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Abstract

Modeling business processes is a complex and time-consuming task, which

can be simplified by allowing process instances to be structurally adapted at

runtime, based on context (e.g., by adding or deleting activities). The pro-

cess model then no longer needs to include a handling procedure for every

exception that can occur. Instead, it only needs to include the assumptions

under which a successful execution is guaranteed. If a design-time assump-

tion is violated, the exception handling procedure matching the context is

selected at runtime. However, if runtime structural adaptation is allowed,

the process model may later need to be updated based on the logs of adapted

process instances. Evolving the process model is necessary if adapting at

run-time is too costly, or if certain adaptations fail and should be avoided.

An issue that is insufficiently addressed in the previous work on process

evolution is how to evolve a process model and also ensure that the evolved

process model continues to achieve the goal of the original model. We refer

to the problem of evolving a process model based on selected instance adap-

tations, such that the evolved model satisfies the goal of the original model,

as corrective evolution. Automated techniques for solving the corrective

evolution problem are necessary for two reasons. First, the more complex

a process model is, the more difficult it is to be changed manually. Second,

there is a need to verify that the evolved model satisfies the original goal.

To develop automated techniques, we first formalize the problem of cor-

rective evolution. Since we use a graph-based representation of processes,



a key element in our formal model is the notion of trace. When plugging

an instance adaptation at a particular point in the process model, there can

be multiple paths in the model for reaching this point. Each of these paths

is uniquely identified by a trace, i.e., a recording of the activities executed

up to that point. Depending on traces, an instance adaptation can be used

to correct the process model in three different ways. A correction is strict

if the adaptation should be plugged in on a precise trace, relaxed if on all

traces, and relaxed with conditions if on a subset of all traces. The choice

is driven by competing concerns: the evolved model should not introduce

untested behavior, but it should also remain understandable.

Using our formal model, we develop automated techniques for solving

the corrective evolution problem in two cases. The first case is also the

most restrictive, when all corrections are strict. This case does not require

verification, since the process model and adaptations are assumed to satisfy

the goal, as long as the adaptations are applied on the corresponding traces.

The second case is when corrections are either strict or relaxed. This second

case requires verification, and for this reason we develop an automated

technique based on planning.

We implemented the two automated techniques as tools, which are inte-

grated into a common toolkit. We used this toolkit to evaluate the tradeoffs

between applying strict and relaxed corrections on a scenario built on a real

event log.

Keywords

process evolution, adaptable processes, automated verification
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Chapter 1

Introduction

The success of an enterprise depends on its ability to adapt frequently and

rapidly in reponse to changes in the business environment [20]. Since busi-

ness activities are increasingly integrated with information technologies,

this flexibility must also be present in the information system of the enter-

prise. In response to this challenge, service-oriented computing emerged

as a major trend in business engineering and software technology [71, 121].

With service-oriented computing, the main idea is to capture business rel-

evant functionality into independent modular units called services, which

expose only the information which is necessary to be used by customers.

Services therefore allow to abstract away from implementation details and

focus on business requirements and functionalities. Technologies and stan-

dards have been developed for building service-based applications as com-

positions of individual services, possibly offered by different third-party

organizations. The flexibility offered by service-based applications comes

from the fact that software services can be discovered, selected and com-

posed dynamically, while the application is running.

With service-oriented computing, there came also a surge of interest

in Business Process Management (BPM), since business processes can be

used to dynamically compose and coordinate services. Traditional work-
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CHAPTER 1. INTRODUCTION

flow management technologies were designed to support business processes

requiring the coordination of human participants and IT tools and appli-

cations. This mainly involved providing support for designing and man-

aging the execution of these business processes, which were seen as static

and repetitive. In contrast, in BPM business processes do not necessarily

involve human participants, and often span different organisations [118].

Moreover, the support provided with workflow management is enhanced in

BPM to include also business process monitoring, diagnosis, and redesign

[110].

By using business processes to represent compositions of services, and

BPM to manage these business processes, an enterprise can more easily

react to changes in the business environment. The support provided by

BPM in terms of monitoring and diagnosis can be used to observe the

changes in the environment. Then, the ability to implement the runtime

adaptation of business processes and the redesign of these processes with

relatively little effort, by re-composing existing services, allows to rapidly

respond to the observed changes.

From process modeling to adaptation

Systems which support BPM need to be process-aware. In other words, the

logic of the process in terms of activities to be performed, together with the

control and data flow between these activities, must be modeled explicitly.

Process modeling is a complex and time-consuming task, which requires

discussions with domain experts and business analysts, as well as a deep

knowledge of the process modeling language. The fact that change is easy

to implement due to the use of services can also be used for simplifying the

process modeling task. In particular, this task can be simplified by allowing

process instances to be structurally adapted at runtime, based on context

(e.g., by adding or deleting activities). The process model then no longer

2



needs to include a handling procedure for every exceptional situation that

can occur. Instead, it only needs to include the assumptions under which a

successful execution is guaranteed. If a design-time assumption is violated,

an exception is triggered and the exception handling procedure matching

the context is selected or constructed at runtime (e.g., [12, 21, 28]).

Being able to adapt process instances at runtime is especially useful if

the exceptional situation is unlikely, but must nevertheless be considered

in the process model (e.g., due to legal concerns), and including the ex-

ception handling procedure would significantly increase the complexity of

the process model. Another case where runtime adaptation is useful is if

the appropriate exception handling procedure is not known at the time

of designing the process model. If process knowledge can be discovered

also at runtime, we may want to postpone the decision of how to handle

an exceptional situation until it is actually needed, in order to use all the

available process or fragment models. Finally, there may be different han-

dling procedures which are suitable for a particular exceptional situation,

and the process designer may not know upfront which handling procedure

would be successful for the application. Also in this case, we may want to

choose an appropriate exception handling procedure at runtime.

From adaptation to evolution

If runtime structural adaptation is allowed, the process model may later

need to be updated based on the logs of adapted process instances. If an

instance adaptation fails when applied in a certain situation, the process

model can be updated to ensure that the failing adaptation is no longer

used for that situation. Updating the process model is necessary also when

it is too costly to deal at execution time with an exceptional situation, for

example because the situation occurs frequently.

Evolving the process model based on process instance adaptations or

3



CHAPTER 1. INTRODUCTION

process variants is not new, and different aspects of this research problem

been addressed in, e.g., [15, 37, 53, 77, 87, 95, 117]. Many approaches deal

with the question of how to recommend process model changes based on

frequent and successful process instance adaptations, e.g., [77, 87, 117].

There are also approaches, e.g., [53, 87], which generate the evolved pro-

cess model automatically. Once a process model is evolved, an important

problem that arises is how to migrate the running process instances to the

new process model. This problem is investigated in, e.g., [15, 86, 95].

Although many approaches have been proposed to tackle the problem

of process evolution, an issue that is insufficiently addressed in these ap-

proaches is how to evolve a process model and also ensure that the evolved

process model continues to comply with the goal and constraints of the orig-

inal process model. Process models often have to comply with internally

defined directives, such as business strategies, as well as externally imposed

directives, such as legal regulations and contracts. Enforcing compliance

with external directives is particularly challenging, since such directives

cannot simply be incorporated in the design of the process models [93].

This issue is also relevant for process evolution, especially since instance

adaptations can be used to update a process model in multiple ways, but it

can be the case that only some of the evolved process models which result

comply with the goal and constraints of the original process model. We

refer to the problem of evolving a process model based on selected process

instance adaptations such that the evolved model satisfies the goal of the

original model as corrective evolution.

When plugging an instance adaptation at a particular point in the pro-

cess model, we need to consider that there can be multiple paths to reach

this point in the model. Each of these paths is uniquely identified by a

trace, i.e., a recording of the activities executed up to that point. For each

instance adaptation that should be plugged into the process model, there

4



are three options, depending on which traces the adaptation should be

plugged in. To the best of our knowledge, this distinction based on traces

is not present in the literature.

• The first option is to plug in the adaptation at a particular point in

the process model, only for the trace corresponding to the process

instance where the adaptation was used. We call this option a strict

correction. The advantage of strict corrections is that the resulting

process model will not contain any unknown behavior.

• The second option, or relaxed correction, is to plug in the adapta-

tion again at a particular point in the process model, but on all the

traces that lead to the specified point. Although more behavior is

introduced, the resulting process model should be smaller than the

model obtained with strict corrections. The reason is that applying

strict corrections requires unfolding the process model, such that the

adaptation is plugged in only for the right trace, and this unfolding

may require duplicating process steps.

• Plugging in adaptations as relaxed corrections is not always possible,

since we also need to ensure that the resulting process model satisfies

the goal. The option in this case, relaxed correction with conditions,

is to plug in the adaptation only for some of the traces leading to the

specified point. This option covers the cases in between the first two

options.

Motivating scenario

To illustrate the need for corrective evolution, we consider a vehicle logis-

tics scenario, which will be used as a reference scenario throughout this

dissertation. This scenario is inspired by the real-life operations of the

Bremerhaven sea port. In this scenario, cars arrive from manufacturers
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CHAPTER 1. INTRODUCTION

at the sea port, must be unloaded and eventually delivered to a retailer.

We focus on the process model for handling the car from the moment it

arrives at the terminal, and until it is delivered. First, the car is stored,

and remains in the storage area until a delivery order is issued. Then,

it undergoes the treatments specified in the delivery order (e.g., painting,

installation of electronic equipment, washing). When the treatments are

completed, the car is loaded on a truck and delivered to the retailer. The

goal of the process is to deliver the car to the retailer in perfect condition.

Cars may be damaged at any point while at the sea port. They may be

scratched, may have dents on the surface, flat tires, or low oil levels. The

damage can be handled by repairing the car immediately or postponing

the repair to a more convenient time. How to handle the damage depends

on the context of the car. For example, it may depend on the availability

of the resources necessary to repair the car, such as treatment stations or

skilled workers. It may also depend on how urgent it is to repair the car,

as well as on the urgency of the other cars waiting to be repaired.

To consider at every step in the process that the car can be damaged,

as well as all the possible contexts in which the damage can occur, would

complicate the process model significantly and obscure the original purpose

of the process model. Instead, we specify a constraint on every process step,

that the car should not be damaged. If this constraint is violated, the

execution of the process instance will be interrupted, and the appropriate

handling procedure will be selected based on the context.

When analyzing the execution and adaptation logs, we determine that

if the car is damaged while being stored, and other cars are waiting to be

repaired, the repair should be postponed since it is not urgent (the car

has not yet been ordered), and will only delay other cars. However, if

the car is damaged a second time in the storage area, unless many cars

are already waiting to be repaired, the repair should not be postponed
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anymore. Although the repairs are not urgent, they should be resolved

such that the car is delivered on time. We therefore need to evolve the

process model, such that the repair is postponed in the first situation, and

performed immediately in the second. Moreover, we need to ensure that

the evolved process model satisfies the goal to deliver the car in perfect

condition.

Depending on the type of the two corrections, we will obtain different

process models. If both corrections are strict, the second adaptation is

applied only for the trace when the car is damaged a second time, after

having postponed the repair for the first damage. If, however, the second

adaptation is plugged in as a relaxed correction, it will be applied also for

the traces where the car is damaged for the first time.

1.1 Contributions

In this dissertation, we extend the existing work on process evolution by

investigating the problem of updating a process model based on process

instance adaptations, such that the evolved model continues to achieve

the goal of the original process model. We propose a formal model for

representing processes and their goals, and use this formal model to develop

two automated approaches for process evolution. Finally, we evaluate these

two approaches on a scenario built on a real-life event log.

1.1.1 Formal Model

Our representation of process-based applications is based on two distinc-

tions. First, we distinguish between domain knowledge, or knowledge

about properties of entities in the domain, and process knowledge, or

knowledge about business logic. Second, we distinguish between concrete,

context-dependent knowledge, and knowledge that is common, abstract,
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CHAPTER 1. INTRODUCTION

independent of context.

We consider the domain knowledge to be stable and abstract, and model

this knowledge using domain objects. Each domain object corresponds to a

property of a physical or computational entity in the domain, and consists

of a set of possible values and a set of events representing value changes.

The stable part of the process knowledge is represented using goals, defined

based on the domain objects. Finally, the dynamic and concrete part of

process knowledge is represented using adaptable process models. Process

models are directed graphs in which the nodes are either steps in the process

(i.e., activities) or control connectors. We relate the process models to the

domain by defining annotations on process steps based on domain objects.

We use this formal model to investigate the problem of corrective evo-

lution, that is, the problem of updating a process model based on process

instance adaptations, such that the evolved model satisfies the goal of the

original model. To formally specify that process models satisfy goals, we

introduce process execution concepts, and define goal satisfaction criteria

based on these concepts. We then introduce process instance adaptation

concepts. Based on these concepts, we define evolutionary correction as

the operation of changing a process model to include an instance adapta-

tion at a certain point in the model and for a certain condition. Finally,

we define the corrective evolution problem as the problem of applying a

sequence of corrections, such that the resulting process model satisfies the

original goal.

1.1.2 Automated Process Evolution Approach

There are two main reasons for solving the corrective evolution problem

automatically. First, the more complex a process model is, the more diffi-

cult it becomes to be changed manually, since changing a model requires

a thorough understanding of its behavior. How understandable a model
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is depends not only on the size of the model, but also on features such as

level of concurrency and modularity of the model [18, 64]. Second, unless

all corrections are strict, there is a need to verify that the resulting process

model satisfies the original goal.

In this dissertation, we develop automated techniques for solving two

cases of the corrective evolution problem: when all the corrections are

strict, and when the corrections are either strict or relaxed. Unlike the

general case, these two cases do not require searching for the right traces

where to plug in the adaptations. In the first case, the traces are given as

input. In the second case, if a trace is not given, i.e., a correction is relaxed,

the adaptation should be plugged in on all traces leading to the plug-in

point. The difference between these two cases is that strict corrective

evolution also does not require verification, since we assume that both

process model and adaptations satisfy the goal, as long as adaptations are

applied only on the corresponding traces.

If all corrections are strict, the challenge is not to find a solution to

the problem, since a solution to the problem can be constructed naively.

However, a naively constructed solution will be unnecessarily large, due

to the duplication of many process steps. Therefore, the challenge in this

case is to automatically find a solution which contains as few duplicated

process steps as possible.

If the corrections are all either strict or relaxed, finding a solution to the

problem is no longer trivial. While constructing a corrected process model

is still relatively simple, this process model does not necessarily satisfy

the goal of the original process model. Therefore, this case adds the new

challenge, to automatically verify that every execution of the corrected

process model satisfies the goal.

9
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1.1.3 Experimental Results

The two automated techniques for solving corrective evolution problems

have been implemented into a prototype tool. We used this prototype tool

to conduct a series of experiments, in order to show the tradeoffs between

applying strict and relaxed corrections.

To conduct our experiments, we set up a scenario based on a real event

log. The traces in this log correspond to instances of a single process, an

application process for a personal loan or overdraft. To set up our scenario,

we recreated all the elements required by our approach: the domain objects,

the original process model and its goal, as well as the corrections to the

process model. This task was particularly challenging, since the event log

we used is an overwhelmingly complex mass of data. The complexity of the

log stems from a great variation in how the loan applications are processed,

in terms of the order of executing activities, as well as the number of times

that certain sequences are re-executed.

We first designed our domain objects based on the event log and the

textual descriptions given as input, and used these domain objects to an-

notate all the activities that appear in the log. We filtered and mined the

event log to obtain a rough process model and created the goal for this

process model based on the domain objects. Finally, we computed the

differences between the model and the traces in the log, and used the most

frequent differences to generate strict and relaxed corrections.

We applied strict and relaxed corrections to our rough process model,

and compared the resulting corrected models using metrics devised for

evaluating process mining results. The experimental results we obtained

provide a first confirmation that the choice of correction type influences

both the behavior and the structure of the evolved process model. More-

over, we also obtained an indication that the process models which result

10
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by applying relaxed corrections should require less future adaptations than

the corresponding process models obtained with strict corrections.

1.2 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2 we give an

overview of the state of the art in two fields related to our research prob-

lem. The first field is that of adaptable process models. Here, we present

techniques ranging from design-time to runtime, and from manual to fully

automatic, which are meant to increase the flexibility of process models to

changes in the execution environment. The second field is that of ensur-

ing the compliance of process models to goals and constraints. Here, we

present techniques from the research area of business process management,

as well as techniques from the related area of Web service composition. We

then focus on approaches which are closely related to the problem of pro-

cess evolution, and conclude with a discussion about the limitations of the

approaches which are closest to the work presented in this thesis.

In Chapter 3, we introduce a framework supporting the evolution of

process models based on execution and adaptation histories, and discuss

each phase in the lifecycle of a process-based application using this frame-

work. We also introduce the basic elements for modeling an application,

as well as concepts related to process execution and adaptation. These

concepts are then used in Chapter 4, where we formally define corrections

and corrective evolution problems. This chapter also includes a discussion

of the challenges involved in automating corrective evolution.

The following chapters present formal techniques and approaches re-

alizing automated corrective evolution. We start with Chapter 5, where

we encode all the inputs of a corrective evolution problem into labeled

state transition systems. This encoding forms the basis of our automated

11
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mechanism, and is used in the following two chapters for solving two cases

of corrective evolution. In Chapter 6, we solve the special case when all

corrections are strict. In Chapter 7, we continue with a second and more

general case, when corrections are either strict or relaxed.

In Chapter 8, we describe our empirical evaluation of the tradeoffs be-

tween applying strict and relaxed correction. Concluding remarks and

future directions are discussed in Chapter 9.

12



Chapter 2

State of the Art

The research problem addressed in this thesis, that of ensuring goal compli-

ance of evolving process models, has its roots into two related fields. First,

there is the field of adaptable process models, which deals with increasing

the flexibility of process models to changes in the execution environment.

The second field is that of ensuring the compliance of business process

models to goals and constraints. In this chapter, we give an overview of

each of these two related fields in Section 2.1, and respectively Section 2.2.

Approaches which are closely related to our research problem are presented

in detail in Section 2.3.

2.1 Adaptable Process Models

A critical success factor of a process-oriented information system is the

ability to deal with change in an efficient way [52, 70]. One of the ways

to deal with change is to increase the flexibility or adaptability of process

models. As pointed out in [81], a business process is designed to maintain

an equilibrium between stakeholder requirements, and therefore flexibility

of a business process is not only about what should change, but also about

what should stay the same. Consequently, process flexibility has been

defined as the ability to deal with context changes by adapting the parts

13
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of the process affected by the change, while maintaining the unaffected

parts unchanged [97].

Different types of flexibility are required during the lifecycle of a process

(see also [83, 118]):

• ability to deal with uncertainty by deferring certain decisions to exe-

cution time;

• ability to react to foreseen or un-foreseen exceptions by deviating from

the predefined process model;

• ability to evolve process models over time.

To address these flexibility requirements, several competing paradigms

have emerged, such as adaptable processes [82, 12], declarative processes

[75], and data-driven processes [111, 68]. In the following, we give an

overview of approaches designed to achieve process flexibility. Although

we will choose examples for each of the competing paradigms, we will focus

more on approaches which model processes using an imperative language,

since this is also the direction taken in this thesis.

Process adaptation can be performed either at design-time or at run-

time. Among design-time adaptation approaches, we distinguish between

approaches which provide a set of specialized constructs for embedding the

adaptation logic in the process model, and approaches which support the

modeling of a reference process model from which different process variants

can be configured.

Among runtime adaptation approaches, we distinguish between approaches

which support loosely specified process models, where the underspecified

parts of the model are filled at runtime, and approaches which allow process

instances to be structurally adapted at runtime. A last category of run-

time adaptation is that of process evolution approaches, where the process

14
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model is changed as well. Here, we consider also the problem of propagat-

ing the process model changes to the running process instances.

2.1.1 Design-time Adaptation Approaches

Special Modeling Constructs

We first consider the case when the process modeling language contains

constructs which provide the ability to incorporate alternative execution

paths within the process model at design-time. Here, an important contri-

bution is the work on workflow patterns [109], which provide a means to

assess the expressiveness of process modeling languages [124, 92].

The approach in [60] proposes a set of modeling constructs, which allow

to route the execution of the process based on contextual information. The

built-in adaptation constructs include:

• the conditional if, which is used to specify conditional branches guarded

by context conditions;

• the context handler, which allows to react automatically to the viola-

tion of context conditions during the execution of the process;

• the conditional one-of, which is used to specify a set of alternative

paths, each handling a specific execution context, and which allows

to react to context changes by jumping at runtime from one path to

another;

• the cross-context link, which allows such jumps also when it is not

possible or desirable to undo the work done.

For each built-in adaptation construct, the authors provide a graphical rep-

resentation similar to the Business Process Modeling Notation (BPMN) [1],

and define a Business Process Execution Language (BPEL) [72] extension,

with a clear syntax and operational semantics.
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Another complex form of design-time adaptation is proposed by Modaf-

feri et al. in [67]. The authors introduce the notion of context-sensitive

region as a part of the business process which can have different behaviors

depending on context. Regions are associated to several configurations,

each configuration having an entry condition over the user context. At

execution time, the process instance can be migrated from one configura-

tion to another (possibly compensating completed activities), depending

on context. To prevent excessive loss of work due to compensation, the

notion of migration arcs is introduced, these allowing to switch between

configurations.

Wieland et al. [123] extend BPEL in order to explicitly model the influ-

ence of the execution context on the workflow. The context-aware work-

flows are modeled using context events, context queries, and context deci-

sions. With context events, the workflow waits asynchronously for a special

environment state. The context queries are used to filter or select objects

based on spatial predicates. Lastly, context decisions are used to route the

process flow based on internal/external context data.

Process Configuration

For a particular business process, several process variants may exist. There

are many situations when process variants are necessary. For example, if

the process model should be used in different countries or regions, these

countries may have different regulations. Another example is if there are

different policies for different seasons, different groups of customers, etc.

What is specific to process variants is that for each particular context the

steps to be followed are known and well understood.

The modeling and management of process variants is not supported

adequately by commercial business process management tools [118]. Such

variants have to be specified either as separate process models, or in one
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process model, using conditional branching. In both cases, the maintenance

efforts are high. Separate, very similar process models are difficult to

maintain due to the high redundancy. On the other hand, a process model

which includes all the variants will be difficult to maintain and understand

due to its size and complexity.

Several directions have been proposed to reduce the efforts necessary for

maintaining process variants. One such direction is to use process config-

uration. With process configuration, the idea is to capture all the process

variants into a reference process model, such that at configuration-time (an

intermediary phase between design-time and runtime) this reference model

can be configured into one of the process variants.

The main characteristic of such reference process models is that they

include variation points, in order to distinguish between parts which are

common to all variants and parts which are variant-specific. For example,

such variation points are represented as configurable nodes in [88, 33, 107],

node labels in [85], and adjustment points in Provop [37].

With configurable nodes, the idea is to mark selected activities and

control connectors as configurable, and associate them with configuration

alternatives. Moreover, it should be possible to define constraints on the

set of configurable nodes, in order to restrict the creation of variants. A

first example of process configuration using configurable nodes is that of

Configurable Event-driven Process Chains (C-EPCs) [88]. With C-EPCs,

the EPC functions and decision nodes can be annotated to indicate if they

are mandatory or optional. A similar approach is proposed by Gottschalk

et al. in [33], where the hiding and blocking operators known for the inher-

itance of process behavior [106] are applied to the input and output ports

of activities. The approach is demonstrated on the concrete process mod-

eling language YAWL [108], resulting in the so-called configurable YAWL

(C-YAWL). Also using the hiding and blocking operators, the approach
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by Aalst et al. [107] allows to configure processes incrementally, ensuring

at every step that the configured variants are correct with respect to both

syntactic and behavioral semantics.

Another means to support the configuration of process variants from a

reference process model is by annotating the nodes of the reference model.

With aggregated EPCs [85], the EPCs are connected to a product hierarchy

by annotating the functions and events with simple labels. The labels

are then used for extracting from the aggregated EPC the process model

corresponding to a given product or product group. A similar approach

has been developed in the project PESOA [79, 96], where process models

are extended with stereotype annotations to obtain variant-rich process

models. Through process configuration, each variation point is realized

with one or more variants, depending on its type. The approach also makes

use of the feature diagrams proposed in [45]. Although feature diagrams

were introduced to facilitate configuration in software product lines, they

can also be used to configure process models. In particular, the variants

can be linked to features from a feature diagram. This way, variants are

included or excluded from the process model depending on the selection of

features in the feature configuration.

In Provop [37], process variants can be configured from a base pro-

cess model, by applying groups of change operations, called options. The

regions to which changes can be applied are restricted using adjustment

points. Similar to [88] and [33], Provop allows to define constraints on

the application of different adjustments (e.g., two options can be mutually

exclusive). However, different from the process configuration approaches

presented so far, for which the reference model needs to contain all the

possible behavior, Provop allows also to move or add process elements.

Since configuring process variants is an error-prone task, guiding the

end-user in making the configuration decisions can be very useful. This is-
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sue is addressed in [50], where the configuration process is guided through

questionnaires. Each question refers to a set of domain facts, which can be

set to true or false. It is possible to define domain constraints as proposi-

tional logic formulas over facts, as well as ordering dependencies between

questions and facts. The questions are then posed in an order consistent

with these dependencies. For each question, the space of allowed choices

is pruned, in order to prevent the violation of domain constraints.

2.1.2 Runtime Adaptation Approaches

Loosely Specified Process Models

While specifying a process model, we may foresee at design-time that more

execution paths will be necessary at runtime, which are not present in

the model. Also, it may be the case that the process model cannot be

completely specified, and that the activities to be performed at certain

points in the process model will become clear only during the execution

of a process instance. In both cases, a possible solution is to have loosely

specified process models. Such models are incomplete, in the sense that

they do not contain enough information to allow them to be executed to

completion, but they can be completed at runtime by providing a concrete

realization for the underspecified parts.

This concrete realization is selected dynamically in case of late binding

(e.g., [3, 14]), modeled in the case of late modeling (e.g., [94]), and com-

posed from fragments in the case of late composition (e.g., [75, 103]). The

realization can be performed either before reaching the underspecified part,

for example when the process is instantiated (e.g., [103]), or when execut-

ing the underspecified part (e.g.,[3, 94]). Moreover, the realization can be

performed only once for all instances, during the first execution (e.g.,[3]),

or it can be repeated for every new process instance (e.g., [94, 103]).
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The approach in [3] supports late binding through small, self-contained

processes called ’worklets’. The process model contains enabled workitems,

which have associated sets of rules. Worklets are selected and bound at

runtime using these rules and the relevant context. Both rules and worklets

can be manually added at any time, even during process execution. Also

supporting late binding, Burmeister et al. [14] model a business process by

defining a goal hierarchy, a list of context variables, and a set of business

plans linked to subgoals. Business plans are then selected and executed

depending on goals and context. Late binding can also be achieved us-

ing an aspect-oriented approach, by annotating process parts with aspects

(e.g., [19, 42]). If the aspect matches the context information, the normal

execution of a workflow can be interrupted and interweaved with additional

business logic.

An approach which supports late modeling is presented by Sadiq et al.

in [94], based on the notion of ’pockets of flexibility’. During execution,

process instances are progressively built based on constraints which specify

how and when the fragments can be composed. Validation is used to ensure

that the constraint set does not carry conflicts or redundancy, and also that

the dynamically modeled fragment conforms to the constraints.

Late composition of process fragments can be achieved using a declar-

ative process modeling language. DECLARE [75] is a constraint-based

framework supporting multiple declarative languages. A process model

specified using a declarative language contains constraints which restrict

the task execution options, i.e., the more constraints, the less execution

paths are allowed. At runtime, process instances can be composed by

allowing all the behaviors which do not violate the constraints. Using

DECLARE, it is also possible to combine declarative and imperative spec-

ifications, since DECLARE works together with a workflow management

system supporting YAWL [108].
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Dynamic Adaptation of Process Instances

When executing a process instance, it may be necessary to deviate from

the execution paths defined in the process model in response to changes in

the execution environment. Examples of such deviations are adding, skip-

ping, re-executing, or compensating activities. Such adaptations only alter

the precise process instance, without affecting the process model or other

process instances. In the following, we discuss representative approaches

supporting the dynamic adaptation of process models and Web service

compositions. We start with approaches which consider adaptable process

models. However, we also consider an approach where this dynamicity is

built in the representation of processes. All these approaches are reactive,

in the sense that the instance is locally adapted to react to changes in the

execution environment. We therefore present also an approach which goes

in the direction of proactive adaptation.

Many process management systems have been proposed which sup-

port the user in defining process instance changes, e.g., ADEPT2 [82, 83],

WASA2 [120], eFlow [16], CAKE II [66]. In [116], Weber et al. provide

a catalogue of 18 change patterns and 7 change support features, and use

this catalogue to evaluate the ability to deal with change of several systems

from both academia and industry. Regarding the runtime structural adap-

tations of process instances, in [116] the authors observe that these can be

based on change primitives, such as add/remove node, add/remove edge

[120, 66]. When applying change primitives, the soundness of the resulting

process model cannot be guaranteed, and must be checked explicitly. Al-

ternatively, the structural adaptations can be based on high-level change

operations, e.g., insert task/fragment between two sets of nodes [82]. The

high-level change operations can then be associated with pre and post-

conditions, which guarantee the soundness of the resulting model.
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Several approaches have been proposed for automating the structural

adaptation of process instances. Such approaches are often based on plan-

ning, as is the case of the works presented in [99], [12], and [28]. In [99],

Schuschel and Weske present an integrated planning and enactment sys-

tem, where alternating phases of planning and coordination are repeatedly

traversed whenever an unanticipated effect occurs. This approach is ex-

tended in [100], where the replanning is triggered automatically.

Bucchiarone et al. [12] propose a framework supporting the runtime

adaptation of service-based applications to unexpected or improbable con-

text changes. Adaptation is achieved through a set of mechanisms which

are meant to bring the process instance to a state where the execution

can be correctly resumed. The adaptation mechanisms can be combined

through adaptation strategies, thus allowing to address complex adaptation

needs, which cannot be solved by applying isolated mechanisms. The adap-

tation mechanisms are realized by extending planning techniques originally

designed for the automated composition of services [61]. The framework

has been implemented and demonstrated on a complex car logistic scenario

in [80].

Friedrich et al. [28] propose a self-healing approach to handle exceptions

in service-based processes, such as faulty service invocations. At design-

time, the approach can be used to evaluate the repairability of process

definitions. At runtime, when an exception arises, the approach generates

alternative repair plans by taking into account constraints posed by the

process structure, the execution state of the process instance, and the

available repair actions.

Dynamic adaptation can be achieved also by using a different process

modeling approach. Case handling [111] is a paradigm proposed for sup-

porting knowledge-intensive business processes. With case handling, the

users work with whole cases, and the state of the case is not determined
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by the control-flow status, but by the presence of data objects. An exam-

ple of a case handling tool is FLOWer, which supports several deviation

operations: open/skip work items not yet enabled, skip or execute enabled

work items, and redo executed or skipped items.

A shortcoming of current approaches supporting runtime automated

adaptation is that the adaptation occurs only in a reactive fashion [71]. In

other words, the adaptation is performed only after a deviation from the re-

quirements or a change in context is observed. This has several drawbacks.

First, if a failure occurs, the user may have to wait until the application

becomes available again. Secondly, a failure can lead to undesirable con-

sequences such as loss of money. The alternative, also called short-term

proactive adaptation, is to automatically detect that a constraint will be

violated before the conflict actually occurs.

An approach going in the direction of short-term proactive adaptation

is AgentWork [69]. The adaptation offered by this workflow management

system consists in adding, dropping or replacing individual tasks based

on Event Condition Action (ECA) rules. These rules specify the events

which constitute logical failures and the corresponding workflow adapta-

tions. The adaptation mechanism uses temporal estimates in order to

predict the workflow part which would be affected by the failure and adapt

it in advance. The limitations of this approach are that adaptation changes

can only affect individual tasks, and that manual intervention is required

in case conflicting rules generate incompatible actions.

Evolution of Process Models

Evolution is the ability to modify a process model at runtime. In this

subsection, we present approaches that focus mainly on handling the al-

ready running process instances when their corresponding process model

is modified. Further approaches which deal with process evolution in the
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sense of deriving process model changes based on previous process instance

adaptations will be considered in detail in Section 2.3.

Handling the already running process instances after a process model

change is a challenging issue. Letting the instances finish on the old pro-

cess model may be impossible, e.g., if the change is the enforcement of a

new law. Aborting their execution entirely may also be undesirable if it

means losing a great amount of work. The alternative is to migrate the

currently executing process instances to the new process model. This is not

a straightforward task, as shown with the dynamic-change bug originally

described in [26]. The dynamic-change bug shows that it may be impos-

sible to put the old instance in a state of the new process model without

skipping or re-executing tasks.

In response to these challenges, many approaches have been been de-

vised, e.g., [15, 95]. In [15], Casati et al. introduce a taxonomy of policies

which describe how to manage running workflow instances when the corre-

sponding workflow schema is modified. The authors introduce also a formal

condition, instance compliance, to determine which running instances can

be migrated to the new schema version: an instance is compliant with a

new schema if it can be produced also on the new schema. Sadiq et al. [95]

address also the problem of migrating the non-compliant instances to the

new schema. If an instance is non-compliant, a compliance graph is con-

structed which serves to partially roll-back the instance into a compliant

state, from which it can execute according to the changed schema.

The problem of migrating process instances can be further complicated

by the fact that the instances themselves may have been adapted. This

issue is addressed in [86], where Rinderle et al. describe different migration

policies based on the degree of overlap between concurrent process model

and process instance changes.

Another important issue related to process evolution and instance mi-
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gration is that of version control. Without version control, a process model

must either be copied manually before it is changed, or it must be over-

written. In the first case, this leads to increased maintenance efforts, as

the number of different versions increases. In the second case, problems

will arise if there are currently running process instances which cannot be

migrated.

With version control, process instances belonging to different versions

can coexist, and, if possible, can be migrated to new versions. Examples

of approaches which address the problem of versioning for process models

are [44] and [125]. In [44], Kradolfer and Geppert present a framework for

workflow schema evolution based on workflow type versioning and work-

flow migration. To keep track of the evolution of a workflow schema, the

versions are stored in a version tree, which encodes derived-from relations.

The instances can then be migrated to versions in the same version tree.

They can also be migrated to previous versions, by performing a series

of inverse modification operations. Zhao and Liu [125] present a different

method, in which all the versions of a process model are stored in a single

directed graph by annotating the nodes and edges with version numbers.

Once the graph is built, any version of the process model can be obtained

from the graph by following a set of derivation rules.

2.2 Ensuring Process Compliance to Goals and Con-

straints

Companies today need to ensure that the business practices reflected in

their process models are in line with internally defined directives, such as

business strategies, as well as externally imposed directives, such as legal

regulations and contracts. Complying with external regulations is partic-

ularly important in industry sectors with high regulatory control, such as
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financial services, gaming, or healthcare. Therefore, there is a need to

design compliance rules and develop compliance checking and enforcing

mechanisms. This is a challenging task, especially in the case of exter-

nal directives, which cannot simply be incorporated in the design of the

process models [93]. The main reason is the difference in terms of own-

ership, governance, and timeline, between the business strategy and the

regulations.

In this section, we give an overview of approaches which focus on ensur-

ing the compliance of process models to goals and constraints. We consider

approaches belonging to the research area of business process management,

but also approaches from the related area of Web service composition.

These approaches differ in the time when they are applied (design-time vs.

runtime), but also in purpose (e.g., verification vs. self-healing) and in the

techniques used (e.g., model checking, automated reasoning).

2.2.1 Design-time Compliance

Essentially, there are two ways to ensure at design-time that a process

model complies with the specifications of goals and constraints. First, one

can automatically generate the process model according to the specifica-

tions, starting from process fragments or from Web services. Alternatively,

one can verify that the manually created or mined process model complies

with the specifications. We give an overview of automatic composition ap-

proaches in Section 2.2.1, and of verification approaches in Section 2.2.1.

Automated Composition

When automatically composing process models, a common approach is

to take advantage of the business (data) objects manipulated by the pro-

cess model. Such business objects are commonly standardized in reference

models, in order to facilitate the interoperation between process partners.
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They can therefore be used, together with business rules or goals defined

based on the business objects, to automatically compose compliant process

models. This is the case of the approach by Kuster et al. [48], which can be

used to generate business process models based on object lifecycle confor-

mance and coverage requirements. The object lifecycles are synchronized

manually, while the rest of the technique is automatic.

Automatic composition approaches which follow this idea have also been

proposed in the artifact-centric community. The artifact-centric paradigm

has the following dimensions [40]: (i) business artifacts (data), (ii) artifact

lifecycles, which describe stages in the evolution of artifacts, (iii) services or

tasks in business processes which make transactional changes to artifacts,

and (iv) the associations or constraints on the manner in which the busi-

ness processes can make changes to the artifacts. The work presented in

this thesis can also be seen as artifact-centric, with domain objects, effects,

and preconditions corresponding to (ii)-(iv). In [29], Fritz et al. devise an

technique for automatically composing declarative artifact-centric work-

flows starting from a goal to be achieved and service descriptions. The

authors consider only the restricted setting when artifacts are key-value

pairs, without explicitly considering the artifact lifecycle.

With Web service composition, the problem is to generate a composite

service starting from service interfaces and composition requirements. The

result is an executable implementation which satisfies the requirements by

suitably invoking the existing Web services. Many approaches to auto-

mated Web service composition are based on AI planning techniques (e.g.,

[38, 62, 76, 104]). In these approaches, automated composition is described

as a planning problem: existing services are used to construct the planning

domain, the planning goal is obtained from the composition requirements,

and planning algorithms are used to generate a plan, which is then trans-

lated back to a composite service. In [102], we proposed an approach for the
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automated composition of Web service functionalities described in terms

of background ontologies. We used the most general notion of matching,

partial matches, where several Web services can cooperate, each covering

only a part of a requirement. Due to the background ontologies and to

partial matches, finding a composition which satisfies the goal involves

searching in a huge search space. To overcome the size of the search space,

we developed heuristic techniques for guiding the search.

In the following, we focus on one particular Web service composition

approach, ASTRO (see [76, 10, 11, 43]), which is also the starting point

for the work presented in this thesis. ASTRO is a composition framework

based on planning as model checking, which covers both cases of extended

goals and cases of partial observability. Given an abstract BPEL descrip-

tion of the component services and a formal representation of composition

requirements, the approach automatically synthesizes an executable BPEL

process. The synthesized process orchestrates the components in such a

way as to satisfy the given requirements.

The composition requirements used in ASTRO include both control flow

and data flow requirements. Traditional composition requirements refer to

reaching a state or outcome. However, in many scenarios it is necessary

to align the behavior of the composed services. Also, it may be necessary

to ensure that the composed service reacts to certain events in a prede-

fined way. The approach in [10, 43] shows how to express such control-flow

requirements in terms of object diagrams and their lifecycles. The require-

ment language in [10] allows to define not only reachability goals, but also

recovery conditions and preferences. This approach is further enhanced in

[43] to deal with problems specific to user-centric service compositions.

ASTRO has been implemented and applied to a real world case study

that involves the Amazon e-commerce services and an e-payment bank

service [59]. These characteristics made ASTRO an ideal starting point for
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our work on corrective evolution. In particular, we have exploited the goal

language and object diagrams introduced in [10] to model our application,

and used the powerful planning techniques in ASTRO to implement our

solution.

Verifying Compliance

Another way to ensure at design-time that the process model achieves the

goal and/or complies to the constraints is to apply a verification technique.

Many approaches in this category annotate the tasks in the process models

with semantic information, and use these annotations to evaluate formally

specified constraints. Ghose and Koliadis [31] annotate the tasks in BPMN

process models with effects, and devise a technique to accumulate the ef-

fects of ordered tasks. The focus in [31] is however not on verifying that

the process is compliant to the constraints, but rather on how to resolve

non-compliance. Non-compliance is resolved by identifying process mod-

els which are minimally different from the original, and which satisfy the

constraints. The authors present also a set of process compliance patterns,

which capture commonly occurring constraint violations and the actions

required to resolve the non-compliance.

Hoffmann et al. [39] annotate the tasks in a process model with precon-

ditions and effects. These are conjunctions of logical literals, formulated in

terms of an ontology which axiomatizes the business domain. Using these

annotations, the authors develop low-order polynomial time methods for

verifying the compliance of process models with a constraint base. The

methods perform exact compliance checking for restricted cases, and ap-

proximate compliance checking for more general cases, guaranteeing either

only soundness or only correctness of the results.

If no semantic annotations are added, it is only possible to verify the

compliance of process models with constraints referring to structure or rela-
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tionships between activities. This is the case of the approach by Awad et al.

[5], which checks the compliance of process models with activity ordering

compliance rules. The compliance rules are expressed as queries formulated

in BPMN-Q, a visual language based on BPMN. A query processor matches

BPMN process graphs to the query graph. The resulting sub-graphs are

reduced and eventually translated into finite state machines. The query

is transformed into formulas in temporal logic, and a model checker is

used to verify if the finite state machines satisfy the temporal logic formu-

las. A similar approach is proposed by Liu et al. in [54], which uses model

checking to verify the compliance of BPEL processes with compliance rules

specified in the graphical Business Property Specification Language.

The work presented by Governatori et al. in [34] addresses also the

normative aspect of compliance, that is, whether the constraint refers to

an obligation, a permission, or a prohibition. This is achieved by specifying

business contracts in a Formal Contract Language (FCL). The compliance

of a BPMN process with a contract is verified by comparing events along

the process execution paths with the contract conditions.

2.2.2 Runtime Compliance

When ensuring the compliance of process models at runtime, there are

essentially two possibilities. The first possibility is to monitor the execution

and record any constraint violation. The second possibility is to also react

to constraint violations by triggering healing procedures.

Monitoring the runtime compliance has been addressed in, e.g., [4, 57,

58]. Agrawal et al. [4] present a workflow solution for addressing the

internal control requirements of the Sarbanes-Oxley Act. The architecture

of this solution consists of four components: workflow modeling, active

enforcement, workflow auditing, and anomaly detection.

The approach presented in [57, 58] is closer to the work presented in this

30



2.2. ENSURING PROCESS COMPLIANCE TO GOALS AND CONSTRAINTS

thesis, as it concerns the monitoring of compliance for adaptable process

models. Ly et al. formally define two types of semantic constraints which

impose conditions on how certain activities can be used in the process:

mutual exclusion and dependency. Based on exploring execution traces,

the approach verifies that the process is semantically correct, i.e., it com-

plies with the annotations. The authors then extend the approach to deal

with adaptations of process instances and evolution of process models, as

well as propagation of changes from process models to (possibly adapted)

process instances. Here, optimization techniques are used, which restrict

the set of relevant constraints based on the semantics of the change opera-

tions applied. The limitation of this work is that compliance is limited to

constraints on relationships between activities in a process.

An approach which addresses not only the monitoring of process in-

stances, but also their self-healing, is presented in [7, 6]. Baresi et al.

propose a framework (Dynamo) for self-healing BPEL compositions. More

precisely, supervision rules are added to the BPEL process, specifying a

location where the property should be verified, the monitoring parameters

(priority, validity, trusted providers), a monitoring expression specified in

WSCoL (Web Service Constraint Language) and a recovery strategy spec-

ified in WSReL (Web Service Recovery Language). There can be different

recovery strategies for the same violated constraint, and the selection is

done based on context.

Monitoring the runtime compliance of processes and triggering self-

healing actions in case of violations is a technique often employed when

designing an automatic process instance adaptation approach. In fact,

some of the approaches presented in Section 2.1.2 (e.g., [12, 28, 69, 100])

can be viewed also as self-healing approaches.
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2.3 Related Work

Evolving a process model may be necessary in various situations, e.g., to

accommodate legal or policy changes, to implement optimizations, or to

improve the design of the process model. A variety of approaches exist

which use the structural adaptations of process instances to evolve process

models or to support evolution. We distinguish between approaches which

consider the logs of the instance adaptations, also referred to as change

logs (e.g.,[87, 105]), and approaches which consider the process variants

that result by structural adaptation (e.g.,[37, 53]). We also provide an

overview of process model refactoring techniques, which focus on improving

the quality of the process models.

2.3.1 Analyzing Execution and Adaptation Logs

Process management systems typically offer the possibility to record in-

formation about the execution of process instances. This information is

represented as events, where each event refers to a precise task in the

process model and to a process instance, and events are totally ordered.

Some process management systems also allow process instances to devi-

ate from the prescribed process model or be adapted structurally while

they are running (e.g., [83, 12]). In such systems, the instance adaptations

can be recorded into adaptation logs, also referred to as change logs. The

execution and adaptation logs can then be analyzed to support process

diagnosis (e.g., [35, 89]), facilitate change reuse (e.g., [105, 98]), and evolve

the model (e.g., [87, 117]). Also the work presented in this thesis belongs

to this category, since our corrections are generated based on adaptation

logs.

Guenther et al. [35] support process diagnosis by applying process min-

ing techniques to change logs. The result is an abstract change process,
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consisting of change operations and causal relations between them. These

change processes can be used as an analysis tool to understand when and

why changes were necessary. Rozinat and van der Aalst [89] analyze how

data attributes influence the choices made in the process based on past

process executions. They convert each decision point into a classification

problem, where classes are the different decisions to be made, and then

solve the problem using decision trees.

The approach by Soffer et al. [105] is designed to facilitate change

reuse, but also to support process diagnosis. This is a learning approach

for grouping the process instances based on similar contextual properties,

paths, and outcomes. The groups can be used to provide criteria for path

selection in a given situation, to address specific questions (e.g., ”hunches”

about the cause of poor performance), and to identify successful deviations

from the existing process model. In the context of declarative processes,

Schoenenberg et al. [98] present an approach which facilitates change reuse

by generating recommendations based on similar past executions and con-

sidering optimization goals.

The approach in [87] addresses both the problem of facilitating change

reuse and the actual process model evolution. Rinderle et al. use concepts

and methods from case-based reasoning in order to log, together with the

change operations, also the reasons for and context of each change. Change

information is stored as cases in a case-base specific to the process model.

The case-bases are used to support process actors in reusing information

about similar ad-hoc changes, and are also continuously monitored to au-

tomatically derive suggestions for process model changes. The work in [87]

is extended in ProCycle [117]. Retrieving similar changes was an entirely

manual process in [87], due to the fact that the reasons for change were

specified as a natural language annotations. In ProCycle, the retrieval pro-

cess is partially automated by considering as well structured information
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about the context.

A different approach also employing case-based reasoning to reuse pre-

vious changes is presented by Minor et al. in [65]. The authors propose

a suspension mechanism, which allows the designer to modify suspended

parts of the workflow while the remainder of the workflow can continue to

be executed.

A recent approach from the process mining community which is very

close to our work is presented in [27]. Fahland and van der Aalst investigate

the problem of repairing a process model with respect to a log, such that

the repaired model can replay the log and is as similar as possible to the

original model. The non-fitting subtraces are grouped into sublogs, which

are then mined for perfectly fitting subprocesses. These subprocesses can

then be added to the original model at the appropriate location.

2.3.2 Managing Process Variants

Instead of logs of adapted instances, the result of structural adaptation

can be represented as variants of a process model coexisting in the same

process collection. As observed also in [23, 37], the techniques for managing

process variants fall into two categories: techniques which keep the variants

separate and provide a way to keep track of commonalities (e.g., [24, 25, 46,

55]), and techniques which use a reference model to represent the variants

(e.g., [37, 85, 88, 53]). To obtain a reference model, the process variants

may have to be merged or aggregated (e.g., [53, 49, 47]). In the following,

we present several available techniques for managing and merging process

variants, focusing in particular on approaches that can be used for process

evolution.

If the process variants are kept as separate models, there is a need

for an infrastructure that can keep track of the commonalities between

variants. There are many reasons for having such an infrastructure in
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place. Most notably, since process models are created by copying or merg-

ing fragments from other models, the process model repositories tend to

accumulate clones over time [24]. Besides eliminating clones, other rea-

sons are to ensure consistency between variants when updating them, or

to identify reusable fragments. Many approaches for querying a process

model repository have been proposed, which return either exact matches

[24], or inexact matches together with a similarity measure [46, 56]. Other

approaches focus on version control, e.g., [25].

Managing process variants using a reference process model can be achieved

through process configuration, which we have discussed in Section 2.1.1.

Among the approaches supporting process configuration, Provop [37] is

particularly relevant to our work, since it allows for structural configura-

tion [84]. In other words, Provop allows process variants to be configured

from a base process model by applying structural adaptations (e.g., in-

serting, deleting, and moving fragments). The structural adaptations can

be selected automatically based on context [36]. This idea that process

models can be structurally adapted to their execution context is also one

of the main assumptions in this thesis.

Another relevant approach which supports the management of process

variants using a reference model is presented by Li et al. in [53]. The

idea here is to learn from past changes by merging the process variants

into a process model which covers the variants best. Considering that the

distance between two process models is the minimal number of high-level

change operations necessary for transforming one process model into the

other, [53] employs a heuristic search to find a new process model such

that the weighted average distance between the new model and variants is

minimal.

The approaches in [49] and [47] are also techniques for merging process

variants. La Rosa et al. [49] (semi-)automatically produce a configurable
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process model from a pair of variant models, such that the behavior of

the resulting process model subsumes that of the input variants. This is

different from the approach in [53], where the new process model covers the

variants only partially. The algorithm presented in [49] works by creating

a copy for the common parts of the variants, and appending the differences

using configurable connectors.

The technique described by Kuster et al. in [47] can be used for comput-

ing and resolving differences between variants in the absence of a change

log. Differently from [49], the aim here is not to merge the variants auto-

matically, but to assist the modelers in manually resolving the differences.

2.3.3 Refactoring Process Models

Refactoring is a term originating from software engineering, where it usu-

ally refers to techniques used for restructuring a body of code, without

changing its external behavior. Refactoring is performed to improve the

quality of the software in terms of readability, maintainability, reduced

complexity. Similar to code refactoring, the refactoring of process models

refers to improving the internal quality of process models without affecting

their external behavior.

Several refactoring opportunities for the control flow of process models,

also known as process model smells, have been presented in [115]. To

address these smells, Weber et al. propose 11 behavior-preserving process

refactoring techniques. Close to the work presented in this dissertation is

the refactoring technique RF11, Pull Up Instance Change. In particular,

our work can be used to automate this refactoring technique.

Another problem belonging to process model refactoring is that of trans-

forming an unstructured process model into a structured one with the same

behavior. A process model is structured if every split node has a corre-

sponding join node, and split-join blocks are properly nested. Structured
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process models have been shown empirically to have less errors and to

be easier to understand [51]. There are many approaches which propose

automated techniques for structuring process models. For example, the

technique introduced by Vanhatalo et al. [114] uses the refined process

structure tree (RPST) decomposition previously developed in [113]. Also

using the RPST decomposition, Polyvyanyy et al. [78] provide a full char-

acterization of the acyclic process models which are inherently unstruc-

tured, i.e., which cannot be transformed into structured models. Deriving

structured models from unstructured ones is also discussed in the context of

transforming graph-based process models [73], respectively BPMN models

[74] to BPEL.

Golani and Gal [32] propose another approach for restructuring process

models. The authors start from on the observation that exception handling

design is typically performed only after the normal process of execution has

been designed. They therefore propose to restructure the process model

by re-ordering the activities based on exception efficiency considerations.

Refactoring process models can also refer to correcting behavioral errors

in these models. Correcting behavioral errors is not trivial, for example

because fixing one error may introduce new errors in other parts of the

model. Gambini et al. propose a technique called Petri Nets Simulated

Technique for automatically fixing unsound process models [30]. The core

of this technique is a heuristic optimization algorithm. At each step, the

algorithm tries to minimize the number of behavioral errors by applying

controlled changes. The algorithm stops when a certain number of non-

redundant solutions is found, or a timeframe elapses.
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2.4 Discussion

The approaches in [87], [117], and [53] are closest to our work, since they

generate new process models based on adaptation logs, respectively process

variants. All three approaches derive process model changes from frequent

instance changes. The context of the adaptations is considered in [87] and

[117], but not considered in [53]. In [87], the context is represented as

natural language annotations which are entered and processed manually.

Structured information about the context is considered only in [117]. Fur-

ther, the process trace for which changes should be applied is considered

implicitly in [53], and not considered in [87] and [117].

However, a process instance adaptation is tightly coupled to the context

and trace for which it is used, and may even be harmful if used for different

contexts or traces. When deciding to evolve the process model based on

instance adaptations, the contexts and traces must be considered as well. If

traces are ignored, then we need to consider the overall goal of the process

model, to make sure that the adaptations that we introduce in the process

model are not harmful. The process goal in not considered in either of the

three mentioned approaches.

The relation between context, traces, and goals has been considered

in [105]. However, the aim in [105] is to provide recommendations for

improving the process model, rather than actually changing the process

model, and could therefore be used as an analysis technique that precedes

corrective evolution.
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Evolution Framework

In this Chapter, we introduce a framework designed to support the evo-

lution of business processes based on execution and adaptation histories.

We first present an overview of the evolution framework from an architec-

tural perspective. We describe in detail each phase in the lifecycle of a

process-based application which uses the framework, with the aim to po-

sition corrective evolution in this lifecycle. We then introduce the basic

elements for modeling the process-based application. Finally, we present

in detail concepts related to process execution and adaptation. These con-

cepts will be used in Chapter 4 to define the corrective evolution problem.

3.1 Process-Based Application Lifecycle

In this Section, we describe a framework designed to support the adap-

tation and evolution of process models, and explain the role of corrective

evolution in this framework (see also [8, 13]). Figure 3.3 presents an ar-

chitectural overview of the framework. The focus of this figure is to show

the relations between the different components, and to position these com-

ponents with respect to the three main phases in the evolution lifecycle,

namely (1) execution phase, (2) analysis phase, and (3) evolution phase.

The relations between components do not imply that there is a strict tem-
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Figure 3.1: Evolution framework

poral ordering between the three phases. For example, both analysis and

evolution tasks can be performed while the application is executing.

Our evolution lifecycle is not strictly different from the traditional busi-

ness process lifecycle, which typically includes the following phases orga-

nized in a cyclical structure: the design and analysis phase, the configura-

tion phase, the enactment phase, and the evaluation phase [121]. However,

the focus in the traditional lifecycle is on modeling, validating, and de-

ploying an initial process-based application, which can then be executed,
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monitored, and analyzed. While a feedback loop from the evaluation phase

to the design phase exists, the changes are supposed to be minimal. This

is why process evolution is typically included in the design and analysis

phase, and is assumed to be a manual task.

However, the ability to cope with frequent process changes has been

recognized as one of the critical success factors for achieving effective pro-

cess support [70]. Therefore, in our evolution lifecycle, we focus less on

the initial setup of the application, corresponding in the traditional lifecy-

cle to the design and analysis phase, as well as the system configuration

phase. Instead, we consider that the process-based application is already

set up and running, and focus on the application’s ability to change in

response to short and long-term changes in the execution environment.

In our evolution lifecycle, we therefore consider explicitly both short-term

process instance changes (included in the execution phase as adaptation),

and long-term process model changes (the evolution phase).

In the following, we present in detail each phase in the evolution lifecycle.

3.1.1 Execution Phase

We model a process-based application using domain objects and process

models. The domain objects are used for representing the domain knowl-

edge, while the process models represent the business logic. In the execu-

tion phase, the process models and domain objects are instantiated. The

resulting process instances are executed on the process engine. The exe-

cution manager is responsible for keeping the system configuration up to

date and for consistently aligning the status of domain objects with the

execution of process instances and the context events received by the object

manager.

The system configuration is used by the execution manager to monitor

constraints associated to running process instances and to trigger excep-
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tions in case of constraint violation. Such exceptions can be considered at

design-time, by including in the process model appropriate exception han-

dlers, for example as in [60, 91]. If, however, the exceptions are not handled

at design-time, they will require runtime structural process adaptations.

In our framework, structural process adaptations are handled by an

adaptation manager, which can be realized using existing state of the art

techniques such as [12, 21, 28]. The adaptation manager receives as in-

put an adaptation problem, which contains information about the process

instance to be adapted, the system configuration, and the constraint vi-

olation. The adaptation manager is then responsible for computing an

adaptation for the process instance, which addresses the constraint viola-

tion.

There can be several adaptations which are applicable to the same ex-

ceptional situation. For example, for one constraint violation, possible

adaptations can be to bring the process instance to a stable state which

does not violate the constraint, to skip or replace some activities in the

original process model which are no longer applicable in the current con-

text, or to compensate and terminate the process instance. Preferences

between adaptation strategies can be specified in advance, for example, we

can specify that compensating and terminating the process instance should

be performed only in case there is no other means to address the constraint

violation.

All the information regarding execution and adaptation which may be

useful in the other phases is recorded into execution and adaptation logs.

The execution log contains events which record information such as the

time when an activity was started or completed, the process instance the

activity belongs to, the user who performed the activity, and the resources

used for performing it. Also the adaptation log contains events, this time

recording the adaptation needs, such as constraint violations, as well as
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the actual adaptations performed.

3.1.2 Analysis Phase

In the analysis phase, the execution and adaptation logs are continuously

monitored by a process analyzer, in order to determine performance prob-

lems. The process analyzer can be realized using existing approaches such

as [17, 122]. An example of a performance problem is failing to meet the

target of a Key Performance Indicator (KPI). State of the art approaches

supporting the analysis of process instance executions use data mining tech-

niques on the values measured for different metrics (e.g., execution time),

in order to uncover patterns in the metric behavior. Such patterns show

the main factors which influence the behavior of the metric. This analysis

then enables system users to react to existing performance problems, and

can also be used to proactively avoid such problems by predicting metric

values for the currently running process instances [17, 122].

If a performance problem is identified in this phase, and the cause of

the problem can be resolved by modifying the process model, this will

result in the creation of evolution problems. For example, the cause of the

performance problem can be that adapting at runtime is too costly in a

certain situation, because the situation occurs more often than originally

estimated. This can be resolved by modifying the process model to include

an adaptation which has performed successfully in this situation. The

actual modification of the process model can then be formulated as an

evolution problem, which will include the process model, the successful

adaptation, and the situation for which the adaptation should be applied.

A different example is if the cause of the performance problem is an

adaptation which is unsuccessful in a particular situation. There can be

different ways to address this problem. For example, the process model

can be modified to include a successful adaptation for that situation, or
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simply to prevent that the problematic adaptation is used. However, the

use of the problematic adaptation can also be restricted without modifying

the process model, for example by notifying the adaptation manager.

3.1.3 Evolution Phase

In the evolution phase, the evolution problems are processed by an evolu-

tion manager. An evolution problem will contain the process model which

needs to be changed, as well as a specification of these changes. The evo-

lution manager is then responsible for identifying, based on the evolution

problem, the type of evolution required, and for delegating the task to the

appropriate evolution engines. The evolution engine addresses the evolu-

tion problem by creating evolution variants. These are new process models

which result from changing the original process model according to the

change specifications. The process designer can then select from these evo-

lution variants the new process model on which future process instances

will be based.

The main focus of this dissertation is to address one particular type

of evolution, corrective evolution. With corrective evolution, new process

models are created by enhancing the original process model to handle sev-

eral situations with successful adaptations, at the same time ensuring that

these new process models satisfy the goal of the original process model.

The evolution problems which can be solved by a corrective evolution en-

gine must therefore contain a process model, a specification of the goal

of this process model, and a list of situations with the corresponding suc-

cessful adaptations. With corrective evolution, we can construct different

evolution variants by allowing more or less freedom when deciding on which

traces to plug in particular adaptations. These process models will all be

extensions of the original model with the same adaptations, but will differ

in terms of the behavior that they allow.
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For example, in the scenario introduced in Section 1, the corrective

evolution problem is to enhance the original car process model to handle

two situations with successful adaptations, while at the same time ensuring

that the resulting process model continues to satisfy the goal of delivering

the car to the retailer in perfect condition. The first situation is when

the car is damaged while moving to the storage area and other cars are

waiting to be repaired. The adaptation to be plugged in for this situation

is to postpone the repair. The second situation is when the car is damaged

at the storage area and there are not too many cars waiting to be repaired.

The successful adaptation for this second situation is to repair the car.

By applying corrective evolution, several evolution variants can be con-

structed, due to the fact that the two situations can be reached repeatedly.

For example, with the second adaptation, the car is repaired and returns

to the storage area. While moving to the storage area, the first situation

can reoccur; when at the storage area, the second situation can reoccur.

Since each adaptation can be applied for one or for multiple occurences of

the corresponding situation, we will obtain a different evolution variant for

each combination.

Corrective evolution is only one type of process evolution. In [13] we

proposed a different type of process model evolution, which we called pre-

ventive evolution. With preventive evolution, the idea is to modify the

process model in order to prevent a situation which requires adaptation

from being reached. This type of evolution is more disruptive than cor-

rective evolution, since it requires a restructuring of the original process

model such that the critical situation is avoided for all possible executions

of this process model.

Another type of evolution is the inverse of corrective evolution, i.e.,

the task of removing from the process model the procedures for handling

particular situations, at the same time ensuring that the resulting process
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models satisfy the goal of the original process model. With corrective evo-

lution, a process model will be enhanced to handle an exceptional situation

with a successful adaptation. However, by changing the process model, all

future process instances will handle the exceptional situation in the same

way, which may cause the previously successful adaptation to perform un-

satisfactorily, for example, due to a lack of resources. In this case, it would

be useful to be able to remove the under-performing adaptation from the

process model. This is not a trivial problem, especially if in the meanwhile

several other structural changes have been performed.

After generating the evolution variants, one or more of these variants

can be selected as the new process models on which future process instances

will be based. For most application domains, completely automating this

step of evolution variant selection is unrealistic. Modifying the process

models is often a critical operation, and understanding the impact of each

evolution variant on the system requires a comprehensive knowledge of the

domain.

However, the task of selecting evolution variants can be simplified by

first ranking these variants. This ranking can be performed according to

process quality metrics, such as the metrics proposed by Mendling in [63].

The evolution variants can also be ranked based on how well they cover the

behavior observed in the execution and adaptation logs, using metrics from

process mining, such as the fitness and appropriateness metrics described

by Rozinat and van der Aalst in [90]. Finally, they can be ranked according

to the performance data recorded in the execution and adaptation logs,

for example by aggregating for each evolution variant the performance

values of all the fitting process instances. Ranking the evolution variants

based on combinations of these metrics would allow to balance between

competing concerns, for example between the quality of the process model

and avoiding untested or unsuccessful behavior.
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3.2 Process-Based Application Representation

In this section we present the modeling elements of a process-based appli-

cation. We start with an overview, and then discuss in turn each modeling

element.

For modeling a process-based application, we consider that there exist

three layers, arising from two distinctions (Figure 3.2). First, we distin-

guish between domain knowledge, or knowledge about properties of entities

in the domain, and process knowledge, or knowledge about business logic.

Second, we distinguish between concrete, context-dependent knowledge,

and knowledge that is common, abstract, independent of context. The

first layer is therefore the domain knowledge, which is stable and abstract.

The second layer is the stable part of the process knowledge, represented

using goals, while the third is the dynamic and concrete part, represented

using adaptable process models.

To encode the domain knowledge, we define domain objects. Each do-

main object corresponds to a property of an entity in the domain, and

consists of a set of possible values and a set of events representing value

changes. We use this domain knowledge to define our process goals. Using

goals, we can specify the target state for our process, as well as coordina-

tion requirements. A target state is a situation we want to achieve and

then maintain in every execution of the process, whereas a coordination

requirement is a property we want to ensure during every execution.

Goals are then used to constrain adaptable process models and their

execution. A process instance may be adapted at runtime, as long as it

satisfies the goal associated to the process model from which the instance

was created. The goal is also considered during evolution, since process

models may evolve only as long as they continue to satisfy the goal of the

original process model. We represent process models as directed graphs in
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Figure 3.2: Process-based application representation

which the nodes are either steps in the process (i.e., activities) or control

connectors. To capture the relation between process models and domain,

we use the domain objects to specify constraints on the steps of the process

model, as well as to specify how these steps contribute to the outcome of

the process.

Figure 3.3 shows the usage of these modeling elements during the evo-

lution lifecycle discussed in the previous section.

We now present in detail each modeling element. For each element, we

provide an informal description, formal definitions, and examples on the

car logistics scenario.

3.2.1 Domain Objects

A domain object is a state transition system representing a property of

a physical or computational entity. States correspond to property values,

and value changes are transitions between states triggered by events. We

distinguish between controllable events, which can be triggered by execut-
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Figure 3.3: Modeling elements in the process lifecycle

ing a process, and uncontrollable events, which can happen at any time

and cannot be triggered directly. Domain objects can be nondeterministic,

i.e., for a state s and an event e there can be multiple choices for possible

next states due to multiple transitions from state s on event e.

Definition 1 (Domain Object)

A domain object is a tuple
〈
L,L0, E , T

〉
, where

• L is a finite set of states;

• L0 ⊆ L is a set of initial states;

• E is a set of events partitioned into sets:

– EC of controllable events;

– EU of uncontrollable events;
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• T ⊆ L× E × L is a transition relation based on events.

Let O be a set of domain objects. We denote with PS the set of

state propositions of the form ss(o), where o is a domain object, i.e.,

o =
〈
L,L0, E , T

〉
∈ O, and s is a state, i.e., s ∈ L. Similarly, we de-

note with PE the set of event propositions of the form ee(o), where e is an

event, i.e., e ∈ E . Further, we denote with Bool(PS) the set of boolean

expressions over PS.

Example Figure 3.4 shows the domain objects in our scenario. From

the perspective of a process model, there are two types of domain objects.

First, there are domain objects which can be directly manipulated by the

process. In our example these are the Car Location, Health, Navigation,

the Delivery Order, and the Treatment and Repair Schedules. Such domain

objects refer to contextual properties of particular entities, in this case the

car.

The domain objects of the second type can be read by the process, but

cannot be directly manipulated. Such domain objects will contain only

uncontrollable events. In our scenario, this is the case of the Service Sta-

tion Queue. Such domain objects are descriptions of resources, which are

shared by all process instances. Since resources can be added or removed at

runtime, also the domain objects corresponding to resources can be added

or removed dynamically.

3.2.2 Goals

Goals specify desirable states to be reached, and then continuously main-

tained, during the execution of a process instance. Goals can also be used

to specify reaction rules, which define how the process should react when

certain states are reached. We express goals in terms of domain objects.
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Figure 3.4: Domain objects in the car logistics scenario

Definition 2 (Goal)

Let O be a set of domain objects. A goal defined over O is a set of goal

statements, where each goal statement is defined with the generic template

ψ0 =⇒ (ψ1 � . . . � ψn)

where ψi ≡ > | ss(o) | ψi ∨ ψi | ψi ∧ ψi and o ∈ O.
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A goal statement specifies that whenever the state in the left side of the

rule occurs, the process should reach the state defined by the right side. If

the left side of the rule is empty (>), the state in the right side should be

reached unconditionally. The states on the right side are ordered using a

preference operator (�), from the most to the least preferred.

Example In our scenario, the goal contains one goal statement, to un-

conditionally reach and maintain the state when the car is delivered to the

retailer in perfect condition:

> =⇒ oks(h) ∧ retailers(l) (G1)

We also give an example of a reaction rule, to show the difference be-

tween unconditional and reaction rule goal statements. Consider the fol-

lowing goal with one goal statement:

damageds(h) =⇒ oks(h) � diagnoseds(h) (G2)

This goal specifies that, in case the car is damaged, the process should try

to reach and keep the car in state ok. If this is not possible, the process

should at least get the car in the state where the damage is diagnosed.

3.2.3 Process Models

A process model is a directed graph, for which the nodes are either activity

nodes or control connectors. Nodes are connected by control edges, which

represent precedence relations. Activity nodes are labeled with activities.

Not all the activity nodes must be labeled; unlabeled activity nodes can

exist for a control flow purpose. An activity can correspond to more then

one activity node, i.e., duplicate nodes are allowed.

Activities are considered to be atomic. In other words, in our formalism,

a long-running task cannot be represented as a single activity. Instead, such
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a task will be represented using several activities which denote the different

phases in the execution of the task, such as beginning and completion.

We relate activities to the domain through preconditions and effects.

The preconditions are boolean formulas over the states of domain objects.

Their semantics is that an activity can only be executed if its precondi-

tion holds. The effects correspond to controllable events on the domain

objects. By annotating an activity with effects, we encode the fact that

some domain objects may move to different states as a result of executing

the activity. Because the domain objects can be nondeterministic, also the

effects of an activity can be nondeterministic. We assume that the effects

of an activity cannot refer to multiple events on the same domain object,

i.e., an activity can trigger at most one event on a domain object.

Definition 3 (Activity)

An activity is a tuple 〈a, pre, eff 〉 defined over a set of domain objects O,

such that:

• a is the activity name;

• pre ∈ Bool(PS) is the activity precondition;

• eff ⊆ PE are the activity effects, and for all e1
e(o) ∈ eff , if there exists

e2
e(o) ∈ eff , then e1

e(o) = e2
e(o).

Example We consider an activity 〈a, pre, eff 〉 from our scenario, defined

on the domain objects in Figure 3.4, and for which:

• a = Receive delivery order

• pre = notExists(o) ∧ ¬damageds(h)

• eff = {createe(o), addT e(t)}

To execute this activity, the precondition is that a delivery order for the

car should not yet exist and the car should not be damaged. The effects
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are that the delivery order is created and the required treatments (e.g.,

painting) are added to the treatment schedule.

For modeling the control flow of a process model, we use control edges

and the following control connectors: AndSplit, AndJoin, XorSplit, Xor-

Join. These constructs can be used to realize the following workflow pat-

terns [109]: sequence, parallel split, synchronization, exclusive choice, sim-

ple merge, and arbitrary loop. These patterns form the core of any pro-

cess modeling language. Because of this, our representation can easily be

mapped to a process modeling language such as BPMN [1], a process exe-

cution language such as WS-BPEL [2], as well as modeling languages with

formal semantics such as state transition systems and Petri Nets. More-

over, these control-flow patterns are the ones most often used in practice

[126], and are also directly supported by most of the contemporary work-

flow management systems [109]. Finally, process models which have only

AND and XOR connectors are more understandable and less prone to er-

rors [64].

In addition to activity preconditions and effects, process models can con-

tain two other types of domain annotations: constraints and conditions. A

scope with constraint P is a sequence of activities with the same precon-

dition P. Control edges that connect XorSplit nodes with other nodes can

also have annotations, called conditions. Like preconditions, the conditions

are boolean formulas over domain objects states.

Definition 4 (Process Model)

Let O be a set of domain objects and A a set of activities defined over O.

A process model M defined over O and A is a tuple 〈N,E, l, t, c〉 where:

• N is a finite set of nodes partitioned into sets:

– NA of activity nodes;
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– NC of control connectors;

• E ⊆ N ×N is a set of directed edges;

• l : NA → A is a function mapping activity nodes to activities;

• t : N → {Start, End,Normal,XorSplit,XorJoin, AndSplit,
AndJoin} is a total function assigning a type to each node;

• c : E → Bool(PS) is a branch condition function such that for all

e = (n1, n2) ∈ E, if c(e) is defined then t(n1) = XorSplit.

Without loss of generality, we impose a restriction on the definition of

activity preconditions. The restriction concerns the formulas included in

preconditions, which can only refer to situations reachable through con-

trollable events. The reason is that an uncontrollable situation represents

in some sense an exceptional situation, which may or may not happen,

and we need to make sure that the process model handles also the case

when the exceptional situation does not happen. However, if we want to

ensure that an activity is applied in a situation reached with uncontrollable

events, we can do so using XorSplit nodes and branching conditions.

We also impose a restriction on consecutive branching conditions: for

any sequence of directly connected XorSplit nodes, the conditions must be

consistent. Formally, let M = 〈N,E, l, t, c〉 be a process model defined over

O and A, such that n1, . . . , nk ∈ NC , nk+1 ∈ NA, and ∀i, 1 ≤ i ≤ k, t(ni) =

XorSplit, and (ni, ni+1) ∈ E. Let ϕi be the branch condition c((ni, ni+1)),

if this condition is defined, and > otherwise. The conditions are consistent

if there exists at least one configuration of O which satisfies ϕ1 ∧ . . . ∧ ϕk.

Example Figure 3.5 shows the process model in our scenario, defined on

the domain objects in Figure 3.4. Activity preconditions and effects are de-

noted with P:. . . , respectively E:. . . . We defined a constraint ¬damageds(h)
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Figure 3.5: Car process model

on all the activity nodes, as a shortcut for saying that each activity includes

this formula in its precondition.

Formally, our set of activities isA = {Show route to storage, At storage,
Receive delivery order, F ix pending treatments,Deliver to retailer},
where for example the activity Show route to storage is 〈Show route

to storage,¬damageds(h) ∧ noRoutes(n), {showe(n)}〉. To avoid confu-

sions between activities in our future examples, where we refer to activities

using only their id, we have used the name of the activity to denote also

the activity id.

The process model M defined over O and A is then a tuple 〈N,E, l, t, c〉
where:

• NA = {n1, n2, n3, n4, n5};

• NC = ∅;

• E = {(n1, n2), (n2, n3), (n3, n4), (n4, n5)};

• l(ni) is the ith activity in A, for all i, 1 ≤ i ≤ 5;

• t(n1) = Start, t(n2) = t(n3) = t(n4) = Normal, and t(n5) = End;

• c is undefined for all e ∈ E.
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3.3 Execution Concepts

In this section, we introduce several concepts related to the execution of

process-based applications. Since checking that a process model satisfies a

goal involves checking that every execution of the process model satisfies

the goal, the concepts introduced in this section serve also to formally

define the notion of goal satisfiability.

3.3.1 Traces

Process instances contain information such as the point in time an activity

was executed, or which activities are ready for execution. The trace of a

process instance is a sequence of activities appearing in the process model,

which reflects the order in which the activities were executed in the process

instance. Therefore, consecutive activities in the trace must appear in the

process model as labels of activity nodes which are either connected directly

or through a sequence of control nodes.

Definition 5 (Trace)

Let O be a set of domain objects, A a set of activities defined over O, and

M = 〈N,E, l, t, c〉 a process model defined over O and A. A trace π on

M is a sequence of activities 〈a1, . . . , ak〉, k ∈ N, such that ∀i, 1 ≤ i ≤
k, ai ∈ A, and ∃ni ∈ N, l(ni) = ai, with t(n1) = Start. For i < k, ni

and ni+1 are such that either (ni, ni+1) ∈ E, or ∃n′1, . . . , n′j ∈ NC , j ≥ 1,

and (ni, n
′
1), (n

′
1, n

′
2), . . . , (n

′
j, ni+1) ∈ E. Activities can occur multiple times

due to loops and duplicate nodes. A trace is complete if t(nk) = End, and

partial otherwise.

We denote with Traces(M) the set of complete traces that can be pro-

duced by a process model M . Traces(M) can be an infinite set if M

contains loops.
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Example For our car process model in Figure 3.5, the set of complete

traces contains only one trace π = 〈Show route to storage, At storage,

Receive delivery order , Fix pending treatments , Deliver to retailer〉.

3.3.2 Configurations

A global state of the domain objects at a certain point during the execution

of a process instance is defined by the state of each domain object. We call

such a global state a configuration.

Definition 6 (Configuration)

Let O be a set of domain objects. A configuration γ of O is a total function

which maps each domain object o ∈ O, o =
〈
L,L0, E , T

〉
to a state in L. If

γ maps every domain object o to an initial state in L0 then γ is an initial

configuration.

Since every domain object state is described by a proposition in PS, a

configuration corresponds to an interpretation of the propositions in PS,

which assigns the value true or false depending on whether the domain

object is in that particular state or not in the given configuration. For

every configuration γ there will be exactly one corresponding interpretation

Iγ over PS. Slightly abusing the notation, we say that a configuration γ

satisfies a boolean expression b ∈ Bool(PS), γ |= b, if the corresponding

interpretation Iγ satisfies b, i.e., if Iγ |= b.

If γ and γ′ are configurations of O, we say that γ′ is directly reach-

able from γ if for every domain object o ∈ O for which γ(o) is differ-

ent from γ′(o), there exists a sequence of transitions in o from γ(o) to

γ′(o) only on uncontrollable events. Formally, γ′ is directly reachable from

γ if for all o ∈ O, o =
〈
L,L0, E , T

〉
such that γ(o) = s, γ′(o) = s′,

and s 6= s′, there exist e1, . . . , ek ∈ EU and s1, . . . , sk−1 ∈ L such that

(s, e1, s1), . . . , (sk−1, ek, s
′) ∈ T . Note that this relation between configura-
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tions is reflexive, since every configuration is directly reachable from itself.

This relation is also transitive, i.e., if γ1 is directly reachable from γ2, and

γ2 is directly reachable from γ3, then also γ1 is directly reachable from γ3.

If 〈a, pre, eff 〉 is an activity defined over O, and γ is a configuration of

O, we say that the activity 〈a, pre, eff 〉 is applicable in configuration γ if

there exists a configuration of O γ′ such that γ′ |= pre, and γ′ is directly

reachable from γ.

Moreover, we say that a configuration γeff is reachable by applying the

activity 〈a, pre, eff 〉 in γ if:

• 〈a, pre, eff 〉 is applicable in γ. Let γpre be the actual configuration

satisfying pre.

• by applying the events in eff to γpre we obtain γeff . In other words, for

every domain object o ∈ O, o =
〈
L,L0, E , T

〉
, if there exists an event

e ∈ eff such that e ∈ E , then there exists a transition from γpre(o) to

γeff (o) on e in T . Otherwise, γeff (o) = γpre(o).

3.3.3 Executions

Checking whether a process model M satisfies a goal G involves checking

if the configurations of the domain objects which are reached during each

complete execution satisfy the properties specified by the goal. To for-

mally define this goal satisfaction criterion, we first introduce the notion

of execution. Informally, an execution of a process model over a set of do-

main objects will be a complete trace interleaved after each activity with

information about the configuration of the domain objects.

Definition 7 (Execution)

Let O be a set of domain objects, A a set of activities defined over O, and

M = 〈N,E, l, t, c〉 a process model defined over O and A. An execution of
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M is an alternating sequence of configurations and activities represented

as γ0
a1→ γ1 . . . γk−1

ak→ γk, where:

• a1, . . . , ak ∈ A, and 〈a1, . . . , ak〉 is a trace on M ,

• γ0, . . . , γk are configurations of O, with γ0 an initial configuration,

• ∀i, 1 < i ≤ k, if ni−1, ni ∈ N are the nodes corresponding to ai−1 and

respectively ai, and ai = 〈namei, pre i, eff i〉, then:

– if (ni−1, ni) ∈ E, then γi is reachable from γi−1 by applying ai,

– otherwise, γi is reachable from γi−1 by applying

a′i = 〈namei, pre ′i, eff i〉, where pre ′i = pre i ∧ cond, and cond is the

conjunction of conditions on the edges between ni−1 and ni.

An execution is complete if the corresponding trace 〈a1, . . . , ak〉 is complete,

and partial otherwise.

Note that Definition 12 covers also executions for which at some step

i, the edges connecting nodes ni−1 and ni have conditions, and at the

same time these conditions are not satisfied in γi, and are satisfied in a

configuration γ′i which is directly reachable from γi. This is the case when

a condition holds because one or more uncontrollable events have been

triggered in the corresponding domain objects.

Example In our scenario, a possible complete execution allowed by the

process model in Figure 3.5 is: γ0
Show route to storage−→ γ1

At storage−→ γ2
Receive delivery order−→ γ3

Fix pending treatments−→ γ4
Deliver to retailer−→ γ5 where the config-

urations γ0, . . . , γ5 are given in Table 3.1. The executions allowed by our

process model will differ only in terms of the value that the configurations

assign to the domain object Service Station Queue.

For every configuration γi there is a corresponding configuration γ′i for

which γ′i(h) = damaged, which is directly reachable from γi. However,
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o
Car Car Treatment Repair Service St. Car Delivery

Loc. (l) Health (h) Sched. (t) Sched. (r) Queue (q) Navi. (n) Order (o)

γ0(o) terminal ok empty empty 30% noRoute notExist

γ1(o) terminal ok empty empty 30% route notExist

γ2(o) storage ok empty empty 30% noRoute notExist

γ3(o) storage ok pending empty 30% noRoute created

γ4(o) treatment ok empty empty 30% noRoute created

γ5(o) retailer ok empty empty 30% noRoute created

Table 3.1: Configurations along one execution in the car logistics scenario

the activity at step i is not applicable to configuration γ′i. This is ensured

by the fact that the precondition of each activity includes the formula

¬damageds(h). Therefore, no execution allowed by our process model can

go through such a configuration.

We denote with Exec(M) the set of complete executions that can be

produced by a process model M . Similar to Traces(M), Exec(M) can be

an infinite set if M contains loops.

Two process models M1 and M2 are considered to be the same M1 ≡M2

if they have the same complete executions, i.e., if Exec(M1) = Exec(M2).

3.3.4 Goal Satisfaction

A process model M satisfies a goal statement ψ0 =⇒ (ψ1 � · · · � ψn) if

every complete execution of M is such that if a configuration satisfying ψ0

is reached at some point during the execution, then the last configuration

reached satisfies at least one of the formulas ψ1, . . . , ψn. M satisfies a goal

G if it satisfies all the goal statements in G.

Definition 8 (Goal Satisfaction)

Let O be a set of domain objects, A a set of activities, and G a goal defined

over O. Let M = 〈N,E, l, t, c〉 be a process model defined over O and A.

Let g : ψ0 =⇒ (ψ1 � · · · � ψn) be a goal statement in G, and
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ω = γ0
a1→ γ1 . . . γk−1

ak→ γk a complete execution of M . ω satisfies g iff it

is such that if ψ0 is satisfied in any configuration traversed up to step k,

then γk satisfies at least one of ψ1, . . . , ψn.

M satisfies g if every complete execution of M satisfies g. M satisfies

G if it satisfies every goal statement g ∈ G.

In case a complete execution is such that at some step i < k, the ac-

tivity ai was not applied to configuration γi−1, but to a directly reachable

configuration γ′i−1, then not only γi−1, but also γ′i−1 counts as a traversed

configuration. Therefore, if γ′i−1 satisfies ψ0, then the last configuration γk

in the execution must satisfy at least one of ψ1, . . . , ψn.

Example Our process model M from Figure 3.5 satisfies the goal G1

introduced in Section 3.2.2. We recall that G1 contains one goal statement

> =⇒ oks(h) ∧ retailers(l). For every complete execution of M , all of

the configurations reached during the execution satisfy >. Then, since

configurations along different executions differ only in terms of the value

associated to the object Service Station Queue (q), the last configuration

in every complete execution will have the same values as γ5 in Table 3.1,

except for the value for q. Therefore, every last configuration satisfies

oks(h) ∧ retailers(l).

3.4 Adaptation Concepts

Process instances can be adapted structurally while they are running: ac-

tivities can be added or removed, or they can be re-executed. Such adap-

tations occur ad-hoc, in order to deal with unexpected situations or ex-

ceptions. Moreover, the adaptation of one process instance does not affect

other (currently running or new) process instances.

We start from the premise that adaptation is triggered by the violation
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of a design-time assumption, e.g., a constraint is violated, or a goal can-

not be satisfied. Based on this premise, plugging an adaptation into the

process model in the evolution phase results in an enhancement of the pro-

cess model. This in turn allows us to plug into the process model several

adaptations at the same time. If plugging an adaptation could result in a

contraction of the model, other adaptations referring to the deleted parts

would no longer be applicable. Note that adaptations can also contain

design-time assumptions, which, if violated, will trigger re-adaptations.

A second premise is that adaptation is performed in order to reach

the goal. Based on this second premise, in the evolution phase we know,

without having to reason on the domain, that there is at least one situation

for which an instance adaptation can be plugged into the process model,

such that the resulting process model satisfies the goal. This is important

in case each adaptation must be plugged-in only for a particular situation,

since it allows us to obtain the updated model more efficiently, without

any verification.

These two premises are more restrictive then that of existing process

evolution approaches (e.g.,[47, 53, 87]), where adaptation can occur with-

out the violation of a constraint, as a result of human intervention, and

there are no domain-level restrictions on the adaptations that can be per-

formed.

3.4.1 Adaptation Operation

Given a process modelM , we consider a single generic adaptation operation

tailored for instance adaptations:

adapt(Ma, from, to)

Here, Ma is a process model, and from, to are nodes in M . This operation

allows to interrupt the execution of M after having completed from, and
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execute a different modelMa. After executingMa, the control is given back

to M and execution is resumed from to. If to has already been executed,

the operation is a jump back. In case it has not been executed, if from and

to are connected directly, the operation is a simple insertion, otherwise a

jump forward.

Definition 9 (Adaptation)

Let O be a set of domain objects, A a set of activities defined over O, and

M = 〈N,E, l, t, c〉 a process model defined over O and A. An adaptation

of M is an operation ∆ = adapt(Ma, from, to), such that:

• Ma = 〈Na, Ea, la, ta, ca〉 is a process model defined over O and A, for

which N ∩Na = ∅;

• from, to ∈ N ;

• to is not part of an AND-block.

Without loss of generality, we consider that adaptations cannot contain

nodes from the main model, and, to prevent deadlocks, that jumping in a

parallel branch is not possible. An equivalent adaptation satisfying these

conditions can always be constructed by duplicating relevant nodes.

An adaptation operation cannot be applied arbitrarily to the process

model M . In particular, an adaptation operation is applicable to a partic-

ular partial execution ω of M only if from is the last completed node in

the execution ω, there is an execution of Ma starting from the last con-

figuration in ω, and any resulting complete execution satisfies the goal of

process model M .

Definition 10 (Adaptation Applicability)

Let M = 〈N,E, l, t, c〉 a process model and G a goal such that M satisfies

G. Let ω = γ0
a1→ γ1 . . . γi−1

ai→ γi be a partial execution of M , and ∆ =
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adapt(Ma, from, to) an adaptation of M . We say that ∆ is applicable to

M on ω iff:

• l(from) = ai;

• there exists at least one execution of Ma starting from γi,

γi
ai+1→ γi+1 . . . γj−1

aj→ γj, j ≥ i;

• any complete execution γ0
a1→ γ1 . . . γj

aj+1→ γj+1 . . . γk−1
ak→ γk, k > j,

where aj+1 = l(to) and aj+1, . . . , ak are activities in M , satisfies G.

We represent adaptation as a single operation rather then using change

patterns as proposed by Weber et al. in [116], to emphasize that it is a

solution to an exceptional situation encountered during the execution of

a process instance. If it were represented as multiple change operations,

the meaning of an adaptation as an indivisible solution would be lost. As

a solution to an exceptional situation, the adaptation is always performed

at the point of failure and corresponds to a one-time change, i.e., if from

is reached again, Ma is not re-executed (in [116], this is modeled as a

temporary instance change design choice). Finally, an adaptation can be

applicable to multiple executions of the same process model, in different

configurations, and therefore does not include the cause.

3.4.2 Adapted Traces and Executions

We can now generalize our definitions of traces and executions to cover

adapted process instances. Traces of adapted instances are traces which

reflect not only the order in which activities from a process model M

were executed, but also the order in which adaptation operations were

applied to M and the execution order of the activities in the process models

corresponding to these adaptations.
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Definition 11 (Adapted Trace)

Let O be a set of domain objects, A a set of activities defined over O,

and M = 〈N,E, l, t, c〉 a process model defined over O and A. Let σ =

∆1, . . . ,∆n be a sequence of adaptations of M such that ∀i, 1 ≤ i ≤ n,∆i =

adapt(Ma
i , from i, toi), and Ma

i = 〈Na
i , E

a
i , l

a
i , t

a
i , c

a
i 〉 is a process model de-

fined over O and A.

A trace π on M adapted by σ is a sequence 〈a1, . . . , ak〉, such that ∀j, 1 ≤
j ≤ k, aj ∈ A, and ∃nj ∈ N ∪

⋃
1≤i≤nN

a
i , such that l(nj) = aj, with

t(n1) = Start. The order of aj in π reflects the temporal order in which

adaptations from σ were applied, and activities from M , Ma
1 , . . . ,M

a
n were

completed. Activities can occur multiple times due to loops and duplicate

nodes. A trace is complete if t(nk) = End, and is partial otherwise.

Similarly, the execution of an adapted process instance reflects not only

the order in which activities from M and configurations were traversed,

but also the order in which adaptations were applied and executed.

Definition 12 (Adapted Execution)

Let M = 〈N,E, l, t, c〉 be a process model and σ = ∆1, . . . ,∆n a sequence

of adaptations of M .

An execution ω of M adapted by σ is an alternating sequence of config-

urations and activities represented as γ0
a1→ γ1 . . . γk−1

ak→ γk, where:

• a1, . . . , ak ∈ A, and 〈a1, . . . , ak〉 is a trace on M adapted by σ,

• γ0, . . . , γk are configurations of O, with γ0 an initial configuration,

• there exist 0 ≤ j1 < . . . < jn ≤ k, such that if ωi is the prefix of ω up

to step ji, 1 ≤ i ≤ n, then:

– ω1 is an execution of M , and

– ∀i, 1 ≤ i ≤ n, ∆i is applicable to M on ωi.
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(a) Schedule repair

(b) Repair temporarily

Figure 3.6: Adaptation operations

An execution is complete if the trace 〈a1, . . . , ak〉 is complete, and partial

otherwise.

The definition of adapted executions only specifies that adaptations were

applied at some point during the execution, and does not require adapta-

tions to be completely executed once they are applied. In fact, the execu-

tion of an adaptation model can be interrupted by the application of the

next adaptation. This is due to the fact that adaptations models can also

contain constraints, which, if violated, trigger re-adaptation.
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Example Let M be the process model from Figure 3.5, and consider

the adaptations in Figure 3.6. The first adaptation, Schedule repair, is

applicable to M on execution ω1 = γ0
Show route to storage→ γ1.

Similarly, Repair temporarily is applicable to M on execution

ω2 = γ0
Show route to storage→ γ1

At storage→ γ2.

Consider now the execution of M adapted by Schedule repair, ω3 =

γ0
Show route to storage→ γ1

Assess damage→ γ2
At storage→ γ3. Repair temporarily is ap-

plicable to M also on ω3, which correspondsto the case when the constraint

that the car should not be damaged is violated a second time.

3.5 Discussion

In this Chapter, we presented a framework designed to support the exe-

cution, adaptation, and evolution of process-based applications. We also

introduced a formal model suitable for representing a process-based appli-

cation. This model includes a formal representation of the business logic

and the domain knowledge, as well as the relation between the business

logic and the domain knowledge. In [103], we used a variation of this for-

mal model for composing overlapping process fragments described in APFL

(Adaptable Pervasive Flow Language), an extension of WS-BPEL [2]. In

[13], we used this formal model to outline a method for analysing adapted

process instances, for which we proposed different evolution strategies.

Our formal model was inspired by several approaches dealing with ser-

vice composition presented in [10, 43, 12]. In particular, for domain objects

we used the same representation as the one used for object diagrams in

[43], and context property diagrams in [12]. For annotating processes, our

approach is based on the formalisms used in [12] and [103], which allow

(without enforcing) each activity to be annotated with precondition and

effects, where the precondition is a set of allowed configurations (which we
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expressed as boolean formulas) and the effects are sets of events.

Our definition of process goals is based on the composition requirements

defined in [10, 43]. The composition requirements in [10] allow formulas

to contain also propositions referring to events in the object diagrams; in

[43] these composition requirements are further enhanced with a try-catch

construct, which allows to define additional reactions in case of failure.

In our formal model, we used a restricted version of these composition

requirements, in which goals to refer only to states in the domain objects.

The reason is that while the requirements in [10, 43] are used for compos-

ing services which interact with one another and with the user, we used

the goals to verify properties of process models. Our setting is therefore

much more static, where we would rather leave it up to the process designer

or adaptation mechanism to specify how to react to exceptions or failure,

and specify instead only what properties the process tries to achieve or

maintain. However, since we use the same representation for our domain

objects as the object diagrams in [43], our goal language and the goal satis-

faction criteria could in principle be extended to cover the full composition

requirements in [43].

For modeling processes, we used a graph-based representation which

allows to capture basic control-flow patterns supported by most of the

process management systems [109]. Since our notions of goal satisfaction,

adaptation, and evolutionary correction (discussed in Chapter 4) are based

on the notions of trace and execution, the set of control-flow patterns

allowed for modeling processes can easily be extended. This will affect the

definitions of trace and execution, but not the goal satisfaction, adaptation,

and correction.
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Chapter 4

Corrective Evolution

In this Chapter, we define the corrective evolution problem and discuss the

challenges involved in solving this problem automatically.

With corrective evolution, the idea is to integrate several adaptations

into a process model at the same time, and ensure that the resulting pro-

cess models continue to satisfy the goal of the original process model. Since

each adaptation must be plugged in at a certain point in the process model

and for a certain condition, we first group the adaptation, plug-in point,

and condition into a new concept called correction. We then define the

corrective evolution problem as the problem of iteratively correcting a pro-

cess model with n corrections, such that the final process model satisfies

the original goal.

4.1 Corrections

To integrate a process instance adaptation into a process model, we need

to specify the point in the process model where the adaptation must be

plugged in, and the condition under which it must be plugged in. While

there is some freedom in choosing these plug-in points and conditions,

they cannot be arbitrary. In this Section, we first discuss the restrictions

on the possible plug-in points and conditions for an adaptation. We then
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introduce the concept of a correction, which gives us a convenient way to

group the adaptation to be integrated in the process model, together with

the plug-in point and condition. Finally, we discuss the effects of applying

one correction to a process model in terms of resulting executions.

4.1.1 Adaptation Plug-in Point and Condition

When integrating an instance adaptation into a process model, the point

where the adaptation must be plugged in and the condition under which

it must be plugged in do not need to correspond exactly to the process

instance or instances that were adapted. The basic idea is that we want

to allow as much freedom as possible for selecting the plug-in point and

condition. However, neither the plug-in point nor the condition can be

arbitrary, they must satisfy some minimal restrictions for the insertion of

the adaptation in the process model to be possible. These minimal restric-

tions are that the adaptation must be applicable on any partial execution

of the process model which leads to the plug-in point, and which is such

that the last configuration (or a configuration directly reachable from the

last) satisfies the condition.

We consider that the plug-in point is specified as a set of traces, and

that the plug-in condition selects from the executions possible along these

traces only executions for which the instance adaptation is applicable. For

a process model M and an adaptation of M , ∆ = adapt(Ma, from, to),

the minimum restriction for the plug-in point is that for each trace to the

plug-in point, the last activity in the trace corresponds to the from node

in the adaptation.

Example Consider the process model M from Section 3.2.3, and the Re-

pair temporarily adaptation introduced in Section 3.4. The from node

for Repair temporarily is the node in M labeled with activity At storage.
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Therefore, the plug-in points for Repair temporarily are given by traces or

combination of traces which end with activity At storage. The simplest

plug-in point is given by the trace π1 = 〈Show route to storage,At storage〉.
However, if applied to M on π1, Repair temporarily introduces a new

trace which also finishes with At storage. This trace is: π2 = 〈Show route

to storage,At storage,Temp assess damage,Temp fix damages , Show

route to storage,At storage〉. Therefore, a different point where Repair

temporarily can be plugged in M is after both traces π1 and π2. Because of

the jump back realized by Repair temporarily, there are in fact an infinity

of points where the adaptation could be plugged in the process model M .

Given a plug-in point, there are several restrictions for selecting the

condition:

1. the condition must be possible at the selected plug-in point. There-

fore, at least one configuration reachable at the plug-in point must

satisfy the condition.

2. if the condition holds, then the next steps in the original process

model cannot be executed. In other words, the next activities in the

original model are not applicable in any plug-in point configuration

which satisfies the condition.

3. if the condition holds, the adaptation can be applied. From every plug-

in point configuration which satisfies the condition, there must be at

least one execution of the process model included in the adaptation.

Given a plug-in point, we refer to conditions which satisfy the first two

restrictions as deviating conditions. In other word, given a plug-in point

in the process model, a deviating condition is a condition which is not

accounted for in the process model, for which there is no specification in

the model.
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Definition 13 (Deviating Condition)

Let M be a process model and π = 〈a1, . . . , ak〉 a partial trace of M . Let

ϕ be a boolean expression from Bool(PS). Then ϕ is a deviating condition

for M and π if:

• there exists an execution of M ω = γ0
a1→ γ1 . . . γk−1

ak→ γk such that

γϕ |= ϕ and γϕ is directly reachable from γk. Let Ω be the set of all

such executions.

• for every execution ω ∈ Ω, no next activity in M is applicable to γϕ.

ϕ is a deviating condition for M and an activity node n of M if it is a

deviating condition for M and every trace of M leading to n.

If a deviating condition satisfies also the third restriction, this is a plug-

in condition for applying an adaptation to the process model at the plug-in

point.

Definition 14 (Plug-in Condition)

Let M be a process model and ∆ = adapt(Ma, from, to) an adaptation of

M . Let π = 〈a1, . . . , ak〉 be a partial trace of M , with ak = l(from). Let ϕ

be a boolean expression from Bool(PS). Then ϕ is a plug-in condition for

applying ∆ to M on π if:

• ϕ is a deviating condition for M and π;

• for every execution ω = γ0
a1→ γ1 . . . γk−1

ak→ γk of M such that γϕ |= ϕ

and γϕ is directly reachable from γk, ∆ is applicable to M on ω.

Example Consider again the process model M from Section 3.2.3, and

the Repair temporarily adaptation from Section 3.4. Our plug-in point is

given by the trace π1 = 〈Show route to storage,At storage〉. The configu-

rations γ reached after executing the activities in π1 are such that γ(l) =
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storage, γ(h) = ok, γ(t) = empty, γ(r) = empty, γ(r) = noRoute, γ(o) =

notExist, and γ(q) ∈ {empty, 10%, . . . , 90%, full}.
Assume that for all the process instances for which Repair temporar-

ily has been applied after executing π1, the configurations γ in which

the adaptation was applied are such that γ(h) = damaged and γ(q) ∈
{empty, 10%}. The condition ϕ1 = damageds(h) ∧ (emptys(q) ∨ 10%s(q))

which corresponds to these configurations is a plug-in condition for apply-

ing Repair temporarily to M on π1. The restrictions are satisfied:

• ϕ1 is possible after π1, since there exist executions of M which corre-

spond to π1, ω = γ0
Show route to storage→ γ1

At storage→ γ2, and for which a

configuration γϕ1
directly reachable from γ2 satisfies ϕ1. Let Ω be the

set of such executions.

• for every execution ω ∈ Ω, the next activity Receive delivery order is

not applicable to γϕ1
, since its precondition includes ¬damageds(h).

• Repair temporarily is applicable to every execution ω ∈ Ω:

– there is at least one possible execution

γϕ1

Temp assess damage→ γ′
Temp repair damage→ γ′′, where:

∗ γ′(h) = diagnosed and ∀o ∈ O, o 6= h, γ′(o) = γϕ1
(o),

∗ γ′′(h) = ok , γ′′(l) = treatment , and ∀o ∈ O, o 6∈ {h, l},
γ′′(o) = γϕ1

(o).

– every complete execution ω′ = γ0
Show route to storage→ γ1

At storage→
γ2

Temp assess damage→ γ3
Temp repair damage→ γ4

Show route to storage→ γ5 . . .

satisfies G1.

The plug-in condition can also be more general or more specific than

ϕ1. Some more general conditions for which the restrictions are satisfied

are for example ϕ2 = damageds(h) ∧ (emptys(q) ∨ 10%s(q) ∨ 20%s(q)) or
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ϕ3 = damageds(h). An example of a more specific plug-in condition is

ϕ4 = damageds(h) ∧ emptys(q).
Note that the condition ϕ5 = emptys(q) ∨ 10%s(q), although more gen-

eral than ϕ1, is not a plug-in condition for applying Repair temporarily

to M on π1. This is because the second restriction is not satisfied: the

next activity in M , Receive delivery order, is applicable to configurations

reached after applying π1 which satisfy ϕ5.

Plug-in conditions are not supposed to be created manually. This is

related to the fact that evolution is invoked only after an adaptation op-

eration has been applied multiple times at a certain point during the exe-

cution of process instances. After analysing the adapted process instances

using an approach such as the one proposed by Wetzstein et al. in [122],

we may decide to evolve the process model to include the adaptation at a

particular execution point, for some of the configurations which required

adaptation. For example, we may want to plug-in the adaptation only for

the configurations for which the adaptation has been successful (e.g., the

process instances did not need to be re-adapted).

These selected configurations which required adaptation can be auto-

matically grouped into a formula which constitutes a valid plug-in condi-

tion. To simplify this formula, we can compare the configurations for which

adaptation was necessary with the configurations for which the execution

could be completed regularly. The domain objects which are in the same

states in the configurations of the adapted and regular executions can then

be excluded from the plug-in condition.

4.1.2 Correction Applicability

For each instance adaptation that must be inserted in the process model, we

can now select a plug-in point and a condition according to the restrictions
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described in the previous Section. The combination of adaptation, plug-in

point, and condition is called a correction.

Definition 15 (Correction)

Let M be a process model defined over O and A. A correction C is a tuple

〈ct, π, ϕ,∆〉 such that:

• ct ∈ {strict , relaxed ,with-conditions} is the correction type;

• π is a partial trace on M ;

• ϕ is a boolean expression from Bool(PS);

• ∆ = adapt(Ma, from, to) is an adaptation of M .

We say that C is applicable to M if:

• ϕ is a plug-in condition for applying ∆ to M on π,

• if ct 6= strict, then ϕ is a deviating condition for M and node from.

The point in the process model where the adaptation ∆ must be plugged

in is determined by the correction type ct, the partial trace π, and the node

from. For all correction types, the condition ϕ can occur after the activity

node from, and ∆ should be plugged into the process model after from,

under condition ϕ.

However, the partial traces for which the condition should be evalu-

ated and the adaptation should be applied are different depending on the

corection type ct. If the correction is strict, both condition and adaptation

should be applied only on π. If the correction is relaxed, they should be

applied on all the traces leading to from. Finally, if relaxed with condi-

tions, they should be applied on one or more traces leading to from, but

at least on π.
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Definition 16 (Plug-in Point)

Let M be a process model and C = 〈ct, π, ϕ,∆〉 a correction applicable to

M . Then the plug-in point for C is a set of traces pointC such that:

• if ct = strict, then pointC = {π};

• if ct = relaxed, then pointC is the set of all traces π′ = 〈a1, . . . , ak〉
for which l(from) = ak;

• if ct = with-conditions, then pointC is a subset of all the traces π′ =

〈a1, . . . , ak〉 for which l(from) = ak, and π ∈ pointC.

4.1.3 Correction Effects

Let M be a process model and C = 〈ct, π, ϕ,∆〉 a correction applicable to

M , with ∆ = adapt(Ma, from, to). We denote with Exec(M,C) the set of

complete executions that can be produced by M corrected by C.

In Exec(M,C), we add new complete executions to Exec(M). A new

execution ω in Exec(M,C) corresponds to a process instance for which a

configuration γ satisfying condition ϕ is reached at the plug-in point for

correction C. At this point, the process instance is adapted with ∆, and

our new execution ω proceeds with an execution of the adaptation model

Ma. When the execution of Ma is completed, ω continues from the activity

corresponding to the node to in M and until an end node is reached.

By correcting the process model, the new complete executions do not

replace any existing complete executions of M , and therefore Exec(M) ⊆
Exec(M,C). We prove this property formally.

Lemma 1

Let M be a process model and C a correction applicable to M . Then

Exec(M) ⊆ Exec(M,C).
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Proof. We assume there exists a complete execution ω ∈ Exec(M) such

that ω 6∈ Exec(M,C). Since in Exec(M,C) we are adding executions to

Exec(M), this can happen only if ω is overwritten by an execution ω′.

Assume C = 〈ct, π, ϕ,∆〉. For ω to be overwritten, the plug-in point

of C must be reached in ω. Therefore, there exists a partial trace π′ =

〈a1, . . . , ak〉 in pointC such that:

• ω = γ0
a1→ γ1 . . . γk−1

ak→ γk
ak+1→ . . .

• and there exists a configuration γϕ directly reachable from γk such

that γϕ |= ϕ and ak+1 is applicable in γϕ.

If ct = strict, then π′ = π and ϕ is a plug-in condition for applying ∆

to M on π. With Definition 14, this means that for our execution ω no

next activities in M are applicable to γϕ.

If ct 6= strict, then ϕ is a deviating condition for M and π′. With

Definition 13, also in this case ω is such that no next activities in M are

applicable to γϕ.

Since there cannot be an activity ak+1 which is applicable in γϕ, this

means that ω cannot be overwritten. �

With corrective evolution, we are interested in retrieving the process

model which corresponds to Exec(M,C), i.e., a process model M ′ such

that Exec(M ′) = Exec(M,C). It can be the case that a process model M ′

which also satisfies the goal of process model M does not exist. However,

there is always a process model M ′ such that Exec(M ′) = Exec(M,C).

Lemma 2 (Existence of a corrected process model)

Given a process model M and a correction C applicable to M , there exists

at least one process model M ′ such that Exec(M ′) = Exec(M,C).

Proof. By construction.
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Assume C = 〈ct, π, ϕ,∆〉, with ∆ = adapt(Ma, from, to). If ct = strict,

then we can obtain a process model M ′ by first unfolding M up to and in-

cluding the node from. We then insert an XorSplit node after the sequence

corresponding to trace π. We connect the XorSplit to the initial node in

Ma, and add ϕ as condition on the control edge. We also connect the

XorSplit to the node which was following in the unfolded M the sequence

corresponding to π. We duplicate the fragment in M starting with node

to, and connect this duplicated fragment to the end node(s) of Ma.

If ct = relaxed, we can obtain a process model M ′ by first inserting an

XorSplit node in M after the node from. We connect the XorSplit to the

initial node in Ma, and add ϕ as condition on the control edge. We also

connect the XorSplit to the node which followed from in M (since from

is an activity node, there is exactly one following node in M). We then

connect the end node(s) of Ma to the node from.

If ct = with-conditions, then there exists at least one process model

which corresponds to Exec(M,C), and this is the process model obtained

with C as a strict correction.

Therefore, a process model M ′ which corresponds to Exec(M,C) can

always be constructed from M , by duplicating nodes. �

4.2 Corrective Evolution Problem

In this Section, we consider the problem of correcting a process model with

n corrections. We first discuss what is a valid ordering of a set of correc-

tions, and then define the corrective evolution problem as the problem of

iteratively correcting a process model with a sequence of n corrections.

We examine general properties of a solution to the problem, and explain

why the corrective evolution problem is more general then the problem of

correcting a process model with only one correction. Finally, we discuss
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the challenges involved in solving the problem.

4.2.1 Ordering Corrections

Given a process model M and two corrections C1 = 〈ct1, π1, ϕ1,∆1〉 and

C2 = 〈ct2, π2, ϕ2,∆2〉, we consider that C2 is dependent on C1 in two cases.

The first case is if the from2 node in the adaptation ∆2 is not a node of the

original process model M , and is a node of the adaptation process model

Ma
1 in ∆1. In this case, ∆2 must be applied if ∆1 fails at some point. The

second case is if the trace π2 is not a trace possible on the original model

M , and is instead a trace of M corrected by C1. In this case, ∆2 must be

applied only if ∆1 has been applied first.

With corrective evolution, we want to be able to apply several correc-

tions to a process model at the same time. Since there can be dependencies

between corrections, it is important to establish a valid ordering. A valid

ordering of a set of corrections must respect the dependencies between cor-

rections, i.e., if C2 is dependent on C1, then C1 must appear before C2 in

the sequence. Given a set of corrections C1, . . . , Cn to be applied to a pro-

cess model M , such that for every Ci, 1 ≤ i ≤ n, if Ci is dependent on Cj,

then Cj ∈ {C1, . . . , Cn}\{Ci}, there exists at least one valid ordering. The

reason is that there cannot be circular dependencies between corrections.

In the following, we prove this property formally.

Lemma 3 (No circular dependencies)

Let M be a process model and C1, . . . , Cn a set of corrections such that C1

is applicable to M and, for all 1 ≤ i < n, Ci+1 is dependent on Ci. Then

for all i, j, 1 ≤ i < j ≤ n, Ci is not dependent on Cj.

Proof. We assume that Ci is dependent on Cj. There are three cases. The

first case is if Ci depends on Cj in that πi is possible only on the process
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model corrected by C1, . . . , Cj. In this case, πi would have to involve also

correction Ci and pass Ma
i , which is not possible.

The second case is if Ci is such that node from i is from the adaptation

model Ma
j in Cj, and fromj in Cj is from Ma

i . While there can be a chain of

dependent corrections such that the from node in each correction is a node

in a previous correction, to be applied to M , there must be one correction

in this chain which is the start of the chain and which is directly applicable

to M . This is not possible for Ci and Cj, since they link to one another.

The last case is if the node from i in Ci is from Ma
j in Cj, and in Cj,

the trace πj is possible only on the process model corrected by C1, . . . , Ci.

This case is symmetrical to the first. In this case, Cj would have to involve

itself, which is not possible.

Since we derived a contradiction in each of the three cases, it is impos-

sible that Ci is dependent on Cj. �

4.2.2 Problem Definition

Starting from a process model which satisfies a goal, the corrective evolu-

tion problem is to apply a sequence of corrections to this process model,

such that the resulting process model satisfies the original goal.

Definition 17 (Corrective evolution problem)

Let M0 be a process model and G a goal such that M0 satisfies G. Let

C1, . . . , Cn be a sequence of corrections, such that ∀i, 1 ≤ i ≤ n:

• Ci = 〈cti, πi, ϕi,∆i〉, ∆i = adapt(Ma
i , from i, toi), and toi is a node

from M0;

• Ci is applicable to Mi−1, and Mi is a process model such that

Exec(Mi) = Exec(Mi−1, Ci).

The corrective evolution problem is to find a process model Mn such that

Mn satisfies G.
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Without loss of generality, we assume that every adaptation returns the

control to M0 (i.e., toi is a node from M0). If an adaptation ∆2 were to

return the control to a previous adaptation ∆1, we can obtain an equivalent

adaptation ∆′2 by duplicating the relevant nodes from ∆1.

Example We can now formalize the inputs to the corrective evolution

problem in our car logistics scenario:

• process model M from Section 3.2.3 satisfying the goal G1 from Sec-

tion 3.2.2;

• correction C1 = 〈strict, π1, ϕ1,∆1〉 where:

– π1 = 〈Show route to storage〉,

– ϕ1 = damageds(h) ∧ (40%s(q) ∨ . . . ∨ fulls(q)),

– ∆1 is the Schedule repair adaptation in Section 3.4;

• correction C2 = 〈strict, π2, ϕ2,∆2〉 where:

– π2 = 〈Show route to storage, Assess damage,At storage〉,

– ϕ2 = damageds(h) ∧ (emptys(q) ∨ . . . ∨ 70%s(q)),

– ∆2 is the Repair temporarily adaptation in Section 3.4.

4.2.3 Solution Properties

The solution to a corrective evolution problem Mn is an enhancement of the

process model M0, i.e., every complete execution of M0 is also a complete

execution of Mn. This property follows directly from Lemma 1.

Then, for every correction Ci = 〈cti, πi, ϕi,∆i〉, there are two possibili-

ties:
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• if Ci is applicable to M0, then Mn can replay all the executions that

would result by applying Ci to M0. Note that if Ci is applicable to

M0, then it is also applicable to M0 corrected by C1, . . . , Ci−1, i.e., to

Mi−1.

• Ci is not applicable to M0, but it is applicable to M0 corrected by

Cj0, . . . , Cjk, where 1 ≤ j0 < . . . < jk < i. This is the case when Ci

is dependent on Cj0, . . . , Cjk. Then Mn can replay all the executions

that would result by applying Ci to M0 corrected by Cj0, . . . , Cjk.

If we apply only strict corrections, any resulting process model must

satisfy the goal G. This property follows directly from the restrictions on

the plug-in point and condition for each adaptation. We now prove this

property formally.

Lemma 4 (Strict corrections do not affect goal satisfaction)

Assume a corrective evolution problem defined by a process model M0, a goal

G, and a sequence of corrections C1, . . . , Cn, such that for all i, 1 ≤ i ≤ n,

Ci = 〈strict, πi, ϕi,∆i〉. If for all i, 1 ≤ i ≤ n, Mi is any process model

such that Exec(Mi) = Exec(Mi−1, Ci), then Mn satisfies G.

Proof. The proof goes by induction.

base case. M0 satisfies G.

inductive step. We assume Mn−1 satisfies G. From Lemma 1, we know

that Exec(Mn−1) ⊆ Exec(Mn). Therefore, every complete execution of

Mn which is also a complete execution of Mn−1 satisfies G. (1)

Let ω be a complete execution of Mn which is not a complete execution

of Mn−1. This can only be the case if the adaptation ∆n has been applied.

From Definition 15, ϕn is a plug-in condition for applying ∆n to Mn−1 on

πn. With Definition 14, this means that ∆n is applicable to every partial
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execution of Mn−1 which corresponds to πn and reaches a configuration

satisfying ϕn.

Assume πn = 〈a1, . . . , ai〉. Then, ω = γ0
a1→ γ1 . . . γi−1

ai→ γi
ai+1→

γi+1 . . . γj−1
aj→ γj

aj+1→ γj+1 . . . γk−1
ak→ γk, where:

• the prefix of ω, ω′ = γ0
a1→ γ1 . . . γi−1

ai→ γi, is a partial execution of

Mn−1 and either γi |= ϕn or there exists a configuration γ directly

reachable from γi, and γ |= ϕn;

• γi
ai+1→ γi+1 . . . γj−1

aj→ γj is an execution of Ma
n ;

• aj+1, . . . , ak are activities in Mn−1 and aj+1 = l(ton).

∆n is applicable to Mn−1 on ω′. From Definition 10, any complete

execution which results from applying ∆n to Mn−1 on ω′ satisfies G. Since

ω is such an execution, ω satisfies G. (2)

From (1) and (2), we have that every execution of Mn satisfies G. There-

fore, Mn satisfies G. �

4.2.4 Multiple Corrections at Once vs. One at a Time

The corrective evolution problem involves applying a sequence of n correc-

tions to a process model. By formulating the problem as the application

of n corrections, rather then only one correction, we are addressing a more

general problem.

If all corrections are strict, there is no difference between solving the

corrective evolution problem and applying one correction at a time. How-

ever, if at least one of the corrections is relaxed or relaxed with conditions,

the corrective evolution problem becomes more general, in the sense that it

can be the case that more solutions are found when solving the corrective

evolution problem than when applying one correction at a time.
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The main reason is that we check that the evolved process model satisfies

the goal only after applying all n corrections. If applying one correction

at a time, we would have to ensure that each intermediary process model

satisfies the goal. Moreover, by applying n corrections, the set of traces

on which a relaxed correction should be applied changes depending on the

other corrections in the sequence. Similarly, the set of traces on which a

relaxed correction with conditions can be applied depends on the other

corrections.

To clarify why the problem of applying n corrections is more general,

we present a high-level example in which more solutions are found when

solving the corrective evolution problem. The reason for finding more

solutions will be that when solving a corrective evolution problem, the

traces on which a relaxed correction with conditions can be applied depend

on other corrections.

Example We consider the corrective evolution problem defined by a pro-

cess model M0, an empty goal, and two corrections, a relaxed correction

with conditions C1 = 〈with-conditions, π1, ϕ1,∆1〉, and a relaxed correc-

tion C2 = 〈relaxed, π2, ϕ2,∆2〉. The plug-in point for C1 consists of only

one partial trace of M0, π1. ϕ1 is a plug-in condition for applying ∆1 on

π1, and we obtain the process model M1. C2 is such that the adaptation

∆2 = adapt(Ma
2 , from2, to2) performs a backward jump, with the node to2

appearing in M0 before the plug-in point for C1. By applying C2 to M1,

we introduce a loop in the process model, and there will be an infinity of

traces leading to the plug-in point of C2.

If the corrections are applied one at a time, then we will have one solu-

tion, the process model M2 obtained by applying C2 to M1. If corrections

are applied as a corrective evolution problem, M2 is one solution. However,

since C2 introduces traces which lead to the plug-in point of C1, C1 can
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be applied also to these traces. Therefore, there will be at least one other

process model M ′
2 which is a solution to the problem, and in which C1 has

been applied also on the traces introduced by C2 with the loop.

4.3 Discussion

In this Chapter, we have defined the corrective evolution problem as the

application of a sequence of corrections to a process model. Solving a

corrective evolution problem automatically poses several challenges. The

challenges depend on whether all corrections are strict, they are all either

strict or relaxed, or there is at least one correction which is relaxed with

conditions. Since each type of problem introduces new challenges with

respect to the previous (less general) type, we consider each type of problem

separately.

If all corrections are strict, a solution to the problem can be constructed

naively, by unfolding the original process model up to the plug-in point,

adding the adaptation, and duplicating the fragment in the original process

model starting from the node to in the adaptation and until the end node.

This naive method has been used in the proof of Lemma 2. However, such

a naively constructed solution will have many duplicated nodes, which are

created both when unfolding the process model and when duplicating the

fragment. Therefore, the challenge here is to automatically find a solution

which contains as few duplicated nodes as possible.

If the corrections are all either strict or relaxed, finding a solution to the

problem is no longer trivial. While constructing a corrected process model

is relatively simple (as discussed in the proof of Lemma 2), this process

model does not necessarily satisfy the goal of the original process model.

Therefore, this case adds a new challenge, which is to automatically verify

that every execution of the corrected process model satisfies the goal.
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Finally, if any correction in the sequence of corrections given as input is

relaxed with conditions, not only finding a solution is not trivial, but also

constructing a corrected process model becomes not trivial. The reason

is that the corrective evolution problem becomes a search problem. For

each relaxed correction with conditions, we must search for the partial

traces on which the corresponding adaptation can be applied, such that,

by applying the other corrections, we can obtain a process model which

satisfies the goal. Testing each partial trace individually is not an option,

since there may be an infinite set of such partial traces.

Another issue which makes designing a search strategy difficult is the

fact that corrections themselves introduce traces, and therefore the set of

traces on which a correction which is relaxed or relaxed with conditions can

be applied is not fixed, and depends on the other corrections. In fact, the

problem gets significantly more complex if there is more than one relaxed

correction with conditions, due to the combinatorial explosion. Therefore,

a first new challenge in this third case is to understand how to group the

partial traces, such that the number of tests to be performed is finite. The

second challenge is to design search techniques which can deal efficiently

with the combinatorial explosion due to multiple relaxed corrections with

conditions.
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Chapter 5

Encoding into State Transition

Systems

Solving a corrective evolution problem involves constructing a synthesis of

a process model with a sequence of adaptations, such that the synthesis

complies with a set of domain object specifications and satisfies a goal.

This synthesis is further constrained by the restrictions associated with

each adaptation, which are specified as a plug-in point and a condition.

In order to generate this synthesis automatically, we encode each ele-

ment of a corrective evolution problem as a labeled state transition system

(STS). Each STS will be a compact representation of the behaviors of the

corresponding element. We combine these STSs into a parallel STS which

represents all the possible behaviors of the component STSs. This paral-

lel STS can then be used to obtain the required synthesis. In particular,

we may need to first restrict the behaviors of the parallel STS in order

to comply to the given specifications. The result will be also an STS,

which can afterwards be translated back to a process model. As we will

show in Chapter 6 and Chapter 7, different techniques should be applied

to the parallel STS to obtain the synthesis, depending on how restrictive

the corrective evolution problem is.

In the following, we start by introducing some basic notions relative to
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STSs, followed by the encoding of each element in the corrective evolu-

tion problem: process models, adaptations, partial traces, domain objects,

conditions, and goals.

5.1 Basic STS Notions

An STS contains a set of states, some of which are marked as initial and/or

accepting. Each state is labeled with a set of properties that hold in that

state. The STS can move to new states as a result of performing actions.

Actions are either input (controllable) or output (not controllable). The

conditions under which an action can be performed and the effects of per-

forming the action are defined by the transition relation.

Definition 18 (STS)

Let P be a set of propositions and Bool(P) the set of boolean expressions

over P. A state transition system Σ is a tuple
〈
S,S0, I,O,R,SF ,F

〉
,

where

• S is the set of states,

• S0 ⊆ S is the set of initial states,

• I and O are the input and respectively output actions,

• R ⊆ S ×Bool(P)× (I ∪ O)× S is the transition relation,

• SF ⊆ S is the set of accepting states,

• F : S → 2P is the labeling function.

The labeling function F determines if a boolean expression b ∈ Bool(P)

holds in a particular state s. We write s,F |= b to denote that boolean

expression b is satisfied at state s given F . Satisfiability of a formula is

determined according to the standard inductive rules:

90



5.1. BASIC STS NOTIONS

• s,F |= >;

• s,F |= p, iff p ∈ F(s);

• s,F |= ¬b, iff s,F 6|= b;

• s,F |= b1 ∨ b2, iff s,F |= b1 or s,F |= b2.

The transitions in the STS are guarded: a transition (s, b, a, s′) is possi-

ble in state s only if the guard expression b is satisfied in that state, i.e., if

s,F |= b. We say that an action a ∈ I ∪O is applicable in a state s ∈ S if

there exists a state s′ ∈ S such that (s, b, a, s′) ∈ R and s,F |= b. A state

s is final if no action is applicable in s, i.e., there is no transition leaving s.

The behavior of an STS is represented by its set of possible runs. A run

is an alternating sequence of states and actions s0, a0, s1, a1, . . . such that

s0 ∈ S0 and (si, bi, ai, si+1) ∈ R. In general, runs may be finite or infinite.

A run is said to be complete if it is finite and its last state is accepting.

If σ = s0, a0, s1, a1, . . . is a run of the STS, the sequence of actions

a0, a1, . . . is called a trace. A trace is complete if it corresponds to a com-

plete run. The projection of a run σ = s0, a0, s1, a1, . . . on a set of actions

A ⊆ I ∪ O is an ordered sequence a′0, . . . , a
′
m, representing the actions in

σ which are also in A. We denote the projection of σ on A with
∏

A(σ).

The parallel product of two STSs specifies that the two STSs move con-

currently on common actions, and independently if there are no common

actions.

Definition 19 (Parallel Product)

Let Σ1 = 〈S1,S0
1 , I1,O1,R1,SF1 , F1〉 and Σ2 =

〈
S2,S0

2 , I2,O2,R2,SF2 ,F2

〉
be two STSs. The parallel product Σ1‖Σ2 is defined as〈

S1 × S2,S0
1 × S0

2 , I1 ∪ I2,O1 ∪ O2,R1‖R2,SF1 × SF2 ,F1‖F2

〉
where (F1‖F2)(s1, s2) = F1(s1) ∪ F2(s2) and
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• 〈(s1, s2), b1 ∧ b2, a, (s
′
1, s
′
2)〉 ∈ (R1‖R2) if 〈s1, b1, a, s

′
1〉 ∈ R1 and

〈s2, b2, a, s
′
2〉 ∈ R2;

• 〈(s1, s2), b1, a1, (s
′
1, s2)〉 ∈ (R1‖R2) if 〈s1, b1, a1, s

′
1〉 ∈ R1 and

∀ 〈s2, b2, a2, s
′
2〉 ∈ R2, a1 6= a2;

• 〈(s1, s2), b2, a2, (s1, s
′
2)〉 ∈ (R1‖R2) if 〈s2, b2, a2, s

′
2〉 ∈ R2 and

∀ 〈s1, b1, a1, s
′
1〉 ∈ R1, a1 6= a2.

5.2 Encoding the Process Models

To transform a process model into an STS, we recursively translate its ba-

sic constructs. We encode the constructs using input and output actions,

depending on whether the inclusion of an element can be controlled while

performing the synthesis of the process model with the sequence of adap-

tations. Input actions correspond to elements that can be controlled in the

synthesis, such as activity nodes and control connectors. Output actions

correspond to elements that cannot be controlled by the synthesis, such as

the branching conditions which follow an XorSplit. The idea is that once

the XorSplit is included in the synthesis, all its branches must be included.

In this sense, it is not under the control of the synthesis whether to include

the branch or not.

Note that this encoding as input/output actions is different from the

encoding proposed in service composition approaches such as [10, 76]. With

service composition, the purpose is not to integrate the services, but to

orchestrate them using an external controller. In that setting, actions are

considered to be input (output) if they are controllable (non-controllable)

by the external orchestrator.

Table 5.1 contains the process model elements and their recursive trans-

lation to STS. We denote with α the generic process model element. Fur-
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Process model element STS transitions

activity node

n ∈ NA, l(n) = 〈a, pre, eff 〉
(sb, pre, ?a, se)

sequence sb
α1−→ s′, s′

α2−→ se

XorSplit

(sb,>, ?xor, s0)

(s0, cond, !case, s1)

(s0,¬cond, !otherwise, s2)

s1
α1−→ se, s2

α2−→ s′e

XorJoin sb
α1−→ se, s

′
b
α2−→ se

And-block

(sb,>, ?and, s0)

(s0,>, !order1, s1)

(s0,>, !order2, s2)

s1
α1−→ s′1, s

′
1
α2−→ se

s2
α2−→ s′2, s

′
2
α1−→ se

Table 5.1: Encoding process model elements as STSs

ther, we denote the start state of the element with sb, and the end states

with se and s′e. With sb
α−→ se we denote the recursive translation of α. To

differentiate between input and output actions, we prepend the names with

?, respectively !. Note that for the And-block, Table 5.1 shows the trans-

formation rules for the case when each branch contains only one activity

node; a generic And-block will result in an STS allowing every possible

interleaving combination of the activities in its branches.

Given a process model M = 〈N,E, l, t, c〉, we first perform a pre-

93



CHAPTER 5. ENCODING INTO STATE TRANSITION SYSTEMS

processing step on M . In this step, XorSplit nodes which are connected di-

rectly are merged into a single XorSplit node with multiple branches. This

is just to ensure that there is at most one condition between any two con-

secutive activity nodes in M . We then construct an STS ΣM = 〈S,S0, I,
O,R,SF ,F〉 by applying the translation rules in Table 5.1.

Every activity and control connector will have a corresponding input

action in I. Further, each node in M , whether activity node or control

connector, will have at least one corresponding transition in ΣM . Output

actions do not have corresponding activities or nodes, see for example the

encoding of the branching conditions.

Activity preconditions are copied as transition guards in ΣM . In contrast

to preconditions, the effects of activities are not captured in ΣM . The

information encoded in the effects will be used later on, when transforming

the domain objects to STSs.

We label each state in ΣM with a new proposition corresponding to this

state, i.e., ∀si ∈ S,F(si) = {si(M)}. However, we do not label the states

with propositions referring to domain object states. The reason is that

ΣM is not supposed to be run in isolation. In fact, due to the guarded

transitions, this STS will not move if it is run in isolation. However, the

STSs corresponding to the domain objects will have appropriately labeled

states. This way, the guarded transitions in ΣM will become enabled in

the parallel product of ΣM with the domain objects STSs.

Table 5.1 shows also the encoding of an XorSplit node connected to other

nodes through control edges annotated with conditions. In the special case

when the condition holds only after one or more uncontrollable events are

triggered in some domain objects, this encoding is not sufficient. The

reason is that the triggering of a such an uncontrollable event must be

simulated in the STS encoding. Therefore, for each such condition, we will

create a separate STS in Section 5.5. The label sb(M) which corresponds
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to the start state of the encoding sb is sufficient for marking the point

where the condition must be triggered.

Finally, we mark all initial and final states of ΣM as accepting to encode

the fact that, once started, the process must be completed.

5.3 Encoding the Adaptations

For each adaptation ∆i = adapt(Ma
i , from i, toi), we define an STS Σ∆i

as

follows. We first translate the process model included in the adaptation,

i.e., Σ∆i
= ΣMa

i
. To use the adaptation multiple times, we introduce an

input action ?resumei, and add a transition on ?resumei from each final

state to the initial state.

We recall that from i can be any node from the original process model

M0 or the model of a previous adaptation ∆j, 1 ≤ j < i. Further, toi is

a node from M0 (see Definition 17). Therefore, each adaptation realizes a

jump in M0. If applied on a previous adaptation ∆j, j < i, it also realizes

a reset jump in ∆j. This reset jump is necessary in order to be able to

reuse the adaptation ∆j.

To encode these jumps, we use the ?resumei action. Let

〈sfrom, bfrom, afrom, s′from〉 be the transitions corresponding to from i. Since

toi cannot be part of an And-block, there will be only one transition

〈sto, bto, ato, s′to〉 corresponding to toi. We can then be in one of the fol-

lowing two situations:

• the transitions are all in ΣM0
. We then add to ΣM0

the action ?resumei

and transitions on ?resumei from every s′from to sto.

• 〈sfrom, bfrom, afrom, s′from〉 are transitions in Σ∆j
, and 〈sto, bto, ato, s′to〉

is a transition in ΣM0
. We add ?resumei to both Σ∆j

and ΣM0
. In Σ∆j

,

we add transitions on ?resumei from all s′from to the initial state. In
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ΣM0
, the start of the jump is the same as for the jump corresponding

to ∆j. For every state s such that there is a transition from s on

?resumej, we add a transition on ?resumei to sto.

The start of the jump are the states s′from in ΣM0
, or, if there is a reset

jump, in Σ∆j
. We label these states with a new proposition pointi, to mark

the point where ∆i must be applied.

The adaptation can be used only if ϕi holds, at a particular execution

point, and, if the correction is strict, only for πi. We therefore add ϕi ∧
pointi ∧ tracei to the guard of every initial transition in Σ∆i

. Here, tracei

is a proposition which will be used in the STS of trace πi to label the state

corresponding to the completion of the activities in πi (if the correction is

relaxed, since πi is ignored, this will be the initial state).

The Semaphore STS

Adaptations may be executed only partially, if there is re-adaptation. How-

ever, if an adaptation is started, one adaptation (not necessarily the same)

has to finish for the control to be given back to the main process. Moreover,

if there is re-adaptation, the control is never given back to the failed adap-

tation. To encode these properties, we use a semaphore STS, Σsemaphore.

Σsemaphore has an initial, accepting state s0 corresponding to M0, and a

state si for every adaptation ∆i, 1 ≤ i ≤ n. If Σ∆i
moves from its initial

state, Σsemaphore will move from any state sj, 0 ≤ j < i, to state si. In other

words, for every initial transition (s, b, a, s′) in Σ∆i
, we add to Σsemaphore

a transition from sj to si on a guarded by pointi ∧ tracei. From state si

it will move back to the initial state s0 on ?resumei, to encode that the

control is given back to M0 if ∆i is completed. This transition is guarded,

such that it becomes enabled only when ∆i is also in a state from which it

can execute ?resumei.
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Each state si in Σsemaphore is labeled with a proposition flagi; these flags

are added as guards to transitions in ΣM0
,Σ∆1

, . . . ,Σ∆n
which are not on

?resume actions. In particular, in ΣM0
we add flag0 to the guard of every

transition. In Σ∆i
we add flag0 ∨ . . . ∨ flagi−1 to the guard of transitions

from initial states, and flagi to the guard of every other transition. This

way, if ∆i fails and another adaptation ∆k, k > i, is started, Σsemaphore

moves to state sk and the control is never given back to ∆i.

Example Figure 5.1 shows the encoding of the process model, adapta-

tions, and semaphore in our scenario. In particular, Figure 5.1(a) is the

encoding of the car process model introduced in Figure 3.5, while the Fig-

ures 5.1(b) and 5.1(c) show the encoding of the adaptations in Figure 3.6.

5.4 Encoding the Partial Traces

We construct an STS Σπi for each trace πi = 〈a1, . . . , ak〉. If the correction

is relaxed, πi is ignored and Σπi will contain only an initial state s0.

If the correction is strict, Σπi needs to capture the situation when the

trace πi has been followed, that is, the activities in πi have been completed

in the order specified by πi. For every j, 1 ≤ j ≤ k, aj is an activity in the

original process model M0 and/or in the adaptation models Ma
1 , . . . ,M

a
i−1.

The idea is that Σπi should move from state sj−1 to sj on any action

corresponding to aj.

Let ?aj be the input actions corresponding to aj. Suppose that aj

appears in the process model Ml, and that ?aj can be executed in ΣMl

from one or more states s. We therefore add to Σπi a new state sj,

the actions ?aj, and for every ?aj and state s a transition 〈sj−1, s(Ml) ∧
(flag0 ∨ . . . ∨ flagl−1), ?aj, sj〉 if s is an initial state in Ml and l ≥ 1,

and 〈sj−1, s(Ml) ∧ flagl, ?aj, sj〉 otherwise. This way, in the parallel prod-
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s0

{s0(M0)}

s1

{s1(M0), point1}

s2

{s2(M0), point2}

s3

{s3(M0)}

s4

{s4(M0)}

s5

{s5(M0)}

?Show route to storage

[noRoutes(n) ∧ flag0]

?resume1

?At storage

[terminals(l) ∧ routes(n) ∧ flag0]

?Receive delivery order

[notExists(o) ∧ flag0]

?resume2

?Fix pending treatments

[storages(l) ∧ pendings(t) ∧ flag0]

?Deliver to retailer

[treatments(l) ∧ emptys(t) ∧ flag0]

(a) Main process model (M0)

s0

{s0(M1)}

s1

{s1(M1)}

?Assess damage

[damageds(h) ∧ (40s(q) ∨ . . . ∨ fulls(q))
∧point1 ∧ trace1 ∧ flag0]

?resume1

(b) Schedule repair (M1)

s0

{s0(M2)}

s1

{s1(M2)}

s2

{s2(M2)}

?Temp assess damage

[damageds(h) ∧ (emptys(q) ∨ . . . ∨ 70s(q))

∧point2 ∧ trace2 ∧ (flag0 ∨ flag1)]

?Temp fix damages

[storages(l) ∧ diagnoseds(h) ∧ flag2]

?resume2

(c) Repair temporarily (M2)

s0

{flag0}

s1

{flag1}
s2

{flag2}

?Assess damage

[point1 ∧ trace1]

?Temp assess damage

[point2 ∧ trace2]

?resume1

[s1(M1)]

?resume1

[s2(M2)]

?Temp assess damage

[point2 ∧ trace2]

(d) Semaphore

Figure 5.1: STS encoding of the process model and adaptations
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uct of Σπi with ΣM0
,Σ∆1

, . . . ,Σ∆n
, the transitions on ?aj will be triggered

only when ΣMl
is ready to execute ?aj. We mark the end of the trace

πi by labeling the last added state sk with a new proposition tracei, i.e.,

F(sk) = {tracei}.
Further, we add to Σπi a state sout, which signals that the trace πi has

not been followed, that at some point we executed an activity not on πi.

We then add transitions to this state. Σπi should move from any state sj−1,

1 ≤ j ≤ k, to sout on any action corresponding to an activity different from

aj, and from sk to sout on any action corresponding to an activity.

Let Ia be the set of input actions from ΣM0
, Σ∆1

,. . . ,Σ∆n
which cor-

respond to activities. In other words, Ia does not include the actions

?resume1, . . . , ?resumen, or the actions corresponding to control connec-

tors. We add Ia to the actions of Σπi. For every j, 0 ≤ j ≤ k, we add

to Σπi a transition (sj, b, ?a, sout) for every transition (s, b, ?a, s′) in ΣM0
,

Σ∆1
,. . . ,Σ∆n

which is such that ?a ∈ Ia and, if j < k, such that ?a 6=?aj+1.

Example As discussed in Section 4.2.2, the two partial traces in our sce-

nario are π1 = 〈Show route to storage〉 and π2 = 〈Show route to storage,

Assess damage,At storage〉. The encoding of these two partial traces is

shown in Figure 5.2.

5.5 Encoding the Conditions

We now consider all the conditions that appear in the corrective evolution

problem. This includes first the conditions ϕ1, . . . , ϕn which appear in the

corrections. However, it also includes the conditions which appear in the

original process model M0 or in the adaptation process models Ma
1 , . . . ,M

a
n .

With this second type of conditions, we refer to the annotations to control

edges connecting XorSplit nodes to other nodes.
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s0

s1

{trace1}
sout

?Show route to storage

[s0(M0) ∧ flag0]

∀?a ∈ Ia,
?a 6=?Show route to storage

∀?a ∈ Ia

s0

s1

s2

{trace2}
sout

?Show route to storage

[s0(M0) ∧ flag0]

?At storage

[s1(M0) ∧ flag0]

∀?a ∈ Ia,
?a 6=?Show route to storage

∀?a ∈ Ia,
?a 6=?At storage

∀?a ∈ Ia

Figure 5.2: STS encoding of traces: (a) π1; (b) π2

For some of these conditions, we construct STSs which are responsible

for triggering any uncontrollable events which are necessary for satisfying

the conditions. The main difficulty here is that we should not consider all

possible situations, but only the situations that either appeared in the pro-

cess models M0, M
a
1 , . . . ,M

a
n , or are described by the conditions ϕ1, . . . , ϕn.

Let ϕi be the formula corresponding to such a condition. We perform

two transformations on ϕi. First, we replace in ϕi every negative literal

¬ss(o) with the equivalent disjunction
∨
sj∈L,sj 6=s s

s
j(o). We then check if

the updated condition ϕ′i contains any literal ssu(o) such that in the domain

object o =
〈
L,L0, E , T

〉
the state su can be reached through one or more

uncontrollable events, i.e., ∃e ∈ EU , (s, e, su) ∈ T .

If such a literal exists, we construct an STS Σϕi
, which triggers any

uncontrollable events necessary for satisfying the condition. Since ϕi is an

arbitrary formula fromBool(PS), more then one uncontrollable event might

need to be triggered at the same time for the condition to be satisfied.

We first generate a new condition ϕ′′i by replacing in ϕ′i all uncontrollable

literals ssu(o) with the formula that indentifies the states before and after

the uncontrollable events, i.e., ssu(o) ∨
∨
s∈L,(s,e,su)∈T,e∈EU s

s(o).

We add to Σϕi
two output actions: !triggeri and !no-triggeri, and two

transitions: (s0, ϕ
′′
i ∧φpi, !triggeri, s1), respectively (s0, φpi, !no-triggeri, s1).
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s0

s1

where: φp1 = point1 ∧ trace1 ∧ flag0

ϕ′′
1 = (oks(h) ∨ diagnoseds(h) ∨ damageds(h))

∧(30%s(q) ∨ . . . ∨ fulls(q))

!trigger1

[ϕ′′
1 ∧ φp1 ]

!no-trigger1

[φp1 ]

∀?a ∈ Ia, ?a 6∈ Σ∆1

s0

s1

where: φp2 = point2 ∧ trace2 ∧ (flag0 ∨ flag1)

ϕ′′
2 = (oks(h) ∨ diagnoseds(h) ∨ damageds(h))

∧(emptys(q) ∨ . . . ∨ 80%s(q))

!trigger2

[ϕ′′
2 ∧ φp2 ]

!no-trigger2

[φp2 ]

∀?a ∈ Ia, ?a 6∈ Σ∆2

Figure 5.3: STS encoding of conditions: (a) ϕ1; (b) ϕ2

The two actions simulate the uncontrolability of the events, in that both

cases (when ϕi holds, as well as when it does not hold) will be consid-

ered. The expression φpi included in the guards will have a different value,

depending on whether ϕi is a condition in a correction or a condition ap-

pearing in a process model:

• if ϕi is the condition for the correction at step j, then φpi = pointj∧
tracej ∧ (flag0 ∨ . . . ∨ flagj−1). The reason is that ϕi should only be

triggered at the same point where ∆j should be plugged in.

• if ϕi is a branch condition appearing in a process model Mj, then

φpi = sb(Mj)∧ flagj, where sb(Mj) is the label associated to the start

state in the encoding of the corresponding XorSplit node. Also in

this case, ϕi should only be triggered before the corresponding branch

condition is evaluated.

Since ϕi can be triggered repeatedly, we add reset transitions (s1, b, ?a, s0)

for every transition (s, b, ?a, s′) on an input action ?a ∈ Ia, ?a 6∈ Σ∆j
(re-

spectively every ?a ∈ Ia, ?a 6∈ ΣM0
, if ϕi is a condition in M0).

Example Figure 5.3 shows the encoding of the two conditions in our

scenario. The conditions appear in the two corrections discussed in Section
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4.2.2. For both conditions, all the literals included in the condition are such

that the corresponding state is reachable through an uncontrollable event.

This is the damage event in the Car Health (h) domain object, respectively

the enqueue/dequeue events in the Service Station Queue (q).

Note that for condition ϕ1 = damageds(h) ∧ (40%s(q) ∨ . . . ∨ fulls(q)),
the formula which identifies the states before and after the uncontrollable

events is therefore ϕ′′1 = (oks(h)∨diagnoseds(h)∨damageds(h))∧(30%s(q)∨
. . . ∨ fulls(q)). The trigger actions are added also to the domain objects

STSs, as will be described in the next Section. This way, if either h or q

is not already in a state satisfying ϕ1, but from which such a state can be

reached (h is in state ok or diagnosed, or q is in state 30%), by executing

the trigger action, they will move simultaneously to a state satisfying ϕ1.

5.6 Encoding the Domain Objects

For each domain object o =
〈
L,L0, E , T

〉
, we define an STS Σo = 〈S,S0, I,

O,R,SF ,F〉, which has the same states (S = L) and initial states (S0 =

L0), and for which all states are accepting (SF = S). We label states with

the corresponding propositions (i.e., ∀s ∈ S : F(s) = {ss(o)}).
To create the transitions in the new STS, we use the original process

model M0 and the adaptation process models Ma
1 , . . . ,M

a
n . In particular,

we add transitions to reflect how the state of the STS is affected by the ex-

ecution of the actions corresponding to process model activities. We guard

these transitions, such that they are triggered only when the corresponding

actions in ΣM0
,Σ∆1

, . . . ,Σ∆n
are executed.

For each transition (s, e, s′) ∈ T , we consider all the activities 〈a, pre, eff 〉
appearing in M0 and Ma

1 , . . . ,M
a
n which could trigger the event e, i.e., for

which ee(o) ∈ eff . Let ?a be an input action corresponding to such an ac-

tivity. Suppose that a appears in the process model Mi, and that ?a can be
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executed in ΣMi
from one or more states sj, j ≥ 0. In this case, we add ?a

to I. For each state sj, we add to R a transition (s, sj(Mi)∧ (flag0∨ . . .∨
flagi−1), ?a, s

′) if sj is an initial state in Mi, and (s, sj(Mi) ∧ flagi, ?a, s′)
otherwise. This way, in the parallel product of Σo and ΣMi

, the transition

on ?a will be triggered only when ΣMi
is ready to execute ?a. This ensures

that it is never the domain object STS that initiates the transitions, but

rather that these transitions reflect the execution on actions corresponding

to activities in the process model STSs.

If the domain object includes transitions on uncontrollable events, we

add new transitions using the STSs of conditions created in Section 5.5. For

each transition (s, e, su) ∈ T, e ∈ EU , we consider all the conditions contain-

ing the uncontrollable literal ssu(o). Let ϕi be such a condition. We then

add to Σo the action !triggeri and the transition (s, ϕ′′i ∧ φpi, !triggeri, su).

Example Figure 5.4 shows the encoding of the Car Health (h) domain

object from Figure 3.4. Note that the transition on the event diagnose has

been replaced with two transitions on the actions corresponding to the ac-

tivities Assess damage and Temp assess damage. Both activities contained

the event diagnose in their effects. Similarly, the transitions on the event

repair have been replaced with two transitions on the actions correspond-

ing to the activities Fix pending treatments and Temp fix damages. Finally,

the transitions on the event damage have been replaced by transitions on

the !trigger1 and !trigger2 actions.

5.7 Encoding the Goals

To represent the satisfaction of our goals, we follow the approach proposed

by Bertoli et al. in [9, 10] for tracking the satisfaction of composition

requirements when composing service descriptions. There, the idea is to
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ok

{oks(h)}

damaged

{damageds(h)}
diagnosed

{diagnoseds(h)}

where:

ϕ′′
1 = (oks(h) ∨ diagnoseds(h) ∨ damageds(h)) ∧ (30%s(q) ∨ . . . ∨ fulls(q))

φp1 = point1 ∧ trace1 ∧ flag0

and

ϕ′′
2 = (oks(h) ∨ diagnoseds(h) ∨ damageds(h)) ∧ (emptys(q) ∨ . . . ∨ 80%s(q))

φp2 = point2 ∧ trace2 ∧ (flag0 ∨ flag1)

!trigger2

[ϕ′′
2 ∧ φp2 ]

!trigger1

[ϕ′′
1 ∧ φp1 ]

?Assess damage

[s0(M1) ∧ flag0]

?Temp assess damage

[s0(M2) ∧ (flag0 ∨ flag1)]

!trigger2 [ϕ′′
2 ∧ φp2 ]

!trigger1 [ϕ′′
1 ∧ φp1 ]

?Fix pending treatments

[s3(M0) ∧ flag0]

?Temp fix damages

[s1(M2) ∧ flag2]

?Fix pending treatments

[s3(M0) ∧ flag0]

?Temp fix damages

[s1(M2) ∧ flag2]

Figure 5.4: STS encoding of the Car Health domain object

create a set of STSs for each composition requirement, and then define a

propositional formula on the states of these STSs, which holds when the

requirement is satisfied.

Following this approach, we construct STSs which correspond to the

satisfaction of each goal statement ψ0 =⇒ (ψ1 � · · · � ψk) included in the

goal. Since the formulas ψ0, . . . , ψn contain only state propositions, they

can be used directly as transition guards in our STS. For every formula ψ,

we introduce an output action !aψ which is triggered when the formula is
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s0

s

. . .s1 sk

!aψ0 [ψ0]

!aψ1 [ψ1]

!aψk
[ψk]!aψ0 [ψ0]

!aψ0 [ψ0]

Figure 5.5: STS encoding of a goal statement

satisfied. Transitions on !aψ will always be guarded by ψ.

The STS for a goal statement ψ0 =⇒ (ψ1 � · · · � ψk) is shown in

Figure 5.5. The STS is initially in an accepting state s0. If the premise ψ0

is satisfied (!aψ0
is triggered), it moves to a non-accepting state and waits

for any of the formulas ψ1, . . . , ψk to be completed (one of the actions

!aψ1
, . . . , !aψk

is triggered). When one of !aψ1
, . . . , !aψk

is triggered, the STS

moves to the corresponding accepting state from s1, . . . , sk. From each of

s1, . . . , sk, the STS moves back to the non-accepting state in case !aψ0
is

triggered again.

To encode the preference order, for each goal statement we define a

requirement ρ = (s0, . . . , sk), where s0 is the initial state, and s1, . . . , sk are

the states reached with transitions on !aψ1
, . . . , !aψk

. These requirements

will be used in Chapter 7 for constructing the planning goal.
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Chapter 6

Strict Corrective Evolution

In this Chapter, we design an automated technique for solving a special

case of corrective evolution problems, the case when all corrections are

strict. First, we encode the process model, domain objects, partial traces,

conditions, and adaptations into state transition systems (STSs). We then

compute the parallel product of these STSs and obtain an STS which en-

codes all the executions of the corrected process model. We minimize this

STS in order to remove redundant transitions. Finally, we use the cor-

respondences created when encoding the inputs to translate the resulting

STS to a new process model.

In the following, we first present an overview of our automated technique

in Section 6.1. We then prove that the approach is correct and complete

in Section 6.2. We conclude with a discussion on the advantages and

limitations of the approach in Section 6.3.

6.1 Description of the Approach

A strict corrective evolution problem is defined by a process model M0

which satisfies a goal G, and a sequence of corrections C1, . . . , Cn such

that for all i, 1 ≤ i ≤ n, Ci = 〈strict, πi, ϕi,∆i〉.
An overview of the solution for strict corrective evolution is shown in
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Figure 6.1: Strict corrective evolution: solution overview

Figure 6.1. We encode the process model into an STS ΣM0
, adaptations

into Σ∆1
, . . . , Σ∆n

, Σsemaphore, partial traces into Σπ1, . . . ,Σπn, conditions

into Σϕ1
, . . . ,Σϕm

, and domain objects into Σo1, . . . , Σop, as described in

the previous chapter. We then compute their parallel product:

Σ = ΣM0
‖ Σ∆1

‖ . . . ‖Σ∆n
‖ Σsemaphore‖ Σπ1‖ . . . ‖Σπn ‖

Σϕ1
‖ . . . ‖Σϕm

‖ Σo1‖ . . . ‖Σop

We simplify Σ by removing the transitions for which the guard condition

evaluates to false and which are therefore never enabled, i.e., the transitions

(s, b, a, s′) for which s,F 6|= b. After this simplification step, since for all

remaining transitions the guard condition evaluates to true, we can remove

from Σ the guards and the labeling function F .

Σ is nondeterministic, due to the fact that the domain objects STSs can

have multiple initial states and nondeterministic transitions. Moreover, if

at a certain point in the process multiple configurations of the domain ob-

jects are possible, and these configurations are treated in the same way by

the process, then Σ will contain many similar transitions. For example, in
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our scenario, at any point during the execution of the process model mul-

tiple configurations are possible, differing among each other in the value

associated to the service station queue domain object. Each of these possi-

ble configurations will be treated separately in Σ, leading to an exponential

blowup of the number of states.

To be able to transform Σ back to a process model, we must first convert

it to a deterministic STS. For this, as well as to remove the redundant tran-

sitions, we minimize Σ. As criteria for STS equivalence we use completed

trace equivalence, one of the weakest notions of behavioral equivalence

[112]. Modulo completed trace equivalence, every STS is deterministic,

that is, we can always find a deterministic STS which is completed trace

equivalent to Σ. The minimal, deterministic STS Σstrict which results can

then be transformed back into a process model.

Definition 20 (Σstrict)

Assume a corrective evolution problem defined by a process model M0, a

goal G, and a sequence of corrections C1, . . . , Cn, such that ∀i, 1 ≤ i ≤ n,

Ci = 〈strict, πi, ϕi,∆i〉. Let Σ be the parallel product of the encoding STSs,

and Σno-labels the simplified Σ. Then Σstrict is the minimization of Σno-labels

according to completed trace equivalence.

The transformation from an STS back to a process model is done by

first removing from Σstrict the actions which were introduced for control-

ling the parallel product, such as the ?resume actions. If by removing the

corresponding transition we do not remove or introduce new traces, then

also the transition can be removed. We can then use the encoding corre-

spondences (between actions and activities, branching conditions, etc.) to

map the resulting STS to a process model.

Example The solution for the strict corrective evolution problem in our
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Figure 6.2: Corrected process model: both corrections are strict

scenario is shown in Figure 6.2.

The corrected process model introduces exactly two new traces: one

corresponding to the application of the adaptation operation Schedule re-

pair, and one corresponding to the application of both Schedule repair and

Repair temporarily.

6.2 Correctness of the Approach

In this Section, we prove that the strict corrective evolution approach is

correct. In other words, we prove that for a corrective evolution problem

defined by a process model M0, a goal G, and a sequence of strict correc-

tions C1, . . . , Cn, the process model Mstrict, which results by following the

approach presented in the previous Section, is a solution to the problem.

The correctness proof is based the correspondence between executions of

corrected process models and runs of the encoding STS. A correspondence

between an execution and a run is such that each configuration in the

execution matches a certain state in the run, and each activity in the

execution matches a certain action in the run.

We say that there is a correspondence between a configuration γ of the

domain objects O and a state s in the encoding STS Σ if for every domain

object o ∈ O, if γ(o) = so then s is such that Σo is in state so.

Let a be an activity appearing in one of the process models M0,M
a
1 , . . . ,
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execution ω

run σ

γ0

s0

a1

action1

γ1

s1

a2

action2

γ2

s2

a3

action3

γ3

s3 action4 s4 action5 s5 action6 s6

Figure 6.3: Example of a correspondence between an execution and a run

Ma
n . We say that there is a correspondence between a and an action of Σ if

the action was created when translating an activity node inM0,M
a
1 , . . . ,M

a
n

labeled with a, during the translation described in Section 5.2. Note that

an activity can have multiple corresponding actions, while an action can

have at most one corresponding activity.

We can now define formally the correspondence between executions and

runs.

Definition 21 (Correspondence)

Let M be a process model and ω = γ0
a1→ γ1 . . . γk−1

ak→ γk an execution of

M . Let Σ be an STS and σ = s0, action1, s1, . . . , sn a run of Σ. We say

that there is a correspondence between ω and σ iff:

• there is a correspondence between γ0 and s0;

• for every i, 1 ≤ i ≤ k, there exists j, i ≤ j ≤ n, such that there is a

correspondence between ai and actionj, and between γi+1 and sj+1;

• for every actionj, 1 ≤ j ≤ n in σ, if actionj does not correspond to an

activity in ω, then actionj does not correspond to any activity in M .

Note that the correspondence relation between executions and runs does

not imply a one-to-one correspondence between configurations and states,

or between activities and actions. To better visualize this relation, in

Figure 6.3 we show a high-level example of such a correspondence.

In the following, we first prove that there exists a correspondence be-

tween the executions of Mn and the runs of Σn, for every n ∈ N. Here,

111



CHAPTER 6. STRICT CORRECTIVE EVOLUTION

Mn is the corrected process model and Σn the parallel product STS, both

obtained at step n. In the correctness proof, we then use this correspon-

dence to establish the equivalence between Mn and Mstrict, where Mstrict is

the translation of the simplified and minimized Σn.

6.2.1 Correspondence Between Executions of a Corrected Model

and Runs of the Parallel Product STS

Lemma 5

Assume a corrective evolution problem defined by a process model M0, a

goal G, and an empty sequence of corrections. Let Σ0 be the STS encoding.

Then for every execution of M0 there is a corresponding run of Σ0, and for

every run of Σ0 there is a corresponding execution of M0.

Proof. M0 is defined over a set of domain objects O = {o1, . . . , op}. Since

there are no corrections, the corresponding STSs are Σ0
M0

, Σ0
semaphore, Σϕ0

,

. . . ,Σϕm
,Σ0

o1
,. . . ,Σ0

op
. With Σ0

M0
we denoted the translation to an STS of

M0, according to the rules in Table 5.1. Note that Σ0
M0

does not include

?resume actions, which are added only if there are corrections. With

Σϕ0
,. . . ,Σϕm

we denoted the encoding of the conditions in M0. Σ0
o1

,. . . ,Σ0
op

denote the encoding of the domain objects, with transitions on actions

corresponding to activities in M0, and trigger actions from ϕ0, . . . , ϕm.

Finally, Σ0
semaphore is the semaphore STS when there are no corrections,

i.e., it contains only one state s0 labeled with flag0. We need to prove

that there is a correspondence between executions of M0 and runs of the

parallel product Σ0 = Σ0
M0
‖Σ0

semaphore‖Σϕ0
‖ . . . ‖Σϕm

‖Σ0
o1
‖ . . . ‖Σ0

om
.

(=>) For every execution of M0 there is a corresponding run

of Σ0. Let ω = γ0
a1→ γ1 . . . γk−1

ak→ γk be an execution of M0. We need

to prove that there exists a corresponding run of Σ0, having the form

σ = s0, action1, s1, . . ..
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base case. By definition, γ0 is an initial configuration. Let s0 be a state

in Σ0 corresponding to γ0. s0 is such that for each domain object o, Σ0
o is

in the state specified by γ0(o), and Σ0
M0

and Σϕ0
,. . . ,Σϕm

are each in their

only initial state. Then, for the execution ω = γ0 there is a corresponding

run of Σ0, σ = s0.

induction step. We assume that for execution ω = γ0
a1→ γ1 . . . γi−2

ai−1→ γi−1

there is a corresponding run of Σ0, σ = s0, action1, . . . , actionj, sj, j ≥ i−1.

According to Definition 21, this means that for every activity a1, . . . , ai−1

there is a corresponding action in σ, and for every configuration γ1, . . . , γi−1

the corresponding state in σ is the state directly following the action which

encodes the activity.

We need to prove that for execution ω′ = γ0
a1→ γ1 . . . γi−1

ai→ γi there

is a corresponding run of Σ0 σ
′ = s0, action1, . . . , actionn, sn, n > j, such

that actionn corresponds to ai, actionj+1, . . . , actionn−1 do not correspond

to activities, and sn corresponds to γi.

(a) σ′ is a run of Σ0, actionn corresponds to ai, and actionj+1, . . . ,

actionn−1 do not correspond to activities.

For the activity ai = 〈namei, pre i, eff i〉 to be part of an execution on

M0, the activity a′i = 〈namei, pre ′i, eff i〉 must be applicable to γi−1, where

pre ′i = pre i∧cond, and cond is the conjunction of branch conditions on the

path from ai−1 to ai.

Assume a′i is applicable to γi−1, i.e., γj−1 |= pre ′i. Since γi−1 corre-

sponds to sj, also sj,F |= pre ′i. This means that also the state s′j reached

after executing the actions corresponding to the branching conditions is

such that s′j,F |= pre ′i. The reason is that the actions corresponding to

branching conditions appear either only in ΣM0
, or as !no-trigger actions

in the condition STSs (if the other branch has a condition which requires

uncontrollable events). In both cases, these actions do not trigger state

changes in the domain objects STSs. State s′j is such that ΣM0
is in a
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state from which there is a transition on action ?namei which corresponds

to ai. This transition is guarded by pre i. Since s′j,F |= pre ′i, the transi-

tion on ?namei in Σ0 is enabled. Therefore, there exists a run of Σ0 such

that actionn =?namei, with actionj+1, . . . , actionn−1 corresponding to Xor-

Split/AndSplit nodes and branching conditions on the path between the

node labeled with ai−1 and the node labeled with ai.

Otherwise, if a′i is not applicable to γi−1, there exists a configuration of

O γ′i−1 such that γ′i−1 |= pre ′i and γ′i−1 is directly reachable from γi−1. This

is the case when for pre ′i to hold, one or more uncontrollable events must be

triggered. This is accomplished by firing the !trigger action in a condition

STS. If in M0 the nodes labeled with ai−1 and ai are connected through

XorSplit nodes, and the control edges are annotated with conditions which

require uncontrollable events, then the action fired is the !trigger action in

the STS corresponding to the conjunction of these conditions. The state

reached after firing the trigger action in Σ0 is a state s′j such that ΣM0
has

not moved, for each domain object o, Σ0
o is in the state corresponding to

γ′i−1(o), and the condition STSs are in the initial/final state (depending

on whether they moved on the trigger action). Then s′j,F |= pre ′i and the

transition on ?namei in Σ0 is enabled. The corresponding run of Σ0 is then

such that actionn =?namei, and actionj+1, . . . , actionn−1 correspond not

only to branching nodes and conditions, but can also be !trigger actions.

(b) State sn corresponds to γi. We now prove that the state reached

in Σ0 after firing ?namei corresponds to γi. Let eff i be the effects of ai.

Further, let γpre be the configuration satisfying pre ′i (either γi−1 or γ′i−1).

Then γi is as follows. For every domain object o =
〈
L,L0, E , T

〉
, if there

exists e ∈ eff i such that e ∈ E and there is a transition from γpre(o) on e

to a state s, then γi(o) = s. Otherwise γi(o) = γpre(o) .

In Σ0 this is realized as follows. For every event e ∈ eff i from a domain

object o, there is in Σ0
o a transition on ?namei from the state specified
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by γpre(o) to the state specified by γi(o). This transition is enabled, and

based on the parallel product definition, the action is fired in ΣM0
and in

every matching Σ0
o. Therefore, the state reached in Σ0 after firing ?namei

corresponds to γi.

(<=) For every run of Σ0, there is a corresponding execution of

M0. Let σ = s0, action1, s1, . . . be a run of Σ0. Then there exists an

execution of M0 ω = γ0
a1→ γ1 . . . γk−1

ak→ γk which corresponds to σ.

base case. s0 is an initial state in Σ0, which means that for every domain

object o, Σo is in an initial state. Therefore, there is an initial configuration

γ0 which corresponds to s0, and for the run σ = s0 there is a corresponding

execution ω = γ0.

induction step. We assume that the run σ = s0, action1, . . . , actioni−1, si−1

corresponds to an execution ω = γ0
a1→ γ1 . . . γj−2

aj−1→ γj−1, 1 ≤ j ≤ i.

Let σ′ = s0, action1, . . . , actionn, sn, n ≥ i, be a run of Σ0 such that

actionn is the first action after si−1 which corresponds to an activity aj.

For all the intermediate runs between σ and σ′ there is a corresponding

execution of M0, and this is ω. We need to prove that there exists an

execution ω′ of M0 which corresponds to σ′. In other words, we need

to prove that sn corresponds to a configuration γj, and that ω′ = γ0
a1→

γ1 . . . γj−1
aj→ γj is an execution of M0.

(a) γ0
a1→ γ1 . . . γj−1

aj→ γj is an execution of M0. Each of the ac-

tions actioni, . . . , actionn−1 is part of the translation of a control connector

from M0, or is a !trigger/!no-trigger action in a condition STS. If any of

actioni, . . . , actionn−1 is part of the translation of a control connector or is

a !no-trigger action, then it will only affect the state of ΣM0
or the state

of the condition STSs, without affecting the relation between states in σ

and configurations. If any of actioni, . . . , actionn−1 is a !trigger action,

then it will affect the state of the condition STS, and the state of domain
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object STSs. However, there can be at most one transition on a trigger

action, and this is possible only if one or more branching conditions will

be tested, and the conjunction of these conditions requires uncontrollable

events. Since the other actions do not affect the state of the domain ob-

ject STSs, sn−1 corresponds either to γj−1, or, if branching conditions are

tested, to a configuration γ′ directly reachable from γj−1.

For the activity aj =
〈
namej, prej, eff j

〉
to be part of an execution of

M0, the activity a′j =
〈
namej, pre ′j, eff j

〉
must be applicable to γj−1, where

pre ′j = prej ∧ cond, and cond is the conjunction of branch conditions on

the path from aj−1 to aj. Since actionn corresponds to aj, and to execute

actionn any conditions on the path from aj−1 to aj, as well as the precon-

dition of aj, must hold in sn−1, we have that sn−1,F |= pre ′j. Since sn−1

corresponds either to γj−1 or to a configuration γ′ directly reachable from

γj−1, this means that a′j is applicable to γj−1 and there exists a correspond-

ing execution of M0 ω
′ = γ0

a1→ γ1 . . . γj−1
aj→ γj.

(b) Configuration γj corresponds to state sn. We first prove that

there is a transition in ΣM0
from the current state sc (the state which is

part of the global state sn) on actionn, and that actionn is the only action

which can be fired from sc in ΣM0
.

Σ0 moves on actionn from sn−1, which means that at least one of the

STSs in the parallel product moves on actionn. Σ0
semaphore has only one

state and cannot move. The condition STSs do not move, since actionn

is not a trigger action. In the domain object STS, due to the guards, the

only transitions which are enabled are transitions on actions which can be

fired in the current state of ΣM0
. Therefore, for Σ0 to move on actionn

from sn−1, there must be a transition in ΣM0
from the current state on

actionn. Moreover, according to the translation rules in Table 5.1, in ΣM0

from one state there is either only one transition (and the action on this

transition corresponds to an activity or to a control connector), or there are
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two or more possible transitions, and these correspond to a branching in

the model. Since actionn corresponds to an activity, in ΣM0
the transition

on actionn is the only transition from the current state.

State sn is reached in Σ0 after triggering actionn in ΣM0
and in all domain

object STSs for which an event e was included in the effects of activity aj.

Therefore, sn corresponds to the configuration γj reached from γj−1 by

applying aj. If the domain objects contain nondeterministic events, there

can be multiple configurations which are reached from γj−1 by applying aj.

However, exactly one such configuration corresponds to sn. �

Lemma 6

Assume a corrective evolution problem defined by a process model M0, a

goal G, and a sequence of corrections C1, . . . , Cn, such that ∀i, 1 ≤ i ≤ n,

Ci = 〈strict, πi, ϕi,∆i〉. For all i, 1 ≤ i ≤ n, Mi is computed such that

Exec(Mi) = Exec(Mi−1, Ci). Let Σn be the STS encoding. Then for every

execution of Mn there is a corresponding run of Σn, and for every run of

Σn there is a corresponding execution of Mn.

Proof. The proof goes by induction.

base case, n = 0. Follows directly from Lemma 5.

induction step, n-1 → n.

Σn is the parallel product Σn
M0
‖ Σ∆1

‖ . . . ‖Σ∆n
‖ Σn

semaphore‖ Σπ1‖ . . . ‖Σπn ‖
Σϕ1
‖ . . . ‖Σϕm

‖ Σn
o1
‖ . . . ‖Σn

op
.

Here, Σn
M0

is the extension of Σn−1
M0

with a transition on the ?resumen

action. Σn
semaphore is the extension of Σn−1

semaphore with a state sn and transi-

tions to and from this state. For every domain object o, Σn
o is the extension

of Σn−1
o with new transitions: on actions corresponding to activities in Ma

n

and on trigger actions introduced by ϕn and conditions in Ma
n . Since STSs

are added or extended in step n, every run of Σn−1 is also a run of Σn.
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(=>) for every execution of Mn there is a corresponding run of Σn.

We assume that for every execution of Mn−1 there is a corresponding run

of Σn−1.

Mn is computed such that Exec(Mn) = Exec(Mn−1, Cn), where Cn =

〈strict, πn, ϕn,∆n〉. From Lemma 1, we know that Exec(Mn−1) ⊆
Exec(Mn−1, Cn). We also know that every run of Σn−1 is also a run of Σn.

Therefore, for every execution of Mn which is also an execution of Mn−1

there is a corresponding run of Σn. (1)

Assume ω is an execution of Mn which is not an execution of Mn−1.

Let πn = 〈a1, . . . , ak〉. Then the execution ω has the form: ω = γ0
a1→

γ1 . . . γk−1
ak→ γk

ak+1→ γk+1 . . . γl−1
al→ γl

al+1→ γl+1 . . . γm−1
am→ γm, such that:

• there exists γ′k directly reachable from γk, such that γ′k |= ϕn;

• γ′k
ak+1→ γk+1 . . . γl−1

al→ γl is an execution of Ma
n ;

• al+1 is the activity label of ton, and γl
al+1→ γl+1 . . . γm−1

amγm→ is part of

an execution on M0.

The prefix of ω up to step k, ω′ = γ0
a1→ γ1 . . . γk−1

ak→ γk, is an execu-

tion of Mn−1. Therefore, there exists a run of Σn σ = s0, action1, s1, . . . ,

si−1, actioni, si which corresponds to ω′. State si corresponds to γk. We

need to prove that there exists a run σ′ having σ as prefix, and which

corresponds to ω.

If γk |= ϕn, then also si,F |= ϕn. Otherwise, here exists γ′k, such that

γ′k |= ϕn and γ′k directly reachable from γk. This means that ϕn contains

literals which correspond to states reachable through uncontrollable events.

In this case, there will be an STS corresponding to ϕn, Σϕn
, and the next

action ai+1 in the run σ′ is the !trigger action in Σϕn
. The guard of the

transition holds since up to this point we followed the run corresponding

to trace πn. The state reached si+1 is such that si+1,F |= ϕn.
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Since ϕn holds in the current state, the initial transition in Σ∆n
becomes

enabled. Σ∆n
will move simultaneously with Σsemaphore, which moves to

state sn. The same mechanism used for generating Σ0 from M0 has been

used for generating Σ∆n
from Ma

n . The difference is that in Σ∆n
the ini-

tial transitions have extra guards, and there are transitions from the final

states on the ?resumen action. Therefore, similar to the correspondence

between executions of M0 and runs of Σ0, there is a correspondence be-

tween executions of Ma
n which start from γk, respectively γ′k, and runs of

Σn which start from state si, respectively si+1.

If γk
ak+1→ γk+1 . . . γl−1

al→ γl is the execution of Ma
n , then our run σ′ is

s0, action1, . . . , actionj, sj, . . ., j ≥ i, where for every activity ak+1, . . . , al

there is one corresponding action in actioni+1, . . . , actionj, and for every

configuration γk+1, . . . , γl there is one corresponding state in si+1, . . . , sj,

with γl corresponding to sj. Since al is the label of an End node in Ma
n ,

there will be an enabled transition from sj on ?resumen. When this tran-

sition fires, Σ∆n
moves to its initial state, Σsemaphore moves to s0, and ΣM0

moves to a state sto. In ΣM0
there is a transition from sto on the actionj+1

corresponding to the activity label al+1 of ton. The precondition pre of

al+1 is satisfied in configuration γl, and since sj corresponds to γl and the

domain object STSs do not move on ?resumen, then also sj+1,F |= pre.

Due to this and to the fact that Σsemaphore is in state s0, the transition on

actionj+1 corresponding to al+1 is enabled.

From al+1 onwards, the activities in execution ω are activities from M0.

In the corresponding run σ′, since all trace STSs are in state sout, from

actionj+1 Σn moves only on transitions corresponding to M0. These are

either transitions in ΣM0
which trigger also transitions in the domain object

STSs, or transitions in the STSs of conditions in M0. The proof that for the

sequence γl
al+1→ γl+1 . . . γm−1

am→ γm in execution ω there is a corresponding

sequence sj, actionj+1, . . . , actionp, sp in the run σ′, is then the same as the
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proof of a correspondence between an execution of M0 and a run of Σ0

in Lemma 5. Therefore, also for every execution ω of Mn that is not an

execution of Mn−1 there exists a corresponding run σ′ of Σn. (2)

From (1) and (2), we have that for every execution of Mn there is a

corresponding run of Σn.

(=>) for every run of Σn there is a corresponding execution of Mn.

We assume that for every run of Σn−1 there is a corresponding execution

of Mn−1. We know that every run of Σn−1 is a run of Σn. Moreover, from

Lemma 1 we know that Exec(Mn−1) ⊆ Exec(Mn), and therefore every

execution of Mn−1 is also an execution of Mn. Then, for every run of Σn

which is also a run of Σn−1 there is a corresponding execution of Mn. (1)

Let σ be a run of Σn which is not a run of Σn−1. Then σ must be

such that at some point transitions in Σ∆n
and (if it exists) in Σϕn

were

triggered. For transitions in Σ∆n
and Σϕn

to be possible, the trace STS

Σπn must reach the state labeled with tracen, and at the same time one

of ΣM0
,Σ∆1

, . . . ,Σ∆n−1
must be in a state labeled with pointn. Then σ =

s0, action1, . . . , actioni, si, . . ., where si is such that si,F |= tracen∧pointn.
The prefix of σ up to step i is a run σ′ which is also a run of Σn−1.

Therefore there exists an execution of Mn which corresponds to σ′, and

since si,F |= tracen, this execution is ω′ = γ0
a1→ γ1 . . . γk−1

ak→ γk.

The run σ is such that transitions in Σ∆n
were triggered at some point,

and this point can only be state si, or a state s′i such that the transitions

between si and s′i are triggered on actions from condition STSs.

(a) If si,F |= ϕn, there are two possibilities. If ϕn does not include

uncontrollable literals, then Σϕn
has not been created, and the initial tran-

sition in Σ∆n
is enabled from si. Otherwise, ϕn does include uncontrollable

literals, and Σϕn
has been created. The action in σ which follows si is the

!no-triggern action in Σϕn
. The next state s′i will have the same labels
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as si, since only Σϕn
moves on !no-triggern. Configuration γk corresponds

to si and in the second case also to s′i. Therefore, γk |= ϕn, and the first

activity in Ma
n is applicable to γk.

(b) If si,F 6|= ϕn, since transitions in Σ∆n
are triggered in σ, this can

happen only if ϕn contains uncontrollable literals. The next action in σ

is then the !triggern from Σϕn
. The relevant domain object STSs move

on !triggern, and the next state s′i is such that s′i,F |= ϕn. In this case,

there exists a configuration γ′k directly reachable from γk such that γ′k
corresponds to s′i, the first activity in Ma

n is applicable to γ′k.

In the run σ, the next action actioni+1 corresponds to the initial tran-

sition in Σ∆n
. Since both Σ∆n

and Σsemaphore move, the next state si+1 is

such that si+1,F |= flagn. Therefore, until a transition on ?resumen is

reached in Σ∆n
, the next transitions in σ are controlled by Σ∆n

. Although

transitions in the domain objects STSs and conditions STSs may be trig-

gered as well, these are controlled by the state of Σ∆n
through guards.

Therefore, for the run σ′′ = s0, action1, . . . , actionj, sj, . . ., j > i, where

actionj =?resumen, there is a corresponding execution of Mn, ω
′′ = γ0

a1→
γ1 . . . γk−1

ak→ γk . . . γl−1
al→ γl, where γk

ak+1→ γk+1 . . . γl−1
al→ γl is an execu-

tion of Ma
n .

Since Σ∆n
, ΣM0

, and Σsemaphore all move on ?resumen, state sj is such

that sj,F |= flag0 and ΣM0
is in a state sto from which there is a transition

on the actionj+1 corresponding to the activity label of ton. All trace STSs

are in state sout, with the last Σπn having moved to sout on the first action

in Σ∆n
corresponding to an activity. Therefore, from sj and until the end of

the run σ, the only STSs that can move are ΣM0
and, controlled by ΣM0

, the

domain object STSs and condition STSs. The proof that for the sequence

in the run σ from sj until the last state sp, sj, actionj+1, . . . , actionp, sp,

there is a corresponding sequence γl
al+1→ γl+1 . . . γm−1

am→ γm in the execution

ω is then the same as the proof of a correspondence between a run of Σ0
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and an execution of M0 in Lemma 5. Therefore, also for a run of Σn which

is not a run of Σn−1 there is a corresponding execution of Mn. (2)

From (1) and (2), we have that for every run of Σn there is a corre-

sponding execution of Mn. �

6.2.2 Correctness

Theorem 1 (Correctness)

Assume a corrective evolution problem defined by a process model M0, a

goal G, and a sequence of corrections C1, . . . , Cn, such that ∀i, 1 ≤ i ≤ n,

Ci = 〈strict, πi, ϕi,∆i〉. Let Mstrict be the translation of Σstrict. Then

Mstrict is a solution for the corrective evolution problem defined by M0, G,

and C1, . . . , Cn.

Proof. To prove that Mstrict is a solution for the corrective evolution prob-

lem defined by M0, G, and C1, . . . , Cn, we have to prove that Mstrict ≡Mn,

where ∀i, 1 ≤ i ≤ n, Mi is computed such that Exec(Mi) = Exec(Mi−1, Ci).

This is sufficient for proving also that Mstrict satisfies G, since we know that

any Mn satisfies G from Lemma 4.

Mstrict is the translation of Σstrict, and Σstrict is the minimization of the

simplified parallel product Σ. Based on Lemma 6, we know that there is a

correspondence between runs of Σ and executions of Mn. This correspon-

dence is maintained after simplifying Σ. The simplification first removes

the transitions which cannot fire, and this does not affect the runs of Σ.

The second step is to remove the guards and the labeling function. Since

the transitions which remain in Σ are all fireable, this second step also does

not affect the runs of Σ.

Σstrict has less states than the simplified Σ, but the same set of complete

traces. Mstrict is translated from Σstrict such that there exists a one-to-one

correspondence between complete traces of Mstrict and complete traces of

Σstrict. This means that there is a one-to-one correspondence between
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complete traces of Mstrict and complete traces of Σ. Further, with Lemma

6, we know that there is a one-to-one correspondence between complete

traces of Mn and complete traces of Σ. Therefore Mstrict has the same

complete traces as Mn, i.e., Traces(Mstrict) = Traces(Mn).

With minimization, the conditions actions are not removed, and so in

the translated Mstrict these will be replaced with the branch conditions from

M0,M
a
1 , . . . ,M

a
n . Moreover, the activities are copied to Mstrict with their

preconditions and effects from M0,M
a
1 , . . . ,M

a
n . Finally, for each correction

Ci, we add a branch condition on ϕi before the application of the first

activity in the adaptation model Ma
i . Therefore, if for some complete trace

π of Mn, there is a condition appearing between two consecutive activities

a and a′, then this condition appears also in Mstrict for the complete trace

π between a and a′. Since Mstrict has the same complete traces as Mn,

and also the same conditions and preconditions, then Mstrict will allow the

same executions as Mn. �

6.2.3 Completeness

Theorem 2 (Completeness)

Assume a corrective evolution problem defined by a process model M0, a

goal G, and a sequence of corrections C1, . . . , Cn, such that ∀i, 1 ≤ i ≤
n, Ci = 〈strict, πi, ϕi,∆i〉. Then the strict corrective evolution approach

always terminates and returns a solution Mstrict.

Proof. The steps in the strict corrective evolution approach are: encoding

the inputs into STSs, building the parallel product STS Σ, minimizing

Σ, and translating back into a process model. It is easy to see that each

of these steps involves a finite number of operations. To see that the

construction of Σ terminates, note that Σ has a finite number of states.

Therefore, the approach always terminates on a strict corrective evolution
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problem.

We know that there exists at least a solution to the problem defined by

M0, G, and C1, . . . , Cn. This follows directly from Lemma 2 (existence of a

corrected process model) and Lemma 4 (strict corrections do not affect goal

satisfaction). Since the strict corrective evolution approach terminates,

according to Theorem 1, it will return a process model Mstrict which is a

solution to the problem.

6.3 Discussion

In the strict corrective evolution approach, we minimize the parallel prod-

uct STS according to completed trace equivalence (also called language

equivalence). Completed trace equivalence is only one of the many possible

equivalence relations for nondeterministic state transition systems. Choos-

ing the appropriate equivalence relation is not a straightforward task. In

general, the relation should preserve the properties of interest, should be

efficient to compute, and at the same time be as coarse as possible.

Equivalences for transition systems have been classified along four differ-

ent lines, corresponding to the differences in behavior that they distinguish

[112]: branching time vs. linear time, interleaving vs. partial order seman-

tics, treatment of internal actions, finite vs. infinite observation. Our STSs

can perform at most one action at a time (sequential), they have no inter-

nal actions (concrete), and each state has a finite number of next states

(finitely branching). Therefore, the relevant equivalences range in the lin-

ear time - branching time spectrum, with trace equivalence as the coarsest

relation, and bisimulation the finest.

The property which must be maintained is that the minimized STS

should have the same set of complete traces as the original STS. From

this point of view, there are a range of equivalence relations in the linear
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time - branching time spectrum which are all appropriate. The coarsest

relation among them is completed trace equivalence, which therefore has

the advantage of resulting in the greatest reduction. The disadvantage is

that while bisimulation is decidable in polynomial time, (completed) trace

equivalence is PSPACE-complete [41]. There is however one final criteria

for deciding on the equivalence relation. This is the fact that to translate

the minimized STS to a process model, this STS must be deterministic. We

can always obtain a deterministic STS which is (completed) trace equiv-

alent to our nondeterministic STS. Because of these criteria, completed

trace equivalence is the only equivalence relation which is appropriate in

our setting.

Since completed trace equivalence is the coarsest equivalence relation

which preserves the set of complete traces, the minimized Σstrict is actually

a minimal STS according to this property. The process model Mstrict is ob-

tained by translating the minimal Σstrict using the correspondences created

when encoding the elements into STSs. Therefore, if the original process

model M0 and the adaptation models Ma
1 , . . . ,M

a
n do not contain paral-

lelism, Mstrict will be the minimal solution to the strict corrective evolution

problem. However, if any of M0,M
a
1 , . . . ,M

a
n contain parallelism, this can

be restored by applying post-processing techniques to Mstrict.

Although we minimize the parallel product of our STSs, the resulting

Σstrict will still contain redundant states and transitions. As a translation of

Σstrict, the process model Mstrict may potentially contain many duplicated

activities, i.e., activity nodes which are labeled with the same activity.

The reason is that with strict corrective evolution we construct our new

process model by unfolding the original process model according to partial

traces. If an adaptation includes a jump to an activity node for which the

activity has already been executed, the activities in between this activity

node and the current activity node will be duplicated in the new process
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model. This redundancy in the new model is therefore intrinsic to strict

corrective evolution, and can be removed by relaxing the corrections.
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Chapter 7

Relaxed Corrective Evolution

In this Chapter, we design an automated technique for solving a second

case of corrective evolution problems, the case when all corrections are

either strict or relaxed.

By applying relaxed corrections, we may introduce “spurious” execu-

tions, that is, executions which do not achieve the goal; such executions

are avoided with strict corrections. For relaxed corrective evolution it is

therefore necessary not only to compose the process model and adapta-

tions, but also to verify that the composition satisfies the goal. For this

purpose, we devise a solution based on planning. The solution for strict

corrective evolution is not sufficient, since it performs no verification.

We first encode the process model, domain objects, partial traces, con-

ditions, and adaptations into STSs. This time, we encode also the goal.

We compute the parallel product of all STSs. We use this parallel product

as a planning domain and create a planning goal from the process goal.

We then apply the approach in [9, 10], which generates a controller for

the planning domain, in such a way as to satisfy the planning goal. If a

controller exists, we translate it to a new process model using the encoding

correspondences.

As in the previous case, we first present an overview of our automated
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technique in Section 7.1. We prove that the approach is correct and com-

plete in Section 7.2. We conclude with a discussion in Section 7.3.

7.1 Description of the Approach

A relaxed corrective evolution problem is defined by a process model M0

which satisfies a goal G, and a sequence of corrections C1, . . . , Cn having

either the type strict or relaxed. In other words, for all i, 1 ≤ i ≤ n,

Ci = 〈ct, πi, ϕi,∆i〉, and ct ∈ {strict, relaxed}.
An overview of the solution for relaxed corrective evolution is shown in

Figure 7.1. As for strict corrective evolution, we first encode the process

model into an STS ΣM0
, the adaptations into Σ∆1

, . . . ,Σ∆n
, Σsemaphore, the

partial traces into Σπ1, . . . ,Σπn, the conditions into Σϕ1
, . . . ,Σϕm

, and the

domain objects into Σo1, . . . ,Σop, as described in Chapter 5. This time, we

encode also the goal statements included in G into Σg1, . . . ,Σgk.

We then compute their parallel product. To distinguish the new parallel

product from the parallel product Σ obtained with the strict approach in

Section 6.1, we denote the new STS with Σ+. Σ+ differs from Σ in two

respects. First, in Σ+ the goal statements STSs Σg1, . . . ,Σgk are taken into

account. Second, if a correction Ci is relaxed, the corresponding trace STS

Σπi will contain only one state labeled with tracei. This way, the partial

trace is not taken into account when the adaptation must be plugged in a

relaxed way, and at the same time the other STSs which have the propo-

sition tracei guarding their initial transitions do not need to be modified.

Σ+ is as follows:

Σ+ = ΣM0
‖ Σ∆1

‖ . . . ‖Σ∆n
‖ Σsemaphore‖ Σπ1‖ . . . ‖Σπn ‖

Σϕ1
‖ . . . ‖Σϕm

‖ Σo1‖ . . . ‖Σop‖Σg1‖ . . . ‖Σgk

From Σ+ we first remove the transitions which can never fire, followed
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Figure 7.1: Relaxed corrective evolution: solution overview

by the guards and the labeling function. The resulting STS is our planning

domain. We construct the planning goal ρ by combining the requirements

generated in 5.7 for each goal statement. To combine the requirements,

we use the flattening procedure described in [101], which returns a list of

boolean formulas defined over the elements in the requirements, sorted to

represent the combined preferences of these requirements.

On the planning domain Σ+ and planning goal ρ, we apply the tech-

nique proposed in [9, 10], which generates a controller Σc for the planning

domain such that the controlled system satisfies the planning goal, i.e.,

Σc . Σ+ |= ρ. We use the following notion of a controlled system.

Definition 22 (Controlled System)

Let Σ =
〈
S,S0, I,O,R,SF ,F

〉
and Σc =

〈
Sc,S0

c , I,O,Rc,SFc ,Fc
〉

be two

STSs. STS Σc . Σ, describing the behaviors of system Σ when controlled

by Σc, is defined as:

Σc . Σ =
〈
Sc × S,S0

c × S0, I,O,Rc .R,SFc × SF ,Fc ∪ F
〉
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where: 〈(sc, s), (bc ∧ b), a, (s′c, s′)〉 ∈ (Rc . R) if 〈sc, bc, a, s′c〉 ∈ Rc and

〈s, b, a, s′〉 ∈ R.

We shortly describe the steps for computing Σc, according to the ap-

proach proposed in [9]. The first step in this approach is to build a belief-

level system, by compiling away the silent actions in the given STS. Since

our Σ+ does not contain silent actions, in our case this step is skipped.

The parallel product Σ+ =
〈
S,S0, I,O,R,SF ,F

〉
is then interpreted as a

fully observable planning domain D =
〈
S, S0, A,E,R, P

〉
which comprises

standard actions A and exogenous events E. States in Σ+ are mapped

into states in D, i.e., S = S and S0 = S0. The labeling of states and the

transition relation are preserved. The input actions I are mapped into

planning actions A, while the output actions O correspond to exogenous

events E.

The planning algorithm has two key steps. The first step is to restrict

the domain D to states which are recoverable. Considering that the do-

main can move autonomously on exogenous events, these are the states

for which it is possible, by executing a suitable course of action, to reach

the states satisfying ρ. The second step is to identify, for each state in

the restricted domain, which is the best action that must be performed to

achieve the goals in ρ according to their preference order. The output of

this algorithm is a plan whose possible runs on the domain are either finite

and terminating in goal states, or infinite and traversing the goal states

infinitely often. This plan is optimal, always performing the action which

leads to the best achievable goal.

This optimal plan is our controller Σc. If Σc exists, it corresponds to a

synthesis of the original process model with the adaptations, which achieves

the process goal. We minimize Σc according to complete trace equivalence

and obtain Σrelaxed, which we translate back into a process model.
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Definition 23 (Σrelaxed)

Assume a corrective evolution problem defined by a process model M0, a

goal G, and a sequence of corrections C1, . . . , Cn, such that ∀i, 1 ≤ i ≤ n,

Ci = 〈cti, πi, ϕi,∆i〉 , cti ∈ {strict, relaxed}. Let Σ+ be the parallel product

of the encoding STSs, Σ+
no-labels the simplified Σ+, and ρ the planning goal.

If there exists Σc such that Σc . Σ+ |= ρ, then Σrelaxed is the minimization

of Σc according to completed trace equivalence.

Example In our scenario, we consider three problems for which at least

one correction in the input is relaxed, and which can be solved with the

relaxed corrective evolution approach.

The first problem corresponds to the case when correction C1 is relaxed

and correction C2 is strict. The process model obtained in this case is

shown in Figure 7.2. Note that the Schedule repair adaptation is applied

two times. The first time is the strict case, when the car is damaged on

the way to the storage area. The second time is due to the fact that

the correction is relaxed. In this case, the car is again on the way to

the storage area and is damaged a third time, after having applied the

adaptation Schedule repair for the first damage, and the adaptation Repair

temporarily for the second damage. Since the second correction is strict,

the Repair temporarily adaptation is applied only once, when the car is

damaged at the storage area.

The second problem corresponds to the case when correction C1 is strict

and correction C2 is relaxed. The process model which results in this case

is shown in Figure 7.3. Since the first correction is strict, the Schedule

repair adaptation is applied only once, when the car is damaged the first

time on the way to the storage area, and there are too many cars already

in the queue. The second correction is relaxed, and therefore the Repair

temporarily adaptation is applied not only once, but every time the car is
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Figure 7.2: Corrected process model: correction C1 is relaxed, C2 is strict

Figure 7.3: Corrected process model: correction C1 is strict, C2 is relaxed

damaged at the storage area and the queue is not full.

The third and final problem corresponds to the case when both cor-

rections C1 and C2 are relaxed. This is the least restrictive case of the

three. The process model which results after applying the relaxed correc-

tive evolution approach is shown in Figure 7.4. Note that the adaptations

Schedule repair and Repair temporarily are applied when the car is dam-

aged on the way to storage, and respectively at storage, independent of

how many damages already occurred.

Comparison to strict corrective evolution

By applying corrections, we are introducing behavior into the process

model. Therefore, the process model that results by applying relaxed

corrective evolution will allow more executions than the original process
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Figure 7.4: Corrected process model: both corrections are relaxed

model. Moreover, this process model will also allow more executions than

the process model obtained with strict corrective evolution. In other words,

when applying relaxed corrections instead of the corresponding strict cor-

rections, we are introducing more behavior into the process model.

To see why this is the case, assume we have a strict corrective evolution

problem defined by a process model M , a goal G, and a sequence of cor-

rections C1, . . . , Cn, such that for all i, 1 ≤ i ≤ n, Ci = 〈strict, πi, ϕi,∆i〉.
Then for all i, Mstrict will be able to replay all the executions that result by

applying ∆i to Mi−1 at πi for ϕi. We now replace one or more corrections

in C1, . . . , Cn with corresponding relaxed corrections. Then for all i, if Ci

is relaxed, Mrelaxed will be able to replay all the executions that result by

applying ∆i to Mi−1 at π for ϕi, where π is any trace on Mi−1 which ends

with the activity corresponding to toi. Since πi is one such trace, Mrelaxed

can replay all the executions of Mstrict.

7.2 Correctness of the Approach

In this Section, we prove that the relaxed corrective evolution approach

is correct. We consider a corrective evolution problem defined by a pro-

cess model M0, a goal G, and a sequence of corrections C1, . . . , Cn, such

that each correction Ci, 1 ≤ i ≤ n, has either the type strict or relaxed.
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We prove that the process model Mrelaxed, which results by following the

approach presented in the previous Section, is a solution to this problem.

In the following, we first prove that there exists a correspondence be-

tween the executions of Mn and the runs of Σ+
n , for every n ∈ N. Here,

Mn is the corrected process model and Σ+
n the parallel product STS, both

obtained at step n. We then show that if Mn satisfies the goal G, then

there exists a correspondence also between complete executions of Mn and

complete runs of Σn
c , where Σn

c is the controller of Σ+
n . In the correctness

proof, we then use this second correspondence to establish the equivalence

between a process model Mn which satisfies G and Mrelaxed, where Mrelaxed

is the translation of the minimized Σn
c .

7.2.1 Correspondence Between Executions of a Corrected Model

and Runs of the Parallel Product STS

Lemma 7

Assume a corrective evolution problem defined by a process model M0, a

goal G, and an empty sequence of corrections. Let Σ+
0 be the STS encoding.

Then for every execution of M0 there is a corresponding run of Σ+
0 , and

for every run of Σ+
0 there is a corresponding execution of M0.

Proof. M0 is defined over a set of domain objects O = {o1, . . . , op} and a

set of activities A. Since there are no corrections, the corresponding STSs

are Σ0
M0

, Σ0
semaphore, Σϕ0

,. . . ,Σϕm
,Σ0

o1
,. . . ,Σ0

op
, Σg1,. . . ,Σgk.

Σ0
M0

is the translation to an STS of M0, according to the rules in Table

5.1. Σϕ0
,. . . ,Σϕm

encode the conditions in M0. Σ0
o1

,. . . ,Σ0
op

encode the

domain objects, with transitions on actions corresponding to activities in

M0, and on trigger actions from ϕ0, . . . , ϕm. Σ0
semaphore is the semaphore

STS when there are no corrections, i.e., it contains only one state s0 labeled

with flag0. Finally, Σg1,. . . ,Σgk are the STSs corresponding to the goal

statements in G.
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Their parallel product is:

Σ+
0 = Σ0

M0
‖Σ0

semaphore‖Σϕ0
‖ . . . ‖Σϕm

‖Σ0
o1
‖ . . . ‖Σ0

om
‖Σg1‖ . . . ‖Σgk

(=>) For every execution of M0, there is a corresponding run

of Σ+
0 . From Lemma 5, we know that there is a correspondence between

executions of M0 and runs of Σ0.

By construction, Σ+
0 = Σ0‖Σg1‖ . . . ‖Σgk, and the actions in Σg1, . . . ,Σgk

do not appear in Σ0. Let ω be an execution of M0, and σ the corresponding

run in Σ0. Then there exists at least one run σ′ of Σ+
0 , such that the only

difference between σ and σ′ is that also transitions in the goal STSs may be

triggered. The correspondence is maintained between ω and σ′. Therefore,

for every execution of M0 there is a corresponding run of Σ+
0 .

(=>) For every run of Σ+
0 , there is a corresponding execution

of M0. For every run σ of Σ+
0 there is a run σ′ of Σ0, the only difference

between σ and σ′ being that in σ there are also transitions in the goal

STSs. Since every run of Σ0 corresponds to an execution of M0, we have

that also every run of Σ+
0 corresponds to an execution of M0. �

Lemma 8

Assume a corrective evolution problem defined by a process model M0, a

goal G, and a sequence of corrections C1, . . . , Cn, such that ∀i, 1 ≤ i ≤ n,

Ci = 〈ct, πi, ϕi,∆i〉, and ct ∈ {strict, relaxed}. For all i, 1 ≤ i ≤ n, Mi is

computed such that Exec(Mi) = Exec(Mi−1, Ci). Let Σ+
n be the generated

encoding. Then for every execution of Mn there is a corresponding run of

Σ+
n , and for every run of Σ+

n there is a corresponding execution of Mn.

Proof. The proof goes by induction.

base case, n = 0. Follows directly from Lemma 7.
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induction step, n-1 → n. Σ+
n is the parallel product Σn

M0
‖ Σ∆1

‖ . . . ‖Σ∆n
‖

Σn
semaphore‖ Σπ1‖ . . . ‖Σπn ‖ Σϕ1

‖ . . . ‖Σϕm
‖ Σn

o1
‖ . . . ‖Σn

op
‖ Σg1‖ . . . ‖Σgk.

Here, Σn
M0

is the extension of Σn−1
M0

with a transition on the ?resumen

action. Σn
semaphore is the extension of Σn−1

semaphore with a state sn and transi-

tions to and from this state. For every domain object o, Σn
o is the extension

of Σn−1
o with new transitions: on actions corresponding to activities in Ma

n

and on trigger actions introduced by ϕn and conditions in Ma
n . Since STSs

are added or extended in step n, every run of Σ+
n−1 is also a run of Σ+

n .

(=>) for every execution of Mn there is a corresponding run of Σ+
n .

We assume that for every execution of Mn−1 there is a corresponding run

of Σ+
n−1. Mn is computed such that Exec(Mn) = Exec(Mn−1, Cn). From

Lemma 1, we know that Exec(Mn−1) ⊆ Exec(Mn−1, Cn). Since runs of

Σ+
n−1 are also runs of Σ+

n , we have that for every execution of Mn which is

also an execution of Mn−1 there is a corresponding run of Σ+
n . (1)

Let ω = γ0
a1→ γ1 . . . γk−1

ak→ γk be an execution of Mn which is not an

execution of Mn−1. Then there exists i, 1 ≤ i ≤ k − 1, such that:

• 〈a1, . . . , ai〉 is a trace of Mn−1, and ai is the label of fromn;

• there exists γ′i directly reachable from γi which satisfies ϕn;

• γ′i
ai+1→ γi+1 . . . γj−1

aj→ γj is an execution of Ma
n , with i < j < k;

• finally, aj+1 is the activity label of ton in M0.

The prefix of ω up to step i, ω′ = γ0
a1→ γ1 . . . γi−1

ai→ γi, is an execution

of Mn−1. Therefore, there exists a run σ′ = s0, action1, . . . , actionm, sm

of Σ+
n which corresponds to ω′. State sm corresponds to γi. We need to

prove that there exists a run of Σ+
n σ for which σ′ is a prefix and which

corresponds to ω.

Up to step j + 1, the run σ is constructed in the same way as for the

proof of Lemma 6, for the strict case. First, the condition ϕn is triggered
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if necessary, followed by transitions corresponding to the execution on Ma
n .

Eventually, the control is given back to Σn
M0

, which moves to state sto, with

Σn
semaphore moving to s0. Next, the action corresponding to aj+1 is applied,

and the state reached corresponds to configuration γj+1.

Different to the strict case, from this point on the execution ω does not

necessarily continue on M0, and may repeatedly go through adaptations.

This can be matched in σ, since all the condition and adaptation STSs have

been reset to their initial state, and can be triggered again. Therefore, σ

corresponds to ω. (2)

From (1) and (2), we have that for every execution of Mn there is a

corresponding run of Σ+
n .

(<=) for every run of Σ+
n there is a corresponding execution of Mn.

We assume that for every run of Σ+
n−1 there is a corresponding execution

of Mn−1. We know that every run of Σ+
n−1 is a run of Σ+

n . Moreover, from

Lemma 1 we know that Exec(Mn−1) ⊆ Exec(Mn), and therefore every

execution of Mn−1 is also an execution of Mn. Then, for every run of Σ+
n

which is also a run of Σ+
n−1 there is a corresponding execution of Mn. (1)

Let σ be a run of Σ+
n which is not a run of Σ+

n−1. Then σ must be such

that at some point transitions in Σ∆n
and (if it exists) in Σϕn

were triggered.

For transitions in Σ∆n
and Σϕn

to be possible, one of ΣM0
,Σ∆1

, . . . ,Σ∆n−1

must reach a state labeled with pointn, and at the same time Σπn must be

in a state labeled with tracen (if the correction Cn is relaxed, Σπn contains

only this state).

Then σ = s0, action1, . . . , actioni, si, . . ., where the prefix of σ up to step

i is a run σ′ of Σ+
n−1, actioni corresponds to the activity label of node fromn,

and si,F |= pointn ∧ tracen. The execution ω′ = γ0
a1→ γ1 . . . γk−1

ak→ γk of

Mn which corresponds to σ′ is such that ak = l(fromn) and, if Cn is strict,

it matches the trace πn = 〈a1, . . . , ak〉.
(a) If si,F |= ϕn, there are two possibilities. If ϕn does not include
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uncontrollable literals, then Σϕn
has not been created, and the initial tran-

sition in Σ∆n
is enabled from si. Otherwise, if ϕn includes uncontrollable

literals, then Σϕn
has been created and the action in σ which follows si is

the !no-triggern action in Σϕn
. The next state s′i has the same labels as si,

since only Σϕn
moves on !no-triggern. Configuration γk corresponds to si

and in the second case also to s′i. Therefore also γk |= ϕn.

(b) If si,F 6|= ϕn, then since transitions in Σ∆n
are triggered in σ, this

can happen only if ϕn contains uncontrollable literals. The action in σ

which follows si is the !triggern action in Σϕn
. The relevant domain object

STSs move on !triggern, and the next state s′i is such that s′i,F |= ϕn. In

this case, γk corresponds to si and there exists a configuration γ′k directly

reachable from γk which corresponds to s′i, such that γ′k |= ϕn.

After state si, respectively s′i, there may also be transitions in the goal

STSs, however these only influence the state of their own STS. Eventually,

in the run σ the first actioni+1 which does not trigger a transition in a

goal STS corresponds to the initial transition in Σ∆n
. Since both Σ∆n

and

Σn
semaphore move, next state si+1 is such that si+1,F |= flagn. Therefore,

until a transition on ?resumen is reached in Σ∆n
, the next transitions in σ

are either controlled by Σ∆n
or by the goal STSs (which affect only their

state). Although transitions in the domain objects STSs and conditions

STSs may be triggered as well, these are controlled by the state of Σ∆n

through guards. Therefore, for the run σ′′ = s0, action1, . . . , actionj, sj,

where actionj =?resumen, there is a corresponding execution of Mn, ω
′′ =

γ0
a1→ γ1 . . . γk−1

ak→ γk . . . γl−1
al→ γl, where γk

ak+1→ γk+1 . . . γl−1
al→ γl is an

execution of Ma
n .

Since Σ∆n
, ΣM0

, and Σsemaphore move on ?resumen, state sj is such that

sj,F |= flag0 and ΣM0
is in a state ston

from which there is a transition

on actionton
corresponding to the activity label a of ton. If actionton

can

be fired in sj, then sj,F |= prea. Therefore also γl |= prea, a is the next
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action in the execution corresponding to σ, and sj+1 corresponds to γl+1.

From sj+1 and until the end of the run σ, the STSs that can move are:

the goal STSs, ΣM0
, any Σ∆i

and Σϕi
for which the correction Ci is relaxed,

and controlled by ΣM0
and Σ∆i

, the domain object STSs and condition

STSs. The transitions in the goal STSs influence only their own state, and

will not be reflected in the execution. The proof that for the sequence in the

run σ from sj+1 until the last state sp (sj+1, actionj+2, . . . , actionp, sp) there

is a corresponding sequence in the execution ω, γl+1
al+2→ γl+2 . . . γm−1

am→ γm

goes in a similar way. If ΣM0
moves on actions corresponding to activities,

these activities will appear in ω. If a plug-in point for a relaxed correction

Ci is reached, then the corresponding condition ϕi may be re-triggered and

the transitions in the adaptation STS Σ∆i
are fired. In the execution ω, an

execution of the adaptation model Ma
i is started. If the plug in point for

the next relaxed correction Cj is reached, condition ϕj may be re-triggered

and the control is given to Σ∆j
. In ω the execution of Ma

i is interrupted

and an execution of Ma
j starts. Therefore, also for a run of Σ+

n which is

not a run of Σn−1 there is a corresponding execution of Mn. (2)

From (1) and (2), we have that for every run of Σ+
n there is a corre-

sponding execution of Mn. �

7.2.2 Correspondence Between Complete Executions of a Cor-

rected Model and Complete Runs of the Controller

Lemma 9

Assume a corrective evolution problem defined by a process model M0, a

goal G, and a sequence of corrections C1, . . . , Cn, such that ∀i, 1 ≤ i ≤ n,

Ci = 〈ct, πi, ϕi,∆i〉, and ct ∈ {strict, relaxed}. For all i, 1 ≤ i ≤ n, Mi is

computed such that Exec(Mi) = Exec(Mi−1, Ci). Assume Mn satisfies the

goal G, and let Σn
c be the generated controller. Then for every complete

execution of Mn there is a corresponding complete run of Σn
c , and for every
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complete run of Σn
c there is a corresponding complete execution of Mn.

Proof. (=>) for every complete execution of Mn there is a corre-

sponding complete run of Σn
c . From Lemma 8, we know that for every

execution of Mn there is a corresponding run of Σ+
n .

The runs of the controlled system Σn
c . Σ+

n are a subset of the runs of

Σ+
n . Σn

c is constructed such that transitions on input actions are triggered

only to reach goal states, while transitions on output actions are considered

uncontrollable and are always triggered. Therefore, the runs of Σn
c . Σ+

n

are runs of Σ+
n for which the transitions in the goal STSs are triggered as

soon as they are enabled.

Let ω = γ0
a1→ γ1 . . . γk−1

ak→ γk be a complete execution of Mn and σ

the corresponding run of Σ+
n , in which the transitions in the goal STSs

are triggered as soon as they are enabled. We need to prove that σ is a

complete run of Σn
c . Σ+

n , or in other words that σ is such that the last

state is an accepting state.

Since ω is a complete execution of Mn, the last activity ak corresponds

to an end node in M0. Therefore in σ the state sp corresponding to γk

is such that ΣM0
is in the accepting state following the transition on the

action corresponding to ak. Further, the semaphore, adaptation, and con-

dition STSs are in their initial state, which is also accepting. The domain

object STSs and trace STSs have only accepting states. We need to prove

that either the goal STSs are in an accepting state, and therefore sp is an

accepting state of Σ+
n , or that from sp the next actions in σ move the goal

STSs to an accepting state.

Since Mn satisfies G, based on Definition 8, the following holds for every

goal statement ψ0 =⇒ (ψ1 � · · · � ψm) in G. If ∃i, 0 ≤ i ≤ k, such that

γi |= ψ0 or γ′i |= ψ0, where γ′i is a configuration directly reachable from γi

such that ai+1 is applicable in γ′i and γi+1 is reached by applying ai+1 to
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γ′i, then γk satisfies at least one of ψ1, . . . , ψm.

For each configuration γi in ω there is a corresponding state sj in σ.

If the execution passes a configuration γ′i directly reachable from γi, then

there is a state sl in σ corresponding to γ′i, such that between sj and sl the

transitions are triggered only in the condition STSs (and controlled by the

condition STSs, in the domain object STSs), or in the goal STSs.

Therefore, if γi or γ′i satisfies ψ0, then also the corresponding state s in

σ (either sj or sl) is such that s,F |= ψ0. Then the action !aψ0
follows s in

σ, and the goal statement STS Σg moves to a non-accepting state. From

the non-accepting state, Σg may move repeatedly to one of the accepting

states s1, . . . , sm and then back to the non-accepting state. We need to

prove that the last state in σ is such that Σg is in one of the accepting

states s1, . . . , sm. We recall that sp is the state in σ corresponding to γk.

Since γk satisfies at least one ψj, 1 ≤ j ≤ m, also sp,F |= ψj. Then, if the

goal statement STS Σg is still in the non-accepting state, the action !aψj
is

triggered in sp, and Σg moves to the accepting state sj.

We now need to prove that if ψ0 is not satisfied in any γi or directly

reachable γ′i, 0 ≤ i ≤ k, then also Σg does not move from s0. Since

γi 6|= ψ0, then also the corresponding state s in σ is such that s,F 6|= ψ0

and Σg does not move. Let sl be the state in σ corresponding to γi+1.

Then between s and sl−1, the only STSs that can move are the condition

STSs and, controlled by the condition STSs, the domain object STSs. If

any condition STS moves on a !no-trigger action, the domain object STSs

do not move, and the resulting state s′ is such that s′,F 6|= ψ0. If any

condition STSs moves on a !trigger, this can happen because of a condition

between the nodes corresponding to activity ai and ai+1, or because of a

condition from a correction. Therefore the resulting state s′ corresponds

to the configuration γ′i directly reachable from γi which is such that ai+1

is applicable in γ′i. Since γ′i 6|= ψ0, also s′,F 6|= ψ0, and Σg does not move
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from s0.

Since σ reaches an accepting state which is also a goal state, σ is a

complete run of Σn
c . Σ+

n . In Σn
c there exists one complete run σ′ matching

σ (only the names of states change). Then, for every complete execution

ω of Mn there exists a corresponding complete run σ′ of Σn
c .

(=>) For every complete run of Σn
c , there is a corresponding com-

plete execution of Mn. Every complete run σ of Σn
c matches a complete

run σ′ of Σn
c . Σ+

n . The run σ′ is a complete run of Σ+
n for which the last

state is a goal state. Since every run of Σ+
n corresponds to an execution of

Mn (Lemma 8), we have that also every complete run of Σn
c corresponds to

a execution of Mn. We now need to prove that this execution is complete.

Since σ′ is complete, the last state si in σ′ is such that ΣM0
is in an

accepting state. In ΣM0
there cannot be transitions on resume actions

leading to this accepting state (the resume actions always lead to the start

state of the transitions corresponding to the to nodes). The accepting state

can then be reached only by applying the action corresponding to an end

node activity in M0. Therefore there exists actionj preceding state si in

σ′, which corresponds to an end node activity in M0. From state sj+1, the

only STSs that can move are the goal STSs. Therefore, actionj is the last

action in σ′ corresponding to an activity. In the corresponding execution

of Mn, the last activity corresponds to an end node, and the execution is

complete. �

7.2.3 Correctness

Theorem 3 (Correctness)

Assume a corrective evolution problem defined by a process model M0, a

goal G, and a sequence of corrections C1, . . . , Cn, such that ∀i, 1 ≤ i ≤ n,

Ci = 〈cti, πi, ϕi,∆i〉 , cti ∈ {strict, relaxed}. Let Mrelaxed be the translation

of Σrelaxed. Mrelaxed is a solution for the corrective evolution problem defined
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by M0, G, and C1, . . . , Cn.

Proof. To prove the correctness of the approach, we have to prove that

Mrelaxed ≡Mn, where ∀i, 1 ≤ i ≤ n, Mi is computed such that Exec(Mi) =

Exec(Mi−1, Ci), and Mn satisfies G.

Mrelaxed is the translation of Σrelaxed, and Σrelaxed is the minimization of

the controller Σc. Based on Lemma 9, we know that there is a correspon-

dence between complete executions of Mn and complete runs of Σc.

Σrelaxed has less states than Σc, but the same set of complete traces

as Σc. The condition actions from ΣM0
,Σ∆1

, . . . ,Σ∆n
are present in Σc,

and therefore also in Σrelaxed. The reason is that Σc is such that for every

complete run of Σc, ΣM0
,Σ∆1

, . . . ,Σ∆n
must all reach an accepting state,

and the accepting states are only the initial and final states.

Mrelaxed is translated from Σrelaxed such that there exists a one-to-one

correspondence between complete traces of Mrelaxed and complete traces of

Σrelaxed. Actions in Σrelaxed are mapped into activities, which are copied

to Mrelaxed with their preconditions and effects from M0,M
a
1 , . . . ,M

a
n . The

condition actions in Σrelaxed are replaced in Mrelaxed with the branch con-

ditions from M0,M
a
1 , . . . ,M

a
n . For each correction Ci, we add branch con-

ditions on ϕi before each application of the first activity in the adaptation

∆i.

We know that there exists a one-to-one correspondence between com-

plete traces of Mrelaxed and complete traces of Σrelaxed, and Σrelaxed has the

same complete traces as Σc. Further, with Lemma 8, we know that there is

a one-to-one correspondence between complete traces of Mn and complete

traces of Σc. Therefore Mrelaxed has the same complete traces as Mn, i.e.,

Traces(Mrelaxed) = Traces(Mn). Moreover, if for some complete trace π

of Mn, there is a condition appearing between consecutive activities a and

a′, then this condition appears also in Mrelaxed for the complete trace π
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between a and a′. Since Mrelaxed has the same complete traces as Mn, and

also the same conditions and preconditions, then Mrelaxed will allow the

same executions as Mn. �

7.2.4 Completeness

Theorem 4 (Completeness)

Assume a corrective evolution problem defined by a process model M0, a

goal G, and a sequence of corrections C1, . . . , Cn, such that ∀i, 1 ≤ i ≤ n,

Ci = 〈cti, πi, ϕi,∆i〉 , cti ∈ {strict, relaxed}. Then the relaxed corrective

evolution approach always terminates on the problem defined by M0, G,

and C1, . . . , Cn. If the approach does not return a solution Mrelaxed, then

no solution for this problem exists.

Proof. Termination of the approach follows directly from the termination

of the planning approach proved in [9].

We prove that the approach always returns a solution if a solution exists

by contradiction. We assume that there exists a solution to the problem

Mn, and the relaxed corrective evolution approach does not return a solu-

tion. This can happen only if the planning algorithm returned no controller

Σc. This means that there exists an initial state in Σ+ for which there is

no strong plan to reach a goal state. In other words, in Σ+ there exists

an initial state for which there is no complete run leading to a recoverable

goal state. Let s0 be this initial state.

With Lemma 8, we know that for every run of Σ+ there exists a corre-

sponding execution of Mn. Therefore, each of the complete runs starting

from s0 which do not lead to a recoverable goal state will have a corre-

sponding execution of Mn. Since the corresponding runs do not lead to a

recoverable goal state, also these executions will not satisfy the goal. We

need to prove that at least one of these executions is complete.
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For the state s0 in Σ+ there is exactly one corresponding initial configu-

ration of Mn, γ0. For every initial configuration γ of Mn, if there is at least

one execution from γ, then at least one such execution from γ is complete

(otherwise, the process deadlocks). Assume ω = γ0
a1→ γ1 . . . γk−1

ak→ γk is

one such complete execution from γ0. With Lemma 8, there exists a run σ

in Σ+ which corresponds to ω. If σ is incomplete, then it does not reach

a goal state (goal states correspond to accepting states in the goal STSs).

Otherwise, if σ is complete, then it is one of the complete runs from s0

which does not lead to a goal state. Since no goal state is reached in the

corresponding run, then also ω does not satisfy G. Since ω is a complete

execution of Mn, this means that also Mn does not satisfy the goal G,

leading to a contradiction.

Therefore, if a solution to the problem exists, then also the relaxed

corrective evolution approach returns a solution. �

7.3 Discussion

Given a corrective evolution problem for which the corrections are either

strict or relaxed, if a solution to the problem exists, it will be found using

the relaxed corrective evolution approach described in this Chapter. How-

ever, it can be the case that a solution for the problem does not exist, or in

other words, it can be the case that none of the process models obtained

by applying the sequence of corrections satisfies the goal of the original

process model.

To deal with this situation, we can combine the strict and relaxed cor-

rective evolution approaches in the following way. We can first apply all

the corrections as strict; with strict corrective evolution, we will obtain

one evolved process model. We can then switch various corrections from

strict to relaxed, considering all the combinations, and apply the relaxed
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corrective evolution approach to the resulting problems. This way, we are

guaranteed to find at least one evolved process model. If more than one

evolved process models have been created, we can rank them according to

intrinsic properties, such as size or complexity. We can also rank them

based on the past performance of the adapted process instances that they

represent.

In the following Chapter, we will perform exactly such a comparison

between evolved process models. In particular, we will measure how much

the evolved process models deviate behaviorally and structurally from the

original process model, and how well they represent the adapted process

instances.
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Chapter 8

Evaluation

We implemented the solutions presented in Chapter 6 and Chapter 7 into

a prototype tool. For strict corrective evolution, our tool generates the

parallel product of the STSs using the NuSMV 1 model checker. For relaxed

corrective evolution, the automated planning is realized using WSYNTH,

one of the tools from the ASTRO 2 toolset. For both strict and relaxed

corrective evolution, our tool minimizes STSs using one of the tools from

the mCRL2 toolset 3, called ltsconvert.

Using our prototype tool, we conducted a series of experiments with the

aim of showing the tradeoffs between applying strict and relaxed correc-

tions. As starting point for our experiments, we have chosen the event log

from the 2012 edition of the BPI Challenge 4.

In the following, we first shortly describe this log. We then present the

common setup of our experiments, followed by each experiment. We close

the chapter with a discussion, where we draw some general conclusions

based on the results obtained.

1http://nusmv.fbk.eu
2http://www.astroproject.org
3http://www.mcrl2.org
4http://www.win.tue.nl/bpi2012/doku.php?id=challenge
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8.1 Overview of the Event Log

The event log proposed in the 2012 BPI Challenge is a real-life log taken

from a Dutch financial institute. The log represents data recorded over

approximately six months, from October 2011 to March 2012. In total,

the log contains 262.200 events in 13.087 traces. The events contain in-

formation regarding the resource processing the event, the timestamp, the

name of the process activity, as well as the stage in the lifecycle of the

activity (schedule, start, complete).

The traces in the log correspond to instances of a single process, an

application process for a personal loan or overdraft. We shortly describe

this process. A process instance starts when a customer submits a loan or

overdraft application. This application first goes through some automatic

checks. For applications which are considered suspicious, a further check

for fraud may be performed. If these checks are successful, the customer

is contacted by phone in order to obtain additional information. If the

application is eligible, an offer is sent to the customer by mail. When the

response to the offer is received, this response is assessed, and the customer

may be contacted again for missing information. The application then goes

through a final assessment, after which it is either approved, declined, or

cancelled.

Without the support of log analysis and process mining tools, this log

is an overwhelming mass of data. The complexity of the log does not come

from the number of activities involved, the number of distinct activities

being 36, a rather small number. For comparison, the number of distinct

activities in the real-life log from the 2011 BPI Challenge, which concerned

a patient treatment process, is 624. Instead, the complexity of the log seems

to stem from a great variation in how the applications are processed, in

terms of the order of executing the process activities, as well as the number
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Figure 8.1: Mining result on the raw event log

of times certain execution sequences are re-executed.

To give an idea of this complexity, we used one of the basic process

mining tools from the ProM framework 5, namely the Heuristic Miner

[119], to directly mine the log, without any filtering or pre-processing. The

resulting heuristics net is shown in Figure 8.1. This result also shows that

5http://www.promtools.org

149

http://www.promtools.org


CHAPTER 8. EVALUATION

a naive approach to mining the log is not sufficient, since mining the raw

log yields an incomprehensible process model, a model that is not suitable

to be analyzed by humans.

8.2 Experimental Setup

In this section, we describe the setup of our experiments. Since we started

from an execution log, we needed to recreate all the other elements required

by our approach: the domain objects, the original process model and its

goal, as well as the corrections to the process model.

To make the BPI Challenge execution log compatible with our approach,

we have made several assumptions. The basic assumption was that there

exists a process model which corresponds to the log, such that the traces

recorded in the log correspond to regular or adapted instances of this pro-

cess model. Moreover, this process model does not fit perfectly to the log,

or in other words at least one of the traces in the log corresponds to an

adapted process instance. In general this is not necessarily the case, since

the traces may correspond to a process model which fits perfectly to the

log.

Our two other assumptions are related to the adaptation assumptions

described in Section 3.4: that adaptation occurs only in case a design-time

constraint is violated, and that the purpose of adaptation is to reach the

original goal of the process model. We have used these two last assump-

tions when designing our elements, in particular the domain objects, the

conditions on control edges, and the activity preconditions.

8.2.1 Designing the Domain Objects

We designed our domain objects based on the event log and the textual

descriptions given as input in the challenge. In total, we created seven
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Figure 8.2: Domain objects for the loan application process

domain objects. Two of these domain objects, Application and Offer, are

shown directly in Figure 8.2. The third diagram in Figure 8.2, which we

called a Work Item, stands in fact for five domain objects which have

different names, but have the same states, events, and transitions.

The Work Item domain objects represent phases in the execution of

long running tasks. Their role is to restrict the order in which activities
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triggering these phases can occur. To clarify the purpose of these work

items in processing the loan application, we list here their names and the

English description (we used the original names in Dutch):

• ’Afhandelen leads’ - fixing incoming lead,

• ’Completeren aanvraag’ - filling in information for the application,

• ’Valideren aanvraag’ - assessing the application,

• ’Nabellen offertes’ - calling after sent offers,

• ’Nabellen incomplete dossiers’ - calling to add missing information to

the application.

The Application and Offer domain objects correspond to artifacts cre-

ated during the execution of the loan application process. The Application

is a domain object created as soon as the client requests a loan, and in

which all the necessary information about the client and the loan request

is accumulated during the execution of the process. After the final assess-

ment, the Application can be either approved and activated, declined, or

cancelled.

The Offer object is created only in case the loan application is eligible.

The domain object allows multiple iterations to be performed, in which

the offer is selected, created, sent to the client, and received back. As soon

as the current offer is cancelled, a new offer can be created and sent to the

client. Eventually, the offer is either accepted or declined.

We designed the domain objects in two steps. To obtain the application

object, we first filtered the event log to include only the activities related

to application status. In the log, these are events having the name prefixed

with “A ”. We mined the filtered log using the Transition System Miner

and obtained an STS representing the lifecycle of the application, as it

appears in the event log. We proceeded in a similar way with the offer and
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work items, and filtered the log to include only activities related to offer

status (name prefixed with “O ”), respectively work item status. We then

mined the filtered logs to obtain the lifecycle of the offer, respectively work

item.

In the second step, we used the logs and the textual description given

as input in the challenge to modify these STSs. For example, the textual

description of applications states that after some initial automatic checks

are performed, the application is complemented with additional informa-

tion, after which a decision whether the application is eligible is taken. We

therefore added in the Application domain object an intermediary state

AddingInfo, from which the Application can move to state Accepted, Can-

celled, Declined, or NotEligible. Since information can be added repeatedly,

the object stays in AddingInfo as long as the event addInfo is triggered. To

encode that the decision that the application is not eligible is taken outside

the process, we added a state NotEligible, to which all incoming transitions

are on the uncontrollable event isNotEligible. From state NotEligible, the

application can only move to state Declined.

A similar example is that of the state Assessing. In this case, we know

from the description that there is a final assessment of the application,

before being approved and activated. We therefore added the intermediary

state Assessing to the Application, from which the object can move to

Approved, Cancelled, or Declined.

8.2.2 Annotating the Activities

We used the domain objects to annotate all the activities that appear in

the log with preconditions and effects. For annotating the activities we

used the activity names, as well as the textual description given as input

in the challenge.

For example, we know from the textual description that the application

153



CHAPTER 8. EVALUATION

is complemented with additional information after passing the automatic

check. The activity W Completeren aanvraag SCHEDULE (scheduling the

filling in of information for the application) can then happen only if the

Application object is in state Preaccepted. Therefore, the precondition for

this activity is the formula:

NotExists(Completeren aanvraag) ∧ Preaccepteds(Application),

and the effect is the event: schedulee(Completeren aanvraag).

The next activity for this work item, W Completeren aanvraag START,

is responsible for triggering the addInfo event in the Application object,

and thereby moving the object in the state AddingInfo, if the object is not

already in this state. We therefore annotated this activity with the precon-

dition: Scheduleds(Completeren aanvraag)∧(Preaccepteds(Application)∨
AddingInfos(Application)) and the effects:

{starte(Completeren aanvraag), addInfoe(Application)}
The last activity for this work item, W Completeren aanvraag COM-

PLETE, should be triggered if the corresponding work item object is in the

state Started or Interrupted (the latter is a state reachable only through an

uncontrollable event). While this activity triggers in both cases the same

event complete, note that if the work item object is in state Started, it

will move to state Completed, while if it is in the state Interrupted, it will

be reset to the initial state. The precondition of this activity is the formula:

Starteds(Completeren aanvraag)∨Interrupteds(Completeren aanvraag),

and the effect is: completee(Completeren aanvraag).

8.2.3 Obtaining the Original Process Model

To create a process model which could be considered as the first represen-

tation of the application, we used both the event log and the description of

the challenge. It is important to note that the process model that we were

searching for did not have to represent all the behavior in the event log.
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In fact, we knew that if this process model contained less behavior, then

we would be able to generate more evolutionary corrections. However, the

process model had to reflect some of the most frequent behavior in the log.

Otherwise, a correction referring to very frequent behavior would lead to a

process model which fits to the log to a much greater extent than a similar

correction referring to less frequent behavior.

From the challenge description, we know that by the end of any com-

pleted process instance of the loan application process, a decision is taken

whether to approve, decline, or cancel the application. We therefore created

our original process model by first obtaining a process model correspond-

ing to frequent traces in the log for which the application was eventually

approved. We then used our mechanism for detecting frequent differences

between the process model and the log, which we describe in Section 8.2.4,

to correct this process model and represent the most frequent traces in

which the application is declined, respectively cancelled.

To obtain the process model for approved applications, we proceeded as

follows. Using a log filter, we noted that the most frequent end event for

traces corresponding to successful applications is the event W Valideren

aanvraag COMPLETE. We therefore considered only these traces, and

applied a second filter, the process instance frequency filter, in order to

consider only traces which appear multiple times. A threshold of 4 for this

filter was suficient to obtain, by mining the filtered log, a simple enough

process model. We further simplified this model by removing the activities

concerning application declining and cancelling, as well as the loops.

The reason why we first needed to filter the log to obtain this pro-

cess model, instead of creating the process model directly from the most

frequent traces, is related to an interesting property of the log. The

traces in the log are such that applications are much more often declined

than approved or cancelled. For example, the event A DECLINED COM-
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PLETE occurs 7635 times in the log (2.9% of the events), while the

event A APPROVED COMPLETE occurs only 2246 times (0.8%), and

A CANCELLED COMPLETE 2807 times (1%). Therefore, mining the

most frequent traces results in a process model which does not contain the

behavior in which the application is approved, which is, in some sense, the

successful behavior of the process.

We corrected the process model obtained for successful applications to

include the most frequent behavior for declining, respectively cancelling

the application. The process model we obtained, and which we used in all

the experiments, is shown in Figure 8.3. Compared to the process model

shown in Figure 8.1, our rough process model is much easier to follow, and,

although it does not represent by far all the behavior in the log, from the

way it was constructed we know it represents some of the most frequent

behavior in this log.

After having created the process model, we defined a goal for this model

based on the domain objects in Figure 8.2. Using the goal, we represented

the fact that a state when the application is activated, declined, or cancelled

must eventually be reached, and that having the application activated is

prefered to having it declined or cancelled:

> =⇒ Activateds(Application) �
Declineds(Application) ∨ Cancelleds(Application)

8.2.4 Generating Corrections

To generate corrections, we computed the most frequent differences be-

tween our rough process model and the traces in the log. We shortly

explain our strategy for computing these differences. We started by try-

ing to replay every trace in the log on the process model. In the moment

where we could no longer replay a trace on the process model, we started

recording the difference. We continuously tried to match each following
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Figure 8.3: A rough process model
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activity in the trace to the activity nodes in our process model. If such

an activity was found, we completed the recording of the difference. This

difference would then contain the partial trace which could be replayed

on the process model, the node in the process model where the deviation

started, the sequence of activities which could not be matched, and finally

the node in the process model matching the activity in the trace. Note

that for a single trace multiple differences to the process model could be

recorded.

When matching activities in the trace to the activity nodes in the process

model, we used the following assumption. We assumed that there is a

preference order in applying adaptation strategies, with the most preferred

strategy being the inclusion of a process fragment (the from and to nodes of

the adaptation are consecutive nodes), followed by the strategy of including

a fragment and performing a forward jump, and finally the strategy of

including a fragment and performing a backward jump. Therefore, we first

tried to match the activity with the nodes which follow the last matched

node, continuously increasing the distance from this last matched node.

If unsuccesful, we then tried to match the activity with nodes appearing

before the last matched node.

After collecting all the differences, we computed their frequencies, and

used the most frequent differences to create our corrections. Since each

difference includes a from node and a to node from our original process

model, as well as a sequence of activities which could not be replayed on

this model, the adaptation can be generated in a straightforward way. To

generate the condition, we assumed that an adaptation must have been

performed if the next activity in the model could not be executed, and

combined the negation of the precondition of this next activity with the

precondition of the first unmatched activity. Then, to create a strict cor-

rection, we used the partial trace in the difference, the condition, and the
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adaptation. To create the corresponding relaxed corection, we used only

the condition and the adaptation.

8.3 Evaluating Tradeoffs Between Strict and Relaxed

Corrections

We evaluated the tradeoffs between applying strict and relaxed corrections

by comparing the resulting process models with the original process model

along three dimensions:

• fitness - how much of the behavior in the log is captured by the cor-

rected process models;

• precision - how much extra behavior is allowed by the corrected pro-

cess models when compared to the original model;

• structure - how much the corrected process models deviate structurally

from the original model.

We used several metrics devised for evaluating process mining results,

which are implemented in the ProM framework. In the following, we de-

scribe describe in turn each metric used and the results obtained.

8.3.1 Fitness

To measure fitness, we used the f metric introduced in [90], implemented in

ProM as token-based fitness. This is a fine-grained metric, which quantifies

the extent to which the traces in the log can be replayed on the process

model, punishing problems caused by activities that are not activated or

that remain activated.

We were interested not only to compare the two types of corrections,

but also to evaluate the fitness of corrected process models over time. For
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Figure 8.4: Fitness: corrections applied (1) individually; (2) incrementally

this purpose, we used only a fragment of the entire log (roughly one sixth,

corresponding to the first month) to generate our corrections. This way, we

simulate the situation when the process model is evolved after having been

executed for one month, based on the adapted process instances collected

during this month. We then measured the fitness of the corrected process

models obtained by applying strict, respectively relaxed, corrections on the

one-month log fragment, as well as on the entire log. The results are shown

in Figure 8.4.

We measured the fitness of the corrected models on the one-month log

fragment in order to test if applying corrections increases the fitness of

process models, and also which of the two correction types leads to a higher

fitness. By measuring the fitness of the corrected models also on the entire

log, we simulate the passing of time, and therefore test if the corrections

applied based on the adaptations performed in the first month are still

relevant over the entire six months period.

Figure 8.4(1) shows the fitness of corrected process models when cor-

rections were applied individually, i.e., at each step we applied exactly one
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correction on the original process model. Figure 8.4(2) shows the fitness

when corrections were applied incrementally. At step 0, we measured the

fitness of the original process model. Then, in the strict version, at step n

we corrected the original process model with n strict corrections. In the re-

laxed version, at step n we corrected the original model with m ≤ n relaxed

corrections. The number of strict and relaxed corrections is not necessarily

equal, since several strict corrections may correspond to the same relaxed

correction. As can be seen in Figure 8.4(2), the fitness of process models

increases when applying corrections, for both correction types. However,

the fitness is higher for relaxed corrections, and it remains higher also when

tested against the entire log.

8.3.2 Behavior

To measure changes in behavior, we used the behavioral precision BP metric

introduced in [22]. BP quantifies how much extra behavior a process model

allows with respect to a reference process model and an event log. BP is

lower when the deviation in behavior is higher. Traces in the log are

weighted by frequency, such that the more frequent a deviating behavior

is, the lower the value obtained for BP .

Similar to the previous measurements, we measured BP of corrected

process models when the corrections are applied both individually and

incrementally. For the event log, we used the one-month log fragment.

The results are shown in Figure 8.5. As expected, we observe that strict

corrections introduce less behavior than relaxed corrections.

As it can be seen from Figure 8.5(1), the highest difference between the

values measured for process models when corrections were applied individ-

ually occurs for the corrections 4 and 10. The reason for this difference is

that in both cases the relaxed correction introduces a loop in the process

model. In Figure 8.6 we show the process models obtained by applying cor-
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Figure 8.5: Behavioral precision: corrections applied (1) individually; (2) incrementally

rection 4 as a strict, respectively as a relaxed correction. In both process

models, we highlighted the fragment which is introduced by the correction.

8.3.3 Structure

To measure the deviation in structure, we used the structural precision SP

metric introduced in [22], which assesses how many connections a process

model has that are not in a reference process model. Similar to the be-

havioral precision metric, SP is lower when the deviation is higher. We

measured SP of corrected process models when the corrections are applied

individually and incrementally. The results are shown in Figure 8.7. We

observe that relaxed corrections lead to smaller structural changes than

the corresponding strict corrections.

An interesting case is that of corrections 8 and 12, which lead to the

lowest values for the strict corrections in Figure 8.7(1). For each of these

strict corrections, the partial trace to the plug-in point passes through the

first And-block in the process model in Figure 8.3. In order to apply the

correction, the process model had to be unfolded up to the plug-in point.
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Figure 8.6: Corrected process models for the 4th correction
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Figure 8.7: Structural precision: corrections applied (1) individually; (2) incrementally

No such unfolding was necessary for the corresponding relaxed corrections.

To give an idea of the difference between the process models which result

by applying correction 8 as a strict, and respectively relaxed correction, we

included a picture of these process models in Figure 8.8. Both process

models contain more activity nodes than the original process model, due

to the corrections, and also to the fact that the And-blocks have been been

unfolded. However, while the process model which results by applying the

relaxed correction has in total 36 activity nodes, the process model for the

strict correction has in total 45.

8.4 Discussion

Based on the results we obtained in our experiments, we conclude that for

this scenario there is a tradeoff between applying strict and relaxed correc-

tions. Specifically, relaxed corrections introduce more behavior, but lead to

process models which have a higher fitness and less structural changes than

strict corrections. Therefore, these results provide a first confirmation that

by choosing different correction types we can obtain process models which
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Figure 8.8: Corrected process models for the 8th correction

165



CHAPTER 8. EVALUATION

differ both in terms of behavior and in terms of structure. Moreover, since

the fitness is higher for process models obtained with relaxed corrections,

this is an indication that these process models would require less future

adaptations than if strict corrections were applied.

In general, we expect relaxed corrections to introduce more behavior

than the corresponding strict corrections as soon as there is more then one

trace leading to the plug-in point. Moreover, relaxed corrections which

realize backward jumps will introduce significantly more behavior than the

strict corrections, since by applying these relaxed corrections we introduce

loops in the process model.

In case there is more then one trace to the plug-in point, the relaxed

corrections should also introduce less structural changes, since the strict

corrections will require unfolding the process model up to this plug-in point,

possibly duplicating many activity nodes.

Regarding fitness, a relaxed correction should be more effective than

the corresponding strict correction if the process instance adaptation is

commonly performed at the given point in the execution of the process

model, independent of the trace followed up to that point.
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Chapter 9

Conclusion

In this dissertation, we presented a new approach for process evolution.

With process evolution we mean changing the process model in order to, for

example, implement optimizations, accommodate legal or policy changes,

improve the design of the process model.

We evolve process models based on the structural adaptations of pro-

cess instances. Various approaches which use the structural adaptations

of process instances to evolve process models or to support evolution al-

ready exist. Similar to our approach, they may use the logs of process in-

stance adaptations, also known as change logs (e.g.,[87, 117, 105]). Other

approaches support process evolution by considering the process variants

that result by structural adaptation (e.g.,[37, 47, 53]). An aspect which is

insufficiently explored in these approaches is how to ensure that the evolved

process model achieves the same goal as the original model. Addressing

this aspect is the main aim of the work presented in this dissertation.

9.1 Achieved Results

Process evolution is a rather late phase in the lifecycle of a process-based

application, and requires the existence of a framework which supports also

the modeling, execution, and adaptation of this application. We therefore
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started by describing such a framework. Our process evolution framework

allows to model an application as a collection of process models, together

with the domain objects that these process models influence, and the goals

that the models achieve. In the execution phase, the process models and

corresponding domain objects are instantiated, and the process instances

are executed. Existing runtime adaptation techniques such as [12, 21, 28]

can be used for adapting the process instances. The execution and adap-

tation events are recorded into logs. In the analysis phase, these logs can

be examined using existing analysis techniques such as [122, 105]. Adap-

tations which are successful according to performance indicators may be

proposed for inclusion in the process model, thereby triggering evolution.

For evolving process models, we started from the idea that a process

instance adaptation is tightly coupled to the context and trace for which

it is used, and may even be harmful if used for different contexts or traces.

When deciding to evolve the process model to include an instance adap-

tation, one straightforward possibility is to restrict the adaptation to the

exact same context and trace as it was used in the process instance. We

considered also the case when the adaptation should be inserted in the pro-

cess model in a less restrictive way, allowing more freedom in selecting the

context or the trace. We make sure that also in this case the adaptations

that we introduce in the process model are not harmful by specifying the

goals achieved by the original model, and verifying that these goals are

achieved also by the evolved process model.

The main contributions of the research work presented in this disserta-

tion are: (i) we presented a formal model which ensures that the evolved

process model achieves the same goal as the original process model, (ii) we

designed automated techniques for solving two increasingly general correc-

tive evolution problems, (iii) we evaluated the tradeoffs between applying

strict and relaxed corrections on a scenario built on a real event log.
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A formal model for process evolution which ensures goal compliance. We

presented a formal model for evolving process-based applications, which

allows us to evolve a process model based on process instance adaptations,

and at the same time ensure that the evolved process model continues to

satisfy the goal of the original model.

To represent the process-based application, we modeled the domain

knowledge using domain objects, the business logic using process mod-

els, and the relations between business logic and domain knowledge using

process model annotations and goals. Based on this formal representation,

we defined concepts related to the execution and adaptation of the appli-

cation, as well as goal satisfaction criteria. These concepts were then used

for defining evolutionary correction as the operation of changing a process

model to include an instance adaptation at a certain point and for a cer-

tain condition. Finally, we defined the corrective evolution problem as the

problem of applying a sequence of corrections, such that the resulting pro-

cess model satisfies the original goal. By formulating the problem as the

application of a sequence of corrections, rather than only one, we addressed

a more general problem, since solving a corrective evolution problem may

return more solutions than applying one correction at a time.

Automated corrective evolution techniques. We developed automated tech-

niques for solving two cases of the corrective evolution problem: when all

corrections are strict, and when the corrections are either strict or relaxed.

If all corrections are strict, a solution can be constructed using a naive

approach. However, the resulting process model will contain many dupli-

cated nodes. To find a solution with as few duplicated nodes as possible,

we devised an automated approach based on state transition systems. If

the original process model and the adaptation models do not contain par-

allelism, the process model obtained using this approach is the minimal
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solution to the corrective evolution problem. Otherwise, the parallelism

can be restored by applying post-processing techniques. Finally, we proved

the correctness and completeness of the approach.

If corrections are either strict or relaxed, it is necessary not only to

compose the process model and adaptations, but also to verify that the

composition satisfies the goal. For this purpose, we devised an automated

approach based on planning. The resulting process model includes all the

corrections and is at the same time guaranteed to satisfy the goal of the

original process model. Also in this case, we proved the correctness and

completeness of the approach.

Evaluation of tradeoffs between strict and relaxed corrections. We imple-

mented the two automated corrective evolution techniques into a prototype

tool. Using this tool, we evaluated the tradeoffs between applying strict

and relaxed corrections on a scenario built on a real event log. We com-

pared the corrected process models with the original process model along

three dimensions: fitness (how much of the behavior in the log is cap-

tured), precision (how much behavior is introduced), and structure (how

many structural differences are introduced). For this scenario, we observed

the following tradeoffs: relaxed corrections introduce more behavior, but

lead to a higher fitness and less structural changes than strict corrections.

These experimental results provide a first confirmation that the choice

of correction type influences both the behavior and the structure of the

evolved process model.

9.2 Future Directions

The work presented in this dissertation can be extended in several direc-

tions. The first and most important direction is to design and evaluate
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solutions for the general case, when corrections can also be relaxed with

conditions. If at least one correction is relaxed with conditions, the correc-

tive evolution problem becomes a search problem. For each such correction,

the partial traces on which the correction can be applied are not specified.

We therefore need to search for the traces on which the adaptation can

be applied, such that, by applying the other corrections, we can obtain a

process model which satisfies the goal. Since there may be an infinite set

of such partial traces, the challenge is to understand how to group these

traces such that the number of tests to be performed is finite.

Designing a search strategy is difficult also because the set of traces

on which a correction which is relaxed or relaxed with conditions can be

applied is not fixed, and depends on the other corrections. This is due

to the fact that the corrections introduce traces. The problem gets sig-

nificantly more complex if there is more than one relaxed correction with

conditions, due to the combinatorial explosion. We therefore need to de-

sign search techniques which can deal efficiently with this complexity, for

example using heuristics.

A different extension concerns the specification of corrections, and the

possibility to automatically derive suggestions for new corrections. The

idea would be to integrate our approach with an approach able to ana-

lyze previous process instance executions and adaptations and derive pro-

cess model changes. For example, the approach presented by Soffer et

al. in [105] groups process instances based on similar contextual proper-

ties, traces, and outcomes, and can be used for answering questions about

performance and for identifying successful adaptations. These successful

adaptations, together with the traces and situations in which they can be

applied, can then be used as corrections in our corrective evolution ap-

proach.

By integrating our process evolution approach with a log analysis ap-
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proach, we will also have the possibility to evaluate our process evolution

approach in a dynamic setting. The empirical evaluation discussed in this

dissertation is static, in the sense that since we create and evolve the pro-

cess model based on an execution log, we cannot measure how the evolved

process model influences the performance of the application. If our ap-

proach is integrated with a log analysis approach, we can perform a differ-

ent evaluation, using a running system. An interesting experiment would

be to apply corrections to a process model used in a running system, allow-

ing corrections to be either strict, relaxed, or relaxed with conditions. The

idea would be to measure which process models require less adaptations

and perform best in the long run. Regarding the number of adaptations,

since relaxed corrections (with conditions) introduce more behavior, they

should require less adaptations, but only if this behavior is actually used.

Regarding performance, this new behavior introduced by relaxed correc-

tions (with conditions) may be unknown, so we should measure how the

overall performance is affected by the new behavior.

Finally, two other research directions for our process evolution approach

concern extending the goal language, respectively the process modeling

language. Regarding goals, we can extend the language to include do-

main object events, similar to the language for composition requirements

in [10], respectively try-catch statements similar to the language proposed

in [43]. Regarding process models, and interesting extension would be

to consider a concrete process modeling language, such as BPMN [1] or

WS-BPEL [2]. For both goal language and process modeling language

extensions, we would have to extend our definitions of goal satisfaction,

trace, and execution, as well as our encoding into state transition systems.

We should then be able to apply the two corrective evolution techniques

discussed in this dissertation to this extended setting without any further

changes.
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