such that (x, ⋅)r ∶ Y → 2
is a frame map, for every x ∈X.

One of the motivations for the introduction of topological systems has been the
possibility they offer to put in a unified framework topological spaces and locales, so
merging point set and point free topology. Similar structures, with the different purpose
of providing topological transformations, have been introduced by C. Guido [47] as
follows.

Definition 6.3.4. [47] An attachment in a frame L is a triple (L,L,A), where
A ∶ L→QFrm(L,2) is a function which associates to any x ∈ L a quasi-frame map
(i.e. a function that preserves arbitrary joins and finite non-empty meets) from L to 2.

We also remark that the notion of interchange system is considered in [25], which,
however, coincides with that of Chu space being, in fact, a “topological” system “made”
by two sets and one relation without restrictions.
Morphisms of Chu spaces (called Chu transforms in [73]), of their equivalent interchange
systems and of topological systems (called continuous maps in [84]) have been considered
as follows (we have unified different notations already used)

(f, gop) ∶ (X1, Y1, r1)→ (X2, Y2, r2)
where f ∈ Set(X1,X2), gop ∈ Setop(Y1, Y2) (for Chu spaces and for interchange systems)
or gop ∈ Loc(Y1, Y2) = Frmop(Y1, Y2) (for topological systems) satisfy the condition

(x1, (y2)g)r1 = ((x1)f, y2)r2, for all x1 ∈X1, y2 ∈ Y2.
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The corresponding categories have been denoted Chu2, IntSys and TopSys (see
[25, 73, 82, 84]).
Morphisms of Chu2 and of IntSys, as well, have been also considered, without any
categorical-theoretic settlement, in [38] where they are described as generalized Galois
connections, which have also been further generalized to get the notion of relational
Galois connection as follows.

Definition 6.3.5. [38] A relational Galois connection from an interchange system(X1, Y1, r1) to another one (X2, Y2, r2) is a pair (ϕ,ψ) of binary relations ϕ ∶X1×Y2 → 2,
ψ ∶X2 × Y1 → 2 that satisfy the conditions:

1. for all x1 ∈X1, x2 ∈X2: x2ψ ≤ x1r1⇔ x1ϕ ≤ x2r2;

2. if ϕ′ ∶ X1 × Y2 → 2, ψ′ ∶ X2 × Y1 → 2 are binary relations such that, for all
x1 ∈X1, x2 ∈X2:

- x2ψ ≤ x1r1⇔ x1ϕ
′ ≤ x2r2;

- x2ψ
′ ≤ x1r1⇔ x1ϕ ≤ x2r2,

then ϕ′ ≤ ϕ and ψ′ ≤ ψ.

It is quite clear that the full subcategory of both Chu2 and IntSys whose objects
are of the form (X,X, r), is isomorphic to the category LCon3 of global 2-connections
of type III we have described in Section 6.2. Reducing to the case when r is an order
relation, one obtains a full subcategory which is denoted GalCon in [82] having posets
as objects and classical isotonic Galois connections as morphisms.
Note that classical isotonic Galois connections, which are type III ⊺-including Galois con-
nections in our terminology, may be, indeed, identified with type III global 2-connections.
As already stated in Definition 6.3.1, the formal contexts of formal concept analysis are,
in fact, interchange systems, but categories arranged in such a framework are quite dif-
ferent from IntSys since they involve the Galois connections determined by each formal
context. A description of a category FCI is given in [25], whose objects are formal con-
texts but a morphisms from (X1, Y1, r1) to (X2, Y2, r2) is a pair of maps f ∶ 2X1 → 2X2 ,
g ∶ 2Y2 → 2Y1 such that the diagrams

2X1

H1

��

f
// 2X2

H2

��

2Y1 2Y2g
oo

2X1

K1

��

f
// 2X2

K2

��

2Y1 2Y2g
oo
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commute, where Hi and Ki are the Birkhoff operators determined by the binary rela-
tions ri.
The extension to the L-valued case, where L is a, possibly structured, fixed set is almost
straightforward and has been considered as well. Moreover, in [82] the variable basis
case, where L is not fixed but runs in the category Quant of quantales is considered; we
recall that a quantale is a complete lattice with a structure of monoid, whose product
distributes on arbitrary sups or both sides.
Dropping any structure on X and Y , any condition on the L-relation η ∶X ×Y → L and
assuming, at most, an equivalence ≡ in L, we call any quadruple (X,Y,L, η) relational
system. Morphisms between relational systems are generalized L-connections which
can be defined in several different ways, two of which have been considered in the frame-
work of the variable basis approach of [82] to L-interchange systems, i.e. L-topological
systems free of any structure in their context.
In [82], among others, the following categories are defined, all of which have the
same objects, that are relational systems, but the morphisms from (X1, Y1, L1, η1) to(X2, Y2, L2, η2) are differently defined:

1. S-FCC : the morphisms are triples (f, g,ϕ) ∈ Set(X1,X2) × Setop(Y1, Y2) ×
Setop(L1, L2) such that (x1, (y2)gop)η1 = (((x1)f, y2)η2)ϕop, for all x1 ∈ X1, y2 ∈

Y2;

2. S-FCC
m: the morphisms are triples (f, g,ϕ) ∈ Set(X1,X2) × Setop(Y1, Y2) ×

Set(L1, L2) such that ((x1, (y2)gop)η1)ϕ = ((x1)f, y2)η2, for all x1 ∈X1, y2 ∈ Y2.

Here, we propose a comprehensive approach that, on one side, takes into account
all the four types of connections, so enlarging the framework considered in [82], on the
other side, it unifies the two alternative choices of [82] in one context only, considering
as the third term of any morphism a binary relation that need not be a function.
We consider as morphisms from S1 = (X1, Y1, L1, η1) to S2 = (X2, Y2, L2, η2) the triples(f, g,ϕ) which are morphisms of Set × Set ×R2 such that ϕ ∈ R2(L1, L2) and at least
one of the following conditions is satisfied.

1. f ∶X1 → Y2, g ∶X2 → Y1 and, for all x1 ∈X1, x2 ∈X2: (x2, (x1)f)η2ϕ(x1, (x2)g)η1.
In this case, the triple (f, g,ϕ) is said to be a type I morphism from S1 to S2
and it may be labeled and denoted by < f, g,ϕ >I ∶ S1 → S2.

2. f ∶ Y1 → X2, g ∶ Y2 → X1 and, for all y1 ∈ Y1, y2 ∈ Y2: ((y1)f, y2)η2ϕ((y2)g, y1)η1.
In this case, the triple (f, g,ϕ) is said to be a type II morphism from S1 to S2
and it may be labeled and denoted by < f, g,ϕ >II ∶ S1 → S2.

3. f ∶ X1 → X2, g ∶ Y2 → Y1 and, for all x1 ∈ X1, y2 ∈ Y2 ((x1)f, y2)η2ϕ(x1, (y2)g)η1.
In this case, the triple (f, g,ϕ) is said to be a type III morphism from S1 to S2
and it may be labeled and denoted by < f, g,ϕ >III ∶ S1 → S2.

4. f ∶ Y1 → Y2, g ∶ X2 → X1 and, for all x2 ∈ X2, y1 ∈ Y1 (x2, (y1)f)η2ϕ((x2)g, y1)η1.
In this case, the triple (f, g,ϕ) is said to be a type IV morphism from S1 to S2
and it may be labeled and denoted by < f, g,ϕ >IV ∶ S1 → S2.
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We remark that a labeled triple has to be considered as a morphism of one type only
(the one corresponding to the label), while a triple (f, g,ϕ) may be a morphism of more
that one type. For instance, consider a relational system S = (X,X,L, η), the identity
function iX ∶ X → X and the equality relation iL ⊆ L × L. The triple (iX , iX , iL) is a
morphism from S to itself, both of type III and of type IV; in fact, the following hold:

- ∀x, y ∈X, ((x)iX , y)ηiL(x, (y)iX)η,

- ∀x, y ∈X, (x, (y)iX)ηiL((x)iX , y)η.

Moreover, (iX , iX , iL) is a morphism of type I and of type II, too, from S to itself if and
only if η is symmetrical. In fact, in this case, the following conditions hold:

- ∀x, y ∈X, (x, (y)iX)ηiL(y, (x)iX)η,

- ∀x, y ∈X, ((x)iX , y)ηiL((y)iX , x)η,

if and only if η is symmetrical.

Now we consider the class of relational systems{S = (X,Y,L, η)∣ X,Y,L ∈ ∣Set∣ , η ∈ LX×Y }, the class of labeled relational systems
morphisms and define the composition between relational systems morphisms; for this
goal, we consider the usual composition of functions, according to the following rules.
Let S1 = (X1, Y1, L1, η1), S2 = (X2, Y2, L2, η2) and S3 = (X3, Y3, L3, η3) be relational
systems; if < f, g,ϕ >Γ∶ (X1, Y1, L1, η1) → (X2, Y2, L2, η2), < h, k,ψ >∆∶ (X2, Y2, L2, η2) →(X3, Y3, L3, η3) are morphisms of type Γ and ∆, respectively, then we define the
composition < f, g,ϕ >Γ ○ < h, k,ψ >∆=< f ⋅ h, k ⋅ g,ϕ ⋅ ψ >Σ whenever (Γ,∆,Σ) ∈{(I, II, III), (I, IV, I), (II, I, IV ), (II, III, II), (III, I, I), (III, III, III), (IV, II, II),(IV, IV, IV )}. In fact, it can be easily checked that for any triple (Γ,∆,Σ) included in
the above list, the needed compositions of maps and relations can be done and give a
triple which is a morphism of type Σ.
The following results say that, for any relational system S = (X,Y,L, η) both the type
III morphism < iX , iY , iL >∶ S → S and the type IV morphism < iY , iX , iL >∶ S → S

satisfy the weak identity law (wi).
Proposition 6.3.6. With the above notation, the following hold.

1. Assuming < f, g,ϕ >I ∶ S1 → S2, one has the compositions

(a) < f, g,ϕ >I ○ < iY2 , iX2
, iL2
>IV =< f, g,ϕ >I ;

(b) < iX1
, iY1 , iL1

>III ○ < f, g,ϕ >I ○ =< f, g,ϕ >I .

2. Assuming < f, g,ϕ >II ∶ S1 → S2, one has the compositions

(a) < f, g,ϕ >II ○ < iX2
, iY2 , iL2

>III=< f, g,ϕ >II ;

(b) < iX1
, iY1 , iL1

>IV ○ < f, g,ϕ >II=< f, g,ϕ >II .
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3. Assuming < f, g,ϕ >III ∶ S1 → S2, one has the compositions

(a) < f, g,ϕ >III ○ < iX2
, iY2 , iL2

>III=< f, g,ϕ >III ;

(b) < iX1
, iY1 , iL1

>IV ○ < f, g,ϕ >III=< f, g,ϕ >III .

4. Assuming < f, g,ϕ >IV ∶ S1 → S2, one has the compositions

(a) < f, g,ϕ >IV ○ < iY2 , iX2
, iL2
>IV =< f, g,ϕ >IV ;

(b) < iX1
, iY1 , iL1

>IV ○ < f, g,ϕ >IV =< f, g,ϕ >IV . ◻

Now, we consider the class of all relational systems as the class of objects and the
class of all labeled morphisms of any type as morphisms. We also consider the compo-
sition of morphisms above defined. We have two choices for identities: the one given by(X,Y,L, η)id3 =< iX , iY , iL >III , the other given by (X,Y,L, η)id4 =< iY , iX , iL >IV , for
any relational system.
We denote by LRelSys3 the composition graph obtained in the first case and by
LRelSys4 the composition graph that can be obtain in the second case. Similarly
to the composition graph of connections between structured sets considered in Section
6.2, we can prove the following results.

Proposition 6.3.7. The weak identity law (wi) hold in LRelSys3 and in LRelSys4.
◻

Proposition 6.3.8. The strong associativity law (sa) hold in LRelSys3 and in
LRelSys4. ◻

Hence, LRelSys3 and LRelSys4 are semicategories.
Of course, the subsemicategories RelSysIII and RelSysIV , obtained restricting the class
of morphisms to those of type III and of type IV, respectively, and leaving unchanged
the objects, are categories.
One can restrict the class of morphisms between relational systems to those whose third
term is a relation ϕ that is a function or to those for which it is the opposite of a function.
We call functional and co-functional, respectively, these two kinds of morphisms. In
this case, all types of relational system morphisms can be described as a triple of functions
and the conditions that they have to satisfy can be reformulated as follows (we describe
only morphisms of type I; the others may be described similarly).

1. With the above notation, if f ∶X1 → Y2, g ∶X2 → Y1 and h ∶ L1 → L2 are functions,
the triple (f, g, h) is a type I functional morphism from S1 to S2 and it is
denoted by < f, g, h >I ∶ S1 → S2 if, for all x1 ∈ X1, x2 ∈ X2: ((x1, (x2)g)η1)h =(x2, (x1)f)η2.

2. With the above notation, if f ∶X1 → Y2, g ∶X2 → Y1 and k ∶ L2 → L1 are functions,
the triple (f, g, k) is a type I co-functional morphism from S1 to S2 and it
is denoted by < f, g, k >I ∶ S1 → S2 if, for all x1 ∈ X1, x2 ∈ X2: ((x2, (x1)f)η2)k =(x1, (x2)g)η1.
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It is clear that the composition of functional (co-functional, respectively) relational
system morphisms are still functional (co-functional, respectively) and that all the iden-
tity morphisms are both functional and co-functional. So, these two classes determine
subsemicategories of both LRelSys3 and LRelSys4 that we denote, with clearly meant
symbols, FLRelSys3, FLRelSys4, co-FLRelSys3 and co-FLRelSys4.
Similarly, we can get the subcategories FRelSysIII , co-FRelSysIII , FRelSysIV ,
co-FRelSysIV .

We note, in particular, that the subsemicategory FLRelSys3 generalizes the cat-
egory S-FCC considered in [82] and above recalled, which is, in fact, isomorphic to
FRelSysIII .
Similarly, the subsemicategory co-FLRelSys3 generalize the category S-FCC

m of [82],
which is isomorphic to co-FRelSysIII .

Remark 6.3.9. We note that the structured set (X,α), where X is a set and α is an
L-relation on X can be viewed as a relational system (X,X,L,α), with X = Y .
The conditions that define the four types of morphisms between relational systems are
exactly those used to define, in the previous Section, the global and relative connections
if and only if L = L′ and ϕ =≡ is a fixed equivalence.
Hence, the relational systems and their morphisms can be viewed as a variable basis
generalization of the structured sets and of the global connections.
Hence the semicategory LCon is isomorphic to the subsemicategory (L,≡)-LRelSys of
LRelSys, whose objects are the relational systems (X,X,L, η), with L fixed, and the
morphisms are the triples < f, g,≡>Γ, Γ ∈ {I, II, III, IV }, that are labeled relational
morphisms.
Similarly, the categories ConIII , isomorphic to a subsemicategory of LCon3, and
ConIV , isomorphic to a subsemicategory of LCon4, are isomorphic to the fixed-
basis subsemicategories (L,≡)-LRelSys3 and (L,≡)-LRelSys4, of LRelSys3 and
LRelSys4, respectively.

6.4 Tied relational systems

The relational systems we have considered in the previous Section and the semicat-
egories and categories having those as objects give the most general unified framework
for a variable basis and many-valued approach to the basic structures for formal concept
analysis, i.e. formal contexts, for Chu spaces, for interchange systems and for topological
systems. Within their objects, apart from the more composite structures that consider
the Galois connections determined by formal contexts, our framework includes the one
developed in [82], as we have remarked in the previous Section. We have also shown that
our framework constitutes a comprehensive, variable basis approach to Galois connec-
tions and to conjugated pairs, which are the morphisms of the semicategory of relational
systems; more precisely, these morphisms are variable basis global connections.
However, all the many-valued versions of the above listed basic structures, already con-
sidered in [24, 25, 39, 40] and the more general variable basis approaches considered in
[79, 81, 82] and in the previous Section may be considered simply as generalizations of
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the corresponding classical contexts, which occur as special cases of the corresponding
more general situations.
In the variable basis cases, of course, the many-valued and the classical (corresponding
to 2-valued) contexts are related to each other within the framework of the quite general
categories or semicategories where they have been included as objects; nevertheless, the
link relating the many-valued and the classical systems lies outside each of them.
In the lattice-valued case there is a natural way to determine uniquely a classical rela-
tional system (i.e. a formal context) from a relational system (X,Y,L, η), where L is a
bounded lattice (possibly with a richer structure), taking the so called crisp counterpart
of the structure: a formal context (X,Y, rη) may be determined by xrηy⇔ (x, y)η = ⊺,
for all x ∈ X,y ∈ Y . Something similar may be done by means of α-cuts: xrηy ⇔(x, y)η ≥ α, for all x ∈X,y ∈ Y .
In the general case we remark that any subset E ⊆ L determines a formal context(X,Y, rη) by xrηy⇔ (x, y)η ∈ E, for all x ∈X,y ∈ Y .
If we think of a relational system as a description of an uncertain relationship between
elements of a set X of objects and elements of a set Y of attributes, giving an evaluation
of the relationship between any object and any attribute, within a set L of values, then
in the above construction of the binary relation rη, E may be meant as the set of values
“true”.
This point of view is particularly interesting to us. In fact the main topic of this thesis,
i.e. the structure of extended-order algebra, may be seen as a special case of the general
situation above described; it has been the original motivation for the introduction of
such algebras in [50] to describe a context where both terms of the context coincide
with the set of the values that the statements in a logical system may have and the
investigated relationship is the implication between two statements, which of course has
to be evaluated in the same set of values.
The most basic structure of many-valued logics, namely w-eo algebra (L,→,⊺), which is
called implicative algebra in [74], consists in fact in a relational system (L,L,L,→) that,
with respect to a singleton {⊺} ⊆ L determines, in the above described way, a formal
context (L,L, r→), where r→ is an order relation in L, with maximum ⊺. Conversely,
as explained in Section 2.1, the implication of w-eo algebra is an extension of an order
relation.
The work of H. Rasiowa [74] and the results we have described in Chapter 2 (see also
[13]) show the relevant role of these algebras in many-valued logics. In particular, we
have seen how the class of such algebras includes all the integral residuated lattices.
Not all residuated lattices are w-eo algebras, but this seems to be not so relevant from
the viewpoint of many-valued logics, since most algebras of such logics are, basically,
integral residuated lattices. Instead, this seems to be a gap of w-eo algebras from the
mathematical point of view, if one looks at the original context where residuated lattices
have been considered, which was related to the study of ideals of rings [29].
To close this gap, a more general approach to implicative and, subsequently, to residu-
ated structures has been developed in [49], which involves the approach to tied relational
systems we are going to describe in this Section; we mean relational systems, as defined
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in the previous Section, enriched by the addiction of a subset that has the role to allow
a formal context to be uniquely determined as a basic background.
We start giving the main definition.

Definition 6.4.1. Let X,Y and L be sets, η ∶ X × Y → L an L-relation from X to Y

and let E be a subset of L. The quintuple S = (X,Y,L, η,E) is called tied relational
system.
The pair (X,Y ) is called context of the system S, where X and Y are said to be,
respectively, the first and the second term of the context (X,Y ).
L is called set of values and its elements are called truth values. The function η is
called evaluation. The subset E ⊆ L is called true set and its elements true values.

From a tied relational system S we can define uniquely a formal context associated
to it. In fact, let S = (X,Y,L, η,E) be a tied relational system and define the crisp
binary relation rS ⊆X × Y by means of the following equivalence:

∀x ∈X,y ∈ Y xrSy⇔ (x, y)η ∈ E.
cS = (X,Y, rS) is called natural context of the tied relational system S or formal
context induced by S and rS is called natural relation E-induced by η.

Of course, it is possible to build, not uniquely, a tied relational system from a formal
context (X,Y, r). In fact, considering the set L and a subset E of L, we can define an
L-relation ηr ∶X × Y → L which satisfies the following equivalence:

∀x ∈X,y ∈ Y, (x, y)ηr ∈ E⇔ xry.

S = (X,Y,L, ηr,E) is a tied relational system associated to the formal context (X,Y, r)
and it is called E-extension to L of the formal context (X,Y, r); ηr is called
E-extension to L of the binary relation r.
Obviously, any tied relational system is an E-extension of its natural context.

Definition 6.4.2. If X = Y = L, we denote S = (L,L,L, η,E) simply by the triple G =(L, η,E) which we call relational groupoid and we may specify that it is E-extended;
its natural context is denoted by (L, rG). Moreover:

1. if the natural relation rG E-induced by η is a (pre)order, G = (L, η,E) is called
(pre)implicative groupoid;

2. if the natural relation rG E-induced by η satisfies the conditions:

(a) there exists an element i in L, such that irGi;

(b) for all x, y ∈ L, if xrGy then yrGx (symmetry condition);

(c) for all x, y, z ∈ L, if xrGy and yrGz, then x = z (univocality condition),

then G = (L, η,E) is called quasi-group.
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Example 6.4.3. 1. Any w-eo algebra (L,→,⊺) is an implicative groupoid. Its natu-
ral context is a partially ordered set (L,≤) with maximum ⊺.

2. Let M = (M,⊙,1) be a commutative monoid. It is a relational groupoid and its
natural relation can be determined as follows: xrMy ⇔ x ⊙ y = 1 ⇔ y = x−1.
Clearly, the following hold:

(a) 1rM1, since 1⊙ 1 = 1;

(b) xrMy⇔ x⊙ y = 1⇔ y ⊙ x = 1⇔ yrMx;

(c) xrMy, yrMz⇔ y = x−1, z = y−1⇔ z = y−1 = (x−1)−1 = x.

Hence, M is a quasi-group.

3. Let L = (L,→,⊺) be a right-distributive w-ceo algebra and let ⊗ be its adjoint
product; (L,⊗,⊺) is a relational groupoid, but in general it is not a quasi-group.
If L is a symmetrical cdeo algebra, then a⊗ b = ⊺⇔ a = b = ⊺; hence rL = {(⊺,⊺)}
and (L,⊗,⊺) is a quasi-group.

The relational groupoids are a generalizations of the extended-order algebras, which
are the main topic of this thesis. A detailed study of some class of relational groupoids,
which are defined below, and of their properties is developed in [49], where, among
others, the main result shows that the class of implicative groupoids contains the class
of residuated lattices.

Definition 6.4.4. [49] A (pre)implicative groupoid (X,η,E), is called
(pre)implicative ubE-extended groupoid, if E ⊆ MaxL; (pre)implicative
usE-extended groupoid, if E is an upperset.

Definition 6.4.5. Let S1 = (X1, Y1, L1, η1,E1) and S2 = (X2, Y2, L2, η2,E2) be two tied
relational systems. S and S′ are said to be correlated if they have the same natural
relation E-induced by η.

Remark 6.4.6. Clearly, if the tied relational systems S1 = (X1, Y1, L1, η1,E1) and S2 =(X2, Y2, L2, η2,E2) are correlated, i.e. rS1
= rS2

, then X1 = X2, Y1 = Y2 and for all
x ∈ X1, y ∈ Y1 (x, y)η1 ∈ E1 ⇔ xrS1

y ⇔ xrS2
y ⇔ (x, y)η2 ∈ E2. Hence, S1 and S2 are

correlated if and only they have the same context and the following equivalence holds,
for all x ∈X1, y ∈ Y1: (x, y)η1 ∈ E1⇔ (x, y)η2 ∈ E2.

Example 6.4.7. Any symmetrical w-eo algebra (L,→,⊺) and its dual (L,¨,⊺) are
correlated implicative groupoid. In fact, by Definition 2.1.17, the two implications induce
the same order relation on L.

Definition 6.4.8. Let S1 = (X1, Y1, L1, η1,E1) and S2 = (X2, Y2, L2, η2,E2) be tied rela-
tional systems. S1 and S2 are said to be equivalent if they are correlated and have the
same evaluation, that is η1 = η2.

Remark 6.4.9. The previous Definitions of correlated and equivalent tied relational
systems determine two equivalence relations in the class of tied relational systems.
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Remark 6.4.10. Clearly, if the tied relational systems S1 = (X1, Y1, L1, η1,E1) and
S2 = (X2, Y2, L2, η2,E2) are equivalent, then X1 = X2, Y1 = Y2, L1 = L2; moreover, for
all x ∈ X1, y ∈ Y1 the equality (x, y)η1 = (x, y)η2 holds and rS1

= rS2
, though in general

E1 ≠ E2.
Moreover, in this case, for all x ∈X1, y ∈ Y1 we have the following equivalences: xrS1

y⇔(x, y)η1 ∈ E1⇔ (x, y)η2 ∈ E1 and xrS2
y⇔ (x, y)η2 ∈ E2⇔ (x, y)η1 ∈ E2.

Hence, S1 and S2 are equivalent systems if and only if they have the same context (X,Y ),
the same set of values, the same evaluation function η and the following equivalence hold,
for all x ∈X,y ∈ Y : (x, y)η ∈ E1⇔ (x, y)η ∈ E2.

In particular, two relational groupoids G1 = (L1, η1,E1) and G2 = (L2, η2,E2) are
equivalent if and only if L1 = L2 = L, η1 = η2 and the equivalence (x, y)η ∈ E1⇔ (x, y)η ∈
E2 is true, for all x, y ∈ L; in this case we also say that E1 and E2 are equivalent, with
respect to η.

Definition 6.4.11. Let c = (X,Y, r) be a formal context and let L be a set. We say that
c is extendible to L if there exist E ⊆ L and η ∶X ×Y → L such that S = (X,Y,L, η,E)
is a tied relational system whose natural context is c. Moreover, η is called extension
to L of r or, more explicitly, an E-extension to L of r. Also, (X,Y,L, η,E) is said to
be an L-extension of c.

Remark 6.4.12. Let c = (X,Y, r) be a formal context and let L be a set. If ∣L∣ ≥ 2,
then c is surely extendible to L. If ∣L∣ = 1, then c is extendible to L if and only if either
r =X × Y or r = ∅. If L = ∅, then c is extendible to L if and only if X × Y = ∅.

Definition 6.4.13. Let c = (X,Y, r) be a formal context and let L be a set. We denote
by S(c;L) the class of all tied relational systems that are E-extensions to L of c, for
some E ⊆ L, that is

S(c;L) = {(X,Y,L, η,E)∣ E ⊆ L, η ∈ LX×Y ∋′ ∀x ∈X,y ∈ Y ∶ (x, y)η ∈ E⇔ xry} .
Moreover, let E ⊆ L; we denote by S(c;L,E) the class of all tied relational systems that
are E-extension to L of c, that is

S(c;L,E) = {(X,Y,L, η,E)∣η ∈ LX×Y ∋′ ∀x ∈X,y ∈ Y ∶ (x, y)η ∈ E⇔ xry} .
Similarly, let η ∈ LX×Y ; we denote by S(c; η) the class of all tied relational systems that
are E-extension to L of c, for some E ⊆ L, that have η as evaluation function, i.e.

S(c; η) = {(X,Y,L, η,E)∣E ⊆ L ∋′ ∀x ∈X,y ∈ Y ∶ (x, y)η ∈ E⇔ xry} .
Remark 6.4.14. It is easy to see that

S(c;L) = ⋃
E⊆L

S(c;L,E) = ⋃
η∈LX×Y

S(c; η).
The tied relational systems contained in S(c;L) are all correlated to each other, so
S(c;L) is the equivalence class with respect to the correlation relation between tied
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relational systems.
The tied relational systems contained in S(c;L, η) are all equivalent to each other, so
S(c;L, η) is the equivalence class with respect to the equivalence relation between tied
relational systems.

Remark 6.4.15. Let c = (X,Y, r) be any fixed context. It follows clearly from Remark
6.4.12 that S(c;L) is empty if and only if either ∣L∣ = 1, r ≠ ∅ and r ≠ãXY , or L = ∅
and X × Y ≠ ∅.
If ∣L∣ < 2, then ∣S(c;L)∣ = 1 so there exist a unique E ⊆ L and a unique η ∈ LX×Y such
that (X,Y,L, η,E) is an L-extension of c.

Definition 6.4.16. Let c = (X,Y, r) be a formal context and let L be a set. A function
η ∶ X × Y → L is said to be c-compatible if there exists E ⊆ L such that (X,Y,L, η,E)
is an E-extension to L of c.
We denote by V(c;L) the set of all the c-compatible extensions to L of r, that is

V(c;L) = {η ∶X × Y → L∣∃E ⊆ L ∋′ ∀x ∈X,y ∈ Y ∶ (x, y)η ∈ E⇔ xry}.
Definition 6.4.17. Let c = (X,Y, r) be a formal context, L be a set and E ⊆ L. A
function η ∶X×Y → L is said to be (c;E)-compatible if (X,Y,L, η,E) is an E-extension
to L of c.
We denote by V(c;L,E) the class of all E-extension to L of r, i.e.

V(c;L,E) = {η ∈ LX×Y ∣∀x ∈X,y ∈ Y ∶ η(x, y) ∈ E⇔ xry}.
Remark 6.4.18. 1. V(c;L) = ⋃E⊆L V(c;L,E).

2. Two L-relations that belong to V(c;L) are also said to be c-compatible to each
other.

3. Two L-relations that belong to V(c;L,E) are also said to be (c,E)-compatible
to each other.

Definition 6.4.19. Let c = (X,Y, r)be a formal context and L be a set. A subset E of
L is said to be c-compatible if there exists η ∶X ×Y → L such that η is an E-extension
to L of r.
We denote by E(c;L) the set of all the subsets of L trough which c can be extended to
L, that is

E(c;L) = {E ⊆ L∣∃η ∈ LX×Y ∋′ ∀x ∈X,y ∈ Y ∶ (x, y)η ∈ E⇔ xry}.
Definition 6.4.20. Let c = (X,Y, r) be a formal context, L a set and η ∶X × Y → L. A
subset E of L is said to be (c; η)-compatible if η is an E-extension to L of r.
We denote by E(c; η) the set of all the subsets of L trough which η extends r to L, i.e.

E(c; η) = {E ⊆ L∣∀x ∈X,y ∈ Y ∶ (x, y)η ∈ E⇔ xry}.
If, moreover, L is a (pre)ordered set, we denote by usE(c; η) the set of all the uppersets
of L trough which η extends r to L, that is

usE(c; η) = {E ∈ E(c; η)∣E upperset of L}.
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Remark 6.4.21. 1. It is easy to prove that E(c;L) = ⋃η∈LX×Y E(c; η).
2. Let c = (X,Y, r) be a formal context, L be a set, E be a subset of L and consider
η ∶X×Y → L. Hence, one has that: η ∈ V(c;L,E)⇔ (X,Y,L, η,E) ∈ S(c;L,E)⇔(X,Y,L, η,E) ∈ S(c; η)⇔ E ∈ E(c; η).

Remark 6.4.22. 1. Let c = (X,Y, r) be a formal context, L a set, E a subset of
L and η ∶ X × Y → L. E(c; η) is closed for non-empty unions and non-empty
intersections. In fact, let U ⊆ E(c; η), U ≠ ∅. For every x ∈ X, y ∈ Y we have(x, y)η ∈ ⋃U ⇔ ∃E ∈ U ∶ (x, y)η ∈ E ⇔ xry. Moreover, for all x ∈ X,y ∈ Y :
η(x, y) ∈ ⋂U ⇒ ∀E ∈ U ∶ (x, y)η ∈ E ⇒ ∃E ∈ U , (x, y)η ∈ E ⇒ xry; conversely,
xry⇒ ∀E ∈ U , η(x, y) ∈ E ⇒ (x, y)η ∈ ⋂U . Hence, ⋃U , ⋂U ∈ E(c; η).
This means that for any tied relational system (X,Y,L, η,E), the subset E may
be replaced by any other subset varying in the interval [⋂E(c; η),⋃E(c; η)] of the
powerset P(L), allowing an equivalent system.

2. A similar discussion may be done to show that usE(c; η) is an interval in the
complete lattice of the uppersets of L. For further details we refer to [49].

Tied relational systems are many-valued extensions of a formal context to which
they are intrinsically connected by means of a subset of true values. Truth values of two
tied relational systems may vary in different sets, but morphisms between them need
not include any morphism between the sets of the respective truth values sets. So the
variable basis machinery is not necessary.
Nevertheless, one gets again a semicategory structure as in the case we have already
described dealing with (global) connections (see Section 6.2) and with their variable
basis extensions given by morphisms of relational systems (see Section 6.3).
We propose the following definition.

Definition 6.4.23. Let S = (X1, Y1, L1, η1,E1) and S2 = (X2, Y2, L2, η2,E2) be tied
relational systems. We define morphism from S1 to S2 any pair of maps (f, g) such
that at least one of the following conditions hold. More precisely:

1. f ∶ X1 → Y2, g ∶ X2 → Y1 and, for all x1 ∈ X1, x2 ∈ X2: (x2, (x1)f)η2 ∈ E2 ⇔(x1, (x2)g)η1 ∈ E1. In this case, the pair (f, g) is said to be a type I morphism
from S1 to S2 and it may be labeled and denoted by < f, g >I ∶ S1 → S2.

2. f ∶ Y1 → X2, g ∶ Y2 → X1 and, for all y1 ∈ Y1, y2 ∈ Y2: ((y1)f, y2)η2 ∈ E2 ⇔((y2)g, y1)η1 ∈ E1. In this case the pair (f, g) is said to be a type II morphism
from S1 to S2 and it may be labeled and denoted by < f, g >II ∶ S1 → S2.

3. f ∶ X1 → X2, g ∶ Y2 → Y1 and, for all x1 ∈ X1, y2 ∈ Y2: ((x1)f, y2)η2 ∈ E2 ⇔(x1, (y2)g)η1 ∈ E1. In this case the pair (f, g) is said to be a type III morphism
from S1 to S2 and it may be labeled and denoted by < f, g >III ∶ S1 → S2.

4. f ∶ Y1 → Y2, g ∶ X2 → X1 and, for all x2 ∈ X2, y1 ∈ Y2: (x2, (y1)f)η2 ∈ E2 ⇔((x2)g, y1)η1 ∈ E1. In this case the pair (f, g) is said to be a type IV morphism
from S1 to S2 and it may be labeled and denoted by < f, g >IV ∶ S1 → S2.
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Remark 6.4.24. The morphisms above defined may be seen as generalizations of the
relative connections described in Section 4.2. In fact, let us consider the particular
relational systems, where the first and the second terms of the contexts coincide, i.e.
X1 = Y1 and X2 = Y2, the truth sets are the same in each system, i.e. L1 = L2 =

L; moreover, let us assume the true sets coincide, i.e. E1 = E2 = E and they are
saturated. Under this assumption, a type I morphism < f, g >I from (X1,X1, L, η1,E)
to (X2,X2, L, η2,E) is characterized by the conditions f ∶X1 →X2, g ∶X2 →X1 and for
all x1 ∈X1, x2 ∈X2: (x2, (x1)f)β ∈ E⇔ (x1, (x2)g)α ∈ E. This is equivalent to say that
we have the type I E-connection [f -g]E ∶ (X,α)→ (Y, β), where X =X1, Y =X2, α = η1
and β = η2.
The others types of morphisms can are similarly related to the corresponding relative
connections considered in Section 4.2.

Remark 6.4.25. The definition of tied relational systems and of their morphisms sug-
gests an intermediate generalization of relative connections between structured sets.
In fact, we can consider the following extension.
Consider the sets L, E1,E2 ⊆ L and the pairs (X,α), (Y, β), where X,Y are sets and
α,β are L-relations, respectively, on X and Y . Let f ∶ X → Y and g ∶ Y → X be two
functions.

1. f and g form a type I (E1,E2)-connection from (X,α) to (Y, β), denoted by[f -g]E1,E2
∶ (X,α)→ (Y, β) if, ∀x ∈X,y ∈ Y : (y, (x)f)β ∈ E2⇔ (x, (y)g)α ∈ E1.

2. f and g form a type II (E1,E2)-connection from (X,α) to (Y, β), denoted by]f -g[E1,E2
∶ (X,α)→ (Y, β), if, ∀x ∈X,y ∈ Y : ((x)f, y)β ∈ E2⇔ ((y)g, x)α ∈ E1.

3. f and g form a type III (E1,E2)-connection from (X,α) to (Y, β), denoted by(f, g)E1,E2
∶ (X,α)→ (Y, β), if, ∀x ∈X,y ∈ Y : ((x)f, y)β ∈ E2⇔ (x, (y)g)α ∈ E1.

4. f and g form a type IV (E1,E2)-connection from (X,α) to (Y, β), denoted by)f, g(E1,E2
∶ (X,α)→ (Y, β), if, ∀x ∈X,y ∈ Y : (y, (x)f)β ∈ E2⇔ ((y)g, x)α ∈ E1.

Consider the class of tied relational systems and the class of tied relational system
morphisms.
As for relational system morphisms, the composition between tied relational system
morphisms is defined by using the usual composition of functions. Also in this case, it
is not possible to compose each other all types considered of morphisms; in fact, we can
define the composition using similar rules as in the previous Section.
If < f, g >Γ∶ (X1, Y1, L1, η1) → (X2, Y2, L2, η2), < h, k >∆∶ (X2, Y2, L2, η2) →(X3, Y3, L3, η3) are morphisms of type Γ and ∆, respectively, then we may de-
fine the composition < f, g >Γ ○ < h, k >∆=< f ⋅ h, k ⋅ g >Σ whenever (Γ,∆,Σ) ∈{(I, II, III), (I, IV, I), (II, I, IV ), (II, III, II), (III, I, I), (III, III, III), (IV, II, II),(IV, IV, IV )}. In fact, it can be easily checked that for any triple (Γ,∆,Σ) included in
the above list, the above compositions of maps can be done and give a pair which is a
morphism of type Σ.
Now, we consider the relational system S = (X,Y,L, η,E) and the identity functions
iX ∶X →X and iY ∶ Y → Y . We have that:
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1. for all x ∈X,y ∈ Y : ((x)iX , y)η ∈ E⇔ (x, y)η ∈ E⇔ (x, (y)iY )η ∈ E;

2. for all x ∈X,y ∈ Y : (x, (y)iY )η ∈ E⇔ (x, y)η ∈ E⇔ ((x)iX , y)η ∈ E.

Hence, the pair (iX , iY ) is a type III morphism from S to itself and the pair (iY , iX) is
a type IV morphism from S to itself.
Clearly, if X = Y and η is symmetrical, the pair (iX , iX) is a type I and a type II
morphism from (X,X,L, η,E) to itself, too.
The following results say that, for any tied relational system S = (X,Y,L, η,E) both the
type III morphism < iX , iY >III ∶ S → S and the type IV morphism < iY , iX >IV ∶ S → S

satisfy the weak identity law (wi).
Proposition 6.4.26. With the above notation, the following hold.

1. Assuming < f, g >I ∶ S1 → S2, one has the compositions

(a) < f, g >I ○ < iY2 , iX2
>IV =< f, g >I ;

(b) < iX1
, iY1 >III ○ < f, g >I ○ =< f, g >I .

2. Assuming < f, g >II ∶ S1 → S2, one has the compositions

(a) < f, g >II ○ < iX2
, iY2 >III=< f, g >II ;

(b) < iX1
, iY1 >IV ○ < f, g >II=< f, g >II .

3. Assuming < f, g >III ∶ S1 → S2, one has the compositions

(a) < f, g >III ○ < iX2
, iY2 >III=< f, g >III ;

(b) < iX1
, iY1 >IV ○ < f, g >III=< f, g >III .

4. Assuming < f, g >IV ∶ S1 → S2, one has the compositions

(a) < f, g >IV ○ < iY2 , iX2
>IV =< f, g >IV ;

(b) < iX1
, iY1 >IV ○ < f, g >IV =< f, g >IV . ◻

Now, we consider the class of all tied relational systems as the class of objects and
the class of all labeled morphisms of any type between them as morphisms. We also
consider the composition of morphisms above defined. Also in this case, we have two
choices for identities: the one given by (X,Y,L, η,E)id3 =< iX , iY >III , the other given
by (X,Y,L, η,E)id4 =< iY , iX >IV , for any tied relational system.
We denote by LTRelSys3 the composition graph obtained in the first case and by
LTRelSys4 the composition graph that can be obtain in the second case. Similarly to
composition graph of connections between structured sets considered in Section 6.2 and
similar to the relational system case discussed in the previous Section, we can prove the
following results.

Proposition 6.4.27. The weak identity law (wi) hold in LTRelSys3 and in
LTRelSys4. ◻



CHAPTER 6. STRUCTURES FOR MANY-VALUED RELATIONS 240

Proposition 6.4.28. The strong associativity law (sa) hold in LTRelSys3 and in
LTRelSys4. ◻

Hence, LTRelSys3 and LTRelSys4 are semicategories.
Of course, the subsemicategories LTRelSysIII and LTRelSysIV , obtained restricting
the class of morphisms to those of type III and of type IV, respectively, and leaving
unchanged the objects, are categories.
We have to remark that while composing two morphisms < f, g >Γ∶ (X1, Y1, L1, η1,E1)→(X2, Y2, L2, η2,E2), < h, k >∆∶ (X2, Y2, L2, η2,E2) → (X3, Y3, L3, η3,E3) the requirement
that the domain of the second morphism coincides with the codomain of the first may
be considerably relaxed. In fact, any two subset E′

2,E
′′
2 of L that belong to E(c2; η2),

where c2 is the natural context of (X2, Y2, L2, η2,E2), may replace E2, respectively, in
the codomain of < f, g >Γ and in the domain of < h, k >∆.
Such replacements do not invalidate the conditions the morphisms have to satisfy, since
for all x2 ∈ X2, y2 ∈ Y2 one has (x2, y2)η2 ∈ E2 ⇔ (x2, y2)η2 ∈ E′

2 ⇔ (x2, y2)η2 ∈ E′′
2 ;

moreover, the compositions f ⋅h and k ⋅g do not depend at all on the subsets E2,E
′
2,E

′′
2 .



Appendix

In this Appendix we summarize a description of the algebras involved in examples
and remarks all along this thesis, recalling the conditions they satisfy.

Algebra 1. Let L = [0,1] be the real unit interval equipped with the implication,
called Kleene-Dienes implicator, defined by a →1 b = max(1 − a, b), for all a, b ∈ L.(L,→1,1) is not a w-eo algebra, since the reflexivity condition does not hold. In fact,
a→1 a =max(1−a, a) ≠ 1, if a ≠ 1 and a ≠ 0. Moreover, →1 is an implicator, in the sense
of the Definition 2.2.1 and it is an implicator in the usual sense.

Algebra 2. Let L = [0,1] be the real unit interval equipped with the implication, called
Reichenbach implicator, defined by a→2 b = 1−a+ab, for all a, b ∈ L. (L,→2,1) is not
a w-eo algebra, since the reflexivity condition does not hold. In fact, a→2 a = 1−a+a2 ≠ 1,
if a ≠ 1 and a ≠ 0. Moreover, →2 is a bounded implicator, in the sense of the Definition
2.2.1.

Algebra 3. Let L = [0,1] be the real unit interval equipped with the implication, called

most strict implicator, defined, for all a, b ∈ L by a→3 b = { 1 if a = 0

b otherwise
. (L,→3,1)

is not a w-eo algebra, since the reflexivity condition does not hold. In fact, a →3 a ≠ 1,
if a ≠ 0 and a ≠ 1. Moreover, →3 is an isotonic implicator, in the sense of the Definition
2.2.1.

Algebra 4. Let L = [0,1] be the real unit interval equipped with the implication, called

least strict implicator, defined, for all a, b ∈ L by a→4 b = { b if a = 1

1 otherwise
. (L,→4,1)

is not a w-eo algebra, since the antisymmetry condition does not hold. In fact, for
instance, 0,2 →4 0,3 = 0,3 →4 0,2 = 1, but 0,2 ≠ 0,3. →4 is not an implicator in the
sense of Definition 2.2.1, but it is an implicator in the usual sense.

Algebra 5. Let L = [0,1] be the real unit interval equipped with the implication defined,

for all a, b ∈ L by a →5 b = { 1 if a ≤ b

max((x)N,y) otherwise
, where N ∶ L → L,a ↦ (a)N is

an involutive unary operation that reverses the order of L. (L,→5,1) is a ceo algebra.
Moreover, →5 is an implicator in the sense of Definition 2.2.1, but it is not an implicator
in the usual sense.
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Algebra 6. Let L = [0,1] be the unit real interval equipped with the implication,

Gödel implication, defined, for all a, b ∈ L by a →6 b = { 1 if a ≤ b

b otherwise
. (L,→6,1) is a

cdeo algebra and its adjoint product is exactly the meet operation. So, (L,→6,1) is an
associative and commutative cdeo algebra. Moreover, →6 is a distributive implicator, in
the sense of the Definition 2.2.1.

Algebra 7. Let L = [0,1] be the unit real interval equipped with the implication, called

Goguen implicator, defined, for all a, b ∈ L by a→7 b = { 1 if a ≤ b
b
a

otherwise
. (L,→7,1) is a

cdeo algebra and its adjoint product is exactly the usual product on L. So, (L,→7,1) is
an associative and commutative cdeo algebra. Moreover,→7 is a commutative implicator,
in the sense of the Definition 2.2.1.

Algebra 8. Let L = [0,1] be the unit real interval equipped with the implication, called
early Zadeh implicator, defined by a →8 b = max(1 − a,min(a, b)), for all a, b ∈ L.(L,→8,1) is not a w-ceo algebra, since misses, for instance, the upper bound condition;
in fact,a→8 1 =max(1 − a,min(a,1)) =max(1 − a, a)) ≠ 1, if a ≠ 0 and a ≠ 1. Moreover,
→8 is an involutive implicator, in the sense of the Definition 2.2.1, that satisfies the
axioms (i11), (i12) and (i13).
Algebra 9. Let L = [0,1] be the unit real interval equipped with the implication, called
Klir and Yuan 1 implicator, defined by a →9 b = 1 − a + a2a2b, for all a, b ∈ L.(L,→9,1) is not a w-ceo algebra, since misses, for instance, the upper bound condition;
in fact,a →9 1 = 1 − a + a2 ≠ 1, if a ≠ 0 and a ≠ 1. Moreover, →9 is not an implicator in
the usual sense.

Algebra 10. Let L = [0,1] be the unit real interval equipped with the implication,
called Klir and Yuan 2 implicator, defined, for all a, b ∈ L by for all a, b ∈ L by

a →10 b =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
b if a = 1

1 − a if a ≠ 1 and b ≠ 1

1 if a ≠ 1 and b = 1
. (L,→10,1) is not a w-eo algebra, since the

reflexivity condition not holds. In fact, a →10 a ≠ 1, if a ≠ 1 and a ≠ 0. Moreover, →10

is a contrapositive implicator that satisfies (i11) and (i12), in the sense of the Definition
2.2.1.

Algebra 11. Let L = [0,1] be the unit real interval equipped with the implication

defined, for all a, b ∈ L by a →11 b = { 0 if a = 1 and b = 0

1 otherwise
. (L,→11,1) is not a w-ceo

algebra, since the antisymmetry condition not holds. In fact, for instance, 0,1→11 0,2 =
0,2→11 0,1 = 1, but 0,2 ≠ 0,1. Moreover, →11 is not an implicator in the usual sense.

Algebra 12. Let L = [0,1] be the unit real interval equipped with the implication

defined, for all a, b ∈ L by a →12 b = { 1 if a ≤ b√
1 − (a − b)2 otherwise

. (L,→12,1) is an cdeo

algebra with adjoint product defined, for all a, b ∈ L by a ⊗12 b = max(a −√1 − b2,0).
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We note that (L,→12,1) is neither associative nor commutative. Moreover, →12 is not a
commutative implicator, in the sense of the Definition 2.2.1.

Algebra 13. Let L = [0,1] be the unit real interval equipped with the implication

defined, for all a, b ∈ L by a →13 b = { 1 if a ≤ b√
1 − a + b otherwise

. (L,→13,1) is a cdeo

algebra with adjoint product defined, for all a, b ∈ L by a⊗13 = max(b2 + a − 1,0). We
note that (L,→13,1) is neither associative nor commutative. Moreover, →13 is a not
contrapositive implicator, in the sense of the Definition 2.2.1.

Algebra 14. Let L = [0,1] be the unit real interval equipped with the implication

defined, for all a, b ∈ L by a →14 b = { 1 if a2
≤ b

1 − a2 + b otherwise
. (L,→14,1) is not a w-ceo

algebra, since the antisymmetry condition not holds. In fact, for instance, 0,1→14 0,2 =
0,2 →14 0,1 = 1, but 0,2 ≠ 0,1. Moreover, →14 is not an implicator in the sense of the
Definition 2.2.1, but it is an implicator in the usual sense.

Algebra 15. Let L = [0,1] be the unit real interval equipped with the implication de-

fined, for all a, b ∈ L by a→15 b = { 1 if a ≤ b

(1−
√
1−a)b
a

+
√

1 − a otherwise
. (L,→15,1) is a w-ceo

algebra. Moreover, →15 is an implicator not commutative, involutive and contrapositive,
in the sense of the Definition 2.2.1.

Algebra 16. Let L = {a, b, c, d}, E = {b, c} and → be defined by

→ a b c d

a c c c d

b a c a c

c a a c c

d a a a c

Then (o2), (o3), (o5) and (o5)′ hold, while (o1) and (o4) fail to be true.

Algebra 17. Let L = {�, a, b,⊺} and a and b be incomparable element; the operations
→ defined as follows gives to L a structure of cdeo algebra that is not symmetrical (see
[33] for detail).

→ � a b ⊺
� ⊺ ⊺ ⊺ ⊺
a a ⊺ a ⊺
b b b ⊺ ⊺
⊺ � b a ⊺

In fact, a ≤ ⊺ → b though a ≰ b, hence the conditions of Theorem 2.1.21 are not
satisfied.
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Algebra 18. Let L = {�, a, b,⊺} and a and b be incomparable element; the operations
→ defined as follows gives to L a structure of cdeo algebra that is not symmetrical (see
[33] for detail).

→ � a b ⊺
� ⊺ ⊺ ⊺ ⊺
a a ⊺ a ⊺
b a a ⊺ ⊺
⊺ a a a ⊺

In fact, a ≤ ⊺ → b though a ≰ b, hence the conditions of Theorem 2.1.21 are not
satisfied.

Algebra 19. Let L = {�, a, b,⊺} and → defined by:

→ � a b ⊺
� ⊺ ⊺ ⊺ ⊺
a a ⊺ a ⊺
b b b ⊺ ⊺
⊺ � b a ⊺

(L,→,⊺) is a right-distributive ceo algebra and its adjoint product is described in
the following table:

⊗ � a b ⊺
� � � � �
a � � a a

b � b � b

⊺ � b a ⊺

Algebra 20. Let L = {�, a, b, c,⊺} and → defined by:

→ � a b c ⊺
� ⊺ ⊺ ⊺ ⊺ ⊺
a b ⊺ ⊺ ⊺ ⊺
b c c ⊺ c ⊺
c b b b ⊺ ⊺
⊺ � a b c ⊺

(L,→,⊺) is a right-distributive w-ceo algebra and its adjoint product is described in
the following table:
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⊗ � a b c ⊺
� � � � � �
a � � � a a

b � � b � b

c � � � c c

⊺ � a b c ⊺

Algebra 21. Let L = {�, b1, b2, b3, c1, c2, d,⊺} and → defined by:

→ � b1 b2 b3 c1 c2 d ⊺
� ⊺ ⊺ ⊺ ⊺ ⊺ ⊺ ⊺ ⊺
b1 b3 ⊺ b3 b3 b3 ⊺ ⊺ ⊺
b2 b2 b2 ⊺ b2 ⊺ ⊺ ⊺ ⊺
b3 b1 b1 b1 ⊺ ⊺ b1 b1 ⊺
c1 � � b1 b2 ⊺ b1 b1 ⊺
c2 � b2 b3 � b3 ⊺ ⊺ ⊺
d � b2 b3 � b3 c1 ⊺ ⊺
⊺ � � � � b3 � b1 ⊺

(L,→,⊺) is a right-distributive ceo algebra and its adjoint product is described in
the following table:

⊗ � b1 b2 b3 c1 c2 d ⊺
� � � � � � � � �
b1 � b1 b1 � b1 b1 b1 b1
b2 � b2 � b2 b2 b2 b2 b2
b3 � � b3 b3 b3 b3 b3 b3
c1 � b2 b3 c1 c1 c1 c1 c1
c2 � c2 b1 b2 c2 c2 c2 c2
d � d b1 b2 c2 d d d

⊺ � d ⊺ c1 ⊺ ⊺ ⊺ ⊺

Algebra 22. Let L = {�, a, b,⊺}, a ≤ b, and → the binary operation in L described in
the table below.

→ � a b ⊺
� ⊺ ⊺ ⊺ ⊺
a a ⊺ ⊺ ⊺
b a b ⊺ ⊺
⊺ � b b ⊺
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It is easily seen that (L,→,⊺) is a non-symmetrical cdeo algebra, with ⊗ and →⊗

described below

⊗ � a b ⊺
� � � � �
a � � a a

b � � a b

⊺ � a a ⊺

→⊗ � a b ⊺
� ⊺ ⊺ ⊺ ⊺
a a a ⊺ ⊺
b a a b ⊺
⊺ � b b ⊺

We note that it is easily seen that →⊗ is an implicator in the sense of the Definition
2.2.1.

Algebra 23. Let L = {�, a, b, c,⊺}, a ≤ c, b ≤ c and → the binary operation in L described
in the table below.

→ � a b c ⊺
� ⊺ ⊺ ⊺ ⊺ ⊺
a b ⊺ b ⊺ ⊺
b a a ⊺ ⊺ ⊺
c � a b ⊺ ⊺
⊺ � � � c ⊺

It is easily seen that (L,→,⊺) is a non-symmetrical cdeo algebra, with ⊗ and →⊗

described below

⊗ � a b c ⊺
� � � � � �
a � a � a a

b � � b b b

c � a b c c

⊺ � c c c ⊺

→⊗ � a b c ⊺
� ⊺ ⊺ ⊺ ⊺ ⊺
a b ⊺ b ⊺ ⊺
b a a ⊺ ⊺ ⊺
c � a b ⊺ ⊺
⊺ � c c c ⊺

Also, it can be seen that the condition of Proposition 2.2.6 is satisfied, hence →⊗ is
a weak-ordered implicator in the sense of the Definition 2.2.1.
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Algebra 24. Let L = {a, b, c,⊺} be the partially ordered set with top element ⊺ and
a ≤ b. Let the binary operation → be defined as follows:

→ a b c ⊺
a ⊺ ⊺ b ⊺
b c ⊺ c ⊺
c b a ⊺ ⊺
⊺ b b ⊺ ⊺

(L,→,⊺) is a w-eo algebra that does not satisfy either (o5) and (o′5).
Algebra 25. Let L = {a, b, c, d,⊺} be the partially ordered set with top element ⊺ and
a ≤ b, c ≤ d. Let the binary operation → be defined as follows

→ a b c d ⊺
a ⊺ ⊺ b a ⊺
b b ⊺ b a ⊺
c b b ⊺ ⊺ ⊺
d b b b ⊺ ⊺
⊺ b b b a ⊺

(L,→,⊺) is a w-eo algebra that satisfies (o′5) but it does not satisfy (o5).
Algebra 26. Let L = {a, b, c, d,⊺} be the partially ordered set with top element ⊺ and
a ≤ b, c ≤ d. Let the binary operation → be defined as follows

→ a b c d ⊺
a ⊺ ⊺ a b ⊺
b a ⊺ c c ⊺
c a a ⊺ ⊺ ⊺
d a a a ⊺ ⊺
⊺ a a c c ⊺

(L,→,⊺) is a w-eo algebra that satisfies (o5) but it does not satisfy (o′5).
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Algebra 27. We describe the MacNeille completion of the left w-eo algebra L described
in 25 (something similar could be done by the w-eo algebra described in 26). The
elements of the completion are: �K = [L]; α = [a]; β = [b];γ = [c]; δ = [d]; ⊺K = [⊺].
The operation →K is described in the following table:

→K �K α β γ δ ⊺K
�K ⊺K ⊺K ⊺K ⊺K ⊺K ⊺K
α α ⊺K ⊺K α α ⊺K
β α β ⊺K α α ⊺K
γ β β β ⊺K ⊺K ⊺K
δ β β β β ⊺K ⊺K
⊺K α β β α α ⊺K

One can see that β →K γ = α, while b→ c = b.

Algebra 28. [12] Let L = {�, a, b, c,⊺} be the partially ordered set where � < a < b < c < ⊺,
equipped with the implication described in the following table:

→ � a b c ⊺
� ⊺ ⊺ ⊺ ⊺ ⊺
a � ⊺ ⊺ ⊺ ⊺
b � c ⊺ ⊺ ⊺
c � a b ⊺ ⊺
⊺ � a b c ⊺

(L,→,⊺) is a (non commutative) symmetrical cdeo algebra and its adjoint product
⊗ and its dual implication ¨ are described by:

⊗ � a b c ⊺
� � � � � �
a � a a a a

b � a a b b

c � a a c c

⊺ � a b c ⊺

¨ � a b c ⊺
� ⊺ ⊺ ⊺ ⊺ ⊺
a � ⊺ ⊺ ⊺ ⊺
b � b ⊺ ⊺ ⊺
c � b b ⊺ ⊺
⊺ � a b c ⊺

We note, moreover, that (L,→,⊺) is not idempotent algebra.
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