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SUMMARY 

 

 

The present doctoral thesis deals with the study and the analysis of large strain and 

high strain rate behavior of materials and components. Theoretical, experimental 
and computational aspects are taken into consideration. Particular reference is 

made to the modeling of metallic materials, although other kinds of materials are 

considered as well. The work may be divided into three main parts. 

The first part of the work consists in a critical review of the constitutive modeling 
of materials subjected to large strains and high to very high strain rates. Specific 

attention is paid to the opportunity of adopting so-called strength models and 

equations of state. Damage and failure modeling is discussed as well. In this part, 

specific interest is addressed to reviewing the so-called Johnson-Cook strength 

model, by critically highlighting its positive and negative aspects. One of the main 
tackled issue consists in a reasoned assessment of the various procedures 

adoptable in order to calibrate the parameters of the model. This phase is enriched 

and clarified by applying different calibration strategies to a real case, i.e. the 

evaluation of the model parameters for a structural steel. The consequences 

determined by each calibration approach are then carefully evaluated and compared. 
The second part of the work aims at introducing a new strength model, that 

consists in a generalization of the Johnson-Cook model. The motivations for the 

introduction of this model are first exposed and discussed. The features of the new 

strength model are then described. Afterwards, the various procedures adoptable 
for the determination of the material parameters are presented. The new strength 

model is then applied to a real case, i.e. a structural steel as above, and the results 

are compared to those obtained from the original Johnson-Cook model. Comparing 

to that, the obtained outcomes show that the new model displays a better capacity 

in reproducing experimental data. Results are discussed and commented. 
The third and final part of the work deals with an application of the studied topics 

to a real industrial case of interest. A device called perforating gun is analyzed in its 

structural problematics and critical aspects. This challenging application involves 

the modeling of several typologies of material, large strains, very high strain rate 
phenomena, high temperatures, explosions, hypervelocity impacts, damage, 

fracture and phase changes. In this regard, computational applications of the 

studied theories are presented and their outcomes are assessed and discussed. 

Several finite element techniques are considered. In particular, tridimensional 

Eulerian simulations are presented. The obtained results appear to be very 
promising in terms of the possibilities of a fruitful use in the design process of the 

device, in particular in order to achieve an optimization of its key features. 



 

 
 

 

 

 
 

 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

 

 
 

 



SOMMARIO 

 

 

Questa tesi di dottorato tratta lo studio e l’analisi del comportamento di materiali e 

componenti soggetti a grandi deformazioni ed alte velocità di deformazione. 
Vengono discussi aspetti teorici, sperimentali e computazionali, con particolare 

riferimento alla modellazione di materiali metallici, sebbene altre tipologie di 

materiale siano altresì considerate. Il lavoro può essere diviso in tre parti principali. 

La prima parte del lavoro consiste in una revisione critica della modellazione 
costitutiva di materiali soggetti a grandi deformazioni ed alte o molto alte velocità di 

deformazione. Specifica attenzione è rivolta all’opportunità di utilizzare i cosiddetti 

modelli di resistenza ed equazioni di stato. La modellazione del danneggiamento e 

della rottura è altresì discussa. In questa parte, specifico interesse è indirizzato alla 

revisione del cosiddetto modello di resistenza di Johnson-Cook, sottolineandone 
entrambi gli aspetti positivi e negativi. Uno dei punti principali presentati consiste in 

una valutazione ragionata delle varie procedure adottabili ai fini della calibrazione 

dei parametri del modello. Questa fase è arricchita e chiarificata dall’applicazione 

delle strategie di calibrazione ad un caso reale, consistente nella valutazione dei 

parametri del modello per un acciaio strutturale. Le conseguenze determinate da 
ogni approccio di calibrazione sono poi attentamente valutate. 

La seconda parte del lavoro mira ad introdurre un nuovo modello di resistenza, 

consistente in una generalizzazione del modello di Johnson-Cook. Le motivazioni 

per l’introduzione di tale modello sono discusse, insieme alle sue principali 
caratteristiche. In seguito, vengono presentate le varie procedure utilizzabili per la 

determinazione dei parametri del modello. Il nuovo modello è poi applicato ad un 

caso reale, l’acciaio strutturale di cui sopra, ed i risultati sono comparati a quelli 

ottenuti con il modello di Johnson-Cook originale. Comparandosi a tale modello, le 

previsioni ottenute dimostrano come il nuovo modello presenti una migliore capacità 
di riprodurre i dati sperimentali. I risultati sono quindi discussi e commentati. 

La terza e ultima fase del lavoro tratta un’applicazione degli argomenti studiati 

ad un caso reale di interesse industriale. Un dispositivo chiamato perforating gun è 

analizzato nelle sue problematiche strutturali ed aspetti critici. Questa applicazione 
coinvolge la modellazione di diverse tipologie di materiali, grandi deformazioni, 

fenomeni ad alta velocità di deformazione, alte temperature, esplosioni, impatti 

iperveloci, danneggiamento, frattura e cambi di fase. Si propongono applicazioni 

computazionali delle teorie studiate ed i risultati sono valutati e discussi. In particolare, 

si presentano simulazioni Euleriane agli elementi finiti. I risultati ottenuti appaiono 
molto promettenti in termini di un loro uso proficuo nella fase di progettazione del 

dispositivo, in particolare riguardo l’ottimizzazione di alcune sue caratteristiche chiave. 
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FOREWORD 

 

 

This doctoral thesis originates from a research program conceived between 

academia and industry. The research activity has been supported halfway by the 
Lombardy region, through the University of Bergamo (Department of Engineering, 

Dalmine), and halfway from the R&D department of the company TenarisDalmine, 

nearby located. This arrangement has taken place in the context of a regional 
project called Dote Ricerca Applicata (DRA). Therefore, the targets of the research 

activity have been established in order to meet the expectations of both academic 

and industrial partners. 

The company TenarisDalmine, strongly involved in the production of seamless 

pipes and specifically in their applications in the oil and gas industry business, was 

contacted for possible cooperations on research themes related to computational 
mechanics. It proposed the analysis and study of a specific device, called 

perforating gun, which finds use in a critical phase of the extraction process of oil or 

natural gas from underground deposits, i.e. the radial perforation of rocks and soil 

surrounding wells. This process allows for and favors the subsequent pumping to 

the surface of the fluid hydrocarbons. The practical consequences of this 
perforating phase are of utter importance relatively to the well integrity and 

productivity. In order to successfully accomplish this process, the perforating gun 

device plays a role of absolute importance. Hence, the necessity of achieving a 

good industrial design arises, together with a possible optimization of its key 
parameters, which may be of different nature, e.g. geometrical, structural, 

technological or related to the characteristics of the involved materials. The main 

issue considered in this work regards the structural performance of a particular 

component of the perforating gun device, technically called carrier. 

On the other side, the academic targets were those of achieving original 
research results in the field of continuum mechanics, with particular reference to 

large strain and high strain rate behavior of materials. The possibility of proposing 

some new ideas suitable for the description of such phenomena was evaluated and 

studied. 
In this scenario, the academic and industrial objectives merged successfully by 

means of an in-deep analysis of the perforating gun device, which naturally led to 

the study and investigation of the complex physical phenomena related to its 

functionality. Large strains, very high strain rates, high temperatures, explosions, 

hypervelocity impacts, damage, fracture and phase changes are the most 
challenging aspects involved and considered in the present treatment. 
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Regarding the organization of this work, Chapter 1 briefly introduces some 

assumptions that are used throughout the exposition. Appropriate considerations 
about the adopted notation are presented as well. Furthermore, appropriate 

simplifying assumptions are introduced and motivated. 

Chapter 2 presents a brief overview of the constitutive modeling pertinent to 

large strain and high strain rate material behaviors, in order to critically expose the 
most popular models suitable for the description of such phenomena. Particular 

attention is paid to the so-called Johnson-Cook strength model. As a matter of fact, 

the major part of the presented review deals with this model. This choice is due to 

the following three main facts. First of all, the Johnson-Cook model appears to be 

the most implemented and used model when there is the need to model large strain 
and high strain rate material behavior over a possible wide range of strain rates and 

temperatures. Second, a new strength model is later introduced in the present work 

and it actually originates from the Johnson-Cook model, since it considers an 

enhancement based on the same framework and the same variables. Third, the 
industrial application examined later in this work makes wide use of the Johnson-

Cook model. Different materials are modeled through this specific strength model, 

although other models are used as well. More in detail, all the key components of 

the studied perforating gun device are modeled by using the Johnson-Cook model. 

These salient facts determine the importance of this specific strength model in the 
context of the present work. The main issue investigated in this section regards a 

reasoned assessment of the various procedures adoptable for calibrating the 

parameters of the Johnson-Cook model. This phase is enriched and clarified by 

applying the calibration strategies to a real case, i.e. the evaluation of the model 

parameters of a structural steel, by relying on experimental data available from the 
literature. The consequences determined by each calibration approach are then 

carefully evaluated, together with a final discussion on the positive and negative 

aspects of such strategies and some suggestions on how to choose the best 

calibration approach, by considering the available experimental data and the 
objectives of the modeling process. 

Chapter 3 aims at presenting a new strength model. It is conceived as a 

generalization of the Johnson-Cook model. The introduction of this new model is 

motivated and accurately described. This strength model aims at improving the 

coherency of the original Johnson-Cook model. As for the original Johnson-Cook 
model, the proposed model pays attention to the fact of keeping the formulation 

suitable for computational applications, with particular reference to Finite Element 

Method (FEM from now on) applications. In fact, the new model may collocate itself 

as a direct competitor of the Johnson-Cook model. The model is also applied to a 
real case, i.e. the modeling of the elastoplastic response of a structural steel tested 

throughout wide ranges of strain rates and temperatures, and the obtained results 
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are compared to the results provided by the original Johnson-Cook model. This 

comparison allows to assess the positive features of the proposed model. The 
differences between the two compared models are highlighted and discussed. 

Furthermore, appropriate considerations about the possibility of implementing this 

new model into FEM codes are pointed-out. 

Chapter 4 deals with an application of the studied theories and models to the 
practical industrial case suggested by the industrial partner TenarisDalmine, i.e. a 

specific perforating gun device. This chapter provides a brief introductory 

description of perforating gun devices, in particular by identifying the most important 

components of such devices. After this phase, the specific perforating gun under 

target is analyzed. Appropriate considerations regarding the constitutive modeling 
options are introduced and discussed. Whenever possible, reference is made to the 

experimental and technical data supplied by the industrial partner. Moreover, a 

series of preliminary considerations relative to the adopted computational strategies 

are presented. The difficulties and the objectives of appropriate FEM simulations of 
perforating gun devices are debated. Finally, a campaign of FEM computational 

simulations is presented, with the target of reproducing, as coherently as possible, 

the phenomena involved during the practical application of a perforating gun. The 

FEM code LS-DYNA is used extensively in this phase, after a comprehensive study 

that has concerned several FEM codes and their potentialities in the present 
challenging computational context. Both tridimensional Lagrangian and Eulerian 

FEM simulations are presented and discussed. 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

 

 
 

 



6 
 

 

 
 

 

 

 
 

 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

 

 
 

 



7 
 

1. BASIC ASSUMPTIONS AND NOTATIONS 

 

 

The central aspect analyzed in the present work consists in the large strain and 

high strain rate constitutive modeling of continuous media, in particular by 
considering metallic materials. In continuum mechanics, the wording constitutive 

model tipically refers to a function that relates a measure of strain to a measure of 

stress, and conversely. Constitutive modeling is one of the most challenging branch 

of continuum mechanics and its study involves a lot of aspects and considerations. 
A comprehensive review of these arguments is not an aim of this work. However, it 

is necessary to point-out some preliminary considerations about a number of basic 

concepts and notations, as they are adopted throughout the present work. 

Ordered arrays of numerical elements are referred to here as tensors, and the 

number of distinct ordering levels is referred to as the valence or the order of the 
tensor. A tensor with valence equal to n is denoted by the wording n-tensor. The 

number of elements in a specific valence is referred to as its cardinality. Given a n-

tensor, with n strictly greater than 2, it is said to be a square n-tensor if all its 

cardinalities are equal. 

It is recognized that an abuse of notation may be made here. A n-tensor is 
indeed something more specific than a simple set of ordered arrays of numbers. 

Generally speaking, the definition of n-tensor is related to the way in which these 

numbers describe a quantity in an underlying space and how they transform when 

passing from one space observer to another. Examples of references on these 
topics are Levi-Civita, 1926, Struik, 1953, Synge and Schild, 1969, and Moon and 

Spencer, 1986. Anyway, in order to develop a flowing exposition, the wording n-

tensor is used here to refer only to a set of ordered arrays of numbers, without 

specifying anything particular relatively to its transformation law. This assumption 

favors simplicity and allows to avoid the involvement of a quite long preliminary 
treatment of some basic assumptions on which large strain continuum mechanics is 

implicitly founded, a task that would be too heavy to be presented here and actually 

not strictly necessary for the achievement of the aims of this work. Furthermore, it 

appears that this assumption is tacitly assumed in many references, i.e. the wording 
n-tensor is used in a quite general context, without specifying strict limitations on 

the transformation rules. Therefore, the approach adopted in the present work 

allows to fit in this popular framework. 

For the sake of simplicity, space and time are assumed to be independent 

quantities. Time is considered as absolute, equal for all the observers. Space is 
assumed to have three dimensions and to possess infinite extensions along these 

dimensions. This assumption implies that the relevant metric is a square 2-tensor of 
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cardinality 3. With further simplification, the space is assumed to be assessed by an 

observer characterized by having an atlas composed by only one chart. Moreover, 
this chart is assumed to be Euclidean, i.e. it imposes a metric field gij that is 

constant in space and equal to the identity 2-tensor, as defined in the following 

relation 

 

 

[ ]
[ ]
[ ]

ij ij

1,0,0

g 0,1,0 .

0,0,1

 
 

= δ =  
 
  

  (1) 

 

The assumption of imposing an Euclidean metric implies having a vanishing 

linear connection, denoted by ijkΓ , as specified in the following equation 

 

 
lj jkil lk

ijk ijk
k j l

g gg g
0 .

2 x x x

 ∂ ∂∂
 Γ = ⋅ + − =
 ∂ ∂ ∂
 

  (2) 

 

As a consequence, any time spatial derivatives are used, the linear connection 

needs not to be introduced. More specifically, the covariant derivative reduces to 

the classical derivative. For a treatment on these topics, see, e.g., Marsden and 

Hughes, 1983, Moon and Spencer, 1986, and Marsden et al., 2007. 
Euclidean observers imply the equality of the two natural local bases fields, i.e. 

the covariant and contravariant local bases field become coincident. This fact leads 

to the definition of a unique natural local bases field, thus allowing to avoid the need 

to use subscripts and superscripts in order to distinguish contravariant and 
covariant n-tensors. Therefore, n-tensors will be denoted by using subscripts only. 

The choice of limiting the analysis to Euclidean observers only is quite restricting 

but also favors simplicity and does not hinder the achievement of the targets of the 

present work. 

Functions are denoted by writing first the dependent variable and then the 
independent variables, gathered by curly brackets and separated by commas. For 

instance, if A is a function of B and C, the following symbol holds 

 

 { }A B,C .  (3) 

 

The next concise summary exposes the adopted notation for the basilar 

continuum mechanics quantities involved in this work. 
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Generic evolutions are delimited in time by an initial instant and a current instant. 

The positions of a point in the initial and in the current instants are denoted by Xi 
and xi, respectively, and are called initial and current positions, respectively. Motion 

can then be defined by considering the current position as a function of the initial 

position and time, as exposed in the following, where time is denoted by the 

symbol t 
 

 { }i ix X ,t .   (4) 

 
This function is also called mapping. The deformation gradient, or tangent mapping, 

is a 2-tensor denoted by Fij and defined in the following way 

 

 i
ij

j

x
F .

X

∂
=

∂
  (5) 

 
The right stretch 2-tensor, denoted by Uij, the left stretch 2-tensor, denoted by 

Vij, and the rotation 2-tensor, denoted by Rij, arise from the right and left polar 

decompositions of the deformation gradient, reported respectively in the following 

equations 
 

 
3

ij ik kj
k=1

F R U ,= ⋅∑   (6) 

 

 
3

ij ik kj
k=1

F V R .= ⋅∑   (7) 

 

It is also possible to define the velocity of the motion vi, as specified in the 

following equation 

 

 i
i

x
v .

t

∂
=

∂
  (8) 

 

The velocity gradient is another 2-tensor denoted by Lij and defined as follows 
 

 i
ij

j

v
L .

x

∂
=

∂
  (9) 
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The symmetric part of the velocity gradient is a 2-tensor called rate of 

deformation and denoted by Dij, while its skew-symmetric part is a 2-tensor called 
spin and denoted by W ij. Therefore, the following equations hold 

 

 ( )ij ij ji
1

D L L ,
2

= ⋅ +   (10) 

 

 ( )ij ij ji
1

W L L .
2

= ⋅ −   (11) 

 

It is assumed here that when a 2-tensor is indicated with subscripts arranged 
inversely to the alphabetical order, the valences indicated by these subscripts are 

intended as swapped, i.e. the 2-tensor is transposed in these valences. The right 

stretch and the left stretch allow for defining two sets, each of which is composed by 

an infinite number of 2-tensors called strain measures. One set defines the so-
called Lagrangian strain measures, whilst the other defines the so-called Eulerian 

strain measures. These strain measures are denoted by Eij and Gij and defined 

respectively by the following relations 

 

 

m
ij ij

(m)
ij

ij

U
if m 0

E ,m
lnU if m 0

 − δ
 ≠= 
 =


  (12) 

 

 

m
ij ij

(m)
ij

ij

V
if m 0

G .m
lnV if m 0

 − δ
 ≠= 
 =


  (13) 

 

The parameter m is assumed to be an integer. 

In the present work, a generic strain measure, that could be either Lagrangian or 

Eulerian, is denoted by the symbol εij. It is possible to decompose any strain 

measure into its volumetric and deviatoric parts, through the following equation 

 

 
ijdev vol dev

ij ij ij ij ij

tr
,

3

ε
ε = ε + ε ⋅δ = ε + ⋅δ   (14) 

 

where the first term in the right member is referred to as deviatoric strain or strain 
deviator and the second term is referred to as volumetric strain. Moreover, given a 
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strain measure εij, it is possible to define an associated scalar quantity called 

equivalent or effective strain, denoted by ε  and defined as follows 

 

 
3 3

ij ij
i=1 j=1

2
.

3
ε = ⋅ ε ⋅ε∑∑   (15) 

 
Sometimes, the equivalent strain is calculated by using a time integral of the rate 

of deformation, in particular in FEM code implementations. It is then defined by the 

following equation 

 

 
3 3

ij ij
i=1 j=1t

2
D D dt .

3
ε = ⋅ ⋅∑∑∫   (16) 

 

It is worthwhile to point-out that this time integral may not give an equivalent strain 

attributable to any known strain measure. In this regard, see, e.g. Hoger, 1986. 

The time derivative of a strain measure is called strain rate (referred to the 

considered strain measure) and is denoted by ijεɺ . Analogously, the time derivative 

of an equivalent strain is called equivalent strain rate (referred to the considered 

strain measure) and is denoted by εɺ . If elastic and plastic strains are identified, the 

quantities defined above for a generic strain measure can be specialized to these 

two cases. 
The Cauchy stress is a 2-tensor that stems from considerations on the 

equilibrium of a continuum body (see, e.g., Bigoni, 2012). It is denoted by Tij and is 

assumed to be symmetric. It defines a field on a body that describes its stress state. 

Furthermore, the Kirchhoff stress is another 2-tensor, denoted by τij, still symmetric 

and defined by the following equation 

 

 ( )ij ij ijdet F T .τ = ⋅   (17) 

 

The stress power per unit volume of a continuous body is a scalar denoted by w 

and defined by the following equation 

 

 
3 3

ij ij
i=1 j=1

w D .= τ ⋅∑∑   (18) 
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It is then said that the Kirchhoff stress and the rate of deformation are work-

conjugate variables (see, e.g., Hill, 1978). For each of the previously introduced 
Lagrangian and Eulerian strain measures, it is possible to define a work-conjugate 

stress measure. To this end, the next two relations are introduced, in order to define 

the so-called Lagrangian and Eulerian stress measures, denoted by (m)
ijT  and (m)

ijZ , 

respectively 

 

 
(m)3 3 3 3
ij(m)

ij ij ij
i=1 j=1 i=1 j=1

E
w D T ,

t

∂
= τ ⋅ = ⋅

∂∑∑ ∑∑   (19) 

 

 
(m)3 3 3 3
ij(m)

ij ij ij
i=1 j=1 i=1 j=1

G
w D Z .

t

∂
= τ ⋅ = ⋅

∂∑∑ ∑∑   (20) 

 

In the present work, a generic stress measure, that may be either Lagrangian or 

Eulerian, is denoted by the symbol σij. Analogously to what said for strain 

measures, it is possible to decompose any stress measure in its volumetric and 
deviatoric parts, through the following relation 

 

 
ij

ij ij ij ij ij

tr
s p s ,

3

σ
σ = + ⋅δ = + ⋅δ   (21) 

 

where the first term in the right member is referred to as deviatoric stress or stress 

deviator, denoted by sij, and the second term is referred to as volumetric stress. The 

scalar p is called pressure. Moreover, given a stress measure σij, it is possible to 

define an associated scalar quantity called equivalent or effective stress, denoted 

by σ  and defined as follows 

 

 
3 3

ij ij
i=1 j=1

3
.

2
σ = ⋅ σ ⋅σ∑∑   (22) 

 

The equivalent stress of the deviatoric part of a stress measure is called von Mises 

equivalent stress of such stress measure. It is denoted by s  and is obtained 

accordingly 
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3 3

ij ij 2
i=1 j=1

3
s s s 3 J .

2
= ⋅ ⋅ = ⋅∑∑   (23) 

 
In this equation, J2 represents the second invariant of the stress deviator of the 

considered stress measure, defined as follows 

 

 
3 3

2 ij ij
i=1 j=1

1
J s s .

2
= ⋅ ⋅∑∑   (24) 

 

The time derivative of a stress measure is called stress rate (referred to the 

considered stress measure) and is denoted by ijσɺ . Analogously, the time derivative 

of an equivalent stress is called equivalent stress rate (referred to the considered 

stress measure) and is denoted by σɺ . 

Furthermore, given a stress measure, it is possible to define a scalar known as 

stress triaxiality  of such stress measure (see, e.g., Meyers, 1994), denoted by x, by 
introducing the ratio of its pressure and its von Mises stress, as reported in the 

following equation 

 

 
p

x .
s

=   (25) 

 

The temperature field is denoted by symbol T throughout the work. A final 
consideration is related to the choice of the strain and stress measures to be 

related through a constitutive model. In this work, constitutive models are presented 

in a general way in which strain and stress measures are not forcedly defined a 

priori. However, when a generic strain measure and a generic stress measure or 
their time derivative are related through a constitutive model, it is always assumed 

that they form a couple of work-conjugate strain and stress measures. This 

hypothesis ensures the fulfillment of some technical requirements which are at the 

base of the constitutive modeling theory of continuum mechanics. 

As already stated, this very brief summary aims only at introducing some 
quantities used in the present work and at clarifying their notation. Additional 

information and further comments on these topics, together with their notation, may 

be found, e.g., in Fung, 1965, Malvern, 1969, Gurtin, 1981, Marsden and 

Hughes, 1983, Holzapfel, 2001, Lubarda, 2002, Truesdell and Noll, 2004, Asaro 

and Lubarda, 2006, and Bigoni, 2012. Some considerations regarding the use of 
alternative compact tensor notation may be found, e.g., in Rizzi and Carol, 2001. 
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2. BRIEF OVERVIEW OF THE CONSTITUTIVE MODELING OF 

LARGE STRAIN AND HIGH STRAIN RATE PHENOMENA 

 

 
Large strain and high strain rate phenomena may be defined as events that occur in 

a short time, say in the order of fractions of a second, which involve large strains 

and therefore high strain rates. Plastic strains, damage and fracture are usually 

present in this kind of processes. 
A first aspect of the study of material behavior under dynamic loading involves 

the analysis of stress wave propagations in solid and fluid materials, for both elastic 

and plastic regimes. Stress propagates through continuous media as waves with 

finite velocity. Therefore, a certain time is required in order to allow these waves to 

spread through the matter. Elastic wave, plastic wave and shock wave 
propagations are phenomena of utter importance for the study of the dynamic 

behavior of materials. However, reviewing this entire argument is not on aim of this 

work. Among others, general treatments are provided in Meyers, 1994, and Wang, 

2007. Treatments on elastic wave propagation can be found in Graff, 1965, and 
Achenbach, 1973. Studies on shock waves and high-pressure shock compression 

of solids are provided in Asay and Shahinpoor, 1993, Graham, 1993, Horie et al., 

2003, Ben-Dor, 2007 and Davison, 2008. 

A second key aspect of the study of the dynamic behavior of materials consists 

in the study of experimental procedures capable to expose the material response to 
such dynamic conditions. Throughout the years, some particular experimental 

procedures have emerged over others, thanks to their better feasibility and 

effectiveness. Dropweight machines, Hopkinson bars, Taylor tests and plate impact 

tests have become fairly popular. Nowadays, their use is common in many 
situations, both academic and industrial. Procedures to carry-out these tests and 

efficiently measure material responses keep on being elaborated and improved as 

well. A review of these experimental techniques is also not a target of the present 

work. However, general treatments are provided in Meyers, 1994, and Field et 

al., 2004. The Taylor test is presented in Taylor, 1948, and Whiffin, 1948. A review 
on the use of Hopkinson bars is supplied by Jiang and Vecchio, 2009. Some 

considerations on the procedures necessary to technically execute such tests and 

relevant test results for different materials are provided in Rajendran and 

Bless, 1985, and Rajendran, 1992. 

Beyond these aspects, the focus of this work is on the constitutive modeling of 
dynamically loaded materials. Since decades ago, the study of such argument has 

been a leading research theme in the fields of solid and structural mechanics. 

Usually, a constitutive model exposed within classical continuum mechanics 
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contexts involves stress and strain 2-tensor measures as a whole, i.e. it involves the 

presence of both the deviatoric and volumetric parts. When large strain and high 
strain rate phenomena are addressed, it is a common practice to decompose these 

2-tensors in their volumetric and deviatoric parts and then define two constitutive 

models, one for the deviatoric part and one for the volumetric part. This practice 

derives basically from deductions suggested by experimental evidences. An ad-hoc 
relation between the stress deviator and the strain deviator needs to be established, 

possibly involving also the strain rate, the temperature and the pressure. Similarly, 

an ad-hoc relation between the pressure, the volumetric strain and possibly other 

thermodynamic parameters needs to be established. Basically, the stress deviator 

is not assumed to be a function of the sole deviatoric strain, in particular when 
plastic regimes are involved. Similarly, the pressure is no longer a function of the 

sole volumetric strain. In this context, the wording strength model refers to a 

function that has the deviatoric part of the stress as dependent variable, while the 

quite general wording equation of state (also denoted by the acronym EOS) refers 
to a function that has the pressure as dependent variable. 

Beyond strength models and equations of state, an ad-hoc description is also 

necessary for the modeling of damage and fracture of materials subjected to large 

strain and high strain rate phenomena. Such models usually need to include the 

strain rate, the temperature and possibly other parameters. Particular importance is 
given to the role of stress triaxiality. This parameter does not appear to be widely 

used in the quasi-static modeling of materials under damage and fracture 

processes. However, when high strain rates and large strains are involved, the 

stress triaxiality appears to play an important role in the evaluation of the damage 

and fracture of the materials. 
In the following, some considerations on strength models, equations of state and 

damage and fracture models are presented, in order to briefly describe the nature 

of the most used models. In this context, the aim of this chapter is that of analyzing 

the pertinent literature seeking for the most interesting and successful constitutive 
models suitable for describing large strain and high strain rate phenomena. 

Particular reference is made here to the modeling of metallic materials. A brief 

review of such models and of some references will be made, together with the 

presentation of some original comments. 

 
2.1. Strength Models 

 

Several strength models suitable for the modeling of materials subjected to large 

strains and high strain rates have been proposed in the literature. One of the first 
references that treated these topics was probably Zener and Hollomon, 1944, in 

which the plastic behavior of steel was investigated, with particular attention to the 
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effects of the strain rate and the temperature. Afterwards, many authors have 

contributed to the development of the knowledge on strength models. In this work, 
some of the most popular strength models are analyzed and considered, namely 

the Johnson-Cook model (Johnson and Cook, 1983), the Zerilli-Armstrong model 

(Zerilli and Armstrong, 1987), the Steinberg-Cochran-Guinan model (Steinberg et 

al., 1980) and the Steinberg-Lund model (Steinberg and Lund, 1988). These 
constitutive models are believed to represent some of the most suitable options for 

the description of high to very high strain rate behavior of materials, in particular for 

metallic materials, i.e. the materials of highest interest for the industrial application 

considered in the present research project. More in detail, these models are 

potentially suitable for the description of materials subjected to the strain rate 
ranges involved in the considered industrial application. In the following, these 

models are briefly described and some relevant references are introduced. As 

previously stated, more attention is paid to the Johnson-Cook strength model, for 

the following reasons. First of all, it appears to be the most implemented and used 
material model when there is the need to model large strain and high strain rate 

material behavior over a possible wide range of strain rates and temperatures. Also, 

the new strength model introduced later in the present work (Chapter 3) actually 

originates as an enhancement of the Johnson-Cook model. Furthermore, the 

industrial application examined later in this work makes wide use of the Johnson-
Cook model. 

 
2.1.1. Johnson-Cook Strength Model 

 

The wording Johnson-Cook strength model (also referred to as JC strength model) 
refers to the hardening function proposed in Johnson and Cook, 1983. The two 

authors proposed a form for the evaluation of the yield stress as a function of the 

equivalent plastic strain, the equivalent plastic strain rate and the temperature. 

Since its first proposal in 1983, this model has gained popularity and nowadays it 
appears as the most used strength model for the modeling of strain rate dependent 

phenomena. 

For what it concerns the diffusion of the model in the scientific community, the 

Johnson-Cook strength model has been widely used by many authors throughout 

the years. Examples of such use, together with material data, can be found in 
several references, starting from the original Johnson-Cook paper (Johnson and 

Cook, 1983), which provided data and model parameters for 12 different materials. 

Noble et al., 1999, studied the application of the Johnson-Cook model to iron. 

Kay, 2003, considered applications to a titanium alloy and an aluminum alloy. 
Nemat-Nasser and Guo, 2003, evaluated the use of the Johnson-Cook model for a 

naval structural steel. Klepaczko et al., 2009, considered the application of the 



18 
 

Johnson-Cook model to two diverse structural steels. Scapin et al., 2012, presented 

an application of the model to an alumina dispersion strengthened copper. These 
are only some illustrative examples of the many applications of the Johnson-Cook 

model that may be found in the literature. 

The Johnson-Cook strength model operates in the classic elastoplastic 

framework, in which an elastic constitutive model defines the elastic response, a 
yield criterion defines the delimitation of the elastic regime, and the plastic flow is 

determined by a flow rule and a hardening function. A review of these classic 

plasticity concepts is not an aim of this work. Reference is made to, e.g., Hill, 1950, 

Kachanov, 1971, Lubliner, 2006, and Bigoni, 2012. The Johnson-Cook strength 

model specifies this classical elastoplastic model by introducing a hardening 
function capable to model the yield stress dependence on the equivalent plastic 

strain rate and the temperature. In this context, the Johnson-Cook hardening 

function is used for updating the stress deviator only. The volumetric response of 

the material needs to be determined by an equation of state. 
When quasi-static regimes are involved, hardening functions are tipically 

conceived as function of the sole equivalent plastic strain, e.g. through a power 

function. The contribution presented in Johnson and Cook, 1983, was that of 

proposing a more general hardening function, suitable for the description of the 

hardening of materials subjected to large strains, within a certain range of 
equivalent plastic strain rates and temperatures. Only isotropic hardening was 

considered, without the introduction of more complicated kinematic or combined 

hardening rules. Furthermore, one of the main aims of the authors was that of 

keeping the formulation in a fashion well suitable for implementations in FEM 

codes. 
The form of the proposed hardening function was derived through a totally 

empiric approach, based on a quite high amount of experimental data collected by 

the two authors. Tensile and torsion tests were carried-out, considering 

experimental tests at different strain rates (through an Hopkinson bar) and 
temperatures. Several metallic materials were tested and analyzed. Results were 

presented in terms of the Cauchy stress and of the so-called true strain, i.e. the 

logarithmic strain measure. 

On the basis of the obtained experimental results, Johnson and Cook, 1983, 

introduced a hardening function in which the yield stress manifested a power 
dependence on the equivalent plastic strain. Furthermore, they pointed-out that the 

yield stress presented a natural logarithmic dependence on the so-called 

dimensionless equivalent plastic strain rate, denoted by *
pεɺ  and defined as follows 
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where pεɺ  represents the current equivalent plastic strain rate and 0
pεɺ  represents a 

fixed equivalent plastic strain rate, taken as reference value. This value varies 

accordingly to the available experimental data. 

Johnson and Cook, 1983, also pointed-out the fact that the current yield stress 
exhibited a power dependence on the so-called homologous or homogeneous 

temperature, denoted by T* and defined as follows 

 

 0

m 0

T T
T* ,

T T

−
=

−
  (27) 

 
where Tm represents the melting temperature and T0 a fixed temperature, taken as 

reference value. As for the reference equivalent plastic strain rate, this value varies 

accordingly to the available experimental data. 

On the basis of these observations, the proposed hardening function assumed 

the following form, in which the yield stress, interpreted as the von Mises stress, is a 
function of the equivalent plastic strain, the dimensionless equivalent plastic strain 

rate and the homologous temperature, together with other material parameters 
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The 8 parameters denoted by A, B, n, C, 0
pεɺ , T0, Tm and m are referred to as the 

parameters of the Johnson-Cook strength model. They need to be calibrated 

through appropriate experimental tests. Following Table 1 reports their dimensions 

and possible units. 
 

A Stress, e.g. [MPa] m Non-dimensional 

B Stress, e.g. [MPa] 0
pεɺ  Strain rate, e.g. [s-1] 

N Non-dimensional T0 Temperature, e.g. [K] 

C Non-dimensional Tm Temperature, e.g. [K] 

Table 1 
Dimensions and possible units of the Johnson-Cook parameters. 
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It is worthwhile to note that the Johnson-Cook hardening function is conceived in 

a multiplicative fashion, in which the terms contained in the three outer round 
brackets act together to set the value of the current yield stress. 

The first multiplicative term represents a power hardening law, characterized by 

the three parameters A, B and n. This form is widely used for describing metallic 

hardening functions in quasi-static modeling contexts. It may then be said that the 
first multiplicative term represents the quasi-static part of the hardening function and 

thus it is referred to here as the quasi-static term of the Johnson-Cook strength 

model. 

The second multiplicative term introduces the natural logarithmic dependence on 

the dimensionless equivalent plastic strain rate and thus it is referred to here as the 
strain rate term of the Johnson-Cook strength model. This term is conceived in such 

a way that when the current equivalent plastic strain rate is equal to the reference 

equivalent logarithmic plastic strain rate it becomes equal to 1 and therefore there 

are no strain rate effects on the computation of the current yield stress. In such 
conditions, the hardening response of the material is then ruled by the two other 

multiplicative terms. Otherwise, the effect of the strain rate on the yield stress is 

determined by the current value of the equivalent plastic strain rate and ruled by the 

reference equivalent plastic strain rate and by the parameter C. 

The third and last multiplicative term introduces the power dependence on the 
homologous temperature and thus it is referred to here as the temperature term of 

the Johnson-Cook strength model. This term is conceived in a way such that when 

the current temperature is equal to the reference temperature it becomes equal to 1 

and therefore there are no temperature effects on the computation of the current 

yield stress. In such conditions, the hardening response of the material is then ruled 
by the other 2 multiplicative terms. Otherwise, the effect of the temperature on the 

yield stress is determined by the current value of the temperature and ruled by the 

reference temperature, the melting temperature and the parameter m. It is also 

worthwhile to note that when the current temperature reaches the melting 
temperature value, this term becomes equal to 0 and thus the current yield stress is 

assumed to be null and the material is assumed to offer no deviatoric resistance. 

Temperatures higher than the melting temperature are allowed to occur but then 

the yield stress is no longer computed with Eq. (28), which would lead to a negative 

yield stress. In such cases, the yield stress is just set equal to zero. 
As pointed-out by the authors themselves (Johnson and Cook, 1983), the 

Johnson-Cook hardening function is a quite simple model that may not provide 

accurate descriptions of the hardening response of the material, thus leading to 

results that may lack in coherence. On the other hand, its simplicity implies some 
advantages. Indeed, the Johnson-Cook hardening function may be seen as a valid 
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compromise between simplicity, modeling coherency, requirement of experimental 

tests and need of computational capacities. 
Regarding the positive features of the Johnson-Cook strength model, simplicity 

and readiness of computational implementation appear to be the most interesting. 

The model turns-out quite cheap in terms of demand of computational 

requirements. Furthermore, it is surely well suitable to fit FEM applications, since it 
uses variables that are readily available in most FEM codes or so-called 

hydrocodes, namely the equivalent plastic strain, the equivalent plastic strain rate 

and the temperature. In order to compute the current yield stress, these three 

variables are the only ones that need to be computed in each timestep of the 

calculation, since the 8 parameters of the model are fixed and established at the 
beginning of the calculation. Beyond this aspect, the Johnson-Cook strength model 

is capable of displaying a good coherence when adopted for the modeling of some 

basic high strain rate experimental tests, such as for the FEM modeling of Taylor 

tests. As exposed in Johnson and Cook, 1983, applications of the model in a FEM 
code (EPIC-2) showed a good matching between the Taylor test computed results 

and their experimental counterparts. It is often said that the Johnson-Cook model is 

a formulation able to provide results characterized by having a high enough grade 

of accuracy, capable to satisfy necessities required in common engineering 

practices. Actually, these features are the main factors that contributed to the large 
diffusion of the Johnson-Cook model among the scientific community, in particular 

towards computational applications. 

Regarding the negative aspects, it may be said that the simplicity of the 

Johnson-Cook strength model is paid by introducing some drawbacks in the 

formulation. In particular, two main flaws can be identified. The first issue consists in 
the fact that the natural logarithmic dependence of the yield stress on the 

dimensionless equivalent plastic strain rate may not be suitable to coherently fit the 

strain rate dependence of some materials. Analogously, the power dependence of 

the yield stress on the homologous temperature may present the same 
shortcoming. These aspects might lead to heavy modeling errors in practical cases. 

The second problem consists in the fact that the equivalent plastic strain, the 

equivalent plastic strain rate and the temperature effects on the yield stress are 

totally independent from each other. This is a direct consequence of the choice of 

adopting a hardening function conceived in a multiplicative fashion, in which the 
equivalent plastic strain, the equivalent plastic strain rate and the temperature terms 

aim at independently representing the three effects on the yield stress. For a given 

equivalent plastic strain, its effect on the yield stress is the same whatever values 

the equivalent plastic strain rate and the temperature take. Similarly, for a given 
equivalent plastic strain rate, its effect on the yield stress is the same whatever 

values the equivalent plastic strain and the temperature take. Similarly again, for a 
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given temperature, its effect on the yield stress is the same whatever value the 

equivalent plastic strain and the equivalent plastic strain rate take. The main 
problem due to this aspect may be the fact that the effects of the equivalent plastic 

strain rate and the temperature need to be assumed as equal for each equivalent 

plastic strain. As a matter of fact, this effect may instead be quite different by 

passing from a condition in which the equivalent plastic strain is null (i.e., the first 
yielding stress of the material, called also lower yield stress), to conditions with non 

zero equivalent plastic strain. This point may imply the introduction of heavy 

coherency errors in the modeling, either of the lower yield stress or of the plastic 

flow. The more these two aspects present a different dependence on the equivalent 

plastic strain rate and on the temperature, the more errors are to be introduced, 
since a compromise between these aspects necessarily needs to be adopted. This 

simplistic approach may lead to considerable modeling errors, which might actually 

add to the ones due to the first issue. 

At this point, there arise questions about the relevance of these flaws, i.e. how 
much they may negatively affect the coherency of the model. The point is that of 

assessing the magnitude of the errors in the prediction of the yield stress for a given 

equivalent plastic strain, and, accordingly, the magnitude of the errors in the 

prediction of the equivalent plastic strain for a given yield stress. The examination of 

the hardening characteristics of the steel adopted in the industrial application under 
analysis in the present work (i.e., a perforating gun device) suggested that this 

aspect may be central and heavily affect the computed results, although only a low 

amount of experimental data was made available. The point here is that the 

Johnson-Cook hardening function may not be capable to fit the available data with 

sufficient accuracy in order to produce results fruitfully usable for engineering 
purposes. Most of all, the fitting may be appropriate only for selected ranges of 

equivalent plastic strains, equivalent plastic strain rates and temperatures, but not 

overall. 

Beyond the analysis of the material used in the particular industrial application 
considered in the present thesis, the belief that the Johnson-Cook model may 

sometimes produce strongly incoherent predictions appears to be confirmed by the 

analysis of other references, which investigate the strain rate and temperature 

hardening response of different materials. Some examples of such references are 

reported in the following: Krafft et al., 1954, which presented studies on iron and 
steel plastic flow in the dependence of the strain rate and temperature; Hoge and 

Mukherjee, 1977, which proposed an investigation on the temperature and strain 

rate dependence of the flow stress of tantalum; Nemat-Nasser and Guo, 2003, 

which proposed a wide strain rate and temperature investigation of the plastic flow 
behavior of a structural steel; Rusinek et al., 2009, which presented similar 

investigations for six high strength steels. It appears that the adoption of the 
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Johnson-Cook strength model may occasionally introduce heavy modeling errors, in 

particular when there is the aim of predicting material behaviors over wide ranges of 
equivalent plastic strain rates and temperatures. 

The two previously presented main issues of the Johnson-Cook model did not 

pass unnoticed in the scientific community. Indeed, the original Johnson-Cook 

strength model has been the subject of a large number of reviews and 
modifications. The aims were that of solving or mitigating the negative effects due 

to the two main drawbacks described above. The following exposition aims at briefly 

reviewing the main proposed contributions. References that dealt with the first 

Johnson-Cook issue are presented first, while those which dealt with the second 

issue are presented second. In this regard, It may be said that the relevance of the 
Johnson-Cook strength model is further proven by the large number of revisions 

and enhancements that have been proposed since its first publication. 

The first Johnson-Cook issue addresses the fact that a material may not present 

a natural logarithmic dependence of the yield stress on the dimensionless 
equivalent plastic strain rate and a power dependence on the homologous 

temperature. Many authors have contributed to a revision and possibly to a 

modification of the original Johnson-Cook strain rate and temperature multiplicative 

terms, in order to improve the coherence of the strength model. 

For what it concerns the strain rate term, one of the earlier modifications was 
presented in Holmquist and Johnson, 1991. These authors pointed-out how the 

natural logarithmic dependence of the yield stress on the dimensionless equivalent 

plastic strain rate could be replaced by a power dependence in which the parameter 

C has now the role of the exponent. In detail, the original Johnson-Cook strength 

model was substituted by the following one 
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This model still uses 8 parameters. Holmquist and Johnson, 1991, presented a 

FEM implementation of this modified Johnson-Cook model, with the aim of 

computationally reproduce experimental data from a number of Taylor tests. This 

modified model provided a better data fitting comparing to the original Johnson-

Cook model, although the differences appeared actually marginal. 
Couque et al., 1995, proposed another modification of the Johnson-Cook strain 

rate term. The authors pointed-out that the original Johnson-Cook model may be 

capable to provide satisfactory results when equivalent plastic strain rates lower 

than 103 s-1 are involved. However, these authors also pointed-out that the model 
may lack in coherence when higher equivalent plastic strain rates occur. In order to 
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better account for this effect, the original Johnson-Cook model was modified with 

the introduction of a power strain rate component added to the natural logarithm 
strain rate term, leading to a model with 11 parameters, as represented in the 

following equation 
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In this equation, 1
pεɺ  represents an equivalent plastic strain rate value which 

determines the transition between the so-called thermally activated regime and the 
so-called viscous regime. This value was stated to be about 103 s-1. Two further 

parameters are introduced in the model, denoted by D and k. The modified model 

was evaluated through numerical simulations of Taylor tests for pure nickel and a 

high strength nickel alloy. Comparing to the original Johnson-Cook model, the 

outcomes proved the modified model to display an improved coherency in 
reproducing experimental data at high equivalent plastic strain rates. 

Another modification of the strain rate multiplicative term was proposed by Rule 

and Jones, 1998. The point was that of modifying the original Johnson-Cook strain 

rate term, in order to more closely match observed material behavior at high strain 
rates. Similarly to what stated by Couque et al., 1995, the two authors pointed-out 

that the yield strength may increase more rapidly with the equivalent plastic strain 

rates than what determined by the original Johnson-Cook hardening function, in 

particular for equivalent plastic strain rates that exceed 103 s-1. On this basis, Rule 

and Jones, 1998, proposed to modify the original Johnson-Cook model in the 
following way 
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In this equation, C1 and C2 are additional parameters of the model, to be 

determined from experimental data. The number of parameters of the model 

amounts to 11. Rule and Jones, 1998, proposed also a procedure to calibrate the 

parameters of the model, with application to four metals, through the evaluation of 

quasi-static tests and Taylor tests. This new model was then proven to be capable 
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of providing a good fit of the yield stress at elevated equivalent plastic strain rates, 

referring to the capacity of fitting Taylor impact experimental data. 
Kang et al., 1999, pointed-out that the original Johnson-Cook strain rate term, 

which determines a linear dependence of the yield stress on the natural logarithm of 

the dimensionless equivalent plastic strain rate, may need to be enriched with a 

term that adds a quadratic dependence of the yield stress on the natural logarithm 
of the dimensionless equivalent plastic strain rate. This assumption was motivated 

with reference to some presented experimental data. In particular, it was shown that 

the quadratic term may be necessary to correctly represent the material behavior at 

low equivalent plastic strain rates, i.e. rates lower than 1 s-1. The Johnson-Cook 

hardening function was then modified in the following way 
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This model uses 9 parameters. A new parameter is introduced in the model, 

denoted by C1. It determines the weight of the quadratic strain rate term. 
Johnson et al., 2006, proposed another modification of the strain rate term by 

introducing a power term that enriches the modeling of the yield stress dependence 

on the equivalent plastic strain rate. The following form was then proposed and 

called high-rate Johnson-Cook model 
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It is worthwhile to point-out that this strength model is a generalization of the model 

proposed by Kang et al., 1999, i.e. that represented in Eq. (32). This approach 
introduces two additional parameters, denoted by C1 and C2, leading to a total of 10 

parameters. Applications of this model and comparison to the original Johnson-

Cook model have been provided in the same reference (Johnson et al., 2006). 

Referring to the original Johnson-Cook model, the high-rate Johnson-Cook model 

showed an improved modeling coherency. 
Some modifications have been proposed for the Johnson-Cook temperature 

term as well. Maheshwari et al., 2009, proposed a modification of this term based 

on high temperature experimental data of the aluminum alloy Al-2024, considering 

also the strain rate term modification proposed by Holmquist and Johnson, 1991, 
i.e. the power dependence. The following hardening function was then proposed 
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In this equation, ms , ys , α and β represent additional model parameters, to be 

determined from experimental data. The total number of parameters becomes now 

11. The two authors presented some applications of the model that demonstrated a 
more coherent fitting of the experimental data, when comparing to the original 

Johnson-Cook hardening function, in particular at high temperatures. 

Hou and Wang, 2010, introduced a modification of the temperature term in order 

to better predict the material behavior when the range of temperatures involved is 
particularly wide. The focus was on a hot-extruded Mg-10Gd-2Y-0.5Zr alloy. Such 

modified hardening function uses the same 8 parameters of the original Johnson-

Cook model. The proposed model is reported in the following equation 
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Other authors presented more complicated developments of the original 

Johnson-Cook strain rate and temperature terms. As instance, Duc-Toan et 
al., 2012, introduced a modification of the temperature term in order to enhance the 

model coherency when very high temperatures are involved. 

As proven by the brief review presented here, many modifications of the original 

Johnson-Cook model have been proposed. In general, it may be said that the first 

issue of the Johnson-Cook model is partially solved, or mitigated, by the possibility 
of choosing between different strain rate and temperature terms, with the aim of 

better fitting the experimental data of the considered material, by taking into 

account specific equivalent plastic strain rate and temperature ranges. As a matter 

of fact, some commercial FEM codes allow to choose between some of the different 
strain rate and temperature terms described above. 

For what it concerns the second Johnson-Cook issue, the point was that of 

considering the equivalent plastic strain, the equivalent plastic strain rate and the 

temperature effects on the yield stress as totally independent from each other. It 

appears that no contributions capable to mitigate this problem have ever appeared 
in the literature, unless some references which treated this aspect but only 
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marginally. In this regard, some authors proposed modifications capable to partially 

introduce the synergic dependence of the strain rate and the temperature effects. 
For instance, Lin et al., 2010, proposed a modified Johnson-Cook model in 

which a mixed strain rate and temperature term is introduced. The proposed term is 

reported in the following equation 
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The power quasi-static term is replaced by a form that involves a second order 

trend on the equivalent plastic strain. The parameters B1 and B2 replace the original 

Johnson-Cook parameters B and n. Their role is that of describing the quasi-static 

behavior. However, this is only another form to fit data throughout the equivalent 
plastic strain. The point here is on the strain rate and temperature terms. The strain 

rate term is maintained the same as in the original Johnson-Cook model. The 

temperature term is substituted with an exponential term which involves both the 

dimensionless equivalent plastic strain rate and the temperature. Two new 

parameters are introduced, denoted by λ1 and λ2, while the parameters Tm and m 

are no longer present, thus keeping a total number of parameters equal to 8. The 

proposed model was applied to predict the tensile behavior of a typical high-

strength alloy steel, showing a good fitting of experimental data. Furthermore, 
Wang et al., 2011, proposed a modification similar to the one introduced by Lin et 

al., 2010, with some variations to the quasi-static and the strain rate terms. 

Despite these efforts, the second Johnson-Cook issue appears to be still 

present, in particular in its heaviest problematics, i.e. the fact that the effects of the 

equivalent plastic strain rate and the temperature need to be assumed as equal for 
each equivalent plastic strain, a point which may lead to heavy modeling errors for 

the prediction either of the lower yield stress or of the plastic flow. In this context, 

Chapter 3 presents a new formulation capable to mitigate this important 

shortcoming. 
 
2.2.1.1. Johnson-Cook Model Calibration Strategies 

 

The calibration of the 8 material parameters of the Johnson-Cook model (Eq. (28)) 

is strictly related to the problematics exposed above. The original paper that 
proposed the model (Johnson and Cook, 1983), did not actually provide a detailed 

description of the procedure necessary to calibrate them. It may be said that this 

fact has probably contributed to the appearance of uncertainties about the 
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calibration procedure. In this regard, some considerations can be found in 

Holmquist and Johnson, 1991, but it appears that several key points are still 
missing. Various other references treated this aspect, such as, e.g., Langrand et al., 

1999, Schwer, 2004, Milani et al., 2008, and Scapin et al., 2012, just to cite a few. 

When it comes to the determination of the 8 Johnson-Cook model parameters, the 

first aspect to understand is that it is actually possible to define different calibration 
strategies. In this context, the following exposition aims at reviewing systematically 

the procedures for the calibration of the Johnson-Cook parameters, a process 

whose importance is crucial in order to correctly use the model, say at its best 

potentialities. The most popular calibration approaches are framed, described and 

discussed, together with the introduction of some original contributions. 
For the sake of clarity, all the calibration strategies are illustrated with application 

to a practical material case, i.e. the 8 Johnson-Cook parameters are actually 

determined from a selected instance of true experimental data. To this end, 

literature experimental data are considered, since the experimental observations 
made available for the materials used in the industrial application considered in this 

work are very limited and therefore they are not complete enough to be successfully 

used for presenting calibration applicative examples. Experimental data are 

extracted from the work proposed by Nemat-Nasser and Guo, 2003, in which a high 

strength structural steel used for naval applications (associated to the nomenclature 
DH-36) has been widely tested. This choice is due to the fact that this work 

presents a wide amount of experimental observations, intended in terms of 

hardening functions of the material, capable to cover wide ranges of equivalent 

plastic strain rates and temperatures. The experimental data considered here 

consists in a set of nine hardening functions, evaluated at three different equivalent 
plastic strain rates and at three different temperatures. The considered equivalent 

plastic strain rates are 0.001 s-1, 0.1 s-1 and 3000 s-1, while the considered 

temperatures are 77 K, 296 K and 800 K. Although further data can be found in 

Nemat-Nasser and Guo, 2003, the extracted subset of data is surely enough to 
achieve the target of this chapter and also to avoid bringing up too much data, in 

order to favor exposition conciseness. The nine hardening functions considered 

have been obtained through compressive tests. Compressive Hopkinson bars, 

cooling systems and furnaces have been used. Reference is made to the presented 

adiabatic results. Results are provided in terms of Cauchy stress versus true 
(logarithmic) equivalent plastic strain. Following Figs. 1 to 3 report the nine 

hardening functions taken into consideration. These experimental data have been 

extracted from Nemat-Nasser and Guo, 2003, by means of appropriate 

digitalization. The scores visible in the figures represent the digitalized points. 
Clearly, this process implies the introduction of some uncertainties in the 

considered data, in particular for the determination of the lower yield stress. Of 
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course, this is not an important issue here, since the point under question is only 

that of showing the outcomes of different Johnson-Cook calibration strategies and 
not that of fitting the DH-36 steel data as best as possible. Furthermore, data are 

purified by possible oscillations or peaks near the lower yield stress that may 

appear in some case, in order to present clearer and more useful data. 

 

 
Figure 1. DH-36 structural steel hardening functions at temperature of 77 K and 
three different equivalent plastic strain rates. Material softening arises for data at 
3000 s-1. Data re-elaborated from Nemat-Nasser and Guo, 2003. 
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Figure 2. DH-36 structural steel hardening functions at temperature of 296 K and 
three different equivalent plastic strain rates. Data re-elaborated from Nemat-
Nasser and Guo, 2003. 
 

 
Figure 3. DH-36 structural steel hardening functions at temperature of 800 K and 
three different equivalent plastic strain rates. Data re-elaborated from Nemat-
Nasser and Guo, 2003. 
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Following Table 2 summarizes the lower yield stresses for the nine hardening 

functions plotted above. 
 

 0.001 s-1 0.1 s-1 3000 s-1 

77 K 915.555 MPa 974.565 MPa 1150.46 MPa 

296 K 282.455 MPa 305.455 MPa 630.137 MPa 

800 K 190.345 MPa 200.213 MPa 305.345 MPa 

Table 2 
DH-36 structural steel lower yield stresses at different equivalent plastic strain 
rates and temperatures. Data re-elaborated from Nemat-Nasser and Guo, 2003. 

 

It is worthwhile to note that the lower yield stress is strictly increasing with the 

equivalent plastic strain rate, at each temperature, and that it is strictly decreasing 

with the temperature, at each equivalent plastic strain rate. 
Following Figs. 4 and 5 show the trends of the lower yield stress versus the 

equivalent plastic strain rate and the temperature, respectively. 

 

 
Figure 4. DH-36 structural steel lower yield stress versus equivalent plastic strain 
rate for the three considered temperatures. For representation convenience, the 
equivalent plastic strain rates are evaluated though their base 10 logarithm. Data 
re-elaborated from Nemat-Nasser and Guo, 2003. 
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Figure 5. DH-36 structural steel lower yield stress versus temperature for the 
three considered equivalent plastic strain rates. Data re-elaborated from Nemat-
Nasser and Guo, 2003. 

 

In the following, five different calibration strategies are described and applied to 
the just presented experimental data. These approaches appear to be the most 

intuitive, although it is recognized that they are not the only possible ones and other 

calibration strategies may be defined. In order to ease their identification, a name is 

defined here and associated to each of them. The five exposed calibration 
strategies do not appear to be clearly identified and defined in the pertinent 

literature. Rather, it seems that different Johnson-Cook calibration strategies are not 

clearly distinguishable from each other. Thus, the following rigorous and systematic 

treatment aims at clarifying such situation, at least for the five calibration strategies 

considered here. 
This exposition aims also at introducing some considerations about the 

experimental tests necessary to get the input for each calibration procedure. In this 

context, testing the material means to obtain experimental data intended in terms of 

hardening functions, i.e. curves relating the yield stress to the equivalent plastic 

strain. Since the Johnson-Cook model does not consider a dependence of the yield 
stress on the stress triaxiality, these data may come from tensile, compressive or 

torsion tests, provided that the obtained results are then transformed and evaluated 

in terms of the von Mises stress and the equivalent plastic strain. However, 

discrepancies through the parameters may be found when passing from one kind of 
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test to another, as pointed-out by the original paper that presented the strength 

model (Johnson and Cook, 1983). This may be related to a dependence of the yield 
stress on the stress triaxiality, although this appears to be a controversial point and 

it will not be treated in this work. In this regard, some considerations can be found 

in Hopperstad et al., 2003, and in Børvik et al., 2003, in which the combined effects 

of strain rate and stress triaxiality have been investigated. 
 
2.2.1.1.1. LYS Calibration Strategy 

 

The  LYS (Lower Yield Stress) calibration strategy aims at determining the set of 

material parameters capable to achieve the best experimental data fitting for the 
lower yield stresses, i.e. at null equivalent plastic strain. 

The first parameter to be determined is the melting temperature of the material. 

This phase is straightforward, provided that melting data are available. It is then 

necessary to identify the equivalent plastic strain rates and temperatures at which it 
is possible to test the considered material. This information allows to determine the 

reference values of the equivalent plastic strain rate and of the temperature. 

Regarding the reference equivalent plastic strain rate, it must be chosen as one of 

the equivalent plastic strain rates at which the material is tested. No other particular 

conditions are proposed here, therefore it is possible to choose any of them. A 
popular choice is that of taking the lowest considered value. Regarding the 

reference temperature, a sound option is that of taking it equal to the lowest 

temperature at which the material is tested. This choice is due to the fact that it is 

necessary to avoid the computation of negative homologous temperatures, since 

this term is then raised through the parameter m, that may be a non integer 
number, and therefore the calculation of this power may not be possible. This 

situation can lead to error terminations when the model is implemented in FEM 

codes and therefore needs to be avoided. As a consequence, the choice of 

identifying the reference temperature with the lowest temperature at which the 
material is tested, in order to avoid this problem. If a FEM simulation is involved, it 

may also be necessary to check also the fact that the material temperature shall 

never go below the reference value. 

The next phase consists in the determination of the three quasi-static 

parameters, namely A, B and n. This point uses data obtained from the test 
conducted at the reference temperature and at the reference equivalent plastic 

strain rate. These data may be filtered from structural effects through an inverse 

analysis of the experimental tests, to be carried-out with a FEM code. The facts that 

the test is carried-out at the equivalent plastic strain rate and temperature reference 
values implies that the Johnson-Cook strength model assumes the following form, 

in which the second and third multiplicative terms become equal to 1 
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 n
ps A B .= + ⋅ ε   (37) 

 

Under these reference conditions, the parameter A corresponds to the lower yield 

stress, while the parameters B and n describe the successive hardening of the 
material. It is then possible to determine the parameters A, B and n by fitting the 

experimental points with the function shown in Eq. (37). A good strategy here is that 

of adopting a code that provides nonlinear regression capabilities. Following this 

strategy, the determination of the three quasi-static parameters, i.e. A, B and n, is 

due only to the material behavior at the so-called reference conditions, i.e. at 
reference equivalent plastic strain rate and temperature. 

At this point, it is worthwhile to highlight a consideration about the choice of the 

reference equivalent plastic strain rate. As a matter of fact, the reference equivalent 

plastic strain rate must be taken as the value at which the quasi-static parameters 
are evaluated, following the procedure just shown. Otherwise, it is not possible to 

determine the three quasi-static parameters in the way just exposed, because the 

strain rate multiplicative term does not vanish. Assuming the reference equivalent 

plastic strain rate to be equal to 1 and determining the quasi-static parameters by 

fitting a hardening function which refers to an equivalent plastic strain rate that is 
actually different from this reference equivalent plastic strain rate may lead to 

errors. Schwer, 2004, provides a discussion on this aspect, in the context of FEM 

applications of the Johnson-Cook model. 

The next step is relative to the determination of the strain rate parameter, i.e. the 

parameter C. This step involves experimental tests conducted at the reference 
temperature and at equivalent plastic strain rates different from the reference 

equivalent plastic strain, from the lowest one tested up to the highest one. These 

data are always to be intended as a hardening function relating the yield stress to 

the equivalent plastic strain. The value of the parameter C can be obtained by 
noting that the temperature term of the Johnson-Cook strength model becomes 

equal to 1 and thus vanishes, since the tests are carried-out at the reference 

temperature. Being the parameters A, B and n known, the only unknown remaining 

parameter is C, and it can be calculated through the hardening function by using 

the following equation 
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In order to calculate the value of the parameter C, the values of the equivalent 

plastic strain rate, the yield stress and the equivalent plastic strain need to be 
introduced in Eq. (38). By considering experimental results at one determined 

equivalent plastic strain rate, the remaining unknown values are the yield stress and 

the equivalent plastic strain. It is clear that the yield stress is determined when an 

equivalent plastic strain value is chosen, thanks to the experimental hardening 
curve under analysis, which relates such quantities. Therefore, in order to obtain 

the value of the parameter C, it is necessary to choose one equivalent plastic strain 

and the corresponding yield stress. In general, choosing different couples of 

equivalent plastic strain and yield stress results in the calculation of different values 

of C. Since the LYS calibration strategy aims at achieving the best possible fit for 
the lower yield stresses, the parameter C is calculated by considering a null 

equivalent plastic strain and the correspondent yield stress, i.e. the lower yield 

stress. This strategy allows to model the strain rate effects coherently at first yield 

but then its modeling may not be coherent with the experimental results when the 
equivalent plastic strain increases. It is worthwhile to note that this approach does 

not need to carry-out an inverse analysis to purify the hardening function, because 

the only couple of yield stress and equivalent plastic strain values considered are 

those at the lower yield stress, for which possible structural effects can be 

considered as irrelevant. 
The procedure above allows for the determination of the value of the parameter 

C for a given tested equivalent plastic strain rate. The same procedure must be 

followed for the other tested equivalent plastic strain rates, by considering the 

corresponding hardening functions. These tests are intended again as carried-out 

at the reference value of the temperature, thus allowing to use Eq. (38) for 
determining the parameter C, with the same procedure proposed above. Clearly, 

the more tests at different equivalent plastic strain rates can be conducted the 

better for the aim of determining the material behavior. Such data allow to better 

understand the trend of the yield stress on the equivalent plastic strain rate. If the 
material respects the natural logarithmic dependence of the yield stress on the 

dimensionless equivalent plastic strain rate, as assumed in the Johnson-Cook 

model, the same value of C must be recovered for all the available experimental 

data that cover the various tested equivalent plastic strain rates. This may not be 

the case, as previously mentioned. In this case, the value of C is taken as an 
average value of all the available values. As a result, the calibration of the 

parameter C for the LYS strategy may be inevitably flawed due to such aspect, that 

derives directly from the nature of the Johnson-Cook model. It may also be 

interesting to check if some of the modifications of the strain rate term proposed in 
the literature and previously reviewed may be more suitable for the description of 

the considered material.  
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The last step of the calibration procedure concerns the determination of the 

temperature parameter, i.e. the parameter m. This step involves experimental tests 
conducted at the reference equivalent plastic strain rate and at temperatures 

different from the reference temperature, from the lowest one tested up to the 

highest one. These data are always to be intended as a hardening function relating 

the yield stress to the equivalent plastic strain. The value of the parameter m can be 
obtained by noting that the strain rate term of the Johnson-Cook strength model 

becomes equal to 1 and thus vanishes, since the tests are carried-out at the 

reference equivalent plastic strain rate. Being the parameters A, B and n known, the 

only unknown remaining parameter is m, and it can be calculated through the 

hardening function by using the following equation 
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At this point, the situation is similar to the one that arises for the calculation of 

the parameter C. In order to calculate the value of the parameter m, the values of 

the temperature, the yield stress and the equivalent plastic strain need to be 

introduced in Eq. (39). By considering the experimental results at one determined 
temperature, the remaining unknown values are the yield stress and the equivalent 

plastic strain. Again, the yield stress is determined when an equivalent plastic strain 

value is chosen, thank to the experimental hardening curve under analysis. 

Therefore, in order to obtain the value of m, it is necessary to choose one 
equivalent plastic strain and the correspondent yield stress. In general, choosing 

different values of equivalent plastic strain results in calculating different values of 

m, similarly to what happened for the determination of the parameter C. Since the 

LYS calibration strategy aims at achieving the best possible fit for the lower yield 

stresses, the parameter m is calculated by introducing a null equivalent plastic 
strain and the corresponding yield stress, i.e. the lower yield stress. Considerations 

similar to those stated for the determination of the parameter C hold true. 

The procedure above allows for determining the value of the parameter m for a 

given tested temperature. The same procedure must be followed for the other 
tested temperatures, by considering the corresponding hardening functions. These 

tests are intended again as carried-out at the reference value for the equivalent 

plastic strain rate, thus allowing to use Eq. (39) to determine the parameter m with 

the same procedure proposed above. Clearly, the more tests at different 

temperatures can be conducted, the better for the aim of determining the material 
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behavior. Such data allow to better understand the trend of the yield stress on the 

temperature. If the material respects the power dependence of the yield stress on 
the homologous temperature, as assumed in the Johnson-Cook model, the same 

value of m must be recovered for all the available experimental data that cover the 

various temperatures tested. This may not be the case, as previously mentioned. In 

this case, the value of m is taken as an average value of all the available values. 
Considerations similar to those stated for the determination of the parameters C 

hold true. 

It is worthwhile to point-out some considerations about the procedure stated 

above. Following the LYS calibrations strategy, the experimental data necessary for 

the determination of the Johnson-Cook parameters can be resumed with the 
following list. 

 

• One test conducted at the reference temperature and at the reference 
equivalent spatial plastic strain rate. These data allow to determine the 

reference equivalent plastic strain rate and temperature and the quasi-static 

parameters A, B and n. 

 

• A series of tests conducted at the reference temperature and at equivalent 

plastic strain rates different from the reference equivalent plastic strain, from the 

lowest one tested up to the highest one. As instance, these tests can be 
carried-out with a Hopkinson bar. These data allow to determine the parameter 

C. Clearly, the more hardening functions can be obtained, the better, in order to 

cover the considered equivalent plastic strain rate range with a good resolution. 

 

• A series of tests conducted at the reference equivalent plastic strain rate but at 
different temperatures, from the lowest tested up to the highest one. As 

instance, these tests can be conducted with a tensile test machine endowed 
with an oven or a furnace capable to heat the specimen and keep it at a 

constant temperature: Device capable to cool down the specimen may be 

adopted for testing at low temperatures. These data allow to determine the 

parameter m. Clearly, the more hardening functions can be obtained, the better, 

in order to cover the considered temperature range with a good resolution. 
 

In the following, the LYS calibration strategy is applied to the nine experimental 

hardening functions extracted from Nemat-Nasser and Guo, 2003. 

The reference equivalent plastic strain rate is chosen as the lowest equivalent 

plastic strain rate tested, i.e. 0.001 s-1. The reference temperature is chosen as the 
lowest temperature tested, i.e. 77 K. By evaluating the experimental hardening 

function at these reference values, the quasi-static parameters are obtained, 
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through a fitting carried-out with Wolfram Mathematica 7. The obtained parameters 

A, B and n are equal to 915.555 MPa, 760.782 MPa and 0.60101, respectively. 
Regarding the parameter C, it is obtained by introducing a null equivalent plastic 

strain in Eq. (38), thus obtaining the following form 
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The parameter C can be calculated with the two equivalent plastic strain rates 

different from the reference equivalent plastic strain rate, i.e. 0.1 s-1 and 3000 s-1, at 
the reference temperature of 77 K. The computed values are equal to 0.01399 and 

0.01720, for the equivalent plastic strain rates of 0.1 s-1 and 3000 s-1, respectively. 

The fact of having obtained different values for the parameter C reveals that the 

material does not strictly respect the natural logarithm dependence of the lower 

yield stress on the dimensionless equivalent plastic strain rate. Following the 
procedure described above, the parameter C is set equal to their average value, 

namely 0.01560. 

Regarding the parameter m, it is determined by introducing a null equivalent 

plastic strain in Eq. (39), thus obtaining the following form 
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The parameter m can be calculated with the two temperatures different from the 

reference temperature, i.e. 296 K and 800 K, at the reference equivalent plastic 

strain rate of 0.001 s-1. The computed values are equal to 0.18022 and 0.27336, for 

the temperatures of 296 K and 800 K, respectively. The fact of having obtained 

different values for the parameter m reveals that the material does not strictly 

respect the power dependence of the lower yield stress on the homologous 

temperature. Following the procedure described above, the parameter m is set 

equal to their average value, namely 0.22679. 

The 8 Johnson-Cook parameters obtained through the LYS calibration strategy 

are summarized in following Table 3. 
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A 915.555 MPa m 0.22679 

B 760.782 MPa 0εɺ  0.001 s-1 

n 0.60101 T0 77 K 

C 0.01560 Tm 1773 K 

Table 3 
Johnson-Cook parameters for the DH-36 structural steel calculated through the 
LYS calibration strategy. 

 

Following Figs. 6 to 8 show the hardening functions predicted by the Johnson-

Cook model calibrated with the LYS strategy. As expected, the curves of the model 
follow in the best possible way the first yield of the experimental hardening curves. 

However, this target is partially hindered by the fact that the material does not 

strictly respect the natural logarithm dependence of the lower yield stress on the 

dimensionless equivalent plastic strain rate and the power dependence on the 

homologous temperature. The fact of having chosen an average value of C and m 
implies that the predictions of the models lie in between the two cases. 

 

 
Figure 6. LYS calibrated Johnson-Cook fitting to DH-36 structural steel data at 
temperature of 77 K and at three different equivalent plastic strain rates. 
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Figure 7. LYS calibrated Johnson-Cook fitting to DH-36 structural steel data at 
temperature of 296 K and at three different equivalent plastic strain rates. 
 

 
Figure 8. LYS calibrated Johnson-Cook fitting to DH-36 structural steel data at 
temperature of 800 K and at three different equivalent plastic strain rates. 
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Following Figs. 9 to 11 show the same results but this time the yield stress is 

visualized as a two-dimensional function of the equivalent plastic strain and the 
base 10 logarithm of the equivalent plastic strain rate, allowing to better understand 

the predictions of the model. Experimental data are reported with black dots whilst 

the predictions of the Johnson-Cook model are represented by red surfaces. 

 

 
Figure 9. LYS calibrated JC model fitting to DH-36 steel data at temperature of 77 K. 
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Figure 10. LYS calibrated JC model fitting to DH-36 steel data at temperature of 296 K. 

 

 
Figure 11. LYS calibrated JC model fitting to DH-36 steel data at temperature of 800 K. 
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As shown in Figs. 6 to 11, the fit to the lower yield stresses is very good for the 

hardening functions in which at least one reference condition is present, i.e. an 
equivalent plastic strain rate of 0.001 s-1 or a temperature of 77 K. On the other 

hand, when the model fits the four hardening functions that do not refer to at least 

one reference condition, i.e. 0.1 s-1 and 296 K, 3000 s-1 and 296 K, 0.1 s-1 and 800 

K, and 3000 s-1 and 800 K, large errors may be introduced, as clearly visible in the 
plots. This fact is due to having calculated the parameters C and m by considering 

only experimental data at the reference temperature and at the reference equivalent 

plastic strain rate, respectively. As a matter of fact, the four hardening functions that 

do not refer to at least one reference condition are never used when the LYS 

calibration strategy is adopted. Following Table 4 reports a comparison between the 
LYS calibrated Johnson-Cook model predictions of the lower yield stresses and 

their experimental counterparts. 

 

 Experimental Values LYS JC Values 

   0.001 s-1, 77 K 915.555 MPa 915.555 MPa 

0.1 s-1, 77 K 974.565 MPa 981.323 MPa 

3000 s-1, 77 K 1150.46 MPa 1128.545 MPa 

   0.001 s-1, 296 K 282.455 MPa 340.015 MPa 

0.1 s-1, 296 K 305.455 MPa 364.439 MPa 

3000 s-1, 296 K 630.137 MPa 419.115 MPa 

   0.001 s-1, 800 K 190.345 MPa 160.967 MPa 

0.1 s-1, 800 K 200.213 MPa 172.533 MPa 

3000 s-1, 800 K 305.345 MPa 198.417 MPa 

Table 4 
Comparison between experimental lower yield stresses and corresponding predicted 
lower yield stresses from the Johnson-Cook model calibrated with the LYS strategy. 

 
Usually, when the LYS calibration strategy is adopted, predictions of the 

calibrated Johnson-Cook model are assessed only by comparing to hardening 

functions which refer to at least one reference condition. Indeed, often these 

hardening functions are the only ones that are experimentally investigated. It is 

clear that this kind of check may give good results, as readable in Figs. 6 to 11. 
However, the model should be checked even against hardening functions that do 

not refer to at least one reference condition, since large errors may be introduced. 

The relevance of this aspect should not be underestimated, as large modeling 

errors may be involved. 
As a last observation, Figs. 6 to 11 clearly show how the requirement to best fit 

the first yield implies errors, sometimes of conspicuous magnitude, when the 

equivalent plastic strain increases. Such errors are obviously minimized for the 



44 
 

hardening function at the reference conditions, i.e. 0.001 s-1 and 77 K. The 

parameters A, B and n are indeed calibrated through a nonlinear regression to best 
fit this hardening function. On the other hand, when it comes to the fitting of other 

hardening functions, heavy modeling errors are introduced. 

In order to better assess the errors of the LYS calibrated Johnson-Cook model 

throughout the considered equivalent plastic strain ranges, it is possible to calculate 

the yield stress Root Mean Square (RMS) error, denoted here by errs , for each of 

the nine hardening function predictions, through the following relation 
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where JC
is  and EXP

is  represent the i-th Johnson-Cook yield stress prediction and 

the correspondent i-th experimental yield stress measurements, respectively. Of 

course, the i-th Johnson-Cook yield stress prediction is calculated by using the 

same equivalent plastic strain to which the i-th experimental yield stress refers to. 
The errors of the LYS calibrated Johnson-Cook model throughout the equivalent 

plastic strain ranges considered can be further evaluated by introducing the 

percentage yield stress RMS error, denoted here by %errs , for each of the nine 

hardening functions predictions, through the following relation 
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Following Table 5 reports both the yield stress and the percentage yield stress 

RMS errors for each one of the nine considered hardening functions, together with 

their algebraic mean value, i.e. their sum divided by nine. Heavy errors are 

introduced. 
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 errs  %errs  

   0.001 s-1, 77 K 19.5893 MPa 1.784% 

0.1 s-1, 77 K 136.732 MPa 10.63% 

3000 s-1, 77 K 404.147 MPa 35.74% 

   0.001 s-1, 296 K 221.587 MPa 30.92% 

0.1 s-1, 296 K 221.711 MPa 29.56% 

3000 s-1, 296 K 315.801 MPa 35.85% 

   0.001 s-1, 800 K 299.824 MPa 57.02% 

0.1 s-1, 800 K 327.546 MPa 56.91% 

3000 s-1, 800 K 337.807 MPa 55.24% 

   Average 253.860 MPa 34.85% 

Table 5 
Yield stress (central column) and percentage yield stress (right column) root mean 
square errors for the LYS calibrated Johnson-Cook model yield stress predictions. 

 
2.2.1.1.2. OPTLYS Calibration Strategy 

 
The OPTLYS (OPTimized Lower Yield Stress) calibration strategy aims at 

improving the LYS calibration strategy by optimizing the value of the parameters C 

and m. In order to achieve this target, this strategy introduces in the calibration 

procedure the experimental data relative to the hardening functions which do not 

refer to at least one reference condition, by trying to obtain values of the 
parameters C and m capable to provide the actual best fit for all the made available 

hardening functions. 

For what it concerns the calibration of the melting temperature, the reference 

equivalent plastic strain rate, the reference temperature and the quasi-static 
parameters A, B and n, the procedure is exactly the same as that exposed for the 

LYS calibration strategy. Differences arise for the determination of the parameters 

C and m. In order to introduce all the lower yield stress data provided by all the 

available hardening functions, the Johnson-Cook strength model, Eq. (28), is 

recalled a number of times equal to the number of available hardening functions 
which do not refer to reference conditions for both the equivalent plastic strain rate 

and the temperature, i.e. all the available hardening functions except for the one 

which refers to both reference equivalent plastic strain rate and reference 

temperature. This approach leads to the construction of an overdetermined system 
of nonlinear equations, in which the unknowns are the parameters C and m and the 

number of equations is equal to the number of available hardening functions which 

do not refer to reference conditions for both the equivalent plastic strain rate and 

the temperature. Such system is reported in the following. Of course, the equivalent 

plastic strain is always set to zero, in order to reach the aims of the OPTLYS 
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calibration strategy, and thus only the lower yield stress is considered, resulting in 

the following equation 
 

 i

m
p i 0

i 0
m 0p

T T
s A 1 C ln 1 .

T T

  ε  −  = ⋅ + ⋅ ⋅ −      −ε     

ɺ

ɺ
   (44) 

 
In this equation, the subscript i refers to the values relative to the i-th hardening 

function. A system of this kind can be solved through a nonlinear least square 

method. The solution values for the parameters C and m are those characterized by 

being capable to minimize the square errors of the Johnson-Cook model predictions 

against experimental data at the lower yield stresses. A good strategy here is that 
of adopting a numerical tool capable to handle such problems. 

It is worthwhile to point-out some considerations about the procedure stated 

above. Following the OPTLYS calibration strategy, the experimental data necessary 

for the determination of the Johnson-Cook parameters can be resumed with the 
following list. 

 

• One test conducted at the reference temperature and at the reference 
equivalent plastic strain rate. These data allow to determine the reference 

equivalent plastic strain rate and temperature and the quasi-static parameters 

A, B and n. 

 

• A series of tests conducted in such a way that at least one between the 
equivalent plastic strain and the temperature are different from their reference 

values. These data allow to simultaneously determine the parameters C and m. 

It is worthwhile to note that the OPTLYS calibration strategy does not 
compulsorily imply to carry-out separate tests at the reference temperature but 

at different equivalent plastic strain rates and then at the reference equivalent 

plastic strain rate but at different temperatures. Rather, any hardening function 

which does not refer to reference conditions for both the equivalent plastic 
strain rate and the temperature is actually useful for the determination of the 

parameters C and m. As previously stated for the LYS calibration strategy, a 

coherent approach would be that of testing the material throughout the 

equivalent plastic strain rate and temperature ranges of interest. As instance, 

tests at different equivalent plastic strain rates and temperatures can be 
carried-out with a Hopkinson bar endowed with an oven or a furnace capable to 

heat the specimen, or with a system able to cool it down if low temperatures 

need to be tested. Clearly, the more hardening functions can be obtained, the 
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better, in order to cover the considered equivalent plastic strain rate and 

temperature ranges with a good resolution. 
 

In the following, the OPTLYS calibration strategy is applied to the nine 

experimental hardening functions extracted from Nemat-Nasser and Guo, 2003. 

All the parameters are equal to the ones evaluated for the LYS calibration 
strategy, except for the parameters C and m, which are evaluated by solving the 

following overdetermined system of 8 nonlinear equations and 2 unknowns, i.e. the 

parameters C and m 

  

 

m

m

m

296 77
282.455 915.555 1

1773 77

800 77
190.345 915.555 1

1773 77

0.1
974.565 915.555 1 C ln
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305.455 915.555 1 C ln 1

0.001 1773 77

200.2

 − 
 = ⋅ −   −  

 − 
 = ⋅ −   −  
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 −   
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m

m

0.1 800 77
13 915.555 1 C ln 1

0.001 1773 77

3000
1150.455 915.555 1 C ln
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3000 296 77
630.137 915.555 1 C ln 1

0.001 1773 77

3000
305.345 915.555 1 C ln

0.001

 −   
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 −   
 = ⋅ + ⋅ ⋅ −    −    

= ⋅ + ⋅
m

800 77
1 .

1773 77

 −  
 ⋅ −    −    

   (45) 

 

This overdetermined system of nonlinear equations has been solved with a 
nonlinear least squares trust-region-reflective algorithm with MathWorks 

MatLab 2010b. A tolerance of 10-8 was set. This means that when the iterative 

solution provided by the algorithm changes of a value lower then 10-8 from one 

iteration step to the next, the algorithm is stopped and these values are taken as 

the final solution. The obtained values for the parameters C and m simultaneously 
minimize the square errors for the eight nonlinear equations of the system, through 

a multi-objective nonlinear optimization. Details on this algorithm can be found, e.g., 
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in Coleman and Li, 1994. These optimized values are equal to 0.02049 and 

0.26367 for the parameters C and m, respectively. 
The 8 Johnson-Cook parameters obtained through the OPTLYS calibration 

strategy are summarized in following Table 6. 

 

A 915.555 MPa M 0.26367 

B 760.782 MPa 0εɺ  0.001 s-1 

N 0.60101 T0 77 K 

C 0.02049 Tm 1773 K 

Table 6 
Johnson-Cook parameters for the DH-36 structural steel calculated through the 
OPTLYS calibration strategy. 

 

Following Figs. 12 to 14 show the hardening functions predicted by the Johnson-

Cook model calibrated with the OPTLYS strategy.  

The curves of the OPTLYS calibrated Johnson-Cook model follow in the best 
possible way the lower yield stresses of the experimental hardening curves, this 

time by considering not only the hardening functions which have at least one 

between the equivalent plastic strain and the temperature equal to the reference 

value, but all the nine hardening functions. As previously said, this target is partially 

hindered by the fact that the material does not strictly respect the natural logarithm 
dependence of the lower yield stress on the dimensionless equivalent plastic strain 

rate and the power dependence on the homologous temperature. 
 



49 
 

 
Figure 12. OPTLYS calibrated Johnson-Cook fitting to DH-36 structural steel data 
at temperature of 77 K and at three different equivalent plastic strain rates. 

 

 
Figure 13. OPTLYS calibrated Johnson-Cook fitting to DH-36 structural steel data 
at temperature of 296 K and at three different equivalent plastic strain rates. 
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Figure 14. OPTLYS calibrated Johnson-Cook fitting to DH-36 structural steel data 
at temperature of 800 K and at three different equivalent plastic strain rates. 

 

Following Figs. 15 to 17 further show the OPTLYS results by surface plots. 
 

 
Figure 15. OPTLYS calibrated JC model fitting to DH-36 steel data at temperature of 77 K. 
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Figure 16. OPTLYS calibrated JC model fitting to DH-36 steel data at temperature of 296 K. 
 

 
Figure 17. OPTLYS calibrated JC model fitting to DH-36 steel data at temperature of 800 K. 
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As displayed in Figs. 12 to 17, the fit to the lower yield stresses is now the result 

of a compromise between all the nine hardening functions. This point implies the 
fact that the fit with the hardening functions in which at least one reference 

conditions is present is less coherent than the one obtainable from the predictions 

of the LYS calibrated Johnson-Cook model. On the other hand, when the model fits 

the four hardening functions that do not refer to at least one reference condition, the 
errors are lower. Clearly, this is a consequence of having calculated the parameters 

C and m by considering experimental data from all the nine hardening functions. 

Following Table 7 reports a comparison between the OPTLYS calibrated Johnson-

Cook model predictions of the lower yield stresses and their experimental 

counterparts. 
 

 Experimental Values OPTLYS JC Values 

   0.001 s-1, 77 K 915.555 MPa 915.555 MPa 

0.1 s-1, 77 K 974.565 MPa 1001.95 MPa 

3000 s-1, 77 K 1150.46 MPa 1195.34 MPa 

   0.001 s-1, 296 K 282.455 MPa 381.868 MPa 

0.1 s-1, 296 K 305.455 MPa 417.901 MPa 

3000 s-1, 296 K 630.137 MPa 498.563 MPa 

   0.001 s-1, 800 K 190.345 MPa 184.331 MPa 

0.1 s-1, 800 K 200.213 MPa 201.724 MPa 

3000 s-1, 800 K 305.345 MPa 240.660 MPa 

Table 7 
Comparison between experimental lower yield stresses and correspondent predicted 
lower yield stresses from the Johnson-Cook model calibrated with the OPTLYS strategy. 

 

Of course, the problem of having errors when the equivalent plastic strain 

increases is still present, since it is a consequence of the basic assumption of both 
the LYS and the OPTLYS calibration strategies. Following Table 8 reports both the 

yield stress and the percentage yield stress root mean square errors for each of the 

nine considered hardening functions, together with their algebraic mean value, i.e. 

their sum divided by nine. Conspicuous errors are introduced. 
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 errs  %errs  

   0.001 s-1, 77 K 19.5893 MPa 1.784% 

0.1 s-1, 77 K 161.790 MPa 12.65% 

3000 s-1, 77 K 486.710 MPa 42.86% 

   0.001 s-1, 296 K 166.723 MPa 23.91% 

0.1 s-1, 296 K 152.704 MPa 21.14% 

3000 s-1, 296 K 209.812 MPa 23.82% 

   0.001 s-1, 800 K 268.377 MPa 50.91% 

0.1 s-1, 800 K 288.575 MPa 49.90% 

3000 s-1, 800 K 282.324 MPa 45.84% 

   Average 226.289 MPa 30.31% 

Table 8 
Yield stress (central column) and percentage yield stress (right column) root mean 
square errors for the OPTLYS calibrated Johnson-Cook model yield stress predictions. 

 
2.2.1.1.3. EPS Calibration Strategy 

 
The  EPS (Equivalent Plastic Strain) calibration strategy aims at determining the set 

of material parameters capable to achieve the best fitting of experimental data 

throughout the equivalent plastic strain ranges involved in the available hardening 

functions. 

For what it concerns the calibration of the melting temperature, the reference 
equivalent plastic strain rate, the reference temperature and the quasi-static 

parameters A, B and n, the procedure is still the same as that previously exposed 

for the LYS calibration strategy. Differences arise again for the determination of the 

parameters C and m. In order to achieve the best fitting throughout the equivalent 
plastic strain ranges involved in the available hardening functions, data at each 

value of equivalent plastic strain need to be considered for the calculation of the two 

parameters. 

The first step is relative to the determination of the strain rate parameter, i.e. the 

parameter C. As for the LYS and OPTLYS calibration strategies, this step involves 
experimental tests conducted at the reference temperature and at equivalent plastic 

strain rates different from the reference equivalent plastic strain, from the lowest 

one tested up to the highest one. These data are always to be intended as a 

hardening function relating the yield stress to the equivalent plastic strain. The 
value of the parameter C can be obtained by noting that the temperature term of the 

Johnson-Cook strength model becomes 1 and thus vanishes, since the tests are 

carried-out at the reference temperature. Therefore, Eq. (38) is used again, 

although this time the equivalent plastic strain is not set equal to zero, but rather it 

is left as an unknown. At this point, the procedure is that of performing a regression 
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of the hardening function data at a given equivalent plastic strain rate, of course 

different from the reference equivalent plastic strain rate, by considering the 
Johnson-Cook form presented in Eq. (38), i.e. a regression in which the only 

parameter to be determined is C. 

This strategy allows to model coherently the strain rate effects throughout the 

equivalent plastic strain range but then the prediction of the lower yield stress may 
be somehow incoherent. It is worthwhile to note that this approach does need to 

carry-out an inverse analysis to purify the experimental hardening function, because 

all data are actually used in the calibration procedure, and thus structural effects 

cannot be considered as irrelevant. Furthermore, the inverse analysis is helpful in 

order to clean the results from temperature effects due to the plastic work converted 
into heat during the testing of the specimens. This last aspect is particularly relevant 

when the material is tested at high strain rates. 

The procedure above allows to determine the value of the parameter C for a 

given tested equivalent plastic strain rate. The same procedure must be followed for 
the other tested equivalent plastic strain rates, by considering the corresponding 

hardening functions. These tests are intended again as carried-out at the reference 

value for the temperature, thus allowing to use Eq. (38) to determine the 

parameter C with the same procedure proposed above. Clearly, the more tests at 

different equivalent plastic strain rates can be conducted, the better for the aim of 
determining the material behavior, similarly to what said for the other calibration 

strategies. Such data allow to better understand the trend of the yield stress on the 

equivalent plastic strain rate. At this point, the same issue previously outlined for 

the LYS and OPTLYS calibration strategies arises. If the material respects the 

natural logarithmic dependence of the yield stress on the dimensionless equivalent 
plastic strain rate, as assumed in the Johnson-Cook model, the same value of C 

must be recovered for all the available experimental data that cover the various 

tested equivalent plastic strain rates. If this aspect is not respected, the value of C 

is taken as an average value of all the available values. As a result, the calibration 
of the parameter C for the EPS strategy may be inevitably flawed due to such 

aspect, that derives directly from the nature of the Johnson-Cook model. It may also 

be interesting to check if some of the modifications of the strain rate term proposed 

in the literature and previously reviewed may be more suitable for the description of 

the considered material.  
The last step of the calibration procedure concerns the determination of the 

temperature parameter, i.e. the parameter m. As for the LYS and OPTLYS 

calibration strategies, this step involves experimental tests conducted at the 

reference equivalent plastic strain rates and at temperatures different from the 
reference temperature, from the lowest one tested up to the highest one. These 

data are always to be intended as a hardening function relating the yield stress to 
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the equivalent plastic strain. The value of the parameter m can be obtained by 

noting that the strain rate term of the Johnson-Cook strength model becomes equal 
to 1 and thus vanishes, since the tests are carried-out at the reference equivalent 

plastic strain rate. Hence, Eq. (39) is used again, although this time the equivalent 

plastic strain is not set to zero, but rather it is left as an unknown. At this point, the 

procedure is that of performing a regression of the hardening function data at a 
given temperature, of course different from the reference temperature, by 

considering the Johnson-Cook form presented in Eq. (39), i.e. a regression in which 

the only parameter to be determined is m. 

As said for the strain rate effects, this strategy allows to model coherently the 

temperature effects throughout the equivalent plastic strain range but then the 
prediction of the lower yield stress may be somehow incoherent. The same 

considerations previously stated about the necessity to carry-out an inverse 

analysis of the experimental data hold true. 

The procedure above allows for determining the value of the parameter m for a 
given tested temperature. The same procedure must be followed for the other 

tested temperatures, by considering the corresponding hardening functions. These 

tests are intended again as carried-out at the reference value for the equivalent 

plastic strain rate, thus allowing to use Eq. (39) to determine the parameter m with 

the same procedure proposed above. Clearly, the more tests at different 
temperatures can be conducted, the better for the aim of determining the material 

behavior, similarly to what said for the other calibration strategies. Such data allow 

to better understand the trend of the yield stress on the equivalent plastic strain 

rate. Once again, the same issue previously seen for the LYS and OPTLYS 

calibration strategies arises. If the material respects the power dependence of the 
yield stress on the homologous temperature, as assumed in the Johnson-Cook 

model, the same value of m must be recovered for all the available experimental 

data that cover the various tested temperatures. If this aspect is not respected, the 

value of m is taken as an average value of all the available values. Considerations 
similar to those stated for the determination of the parameters C hold true. 

Regarding the experimental data necessary in order to carry-out the EPS 

calibration strategy, these are exactly the same required for the LYS calibration 

strategy. In the following, the EPS calibration strategy is applied to the nine 

experimental hardening functions extracted from Nemat-Nasser and Guo, 2003. 
All the parameters are equal to the ones evaluated for the LYS calibration 

strategy, except for the parameters C and m, which are obtained by carrying-out a 

regression of the experimental data through Eq. (38). The parameter C can be 

calculated with the hardening functions that refer to the two equivalent plastic strain 
rates differing from the reference equivalent plastic strain rate, i.e. 0.1 s-1 and 

3000 s-1, at the reference temperature of 77 K. Wolfram Mathematica 7 has been 
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used to achieve such task. The computed values are equal to -0.00479 and -

0.00407, for the equivalent plastic strain rates of 0.1 s-1 and 3000 s-1, respectively. 
The two obtained values are quite similar, proving that the material somehow 

respects the natural logarithm dependence of the plastic flow on the dimensionless 

equivalent plastic strain rate. Following the procedure described above, the 

parameter C is set equal to the average value, namely -0.00443. 
Regarding the parameter m, it is obtained by carrying-out a regression of the 

experimental data through Eq. (39). The parameter m can be calculated with the 

hardening functions that refer to the two temperatures differing from the reference 

temperature, i.e. 296 K and 800 K, at the reference equivalent plastic strain rate of 

0.001 s-1. Wolfram Mathematica 7 has been used again. The computed values are 
equal to 0.37849 and 0.62806, for the temperatures of 296 K and 800 K, 

respectively. The fact of having obtained quite different values for the two computed 

parameters m reveals that the material does not strictly respect the power 

dependence of the yield stress on the homologous temperature. Following the 
procedure described above, the parameter m is set equal to the average value, 

namely 0.50328. 

The eight Johnson-Cook parameters obtained through the EPS calibration 

strategy are summarized in following Table 9. 

 

A 915.555 MPa m 0.50328 

B 760.782 MPa 0εɺ  0.001 s-1 

N 0.60101 T0 77 K 

C -0.00443 Tm 1773 K 

Table 9 
Johnson-Cook parameters for the DH-36 structural steel calculated through the 
EPS calibration strategy. 

 

Following Figs. 18 to 20 show the hardening functions predicted by the Johnson-
Cook model calibrated with the EPS strategy. As expected, the curves of the model 

follow in the best possible way the experimental hardening curves throughout the 

equivalent plastic strain ranges. However, this target is partially hindered by the fact 

that the material does not strictly respect the natural logarithm dependence of the 
yield stress on the dimensionless equivalent plastic strain rate and the power 

dependence on the homologous temperature. The fact of having chosen an 

average value of C and m implies that the predictions of the model lie in between 

the two cases. 
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Figure 18. EPS calibrated Johnson-Cook fitting to DH-36 structural steel data at 
temperature of 77 K and at three different equivalent plastic strain rates. 

 

 
Figure 19. EPS calibrated Johnson-Cook fitting to DH-36 structural steel data at 
temperature of 296 K and at three different equivalent plastic strain rates. 
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Figure 20. EPS calibrated Johnson-Cook fitting to DH-36 structural steel data at 
temperature of 800 K and at three different equivalent plastic strain rates. 

 

Following Figs. 21 to 23 further show the EPS results by surface plots. 
 

 
Figure 21. EPS calibrated JC model fitting to DH-36 steel data at temperature of 77 K. 
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Figure 22. EPS calibrated JC model fitting to DH-36 steel data at temperature of 296 K. 

 

 
Figure 23. EPS calibrated JC model fitting to DH-36 steel data at temperature of 800 K. 
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As shown in Figs. 18 to 23, the hardening functions fit throughout the equivalent 

plastic strain ranges is improved, by comparing to the predictions of the LYS and 
OPTLYS calibrated Johnson-Cook models. Due to the nature of the EPS calibration 

strategy, the best fit is achieved for the hardening functions in which at least one 

reference conditions is present, i.e. an equivalent plastic strain rate of 0.001 s-1 or a 

temperature of 77 K. On the other hand, when the model fits the four hardening 
functions that do not refer to at least one reference condition, i.e. 0.1 s-1 and 296 K, 

3000 s-1 and 296 K, 0.1 s-1 and 800 K, and 3000 s-1 and 800 K, wider errors may be 

introduced. This fact is due to having calculated the parameters C and m by 

considering only experimental data at the reference temperature and at the 

reference equivalent plastic strain rate, respectively. As a matter of fact, the four 
hardening functions that do not refer to at least one reference condition are never 

used when the EPS calibration strategy is adopted, as for the LYS calibration 

strategy. 

Another important aspect that does contribute in creating fitting errors is the fact 
that the hardening parameters B and n are actually chosen as the ones capable to 

best fit the hardening function at the reference conditions only, i.e. at 0.001 s-1 and 

at 77 K. As clearly visible in Figs. 18 to 23, the parameters B and n capable to best 

fit the nine hardening functions vary strongly throughout the equivalent plastic strain 

rate and temperature ranges. In particular, the material softening that arises for the 
hardening function at 3000 s-1 and 77 K is very badly fitted, since the Johnson-Cook 

hardening function is not capable to fit trends which present a hardening phase 

followed by a softening one. In general, the more the best fit of the parameters B 

and n is dependent on the equivalent plastic strain rate and on the temperature, the 

more modeling errors are introduced, when trying to model hardening functions 
which do not refer to the reference conditions for both the equivalent plastic strain 

and the temperature. 

As shown in Figs. 18 to 23, the requirement to best fit the data throughout the 

equivalent plastic strain ranges implies errors for the prediction of the lower yield 
stresses, sometimes of high magnitude. Such errors are obviously minimized for the 

hardening function at the reference conditions, i.e. 0.001 s-1 and 77 K. The 

parameters A, B and n are indeed calibrated through a nonlinear regression to best 

fit this hardening function. On the other hand, when it comes to the fitting of other 

hardening functions, heavy modeling errors are introduced. Following Table 10 
reports a comparison between the EPS calibrated Johnson-Cook model predictions 

of the lower yield stresses and their experimental counterparts. 
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 Experimental Values EPS JC Values 

   0.001 s-1, 77 K 915.555 MPa 915.555 MPa 

0.1 s-1, 77 K 974.565 MPa 896.883 MPa 

3000 s-1, 77 K 1150.46 MPa 855.085 MPa 

   0.001 s-1, 296 K 282.455 MPa 588.755 MPa 

0.1 s-1, 296 K 305.455 MPa 576.748 MPa 

3000 s-1, 296 K 630.137 MPa 549.869 MPa 

   0.001 s-1, 800 K 190.345 MPa 319.443 MPa 

0.1 s-1, 800 K 200.213 MPa 312.928 MPa 

3000 s-1, 800 K 305.345 MPa 298.344 MPa 

Table 10 
Comparison between experimental lower yield stresses and correspondent predicted 
lower yield stresses from the Johnson-Cook model calibrated with the EPS strategy. 

 

At this point, it is worthwhile to point-out the following consideration, similarly to 
what done for the LYS calibration strategy. Usually, when the EPS calibration 

strategy is adopted, predictions of the calibrated Johnson-Cook model are 

assessed only by comparing to hardening functions which refer to at least one 

reference condition. This kind of check may give good results, as readable in 

Figs. 18 to 23. However, the model should be checked even against hardening 
functions which do not refer to at least one reference condition, since large errors 

may be introduced. 

Following Table 11 reports both the yield stress and the percentage yield stress 

root mean square errors for each of the nine considered hardening functions, 
together with their algebraic mean value. Heavy errors are introduced, although the 

situation is clearly improved by comparing to the LYS and OPTLYS strategies. 
 

 errs  %errs  

   0.001 s-1, 77 K 19.5893 MPa 1.784% 

0.1 s-1, 77 K 68.1024 MPa 5.458% 

3000 s-1, 77 K 178.521 MPa 15.59% 

   0.001 s-1, 296 K 145.517 MPa 31.88% 

0.1 s-1, 296 K 100.287 MPa 23.54% 

3000 s-1, 296 K 142.636 MPa 16.19% 

   0.001 s-1, 800 K 90.808 MPa 19.20% 

0.1 s-1, 800 K 143.578 MPa 26.22% 

3000 s-1, 800 K 207.018 MPa 33.23% 

   Average 121.784 MPa 19.23% 

Table 11 
Yield stress (central column) and percentage yield stress (right column) root mean 
square errors for the EPS calibrated Johnson-Cook model yield stress predictions. 
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2.2.1.1.4. OPTEPS Calibration Strategy 

 
The OPTEPS (OPTimized Equivalent Plastic Strain) calibration strategy aims at 

improving the EPS calibration strategy, by optimizing the value of the parameters C 

and m. In order to achieve this target, this strategy introduces in the calibration 

procedure the experimental data relative to the hardening functions which do not 
refer to at least one reference condition, by trying to obtain values of the 

parameters C and m capable to provide the actual best fit for all the hardening 

functions that are made available. 

For what it concerns the calibration of the melting temperature, the reference 

equivalent plastic strain rate, the reference temperature and the quasi-static 
parameters A, B and n, the procedure is exactly the same as that exposed for the 

LYS calibration strategy. Differences arise for the determination of the parameters 

C and m. In order to introduce all the yield stress data provided by all the available 

hardening functions, the Johnson-Cook strength model, Eq. (28), is recalled a 
number of times equal to the number of available experimental observations, 

intended in terms of couples of yield stress and corresponding equivalent plastic 

strain values, throughout the equivalent plastic strain ranges experimentally 

investigated. These data refer to all the available hardening functions which do not 

refer to reference conditions for both the equivalent plastic strain rate and the 
temperature, i.e. all the available hardening functions except for the one which 

refers to the reference equivalent plastic strain rate and the reference temperature. 

This approach leads to the construction of a large overdetermined system of 

nonlinear equations, in which the unknowns are the parameters C and m and the 

number of equations is equal to the number of available couples of yield stress and 
corresponding equivalent plastic strain values, which depends on the number of 

experimental hardening functions that are made available and on the sampling 

frequency adopted for the experimental measurements. In order to avoid to set-up 

too large systems, it is obviously possible to consider data at a frequency inferior to 
that used for obtaining data during the experimental measurements, e.g. 10 times 

lower. Such system takes the following form 

 

 ( ) i

i

m
pn i 0

i p 0
m 0p

T T
s A B 1 C ln 1 .

T T

  ε  −  = + ⋅ ε ⋅ + ⋅ ⋅ −      −ε     

ɺ

ɺ
   (46) 

 

In these equations, the subscript i refers to the i-th couple of yield stress and 

corresponding equivalent plastic strain values. As said for the OPTLYS calibration 

strategy, a system of this kind can be solved through a nonlinear least square 
method. The solution values for the parameters C and m are those characterized by 
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being capable to minimize the square errors of the Johnson-Cook model predictions 

against experimental data at each couple of yield stress and corresponding 
equivalent plastic strain values. 

Regarding the experimental data necessary in order to carry-out the OPTEPS 

calibration strategy, these are exactly the same required for the OPTLYS calibration 

strategy. In the following, the OPTEPS calibration strategy is applied to the nine 
experimental hardening functions extracted from Nemat-Nasser and Guo, 2003. 

All the parameters are equal to the ones evaluated for the LYS calibration 

strategy, except for the parameters C and m, which are evaluated by solving the 

overdetermined system of nonlinear equations and 2 unknowns, i.e. the parameter 

C and m. Couples of yield stress and corresponding equivalent plastic strain values 
are taken with the same frequency of the experimental ones, i.e. for each digitalized 

couple of yield stress and corresponding equivalent plastic strain. Following this 

approach, a large overdetermined system of 664 nonlinear equations and 2 

unknowns is created. It has been numerically solved with a nonlinear least squares 
trust-region-reflective algorithm within MathWorks MatLab 2010b, as previously 

done for the OPTLYS calibration strategy, with a tolerance of 10-8. The obtained 

values for the parameters C and m simultaneously minimize the square errors for 

the 664 nonlinear equations of the system, through a multi-objective nonlinear 

optimization. These optimized values are equal to -0.00091 and 0.52988 for the 
parameters C and m, respectively. 

The 8 Johnson-Cook parameters obtained through the OPTEPS calibration 

strategy are summarized in following Table 12. 

 

A 915.555 MPa m 0.52988 

B 760.782 MPa 0εɺ  0.001 s-1 

n 0.60101 T0 77 K 

C -0.00091 Tm 1773 K 

Table 12 
Johnson-Cook parameters for the DH-36 structural steel calculated through the 
OPTEPS calibration strategy. 

 

Following Figs. 24 to 26 show the hardening functions predicted by the Johnson-
Cook model calibrated with the OPTEPS strategy. The curves of the OPTEPS 

calibrated Johnson-Cook model follow in the best possible way the experimental 

hardening curves throughout the equivalent plastic strain ranges, this time 

considering not only the hardening functions which have at least one between the 

equivalent plastic strain and the temperature equal to the reference value, but all 
the nine hardening functions. As previously said, this target is partially hindered by 
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the fact that the material does not strictly respect the natural logarithm dependence 

of the yield stress on the dimensionless equivalent plastic strain rate and the power 
dependence on the homologous temperature, together with the fact that the 

hardening parameters B and n are actually chosen as the ones capable to best fit 

the hardening functions at the reference conditions only. 

 

 
Figure 24. OPTEPS calibrated Johnson-Cook fitting to DH-36 structural steel data 
at temperature of 77 K and at three different equivalent plastic strain rates. 

 

0

200

400

600

800

1000

1200

1400

1600

0 0.1 0.2 0.3 0.4 0.5 0.6

Y
ie

ld
 S

tr
es

s 
[M

P
a]

Equivalent Plastic Strain

Hardening Functions, Temperature 77 K

Exper 0.001 1/s OPTEPS JC 0.001 1/s

Exper 0.1 1/s OPTEPS JC 0.1 1/s

Exper 3000 1/s OPTEPS JC 3000 1/s



65 
 

 
Figure 25. OPTEPS calibrated Johnson-Cook fitting to DH-36 structural steel data 
at temperature of 296 K and at three different equivalent plastic strain rates. 

 
Figure 26. OPTEPS calibrated Johnson-Cook fitting to DH-36 structural steel data 
at temperature of 800 K and at three different equivalent plastic strain rates. 
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Following Figs. 27 to 29 further show the OPTEPS results by surface plots. 
 

 
Figure 27. OPTEPS calibrated JC model fitting to DH-36 steel data at temperature of 77 K. 

 

 
Figure 28. OPTEPS calibrated JC model fitting to DH-36 steel data at temperature of 296 K. 
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Figure 29. OPTEPS calibrated JC model fitting to DH-36 steel data at temperature of 800 K. 

 

As displayed in Figs. 24 to 29, the fit to the data is now the result of a 
compromise between all the nine hardening functions. This implies the fact that the 

fit with the hardening functions in which at least one reference condition is present 

is less coherent than the one obtainable from the predictions of the EPS calibrated 

Johnson-Cook model. On the other hand, when the model fits the four hardening 
functions that do not refer to at least one reference condition, the errors become 

lower. Clearly, this is a consequence of having calculated the parameters C and m 

by considering experimental data from all the nine hardening functions. 

Of course, the problem of having errors at the lower yield stresses is still 

present, since it is a consequence of the basic assumption of both the EPS and the 
OPTEPS strategies. Following Table 13 reports a comparison between the 

OPTEPS calibrated Johnson-Cook model predictions of the lower yield stresses 

and their experimental counterparts. 
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 Experimental Values OPTEPS JC Values 

   0.001 s-1, 77 K 915.555 MPa 915.555 MPa 

0.1 s-1, 77 K 974.565 MPa 911.718 MPa 

3000 s-1, 77 K 1150.46 MPa 903.129 MPa 

   0.001 s-1, 296 K 282.455 MPa 606.076 MPa 

0.1 s-1, 296 K 305.455 MPa 603.536 MPa 

3000 s-1, 296 K 630.137 MPa 597.851 MPa 

   0.001 s-1, 800 K 190.345 MPa 332.813 MPa 

0.1 s-1, 800 K 200.213 MPa 331.418 MPa 

3000 s-1, 800 K 305.345 MPa 328.296 MPa 

Table 13 
Comparison between experimental lower yield stresses and correspondent predicted 
lower yield stresses from the Johnson-Cook model calibrated with the OPTEPS strategy. 

 
Following Table 14 reports both the yield stress and the percentage yield stress 

root mean square errors for each of the nine considered hardening functions, 

together with their algebraic mean value, i.e. their sum divided by nine. Comparing 

to the EPS calibration strategy, the situation is slightly improved. 

 

 errs  %errs  

   0.001 s-1, 77 K 19.5893 MPa 1.784% 

0.1 s-1, 77 K 71.965 MPa 5.628% 

3000 s-1, 77 K 187.663 MPa 16.63% 

   0.001 s-1, 296 K 167.537 MPa 35.08% 

0.1 s-1, 296 K 131.085 MPa 27.84% 

3000 s-1, 296 K 83.2915 MPa 9.424% 

   0.001 s-1, 800 K 74.8550 MPa 17.20% 

0.1 s-1, 800 K 120.916 MPa 23.43% 

3000 s-1, 800 K 168.337 MPa 26.90% 

   Average 113.915 MPa 18.21% 

Table 14 
Yield stress (central column) and percentage yield stress (right column) root mean 
square errors for the OPTEPS calibrated Johnson-Cook model yield stress predictions. 

 
2.2.1.1.5. GOPTEPS Calibration Strategy 

 

The GOPTEPS (Global OPTimization Equivalent Plastic Strain) calibration strategy 

aims at further improving the OPTEPS calibration strategy by considering a 

simultaneous optimization of 7 of the 8 parameters of the Johnson-Cook model, i.e. 
all the parameters except for the melting temperature. All the experimental data are 
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used, trying to obtain values of the 7 parameters capable to provide the actual best 

fit for all the hardening functions made available, throughout the equivalent plastic 
strain, equivalent plastic strain rate and temperature ranges involved. 

This optimization is carried-out by solving an overdetermined system of 

nonlinear equations and seven unknowns, namely the quasi-static parameters A, B 

and n, the strain rate parameter C, the temperature parameter m and the two 

reference parameters, i.e. the reference equivalent plastic strain rate 0εɺ  and the 

reference temperature T0. Such nonlinear system uses all the available 
experimental data, intended in terms of couples of yield stress and corresponding 

equivalent plastic strain, as done for the OPTEPS calibration strategy, but this time 

in seven unknowns. The obtained values for these seven parameters 

simultaneously minimize the square errors for the nonlinear equations of the 

system, through a multi-objective nonlinear optimization. Some authors have 
investigated such calibration strategy, by introducing in the optimization more or 

less of the 8 Johnson-Cook parameters, including the melting temperature. In this 

regard, see, e.g., Langrand et al., 1999, Milani et al., 2008, and Scapin et al., 2012. 

In the present work, the melting temperature, a parameter of clear physical 

meaning, is excluded from the multi-objective optimization. Assuming the melting 
temperature to be an optimization variable may lead to setting-up melting values 

totally different from the real value. This approach may make the Johnson-Cook 

model completely useless in FEM simulations in which it is not possible to know a 

priori the temperature field, and in particular whether the real melting temperature is 
reached or not. As a result, phase changes from solid to liquid, and consequent 

setting of a null yield stress, may be completely missed. This is a dangerous and 

unwanted consequence. Therefore, the present choice arises of not taking the 

melting temperature as an optimization variable. 

It is also worthwhile to point-out a consideration about the reference equivalent 
plastic strain rate and temperature. In the four previous calibration strategies, such 

reference values were taken by choosing among the values of one of the available 

experimental hardening function, which was then labeled as the hardening function 

under reference conditions. The quasi-static parameters A, B and n were then 
determined through a regression of experimental data in such conditions, thanks to 

the vanishing of the strain rate and temperature terms. In such calibration 

strategies, the reference equivalent plastic strain rate and temperature have a value 

that must be equal to those of one of the hardening functions. In the GOPT 

calibration strategy, these reference values can be different from those of one of the 
experimental hardening functions, since they are considered as optimization 

variables. Anyway, their values identify the Johnson-Cook quasi-static conditions, 
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although these conditions are now unknown. This fact should allow for a better 

fitting of the experimental data. 
Regarding the determination of the considered 7 Johnson-Cook parameters, the 

procedure is similar to that of the OPTEPS calibration strategy, although more 

complex. In order to introduce all the yield stress data provided by all the available 

hardening functions, the Johnson-Cook strength model, Eq. (28), is recalled a 
number of times equal to the number of available experimental observations, 

intended in terms of couples of yield stress and corresponding equivalent plastic 

strain values, throughout the equivalent plastic strain ranges experimentally 

investigated. 

This approach leads to the construction of a large overdetermined system of 
nonlinear equations, in which the unknowns are the 7 parameters and the number 

of equations is equal to the number of available couples of yield stress and 

corresponding equivalent plastic strain values, which depend on the number of 

experimental hardening functions made available and on the sampling frequency 
adopted for reading the experimental measurements. In order to avoid to set-up too 

large systems, it is obviously possible to consider data at a sampling inferior than 

the one used for the experimental measurements, as said for the OPTEPS 

calibration strategy. The nonlinear system that arises is identical to that reported in 

Eq. (46), although this time the optimization variables are not composed by the 
parameters C and m only but rather by the previously stated seven parameters. In 

order to solve this system, an important point is relative to the enforcement of 

appropriate conditions on the seven optimization variables, making the process a 

multi-objective nonlinear optimization subjected to bounds. More in detail, the 

reference equivalent plastic strain rate is forced to be a positive number, since it 
cannot be a negative number, because natural logarithms of negative numbers 

cannot be calculated. Furthermore, the reference temperature is forced to be lower 

than or equal to the lowest temperature tested during the experimental campaign, 

since it is necessary to avoid calculations of negative homologous temperatures, in 
order to prevent computations of negative numbers raised to a possible non integer 

number, as previously said. The reference temperature is also forced to be greater 

than zero. Although the calculation of negative reference temperatures is not a 

problem from the mathematical point of view, it is considered reasonable to keep 

this parameter greater than zero, since temperatures lower than zero K are not 
physically admissible. No bounds are imposed to the other optimization variables. 

The created system is fairly more complex than the one introduced in the 

OPTEPS calibration strategy, due to the enlargement of the optimization variables 

from 2 to 7. It can still be solved through a nonlinear least square method. If there 
are convergence problems, it is possible to enforce some further bounds on the 

objective variables, in order to restrict their existence domains and favor the 



71 
 

convergence of the system. The solution values for the considered 7 Johnson-Cook 

parameters are those characterized by minimizing the square errors of the 
Johnson-Cook model predictions against experimental data at each couple of yield 

stress and corresponding equivalent plastic strain values. 

Regarding the experimental data necessary in order to carry-out the GOPTEPS 

calibration strategy, these are exactly the same as those required for the OPTLYS 
and OPTEPS strategies. In the following, the GOPTEPS calibration strategy is 

again applied to the data taken from Nemat-Nasser and Guo, 2003. 

The overdetermined system of nonlinear equations and seven unknowns is set-

up by taking couples of yield stress and equivalent plastic strain values with the 

same sampling of the experimental ones, i.e. for each digitalized couple of yield 
stress and corresponding equivalent plastic strain, as previously done for the 

OPTEPS calibration strategy. Following this approach, a large overdetermined 

system of 740 nonlinear equations and seven unknowns is created. It has been 

numerically solved with a nonlinear least squares trust-region-reflective algorithm 
with MathWorks MatLab 2010b, as previously done for the OPTLYS and OPTEPS 

calibration strategy, with a tolerance of 10-8. Some convergence problems have 

been solved by setting the reference temperature equal to 77 K, since all the 

iterations showed that this parameter tended to such value. The seven Johnson-

Cook parameters obtained through the GOPTEPS calibration strategy are 
summarized in following Table 15, together with the value of the melting 

temperature, which is taken as fixed. 
 

A 747.412 MPa m 0.5779 

B 654.104 MPa 0εɺ  8.79832·10-4 s-1 

n 0.27334 T0 77 K 

C 0.00226 Tm 1773 K 

Table 15 
Johnson-Cook parameters for the DH-36 structural steel calculated through the 
GOPTEPS calibration strategy. 

 

Following Figs. 30 to 32 show the hardening functions predicted by the Johnson-

Cook model calibrated with the GOPTEPS strategy. The curves of the GOPTEPS 
calibrated Johnson-Cook model follow in the best possible way the experimental 

hardening curves throughout the equivalent plastic strain ranges. As previously 

said, this target is partially hindered by the fact that the material does not strictly 

respect the natural logarithm dependence of the yield stress on the dimensionless 

equivalent plastic strain rate and the power dependence on the homologous 
temperature. 
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Figure 30. GOPTEPS calibrated Johnson-Cook fitting to DH-36 structural steel 
data at temperature of 77 K and at three different equivalent plastic strain rates. 

 

 
Figure 31. GOPTEPS calibrated Johnson-Cook fitting to DH-36 structural steel 
data at temperature of 296 K and at three different equivalent plastic strain rates. 
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Figure 32. GOPTEPS calibrated Johnson-Cook fitting to DH-36 structural steel 
data at temperature of 800 K and three different equivalent plastic strain rates. 

 

Following Figs. 33 to 35 further show the GOPTEPS results by surface plots. 
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Figure 33. GOPTEPS calibrated JC model fitting to DH-36 steel data at temperature of 77 K. 

 

 
Figure 34. GOPTEPS calibrated JC model fitting to DH-36 steel data at temperature of 296 K. 
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Figure 35. GOPTEPS calibrated JC model fitting to DH-36 steel data at temperature of 800 K. 

 
As shown in Figs. 30 to 35, the hardening functions fitting throughout the 

equivalent plastic strain ranges appears to be improved, by comparing to the 

predictions of the EPS and OPTEPS calibrated Johnson-Cook models. This is 

mainly due to the fact of having optimized all together not only the parameters C 

and m but also other 5 parameters, with particular reference to the parameters B 
and n. 

Of course, the problem of having errors at the lower yield stress is still present, 

since this is a consequence of the basic assumption of the EPS, OPTEPS and 

GOPTEPS strategies. Following Table 16 reports a comparison between the 
GOPTEPS calibrated Johnson-Cook model predictions of the lower yield stresses 

and their experimental counterparts. 
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 Experimental Values GOPTEPS JC Values 

   0.001 s-1, 77 K 915.555 MPa 747.628 MPa 

0.1 s-1, 77 K 974.565 MPa 755.407 MPa 

3000 s-1, 77 K 1150.46 MPa 772.820 MPa 

   0.001 s-1, 296 K 282.455 MPa 518.571 MPa 

0.1 s-1, 296 K 305.455 MPa 523.967 MPa 

3000 s-1, 296 K 630.137 MPa 536.045 MPa 

   0.001 s-1, 800 K 190.345 MPa 290.859 MPa 

0.1 s-1, 800 K 200.213 MPa 331.418 MPa 

3000 s-1, 800 K 305.345 MPa 300.660 MPa 

Table 16 
Comparison between experimental lower yield stresses and corresponding predicted 
lower yield stresses from the Johnson-Cook model calibrated with the GOPTEPS strategy. 

 

Following Table 17 reports both the yield stress and the percentage yield stress 

root mean square errors for each one of the nine considered hardening functions, 

together with their algebraic mean value, i.e. their sum divided by nine. Comparing 

to the OPTEPS calibration strategy, the situation is further improved. 
 

 errs  %errs  

   0.001 s-1, 77 K 79.6277 MPa 6.163% 

0.1 s-1, 77 K 49.7374 MPa 4.289% 

3000 s-1, 77 K 153.934 MPa 13.61% 

   0.001 s-1, 296 K 158.594 MPa 34.26% 

0.1 s-1, 296 K 137.140 MPa 29.10% 

3000 s-1, 296 K 49.9562 MPa 5.573% 

   0.001 s-1, 800 K 69.8119 MPa 15.23% 

0.1 s-1, 800 K 110.280 MPa 21.54% 

3000 s-1, 800 K 140.315 MPa 21.97% 

   Average 105.488 MPa 16.86% 

Table 17 
Yield stress (central column) and percentage yield stress (right column) root mean 
square errors for the GOPTEPS calibrated Johnson-Cook model yield stress predictions. 

 
2.2.1.1.6. Calibration Strategies Comparison and Assessment 

 

Following Figs. 36 to 44 allow to compare all together the results from the five 

calibration strategies presented above, by considering their application to the nine 
experimental hardening functions taken from Nemat-Nasser and Guo, 2003. 



77 
 

 
Figure 36. Five calibrations of JC model with different strategies and DH-36 steel 
data at temperature of 77 K and at equivalent plastic strain rate of 0.001 s-1. 

 

 
Figure 37. Five calibrations of JC model with different strategies and DH-36 steel 
data at temperature of 77 K and at equivalent plastic strain rate of 0.1 s-1. 
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Figure 38. Five calibrations of JC model with different strategies and DH-36 steel 
data at temperature of 77 K and at equivalent plastic strain rate of 3000 s-1. 

 

 
Figure 39. Five calibrations of JC model with different strategies and DH-36 steel 
data at temperature of 296 K and at equivalent plastic strain rate of 0.001 s-1. 
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Figure 40. Five calibrations of JC model with different strategies and DH-36 steel 
data at temperature of 296 K and at equivalent plastic strain rate of 0.1 s-1. 

 

 
Figure 41. Five calibrations of JC model with different strategies and DH-36 steel 
data at temperature of 296 K and at equivalent plastic strain rate of 3000 s-1. 
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Figure 42. Five calibrations of JC model with different strategies and DH-36 steel 
data at temperature of 800 K and at equivalent plastic strain rate of 0.001 s-1. 

 

 
Figure 43. Five calibrations of JC model with different strategies and DH-36 steel 
data at temperature of 800 K and at equivalent plastic strain rate of 0.1 s-1. 
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Figure 44. Five calibrations of JC model with different strategies and DH-36 steel 
data at temperature of 800 K and at equivalent plastic strain rate of 3000 s-1. 

 

Figs. 36 to 44 show in better detail what previously presented for each Johnson-

Cook calibration strategy. The reported trends confirm the considerations previously 

stated regarding the strengths and weaknesses of each calibration strategy. 
Following Table 18 reports a comparison between the 5 calibrated Johnson-Cook 

model predictions of the lower yield stresses and their experimental counterparts. 
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 0.001 s-1, 77 K 0.1 s-1, 77 K 3000 s-1, 77 K 

    Experimental Values 915.555 MPa 974.565 MPa 1150.46 MPa 

LYS JC Values 915.555 MPa 981.323 MPa 1128.545 MPa 

OPTLYS JC Values 915.555 MPa 1001.95 MPa 1195.34 MPa 

EPS JC Values 915.555 MPa 896.883 MPa 855.085 MPa 

OPTEPS JC Values 915.555 MPa 911.718 MPa 903.129 MPa 

GOPTEPS JC Values 747.628 MPa 755.407 MPa 772.820 MPa 

     0.001 s-1, 296 K 0.1 s-1, 296 K 3000 s-1, 296 K 

    Experimental Values 282.455 MPa 305.455 MPa 630.137 MPa 

LYS JC Values 340.015 MPa 364.439 MPa 419.115 MPa 

OPTLYS JC Values 381.868 MPa 417.901 MPa 498.563 MPa 

EPS JC Values 588.755 MPa 576.748 MPa 549.869 MPa 

OPTEPS JC Values 606.076 MPa 603.536 MPa 597.851 MPa 

GOPTEPS JC Values 518.571 MPa 523.967 MPa 536.045 MPa 

     0.001 s-1, 800 K 0.1 s-1, 800 K 3000 s-1, 800 K 

    Experimental Values 190.345 MPa 200.213 MPa 305.345 MPa 

LYS JC Values 160.967 MPa 172.533 MPa 198.417 MPa 

OPTLYS JC Values 184.331 MPa 201.724 MPa 240.660 MPa 

EPS JC Values 319.443 MPa 312.928 MPa 298.344 MPa 

OPTEPS JC Values 332.813 MPa 331.418 MPa 328.296 MPa 

GOPTEPS JC Values 290.859 MPa 331.418 MPa 300.660 MPa 

Table 18 
Comparison between experimental lower yield stresses and corresponding predicted lower 
yield stresses from the Johnson-Cook model calibrated with five different calibration 
strategies. 
 

Following Table 19 reports both the yield stress and the percentage yield stress 

root mean square average errors for each of the five considered Johnson-Cook 

calibration strategies. 

 

 errs  %errs  

   LYS Calibrated JC 253.860 MPa 34.85% 

OPTLYS Calibrated JC 226.289 MPa 30.31% 

EPS Calibrated JC 121.784 MPa 19.23% 

OPTEPS Calibrated JC 113.915 MPa 18.21% 

GOPTEPS Calibrated JC 105.488 MPa 16.86% 

Table 2 
Yield stress (central column) and percentage yield stress (right column) root mean square 
average errors for the yield stress predictions of the Johnson-Cook model calibrated with five 
different calibration strategies. 
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Some considerations are reported in the following, in order to better understand 

the consequences of choosing a particular calibration strategy or another. 
The LYS calibration strategy allows to model quite coherently the lower yield 

stresses, by considering data provided only by those hardening functions which 

refer to at least one reference condition, whether it is the reference equivalent 

plastic strain rate or the reference temperature. As a result, the lower yield stresses 
are better modeled for these hardening functions, while errors may be introduced in 

the modeling of the other hardening functions. The OPTLYS calibration strategy 

extends the LYS calibration strategy by considering all experimental data. As a 

result, the fit to the lower yield stress is a compromise between the lower yield 

stresses of all the made available hardening functions. Both the LYS and the 
OPTLYS calibration strategies present the problem of possibly incoherently model 

the plastic flows, namely the yield stresses trends on the equivalent plastic strains. 

This aspect is strictly related to how much the best fit for the parameters B and n 

vary in the considered equivalent plastic strain rate and temperature ranges, i.e. 
how different are the power forms of the considered hardening functions. As a 

matter of fact, the LYS and OPTLYS approaches calibrate the parameters B and n 

only by considering the form of the experimental hardening function obtained by 

testing the material at the reference conditions. For the case under examination, 

this hardening function is the one at the equivalent plastic strain rate of 0.001 s-1 
and at the temperature of 77 K. In fact, the LYS and OPTLYS fittings of the plastic 

flow are very good for these conditions, but then become worse for the other 

hardening functions. The more the plastic flow at a given equivalent plastic strain 

rate and at a given temperature deviates from its form at the reference conditions, 

the more modeling errors are introduced. The LYS and OPTLYS trends reported in 
Figs. 36 to 44 confirm these considerations, by proving also that the plastic flow 

prediction errors may actually be heavy. 

The EPS calibration strategy allows for minimizing the modeling errors 

throughout the equivalent plastic strain ranges, by considering data provided only 
by those hardening functions which refer to at least one reference condition, 

whether it is the reference equivalent plastic strain rate or the reference 

temperature. As a result, the plastic flows are better modeled for these hardening 

functions, while errors may be introduced in the modeling of the other hardening 

functions. The OPTEPS calibration strategy extended the EPS calibration strategy 
by considering all experimental data. As a result, the fit to the plastic flows is a 

compromise between the plastic flows of all the made available hardening 

functions. The GOPTEPS calibration strategy further generalizes the OPTEPS 

calibration strategy by allowing 7 out of the 8 Johnson-Cook parameters to be 
optimized. As a result, its trends provide the best overall fit for all the experimental 

made available hardening functions. The GOPTEPS calibration strategy capacity to 
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better model the plastic flows throughout the equivalent plastic strain rate and 

temperature ranges is partially due to the fact of avoiding to calculate the 
parameters B and n by relying on the plastic flow at the reference conditions only, 

but rather by considering how to best fit all the experimental made available plastic 

flows, through a power form. This is the reason why the GOPTEPS calibration 

strategy provides the worst fit for the plastic flow at the reference conditions (0.001 
s-1 and 77 K) but it is also one of the reasons why it provides the best overall fit to 

the plastic flows in the other conditions. However, since the parameters B and n are 

constant, i.e. they are not functions of the equivalent plastic strain rate and the 

temperature, the more the plastic flows trends at various equivalent plastic strain 

rates and temperatures are different, the more modeling errors are inevitably 
introduced. 

The EPS, OPTEPS and GOPTEPS calibration strategies present the problem of 

possibly incoherently model the lower yield stresses, since all these calibration 

strategies do not assign a privileged role to the lower yield stresses (as the LYS 
and OPTLYS calibration strategies do), but they are considered as any other value 

in the plastic flow. The EPS, OPTEPS and GOPTEPS trends in Figs. 36 to 44 

confirm these considerations, by proving also that the lower yield stress prediction 

errors may be heavy. The fact of incoherently model the first yielding implies the 

relevant problem of introducing an unwanted error in the determination of the 
transition from the elastic phase to the plastic phase, an aspect that can imply 

heavy errors in the strain computations. In particular, large errors in the evaluation 

of the plastic strain may cause heavy problems in the computation of damage and 

failure, at least for those damage models which mainly rely on the equivalent plastic 

strain, like, e.g., the Johnson-Cook damage and failure model. On the other hand, 
even if the lower yield stresses are predicted with bad coherency, if the hardening 

functions are capable to quickly improve their fitting and get near to the 

experimental trends, then the error in the transition from the elastic to the plastic 

phase may be not too harmful. In general, it is always necessary to carefully check 
the errors in the lower yield stress predictions when the calibration strategy adopted 

is either the EPS, the OPTEPS or the GOPTEPS, in order to be aware of the 

presence of possible errors of heavy magnitude. 

Another important consideration regards the easiness of calibration, i.e. the 

number of calculations that each procedure needs in order to get the Johnson-Cook 
parameters and also the possible necessity of experimental data treatment. In this 

regard, the simplest calibration strategy is certainly the LYS, which requires only a 

regression (for determining B and n) together with the simple calculations involved 

in the determination of the parameters C and m. The OPTLYS calibration strategy 
involves heavier calculations, due to the fact that an overdetermined nonlinear 

system is required to be solved. However, this system has only 2 unknowns 
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(parameters C and m) and refers only to the single points at the lower yield stresses 

and therefore it does not involve a lot of equations. The great advantage of the LYS 
and OPTLYS calibration strategies is the fact that inverse analyses of the 

experimental hardening functions are not necessary, since these approaches utilize 

only experimental data at the lower yield stresses, for which structural effects can 

actually be considered as irrelevant. 
The procedure necessary to carry-out the EPS calibration strategy is a little 

heavier, due to the fact that more regressions need to be considered in order to 

determine the parameters C and m. No overdetermined nonlinear systems need to 

be solved. Anyway, the main burden here is the fact that the experimental 

hardening functions need to be treated through inverse analyses, in order to purify 
results from structural and thermal effects, which are not negligible if data 

throughout the tested equivalent plastic strain ranges are considered. This aspect 

implies the necessity to use FEM codes. The OPTEPS calibration strategy further 

increases the number of calculations to be performed, since it also requires the 
solving of an overdetermined system of nonlinear equations. This system has only 

two unknowns (parameters C and m) but involves almost all the made available 

experimental data, intended in terms of couples of yield stress and corresponding 

equivalent plastic strain values, or at least a part of them, if it is deemed that 

considering only a part of this data is enough to properly represent the material 
behavior. Finally, the GOPTEPS calibration strategy further complicates things by 

increasing the number of experimental data to be considered and by raising from 

two to seven the number of unknowns in the overdetermined system, resulting in a 

problem that is more difficult to solve. All these aspects relative to the different 

requirements for the calibration of each strategy have contributed in making some 
calibration strategies more popular than the others. More in detail, the LYS 

calibration strategy appears to be the most popular, by far, due to its readiness of 

execution. The OPTLYS calibration strategy seems to be almost unused, while the 

EPS approach appears to be more known. Seemingly, the OPTEPS calibration 
strategy is almost unknown, while the GOPTEPS calibration strategy appears to 

have an average popularity. 

Another important aspect pertinent to the choice of which calibration strategy 

shall be adopted is relative to the quantity of experimental data that are made 

available. As instance, if the plastic flows are not accessible or if the only known 
plastic flow is that referring to quasi-static conditions, and only lower yield stresses 

data are available, only the LYS and OPTLYS calibration strategies are adoptable. 

On the other hand, if plastic flows data are available, it is possible to choose 

between the five calibration strategies. In this regard, the following considerations 
appear to be of utter importance. In order to thoroughly investigate the material 

behavior, it is necessary to carry-out experimental tests, i.e., to obtain hardening 
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functions, at several different equivalent plastic strain rates and temperatures, with 

the aim of covering all the ranges of interest with enough resolution. This is the only 
way that allows to understand the real material behavior in such ranges, and the 

more the equivalent plastic strain rate and temperature ranges involved are wide, 

the more this aspect appears to be relevant. It is quite common to see calibrations 

of the Johnson-Cook model which rely on very few experimental data, and in 
particular by considering hardening functions only at two different equivalent plastic 

strain rates and at two different temperatures. Of course, in such cases the 

Johnson-Cook model provides very good fitting to experimental data, and this is 

due to the fact that the strain rate and temperature terms of the model can exactly 

fit two points in the equivalent plastic strain rate and temperature ranges. But 
however, the real material behavior outside of the ranges near the two points 

remains undetermined and may be quite different from the Johnson-Cook model 

predictions, as just shown in this chapter. Furthermore, it is quite common to fix a 

priori the values of the reference equivalent plastic strain rate and the reference 
temperature and then carry-out experimental tests which always refer to at least 

one reference condition, since this approach allows to calibrate the model through 

the LYS or the EPS calibration strategies, which are the most popular ones. 

However, such approach does not involve investigations of the material under 

conditions in which both the equivalent plastic strain rate and the temperature are 
different from their reference values. On the basis of the results and considerations 

pointed-out in this chapter, skipping this investigation may not be optimal, as the 

real material behavior in such conditions may be quite different from the prediction 

of a Johnson-Cook model calibrated through the LYS or EPS strategies, as clearly 

shown in Figs. 36 to 44. As a matter of fact, complicated dependencies of the 
material behavior on the equivalent plastic strain rate and on the temperature may 

not be revealed. Further experimental investigations of a material may indeed 

reveal behaviors of such kind. As instance, the experimental data considered for 

applying the calibrations introduced in the present chapter, i.e. the data taken from 
Nemat-Nasser and Guo, 2003, present a more complicated material dependence 

on the equivalent plastic strain rate and on the temperature. In fact, if data at 500 K 

are introduced in the analysis, the yield stress does not strictly increase with the 

equivalent plastic strain rate. Therefore, the more experimental data are 

considered, the more the material behavior is known but also the more the 
Johnson-Cook model may present difficulties in fitting complicated material 

behaviors. 

Regarding the obtainment of experimental data, some considerations about the 

possibility of using Taylor test data to calibrate the Johnson-Cook model are made 
in the following. Taylor tests can be carried-out with the aim of obtaining data at 

various equivalent plastic strain rates. However, the experimental data obtainable 
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from the Taylor test may be biased by important structural effects. As stated above, 

the calibration of the Johnson-Cook parameters relies on the use of experimental 
data intended in terms of hardening functions, i.e. curves that relate the yield stress 

to the equivalent plastic strain. An inverse analysis is necessary in order to obtain a 

hardening function from Taylor test impact data. However, comparing to Hopkinson 

bar data, Taylor test results appear to be less prone to be treated with FEM inverse 
analysis. This aspect is related to the fact that Hopkinson bars, either compressive 

or tensile, produce more homogeneous equivalent plastic strain, equivalent plastic 

strain rate and stress fields in the specimen. Furthermore, the temperature control 

during a Taylor test may present difficulties. A specimen may be heated before 

being fired against the rigid target, but this process may be difficult to be realized in 
practice and however does not allow to control the specimen temperature 

immediately before the impact. In addition, Taylor test data may not be indicative of 

the material behavior up to fracture, as it is impossible to determine a fracture point 

in such a test. 
All these aspects increase the structural complications involved in the analysis of 

Taylor test experimental data. Despite these problematics, some authors proposed 

a procedure to determine the Johnson-Cook parameters from such kind of tests. 

Among others, references that consider this topic are Johnson and 

Holmquist, 1988, Johnson and Holmquist, 1991, Allen et al., 1997, and Rule, 1997. 
The approaches presented in these references rely on the use of some structural 

data accessible from Taylor test impact results, like the specimen change in 

diameter and length, or the nature of the whole deformed shape. Anyway, it is 

worthwhile to point-out that these approaches should be performed with particular 

attention, due to possible mistakes introduced when trying to relate structural data 
to pure material behavior. 

In this view, the present work relies on the procedure stated above, i.e. high 

strain rate data are assumed to be Hopkinson bar data. However, if there are Taylor 

test data available, these data could be used as a structural test of an already 
calibrated Johnson-Cook model. More in detail, the point here is that of carrying-out 

FEM simulations on the available Taylor impact data and see how coherently the 

Johnson-Cook model may fit the data, thus providing a validation of an already 

calibrated model. Assessments of such kind have been presented in many 

references, e.g. Johnson and Cook, 1983, Johnson and Holmquist, 1988, and 
Holmquist and Johnson, 1988, 1991. However, comparisons between FEM and 

experimental Taylor test results are usually done by comparing structural quantities, 

such as the specimen diameter or length changes. The FEM computation of these 

structural parameters depends on many aspects, among which the Johnson-Cook 
predicted hardening functions. Furthermore, it may be that most of the Taylor test 

specimen could be subjected to equivalent plastic strain rates and temperatures for 
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which the Johnson-Cook model provides quite coherent results, therefore producing 

good FEM simulations of the Taylor test, but this result does not ensure the 
calibrated Johnson-Cook model to be capable of providing good predictions 

throughout the equivalent plastic strain rate and temperature ranges of interest. 

Therefore, even if the calibrated Johnson-Cook model under consideration is 

capable to provide good results in fitting Taylor test data, its validity should be 
further checked. In particular, it appears that the only procedure capable to clearly 

identify the coherency of the model is that of comparing the Johnson-Cook 

predicted hardening functions against the available experimental hardening 

functions, as done in Figs. 36 to 44, since this comparison considers exactly what 

the Johnson-Cook model predicts, i.e. hardening functions. 
A last aspect to be considered for choosing which calibration strategy shall be 

adopted regards whether the particular application in which the model is used is 

characterized by deformations during which the material undergoes large 

equivalent plastic strain or not. In the latter case, the adoption of the LYS or 
OPTLYS calibration strategies shall be favored, while in the former the EPS, 

OPTEPS or GOPTEPS calibration strategies should be favored. It may then be said 

that there does not exist a best calibration strategy in absolute terms, but rather that 

the best choice depends on many aspects relative to each specific case. Basically, 

it is possible to choose where to accept errors, but not really to avoid them. Only in 
very lucky cases the material behavior is actually well fit by the Johnson-Cook 

hardening function, namely cases in which the natural logarithm and the power 

dependences of the yield stress on the dimensionless equivalent plastic strain rate 

and on the homologous temperature are respected, together with the fact of having 

the parameters B and n independent from the equivalent plastic strain rate and the 
temperature. 

In cases in which the Johnson-Cook model fits very poorly the experimental 

data, it may be worthwhile to consider a replacement of either the strain rate term or 

the temperature term, or both, in order to alleviate the Johnson-Cook first issue. 
Beyond this aspect, following Chapter 3 introduces a generalization of the Johnson-

Cook model that appears to be capable of providing always better results, thanks to 

a mitigation of the second Johnson-Cook issue. 

 
2.2.2. Zerilli-Armstrong Model 

 

The wording Zerilli-Armstrong strength model refers to the hardening function 

proposed in Zerilli and Armstrong, 1987. The authors aimed at an improvement of 

the Johnson-Cook strength model, Eq. (28), by formulating a more sophisticated 
hardening function. As for the Johnson-Cook model, particular attention was paid to 

the necessity of maintaining a good predisposition to FEM codes and hydrocodes 
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implementations, and also keeping the capabilities to fit material data over wide 

ranges of equivalent plastic strain rates and temperatures. The authors proposed a 
critical review of the Johnson-Cook hardening function. In particular, considerations 

relative to incoherencies due to the total empirical nature of the model were 

pointed-out. 

The framework of the Zerilli-Armstrong model consists in the classic 
elastoplastic model already used for the Johnson-Cook model. However, the 

strength model proposed in Zerilli and Armstrong, 1987, relied on some 

micromechanical considerations. The authors proposed a form for the evaluation of 

the yield stress as a function of the equivalent plastic strain, the equivalent plastic 

strain rate and the temperature, as for the Johnson-Cook model, but it was also 
stated that the atomic structure of the material does have an effect on the 

determination of the hardening laws. Indeed, the presented strength model was 

based on considerations stemming from dislocation mechanics. Following this 

statement, the two authors presented a model in which some microstructural 
parameters found place. More in detail, a hardening function suitable for face 

centered cubic metals and another hardening function suitable for body centered 

cubic metals were introduced. They are respectively reported in the following 

equations 

 

 3 4 pC T C T ln
0 2 ps C C e k L ,

− ⋅ + ⋅ ⋅ ε= + ⋅ ε ⋅ + ⋅
ɺ

  (47) 

 

 3 4 pC T C T ln n
0 1 5 ps C C e C k L .

− ⋅ + ⋅ ⋅ ε= + ⋅ + ⋅ ε + ⋅
ɺ

  (48) 

 

In these equations, the material parameters are represented by C0, C1, C2, C3, C4, 
C5, k, L and n. More in detail, k indicates the so-called microstructural stress 

intensity, while L denotes the material average grain diameter. The remaining 6 

parameters are to be determined from experimental investigations. Reviewing the 

procedure necessary to calibrate these parameters is not an aim of the present 
work. 

As shown in Eqs. (47) and (48), the two hardening functions introduce different 

dependences on the equivalent plastic strain. In particular, the hardening function 

for face centered cubic metals implies a square root dependence, while the 

hardening function for body centered cubic metals implies a more general 
exponential dependence. Moreover, the yield stress dependence on the equivalent 

plastic strain rate and on the temperature is combined in an exponential fashion. 

The microstructural parameters, i.e. the microstructural stress intensity and the 
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material average grain diameter, are considered to act in the same manner for both 

hardening functions. 
Zerilli and Armstrong, 1987, proposed a calibration of the new model on the 

same experimental data used and presented in Johnson and Cook, 1983, in 

particular by relying on two of the materials tested therein, i.e. OFHC copper and 

Armco iron. The model parameters for these two materials were presented as well. 
The Zerilli-Armstrong model was also implemented into the FEM code EPIC-2. The 

obtained results showed a good fitting to experimental data, better than that 

determined by the Johnson-Cook hardening function. 

An assessment of the results provided by the Johnson-Cook and the Zerilli-

Armstrong models is reported also in Holmquist and Johnson, 1988, in the context 
of the computational simulations of Taylor tests. The Zerilli-Armstrong model 

showed a better agreement with experimental measurements. Holmquist and 

Johnson, 1991, extended this analysis by introducing in the study the Holmquist 

and Johnson modification of the original Johnson-Cook model, namely Eq. (29). 
This last model did not determine conspicuous differences, comparing to the results 

obtained with the other considered strength models. Samantaray et al., 2009, 

provided a comparison of the outcomes from the Johnson-Cook model, a so-called 

modified Zerilli-Armstrong model and another strength model, with the aim to 

predict elevated temperature flow behaviour in a modified 9Cr-1Mo steel. It was 
shown that the Zerilli-Armstrong model provides better results comparing to the 

Johnson-Cook model, throughout the equivalent plastic strain, the equivalent plastic 

strain rate and the temperature tested ranges. Lin and Chen, 2010, presented an 

application of the Johnson-Cook model and the Zerilli-Armstrong model to an high-

strength steel, by considering the temperature range between 850 K and 1150 K 
and equivalent plastic strain rates ranging from 1 s-1 to 50 s-1. Both strength model 

predictions showed deviations from the experimental data. In this context, a 

combined Johnson-Cook and Zerilli-Armstrong model was presented. The model 

was capable to provide somehow better results. Gupta et al., 2013, presented a 
comparison between the Johnson-Cook model, the Zerilli-Armstrong model and 

other strength models, showing that the Johnson-Cook model provided the worst fit 

to some available experimental data. 

This very brief review indicates only some of the many applications of the Zerilli-

Armstrong strength model that can be found in the literature. However, based on it, 
it may be said that the Zerilli-Armstrong model appears to be capable to provide 

improvements on the modeling coherency, when comparing to the Johnson-Cook 

model. On the other hand, the parameters of the model require the availability of 

more information on the considered material. In particular, the determination of the 
micromechanical related parameters may not be straightforward in some cases. 
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Further considerations and developments on the Zerilli-Armstrong model may be 

found in Meyers et al., 2002. 
 
2.2.3. Steinberg-Cochran-Guinan and Steinberg-Lund Models 

 

The wordings Steinberg-Cochran-Guinan model and Steinberg-Lund model refer to 
the two strength models proposed in Steinberg et al., 1980, and Steinberg and 

Lund, 1988, respectively. The Steinberg-Lund model is a generalization of the 

Steinberg-Cochran-Guinan model. A brief review of the Steinberg-Cochran-Guinan 

model is proposed below, followed by a review of the Steinberg-Lund model. 

The Steinberg-Cochran-Guinan model was developed with the aim of fitting the 
behavior of metals subjected to very high strain rates. In particular, the model was 

conceived with the target to fit experimental data at equivalent plastic strain rates 

equal or greater than 105 s-1, approximately. At these conditions, the equivalent 

plastic strain rate influence on the yield stress appears to be constant, i.e. the yield 
stress does not change anymore if higher equivalent plastic strain rates are 

involved. The point here is that, although the yield stress increases with the 

equivalent plastic strain rate, it does not appear reasonable to expect it to do so 

without any limit. In particular, based on shock wave experimental results presented 

by the same authors (Steinberg et al., 1980), it was assumed that when the 
equivalent plastic strain rate value of 105 s-1 is reached, the material behavior can 

effectively be considered as rate-independent. The authors related the aspect of 

having a rapid decrease of rate dependent effects with increasing equivalent plastic 

strain rate to the fact that this kind of phenomena implies also a strong temperature 

increase, which may actually melt the material. As a matter of fact, rate dependent 
effects in liquids appear to decrease exponentially with temperature. A similar 

strong temperature dependence was hypothesized for shocked solids. It is 

worthwhile to note that other references pointed-out this same consideration. As 

instance, Wilkins and Guinan, 1973, presented experimental data that showed the 
manifestation of a critical equivalent plastic strain rate beyond which the material 

behavior appears to be rate-independent. This statement was sustained also by 

some computational simulations of high speed Taylor tests. 

Comparing to the Johnson-Cook and the Zerilli-Armstrong models, the 

Steinberg-Cochran-Guinan model introduces more assumptions in order to 
coherently model such very high strain rate behaviors, then resulting in a more 

complicated framework. The main aspect considered in Steinberg et al., 1980, was 

the fact that both the shear modulus and the yield stress are functions of the 

pressure and the temperature, and in particular they increase with increasing 
pressure and decrease with increasing temperature. More in detail, the model does 

not consider the shear modulus G as constant with the pressure, the temperature 
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and the equivalent plastic strain rate, but rather it considers G as a function of such 

variables. The same assumption is made for the yield stress. The forms of these 
two functions were created based on experimental observations. Regarding the 

shear modulus, the authors were capable to collect an extensive amount of data. 

These measurements showed the pressure and temperature variation of the shear 

modulus, thus allowing to write down a relation between these parameters. The 
relation for the shear modulus is reported in the following equation 

 

 ( )0 3
00 00

1 G p 1 G
G G 1 T 300 .

G p G T

 ∂ ∂= + ⋅ ⋅ + ⋅ ⋅ −  ∂ ∂η 
  (49) 

 

In this equation, all the variables with the subscript 0 are intended at the 

reference condition, which is defined as the state with temperature of 300 K, null 
pressure and null equivalent plastic strain. Pressure and temperature are denoted 

by p and T, respectively. Partial derivatives of the shear modulus with respect to the 

pressure and the temperature, evaluated at the reference state, are required. The 

symbol η denotes the so-called compression, defined as the initial specific volume 

v0 divided by the current specific volume v, as indicated in the following equation 

 

 0v
.

v
η =   (50) 

 

Eq. (49) has been conceived with the aim of following both experimental and 

theoretical observations. In particular, at low pressures, say lower than 2 GPa, the 

shear modulus G varies linearly with pressure. At ultrahigh pressures, the Thomas-
Fermi theory (see, e.g., Lieb and Simon, 1977, for a description of such theory) 

states that the shear modulus is proportional to the parameter η raised to the power 

4/3. Steinberg et al., 1980, presented considerations about the fact that Eq. (49) is 

actually capable to respect both conditions with good accuracy, showing how this 
equation owns appropriate limiting behavior at both low and high pressures. 

Furthermore, Steinberg et al., 1980, stated that, for many important engineering 

materials, the shear modulus G decreases nearly linearly with temperature. This 

linear dependence may not be true anymore when the melting temperature is 
approached. However, Eq. (49) can be used with the adoption of a linear shear 

modulus dependence on temperature, up to the melting limit, thus allowing to 

evaluate the shear modulus derivative with respect to the temperature as a 

constant. This aspect was considered acceptable by the authors considering that 

Eq. (49) shear modulus temperature dependent term is deemed to be typically the 
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10% of the pressure dependent term, and therefore the precision of its 

determination is not absolutely critical. 
The Steinberg-Cochran-Guinan model introduced also a hardening function. As 

done for the shear modulus, the effects of the pressure and of the temperature 

were considered, together with a dependence on the equivalent plastic strain. The 

proposed hardening function is reported in the following equation 
 

 ( )( ) ( )
n

0 p pi 3
00 00

1 s p 1 G
s s 1 1 T 300 .

s p G T

 ∂ ∂= + β ⋅ ε + ε ⋅ + ⋅ ⋅ + ⋅ ⋅ −  ∂ ∂η 
  (51) 

 

The proposed hardening function is based on a power dependence on the 

equivalent plastic strain, reported in the first round parentheses. The parameter 0s  

represents the lower yield stress at the reference conditions, while β and n are 

hardening parameters used to fit the experimental data. If necessary, an initial 

equivalent plastic strain can be introduced, denoted by piε . This option may be 

useful to account for plastic deformations that the material might have undergone, 

like rolling or machining, although usually this parameter is considered to be null. 

The power form was adopted since it appeared as the one capable to best fit the 

metals tested in Steinberg et al., 1980. Furthermore, the authors highlighted its 
consistency with the indications pointed-out in Wilkins and Guinan, 1973, in which 

Taylor tests capable to reach equivalent plastic strain rates equal to 105 s-1 were 

presented, by considering several metals. 

The second round parentheses include the terms that regulate the yield stress 

dependence on the pressure and on the temperature. It is conceived in a form very 
similar to the one adopted for the dependence of the shear modulus on these same 

two variables. This last aspect stems from some assumptions due to the lack of 

definitive data relatively to the yield stress dependence on the pressure and the 

temperature. More in detail, the temperature dependence of the yield stress is 
assumed to be equal to the temperature dependence of the shear modulus. This 

point justifies the presence in Eq. (51) of the partial derivatives of the shear 

modulus with respect to the temperature, evaluated at the reference state. The 

pressure dependence of the yield stress is instead modeled through the partial 

derivative of the yield stress with respect to the pressure itself, calculated at the 
reference state. 

In order to further enhance the strength model, Steinberg et al., 1980, coupled 

Eqs. (49) and (51) with a simply melting model. This aspect allowed for accounting 

for the solid-liquid phase transition of shocked solid materials. The same reference 

presented some interesting computer simulations of shock wave experiments, in 
which the model appears to predict very well the experimental data. Further 
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computational applications of the model may be found in Steinberg, 1987, together 

with a discussion of some of its deficiencies. Further considerations about the 
model can be also found in Steinberg and Sharp Jr., 1988. 

Following Steinberg et al., 1980, it is also possible to modify Eqs. (49) and (51) 

by replacing the temperature with the internal energy, in order to make these 

equations more suitable for implementations in FEM codes or hydrocodes that 
operate with energy rather than temperature. The link between the temperature and 

the energy can be set by defining the temperature as the difference between the 

total energy E and the energy along the zero Kelvin isotherm, Ec, divided by the 

specific heat C, as reported in the following equation 

 

 cE E
T .

C

−
=   (52) 

 
Further information about the quantity Ec and the thermodynamic considerations on 

which it is based may be found in Guinan and Steinberg, 1974, and in Steinberg et 

al., 1980. 

Steinberg and Lund, 1988, presented a hardening function that aimed at 

replacing Eq. (51). The point was that of extending the Steinberg-Cochran-Guinan 
hardening function in order to fit also mid and low equivalent plastic strain rates 

regimes. In particular, the target was that of extending the validity of the Steinberg-

Cochran-Guinan model to fit experimental data over an equivalent plastic strain rate 

range spanning from 10-4 s-1 to 106 s-1. The Steinberg-Lund model is reported in the 
following equation 
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∂

ɺ   (53) 

 

In this equation, Hs { pε } represents a hardening term that is intended to be an 

undetermined function of the equivalent plastic strain. For instance, it may be 
conceived in the same power fashion adopted in the Steinberg-Cochran-Guinan 

model. The symbol As  denotes a not better specified athermal part of the strength 

model. The symbol { },T ps Tεɺ  denotes a so-called thermal part of the strength 

model. Following Hoge and Mukherjee, 1977, Steinberg and Lund, 1988, related 

this term to the following expression of the equivalent plastic strain rate 
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In this equation, ρ represents the dislocation density, a the distance between 

Peierls valleys, b the Burgers vector, ν the Debye frequency, ω the width of a kink 

loop, 2·Uk the energy necessary to form a pair of kinks in a dislocation segment of 

length L, k the Boltzmann constant, D the drag coefficient and Yp the Peierls stress. 

As usual, temperature is denoted by T. Eq. (54) is conceived together with the 

assumption that the thermal part of the stress is limited to be lower than the Peierls 
stress. 

In Steinberg and Lund, 1988, the model was utilized in a series of computational 

simulations that showed a good coherence of the computed results with 

experimental data, even at low strain rates. Beyond these results, Zocher et 
al., 2000, presented a comparison of the results provided by the Johnson-Cook 

model, the Steinberg-Cochran-Guinan model and another strength model in the 

context of computational simulations of Taylor tests, carried-out with the FEM code 

CHAD (Computational Hydrodynamics for Advanced Design). The outcomes 

proved that the Johnson-Cook model provides the worst fit to experimental data, 
while the Steinberg-Cochran-Guinan model is actually capable to fit the data with 

very good coherency. 

As a conclusion, it may be said that the Steinberg-Cochran-Guinan and the 

Steinberg-Lund strength models are capable to provide good modeling capabilities 

when very high strain rates, pressures and temperatures are involved, resulting in 
more coherent results when comparing to the other strength models considered in 

this work, namely the Johnson-Cook and the Zerilli-Armstrong models. On the other 

hand, these advanced models require the knowledge of a number of parameters 

that may be difficult to be determined in practice, in particular for the Steinberg-
Lund model. To this end, a significant reference is Steinberg, 1996, in which the 

Steinberg-Cochran-Guinan model parameters are provided for a considerable 

number of materials. 

 

2.3. Equations of State 
 

Following Lemons and Lund, 1999, Equations Of State (EOS) characterize specific 

systems. This statement means that an equation of state is a function that involves 

two or more variables representative of the state of a material. As example, the 
ideal gas equation of state is used to model behavior of gases at low densities, by 

relating variables such as the relative volume, the pressure and the temperature. 
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While EOS for low density gases are usually similar, EOS for solids do exhibit a 

great variety of forms. This aspect is related to the fact that molecular lattices of 
solid matter may exist in numerous different forms, resulting in several classes of 

materials, like, e.g., metals, ceramics, composites and so on. For these reasons, 

EOS for gases are much more known than EOS for solids. Equations of state for 

solids can be effectively represented through analytical forms. In the present work, 
equations of state for solids are of specific interest. In particular, such EOS are 

intended here as functions capable to represent the volumetric material behavior of 

solid materials. 

An equation of state for solids may involve several parameters, such as some 

measures of the volumetric strain, the temperature, the specific heat and possibly 
other thermodynamic parameters representative of the material behavior. As stated 

in Zukas, 2004, the parameters of EOS for solids are usually calibrated through 

flyer plate impact experiments. As a matter of fact, practical restrictions limit both 

the mass and the velocity of flyer plates. This aspect leads to the existence of a 
technological upper limit for pressures experimentally investigable in solid matter. 

This pressure value may be identified as in the neighborhood of 600 GPa, although 

technological improvements keep on enlarging the capabilities of experimentally 

investigating material responses. However, this limiting value is very large. It 

actually exceeds the pressure conditions within the center of the Earth. Following 
Asay and Shahinpoor, 1993, the use of plate impact experimental procedures 

begun after 1955, both in USA and URSS scientific laboratories. Pressure 

responses of virtually hundreds of condensed materials have been studied, 

including elements, compounds, alloys, rocks and minerals, polymers, fluids and 

porous media. The experimental procedures have required the use of both 
conventional and nuclear explosives, or impactors launched with speeds exceeding 

10 km/s. 

The present thesis aims at briefly introducing two of the most popular equations 

of state used for the modeling of high pressure behavior of metallic materials, i.e. 
the Mie-Grüneisen (Mie, 1903, and Grüneisen, 1912) and the Tillotson (Tillotson, 

1962) equations of state. Moreover, a concise introduction to the Jones-Wilkins-Lee 

EOS (Jones and Miller, 1948, Wilkins et al., 1965, and Lee et al., 1968) is 

presented, in order to introduce an EOS capable of modeling the volumetric 

behavior of detonation products of explosives. The treatment provided here does 
not involve considerations on thermodynamic aspects and shock wave phenomena, 

but aims simply at exposing the way in which the considered equations of state 

model the pressure response of the materials. 

Beyond the very concise introduction presented here, extensive treatments on 
equations of state for condensed matter may be found, e.g., in Asay and 
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Shahinpoor, 1993, Meyers, 1994, Fortov et al., 2004, and Zukas, 2004. A specific 

treatment on equations of state for metals is provided in Rose et al., 1984. 
 
2.3.1. Mie-Grüneisen Equation of State 

 

The wording Mie-Grüneisen equation of state is used to refer to a relation which 
considers the pressure of a solid material as a linear function of its internal energy. 

This equation of state is usually related to the work presented by Mie, 1903, and 

Grüneisen, 1912, although it may be linked to older references. Mendoza, 1982, 

provided a review of the history of the Mie-Grüneisen equation of state, presenting 

the more important developments that led to the final form of the model, tracking 
back to references published in the year 1843. Regardless of its history, the 

popularity and importance of this equation of state has grown throughout the years 

and nowadays it is widely used for the modeling of solids, under compressive 

pressures up to a few hundreds of GPa, say without exceeding 1000 GPa. 
Furthermore, it is sometimes used to model liquids, in particular when high 

compressive pressures are involved, even though it was originally conceived with 

the aim to model solid state matter. The Mie-Grüneisen equation of state is reported 

in the following relation 

 

 ( )ref refp p E E .= + γ ⋅ρ⋅ −   (55) 

 

In this equation, pref and Eref denote respectively the pressure and the internal 
energy evaluated in the same reference state, while p and E represent respectively 

the pressure and the internal energy at a generic state. The material density is 

denoted by ρ and γ denotes the so-called Grüneisen parameter, defined by the 

following equation 
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  (56) 

 

In this equation, ξ and v denote the atomic vibration frequency and the specific 

volume, respectively. In general, a solid material possesses more than one atomic 

vibration frequency. Grüneisen, 1912, simplified the treatment by assuming these 

frequencies to display the same value, denoted by ξ. This assumption allows to 

define a single Grüneisen parameter, as defined in Eq. (56). Otherwise, further 

Grüneisen parameters would be needed. For a general treatment on this aspect, 

see, e.g., Meyers, 1994, in which it is also possible to find a derivation of the 
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Grüneisen parameters starting from statistical assumptions on the atomic state of 

solid matter. 
As shown in Steinberg, 1981, the Grüneisen parameter can be assumed to be 

constant with temperature, at least up to a substantial fraction of the melting 

temperature. It can then be assumed to be a function of the sole specific volume. 

Following Heuzé, 2012, it is possible to express the Grüneisen parameter by using 
other thermodynamic variables, such as the temperature. Moreover, Zukas, 2004, 

presented a further expression of the Grüneisen parameter, whose importance 

relies on the fact that it involves thermodynamic parameters that are usually known, 

such as the bulk modulus, denoted by K, the specific heat, denoted by C, and the 

thermal expansion coefficient, denoted by α. This relation is exposed as follows 

 

 3 K
.

C
⋅ ⋅ αγ =
ρ ⋅

  (57) 

 

It is recalled that, under the assumption of isotropic behavior, the bulk modulus K is 

linked to the Young modulus E and the Poisson’s ratio ν through the following 

classic relation 
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  (58) 

 

The Mie-Grüneisen equation of state is sometimes said to be an incomplete 

equation of state, due to the fact that it is expressed in such a way that the pressure 

becomes a function of a volumetric strain measure and of the internal energy. 
Therefore, it does not allow to access neither temperature nor entropy. In order to 

make it a complete or general EOS, two other forms need to be specified, i.e. a 

form in which the temperature is a function of the volumetric strain and the internal 

energy and a form in which the entropy is a function of these same two variables. 
Details on how to get these two further forms of the Mie-Grüneisen equation of 

state and about their thermodynamic consistency can be found in Heuzé, 2012, and 

in Menikoff, 2012. 

The Mie-Grüneisen equation of state is extensively used in FEM codes and 

hydrocodes. In these contexts, the EOS is elaborated in a structure more suitable to 
be used within such codes, which involves two forms that separately compute the 

pressure under compression and under tension. As exposed in Steinberg, 1996, the 

following form is usually adopted for the description of compressive volumetric 

behavior 
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Several additional parameters appear in this equation. The parameters γ0 and ρ0 

denote the Grüneisen parameter and the density at a reference state, respectively. 

The so-called first order volume correction to the Grüneisen parameter is denoted 
by a. The non-dimensional parameters S1, S2 and S3 characterize the volumetric 

material behavior and are obtained from plate impact experiments. The parameter µ 

describes the volumetric strain of the material in the form defined by the following 

equation 
 

 
0

1,
ρµ = −

ρ
  (60) 

 

where ρ denotes the current density. The parameter C denotes the bulk sound 

speed, which is a function of the longitudinal and transversal sound speeds in the 

material, denoted by Cl and Cs respectively, as indicated by the following equation 
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When tensile volumetric behavior is involved, the equation of state assumes the 

following form 

 

 2
0 0p C E.= ρ ⋅ ⋅µ + γ ⋅ρ⋅   (62) 

 

Further information on the Mie-Grüneisen equation of state can be found in 
many references. Among others, applications of the Mie-Grüneisen EOS to the 

modeling of water are provided in Steinberg, 1987. A treatment on the 

thermodynamic stability of the Mie-Grüneisen equation of state can be found in 

Segletes, 1991, together with some considerations on its implementation in FEM 
codes and hydrocodes. Meyers, 1994, provided a discussion on the topic, including 

also some considerations about the use of the Mie-Grüneisen equation of state for 

the modeling of predicting the shock response of porous materials. Parameters of 

the Mie-Grüneisen equation of state for several materials can be found in 
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Steinberg, 1996. Interesting considerations are provided in Lemons and 

Lund, 1999, in which the use of the Mie-Grüneisen EOS for condensed matter at 
high temperatures is discussed. Further information can be found in Zukas, 2004, 

and in the extensive treatment provided by Nagayama, 2011. 

 
2.3.2. Tillotson Equation of State 

 

Tillotson, 1962, introduced an equation of state conceived with the aim of modeling 

metals subjected to ultra-high pressures and phase changes, such as melting or 

vaporization. 

The followed strategy was that of considering more equations of state, in order 
to coherently model the material behavior under quite different pressure loadings. 

More in detail, it was pointed-out that the Mie-Grüneisen equation of state is 

capable to model with enough coherency compressive material behavior up to 

pressures of 500-1000 GPa. However, it was also pointed-out that the assumption 
of considering the Mie-Grüneisen coefficient as a function of the sole specific 

volume (see Eq. (56)) may no longer be justified, in particular at increasing internal 

energy. As a consequence, beyond pressure values of 500-1000 GPa, other 

models were assumed to be more coherent, with particular reference to the 

Thomas-Fermi statistical theory of atoms (see, e.g., Lieb and Simon, 1977). It was 
recognized that such theory provides poor results in the modeling of solid materials 

subjected to pressures lower than 1000 GPa, but it was also pointed-out how this 

theory, and its modifications, are actually capable to properly model the observed 

material behavior under compressive pressures higher than 1000 GPa. 

As a matter of fact, Tillotson, 1962, considered extreme loading conditions, in 
terms of compressive pressures. For instance, it was pointed-out how the impact of 

tungsten projectiles against tungsten targets, up to impact velocities of 100 km/s, 

can result in enormous peak pressures of 90000 GPa, i.e. 900 Mbar. In this context, 

the developed model aimed at achieving the capability to coherently model such 
hypervelocity impacts, considering a range of compressive pressures that goes 

beyond the modeling capacity of the Mie-Grüneisen equation of state. Following 

these considerations, the author classified the compressive pressures in two 

ranges, the first one (called “low pressures”) lower than 1000 GPa and the second 

one (called “high pressures”) exceeding this value. 
The proposed equations of state considered basically two regimes. The first one 

deals with material not yet melted nor vaporized. It considers the following form 
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In this equation, a, b, A, B and E0 are material parameters to be determined from 

experimental data, while p, E, ρ and µ have the same meaning previously assigned 

to the description of the Mie-Grüneisen EOS. This equation of state is conceived 

with the aim to model both positive (expansive) and negative (compressive) 

volumetric behavior of metallic solid materials. 

The modeling of metallic materials in which a phase change has occurred was 
assumed to be described by another equation of state, which considered the solid 

material as being transformed into a gas. The following form was proposed 
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  (64) 

 

In this equation, two additional material parameters are introduced, denoted by α 

and β. These two variables control the rate of convergence of Eq. (64) to the ideal 

gas equation of state. See Tillotson, 1962, for further information on this aspect. 

The equations of state defined by Eqs. (63) and (64) provide a compromise 

between the Mie-Grüneisen equation of state, at low pressures, and the Thomas-
Fermi theory, at high pressures. Tillotson, 1962, declared this approach to be 

capable to provide results accurate to within 3% to 5%, below 500 GPa, and within 

10% for all other pressures. 

Beyond the few considerations presented in this brief overview, further 

information on the Tillotson equation of state can be found in Tillotson, 1962, in 
which thermodynamic motivations are presented, together with material parameters 

relative to nine different metals and a relevant amount of experimental data. Further 

considerations may also be found in Zukas, 2004. 

 
2.3.3. Jones-Wilkins-Lee Equation of State 

 

The Jones-Wilkins-Lee equation of state (also referred to as JWL equation of state) 

is an empirical model used to describe the volumetric behavior of detonation 
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products of explosives. Its development derives from the treatments proposed by 

Jones, 1947, Jones and Miller, 1948, Wilkins et al., 1965, and Lee et al., 1968. 
The JWL equation of state lies on empirical bases. Basically, it provides a 

relation that allows to calculate the pressure of the gaseous products resulting from 

the detonation of explosive materials. Jones and Miller, 1948, proposed the 

following form for evaluating such pressure 
 

 R vp A e B C T .− ⋅= ⋅ − + ⋅   (65) 

 

In this equation, v represents the relative volume, defined by the ratio of the current 

volume and the initial volume, while p and T represent the pressure and the 

temperature, as usually done. The parameters A, B, C and R need to be 

determined from experimental measurements. 

Wilkins et al., 1965, provided experimental investigations and theoretical 
considerations. In particular, the equations of state of the high explosives PBX 9404 

and LX04-01 were experimentally derived, by means of experiments conducted 

with spheres of explosive materials. On the basis of the obtained measurements, 

the authors proposed the following equation of state, which aims at describing the 

pressure of the detonation products 
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  (66) 

 

In this equation, v and E denote again the relative volume and the internal energy. 

The other parameters, i.e. a, Q, ω, B and R, are to be determined from 

experimental observations. 

Lee et al., 1968, gathered the information provided by Jones and Miller, 1948, 

and Wilkins et al., 1965, and further developed the treatment by extending the 

experimental investigations and by enriching the model. The authors pointed-out 
the capability of the model proposed in Wilkins et al., 1965, to accurately predict 

expansions of detonation products, in particular during the early stages of such 

processes. On this basis, the experimental investigations carried-out by Wilkins et 

al., 1965, were extended by considering so-called cylindrical metal expansion 
experiments, in order to further develop the model and in particular to make it 

capable to coherently model large expansions of the detonation products, i.e. to 

describe explosive processes throughout their evolution, even their latter stages. 

Lee et al., 1968, proposed the following equation of state and referred to it as 

Jones-Wilkins-Lee EOS 
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In this equation, v and E denote again the relative volume and the internal energy. 

The parameters A, B, R1, R2 and ω need to be determined from experiments. The 

form of the Jones-Wilkins-Lee equation of state allows to impose two important 

thermodynamic limitations at large expansions. First, this equation is capable to 

keep a fix total available energy, thus avoiding unrealistic divergences. Such total 
energy value is determined by assuming consistency with the chemical energy 

made available by a specific explosive, which may be experimentally determined 

through detonation calorimetry. Second, the Jones-Wilkins-Lee equation of state 

implies the detonation process at large values of relative volumes to be ruled 

basically by the value of the parameter ω. Following experimental observations, the 

authors limited this parameter to be greater than 0.2 and smaller than 0.4, in order 

to avoid unrealistic modeling of explosions when large expansions of the detonation 

products are involved. The authors claimed that the respect of these 
thermodynamic criteria implies the fact that Eq. (67) should not only be useful for 

engineering purposes but also serve as a description of the thermodynamic 

behavior of expanding gases resulting from explosive detonations. Lee et al., 1968, 

provided also the JWL parameters for ten explosives, together with a complete 

tabulation of the obtained experimental results. 
Beyond the very brief introduction presented here and the three main related 

references, further information on the Jones-Wilkins-Lee equation of state can be 

found in Baudin and Serradeill, 2010, in which a description of the equation of state 

and its thermodynamic properties is presented, together with the proposal of a new 
derivation of the EOS. Anyway, it is necessary to say that, in order to fully describe 

the Jones-Wilkins-Lee equation of state from a thermodynamic point of view, the 

Chapman-Jouguet theory needs to be introduced. This is not an aim of this brief 

review. In this regard, pertinent treatments can be found in Chapman, 1899, 

Sternberg, 1970, Cooper, 1996, Chéret, 1999, and Fickett and Davis, 2000. 
 

2.4. Damage and Failure Models 

 

Damage and failure models aim at extending the description of material behavior by 

introducing criteria capable to account for the damage that the material has 
undergone, up to a failure level. Such models are usually conceived by creating a 

function of appropriate variables, like e.g. the equivalent plastic strain, whose 

values determine the level of undergone damage, through a so-called damage 

variable. Furthermore, limiting values on such variables can be set, with the aim of 
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triggering material failure. Simple damage and failure models do not imply that the 

damage variable may affect the value of some material parameters, such as its 
elastic or elastoplastic stiffness. The target is only that of providing a variable 

capable of indicating the amount of damage that the material has undergone, 

together with a cut-off value which determines whether the material has failed or 

not. More complicated models are instead capable to account for the variation of 
material properties (such as stiffness) due to the accumulated damage. 

In the context of high strain rate phenomena, several damage and failure models 

have been proposed and developed. The present chapter aims at briefly introducing 

some considerations regarding damage and failure models used in this work. In this 

view, a short introduction to the so-called Johnson-Cook damage and failure model 
is provided, together with some considerations about the so-called spall 

phenomena. 

It is recognized that the damage models introduced here are quite simple and 

more elaborated models may actually be introduced within the realm of continuum 
damage mechanics. In this regard, some considerations may be found in Carol et 

al., 1994 and 2001. Furthermore, an interesting contribution is provided in Carol et 

al., 2002, in which a damage model based on a volumetric and deviatoric 

decomposition is presented. This formulation may fit well in the context considered 

in the present work, i.e. a division of the constitutive model into its deviatoric and 
volumetric parts, through strength models and equations of state, respectively. 

Moreover, aspects relative to strain localization and localized damage are not 

addressed in this work. In this regard, information may be found, e.g., in Bigoni and 

Hueckel, 1991, Bigoni and Zaccaria, 1993, Loret et al., 1995, Rizzi, 1995, and Rizzi 

et al., 1996. 
 
2.4.1. Johnson-Cook Damage and Failure Model 

 

Johnson and Cook, 1985, proposed a cumulative damage and fracture model 
suitable for materials subjected to large strains, over a possible wide range of strain 

rates, temperatures and stress triaxialities. As for the Johnson-Cook hardening 

function, the willing was that of keeping the formulation well suitable for 

implementations in FEM codes. Three different metals, i.e. OFHC copper, Armco 

iron and 4340 steel, were analyzed through a high number of experimental tests, 
which aimed at revealing the fracture strain, over certain ranges of equivalent 

plastic strain rates, temperatures and stress triaxialities. Both tensile and torsion 

tests were considered, together with investigations carried-out through a Hopkinson 

bar. In order to explore high temperature behavior, ovens capable to properly heat 
the specimens were used. 
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Johnson and Cook, 1985, proposed to relate the cumulated damage to the value 

of equivalent plastic strain occurred in the material. A cumulative scalar damage 
parameter, denoted by D, was introduced. Assuming to divide the time of the 

material evolution in timesteps, the increment of the damage parameter is then 

calculated in each timestep. The cumulative damage is evaluated as the sum of the 

ratios between the increment of the equivalent plastic strain, denoted by 
ip∆ε , and 

a so-called equivalent plastic strain to fracture, denoted by f

ipε , in each timestep i, 

for a total number of n timesteps. Therefore, the following relation is established 
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ε∑   (68) 

 

The damage parameter D is defined in such a way that when its value is zero there 
is no damage. On the other hand, when its value increases, the material damage 

increases accordingly. When D reaches the value of 1 the material is assumed to 

be completely damaged, thus triggering material fracture due to damage. 

The equivalent plastic strain to fracture is assumed to be the equivalent plastic 

strain value at which the material has reached complete damage, i.e. when it 
fractures. This value varies in each timestep, since it is assumed to be a function of 

the current conditions of equivalent plastic strain rate, temperature and stress 

triaxiality. Indeed, the key point of this model is the definition of such equivalent 

plastic strain to fracture. On the basis of the obtained experimental results, Johnson 

and Cook, 1985, pointed-out that the equivalent plastic strain to fracture exhibited 
an exponential dependence on the stress triaxiality, a natural logarithmic 

dependence on the dimensionless equivalent plastic strain rate, Eq. (26), and a 

linear dependence on the homologous temperature, Eq. (27). According to these 

observations, the authors proposed the following formulation 
 

 ( )3D xf 0
p 1 2 4 5

m 00

T T
D D e 1 D ln 1 D .

T T
⋅     −ε

 ε = + ⋅ ⋅ + ⋅ ⋅ + ⋅       −ε     

ɺ

ɺ
  (69) 

 

In this equation, x represents the current stress triaxiality, referred to the Cauchy 

stress. The five parameters denoted by D1, D2, D3, D4 and D5 are material 
parameters to be calibrated through appropriate experimental tests. An important 

point is the fact that Eq. (69) is assumed to be valid for stress triaxiality values lower 

than or equal to 1.5. When the stress triaxiality exceeds this value, Eq. (69) may not 

coherently predict the equivalent plastic strain to failure, due to the presence of 
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large tensile pressures which may trigger fracturing mechanisms not considered by 

such equation (e.g., spall fracture). Johnson and Cook, 1985, proposed a very 
simple method to overcome this problem. When the stress triaxiality exceeds 1.5, 

the equivalent plastic strain to fracture is no longer calculated with Eq. (69) but 

rather it is evaluated by linearly interpolating through the value calculated by 

inserting a stress triaxiality of 1.5 in this equation and a so-called minimum 
equivalent plastic strain to fracture, to be determined experimentally. Further details 

on this aspect can be found in Johnson and Cook, 1985. However, this approach 

was recognized to be too simplifying and possibly capable to produce incoherent 

results. Hence, when stress triaxialities higher than 1.5 are involved, another 

damage and failure model should be considered, either by replacing the Johnson 
and Cook model or adding to it. 

Similarly to the Johnson-Cook strength model, the Johnson-Cook damage and 

failure model is conceived in a multiplicative fashion. The three terms contained in 

the three outer round brackets interact, with the aim of determining the value of the 
equivalent plastic strain to fracture. 

The first multiplicative term introduces the dependence of the equivalent plastic 

strain to fracture on the stress triaxiality. Basically, this term enforces the equivalent 

plastic strain to fracture to decrease as the pressure goes towards positive values, 

since term D3 is usually negative. Actually, the stress triaxiality appears to play a 
quite important role when high strain rates damage and failure need to be 

assessed. In this regard, further considerations on the role of stress triaxiality on the 

determination of the strain to fracture can be found, e.g., in Bao and 

Wierzbicki, 2004 and 2005. 

The second multiplicative term introduces a natural logarithmic dependence of 
the equivalent plastic strain to fracture on the dimensionless equivalent plastic 

strain rate. It is worthwhile to note that this term is formally equal to the strain rate 

term of the Johnson-Cook hardening function, Eq. (28). This term is conceived in 

such a way that when the current equivalent plastic strain rate is equal to the 
reference equivalent plastic strain rate it becomes equal to one and therefore there 

are no strain rate effects on the computation of the current equivalent plastic strain 

to fracture. Beyond this aspect, this term determines an increase of the equivalent 

plastic strain to failure when the equivalent plastic strain rate increases. 

The third and last multiplicative term introduces a linear dependence of the 
equivalent plastic strain to fracture on the homologous temperature. It is quite 

similar to the temperature term of the Johnson-Cook hardening function, Eq. (28). 

This term is conceived in such a way that when the current temperature is equal to 

the reference temperature it becomes equal to one and therefore there are no 
temperature effects on the computation of the current equivalent plastic strain to 

failure. 
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The procedure necessary for the calibration of the five parameters that appear in 

the Johnson-Cook damage model is somehow similar to the one presented for the 
determination of the parameters of the Johnson-Cook strength model. A review of 

such procedure is not an aim of the present work. In this regard, further 

considerations can be found in Johnson and Cook, 1985. 

The authors evaluated their model by comparing its outcomes to independent 
series of Taylor tests and biaxial tests. The obtained results proved that the fracture 

occurs earlier comparing to the prediction of the model, thus proving some 

modeling coherency problematics. However, as stated by its authors, the Johnson-

Cook damage and failure model should provide a coherency improvement 

comparing to other fracture models based only on the value of the equivalent plastic 
strain. Besides, the proposed model presents good capability to fit into 

computational frameworks, since it utilizes variables that are usually readily 

available in FEM codes, such as the equivalent plastic strain, the equivalent plastic 

strain rate, the temperature and the stress triaxiality. The latter variable can be 
evaluated after having computed the current pressure and the von Mises stress. 

Moreover, it involves only one simple scalar damage variable. 

Further considerations on the Johnson-Cook damage and failure model can be 

found, e.g., in Xue and Wierzbicki, 2006. More sophisticated models may be 

considered, such as, e.g., the model proposed in Abu Al-Rub and Voyiadjis, 2006, 
and Voyiadjis and Abu Al-Rub, 2006. Evaluations on several damage and fracture 

models can be found in Teng, 2004, Wierzbicki et al., 2005, and Teng and 

Wierzbicki, 2006. 

 
2.4.2. Spall Damage and Failure Models 

 

Spall damage and fracture are phenomena due to the presence in the material of 

positive pressure, i.e. tensile pressure. Rinehart, 1951, and Rinehart, 1952, 

provided some of the first scientific analyses of such phenomena. Spall was 
referred to as scabbing. In particular, spall phenomena were studied in relation to 

the stresses produced in a body by exploding charges. Following Davison et 

al., 1996, solids fracture when subjected to a tensile pressure of sufficient 

magnitude. A typical manifestation of such conditions is due to the interaction of 

shock waves in solids subjected to fast dynamic loadings. These conditions may 
lead to tensile pressures of large magnitude and short duration, which causes the 

formation of microcracks or voids in the interior of a material body, eventually 

determining total fracture. Following Fig. 45 reports a component in which spall has 

occurred. 
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Figure 45. Spall fracture in a three inches mild steel 
plate subject to explosive loading (source Rinehart, 1952). 

 

Spall damage and failure can be experimentally investigated in different ways. 

Most popular methods consist in plate impact and explosive loading experiments. 
Davison et al., 1996, provided extensive information on these procedures and how 

to experimentally produce spall fracture. However, spall strength may not be 

straightforward to be identified and it usually does not generally correlate well to the 

shear modulus or the yield strength, as stated in Cochran and Banner, 1977. 
Despite these issues, several spall damage and failure models can be found in the 

literature. 

The simplest model consists only in setting-up a limiting tensile pressure and 

enforcing the material not to exceed this value. This approach does not introduce 

neither damage nor failure, but at least it is capable to limit the positive pressure in 
the material, in order to contain the tensile hydrostatic resistance of the material. 

A more coherent spall damage and failure model was introduced in Cochran and 

Banner, 1977, resulting in one of the most popular models for describing such 

phenomena. The authors conducted experimental studies on spall in uranium and 
in few other metals, by carrying-out tests with a flyer plate fired by a light-gas gun 

against a target plate, which forms the tested material. When a stricken specimen 

spalls, stresses and displacements signals are produced, resulting in an 

acceleration of the specimen free surface. It is then possible to obtain information 

on the spalling properties of the material by measuring free-surface velocities of 
tested specimens. The experimental tests were carried-out by using flyer plate 

travelling at velocities of about 0.1 km/s, since this impact velocity is enough to 

produce spall phenomena in uranium and in the other tested materials. 

The authors proposed a simple model for coherently introducing the spall 

phenomena in the simulations. The proposed model introduces a spall damage 
variable denoted by D and defined as the ratio between the volume of microcracks 
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Vc and the area A in a given representative volume element, as reported in the 

following relation 
 

 cV
D .

A
=   (70) 

 

Clearly, the representative volume element must be large compared to that of 

microcracks. Together with the introduction of such spall damage variable, the 

authors considered the existence of a spall strength, which is defined as the stress 
at which the material begins to spall. It can be measured through experimental 

tests. After the material has reached such value, spall damage is considered to be 

triggered. A simplifying approximation was introduced here. The spall damage 

variable is calculated by assuming that all the volumetric expansion (i.e. positive 

volumetric strain) that occurs after the spall strength has been reached actually 
becomes microcracks volume. Therefore, the spall damage variable is directly 

computed as a function of the volumetric expansion that the spalled material 

undergoes. Furthermore, a critical spall damage value is introduced, in order to 

regulate the maximum spall damage that the material can sustain before total 

fracture occurs. On these bases, the Cochran-Banner model introduces only 2 
material parameters, i.e. the spall strength and the maximum spall damage. 

Cochran and Banner, 1977, tested such spall damage and failure model on their 

experimental results, referring to uranium. The obtained experimental results were 

presented, together with an accurate description of the experimental procedures 
adopted for their achievement. A comparison between model predictions and 

experimental data was carried-out. Excellent agreement between model predictions 

and observed data was obtained, for different testing conditions. 

Other spall damage and fracture models have been proposed by several 

authors. Among others, Al-Hassani et al., 1997, proposed a model based on a non-
local view of spall damage and fracture, applicable to both ductile and brittle 

materials, obtaining good agreement with experimental data. Clayton, 2003, 

proposed a much more complicated spall model, considering a tungsten heavy 

alloy. Cohesive failure models were employed, in order to represent intergranular 
fracture at grain and phase boundaries. Chen et al., 2005, proposed a modification 

of the Cochran-Banner spall model, by introducing some further considerations in 

the model. The authors considered the same 2 material parameters introduced in 

the original Cochran-Banner model, namely the spall strength and the maximum 

spall damage. 
Beyond this short review, further information on spall damage and failure can be 

found in pertinent references. Among others, Schmidt et al., 1978, studied spall 

damage and failure in the context of vulnerability of aerospace components, 
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providing also relevant results on the temperature dependence of spall strength of 

four metal alloys. Meyers and Aimone, 1983, provided a treatment on spalling of 
metals which includes a discussion on several metallurgical aspects. Furthermore, 

Cortes and Elices, 1995, provided experimental studies in aluminum, presenting 

also numerical modeling of spall fracture, showing good agreement between model 

predictions and experimental data. An extensive treatment on spall can be found in 
Antoun et al., 2003. Other information can be found in Zukas, 2004, and 

Kedrinskii, 2005. 
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3. PROPOSAL OF A NEW STRENGTH MODEL. SPLIT JOHNSON-

COOK MODEL 

 

 
In this chapter, a new strength model is introduced. This model is inspired by the 

Johnson-Cook model (Johnson and Cook, 1983) and it is conceived in the same 

framework. Namely, it consists in a hardening function that fits in the classic 

elastoplastic context (see, e.g., Hill, 1950, Kachanov, 1971, Lubliner, 2006, and 
Bigoni, 2012). It is referred to here as Split Johnson-Cook model, or also SJC 

model. The aims are those of elaborating the original Johnson-Cook hardening 

function in order to solve or mitigate the negative consequences due to the fact that 

the equivalent plastic strain, the equivalent plastic strain rate and the temperature 

effects on the yield stress are totally independent from each other. This aspect has 
been described in Chapter 2, Section 2.2.1, and referred to as the second issue of 

the Johnson-Cook model. Furthermore, the new model aims at maintaining the 

positive features of the original Johnson-Cook model, i.e. simplicity and high 

predisposition to computational implementations. In the following, the motivation for 
the introduction of the new strength model are further debated. The Split Johnson-

Cook model is then exposed and described, together with a discussion on its 

calibration strategies, similar to those already presented in Chapter 2. Afterwards, 

the new model is applied to a real case of material behavior, i.e. to the same 

structural steel analyzed for the Johnson-Cook model in Chapter 2. Results are 
then compared to those of the original Johnson-Cook model as exposed in 

Chapter 2. 

 

3.1. Motivation for the Introduction of the Split Johnson-Cook Model 
 

As described in Chapter 2, the Johnson-Cook model does present some 

drawbacks. In particular, two major flaws have been identified and discussed 

(Section 2.2.1), and have been referred to as first and second Johnson-Cook 

issues. They are briefly recalled here. 
The first issue consists in the fact that the natural logarithmic dependence of the 

yield stress on the dimensionless equivalent plastic strain rate may not be suitable 

to coherently fit the strain rate behavior of some materials. Analogously, the power 

dependence of the yield stress on the homologous temperature may present the 

same issue. The second problem consists in the fact that the equivalent plastic 
strain, the equivalent plastic strain rate and the temperature effects on the yield 

stress are totally independent from each other, which is a direct consequence of the 

choice of adopting a hardening function conceived in a multiplicative fashion. 
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As exposed in Chapter 2, these problematics may cause heavy modeling errors, 

and this may hold for a wide number of engineering materials. As previously stated, 
the first Johnson-Cook issue may be partially solved or mitigated by substituting 

either or both the original strain rate and temperature terms with some other forms, 

which may enhance the coherency of the model. A review of some of these 

substitutive terms is provided in Chapter 2, Section 2.2.1. On the other hand, the 
second Johnson-Cook issue appears to be less prone to be mitigated. In fact, the 

main aim of the new model is that of partially solving or alleviating such problem. 

More in detail, the new model aims at relieving the problem of having to choose 

between coherently model either the lower yield stresses, through the LYS or 

OPTLYS calibration strategies, or the plastic flows, through the EPS, OPTEPS or 
GOPTEPS calibration strategies. 

Since the new model derives from the Johnson-Cook model, it maintains a total 

empiric nature. Actually, this aspect is central in order to properly frame the context 

in which the new model lies. Comparing to the Johnson-Cook model, it is 
understood that there exist some strength models capable to provide more 

physically-founded descriptions of the hardening behavior of materials, such as, 

e.g., the Zerilli-Armstrong model (Zerilli and Armstrong, 1987). In this regard, see 

also the physically-based model exposed in Nemat-Nasser and Isaacs, 1997, and 

Nemat-Nasser et al., 1999. However, the target here is that of providing a total 
empiric model that does not involve material parameters that may be difficult to 

determine, possibly related to micromechanical considerations. The target is that of 

allowing to set-up a strength model that requires only the experimental data already 

available, i.e. a set of hardening functions at different equivalent plastic strain rates 

and temperatures, as assumed for the original Johnson-Cook model. On these 
bases, the new model must be capable to better reproduce the experimental data, 

by providing an improvement of the fitting capabilities. As already mentioned, the 

Split Johnson-Cook model must also strive to maintain the same computational 

appeal of the original Johnson-Cook model, i.e. it shall operate by requiring 
information only from the equivalent plastic strain, the equivalent plastic strain rate 

and the temperature, thus allowing to perfectly fit in the same computational 

framework of the original Johnson-Cook model. 

 

3.2. Formulation of the Split Johnson-Cook Model 
 

The present Split Johnson-Cook model defines a hardening function which takes 

the additively split following form 
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The 12 parameters denoted by A, C1, 
1

0
pεɺ , m1, 

10T , B, n, C2, 
2

0
pεɺ , m2, 

20T  and Tm 

are the parameters of the Split Johnson-Cook strength model. They need to be 
calibrated through appropriate experimental tests. Following Table 19 reports their 

dimensions and possible units. 

 

A Stress, e.g. [MPa] n Non-dimensional 

C1 Non-dimensional C2 Non-dimensional 

m1 Non-dimensional m2 Non-dimensional 

1

0
pεɺ  Strain rate, e.g. [s-1] 

2

0
pεɺ  Strain rate, e.g. [s-1] 

10T  Temperature, e.g. [K] 20T  Temperature, e.g. [K] 

B Stress, e.g. [MPa] Tm Temperature, e.g. [K] 

Table 19 
Dimensions and possible units for the Split Johnson-Cook parameters. 

 

The proposed hardening function is conceived in the same multiplicative fashion 

as for the original Johnson-Cook model, with the same strain rate and temperature 

terms, but the equivalent plastic strain rate and temperature effects are now 
separated for the lower yield stress, described by the parameter A, and the plastic 

flow, described by the parameters B and n. The name Split Johnson-Cook model 

actually refers to this aspect. Thus, the parameter A is called lower yield stress 

parameter and the parameters B and n are called plastic flow parameters. 

Regarding the yield stress dependence on the equivalent plastic strain, the same 
power form already used in the original Johnson-Cook model is maintained. The 

parameters C, m and the reference values for the equivalent plastic strain rate and 

the temperature are doubled, yielding to a total number of 12 parameters, i.e. 4 

parameters more than the original Johnson-Cook model. 

The Split Johnson-Cook model is a generalization of the original Johnson-Cook 
model, which in fact is recovered if the parameters C1 and C2 are equal, if the 

parameters m1 and m2 are equal and if the reference values of the equivalent 

plastic strain rate and of the temperature are equal. On the other hand, when these 

parameters are different from each other, the Split Johnson-Cook model allows to 
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independently model strain rate and temperature effects on the lower yield stress 

and on the plastic flow. In general, the parameters C1 and C2 and the parameters 
m1 and m2 become equal only in very particular cases, i.e. cases in which the 

material presents the same exact lower yield stress and plastic flow dependencies 

on the equivalent plastic strain rate and on the temperature. More in general, the 

parameters C1 and C2 may be quite different, as for the parameters m1 and m2. 
Beyond the splitting of the equivalent plastic strain rate and temperature effects on 

the lower yield stress and on the plastic flow, the way in which these effects are 

introduced in the hardening function is exactly the same as that in the original 

Johnson-Cook model. 

The first additive term of the hardening function describes the lower yield stress 
throughout the equivalent plastic strain rate and temperature ranges. It is then 

called lower yield stress term. The two multiplicative terms that act on such lower 

yield stress term act together to determine the lower yield stress. The first one is 

called lower yield stress strain rate term and introduces a natural logarithmic 
dependence on the so-called lower yield stress dimensionless equivalent plastic 

strain rate 
1

*
pεɺ , which is reported in the following equation 
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where 
1

0
pεɺ  represents the so-called lower yield stress reference equivalent plastic 

strain rate. The lower yield stress strain rate term is conceived in such a way that 

when the current equivalent plastic strain rate is equal to the lower yield stress 
reference equivalent plastic strain rate it becomes equal to 1 and therefore there 

are no strain rate effects on the computation of the lower yield stress. Otherwise, 

the effect of the strain rate is determined by the current value of the equivalent 

plastic strain rate and ruled by the lower yield stress reference equivalent plastic 

strain rate and by the parameter C1. 
The second multiplicative term that acts on the first additive term is called lower 

yield stress temperature term and introduces a power dependence on the so-called 

lower yield stress homologous temperature T1*, which is reported in the following 

equation 
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where Tm represents the melting temperature and 
10T  represents the so-called 

lower yield stress reference temperature. The lower yield stress temperature term is 

conceived in such a way that when the current temperature is equal to the lower 

yield stress reference temperature it becomes equal to 1 and therefore there are no 
temperature effects on the computation of the lower yield stress. Otherwise, the 

effect of the temperature on the lower yield stress is determined by the current 

value of the temperature and ruled by the reference lower yield stress temperature, 

by the melting temperature and by the parameter m1.  

The second additive term of the hardening function describes the plastic flow 
throughout the equivalent plastic strain rate and temperature ranges. It is then 

called plastic flow term. These two multiplicative terms act together to determine the 

plastic flow. The first one is called plastic flow strain rate term and introduces a 

natural logarithmic dependence on the so-called plastic flow dimensionless 

equivalent plastic strain rate 
2

*
pεɺ , which is reported as follows 
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where 
2

0
pεɺ  represents the so-called plastic flow reference equivalent plastic strain 

rate. The plastic flow strain rate term is conceived in such a way that when the 

current equivalent plastic strain rate is equal to the plastic flow reference equivalent 

plastic strain rate it becomes equal to 1 and therefore there are no strain rate 
effects on the computation of the plastic flow. Otherwise, the effect of the strain rate 

is determined by the current value of the equivalent plastic strain rate and ruled by 

the plastic flow reference equivalent plastic strain rate and the parameter C2. 

The second multiplicative term that acts on the second additive term is called 

plastic flow temperature term and introduces a power dependence on the so-called 
plastic flow homologous temperature T2*, which is reported in the following 
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where Tm represents the melting temperature and 
20T  represents the so-called 

plastic flow reference temperature. The plastic flow temperature term is conceived 

in such a way that when the current temperature is equal to the plastic flow 

reference temperature it becomes equal to 1 and therefore there are no 
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temperature effects on the computation of the plastic flow. Otherwise, the effect of 

the temperature on the plastic flow is determined by the current value of the 
temperature and ruled by the reference plastic flow temperature, the melting 

temperature and the parameter m2. 

In general, the lower yield stress and plastic flow reference equivalent plastic 

strain rates and temperatures are not forced to be equal. As a matter of fact, the 
Split Johnson-Cook model provides better fitting capabilities if these parameters 

may be different in general. On the other hand, the melting temperature is 

maintained equal for both the lower yield stress and the plastic flow additive terms, 

and in fact it refers to the real melting temperature of the material. It is worthwhile to 

note that when the current temperature reaches the melting temperature, both the 
lower yield stress and the plastic flow additive terms become equal to zero and thus 

the yield stress is null and the material is assumed to offer no deviatoric resistance. 

Temperatures higher than the melting temperature are allowed to occur but then 

the yield stress is no longer computed with the Split Johnson-Cook model, which 
would lead to the computation of a negative yield stress. In such cases, the yield 

stress is just set to zero, as done for the original Johnson-Cook model. 

The proposed form of the Split Johnson-Cook model strives to favor as much as 

possible the maintaining of characteristics similar to those of the original Johnson-

Cook model but, at the same time, it aims at providing an improvement of the 
modeling capabilities. In this regard, many possible forms have been set-up and 

investigated, like, e.g., generalizing the value of the plastic flow parameters B 

and n, by considering them not as constants but rather as functions of the 

equivalent plastic strain rate and the temperature. However, the proposed form is 

believed to constitute the best compromise between the willing of improving the 
model coherency and that of maintaining a simple form, possibly similar to that of 

the original Johnson-Cook model. More complex hardening functions have been 

elaborated and investigated, but they are always afflicted by the introduction of 

unwanted complexities into the model, in particular by needing a much larger 
number of material parameters. The fact of presenting a form very similar to that of 

the original Johnson-Cook model allows for some interesting options, such as the 

possibility to substitute one or more of the Split Johnson-Cook model lower yield 

stress and plastic flow strain rate and temperature terms with some of the proposed 

substitutive terms, previously reviewed in Chapter 2, Section 2.2.1. Furthermore, 
having a form very similar to that of the original Johnson-Cook model allows to 

partially reuse some of the material parameters of the original Johnson-Cook 

model, that may be already known from previous calibrations. 
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3.3. Split Johnson-Cook Model Calibration Strategies 

 
The calibration of the Split Johnson-Cook model requires a certain amount of 

experimental data. Actually, it is possible to define various calibration strategies, as 

for the original Johnson-Cook model. The main approaches are described in the 

following. In order to clarify the exposition, all the calibration strategies introduced 
are illustrated by applications to the same practical case considered in Chapter 2, 

i.e. the experimental data provided by Nemat-Nasser and Guo, 2003. Data at three 

different equivalent plastic strain rates and at three different temperatures are 

considered, i.e. the nine hardening functions already used in Chapter 2. The 

considered equivalent plastic strain rates are 0.001 s-1, 0.1 s-1 and 3000 s-1, while 
the considered temperatures are 77 K, 296 K and 800 K. 

In the following, three different calibration strategies are proposed, described 

and applied to the considered experimental data. These approaches appear to be 

the most intuitive, although it is recognized that they are not the only ones possible 
and other calibration strategies may be defined. Due to the similarity of the Split 

Johnson-Cook model with the original Johnson-Cook model, these approaches are 

actually quite similar to those previously proposed for the calibration of the original 

Johnson-Cook model. In order to ease the identification of such calibration 

strategies, a name is defined here and associated to each of them. Considerations 
about how to choose which experimental tests are necessary to carry-out each 

procedure are presented as well. As for the calibration of the original Johnson-Cook 

model, experimental data are always meant in terms of hardening functions. 

 
3.3.1. STA Calibration Strategy 

 

The STA (STAndard) calibration strategy is the simplest approach capable to 

determine the 12 parameters of the Split Johnson-Cook model. This calibration 

strategy has the same role played by the LYS and EPS approaches for the original 
Johnson-Cook model, since it follows similar considerations, in order to determine 

the values of the Split Johnson-Cook model parameters. 

The very first parameter to be determined is the melting temperature of the 

material. This phase is straightforward, provided that melting data are available. 

The next phase of the calibration strategy consists in the determination of the lower 
yield stress term parameters. Clearly, the parameters relative to the lower yield 

stress term are determined by considering experimental data at zero equivalent 

plastic strain, i.e. with a vanishing plastic flow additive term. In these conditions, the 

Split Johnson-Cook model reduces to the following form 
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The form of this equation is totally analogous to that of the original Johnson-Cook 

model in the case in which the equivalent plastic strain is zero. As a first step, it is 

necessary to identify the equivalent plastic strain rates and temperatures at which it 

is possible to test the considered material. For what it concerns the determination of 
the lower yield stress reference equivalent plastic strain rate and temperature, the 

same considerations previously made for the original Johnson-Cook model LYS 

calibration strategy are valid here. Hence, the lower yield stress reference 

equivalent plastic strain rate is chosen as one of the equivalent plastic strain rate at 

which the material is tested, and the lower yield stress reference temperature is 
chosen as the lowest temperature at which the material is tested, in order to avoid 

the computation of negative lower yield stress homologous temperature, since this 

term is then raised to the power parameter m1, that may be a non integer number, 

and therefore, in such cases, the calculation of this power may not be possible. 

The next phase consists in the determination of the lower yield stress 
parameter A, which is simply equal to the lower yield stress of the experimental 

hardening function referring to the test conducted at the lower yield stress reference 

equivalent plastic strain rate and temperature. In fact, when such reference 

conditions are considered, the lower yield stress strain rate and temperature terms 
become equal to 1 and the Split Johnson-Cook model further reduces to the 

following form 

 

 s A .=    (77) 

 

The data used for the determination of the parameter A need not to be purified 

from structural effects through an inverse analysis, because the only point 

considered is that at the lower yield stress, for which the structural effects are 
considered to be irrelevant. 

The next step is relative to the determination of the lower yield stress strain rate 

parameter, i.e. the parameter C1. This step is totally equivalent to the step 

necessary to determine the parameter C of the original Johnson-Cook model when 
the LYS calibration strategy is adopted. Indeed, the value of the parameter C1 can 

be obtained by considering experimental data at the lower yield stress reference 

temperature. This fact implies the vanishing of the lower yield stress temperature 

term. The parameter C1 can then be determined through the following equation 
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At this point, the same issue already discussed for the original Johnson-Cook 

LYS calibration strategy arises, i.e. it is possible to compute different values of the 

parameter C1, by considering all the available hardening functions which refer to the 

lower yield stress reference temperature and to the various tested equivalent plastic 

strain rates which differ from the lower yield stress reference equivalent plastic 

strain rates. Once again, if the material respects the natural logarithmic 

dependence of the lower yield stress on the lower yield stress dimensionless 

equivalent plastic strain rate, the same value of C1 must be recovered for all the 

available experimental data that cover the various tested equivalent plastic strain 

rates. This may not be the case. In such a case, the value of C1 is taken as an 

average value of all the available values. Considerations similar to those already 

stated for the determination of the parameter C through the original Johnson-Cook 

LYS calibration strategy hold true. 

The next step aims at the determination of the lower yield stress temperature 

parameter, i.e. the parameter m1. This step is totally equivalent to the step 

necessary to determine the parameter m of the original Johnson-Cook model when 

the LYS calibration strategy is adopted. Indeed, the value of the parameter m1 can 

be obtained by considering experimental data at the lower yield stress reference 

equivalent plastic strain rate. This fact implies the vanishing of the lower yield stress 

equivalent plastic strain rate term. The parameter m1 can then be determined 

through the following equation 
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At this point, the same issue already outlined for the original Johnson-Cook LYS 

calibration strategy arises, i.e. it is possible to compute different values of the 

parameter m1, by considering all the available hardening functions referring to the 

lower yield stress reference equivalent plastic strain rate and to the various tested 

temperatures differing from the lower yield stress reference temperatures. Once 

again, if the material respects the power dependence of the lower yield stress on 
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the lower yield stress homologous temperature, the same value of m1 must be 

recovered for all the available experimental data that cover the various tested 
temperatures. This may not be the case. In such a case, the value of m1 is taken as 

an average value of all the available values. Considerations similar to those already 

stated for the determination of the parameter m through the original Johnson-Cook 

LYS calibration strategy hold true. 
The next step regards the determination of the plastic flow reference equivalent 

plastic strain rate and temperature, together with the plastic flow parameters B 

and n. The plastic flow reference equivalent plastic strain rate is chosen as one of 

the equivalent plastic strain rates at which the material is tested, and the plastic flow 

reference temperature is chosen as the lowest temperature at which the material is 
tested, in order to avoid the computation of negative plastic flow homologous 

temperatures and thus the problematics related to impossibility to calculate such 

power. Hence, this calibration strategy prescribes the plastic flow reference 

temperature to be equal to the lower yield stress reference temperature, and the 
two reference equivalent plastic strain rates may actually be equal as well. 

The parameters B and n are to be determined next. This point makes use of 

data obtained at the plastic flow reference equivalent plastic strain rate and 

temperature. These data must be purified from structural effects through an inverse 

analysis of the experimental tests, to be carried-out with FEM codes, since data 
throughout the tested equivalent plastic strain range are considered. The fact that 

the test is carried-out at the plastic flow equivalent plastic strain rate and 

temperature reference values implies that the Split Johnson-Cook strength model 

assumes the following form 
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As a matter of fact, the lower yield stress strain rate and temperature terms may 

vanish too if the lower yield stress and the plastic flow reference equivalent plastic 
strain rates and temperatures are equal. It is possible to determine the parameters 

B and n by fitting the experimental points of the hardening function at the reference 

plastic flow equivalent plastic strain rate and temperature with the function shown in 

Eq. (80). A good strategy here is that of adopting a code that provides nonlinear 

regression capabilities. 
The next point is relative to the determination of the plastic flow strain rate 

parameter C2. This step involves experimental tests conducted at the plastic flow 

reference temperature and at equivalent plastic strain rates different from the plastic 
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flow reference equivalent plastic strain, from the lowest one tested up to the highest 

one. The value of the parameter C2 can be obtained by noting that the plastic flow 
temperature term becomes equal to 1 and the Split Johnson-Cook model assumes 

the following form 
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As a matter of fact, the lower yield stress temperature term may become equal 

to 1 too if the lower yield stress and the plastic flow reference temperatures are 

equal. It is then possible to determine the parameter C2 through a regression of the 

hardening function data at a given equivalent plastic strain rate, of course different 
from the plastic flow reference equivalent plastic strain rate, by considering the 

Johnson-Cook form presented in Eq. (81), i.e. a regression in which the only 

parameter to be determined is C2. The same considerations previously stated about 

the necessity to carry-out an inverse analysis of the experimental data hold true. 

The procedure above allows for determining the value of the parameter C2 at a 
given tested equivalent plastic strain rate. The same procedure must be followed for 

the other tested equivalent plastic strain rates, by considering the correspondent 

hardening functions. At this point, if the material follows the natural logarithmic 

dependence of the plastic flow on the plastic flow dimensionless equivalent plastic 
strain rate, as assumed in the Split Johnson-Cook model, the same value of C2 

must be recovered for all the available experimental data that cover the various 

tested equivalent plastic strain rate. This may not be the case. In such a case, the 

value of C2 is taken as an average value of all the available values. Considerations 

similar to those already stated for the determination of the parameter C through the 
original Johnson-Cook EPS calibration strategy hold true. 

The next point is relative to the determination of the plastic flow temperature 

parameter m2. This step involves experimental tests conducted at the plastic flow 

reference equivalent plastic strain and at temperatures different from the plastic flow 
reference temperature, from the lowest one tested up to the highest one. The value 

of the parameter m2 can be obtained by noting that the plastic flow equivalent 

plastic strain term becomes equal to 1 and the Split Johnson-Cook model assumes 

the following form 
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As a matter of fact, the lower yield stress strain rate term may become equal to 1 

too if the lower yield stress and the plastic flow reference equivalent plastic strain 
rates are equal. It is then possible to determine the parameter C2 through a 

regression of the hardening function data at a given temperature, of course different 

from the plastic flow reference temperature, by considering the Johnson-Cook form 

presented in Eq. (82), i.e. a regression in which the only parameter to be 
determined is m2. The same considerations previously stated about the necessity to 

carry-out an inverse analysis of the experimental data hold true. 

The procedure above allows for determining the value of the parameter m2 for a 

given tested temperature. The same procedure must be followed for the other 

tested temperatures, by considering the corresponding hardening functions. At this 
stage, if the material follows the power dependence of the plastic flow on the plastic 

flow homologous temperature, as assumed in the Split Johnson-Cook model, the 

same value of m2 must be recovered for all the available experimental data that 

cover the various tested temperatures. This may not be the case. In such a case, 
the value of m2 is taken as an average value of all the available values. 

Considerations similar to those already stated for the determination of the 

parameter m through the original Johnson-Cook EPS calibration strategy hold true. 

It is worthwhile to note that the STA calibration strategy of the Split Johnson-

Cook model can be carried-out by using the same experimental data necessary to 
calibrate the original Johnson-Cook model with the LYS or EPS calibration 

strategies. In the following, the STA calibration strategy is applied to the nine 

experimental hardening functions extracted from Nemat-Nasser and Guo, 2003. 

The melting temperature is taken equal to 1773 K. The lower yield stress 

reference equivalent plastic strain rate is chosen as the lowest tested equivalent 
plastic strain rate, i.e. 0.001 s-1. The lower yield stress reference temperature is 

chosen as the lowest tested temperature, i.e. 77 K. The parameter A is then equal 

to 915.555 MPa. Regarding the parameter C1, it is obtained by using Eq. (78) with 

data from the two equivalent plastic strain rates different from the lower yield stress 
reference equivalent plastic strain rates, i.e. 0.1 s-1 and 3000 s-1, at the reference 

temperature of 77 K. The computed values of C1 are equal to 0.01399 and 0.01720, 

for the equivalent plastic strain rates of 0.1 s-1 and 3000 s-1, respectively. Following 

the procedure described above, the parameter C1 is then set equal to their average 

value, namely 0.01560. This step is totally equivalent to that previously made for 
the determination of the parameter C for the original Johnson-Cook LYS calibration 

strategy. In fact, the same value is recovered. Regarding the parameter m1, it is 

obtained by using Eq. (79) with data from the two temperatures different from the 

lower yield stress reference temperature, i.e. 296 K and 800 K, at the reference 
equivalent plastic strain rate of 0.001 s-1. The computed values are equal to 

0.18022 and 0.27336, for the temperatures of 296 K and 800 K, respectively. 
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Following the procedure described above, the parameter m1 is then set equal to 

their average value, namely 0.22679. This step is totally equal to that previously 
made for the determination of the parameter m for the original Johnson-Cook LYS 

calibration strategy. Thus, the same value is calculated. 

The plastic flow reference equivalent plastic strain rate and temperature are 

taken as equal to the lower yield stress reference values, i.e. 0.001 s-1 and 77 K. 
The parameters B and n are obtained by evaluating the experimental hardening 

function at these reference values, through a fitting carried-out within Wolfram 

Mathematica 7, by considering Eq. (80). The obtained parameters B and n become 

equal to 760.782 MPa and 0.60101, respectively. This step is equivalent to the one 

relative to the determination of the quasi-static parameters A, B and n in the original 
Johnson-Cook LYS, OPTLYS, EPS and OPTEPS calibration strategies, with the 

only difference that the parameter A in this case has already been determined. 

Indeed, the same values are recovered. Among other things, this fact is due to 

having chosen the plastic flow reference parameters equal to the lower yield stress 
reference parameters. 

The parameter C2 is determined next. It is obtained by carrying-out a regression 

of experimental data through Eq. (81). Both hardening functions that refer to the two 

equivalent plastic strain rates different from the plastic flow reference equivalent 

plastic strain rates, i.e. 0.1 s-1 and 3000 s-1, at the reference temperature of 77 K, 
are considered. The code Wolfram Mathematica 7 has been used to achieve such 

task. The computed values of C2 are equal to -0.06181 and -0.06166, for the 

equivalent plastic strain rates of 0.1 s-1 and 3000 s-1, respectively. The two obtained 

values are very similar, thus proving that the material follows quite well the natural 

logarithm dependence of the plastic flow on the plastic flow dimensionless 
equivalent plastic strain rate. Following the procedure described above, the 

parameter C2 is set equal to their average value, namely -0.06174. 

Regarding the parameter m2, it is obtained by carrying-out a regression of the 

experimental data through Eq. (82). Both hardening functions that refer to the two 
temperatures different from the plastic flow reference temperature, i.e. 296 K and 

800 K, at the reference equivalent plastic strain rate of 0.001 s-1, are considered. 

The code Wolfram Mathematica 7 has been used to achieve such task. The 

computed values of m2 are equal to 1.42221 and 4.25422, for the temperatures of 

296 K and 800 K, respectively. The two obtained values are quite different, thus 
proving  that the material does not respect quite well the power dependence of the 

plastic flow on the plastic flow homologous temperature. Following the procedure 

described above, the parameter m2 is set equal to their average value, namely 

2.83816. 
The 12 Split Johnson-Cook parameters obtained through the STA calibration 

strategy are summarized in following Table 20. 
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A 915.555 MPa n 0.60101 

C1 0.01560 C2 -0.06174 

m1 0.22679 m2 2.83816 

1

0
pεɺ  0.001 s-1 

2

0
pεɺ  0.001 s-1 

10T  77 K 20T  77 K 

B 760.782 MPa Tm 1773 K 

Table 20 
Split Johnson-Cook parameters for the DH-36 structural steel calculated through 
the STA calibration strategy. 

 
Following Figs. 46 to 48 show the hardening functions predicted by the Split 

Johnson-Cook model calibrated with the STA calibration strategy. As expected, the 

curves of the model follow in the best possible way the first yielding of the 

experimental hardening curves but this time their fittings throughout the equivalent 
plastic strain ranges are much improved by comparing to the original Johnson-Cook 

model calibrated with the LYS strategy. 

 

 
Figure 46. STA calibrated Split Johnson-Cook fitting to DH-36 structural steel data 
at temperature of 77 K and at three different equivalent plastic strain rates. 
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Figure 47. STA calibrated Split Johnson-Cook fitting to DH-36 structural steel data 
at temperature of 296 K and at three different equivalent plastic strain rates. 
 

 
Figure 48. STA calibrated Split Johnson-Cook fitting to DH-36 structural steel data 
at temperature of 800 K and at three different equivalent plastic strain rates. 
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Following Figs. 49 to 51 show the same results but the yield stress is visualized 

by surface plots as a function of the equivalent plastic strain and the base 10 
logarithm of the equivalent plastic strain rate. Experimental data are reported with 

black dots whilst the predictions of the Split Johnson-Cook model are presented 

with red surfaces. 

 

 
Figure 49. STA calibrated SJC model fitting to DH-36 steel data at temperature of 77 K. 
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Figure 50. STA calibrated SJC model fitting to DH-36 steel data at temperature of 296 K. 

 

 
Figure 51. STA calibrated SJC model fitting to DH-36 steel data at temperature of 800 K. 
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As shown in Figs. 46 to 51, the fit to the lower yield stress is very good for the 

hardening functions in which at least one reference conditions is present, i.e. an 
equivalent plastic strain rate of 0.001 s-1 or a temperature of 77 K. Actually, this 

fitting is the same as that obtained with the original Johnson-Cook model calibrated 

with the LYS strategy. Following Table 21 reports a comparison between the STA 

calibrated Split Johnson-Cook model predictions of the lower yield stresses, which 
are equal to those of the LYS calibrated Johnson-Cook model, and their 

experimental counterparts. 

 

 Experimental Values STA SJC Values 

   0.001 s-1, 77 K 915.555 MPa 915.555 MPa 

0.1 s-1, 77 K 974.565 MPa 981.323 MPa 

3000 s-1, 77 K 1150.46 MPa 1128.545 MPa 

   0.001 s-1, 296 K 282.455 MPa 340.015 MPa 

0.1 s-1, 296 K 305.455 MPa 364.439 MPa 

3000 s-1, 296 K 630.137 MPa 419.115 MPa 

   0.001 s-1, 800 K 190.345 MPa 160.967 MPa 

0.1 s-1, 800 K 200.213 MPa 172.533 MPa 

3000 s-1, 800 K 305.345 MPa 198.417 MPa 

Table 21 
Comparison between experimental lower yield stresses and correspondent predicted 
lower yield stresses from the Split Johnson-Cook model calibrated with the STA strategy. 

 

Comparing to the LYS calibrated Johnson-Cook model, the fitting throughout the 
equivalent plastic strain ranges is significantly improved when the model fits data 

which refer to at least one reference condition. On the other hand, when the model 

fits the four hardening functions that do not refer to at least one reference condition, 

i.e. 0.1 s-1 and 296 K, 3000 s-1 and 296 K, 0.1 s-1 and 800 K, and 3000 s-1 and 
800 K, large errors may be introduced, as clearly visible in Figs. 46 to 51. This fact 

is due to having calculated the parameters C1, m1, C2 and m2 by considering 

reference temperature and equivalent plastic strain rate conditions only. As a matter 

of fact, the four hardening functions that do not refer to at least one reference 

condition are never used when the STA calibration strategy is adopted, as for the 
LYS and EPS original Johnson-Cook calibration strategies. In particular, fitting 

incoherencies arise for the two hardening functions at 3000 s-1 and 296 K, and at 

3000 s-1 and 800 K, due to the fact that the parameter C2 is calibrated by 

considering only data at 77 K, which present a material softening for the case 
relative to the equivalent plastic strain rate of 3000 s-1. Therefore, the calibration of 

the parameter C2 tries to fit this softening trend, which is however completely 
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different for the two hardening functions at 3000 s-1 and 296 K, and at 3000 s-1 and 

800 K. Hence, considerable mismatches arise in these cases. 
These aspects are actually analogous to those that arose for the original 

Johnson-Cook LYS and EPS calibration strategies. As for those cases, assessing 

the model predictions only against the hardening functions which refer to at least 

one reference condition may lead to considerable discrepancies. Rather, the model 
should be checked even against hardening functions which do not refer to at least 

one reference condition, in order to assess the possible introduction of heavy 

calibration problematics. Following Table 22 reports both the yield stress and the 

percentage yield stress root mean square errors for each of the nine considered 

hardening functions, together with their algebraic mean value, i.e. their sum divided 
by 9. Important errors are introduced, most of all due to the fitting problematics of 

the two hardening functions at 3000 s-1 and 296 K, and at 3000 s-1 and 800 K, while 

the other cases are actually much more coherent. 

 

 errs  %errs  

   0.001 s-1, 77 K 19.5893 MPa 1.784% 

0.1 s-1, 77 K 43.9967 MPa 3.530% 

3000 s-1, 77 K 57.9250 MPa 4.976% 

   0.001 s-1, 296 K 51.7883 MPa 8.728% 

0.1 s-1, 296 K 111.359 MPa 15.74% 

3000 s-1, 296 K 440. 5960 MPa 49.01% 

   0.001 s-1, 800 K 97.0358 MPa 21.55% 

0.1 s-1, 800 K 176.6159 MPa 32.44% 

3000 s-1, 800 K 383.025 MPa 62.07% 

   Average 153.548 MPa 22.20% 

Table 22 
Yield stress (central column) and percentage yield stress (right column) root mean 
square errors for the STA calibrated Split Johnson-Cook model yield stress predictions. 

 
3.3.2. OPT Calibration Strategy 

 

The OPT (OPTimized) calibration strategy aims at improving the STA calibration 

strategy by optimizing the value of the parameters C1, C2, m1 and m2. In order to 

achieve such target, this strategy introduces in the calibration procedure 
experimental data relative to the hardening functions which do not refer to at least 

one reference condition, trying to obtain values of the parameters C1, C2, m1 and m2 

capable to provide the actual best fit for all the made available hardening functions. 

The optimized calibration strategy has the same role played by the OPTLYS and 

the OPTEPS original Johnson-Cook calibration strategies, i.e. it offers an 
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improvement of the STA calibration strategy by considering all the experimental 

data for the aim of determining the parameters C1, C2, m1 and m2. 
For what it concerns the calibration of the melting temperature, the lower yield 

stress reference equivalent plastic strain rate and temperature, the lower yield 

stress parameter A, the plastic flow reference equivalent plastic strain rate and 

temperature and the parameters B and n, the procedure is exactly the same as 
what exposed for the STA calibration strategy. Differences arise just for the 

determination of the four parameters C1, C2, m1 and m2.  

The first step regards the determination of the lower yield stress parameters C1 

and m1. In order to introduce all the lower yield stress data provided by all the 

available hardening functions, the Split Johnson-Cook model, Eq. (71), is recalled a 
number of times equal to the number of available hardening functions which do not 

refer to lower yield stress reference conditions, for both the equivalent plastic strain 

rate and the temperature, i.e. all the available hardening functions except the one 

which refers to the lower yield stress reference conditions for both the equivalent 
plastic strain rate and the temperature. This approach leads to the construction of 

an overdetermined system of nonlinear equations, in which the unknowns are the 

parameters C1 and m1. Of course, the equivalent plastic strain is always set equal to 

zero, because only the lower yield stress is considered. Therefore, the plastic flow 

term vanishes. Such system is reported as follows 
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In these equations, the subscript i refers to the values relative to the i-th hardening 

function. This system is totally analogous to the one that arises for the calibration of 
the original Johnson-Cook model when the OPTLYS calibration strategy is adopted. 

As previously said, a system of this kind can be solved through a nonlinear least 

square method. 

The second step regards the determination of the plastic flow parameters C2 
and m2. In order to introduce all the data provided by all the available hardening 

functions, the Split Johnson-Cook model, Eq. (71), is recalled a number of times 

equal to the number of available experimental observations, intended in terms of 

couples of yield stress and corresponding equivalent plastic strain values, 

throughout the experimentally investigated equivalent plastic strain ranges. These 
data refer to all the available hardening functions which do not refer to plastic flow 

reference conditions for both the equivalent plastic strain rate and the temperature, 

i.e. all the available hardening functions except for the one which refers to plastic 
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flow reference conditions for both the equivalent plastic strain rate and the 

temperature. This approach leads to the construction of a large overdetermined 
system of nonlinear equations, in which the unknowns are the plastic flow 

parameters C2 and m2 and the number of equations is equal to the number of 

available couples of yield stress and corresponding equivalent plastic strain values, 

which depends on the number of made available experimental hardening functions 
and on the sampling frequency adopted for the experimental measurements. In 

order to avoid to set-up too large systems, it is possible to consider data at a 

sampling inferior than the one used for the experimental measurements, as 

previously said for the original Johnson-Cook model OPTEPS calibration strategy. 

Such system is reported as follows 
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In these equations, the subscript i refers to the i-th couple of yield stress and 

corresponding equivalent plastic strain values, at a given equivalent plastic strain 
rate and temperature. As said for some of the original Johnson-Cook calibration 

strategies, a system of this kind can be solved through a nonlinear least square 

method. 

Regarding the experimental data necessary in order to carry-out the optimized 
calibration strategy, these are exactly the same required for the original Johnson-

Cook OPTLYS or OPTEPS calibration strategies. In the following, the optimized 

calibration strategy is applied to the nine experimental hardening functions 

extracted from Nemat-Nasser and Guo, 2003. 

Regarding the lower yield stress parameters, a system of 8 nonlinear equations 
in 2 unknowns is set-up. It has been numerically solved with a nonlinear least 

squares trust-region-reflective algorithm within MathWorks MatLab 2010b, with a 

tolerance of 10-8. The obtained values for the parameters C1 and m1 are equal to 

0.01906 and 0.67222, respectively, showing that the material does not respect very 
well the natural logarithm dependence of the lower yield stress on the lower yield 

stress reference equivalent plastic strain. For what it concerns the plastic flow 

parameters, C2 and m2, couples of yield stress and corresponding equivalent plastic 

strain values are taken with the same sampling of the experimental ones, i.e. for 

each digitalized couple of yield stress and corresponding equivalent plastic strain. 
Following this approach, a large overdetermined system of 664 nonlinear equations 

and 2 unknowns is created, and it has been numerically solved with the same 

MathWorks MatLab 2010b nonlinear least squares trust-region-reflective algorithm, 
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with a tolerance of 10-8. The obtained values for the parameters C2 and m2 

simultaneously minimize the square errors for the 664 nonlinear equations of the 
system, through a multi-objective nonlinear optimization. These optimized values 

are equal to -0.02582 and 3175.41, for the parameters C2 and m2, respectively. The 

12 Split Johnson-Cook parameters obtained through the OPT calibration strategy 

are summarized in following Table 23. 
 

A 915.555 MPa n 0.60101 

C1 0.02049 C2 -0.02582 

m1 0.26367 m2 3175.41 

1

0
pεɺ  0.001 s-1 

2

0
pεɺ  0.001 s-1 

10T  77 K 20T  77 K 

B 760.782 MPa Tm 1773 K 

Table 23 
Split Johnson-Cook parameters for the DH-36 structural steel calculated through 
the OPT calibration strategy. 

 

Following Figs. 52 to 54 show the hardening functions predicted by the Split 

Johnson-Cook model calibrated with the OPT strategy. 
The curves of the optimized calibrated Split Johnson-Cook model follow in the 

best possible way the experimental hardening curves throughout the equivalent 

plastic strain ranges, this time considering not only the hardening functions which 

have either the equivalent plastic strain or the temperature equal to the reference 

value, but all the nine hardening functions. As previously said, this target is partially 
hindered by the fact that the material does not strictly respect the natural logarithm 

dependence of the lower yield stress on the lower yield stress dimensionless 

equivalent plastic strain rate and the power dependence on the lower yield stress 

homologous temperature. The same aspect arises for the plastic flow dependence 
on the equivalent plastic strain rate and on the temperature. Another aspect that 

involves some problems in fitting the data is the fact that the hardening parameters 

B and n are actually chosen as the ones capable to best fit only hardening functions 

at the reference conditions. 
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Figure 52. OPT calibrated Split Johnson-Cook fitting to DH-36 structural steel 
data at temperature of 77 K and at three different equivalent plastic strain rates. 

 

 
Figure 53. OPT calibrated Split Johnson-Cook fitting to DH-36 structural steel 
data at temperature of 296 K and at three different equivalent plastic strain rates. 
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Figure 54. OPT calibrated Split Johnson-Cook fitting to DH-36 structural steel 
data at temperature of 800 K and at three different equivalent plastic strain rates. 

 

Following Figs. 55 to 57 further show the OPT results by surface plots. 
 

 
Figure 55. OPT calibrated SJC model fitting to DH-36 steel data at temperature of 77 K. 
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Figure 56. OPT calibrated SJC model fitting to DH-36 steel data at temperature of 296 K. 

 

 
Figure 57. OPT calibrated SJC model fitting to DH-36 steel data at temperature of 800 K. 
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As displayed in Figs. 52 to 57, the fit to the data is now the result of a 

compromise between all the nine hardening functions. This point implies the fact 
that the fit with the hardening functions in which at least one reference conditions is 

present is less coherent than the one obtainable from the predictions of the STA 

calibrated Split Johnson-Cook model. On the other hand, when the model fits the 

four hardening functions that do not refer to at least one reference condition, the 
errors are lower, both for the lower yield stress and for the plastic flow. Clearly, this 

is a consequence of having calculated the parameters C1, m1, C2 and m2 by 

considering experimental data from all the nine hardening functions. In particular, 

the fittings for the two hardening functions at 3000 s-1 and 296 K, and at 3000 s-1 

and 800 K have benefit a strong improvement when comparing to the STA 
calibrated Split Johnson-Cook model predictions. Following Table 24 reports a 

comparison between the OPT calibrated Split Johnson-Cook model predictions of 

the lower yield stresses, which are equal to those of the OPTLYS calibrated 

Johnson-Cook model, and their experimental counterparts. 
 

 Experimental Values OPT SJC Values 

   0.001 s-1, 77 K 915.555 MPa 915.555 MPa 

0.1 s-1, 77 K 974.565 MPa 1001.95 MPa 

3000 s-1, 77 K 1150.46 MPa 1195.34 MPa 

   0.001 s-1, 296 K 282.455 MPa 381.868 MPa 

0.1 s-1, 296 K 305.455 MPa 417.901 MPa 

3000 s-1, 296 K 630.137 MPa 498.563 MPa 

   0.001 s-1, 800 K 190.345 MPa 184.331 MPa 

0.1 s-1, 800 K 200.213 MPa 201.724 MPa 

3000 s-1, 800 K 305.345 MPa 240.660 MPa 

Table 24 
Comparison between experimental lower yield stresses and corresponding predicted 
lower yield stresses from the Split Johnson-Cook model calibrated with the OPT 
strategy. 

 

Following Table 25 reports both the yield stress and the percentage yield stress 

root mean square errors for each one of the nine considered hardening functions, 

together with their algebraic mean value, i.e. their sum divided by 9. The average 

errors are sensibly lower than those of the STA calibrated Split Johnson-Cook 
model, and are also lower than those of the best calibrated original Johnson-Cook 

model, i.e. the GOPTEPS calibrated model. 
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 errs  %errs  

   0.001 s-1, 77 K 19.5893 MPa 1.784% 

0.1 s-1, 77 K 89.6059 MPa 7.070% 

3000 s-1, 77 K 248.454 MPa 22.01% 

   0.001 s-1, 296 K 72.7610 MPa 12.45% 

0.1 s-1, 296 K 41.4574 MPa 9.365% 

3000 s-1, 296 K 188.087 MPa 21.54% 

   0.001 s-1, 800 K 90.1739 MPa 18.47% 

0.1 s-1, 800 K 93.1929 MPa 18.06% 

3000 s-1, 800 K 174.677 MPa 29.61% 

   Average 113.1109 MPa 15.60% 

Table 25 
Yield stress (central column) and percentage yield stress (right column) root mean 
square errors for the OPT calibrated Split Johnson-Cook model yield stress predictions. 

 
3.3.3. GOPT Calibration Strategy 

 
The GOPT (Global OPTimization) calibration strategy aims at obtaining the best set 

of parameters by considering a multi-objective optimization of 11 of the 12 

parameters of the Split Johnson-Cook model, i.e. all the parameters except for the 

melting temperature. All the experimental data are used, trying to obtain all together 

values of the 11 parameters capable to provide the actual best fit for all the made 
available hardening functions, throughout the equivalent plastic strain ranges 

involved. 

This optimization is carried-out by solving an overdetermined system of 

nonlinear equations and eleven unknowns. Such nonlinear system uses all the 
available experimental data, intended in terms of couples of yield stress and 

corresponding equivalent plastic strain, as done for the GOPTEPS original 

Johnson-Cook calibration strategy, but this time on eleven unknowns. The obtained 

values for these eleven parameters simultaneously minimize the square errors for 

the nonlinear equations of the system, through a multi-objective nonlinear 
optimization. 

The melting temperature is excluded from the multi-objective optimization, for 

the same reasons previously stated for the GOPTEPS original Johnson-Cook 

calibration strategy. Indeed, assuming the melting temperature to be an 
optimization variable may lead to setting-up melting values that are totally different 

from the real phase change value. It is also worthwhile to point-out a consideration 

about the lower yield stress and plastic flow reference equivalent plastic strain rates 

and temperatures. As in the GOPTEPS original Johnson-Cook calibration strategy, 

these reference values can be different from those of one of the experimental 
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hardening functions, since they are left as optimization variables. Anyway, their 

values identify the Johnson-Cook lower yield stress and plastic flow quasi-static 
conditions, although they are now unknowns. This aspect should provide a better 

fitting of the experimental data. 

Regarding the determination of the remaining 11 Split Johnson-Cook 

parameters, the procedure is analogous to that of the GOPTEPS original Johnson-
Cook calibration strategy. In order to introduce all the yield stress data provided by 

all the available hardening functions, the Split Johnson-Cook strength model is 

recalled a number of times equal to the number of available experimental 

observations, intended in terms of couples of yield stress and corresponding 

equivalent plastic strain values, throughout the experimentally investigated 
equivalent plastic strain ranges, as done for the second phase of the OPT Split 

Johnson-Cook calibration strategy. However, this time the unknowns are not only 

C2 and m2 but all the 11 considered optimization variables. Furthermore, the 

number of equations increases up to 740, because data from all the nine hardening 
functions are now considered, including that at 0.001 s-1 and 77 K. In order to avoid 

to set-up too large systems, it is obviously possible to consider data at a sampling 

inferior than that used for the experimental measurements, as previously 

mentioned. In order to solve this system, an important point is relative to the 

enforcement of appropriate conditions on the eleven optimization variables, making 
the process a multi-objective nonlinear optimization subjected to bounds, similarly 

to what done for the original Johnson-Cook GOPTEPS calibration strategy. 

Therefore, the lower yield stress and plastic flow reference equivalent plastic strain 

rates are forced to be positive numbers, since they cannot be negative, because 

natural logarithms of negative numbers cannot be calculated. Furthermore, the 
lower yield stress and plastic flow reference temperatures are forced to be lower 

than or equal to the lowest temperature tested during the experimental campaign, 

since it is necessary to avoid calculations of negative lower yield stress or plastic 

flow homologous temperature, in order to prevent computations of negative 
numbers raised to a possible non integer negative number, as previously said. The 

lower yield stress and plastic flow reference temperatures are also forced to be 

greater than zero, as done for the original Johnson-Cook GOPTEPS calibration 

strategy. Although the calculation of negative reference temperatures is not a 

problem from the mathematical point of view, it is considered reasonable to keep 
these parameters greater than zero, since temperatures lower than 0 K are not 

physically admissible. No bounds are imposed on the other parameters. 

The created system is quite complex, due to the presence of 11 objective 

variables. It can still be solved through a nonlinear least square method. If there are 
convergence problems, it is possible to enforce some further bounds on the 

objective variables, in order to restrict their existence domains and favor the 
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convergence of the system. The solution values for the 11 Split Johnson-Cook 

parameters are those characterized by being capable to minimize the square errors 
of the Split Johnson-Cook model predictions against experimental data at each 

couple of yield stress and correspondent equivalent plastic strain values. 

Regarding the experimental data necessary to carry-out the GOPT calibration 

strategy, these are exactly the same required for the OPT Split Johnson-Cook 
calibration strategy, i.e. the same data required for the original Johnson-Cook 

OPTLYS and OPTEPS strategies. In the following, the GOPT calibration strategy is 

applied again to the nine experimental hardening functions extracted from Nemat-

Nasser and Guo, 2003. 

The overdetermined system of nonlinear equations and eleven unknowns has 
been numerically solved with a nonlinear least squares trust-region-reflective 

algorithm within MathWorks MatLab 2010b, as previously done for the other 

calibration strategies, with a tolerance of 10-8. Some convergence problems have 

been solved by setting both the lower yield stress and the plastic flow reference 
temperatures equal to 77 K, since all the iterations showed that these parameters 

tended to such value. This point is similar to what happened for the calibration of 

the original Johnson-Cook model through the GOPTEPS calibrations strategy. The 

obtained values for the 11 Johnson-Cook parameters simultaneously minimize the 

square errors for the 740 nonlinear equations of the system, through a multi-
objective nonlinear optimization subjected to bounds. The obtained 11 Johnson-

Cook parameters are summarized in following Table 26, together with the value of 

the melting temperature, which is taken as fixed. 

 

A 758.729 MPa n 0.19036 

C1 -0.01524 C2 0.03035 

m1 0.20964 m2 2.80589 

1

0
pεɺ  0.04350 s-1 

2

0
pεɺ  3.94813·10-6 s-1 

10T  77 K 20T  77 K 

B 487.221 MPa Tm 1773 K 

Table 26 
Split Johnson-Cook parameters for the DH-36 structural steel calculated through 
the GOPT calibration strategy. 

 

Following Figs. 58 to 60 show the hardening functions predicted by the Split 

Johnson-Cook model calibrated with the GOPT strategy. 



140 
 

The curves of the GOPT calibrated Split Johnson-Cook model follow in the best 

possible way the nine experimental hardening curves throughout the equivalent 
plastic strain ranges. Comparing to the other two Split Johnson-Cook calibration 

strategies, the fittings are now significantly improved. 

 

 
Figure 58. GOPT calibrated Split Johnson-Cook fitting to DH-36 structural steel 
data at temperature of 77 K and at three different equivalent plastic strain rates. 
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Figure 59. GOPT calibrated Split Johnson-Cook fitting to DH-36 structural steel 
data at temperature of 296 K and at three different equivalent plastic strain rates. 
 

 
Figure 60. GOPT calibrated Split Johnson-Cook fitting to DH-36 structural steel 
data at temperature of 800 K and at three different equivalent plastic strain rates. 
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Following Figs. 61 to 63 further show the GOPT results by surface plots. 
 

 
Figure 61. GOPT calibrated SJC model fitting to DH-36 steel data at temperature of 77 K. 

 

 
Figure 62. GOPT calibrated SJC model fitting to DH-36 steel data at temperature of 296 K. 
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Figure 63. GOPT calibrated SJC model fitting to DH-36 steel data at temperature of 800 K. 

 
Following Table 27 reports a comparison between the GOPT calibrated Split 

Johnson-Cook model predictions of the lower yield stresses and their experimental 

counterparts. 

 

 Experimental Values OPTLYS JC Values 

   0.001 s-1, 77 K 915.555 MPa 802.362 MPa 

0.1 s-1, 77 K 974.565 MPa 749.101 MPa 

3000 s-1, 77 K 1150.46 MPa 629.872 MPa 

   0.001 s-1, 296 K 282.455 MPa 279.957 MPa 

0.1 s-1, 296 K 305.455 MPa 261.373 MPa 

3000 s-1, 296 K 630.137 MPa 219.772 MPa 

   0.001 s-1, 800 K 190.345 MPa 131.328 MPa 

0.1 s-1, 800 K 200.213 MPa 122.610 MPa 

3000 s-1, 800 K 305.345 MPa 103.095 MPa 

Table 2 
Comparison between experimental lower yield stresses and corresponding predicted 
lower yield stresses from the Split Johnson-Cook model calibrated with the GOPT 
strategy. 
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Following Table 28 reports both the yield stress and the percentage yield stress 

root mean square errors for each of the nine considered hardening functions, 
together with their algebraic mean value, i.e. their sum divided by 9. Comparing to 

the OPT calibrated Split Johnson-Cook model results, the average errors are further 

lowered. 

 

 errs  %errs  

   0.001 s-1, 77 K 78.7608 MPa 6.833% 

0.1 s-1, 77 K 37.5824 MPa 3.481% 

3000 s-1, 77 K 155.248 MPa 13.70% 

   0.001 s-1, 296 K 59.4984 MPa 16.13% 

0.1 s-1, 296 K 54.7770 MPa 13.63% 

3000 s-1, 296 K 98.8377 MPa 12.78% 

   0.001 s-1, 800 K 16.6539 MPa 5.762% 

0.1 s-1, 800 K 31.1816 MPa 10.37% 

3000 s-1, 800 K 35.5619 MPa 9.895% 

   Average 63.1224 MPa 10.29% 

Table 28 
Yield stress (central column) and percentage yield stress (right column) root mean 
square errors for the GOPT calibrated Split Johnson-Cook model yield stress 
predictions. 

 
3.3.4. Calibration Strategies Comparison and Assessment 

 
Following Figs. 64 to 72 allow to compare the results from the three Split Johnson-

Cook model calibration strategies presented above, by considering the nine 

experimental hardening functions from Nemat-Nasser and Guo, 2003. Moreover, 

the five different calibrated original Johnson-Cook predictions (Chapter 2) are 
presented as well, in order to favor a comparison of the two models. The original 

Johnson-Cook model predictions are presented with continuous lines, while those 

of the Split Johnson-Cook model are presented with dashed lines. 
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Figure 64. Fitting of original and Split Johnson-Cook models calibrated with 
different strategies to DH-36 steel data. 

 

 
Figure 65. Fitting of original and Split Johnson-Cook models calibrated with 
different strategies to DH-36 steel data. 

0

200

400

600

800

1000

1200

1400

1600

0 0.1 0.2 0.3 0.4 0.5 0.6

Y
ie

ld
 S

tr
es

s 
[M

P
a]

Equivalent Plastic Strain

Hardening Function, Equivalent Plastic Strain Rate 
0.001 s-1, Temperature 77 K

Exper LYS JC OPTLYS JC

EPS JC OPTEPS JC GOPTEPS JC

STA DJC OPT DJC GOPT DJC

0

200

400

600

800

1000

1200

1400

1600

1800

0 0.1 0.2 0.3 0.4 0.5 0.6

Y
ie

ld
 S

tr
es

s 
[M

P
a]

Equivalent Plastic Strain

Hardening Function, Equivalent Plastic Strain Rate 
0.1 s-1, Temperature 77 K

Exper LYS JC OPTLYS JC

EPS JC OPTEPS JC GOPTEPS JC

STA DCJ OPT DCJ GOPT DJC



146 
 

 
Figure 66. Fitting of original and Split Johnson-Cook models calibrated with 
different strategies to DH-36 steel data. 
 

 
Figure 67. Fitting of original and Split Johnson-Cook models calibrated with 
different strategies to DH-36 steel data. 
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Figure 68. Fitting of original and Split Johnson-Cook models calibrated with 
different strategies to DH-36 steel data. 

 

 
Figure 69. Fitting of original and Split Johnson-Cook models calibrated with 
different strategies to DH-36 steel data. 
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Figure 70. Fitting of original and Split Johnson-Cook models calibrated with 
different strategies to DH-36 steel data. 

 

 
Figure 71. Fitting of original and Split Johnson-Cook models calibrated with 
different strategies to DH-36 steel data. 
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Figure 72. Fitting of original and Split Johnson-Cook models calibrated with 
different strategies to DH-36 steel data. 

 

Figs. 64 to 72 show in better detail what previously presented for each original 

and Split Johnson-Cook calibration strategy. The reported trends confirm the 

considerations previously stated regarding the strengths and weaknesses of each 
calibration strategy. Following Table 29 shows a comparison between the five 

calibrated original Johnson-Cook models and the three calibrated Split Johnson-

Cook models predictions of the lower yield stresses and their experimental 

counterparts. 
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 0.001 s-1, 77 K 0.1 s-1, 77 K 3000 s-1, 77 K 
    Experimental Values 915.555 MPa 974.565 MPa 1150.46 MPa 
    LYS JC Values 915.555 MPa 981.323 MPa 1128.545 MPa 

OPTLYS JC Values 915.555 MPa 1001.95 MPa 1195.34 MPa 
EPS JC Values 915.555 MPa 896.883 MPa 855.085 MPa 

OPTEPS JC Values 915.555 MPa 911.718 MPa 903.129 MPa 
GOPTEPS JC Values 747.628 MPa 755.407 MPa 772.820 MPa 

    STA SJC Values 915.555 MPa 981.323 MPa 1128.55 MPa 
OPT SJC Values 915.555 MPa 1001.95 MPa 1195.34 MPa 

GOPT SJC Values 802.362 MPa 749.101 MPa 629.872 MPa 
     0.001 s-1, 296 K 0.1 s-1, 296 K 3000 s-1, 296 K 
    Experimental Values 282.455 MPa 305.455 MPa 630.137 MPa 
    LYS JC Values 340.015 MPa 364.439 MPa 419.115 MPa 

OPTLYS JC Values 381.868 MPa 417.901 MPa 498.563 MPa 
EPS JC Values 588.755 MPa 576.748 MPa 549.869 MPa 

OPTEPS JC Values 606.076 MPa 603.536 MPa 597.851 MPa 
GOPTEPS JC Values 518.571 MPa 523.967 MPa 536.045 MPa 

    STA SJC Values 340.015 MPa 364.439 MPa 419.115 MPa 
OPT SJC Values 381.868 MPa 417.901 MPa 498.563 MPa 

GOPT SJC Values 279.957 MPa 261.373 MPa 219.772 MPa 
     0.001 s-1, 800 K 0.1 s-1, 800 K 3000 s-1, 800 K 
    Experimental Values 190.345 MPa 200.213 MPa 305.345 MPa 
    LYS JC Values 160.967 MPa 172.533 MPa 198.417 MPa 

OPTLYS JC Values 184.331 MPa 201.724 MPa 240.660 MPa 
EPS JC Values 319.443 MPa 312.928 MPa 298.344 MPa 

OPTEPS JC Values 332.813 MPa 331.418 MPa 328.296 MPa 
GOPTEPS JC Values 290.859 MPa 331.418 MPa 300.660 MPa 

    STA SJC Values 160.967 MPa 172.533 MPa 198.417 MPa 
OPT SJC Values 184.331 MPa 201.724 MPa 240.660 MPa 

GOPT SJC Values 131.328 MPa 122.610 MPa 103.095 MPa 
Table 29 
Comparison between experimental lower yield stresses and corresponding predicted lower 
yield stresses from the original and Split Johnson-Cook models calibrated with different 
strategies. 
 

Following Table 30 reports both the yield stress and the percentage yield stress 

root mean square average errors for each one of the five considered original 

Johnson-Cook calibration strategies and of the three considered Split Johnson-
Cook calibration strategies. 
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 errs  %errs  

   LYS Calibrated JC 253.860 MPa 34.85% 

OPTLYS Calibrated JC 226.289 MPa 30.31% 

EPS Calibrated JC 121.784 MPa 19.23% 

OPTEPS Calibrated JC 113.915 MPa 18.21% 

GOPTEPS Calibrated JC 105.488 MPa 16.86% 

   STA SJC Values 153.548 MPa 22.20% 

OPT SJC Values 113.111 MPa 15.60% 

GOPT SJC Values 63.1224 MPa 10.29% 

Table 30 
Yield stress (central column) and percentage yield stress (right column) root mean square 
average errors for the yield stress predictions of the original and Split Johnson-Cook models 
calibrated with different strategies. 
 

Some considerations are reported in the following, in order to better understand 

the consequences of choosing a particular calibration strategy or the other. 
The STA calibration strategy allows to model quite coherently both the lower 

yield stress and the plastic flow, by considering data provided only by those 

hardening functions which refer to at least one reference condition, whether it is the 

reference equivalent plastic strain rate or the reference temperature. This aspect is 

true for both the lower yield stress and the plastic flow terms. As a result, the lower 
yield stress and the plastic flow are better modeled for these hardening functions, in 

particular for the hardening function referring to the reference conditions for both 

the lower yield stress and the plastic flow, i.e. the hardening function at the 

equivalent plastic strain rate of 0.001 s-1 and at the temperature of 77 K. This is due 
to the fact that the parameters A, B and n are determined by fitting this hardening 

function only. On the other hand, errors may be introduced for the predictions of the 

other hardening functions. Such errors may actually become considerable, as 

clearly visible in Figs. 69 and 72. Therefore, this strategy should be avoided if 

experimental data which do not refer to at least one reference condition are 
available, both for the lower yield stress and for the plastic flow. The OPT and 

GOPT calibration strategies should be preferred. Anyway, it is recognized that the 

DH-36 data appear as quite an unlucky case for the use of the Split Johnson-Cook 

STA calibration strategy, as its effectiveness is heavily hindered by the fact that the 
hardening function at 3000 s-1 and 77 K, which plays an important role for the 

determination of the material parameters, presents a very different behavior 

compared to those at the same equivalent plastic strain rate but at different 

temperatures. In other cases, the STA calibration strategy may actually provide 

better results than those obtained for the considered DH-36 steel case. However, 
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the OPT and GOPT calibration strategies are capable to overcome unlucky cases 

of such kind. 
The OPT calibration strategy extends the capabilities of the STA calibration 

strategy by considering all the experimental data. As a result, the fit of the lower 

yield stress and of the plastic flow is a compromise between the lower yield 

stresses and plastic flows of all the made available hardening functions. The GOPT 
calibration strategy further improves the calibration by allowing 11 out of the 12 Split 

Johnson-Cook parameters to be optimized. As a result, its trends provide the best 

overall fit for all the made available experimental hardening functions. The GOPT 

calibration strategy capacity to better model the plastic flows throughout the 

equivalent plastic strain rate and temperature ranges is partially due to the fact of 
avoiding to calculate the parameters B and n, by relying on the plastic flow at the 

plastic flow reference conditions only, but rather by considering how to best fit all 

the made available experimental plastic flows, through a power form. This is the 

reason why the GOPT calibration strategy provides the worst fit for the plastic flow 
at the conditions which act as reference for the other calibration strategies (i.e., 

0.001 s-1 and 77 K) but it is also one of the reasons why it provides the best overall 

fit to the plastic flows in other conditions. However, since the parameters B and n 

are constants and thus not functions of the equivalent plastic strain rate and the 

temperature, the more the plastic flow trends at diverse equivalent plastic strain 
rates and temperatures are different, the more modeling errors are introduced, even 

when this calibration strategy is adopted. Clearly, this aspect is similar to what 

arises for the original Johnson-Cook GOPTEPS calibration strategy. 

It is worthwhile to point-out some considerations regarding the easiness of 

calibration of each strategy, i.e. the number of calculations that each procedure 
needs in order to get the Split Johnson-Cook parameters and the possible 

necessity of experimental data treatment. In this regard, the STA calibration 

strategy is the simplest, since it requires a regression (for determining the 

parameters B and n) together with the simple calculations involved in the 
determination of the parameters C1 and m1 and some other nonlinear regression 

necessary in order to determine the values of the parameters C2 and m2. The STA 

calibration strategy requires to carry-out inverse analyses of all the considered 

hardening functions, i.e. all those which refer to at least one reference condition, 

since they are thoroughly used for the determination of the plastic flow parameters 
C2 and m2. 

The OPT calibration strategy involves heavier calculations, due to the fact that 

two overdetermined nonlinear systems are required to be solved. Furthermore, all 

the experimental hardening functions need to be treated through inverse analyses, 
in order to purify results from structural effects. Finally, the GOPT calibration 
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strategy further complicates things by introducing 11 unknowns in the 

overdetermined system, resulting in a problem that is more difficult to solve. 
All three Split Johnson-Cook model calibration strategies require experimental 

data in terms of entire hardening functions, i.e. not only lower yield stress data. For 

the Split Johnson-Cook model, the more experimental data are made available, the 

better for the aim of calibrating the model. As previously said for the original 
Johnson-Cook model, the only way that allows to understand the real material 

behavior is that of carrying-out experimental tests, i.e., to obtain hardening 

functions, at several different equivalent plastic strain rates and temperatures, with 

the aim of covering the ranges of interest with enough resolution. All the available 

data can fruitfully be introduced in the calibration procedures of the Split Johnson-
Cook model. Moreover, the modeling of cases in which the lower yield stress and 

the plastic flow present quite different dependencies on the equivalent plastic strain 

rate and temperature are no longer a problem, differently from what happens for the 

original Johnson-Cook model. Rather, such cases can be successfully reproduced 
thanks to the features of the new model. 

The Split Johnson-Cook model appears to be capable to provide a significant 

improvement comparing to the original Johnson-Cook model. This statement relies 

on the yield stress average errors reported in Table 30. Considering the same 

experimental data (Nemat-Nasser and Guo, 2003), the original Johnson-Cook 
model calibrated with the strategy that appears to be the most popular, i.e. the LYS 

calibration strategy, provides a yield stress percentage average error equal to 

34.85%, while the same model calibrated with the most refined approach, i.e. the 

GOPTEPS strategy, presents an error equal to 16.86%. The Split Johnson-Cook 

model calibrated with the less fine strategy, i.e. the STA approach, provides an 
error equal to 22.20%. As already mentioned, the considered DH-36 steel case 

appears to be an unlucky case for the application of such calibration strategy, which 

may instead provide better results for other cases, in particular for those materials 

which do not present heavy differences on the hardening behavior when passing 
from conditions in which at least one reference condition is satisfied, to those in 

which both reference conditions are not satisfied, both for the lower yield stress and 

the plastic flow terms. The Split Johnson-Cook model calibrated with the two best 

calibration approaches, i.e. the OPT and the GOPT strategies, provides an error 

equal to 15.60% and 10.29%, respectively. This means passing from an yield stress 
average error of 105.488 MPa (original Johnson-Cook best calibration strategy, i.e. 

GOPTEPS) to an average error of 63.1224 MPa (Split Johnson-Cook best 

calibration strategy, i.e. GOPT). As a matter of fact, the proposed model appears to 

be capable to almost halve the fitting errors. This positive consequence is due to 
the fact of having split the equivalent plastic strain rate and temperature effects on 
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the lower yield stress and on the plastic flow, hence avoiding possibly large 

modeling errors of one case or the other. 
The calibration of the proposed model requires the same experimental data 

needed for the calibration of the original Johnson-Cook model, although the model 

parameters are increased from 8 to 12. The enlargement of material parameters 

does not appear to be a problematic issue. Indeed, the calibration procedures for 
the original and for the Split Johnson-Cook models require basically the same effort 

in terms of data processing and calculations. Furthermore, when the STA and OPT 

calibration strategies are adopted, the Split Johnson-Cook model can rely on some 

parameters already calculated for the original Johnson-Cook model. More in detail, 

the STA calibration strategy uses the same 8 parameters used for the original 
Johnson-Cook LYS strategy, and the only parameters to be determined are the 4 

parameters C2, m2, 
2

0
pεɺ  and 

20T . Regarding the OPT Split Johnson-Cook 

calibration strategy, the same 8 parameters used for the original Johnson-Cook 

OPTLYS calibration strategy are used. Again, the parameters that need to be 

determined are the 4 parameters C2, m2, 
2

0
pεɺ  and 

20T only. For what it concerns the 

Split Johnson-Cook GOPT calibration strategy, the only reusable parameter is the 

melting temperature. 
As said for the original Johnson-Cook model, the procedure adopted to calibrate 

the parameters of the Split Johnson-Cook model has great importance relatively to 

the aim of setting-up a strength model capable to display a good coherency 

throughout the equivalent plastic strain, equivalent plastic strain rate and 

temperature ranges of interest. Even though the Split Johnson-Cook model is 
capable to diminish some of the original Johnson-Cook modeling errors, these 

incoherencies cannot be totally eliminated when it is an aim to maintain a very 

simple modeling framework. As for the original Johnson-Cook model, the choice of 

the calibration strategy allows to redistribute these errors according to different 

criteria. Such choice should be made by considering all the aspects exposed and 
explained in the present chapter, being aware of the nature and of the 

consequences of each calibration strategy. In cases in which the Split Johnson-

Cook model fits very poorly the experimental data, it may be worthwhile to consider 

a replacement of some of the lower yield stress or plastic flow strain rate or 
temperature terms, or of all of them. 

The Split Johnson-Cook model maintains the same computational appeal of the 

original Johnson-Cook model towards computational implementations, with 

particular reference to applications in FEM codes. In fact, the model uses the same 

variables used by the original Johnson-Cook model, i.e. the equivalent plastic 
strain, the equivalent plastic strain rate and the temperature. These variables are 

usually already available in most FEM codes and hydrocodes. In fact, it is common 
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use to insert these variables among the information provided in each timestep. 

Regarding the computational heaviness of the implementation, the only point that 
differs from the original Johnson-Cook model consists in the fact that the Split 

model implies a slight increase of the number of operations necessary to compute 

the current yield limit, since the proposed model contains two Split additive terms, 

rather than a single one. Comparing to the computational requirements necessary 
to run an analysis with the original Johnson-Cook model, this aspect does not 

appear to be crucial in further burden the computational requirements necessary for 

carrying-out the FEM analysis. 

A last consideration is reported in the following. If the material behavior that 

needs to be fitted appears to present complicated dependencies of the yield stress 
on the equivalent plastic strain rate and on the temperature, other strength models 

may be adopted, with the target to provide a better experimental data interpolation. 

This aspect is particularly true for materials that do not respect the natural 

logarithmic and the power dependencies on the lower yield stress and plastic flow 
dimensionless equivalent plastic strain rate and on the lower yield stress and plastic 

flow homologous temperatures, respectively. Moreover, materials that present a 

heavy dependence of the plastic flow parameters B and n on the equivalent plastic 

strain rate and on the temperature may further worsen this aspect. In such cases, 

one idea may be that of adopting a strength model which considers the same power 
dependence of the Johnson-Cook model on the equivalent plastic strain, but also 

considers the lower yield stress parameter A and the plastic flow parameter B and n 

to be functions of the equivalent plastic strain rate and of the temperature, as 

reported in the following equation 
 

 { } { } { },
, ,

n T
s A T B T .

ε= ε + ε ⋅ ε
ɺ

ɺ ɺ   (85) 

 

This approach imposes a power function between the yield stress and the 

equivalent plastic strain, and this function is fitted to different equivalent plastic 
strain rate and temperature data through the introduction of an appropriate 

modeling of the two parameters that characterize the function. The three functions 

that define the trends for the parameters A, B and n throughout the tested 

equivalent plastic strain rates and temperatures can be shaped accordingly to the 
available experimental data and can be enriched in the case in which more material 

information is available. As instance, these functions may be multi-variables 

polynomials or piecewise functions. Considering the structural steel analyzed in this 

work, simple linear trends shall not be capable to fit the material behavior with 

enough coherency. Clearly, this approach leads to a serious complication of the 
model, due to the strong increase in the number of parameters necessary in order 

to coherently represent the three involved functions. Therefore, this aspect involves 
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a loss of simplicity which shall probably be the main positive aspect of the original 

and Split Johnson-Cook models. 
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4. APPLICATION TO AN INDUSTRIAL CASE: PERFORATING 

GUN DEVICES 

 

 
The aim of this chapter is that of producing a campaign of FEM simulations of a 

perforating gun device of specific interest of the industrial partner co-supporting the 

present research project. In order to reach qualitative and possibly quantitative 

results, some of the models exposed in the previous chapters will be used all 
together. The first step of this chapter consists in a brief description of perforating 

gun devices. After that, FEM simulations will be exposed, together with an 

assessment of the obtained results.  

 

4.1. Brief Description of Perforating Gun Devices 
 

Perforating guns are devices widely used for the perforation of oil and gas wells. As 

a matter of fact, one of the most critical phases of oil and gas extraction processes 

is that consisting in the radial perforation of an already completed well. Usually, 
hydrocarbons deposits are found as fluid masses trapped inside porous rocks or 

soils. When an hydrocarbon reserve is located, one or more wells are accomplished 

through the ground, down to a level deep enough to reach the reservoirs. After this 

phase, the completed wells need to be radially perforated in order to create multiple 

perforations in the rocks or soils in which the hydrocarbons are contained. The 
resulting holes do favor the subsequent hydrocarbon flow pumping towards the 

upper surface, and are then necessary in order to achieve a good extraction 

capacity, therefore determining a good productive well. Since decades ago, oil 

companies have been focusing on the achievement of a better execution of this 
phase, because this is recognized as one of the best ways to ensure a superior 

performance of an extraction well. After World War II, the quest for the best radial 

perforation technique has been a leading research theme for major oil companies. 

The first solutions adopted consisted in perforation strategies related to mechanical 

perforation or firing of solid projectiles. Later on, a specific radial perforation 
technique emerged above the others. This technique involved the use of so-called 

shaped charges, i.e. explosive charges specifically shaped with the aim to 

concentrate the explosive energy on a specific metallic target. The enormous 

pressure unleashed by the explosive detonation acts on this metallic target, that is 

specifically designed to become a fluid jet travelling at very high velocity, possibly 
supersonic. This projectile displays then a high penetration capacity, that allows the 

perforation of the well and of the surrounding media, i.e. rocks and soils. The 

shaped charge perforation technology prevailed over others due to rapidity of use 
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and in particular due to better penetration capacity and overall quality of the 

resulting holes. Perforating devices that adopted this technology were called 
perforating guns or oil-well perforators. The introduction of perforating guns implied 

a dramatic increase of oil wells extraction performances. However, researches for 

improving oil well perforation capacities still go on, and solutions different from that 

of using shaped charges have recently been proposed. An example of that sort is 
provided, e.g., in Fugelso et al., 2004. Nonetheless, technologies related to the use 

of shaped charges do appear to be the most used techniques for radially 

perforating oil wells. 

In this work, the wording perforating gun device refers to a system composed by 

all the components that are somehow involved in the firing of the perforating gun. In 
particular, six major components are identified, i.e. the shaped charges, the carrier, 

the casing, the concrete coating, the ambient fluid and the soil. As mentioned 

above, the shaped charges are the components appointed for delivering the blast, 

which will then be responsible for the creation of the subsequent metallic 
perforating jets. The carrier is a sealed pipe usually made of steel whose main 

function is that of carrying the shaped charges and their detonation system at a 

specific deepness in the well, in order to perform the radial perforation. The casing 

is a steel pipe inserted in the well in order to give it stability and avoid wall 

collapses. The concrete coating is a concrete cover of the part of the well directly in 
contact with soil and rocks, and is delimited in its inner side by the casing. The 

ambient fluid fills the space between the carrier and the casing, i.e. it is the fluid 

naturally present inside the well. Finally, the soil is the ultimate target of the metallic 

perforating jets, namely the medium in which hydrocarbons are embedded. Here it 

is called soil but in general this may mean soil, rock or both. In the context of the 
present work, the wording perforating gun device refers to the six components just 

introduced, as previously mentioned, and the wording perforating gun refers to the 

shaped charges and the carrier only. 

Following Fig. 73 illustrates the firing of a perforating gun inserted in a well. It is 
possible to see the six just defined major components. In this figure, the firing of a 

perforating gun is analyzed through a subdivision in three subsequent phases, 

represented from left to right. 
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Figure 73. Firing of a perforating gun (source www.usoilandgas.net). 

 

In the first phase (left image in Fig. 73), the carrier is introduced into the well and 

dropped at the desired deepness. The second phase (central image in Fig. 73) 
consists in the detonation of the shaped charges explosives and in the subsequent 

creation of metallic perforating jets, which pierce the carrier and, after travelling in 

the ambient fluid, the casing, the concrete coating and then terminate their travel as 

far as possible in the soil. In the third phase (right image in Fig. 73), the perforating 
gun is taken back to the surface. Afterwards, the hydrocarbons are pumped-out of 

the soil up to the surface through a proper hydraulic system, by taking advantage of 

the performed holes. 

For their role in the firing process, two out of the six components of a perforating 

gun device take the most importance. These components are the shaped charges 
and the carrier. In the following, a brief description of them is presented. 

 
4.1.1. Shaped Charges 

 

Shaped charges are the core of a perforating gun device. A shaped charge may be 
defined as a system made by a certain quantity of explosive and delimited by two 

distinct solid parts. One of this two solid parts is a container that delimits the 

explosive on one end and on the sides, and it is technically called case. The other 

solid part is a piece conveniently shaped for enclosing the other end of the 
explosive material. It is technically called liner. 

The case can be made of a number of different materials, such as steel or zinc, 

and may be shaped in several different geometries. Its main function is to resist as 

much as possible to the high pressure caused by the explosive detonation, then 

redirecting the energy of the explosive towards the liner. 
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The explosive is usually composed by two parts, i.e. a main explosive, which 

has the function to transfer a great amount of energy to the liner through pressure 
and temperature, and a small adjunct explosive, called primer or booster, whose 

only function is that of initiating the detonation of the main explosive. More 

specifically, a detonation system (e.g. a detonating cord) triggers the primer, which 

in turn initiates the main explosive. Pressed secondary explosives with a high 
detonation velocity, such as HMX and RDX, are usually chosen as main explosives. 

The liner has the function to collapse on its axis, under the effect of the pressure 

and temperature of the detonated main explosive, thus creating a thin hyperfast jet 

of material which owns a high penetration capacity. The liner may be made with a 

number of different materials, such as metals, alloys, ceramics and even woods. 
The higher penetration capacities are obtained by using ductile and dense metals. 

Copper appears to be one of the most used materials for the realization of liners. 

The liner geometry may be chosen among a number of different options, although 

the most adopted geometries seem to be the cone and the hemisphere. The 
phenomenon of having a shaped explosive charge concentrating detonation energy 

on a specific target, resulting in powerful projectiles, is known as Munroe or 

Neumann effect. In this regard, some considerations can be found in Birkhoff et 

al., 1948. Following Fig. 74 gives a cross-section representation of a shaped charge 

with a conical liner. 
 

 
Figure 74. Cross section of a shaped charge 
(source www.slb.com). 

 

Following Fig. 75 reports a picture that clearly shows the three main components 

of a shaped charge, i.e. the case, the explosive and the liner. 
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Figure 75. Components of a shaped charge (source 
www.slb.com). 

 
It is worthwhile to report some other considerations regarding the evolution that 

the liner undergoes during the firing of a perforating gun device. After the 

detonation of the main explosive, the huge pressure and temperature force the solid 

liner to melt. Due to the liner shape, the melting process occurs in a way which 

implies the formation of a needle-shaped hyperfast jet. Experimental measurements 
reported in Ambrosi and Briganti, 2010, indicate that some specific melted liner may 

reach velocities near 8 km/s on their tip and lower velocities, near 2 km/s, on their 

tail. These values refer to the phase before the impact occurring between the 

melted liner and the inner surface of the carrier. Following Grove et al., 2006, about 

40% of the total main explosive energy goes into kinetic energy of the case, about 
30% goes into kinetic energy of the liner, about 25% remains in the detonation 

products and the remaining 5% goes into heating of the case and the liner.  

The distance between a shaped charge and the carrier (or a generic target) is 

technically called standoff distance. This parameter is quite important when it 
comes to evaluating the penetration capacity of the liner. In particular, short 

standoffs imply that the liner does not have enough space to stretch out and gain 

the efficacious needle shape. On the other hand, long standoffs cause the liner to 

break into particles, which tend to drift off the axis of the shaped charge, resulting in 

wider but shorter perforations. Loss of velocity due to air drag is another issue when 
long standoffs are adopted. 

Shaped charges were born and first used in military contexts. Nowadays, along 

with their success as perforating tools in the oil industry, they are widely used in the 

production of military weapons. Among others, a famous historical use of shaped 
charges with conical liner was in the anti-tank German weapon called Panzerfaust, 

widely used during World War II. Following Fig. 76 reports a picture which clearly 

shows the conical liner in the warhead of such weapon. 
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Figure 76. Shaped charge in a World War II German anti-tank 
weapon. The component on the left of the shaped charge is 
an aerodynamic cover (source defense-update.com). 

 

Considerations about the opportunity of adopting analytical models in order to 
predict some key parameters of a shaped charge explosion, such as the jet 

velocity, can be found, e.g., in Birkhoff et al., 1948, Xi, 1995, and Novokshanov and 

Ockendon, 2006. Moreover, reviews on the history of shaped charges can be 

found, e.g., in Eather and Griffiths, 1984, and in Walters, 2008. 

 
4.1.2. Carrier 

 

Basically, the carrier consists in a pipe made of steel which contains the shaped 

charges, their support and their detonating system. The photograph reported in 

following Fig. 77 shows the shaped charges and their support and detonation 
systems while being inserted into the carrier. 

 

 
Figure 77. Insertion of shaped charges and their support and detonation 
systems in a carrier (source exprogroup.com). 

 

The shaped charges and their support and detonation systems need to be fixed 

into the carrier. After that, the carrier is sealed, in order to isolate the shaped 

charges from the outside. In fact, the ambient fluid (i.e. the fluid that fills the well, 
whether liquid or gas), may be potentially harmful to the shaped charges 

functionality. 
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Basically, a carrier has two main functions. First, it has to carry the shaped 

charges and their support and detonation systems at a specific deepness into the 
well, in order to allow the radial perforation to be accomplished. Second, it needs to 

resist at the relevant stresses at which it is submitted, due to the firing of the 

perforating gun device. Following Grove et al., 2006, and Ambrosi and Briganti, 

2010, these stresses may be decomposed into three main parts. The first one 
consists in the piercing effect due to hypervelocity impacts with each liner produced 

from the shaped charges explosion, resulting in several perforations of the carrier, 

technically called exit holes. The second one consists in the blast effect due to the 

explosive detonation inside each shaped charge. The explosive material expands at 

high velocity and eventually hits the inner surface of the carrier. The third one 
consists in possible impacts between the carrier and high velocity fragments that 

detach from the fired shaped charges or their support and detonation systems. 

In order to resist to these stresses, a carrier needs to fulfill two requirements that 

are somehow in conflict. On one side, it requires high resistance in order to limit the 
resulting deformation. This characteristic usually implies brittleness. On the other 

hand it requires a good ductility in order to avoid possible fragmentation due to the 

blast loading derived from the explosions. This conflict between material properties 

is partially mitigated by introducing ad hoc geometrical weaknesses in 

correspondence of the impact zone of each liner. This stratagem facilitates the 
penetration of the carrier by the jets and favors the preservation of energy and 

velocity in the travelling liners, which will then be useful to achieve maximum soil 

penetration. These designed weaknesses are technically called scallops. This 

solution favors the limitation of the fracture zones nearby each scallop. Scallops are 

also useful to avoid contacts between possible burrs that may develop on the 
perimeters of the exit holes and the walls of the well. This phenomenon would be 

harmful for the post-firing extraction of the perforating gun from the well. Following 

Fig. 78 reports a picture that clearly shows some scallops in a carrier of an unfired 

perforating gun. 
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Figure 78. Scallops in an unfired carrier (source 
www.justbeneaththesurfacewv.com). 

 

The carrier is perhaps the most critical component of a perforating gun device. It 

needs to be easily pierced by the melted liners but at the same time it needs to 

avoid severe deformations and in particularly destructive fragmentation. Moreover, 
the carrier needs to resist and thus contain the blasts derived from the firing of the 

shaped charges, that may be potentially harmful to the well’s walls, possibly 

resulting in unfixable structural damages that may compromise the well working 

capacity or even determine serious impairment of its functionality. These aspects 
may possibly lead to a breakdown of the well, with dramatic economic 

consequences, in particular for wells whose drilling have required months of highly 

expensive perforating operations. Avoiding such situations is of primary importance. 

The structural resistance of the carrier is extremely important also for keeping a 

shape suitable for extracting the perforating gun from the well. As a matter of fact, 
failure on the perforating gun fishing may result in massive expenses due to the 

necessity of adopting ad-hoc systems for the recovering of the stuck device. This 

operation may be further aggravated by the presence of fragments detached from 

the fired device and obstructing the well. The situation gets even worse when the 
well is located in hardly reachable areas, such as for wells dug beneath the sea 

bed. 

Considering what just exposed, it appears clear that the resistance of the carrier 

to the three main stressing effects previously introduced is of critical importance for 

achieving a successful use of the perforating gun device. Some further 
considerations regarding the deformations that usually appear in this component 

are made in the following. 

While the perforating effect due to the liners seems to produce only very 

localized fractures (exit holes), the blasts effect appears to be the most dangerous 
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stressing factor. The detonation products reach the carrier when the liners have 

already pierced it. Thus, they act on an already damaged component, i.e. the 
carrier with the produced exit holes. Their action produces huge pressures and 

temperatures on the inner surface of the carrier, in correspondence of each pierced 

scallop. This effect may cause severe bulges in the surroundings of the scallops, 

technically called localized bulges. Moreover, the blast effect causes stresses in 
other zones of the carrier as well, due to quite complicated physical phenomena 

related to fast blast or impact loadings, such as spall fracture. Spall fracture is 

suspected to be responsible for very dangerous cracks that may potentially arise in 

different zones of the carrier, even distant from the scallops. This last phenomenon 

is technically called cracking. Finally, the possible impacts of fragments detached 
from the shaped charges (in particular from their cases and supporting system) that 

hit the inner surface of the carrier at a high velocity may cause further damage to 

the component. 

The synergic interaction of these three main stressing factors may in general 
strengthen the global solicitation that acts on the carrier. Following Fig. 79 reports 

the photography of a fired carrier in which the phenomena of exit holes, localized 

bulges and cracking are identifiable. 

 

 
Figure 79. Localized bulges and cracking in the carrier of a fired perforating 
gun (source Grove et al., 2006). 

 

Localized bulges are acceptable as long as they do not compromise the 
possibility of extracting the carrier from the well. They are no longer admissible if 

the resulting bulges jeopardize this prospect. Cracking is usually not admissible, as 

it does not hinder the detonation products from reaching the outside of the carrier 

and thus the well’s wall, resulting in possible inadmissible damages. Anyway, small 
cracks may still be tolerated if they still prevent the detonation products from 

reaching the outside of the carrier, or strongly limit this effect. 

Of course, extensive damages in the carrier are not admissible. In particular, if 

severe cracking appears, the resulting cracks may merge with the exit holes 

producing then extended longitudinal fracture patterns, which are technically called 
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splits. The photograph reported in following Fig. 80 shows a damaged carrier in 

which a split has occurred. 
 

 
Figure 80. Manifestation of a split in the carrier of a fired 
perforating gun (source Grove et al., 2006). 

 

In worst cases, splits may be much more severe than what shown in Fig. 80, 

leading to what may be called an “explosion” of the carrier. Such an example is 
shown in Fig. 81. 

 

 
Figure 81. Total destruction of the carrier of a fired perforating gun (pictures provided by the 
industrial partner). 

 

On the opposite, following Fig. 82 reports a photograph that shows a carrier that 

resisted the firing process particularly well, with an almost inexistent bulging, no 

cracking and the formation of very clear and localized exit holes. 
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Figure 82. Exit holes in a carrier that properly 
resisted to the shaped charge explosions (source 
www.justbeneaththesurfacewv.com). 

 

Shaped charges may be dislocated inside the carrier in different ways. One of 

the most common consists in a helical layout, in which the shaped charges are 

spaced along a helix, or even a number of helixes. In such cases, helical layouts 

are further defined by the geometrical parameters of the helixes and the density of 
shaped charges along the helixes. Those parameters are chosen based on the 

characteristics of the well and on those of the soil to be perforated. Several 

solutions of such kind are made available by perforating gun producers. The 

diameter of the perforating gun used is typically determined by the presence of 

wellbore restrictions or limitations imposed by the surface equipment. Following 
Fig. 83 shows two examples of scallop geometrical disposals in a carrier, and 

therefore of the corresponding disposals of the shaped charges in their supporting 

system. 
 

 
Figure 83. Examples of scallop configurations in perforating gun carriers (source 
www.slb.com). 
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4.2. Difficulties and Objectives of FEM Simulations of Perforating Gun Devices 

 
The main target of the present chapter is that of exposing a campaign of 

computational FEM simulations of the firing of a specific perforating gun device 

proposed by the industrial partner of the present research project. These 

simulations aim at achieving as much coherence as possible, compatibly with the 
available experimental results and computational means. The FEM tool has been 

chosen for its good versatility and for the wide diffusion of the method, nowadays 

available through many commercial and research software packages. 

The industrial partner manifested particular interest in the analysis of the 

resistance of the carrier component, in relation to the three stressing actions due to 
the firing of the perforating gun device. Their major concern referred to the possible 

manifestation of splits in the carrier, or even the total fracture (explosion) of the 

component. Such possibilities imply all the previously explained negative 

consequences. In this view, the main target of the proposed FEM simulations is that 
of exposing and understanding, as much as possible, the key physical phenomena 

that are involved in the firing of a perforating gun and in particular the effect of this 

process on the carrier resistance. The evaluation of the equivalent plastic strain and 

damage fields of the carrier are of primary importance. More in detail, the aim is that 

of obtaining computational results capable to improve the knowledge on what really 
happens to the carrier during the firing of the perforating gun, in order to better 

design such an important component. 

It may be pointed-out that, beyond the investigation on the resistance of the 

carrier, further investigations on the functionality of the device may be made, 

potentially of high interest. An example of such investigations consists in the 
analysis of the liner penetration capacity. Such aspect can be related to, e.g., the 

radial length of soil that the liners can successfully perforate, together with the 

diameter and cleanness of the resulting holes. Moreover, a lot of sensitivity studies 

may be performed in order to better identify the role of the critical features of the 
components on the results obtained from the firing of the device. As instance, a 

sensitivity study on the effect of the geometry of the scallops may be carried-out. 

Similar sensitivity studies may be conducted on the explosive characteristics, on the 

shaped charge characteristics, on the standoff distance and so on. In this context, 

the target would be that of optimizing some of these parameters, in order to achieve 
maximum resistance of the carrier together with maximum penetration capacity of 

the liners. Of course, other aspects may be taken into consideration as well. 

Anyway, the main target of this chapter is that of assessing the carrier resistance, 

and therefore the main efforts are devoted to achieving the fulfillment of this 
objective. In particular, this choice is due to the fact that the FEM simulations under 

consideration do require relevant computational capacities and therefore it has 
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been necessary to limit their number, and therefore limit the carried-out 

investigations. 
The industrial partner provided some data useful for carrying-out the proposed 

FEM simulations. Pertinent information is resumed in the following list. 

 

• A reference carrier geometry has been provided. It considers a carrier with 
external diameter of 114 mm, internal diameter of 98 mm and thus a thickness 

of 8 mm. This is a configuration characterized by a medium scallops density, 

and therefore medium shaped charges density. The scallops are displaced 
along two helixes. The result is that two consequent shaped charges, and thus 

scallops, are separated by a longitudinal distance of 50.8 mm (2 inches) and 

along the helix by an angle of 60°. Supposing to unfold the cylindrical carrier 

pipe in order to form a plane, these geometrical features result in a pattern of 

18 scallops per meter, and thus a pattern of 18 shaped charges per meter. The 
scallops are created by producing circular holes on the external surface of the 

carrier, whose axes correspond to the shaped charge axes. Those holes have 

diameters of 20 mm and deepness of 4 mm, thus decreasing the carrier 

thickness from 8 mm to 4 mm in the zones in which the scallops are located, 
i.e. a 50% diminution. 

 

• Some experimental data regarding the steel used for the carrier have been 
provided. This steel is identified with the nomenclature SAE4130. The company 

conducted a preliminary analysis on two materials deemed as potentially 

suitable for the production of pipes used for the realization of carriers. These 

tests quite evidently displayed better characteristics for one of the materials 

over the other. The best material is considered throughout the work. The 
industrial partner provided some experimental measurements of the plastic flow 

of this material. Room temperature quasi-static tensile tests, considered at an 

equivalent plastic strain rate of 0.001 s-1, and room temperature Hopkinson bar 

tensile and compressive tests, considered at an average equivalent plastic 
strain rate of 1100 s-1, have both been provided. The steel density, Poisson’s 

ratio, melting temperature and specific heat have been provided as well. 

Experimental measurements of the bulk sound speed of the carrier steel have 

been supplied. These data have been obtained through ultrasonic 

measurements. Unfortunately, no experimental data relative to the temperature 
dependence of the carrier steel plastic flow have been made available. All the 

provided experimental data will be actually used for the calibration of the 

adopted constitutive models. Moreover, the company has provided some other 

information through the reference compiled by Bonora et al., 2010. 
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• The ambient fluid is assumed to be air. This assumption is due to the belief of 
the industrial partner that this condition may be one of the worst possible for the 

carrier, according to their field experience. Therefore, the work will follow this 

suggestion, by analyzing only perforating gun devices that fire on air. It is also 
assumed that the air pressure is equal to 1 atmosphere, i.e. 101325 Pa. 

 

• The shaped charge liners are made by copper. However, none material 
properties have been specified. 

 

Unfortunately, no other data have been provided by the industrial partner, 

neither geometrical nor regarding material properties. Therefore, important 

parameters such as the properties of the shaped charges, their standoff distance or 
the properties of the casing, the concrete coating or the soil are missing. Moreover, 

no high pressure volumetric behavior, neither damage nor fracture data regarding 

the carrier steel have been provided. The missing information will be recovered 

from the literature, trying to consider materials and applications as near as possible 
to the one under analysis. 

The company provided also a work compiled by Ambrosi and Briganti, 2010, 

which presented a previous work conducted on the same topic, i.e. the analysis of 

the resistance of a perforating gun carrier. Anyway, this publication considered a 

carrier steel different from that adopted here, although the geometrical properties of 
the carrier are the same. Some considerations about a comparison of the results 

obtained here and the results exposed in this former contribution are presented in 

the Conclusions. 

In order to overcome the problems due to missing data, the following 

assumptions are adopted, with the aim of completing the information necessary for 
carrying-out the FEM simulations of the case of interest. 

 

• The geometric characteristics of the shaped charges usually adopted for the 
considered carrier have been taken from Ambrosi et. al., 2010. They are 

reported in following Fig. 84. Some dimensions are missing and are then 

hypothesized. 
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Figure 84. Technical draft of the shaped charge considered for the analysis of the 
considered perforating gun. Dimensions in millimeters. 

 

• The case material is assumed to be a generic high resistance steel. 

• Following company communications and other references, such as Lee, 2002, 

and Ambrosi and Briganti, 2010, the main explosive is assumed to be RDX.  

• Following Jin et al., 2002, in which a perforating gun device has been analyzed, 
the standoff distance is assumed to be equal to 10 mm. 

• The casing is assumed to be a pipe made of 4340 steel, a material for which 
data is widely available. Its internal and external diameters are assumed to be 

equal to 124 mm and 144 mm, respectively, hence resulting in a thickness of 

10 mm. As a consequence, the distance between the inner surface of the 

casing and the external surface of the carrier is equal to 5 mm. 

• The concrete coating internal and external diameters are assumed to be equal 

to 144 mm and 164 mm, respectively, therefore resulting in a thickness of 

10 mm. As a consequence, the inner surface of the concrete coating is 
assumed to be in contact with the external surface of the casing. 

• The soil is assumed to be directly in contact with the external surface of the 
concrete coating and extended for a length of 260 mm. 

 

Some considerations about the strategy followed for the realization of the FEM 

simulations are outlined in the following. 
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Carriers of the kind proposed by the industrial partner may reach total lengths of 

meters. For the stated objective of this work, i.e. the analysis of the stressing effects 
on the carrier and its resistance, it is considered sufficient to carry-out two 

simulations, namely a single scallop simulation and a three scallop simulation. The 

former considers only what happens in the proximity of a single scallop, whilst the 

latter considers what happens in the proximity of three subsequent scallops. In a 
first phase, single scallop simulations will be considered, with the aim of 

understanding as better as possible what happens on a sole scallop during the 

firing process. One of the major objectives of these first simulations consists in the 

evaluation of the effect of two of the three stressing actions on the carrier, i.e. the 

piercing liner and the blast effect. Of particular interest is the possible synergic 
interaction of these actions, together with the investigation of the formation of the 

exit hole and of a possible localized bulge. 

In a second phase, three scallop simulations are considered. The main objective 

of these simulations is that of evaluating the possible synergy due to the 
simultaneous explosions of three subsequent shaped charges. Beyond the effects 

of the piercing liners and of the blast loadings, impacts with fragments detaching 

from the shaped charges and their support and detonation systems may be 

considered as well. Possibilities like cracking and splits can be further investigated 

through this second kind of simulations. 
The physical phenomena to model go far beyond the standard applications of 

FEM simulations. The firing of a perforating gun device involves large strains, 

extremely high strain rates, very high temperatures, together with damage and 

fracture of the adopted materials. The constitutive modeling of all the involved 

materials is a critical point. Appropriate choices need to be made for each 
component of the perforating gun device. The simulation of the detonations of the 

high potential explosive placed inside each shaped charge is one of the most 

challenging and important step of the work. This process determines the velocity 

and temperature fields of the detonation products and of the melted liners, that are 
of utter importance in order to coherently model the stressing factors that act on the 

carrier. The melting of the liners and the subsequent formation of hyperfast fluid jets 

is another crucial phase of the simulations. The modeling of phase changes is a 

non standard procedure in typical FEM simulations, therefore it requires specific 

attention. Furthermore, supersonic impacts between the liners and the targets may 
arise, resulting in an even more complex general framework. All these aspects must 

be introduced and handled in computational codes, together with other complicated 

issues, such as large strain elastoplastic modeling, implementations of strength 

models and equations of state and so on. Treatments on the analysis of similar 
phenomena in FEM contexts can be found, e.g., in Wilkins, 1963, Wilkins et 

al., 1974, Benson, 1991, and Zukas, 2004. Specific considerations on the FEM 
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simulation of ballistic penetration of targets are provided, e.g., in Wilkins, 1978, 

Camacho and Ortiz, 1997, Scheffler and Zukas, 2000, Zukas and Scheffler, 2000, 
Rodríguez-Martínez et al., 2010, and Worsham et al., 2010. Analyses on the effects 

of explosives on solid bodies are provided, e.g., by Rinehart, 1951, and Pearson 

and Rinehart, 1952. Considerations on the FEM modeling of the effects of 

explosions on structural elements are provided, e.g., in Lu and Wang, 2006. 
First, an attempt with Lagrangian FEM is considered. However, problems due to 

the nature of this spatial integration method are expected to strongly limit the 

possibility of obtaining a fruitful accomplishment of FEM simulations of this kind. 

Anyway, this is a first step towards the achievement of the objectives of this work. 

After that, the possibility of a simulation with non-Lagrangian techniques is 
analyzed. Methods such as Smoothed Particle Hydrodynamics (SPH from now on) 

and Eulerian FEM are of interest here. 

It is understood that the required simulations need a FEM code that offers 

powerful tools in aiding the input file preparation, that presents a choice on the 
spatial integration method, in particular by offering non-Lagrangian methodologies, 

and also capable of modeling different materials with good versatility. In particular, 

the code is required to make available constitutive models suitable for describing 

the behavior of the considered materials under large strains, in a wide range of 

temperatures, included very high temperatures, and subjected to high and very high 
strain rate and pressures. 

In this context, a preliminary phase of the work has been conducted with the aim 

of identifying the FEM code that may better serve for the scopes of the present 

study. The commercial FEM code LS-DYNA has been chosen (see, e.g., Livermore 

Software Technology Corporation (LSTC), 2006, and 2012). Since its birth, one of 
the major target of this code has been that of simulating complex transient 

dynamical phenomena, ranging from medium strain rate situations, such as 

automotive crash tests, up to very high strain rate cases, like those frequently 

recurring in military applications. This code offers all the required capabilities, 
probably more than other evaluated FEM codes. Thus, its choice has arisen. In 

particular, beyond the classical Lagrangian spatial integration technique, it offers 

both SPH and Eulerian spatial integrations methodologies. A series of preliminary 

simulations has been conducted in order to identify which of these two 

methodologies would actually be capable to offer better simulation capacities for the 
case under examination in the present work. These tests showed a superior 

capacity of the Eulerian methodology over the SPH. This is due mainly to the fact 

that the Eulerian analyses run much faster that the SPH ones and to the fact that 

explosive detonations appear to be better modeled when Eulerian capabilities are 
adopted. Therefore, beyond Lagrangian FEM simulations, the achievement of the 

targets of this chapter relies on the use of Eulerian FEM methodologies. 
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In order to better assess the possibility of using Eulerian FEM approaches, 

preliminary investigations with the 2-dimensional research FEM code RAVEN 
(Benson, 2000) have been conducted. All the obtained results proved that Eulerian 

FEM simulations may be successfully carried-out. Furthermore, a considerable part 

of the carried-out work has dealt with the possibility of implementations of user 

materials and user equations of state in the code LS-DYNA. In this regard, some 
considerations on the implementation of strength models in LS-DYNA can be found 

in Moraes and Nicholson, 2000, Unosson and Buzaud, 2000, and Ehrart, 2011. 

Investigations on FEM analyses of the explosion of shaped charges are 

provided in Kucher and Harrison, 1977, Molinari, 2002, Liu et al., 2003, and 

Hussain et al., 2009. Studies on numerical simulations of perforating gun devices 
can be found in Regalbuto and Gill, 1997, Lee, 2002, Grove et al., 2006, Zhang et 

al., 2008, Ambrosi and Briganti, 2010, and Jin et al., 2010. In particular, relevant 

comparison between 2-dimensional Eulerian FEM simulations and experimental 

data are provided in Lee, 2002, with particular reference to the analysis of the 
modeling of the shape of the liner produced from the shaped charge explosion. 

The obtained FEM results are presented in the following. Lagrangian FEM 

simulations are exposed first and Eulerian FEM simulations are exposed second. 

All the LS-DYNA FEM simulations presented here have been set-up by using 

millimeters as length unit, seconds as time unit, tons as mass unit and then Newton 
as force unit, megaPascal as stress unit and milliJoules as energy unit. This system 

forms a consistent set of units. 

 

4.3. Lagrangian FEM Simulations 

 
The Lagrangian FEM technique is the basic approach for structural analysis in 

commercial FEM codes. LS-DYNA offers wide capabilities in this field. Only 

tridimensional analyses are considered. Preliminary two-dimensional analyses have 

been carried-out as well. However, one of the main points here is that of modeling 
the possible synergic interaction of the explosions of more shaped charges, which 

are not in the same plane and therefore compulsorily require a tridimensional 

analysis. 

Among all the components of a perforating gun device, the Lagrangian FEM 

simulation will consider only the liner and the carrier. This is due to the fact that the 
simulation of the explosive detonation and of fluid materials is not suitable with a 

Lagrangian spatial discretization, due to the very large strains that characterize 

these phenomena. Preliminary simulations have confirmed these limitations. To 

overcome these problems, the following strong hypotheses are made, following the 
same approach adopted in Ambrosi and Briganti, 2010. The detonation process in 

the shaped charge is not modeled and the liner is assumed to be a projectile made 
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of a rigid material, i.e. a material that cannot undergo strains. The rigid material 

assumption becomes necessary because the adoption of a non-rigid constitutive 
model results in the production of very large strains during the impact of the liner 

against the carrier, which are not acceptable within the context of a Lagrangian 

FEM simulation. Strains of such entity eventually lead to a premature end of the 

simulations, due to topological problems in the mesh. Computation of negative 
volumes and complex sound speeds in some finite elements are the major involved 

problems. The description of these problems is not a target of the present work. 

Reference is made to, e.g., Hughes, 1987, Simo and Hughes, 1998, Belytschko et 

al., 2000, Fish and Belytschko, 2007, and De Souza Neto et al., 2008. Clearly, this 

approach implies the problem of determining the rigid liner velocity. Following 
communications provided by the industrial partner, an initial speed of 4 km/s is 

hypothesized, since this is considered to be approximately the mean value of the 

velocity field in liners arising from shaped charges similar to those considered here. 

Furthermore, the carrier is considered as the only target on the liner path. The 
casing, the concrete coating and the soil are not modeled in the Lagrangian 

simulations. As a matter of fact, the hypothesis of a rigid liner makes useless the 

modeling of these components, considering that the evaluation of the structural 

response of the carrier is the main target of such simulations. This is due to the fact 

that the liner effect on the carrier is assumed to be independent from the impacts of 
the rigid liner with the targets located beyond the carrier. Indeed, the rigid liner 

keeps on travelling by piercing through the targets placed after the carrier but, being 

a rigid body, it never deforms. On the other hand, a fluid liner that hits the targets 

positioned beyond the carrier may undergo severe deformations due to these 

further impacts, that may then have also a role in partially determining the shape of 
the fluid liner, possibly involving the zone of impact of the rear liner with the carrier, 

thus resulting in conditioning the carrier resistance itself. Therefore, the assumption 

of a rigid liner involves this incoherence that adds on to the other previously made 

approximations. 
The impossibility to model explosives and fluids strongly limits the usefulness of 

the Lagrangian approach. In general, this kind of Lagrangian FEM simulations 

allows to evaluate the effect of only one of the three stressing actions on the carrier, 

i.e. the piercing effect of the liner. The effects due to blast loading of the explosives 

and to possible impacts between the carrier and fragments of the exploded shaped 
charges or their supporting system are totally unconsidered. Furthermore, the only 

effect considered, i.e. the impact with the liner, may be negatively biased by the 

previously stated strong hypotheses, in particular due to the rigid behavior of the 

impacting liner, which may overestimates the impact consequences on the carrier 
and incorrectly model the shape of the liner. 
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Only a reduced portion of the carrier will be considered, limited both in the 

circumferential and longitudinal directions. More in detail, a portion determined by a 
circumferential angle of 54° and a height of 63 mm has been considered. These 

dimensions are considered to be sufficient for the aim of analyzing what happens to 

a single scallop portion of the carrier during the perforating gun firing process. 

These dimensions are the same as those considered in Ambrosi and Briganti, 
2010. The fact of limiting the part of the carrier that needs to be modeled allows to 

diminish the number of adopted finite elements. This aspect favors the diminution of 

the computational time required to complete the analysis. 

The liner is assumed to be, in the initial conditions, placed at a distance of 

0.2 mm from the carrier. This value is different from the assumed standoff distance 
of 10 mm. However, the value of this distance is totally irrelevant for the purposes of 

the simulation. In fact, the liner undergoes no modifications of its velocity during the 

travel preceding the impact with the carrier. Hence, the distance between the two 

impacting bodies is kept very low in order to speed up the computational 
calculation, by minimizing the travel in the void of the liner. The initial temperature 

field of the liner and the carrier are assumed to be uniform and equal to 293 K. 

According to the hypotheses made, the initial configuration of the single scallop 

simulation is reported in following Fig. 85. 
 

      
Figure 85. Initial configuration for the single scallop Lagrangian FEM 
simulation. The cylindrical rigid liner is represented in green while the 
carrier in grey. 

 

Following Fig. 86 reports a detailed view of the scallop zone meshing. 
 



 

Figure 86. Detailed view of the inner (left figure) and outer (right figure) 
mesh of the scallop zone
simulation. 
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mesh of the scallop zone for the single scallop Lagrangian FEM 
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successfully assessed in Ambrosi and Briganti, 2010, in the context of FEM 

simulations very similar to the ones considered here. Adiabatic behavior is then 
enforced. However, a material point can undergo temperature increments due to 

the part of plastic work that transforms to thermal energy and therefore in a 

temperature increment. More in detail, temperature fields are calculated by 

computing the increment of temperature in each timestep with the following 
assumption 

 

 

3 3
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  (86) 

 

In this equation, the double contraction of the adopted stress measure with the 

adopted strain measure indicates the plastic work produced in the material. The 

parameter χ represents the amount of plastic work converted into heat, usually 

assumed to be equal to 0.9. The material density is indicated by the symbol ρ, while 

Cp represents the specific heat at constant pressure. This approach actually allows 

for accounting for adiabatic thermal behavior of the material. 

Due to the hyperfast nature of the phenomenon under consideration, an explicit 
time integration method is adopted. The output is saved at intervals of 10-8 s. 

Preliminary tests assured that this frequency is fine enough for achieving results 

capable to provide a good time resolution of the phenomenon. The contact is 

handled through the penalty stiffness formulation implemented in LS-DYNA. In this 
regard, information can be found in Livermore Software Technology Corporation 

(LSTC), 2006, and 2012. Regarding the modeling of friction effects between the 

liner and the carrier, a dynamic friction coefficient of 0.15 and a static friction 

coefficient of 0.53 are adopted, following Ambrosi and Briganti, 2010. Appropriate 

controls on hourglass finite element modes are activated. Particular attention has 
been paid to the timestep scale factor. A long series of preliminary tests has been 

conducted in order to identify the value necessary to get convergence of the results 

when such hyperfast phenomena are involved. This value has then been adopted 

throughout the analysis. 
The three scallop simulations are set-up by adopting all the above stated 

assumptions for the single scallop simulation. The only different aspect is the 

geometrical setting, which now considers three subsequent scallops. A height of 

150 mm has been considered. This dimension is a little reduced comparing to the 

ones considered in Ambrosi and Briganti, 2010. This reduction is considered to be 
as non influent on the final results and allows to speed-up the computational 

analyses. In fact, the dimensions of the studied zone are considered to be sufficient 



 

for the aim of analyzing what happens to a three

the perforating gun firing process.
of the three scallop simulation.
 

Figure 87. Initial configuration for the three scallop
cylindrical rigid liners are represented in green while the 

 

The mesh is topologically very similar to the single scallop mesh. It is made a 

little coarser in order to limit the computation
due to the very low timestep adopted during

composed of 99585 hexahedral finite elements, again with 15 elements on 

thickness. Each of the three liners is composed of

Following Fig. 88 reports a detail of the scallop zone meshing
than that in Fig. 86 for single scallop simulations

 

Figure 88. Detailed view of the inner (left figure) and outer (right figure) 
mesh of the scallop
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of analyzing what happens to a three scallop portion of the carrier during 

n firing process. Following Fig. 87 reports the initial configuration 
simulation. 

tial configuration for the three scallop Lagrangian FEM simulation
rigid liners are represented in green while the carrier in grey. 

The mesh is topologically very similar to the single scallop mesh. It is made a 

little coarser in order to limit the computational time, that can reach vary long values 
the very low timestep adopted during the calculation. The carr

99585 hexahedral finite elements, again with 15 elements on 

thickness. Each of the three liners is composed of 4000 hexahedral finite elements.

reports a detail of the scallop zone meshing, a bit less refined 
hat in Fig. 86 for single scallop simulations. 

        
. Detailed view of the inner (left figure) and outer (right figure) 

scallop zone for the three scallop Lagrangian FEM simulation.

portion of the carrier during 

itial configuration 

 
Lagrangian FEM simulation. The 

The mesh is topologically very similar to the single scallop mesh. It is made a 

time, that can reach vary long values 
The carrier is 

99585 hexahedral finite elements, again with 15 elements on the 

4000 hexahedral finite elements. 

, a bit less refined 

 
. Detailed view of the inner (left figure) and outer (right figure) 

FEM simulation. 
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4.3.1. Constitutive Modeling 

 
According to what stated above, the only two components of the perforating gun 

that are modeled in the Lagrangian simulations are the liner and the carrier. Proper 

constitutive modeling needs to be chosen for both components. 

Being a rigid body, the model for the liner is straightforward. It requires the 
specification of the density, set equal to that of solid copper, i.e. 8940 kg/m3. 

Moreover, isotropic elastic parameters are required, since they are used by the 

penalty stiffness algorithm. The adopted values are 120000 MPa for the Young 

modulus, 48000 MPa for the shear modulus and 0.34 for the Poisson’s ratio. These 

are typical values for copper, easily recoverable from the literature. 
For what it concerns the strength model of the carrier, it appears clear that the 

need here is that of having a model capable to account for the plastic flow 

dependence on both the strain rate and the temperature. Moreover, the strain rate 

and the temperature fields are expected to vary strongly in the carrier, thus the 
chosen model needs to keep its coherence over a pretty wide range of strain rates 

and temperatures. With these considerations in mind, the original Johnson-Cook 

strength model, Eq. (28), is chosen. This choice is mainly due to the fact that the 

available experimental data provided by the industrial partner are very limited and 

the choice of more complicated models, such as the Steinberg-Cochran-Guinan 
model, would have led to the total impossibility of calibration of any parameter of 

the model. The adoption of the Johnson-Cook model has allowed at least for 

calibrating some parameter by using the available company steel experimental 

data. The Johnson-Cook model is calibrated with the LYS strategy, because the 

prediction of the lower yield stress is considered capable of playing a more 
important role comparing to that played by the prediction of the subsequent plastic 

flow. This aspect is due to the fact that the carrier tipically develops very high 

temperatures during and after the impact with the liner, likely higher than the 

melting temperature. Therefore, the deviatoric resistance may be quickly set equal 
to zero or at least strongly lowered by the temperature effect. In this context, it may 

be better to get a good result for the lower yield stresses rather than a description of 

the whole plastic flow, since the lower yield stress values determine the separation 

of the elastic and plastic phases, i.e. the beginning of the phase in which the 

Johnson-Cook model starts to operate, that corresponds to the phase from which 
the deviatoric resistance may actually be set equal to zero. 

Following the LYS calibration strategy (Chapter 2, Section 2.2.1.1.1), the 

parameters A, B, n and C have been determined, together with the reference 

equivalent plastic strain rate and temperature. However, it was impossible to 
calibrate the parameter m, due to complete unavailability of temperature data. The 

parameter m has then been recovered from available literature data. In particular, 
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Johnson and Cook, 1983, provided values of the parameter m for several steels. 

On this basis, the value 1 has been chosen, which corresponds to enforcing a linear 
dependence of the yield stress on the homologous temperature. The assumed 

Johnson-Cook hardening parameters are reported in following Table 31. 

 

A 1170 MPa m 1 

B 471 MPa 0εɺ  0.001 s-1 

n 0.4 T0 293 K 

C 0.041 Tm 1800 K 

Table 31 
Johnson-Cook strength model parameters for the steel carrier. 

 

The heavy lack of experimental data makes it practically useless to implement 
and use the Split Johnson-Cook model proposed in Chapter 3, since its calibration 

would rely on only two hardening functions, therefore strongly limiting the possible 

enhancements related to this model. In such a case, the absence of experimental 

measurements implies the fact of producing results very similar to the ones 

provided by the original Johnson-Cook model.  
For what it concerns the volumetric behavior of the carrier, a Mie-Grüneisen 

equation of state, Eq. (55), is adopted. In consideration of what stated in Chapter 2, 

such equation of state is capable to predict with good coherence the volumetric 

behavior of metals under the high pressure involved in the considered application. 
Regarding the EOS calibration, the industrial partner provided the bulk sound 

speed. No other experimental data have been made available for the purpose of 

determining the other parameters of the equation of state, i.e. S1, S2, S3 and γ0. 

Values of these parameters for a high resistance steel have been kindly provided 
by prof. David J. Benson at the University of California at San Diego, and these 

values have been adopted for the modeling of the steel of the carrier. Such values 

are reported in following Table 32. 

 

C0 [m/s] S1 S2 S3 γ0 

4640 1.33 0 0 1.52 

Table 32 
Mie-Grüneisen parameters for the steel carrier. 

 

Values very similar to these are also indicated in Steinberg, 1996, for 4340 steel. 

It is worthwhile to highlight the fact that in the case in which the materials reach or 

get over the melting temperature, the Johnson-Cook model prescribes a null yield 

stress and thus provides no deviatoric resistance. Its behavior is then volumetric 
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only and it is ruled by the considered Mie-Grüneisen equation of state. 

Approximately, this EOS may be assumed to be acceptable in order to model high 
pressure metal fluid flow with volumetric behavior only. Therefore, the adopted 

constitutive modeling accounts for the description of a possible phase change from 

a solid to a high pressure volumetric fluid only, even if in a simplified way. It is also 

worthwhile to note that the material can exceed the melting temperature, resulting 
in a heated material with no deviatoric behavior. 

Regarding the modeling of damage and failure, the Johnson-Cook damage 

model, Eq. (69), is adopted. The damage variable regulates the removal of failed 

finite elements. The total lack of experimental data on the steel carrier fracture 

strain implies the total impossibility to calibrate the five parameters of the Johnson-
Cook damage model. The industrial partner proposed the adoption of the same 

parameters used in Ambrosi and Briganti, 2010. The values of these parameters 

derived from literature investigations carried-out by the company and by the 

authors. These parameters are then adopted, with the only difference consisting in 
the fact of assuming a different value for the parameter D5. This parameter was 

assumed to be equal to zero in Ambrosi and Briganti, 2010. However, this 

assumption implies the temperature to have no effect on the fracture strain. This 

condition does not appear to be coherent and therefore the parameter D5 has been 

set equal to 0.61, by considering the D5 value for the high resistance 4340 steel 
reported in Johnson and Cook, 1985. The 5 Johnson-Cook adopted damage 

parameters are reported in following Table 33. 

 

D1 D2 D3 D4 D5 

0.0705 1.732 -0.540 0.015 0.610 

Table 33 
Johnson-Cook damage and failure parameters for the steel carrier. 

 

The values provided by the company have been used for some other required 
parameters, i.e. the steel density, assumed equal to 7850 kg/m3, the Poisson’s 

ratio, assumed equal to 0.3, and the specific heat, assumed equal to 452 J/kg·K. 

Temperature increments are computed through Eq. (86), by assuming adiabatic 

conditions. Thermal expansion has been considered as well, through the 

introduction of an isotropic volumetric thermal expansion coefficient, equal to 
0.000012 K-1, a value relative to a generic steel and easily recoverable in the 

literature. This value has been considered as independent from the temperature, 

since pertinent experimental data were missing. 

A very simple model for considering spall fracture phenomena has been 
activated as well. This model imposes a cut-off value on the tensile pressure, i.e. 

expansive pressure (which is denoted by negative values in LS-DYNA conventions, 
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because the code considers compressive pressure as positive), that the material 

cannot exceed. If tensile pressures higher than this value are computed, then the 
pressure is reset to the imposed cut-off value. Basically, this model delimits the 

tensile pressure in order to simulate the maximum material capacity to tolerate this 

kind of pressures, which indeed is the cause of spall fracture phenomena. It is 

worthwhile to note that this model does not imply finite element removals. The 
industrial partner did not provide data relative to the spall behavior of the adopted 

steel. A cut-off pressure value for a generic steel has been recovered from Davison 

et al., 1996, i.e. 13000 MPa, intended as maximum tensile pressure sustainable by 

the material. This value has been adopted for the spall modeling of the carrier, even 

though there is uncertainty about whether this value may coherently apply to the 
considered steel or not. Future experimental investigations may clarify this aspect. 

Before proceeding with the exposition of the FEM simulations of the perforating 

gun firing phenomenon, several preliminary FEM analyses have been carried-out, 

with the aim to test the sensitivity of some of the parameters of the adopted models. 
All the carried-out investigations produced consistent results. 

 
4.3.2. Simulation Results 

 

Lagrangian FEM simulation results are presented, first for single scallop simulations 
and then for three scallop simulations. All the carried-out simulations satisfy energy 

balance requirements, i.e. the ratio between the total energy and the initial energy 

is practically equal to 1, considering all the energy forms involved in the analysis. 

The simulations have been extended in time until no noticeable variations in the 

stress and strain fields of the carrier appeared. This led to a total simulation time of 

10-5 s, i.e. 10 µs. For single scallop simulations, following Figs. 89 to 94 report the 

configurations at 0.12 µs, 0.5 µs, 1 µs, 1.5 µs, 2 µs, 4 µs, 6.5 µs and 10 µs (final 

configuration), seen both from the inner and outer sides of the carrier. 
The temperature fields are actually temperature increment fields, from the 

Johnson-Cook reference temperature imposed, i.e. 293 K, hence they are called 

temperature increment fields. Therefore, in order to retrieve the absolute 

temperature, the value 293 K must be added to the presented values. 
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Figure 89. Equivalent plastic strain rate field [s-1] in the scallop zone of the carrier. 
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Figure 90. Temperature increment field [K] in the scallop zone of the carrier. 
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Figure 91. von Mises stress field [MPa] in the scallop zone of the carrier. 
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Figure 92. Pressure field [MPa] in the scallop zone of the carrier. 
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Figure 93. Equivalent plastic strain field in the scallop zone of the carrier. 
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Figure 94. Johnson-Cook damage field in the scallop zone of the carrier. 
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In order to better assess the simulation results, the maximum and minimum 

values reached throughout the FEM analysis by the six considered variables are 
reported in following Table 34. 

 

 MIN MAX 

Equivalent plastic strain rate [s-1] 0 1.920·107 

Temperature increment [K] 0 12940 

von Mises stress [MPa] 0 1487 

Pressure [MPa] -13000 263800 

Equivalent plastic strain 0 4.573 

Johnson-Cook damage 0 0.999 

Table 34 
Maximum and minimum values for the six considered variables. It is recalled that in 
LS-DYNA positive pressures are intended as compressive and negative pressures as 
tensile. 

 

Some considerations regarding the single scallop simulation results are made in 

the following, with particular reference to the carrier and to the only stressing factor 

that is considered in this simulation, i.e. the piercing effect of the liner. 
First of all, it is interesting to note the huge maximum values reached by the 

equivalent plastic strain rate. As soon as the rigid liner impacts against the carrier, 

values over 1·107 s-1 are involved. Furthermore, extremely high equivalent plastic 

strain rate values are maintained throughout the piercing phase. Approximately, it 
may be said that this perforating phase happens at an equivalent plastic strain rate 

average value of about 1·107 s-1. This very high values are confined within a thin 

zone near the rigid liner piercing trajectory. Outside this zone, the equivalent plastic 

strain rate values appear to be some orders of magnitude lower, ranging from 

1·104 s-1 to 5·105 s-1, approximately. 
For what it concerns the temperature, considerably high values are reached, 

with the maximum of 13233 K, obtained by summing the reference temperature of 

293 K to the maximum temperature increment, i.e. 12940 K. This value far exceeds 

the melting temperature of the material. In these conditions, the steel carrier is 

basically an overheated fluid, since its deviatoric resistance is set equal to zero, as 
previously explained. The material behavior is then solely volumetric and it is ruled 

by the Mie-Grüneisen equation of state. As for the equivalent plastic strain rate, it is 

also interesting to see that this high temperature zone is confined in a very narrow 

zone near the rigid liner trajectory. Outside this zone the temperature appears to 
never exceed 1000 K and therefore the deviatoric behavior is always present, 

although the material strength is strongly diminished by the high temperatures 

present. 
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For what it concerns the von Mises stress, it is clear that the values here are 

heavily influenced by the equivalent plastic strain rate and the temperature, as ruled 
by the Johnson-Cook hardening function. On one side, the huge equivalent plastic 

strain rate values tend to increase the yield stress, but on the other side the 

elevated temperature values tend to diminish it. The value of the resulting yield 

stress is a consequence of these two conflicting aspects. The von Mises stress field 
appears to present high values in a wider zone comparing to the very localized 

zone in which the highest equivalent plastic strain rates and temperatures are 

reached. Clearly, the zones in which the temperature has exceeded the melting 

value present a zero von Mises stress. 

Regarding the pressure, very high compressive values are involved, up to 
263 GPa and over. It is necessary to say that these values are much higher 

comparing to generic experimental observations referring to shaped charges similar 

to that in consideration. In fact, maximum compressive pressure on the carrier are 

expected to be around 20 GPa, as communicated by the industrial partner and 
further stated in Ambrosi and Briganti, 2010. Moreover, Novokshanov and 

Ockendon, 2006, provided further confirmation of this value. It is also worthwhile to 

note that, due to the adoption of the Johnson-Cook damage and fracture model, 

these pressure values act directly in the computation of the damage, through the 

term in which the stress triaxiality is involved, and thus their correct computation 
appears to be quite important. The Mie-Grüneisen equation of state should provide 

a coherent modeling of the volumetric material behavior when such high 

compressive pressures are involved. In fact, it is considered to provide a good 

modeling up to some hundreds of GPa, as stated in Chapter 2. The highest 

compressive pressure values are reached in the first microseconds after the rigid 
liner impact with the carrier. After that, the compressive pressure appears to relax 

down to lower values. Similarly to what happens for the equivalent plastic strain rate 

and the temperature, the highest compressive pressure values are confined in a 

tiny zone near the rigid liner trajectory. Outside this zone, the compressive pressure 
values appear to lie between 5 GPa and 10 GPa, which however are still quite high 

values. 

It is also very interesting to analyze the tensile pressure in the carrier. In 

particular, the steel spalls some microseconds before than the scallop zone is 

definitely pierced by the liner. This effect is highlighted in following Fig. 95, in which 
the pressure field is plotted by imposing a maximum value of 0 MPa and a minimum 

value of -13000MPa, i.e. the spall limit. 
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0.89 µs 0.99 µs 

           
Figure 95. Pressure field [MPa] in the scallop zone of the carrier. Tensile pressure limitation 
due to spall modeling is highlighted. 

 

Regarding the equivalent plastic strain and the Johnson-Cook damage variable, 

it can be noted that their results are very similar. This is expected due to the fact 

that the Johnson-Cook damage parameter is evaluated on the basis of the 

equivalent plastic strain, as previously described in Chapter 2. The results of these 
two variables indicate that the piercing effect of the rigid liner causes very localized 

effects. Indeed, the equivalent plastic strain and the damage parameter are pretty 

limited outside of the piercing zone, i.e. moving away from the rigid liner trajectory. 

As a matter of fact, this aspect is further confirmed by the final configuration of the 
carrier, in which deformations are strongly limited to the pierced zone, i.e. the 

central zone of the scallop. It is also necessary to note that high positive stress 

triaxialities are involved in some limited zones of the carrier, in particular in the zone 

in which the spall limit pressure is reached. Stress triaxialities up to about 10 are 

involved. It is recalled that the Johnson-Cook damage and failure model is not 
conceived to model damage and failure for stress triaxialities that exceed the value 

1.5. However, the zones with stress triaxiality over 1.5. are quite limited in 

extension. 

More in general, it can be said that the piercing effect of the liner influences a 
very thin zone of the carrier, resulting in a very localized effect that takes place in a 

narrow band in the scallop zone. Indeed, the equivalent plastic strain and the 

Johnson-Cook damage parameter are almost null outside this zone. It is worthwhile 

to point-out that these conclusions apply only for the assessment of the first of the 

three mentioned stressing factors of the carrier, namely the liner perforating effect. 
Furthermore, these results may be more or less flawed by the heavy simplifying 

assumptions that have been made, in particular by the assumption of imposing a 

rigid liner. 

Regarding the three scallop simulations, the most important point appears that 

of investigating the possible manifestation of synergic interactions between the 
stressing effects provided by the three rigid liners. As expected, no such effects 
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have been revealed. As a matter of fact, the obtained FEM results are very similar, 

if not equal, to the outcomes of the single scallop simulations, resulting in a very 
localized effect of each of the three piercing rigid liners. Therefore, these 

simulations do not contemplate potential synergic interactions between the 

simultaneous impact of several liners, totally excluding possibilities like cracking. 

Once again, it is worthwhile to recall the fact that these simulations consider only 
one of the three stressing factors of the carrier and furthermore there may be some 

incoherencies due to heavy hypotheses that characterize these simulations. 

Following Figs. 96 to 101 show some exemplificative results from the three scallop 

simulations. Configurations at 3 µs and 10 µs (final configuration) are presented. 

 

 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

 

 
 

 

 



194 
 

 
 

 
Figure 96. Equivalent plastic strain rate field [s-1] in the carrier. 
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Figure 97. Temperature increment field [K] in the carrier. 
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Figure 98. von Mises stress field [MPa] in the carrier. 
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Figure 99. Pressure field [MPa] in the carrier. 
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Figure 100. Equivalent plastic strain field in the carrier. 
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Figure 101. Johnson-Cook damage field in the carrier. 
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4.4. Eulerian FEM Simulations 

 
The adopted FEM code LS-DYNA offers good potentialities in terms of Eulerian 

FEM capabilities. In particular, the implemented spatial integration method belongs 

to formulations usually referred to as Arbitrary Lagrangian-Eulerian (also called with 

the acronym ALE). This method offers a wide versatility for modeling general large 
strain phenomena, by allowing to perform full Eulerian analyses. Thanks to this 

approach, the difficulties due to finite element distortions are no longer problematic. 

The description of the ALE methodology is not a target of this work. Reference is 

made, e.g., to Hirt et al., 1974, Benson, 1991, Casadei and Halleux, 1995, Benson 

et al., 1997, Benson, 2000, Benson and Stainier, 2000, and Casadei et al., 2001. 
Further considerations on the specific use of ALE capabilities within LS-DYNA can 

be found, e.g., in Souli et al., 2002, Schwer, 2004, Aquelet and Souli, 2008, Van 

Dorsselaer and Lapoujade, 2008, Day, 2009, and Lapoujade et al., 2010. 

The adoption of a full Eulerian solving approach requires the meshing of the 
space of the analysis through ad-hoc finite elements which allow the material to 

flow through them. It is possible to introduce more than one material, resulting in 

multi-material finite elements which allow the flow of more than one material into a 

single finite element. Contacts, impacts, failure and mixture of the different materials 

are efficiently handled by the algorithm implemented in the FEM code. In this 
regard, see, e.g., Benson, 1995, Benson, 1996, Benson and Okazawa, 2004, and 

Vitali and Benson, 2011. 

Thanks to the stated capabilities, the aim of the present Eulerian FEM 

simulations of the perforating gun device firing is that of expanding what done with 

the previous Lagrangian FEM simulations by simulating all the components of the 
perforating gun device, i.e. the shaped charges, the carrier, the ambient fluid, the 

casing, the concrete coating and the soil. These improvements may dramatically 

enhance the simulation coherence. As done for the Lagrangian FEM simulations, 

only tridimensional analyses are considered, in order to fulfill the same motivations 
previously exposed. However, preliminary two-dimensional analyses have been 

carried-out as well, as done for the Lagrangian FEM simulations. 

The strongly limiting hypotheses introduced for the Lagrangian FEM simulations 

are removed, in particular by releasing the assumption of replacing the shaped 

charges with rigid liners and imposing a priori the liner initial velocity. Instead, the 
shaped charge detonation process is simulated thoroughly and the melted liner and 

its features, such as the velocity field, will now be a result of this modeling. An 

important point related to this latter aspect is the fact that the impact between the 

liners and the carrier can now be modeled with much more coherence. More in 
detail, the liner is not rigid anymore and can be modeled for having both deviatoric 

and volumetric resistances. Therefore, it can also change its shape, coherently with 
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the stress field to which it is subjected. As a consequence, the first of the three 

mentioned stressing factors which act on the carrier can now be modeled in a more 
appropriate fashion. Furthermore, the other two stressing actions that influence the 

carrier response are now introduced in the simulation. The fact of modeling the 

blast of the shaped charges allows for evaluating the evolution of the detonation 

products and investigate their possible action on the carrier. It is also possible to 
assess the possible impacts between the carrier and the fragments detaching from 

the shaped charges and their support and detonation systems, and hence evaluate 

possible related consequences. 

The introduced enhancements make worthwhile the fact of extending the 

simulation to the modeling of the targets located over the carrier, i.e. the casing, the 
concrete coating and the soil. Therefore, the penetration capacity of the produced 

liner may also be assessed. Moreover, the presence of these bodies influences 

also the impact of the liner against the carrier. In fact, the final shape of the liner is 

determined also by the subsequent impacts between the liner itself and the casing, 
the concrete coating and the soil, due to the deformable nature of the liner itself. 

All the spatial zones that in the initial conditions are not occupied by either the 

shaped charge, the carrier, the casing, the concrete coating or the soil, are not 

considered as void, i.e. without any material filling them, but rather they are filled 

with the ambient fluid. Following industrial partner communications, the ambient 
fluid is considered to be air at the atmospheric pressure, as previously stated. 

Therefore, the Eulerian space will be filled with eight different parts, i.e. the case, 

the explosive, the liner, the carrier steel, the casing steel, the concrete coating, the 

soil and finally the air. 

The initial pressure fields are assumed to be all zero except within the air fluid, in 
which the atmospheric pressure is set, i.e. 101325 Pa. The initial temperature fields 

of all the parts involved are assumed as uniform and equal to 293 K, as done for 

the Lagrangian FEM simulations. The only other initial condition imposed is the 

presence of a detonation point located in the rear zone of the shaped charge. In 
fact, the explosive booster is not modeled but it is replaced by such detonation 

point, from which the explosive blast starts and spreads throughout the main 

explosive, which is the only introduced explosive material. 

For a full Eulerian simulation, an Eulerian space needs to be defined and 

discretized with multi-material finite elements. The dimensions of this space are 
critical for the determination of the required computational time, considering also 

that multi-material finite elements are computationally much more expensive than 

standard Lagrangian finite elements. In view of this, the limitation of the Eulerian 

space to the minimum volume necessary to describe the phenomena of interest is 
of utter importance in order to avoid extremely long computational times. The made 

available computational resources during the execution of the present work were 
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barely sufficient to model the firing of one shaped charge, i.e. an Eulerian single 

scallop simulation. It has not been possible to carry-out Eulerian three scallop 
simulations. Therefore, as opposed to previous Lagrangian FEM simulations, only 

Eulerian single scallop simulations are presented here. 

The Eulerian space is shaped in a doubly cylindrical fashion, which means that 

the considered space is defined by two cylinders with different radii and lengths. 
Both cylinders have axis coincident with the shaped charge axis. The first cylinder, 

with bigger radius and smaller length, includes the shaped charge, the carrier, the 

casing, the concrete coating and the very first part of the soil. The second cylinder, 

with smaller radius and longer length, includes the remaining part of the soil. 

Following Fig. 102 shows the adopted Eulerian space and the adopted mesh of 
multi material finite elements that compose it. 

 

 
Figure 102. Single scallop Eulerian space composed of multi-material finite elements. 

 

The Eulerian space is composed by a total of 1039760 multi-material finite 

elements. Preliminary tests have helped in the determination of the dimensions of 

these cylinders, i.e. the dimensions of the Eulerian space. The adopted 

configuration allows for capturing the evolution of all the aspects of interest and 
minimizing the dimensions of the space, that are very important due to the limited 

available computational resources. The multi-material finite elements of the Eulerian 

space have been created through the revolution of two planes with respect to the 

shaped charge axis. This strategy allows to deploy a higher number of multi-
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material finite elements on the shaped charge axis, i.e. where the most important 

part of the perforating gun firing process takes place. This is principally due to the 
fact that the solid liner is expected to collapse on the shaped charge axis. This fact 

assumes even more relevance when considering that the resolution of the material 

filling of the Eulerian space multi-material finite elements is determined only by the 

dimensions of the multi-material finite elements themselves. Thus, having finer 
elements means having a better material filling. This has been a critical point for the 

initial filling of the multi-material finite elements, in particular for the aim of correctly 

following the geometrical characteristics of the shaped charge, where the case, the 

explosive and the liner are in contact and their geometry is characterized by having 

some severe direction changes. Considering these aspects, a wide series of 
preliminary tests has been carried-out with the aim of determining the best mesh 

topology for the Eulerian space. The best option appeared to be the adopted one, 

namely the double cylinder option. Typically, full Eulerian simulations are carried-

out with multi-material finite elements that are all equal, i.e. with the same shape 
and dimensions. This assumption is not true anymore when the double cylinder 

option is enforced, because the multi-material finite elements in this case are 

generated through a revolution of two planes of two-dimensional elements, which 

leads to the creation of non uniform hexahedral elements. Preliminary tests have 

been conducted to verify the possible differences between the adopted double 
cylinder option and the all equal elements option, resulting in no noticeable 

differences, but a better resolution of the flowing materials for the double cylinder 

option. Therefore, its adoption. 

One last point that needs to be highlighted is the fact that the support and 

detonation system of the shaped charge are not introduced in the modeling. This is 
due to the facts that there was total unavailability of information about the nature of 

this component for the considered perforating gun device. Its design can heavily 

vary as a function of several parameters, and even when one solution is identified, 

geometry and materials may strongly differ. Furthermore, the introduction in the 
Eulerian model of this component would have necessarily led to an extension of the 

model space, resulting in the requirement of more powerful computational means, 

not available during the execution of the present work. 

According to the hypotheses made, the initial configuration of the single scallop 

simulation is reported in following Fig. 103. 
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Figure 103. Initial configuration of the single scallop Eulerian FEM simulation. The 
shaped charge is represented in dark green, the carrier in blue, the casing in light brown, 
the concrete coating in sky blue and the soil in light green. Air is hidden in order to allow 
the other components to be seen. 

 

Following Fig. 104 reports a longitudinal cross-sectional view of the initial 

configuration. 

 

         
Figure 104. Cross section of the initial configuration of the single scallop Eulerian FEM 
simulation. It is possible to see the three components of the shaped charge. The case is 
represented in dark green, the explosive in brown and the liner in purple. It is also possible to 
see the scallop in the carrier. The soil is interrupted in order to allow an enlargement of the 
other components. Air is hidden in order to allow the other components to be seen. 
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Boundary conditions can be defined on the Eulerian space frontiers. Zero 

displacements on the external boundary of the carrier, the casing, the concrete 
coating and the soil are enforced, i.e. the parts of these components which are in 

direct contact with the external surface of the Eulerian space. This is done 

coherently with what assumed in the Lagrangian FEM simulations in order to avoid 

unwanted rigid longitudinal displacements of the considered components. 
As done for the Lagrangian FEM simulations, an explicit time integration method 

is adopted. The output is enforced to be saved at intervals of 2.5·10-7 s. Such 

frequency is looser than the one adopted for the Lagrangian FEM simulations. This 

is necessary in order to limit the weight of the output data, due to the available 

computational capacities. However, preliminary tests assured that this frequency is 
still enough to achieve a good time resolution of the underlying phenomenon. 

The contact is handled through the LS-DYNA ALE contact algorithm, see 

Livermore Software Technology Corporation (LSTC), 2006, and 2012, for LS-DYNA 

contact algorithms. The timestep scale factor has been lowered to ad-hoc found 
values, comparing to the LS-DYNA default value. A long series of preliminary tests 

has been conducted, in order to correctly set-up the cited parameters and all the 

other ALE controls. 

 
4.4.1. Constitutive Modeling 

 

According to what stated above, it is necessary to properly define the constitutive 

modeling of eight parts. 

The carrier is modeled in the same way previously outlined for the Lagrangian 

FEM simulations, i.e. the Johnson-Cook strength model, the Mie-Grüneisen 
equation of state and the Johnson-Cook damage and failure model, together with a 

cut-off on the tensile pressure to simulate material spall resistance. The same 

parameters previously introduced for the Lagrangian FEM simulations have been 

adopted. For Eulerian analyses, there is no removal of completely damaged 
material, i.e. material that gets a Johnson-Cook damage variable equal to 1, but 

rather this material is assumed to offer neither deviatoric nor volumetric resistance. 

Regarding the shaped charge, three parts are identified, i.e. the case, the main 

explosive and the liner. For what it concerns the case, no data were made 

available. The hypothesis here is that the material is a high resistance steel. In this 
context, the same strength model, equation of state and damage and failure model 

of the carrier have been adopted, with the same parameters. 

The constitutive model of the liner is a critical one. It needs to model both the 

solid behavior of copper and its high pressure fluid behavior, after the shaped 
charge detonation. In order to model this aspects, the Johnson-Cook strength 

model and the Mie-Grüneisen equation of state have been adopted again, together 
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with the Johnson-Cook damage and failure model and the cut-off on the tensile 

pressure for introducing a spall resistance. These choices are due to the fact that 
the Johnson-Cook strength model provides a strain rate and temperature modeling 

for the deviatoric behavior of the material, which vanishes when the melting 

temperature is reached or exceeded. The idea here is that when the solid copper 

undergoes the explosive blast, it may generate a large increment of temperature 
that may melt the copper, resulting in a null deviatoric behavior and a volumetric 

behavior only, ruled by the Mie-Grüneisen equation of state. As previously stated, 

this choice of constitutive modeling allows for accounting for a phase change, from 

solid to a high pressure volumetric fluid. Having no copper experimental data, its 

parameters have been derived from literature data. The 8 parameters of the 
Johnson-Cook hardening model have been taken from Johnson and Cook, 1983, 

referring to the OFHC (Oxygen-Free High Conductivity) copper data therein 

presented. Following Table 35 exposes such parameters. 

 

A 90 MPa m 1.09 

B 292 MPa 0εɺ  0.002 s-1 

n 0.31 T0 293 K 

C 0.025 Tm 1356 K 

Table 35 
Johnson-Cook strength model parameters for the copper liner. 

 
The total lack of experimental data makes it impossible to implement and use 

the Split Johnson-Cook model proposed in Chapter 3. Johnson and Cook, 1983, 

provided also OFHC copper specific heat, which is equal to 383 J/(kg·K). Density 

and other necessary elastic parameters of a generic copper can be found in the 

literature. Density is taken equal to 8940 kg/m3, Young modulus equal to 120000 
MPa, shear modulus equal to 48000 MPa and Poisson’s ratio equal to 0.34. 

For what it concerns the copper liner Mie-Grüneisen equation of state, the 

parameters have been taken from Steinberg, 1996, referring to OFHC copper. Such 

parameters are reported in following Table 36. 
 

C0 [m/s] S1 S2 S3 γ0 

3940 1.489 0 0 2.02 

Table 36 
Mie-Grüneisen parameters for the copper liner. 
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The 5 parameters of the Johnson-Cook damage model have been taken from 

Johnson and Cook, 1985, which presents such parameters for OFHC copper. 
Following Table 37 reports their values.  

 

D1 D2 D3 D4 D5 

0.54 4.89 -3.03 0.014 1.12 

Table 37 
Johnson-Cook damage and failure parameters for the copper liner. 

 

Thermal expansion has been considered as well, through the introduction of an 

isotropic volumetric thermal expansion coefficient, equal to 0.000017 K-1, a value 
relative to a generic copper and quoted in the literature. This value has been 

considered as independent from the temperature, as done for the coefficient of the 

steel carrier. 

The cut-off tensile pressure value for the copper liner has been recovered from 
Davison et al., 1996, and assumed equal to 1360 MPa, intended as maximum 

tensile pressure. However, there is some uncertainty about the applicability of this 

value to the considered copper. 

The last shaped charge component is represented by the explosive. Again, no 

data were made available. As previously said, the assumption here is that of 
adopting RDX as main explosive. This choice appears to be coherent with the kind 

of explosives usually adopted for the considered shaped charge. The detonation 

product of explosives with a high detonation velocity, such as RDX, can be fruitfully 

modeled through the Jones-Wilkins-Lee equation of state, Eq. (67), which has then 

been adopted. The JWL parameters for RDX have been taken from 
Coleburn, 1964, and Ambrosi and Briganti, 2010. They are reported in following 

Table 38. 

 

A [MPa] B [MPa] R1 R2 ω 
778370 7070 4.2 1 0.3 

Table 38 
Jones-Wilkins-Lee parameters for RDX explosive. 

 
The Jones-Wilkins-Lee equation of state defines the pressure after the 

detonation. i.e. the pressure of the detonation products. The detonation point 

imposes the coordinates at which the first detonation appears. After that, the blast 

spreads throughout the explosive material. This phenomenon is ruled through a so-

called burn fraction, denoted by F. This parameter is defined to be greater than 0 
and lower than 1. It multiplies the pressure computed from the Jones-Wilkins-Lee 

equation of state, Eq. (67), with the aim to control the release of chemical energy 
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for better simulating detonations in finite element computations. The pressure is 

then calculated through the following equation 
 

 1 2-R v -R v

1 2

E
p F A 1 e B 1 e .

R v R v v

    ω ω ω
 = − + − +       

    
  (87) 

 

When an explosive material is introduced in a finite element simulation, its 
detonation needs to be triggered. Following Livermore Software Technology 

Corporation (LSTC), 2006, and 2012, this can be done in two ways. The first one 

deals with the definition of one or more detonation points. A specific detonation 

instant must then be defined for each detonation point. For each finite element of 

the mesh, it is then possible to define a so-called lightning time, denoted by tl, which 
consists in the time necessary for the blast wave to reach the finite element in 

question and trigger the explosion in it. It is computed with the following equation 

 

 l
d

t ,
D

=   (88) 

 

where d denotes the distance from a considered detonation point to the center of 
the considered finite element, and D is a parameter of the explosive material, called 

detonation velocity or burn velocity. For a given finite element, the number of 

lightning times computed is equal to the number of detonation points introduced in 

the simulation. For each element, it is possible to compute the minimum lightning 
time. The finite element burn fraction is then taken equal to 0 if the simulation time 

is lower or equal to the minimum lightning time, i.e. when the burn front has not 

reached the element yet, while it is taken equal to the value specified by the 

following equation if the simulation time is greater than the minimum lightning time 

 

 
( )( )

maxl e

e

2 t min t D A
F .

3 V

⋅ − ⋅ ⋅
=

⋅
  (89) 

 

In this equation, t denotes the simulation time, min(tl) denotes the computed 

minimum lightning time for the considered finite element, 
maxeA  denotes the 

maximum area of the element faces and Ve denotes the finite element volume. If 

Eq. (89) returns a value of F greater than 1, it is reset to 1. 

The second way used to trigger the detonation deals with compression of the 
explosive material. In this case, the hypothesis is that of considering compressive 
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deformations as capable to initiate detonations. The burn fraction is then calculated 

through the following equation 
 

 
CJ

1 v
F .

1 v
−=

−
  (90) 

 

In this equation, vCJ denotes the so-called Chapman-Jouguet relative volume (see, 

e.g., Chapman, 1899, Sternberg, 1970, Cooper, 1996, Chéret, 1999, and Fickett 

and Davis, 2000). If both detonation triggering hypotheses are adopted, the burn 
fraction of a given finite element is calculated as the maximum between the values 

computed with Eqs. (89) and (90). It is also possible to define a deviatoric 

resistance for the explosive material, in order to model possible deformations that it 

may undergo before detonating. 

For the case under consideration, namely the firing of a perforating gun device, 
only one detonation point is defined, on the rear part of the main explosive, where 

the booster is usually located. Specifically, the detonation point is placed on the 

shaped charge axes, 2 millimeters prior to the surface that delimits the main 

explosive from the shaped charge case. The detonation instant is set-up at the 
beginning of the simulation, i.e. at the beginning of the very first timestep. Then, 

deviatoric behavior for the explosive material is not considered, since such material 

does not undergo deformations before detonating. 

Following Coleburn, 1964, and Ambrosi and Briganti, 2010, the RDX detonation 

velocity is taken equal to 8750 m/s. RDX density has been taken equal to 
1891 kg/m3 and the RDX Chapman-Jouguet pressure (see e.g., Chapman, 1899) 

has been taken equal to 33800 MPa. Furthermore, RDX thermal expansion has 

been considered as well, through the introduction of an isotropic volumetric thermal 

expansion coefficient, equal to 0.000065 K-1, following Baytos, 1979, and Weese et 
al., 2005. This value has been considered to be independent from the temperature. 

Several simulations have been carried-out in order to assess the coherency of 

the exposed model when high explosive detonations are introduced into the 

simulation. All the obtained results confirmed a good coherency for the adopted 

JWL and burn fraction models. 
Beyond the carrier and the three shaped charge components, the remaining 

components that need to be modeled are the casing, the concrete coating, the soil 

and the ambient fluid, i.e. air. 

For what it concerns the casing, no data have been provided from the industrial 

partner, as previously stated. As said, the material is considered to be a 4340 steel. 
This component is placed right behind the carrier. It will be pierced by the liner after 

the perforation of the carrier. Hence, the casing is subjected to very high strain rate 

phenomena similar to those that happen in the carrier, although the incoming liner 
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will have a little less velocity and energy comparing to the impact with the carrier. In 

this view, the same constitutive model hypotheses made for the carrier are 
considered to be valid for the casing as well. Therefore, the Johnson-Cook strength 

model, the Mie-Grüneisen equation of state and the Johnson-Cook damage and 

failure model are used again. Johnson-Cook hardening function parameters are 

taken from Johnson and Cook, 1983, in which 4340 steel data are made available. 
The adopted parameters are exposed in following Table 39. 

 

A 792 MPa m 1.03 

B 510 MPa 0εɺ  0.002 s-1 

n 0.26 T0 293 K 

C 0.014 Tm 1793 K 

Table 39 
Johnson-Cook strength model parameters for the steel casing. 

 

As previously stated for the liner, the total lack of experimental data makes it 

impossible to implement and use the Split Johnson-Cook model proposed in 

Chapter 3. Johnson and Cook, 1983, provided also the 4340 steel specific heat, 
equal to 477 J/kg·K. Density and other necessary elastic parameters can be found 

in the literature, referring to 4340 steel. Density is equal to 7830 kg/m3, Young 

modulus to 200000 MPa, shear modulus to 77000 MPa and Poisson’s ratio to 0.29. 

For what it concerns the casing Mie-Grüneisen equation of state, the parameters 
have been taken from Steinberg, 1996, for 4340 steel. They are reported in 

following Table 40. 

 

C0 [m/s] S1 S2 S3 γ0 

4578 1.33 0 0 1.67 

Table 40 
Mie-Grüneisen parameters for the steel casing. 

 

The five parameters of the Johnson-Cook damage model have been taken from 
Johnson and Cook, 1985, which presents such parameters for 4340 steel. 

Following Table 41 reports their values.  

 

D1 D2 D3 D4 D5 

0.05 3.44 -2.12 0.002 0.61 

Table 41 
Johnson-Cook damage and failure parameters for the steel casing. 
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Thermal expansion has been considered as well, in the same way previously 

done for the carrier, namely through the introduction of an isotropic volumetric 
thermal expansion coefficient, set equal to 0.000012 K-1, once again considered as 

independent from temperature, as done for the steel carrier. Regarding spall 

fracture, the same simple model adopted for the carrier has been considered, with a 

cut-off pressure assumed equal to 13000 MPa. 
For the concrete coating, the same considerations regarding the involvement of 

very high strain rates and high temperatures previously stated for the carrier and for 

the casing hold true. For low strain rates and room temperature behaviors, concrete 

response is usually described by non-associative elastoplastic models. Anyway, for 

the considered hyperfast dynamic and thermal conditions, the choice made here is 
that of modeling concrete with a classic associative elastoplastic strength model, 

coupled with a separate Mie-Grüneisen equation of state. A simple failure and finite 

element removal criterion completes the model. It imposes material failure and 

element erosion when a predetermined equivalent plastic strain value is reached. 
This strategy follows Jin et al., 2002, where concrete subjected to very high strain 

rate phenomena was modeled with this approach. Although this constitutive 

modeling may lack coherence, it favors simplicity and furthermore it does not 

require to define a long list of material parameters. This choice appears to be 

reasonable by considering also the total lack of material data for the specific case 
under target. The material parameters for such model are taken based on the 

values of a generic concrete, from the literature. They consist in a shear modulus of 

2200 MPa, a compressive yield stress of 40 MPa, a density of 2300 kg/m3 and a 

specific heat of 880 J/kg·K. Perfectly plastic behavior is assumed, thus defining a 

zero hardening modulus. Following Jin et al., 2002, the failure equivalent plastic 
strain has been set equal to 0.1. Data for the Mie-Grüneisen equation of state are 

taken from this same reference, except for the bulk sound speed which is taken 

equal to 3400 m/s, i.e. a generic value for concrete. The adopted EOS parameters 

are reported in following Table 42. 
 

C0 [m/s] S1 S2 S3 γ0 

3400 1.4 0 0 0 

Table 42 
Mie-Grüneisen parameters for the concrete coating. 

 

Concrete thermal expansion has been considered as well, in the same way as 

previously done for the the other components, i.e. through the introduction of an 

isotropic volumetric thermal expansion coefficient, equal to 0.000012 K-1, 
considered independent from temperature. More in general, considerations on the 
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adoption of more refined concrete models for fast dynamic loadings and their 

applications in FEM simulations can be found in Tu and Lu, 2008. 
For what it concerns the soil, the constitutive model adopted is that presented in 

Krieg, 1972. This model is already implemented in LS-DYNA. It is a simple model 

that allows to describe soil elastoplastic behavior up to failure. As stated in 

Livermore Software Technology Corporation (LSTC), 2006, other constitutive 
models may actually provide a more coherent description of soil behavior. Anyway, 

this model is useful when material properties are not well characterized, since it 

requires less material parameters. The choice of this specific model is mainly due to 

this aspect. Following the exposition given in Krieg, 1972, the soil is considered to 

manifest an isotropic elastoplastic behavior, with a pressure dependent nonlinear 
Drucker-Prager yield function defined by the following equation 

 

 ( )2
2 0 1 2J a a p a p .φ = − + +   (91) 

 
In this equation, a0, a1 and a2 are soil parameters to be determined through 

experimental measurements, while J2 is the second invariant of the stress deviator 

of the adopted stress measure. 

The soil is considered to have perfectly plastic behavior, i.e. no hardening is 
considered. Volumetric behavior is introduced as well, by considering compressive 

resistance only. Therefore, no tensile pressure can be resisted by the soil. The 

compressive volumetric resistance is modeled through a nonlinear equation of 

state, defined by a function that relates the pressure and a volumetric strain 

measure defined as the natural logarithm of the relative volume. Unloading paths 
are defined through a linear function between the pressure and such volumetric 

strain measure. Hence, when the soil undergoes compressive unloading, it does 

not follow the loading nonlinear EOS but rather the linear unloading relation. Both 

the loading nonlinear equation of state and the slope of the linear unloading 
function, i.e. an unloading bulk modulus, need to be defined as input data for the 

code LS-DYNA. 

No soil experimental data are made available. The material parameters for the 

described model are then taken from Bojanowski and Kulak, 2010. A shear 

modulus of 34.5 MPa is assumed, together with a density of 2350 kg/m3. The yield 
parameters a0 and a1 are taken equal to zero, while the parameter a2 is taken equal 

to 0.602. The unloading bulk modulus is set equal to 15 MPa. The nonlinear 

compressive loading function is plotted in following Fig. 105. It refers to hydrostatic 

soil experimental data exposed in Bojanowski and Kulak, 2010. 
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Figure 105. Volumetric behavior of the soil (source Bojanowski and Kulak, 2010). 

 
Coordinates of the points indicated with diamonds in Fig. 105 are reported in  

following Table 43. These data are directly introduced into the LS-DYNA input. 

 

ln(v) 0 0.08 0.15 0.28 0.35 

p [MPa] 0 0.024 0.041 0.059 0.070 

      ln(v) 0.41 0.48 0.62 0.70 0.90 

p [MPa] 0.078 0.088 0.103 0.112 0.128 

Table 43 
Tabular data for soil compressive volumetric behavior (source 
Bojanowski and Kulak, 2010). 

 

Due to unavailability of data, the possibility of soil thermal expansion is not 

introduced in the model. 

The last material to model is the ambient fluid, i.e. air at the atmospheric 

pressure. Air is assumed to be an ideal gas. Therefore, no deviatoric resistance is 
introduced. The volumetric behavior is modeled through an ideal gas equation of 

state, which computes the pressure through the following equation 

 

 ( ) E
p 1 ,

v
= γ − ⋅   (92) 

 

where E denotes the internal energy, v denotes the relative volume and γ 

represents the ratio between the constant pressure and the constant volume 

specific heats. For air, γ is equal to 1.4. Furthermore, air is initiated to a pressure of 
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101325 Pa, in order to account for the atmospheric pressure. Air density is taken 

equal to 1.225 kg/m3, i.e. the density for air at the atmospheric pressure. Air thermal 
expansion is not considered relevant and thus it is not introduced in the model. 

 
4.4.2. Simulation Results 

 
Following Figs. 106 to 117 show the outcomes of the single scallop Eulerian FEM 

simulations. As for the Lagrangian analyses, all the carried-out simulations satisfy 

energy balance requirements, i.e. the ratio between the total energy and the initial 

energy is practically equal to 1, considering all the energy forms involved in the 

analysis. 
The simulations have been extended in time until no noticeable variations in the 

stress and strain fields of the carrier have appeared. This led to a total time of the 

simulation of 9.425·10-5 s, i.e. 94.25 µs. 

 

 
Figure 106. Eulerian FEM simulation at the initial instant. 

 

 
Figure 107. Eulerian FEM simulation at 5 µs. The shaped charge begins to expand due to 
the pressure from the detonation products. 
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Figure 108. Eulerian FEM simulation at 10 µs. The needle-shaped liner is already created. 

 

 
Figure 109. Eulerian FEM simulation at 15 µs. The liner has pierced the carrier. 

 

 
Figure 110. Eulerian FEM simulation at 20 µs. The liner is piercing the casing. 

 

 
Figure 111. Eulerian FEM simulation at 25 µs. The liner has pierced the concrete coating. 
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Figure 112. Eulerian FEM simulation at 30 µs. The liner is piercing the soil. 

 

 
Figure 113. Eulerian FEM simulation at 35 µs. The rear part of the liner is pushing on the carrier. 

 

 
Figure 114. Eulerian FEM simulation at 55 µs. The front part of the liner is piercing the soil. 
The rear part has flared the carrier, which is also hit by the detonation products. 
 

 
Figure 115. Eulerian FEM simulation at 70 µs. The liner keeps on piercing the soil. The rear 
part of the liner and the detonation products have further deformed the carrier. 
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Figure 116. Eulerian FEM simulation at 80 µs. The middle part of the liner fractured while the 
front part keeps on piercing the soil. The carrier is further deformed. 

 

 
Figure 117. Eulerian FEM simulation at the final instant, 94.25 µs. The soil is further pierced. 
The carrier shows its final deformation. 

 
Following Fig. 118 provides a tridimensional view of the final configuration, 

considering the shaped charge and the carrier only. 

 

 
Figure 118. Eulerian FEM simulation at the final instant. 3D view of the shaped charge 
components and of the carrier. 
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Following Fig. 119 provides a tridimensional view of the final configuration of the 

carrier. 
 

                
Figure 119. Eulerian FEM simulation at the final instant. 3D view of the inner (left 
figure) and outer (right figure) sides of the carrier. The exit hole is clearly visible. The 
inner side of the carrier presents a flaring due to the impact of the rear part of the 
liner. The carrier presents also a bulging. 

 

Following Fig. 120 provides a more detailed view of the first phase of the shaped 

charge explosion, in order to better visualize the formation of the needle-shaped 
liner. 

 

 
 

 
Figure 120. Evolution of the shaped charge explosion and consequent formation of the 
needle-shaped liner. 

 

Following Fig. 121 allows for visualizing the pressure of the explosive after 
detonation. In order to better assess the phenomenon, only the explosive and the 

liner are shown, and the pressure field is evaluated for the explosive only. It is 

0 µs 8.25 µs 10.75 µs 19.75 µs 
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possible to see the evolution of the pressure wave, which is computed with the burn 

fraction algorithm described previously. 
 

  

  

  

 
Figure 121. Pressure wave [MPa] in the main explosive. Pressures over 21 GPa are reached. 

 

Following Fig. 122 shows the velocity modulus field in the shaped charge at the 

simulation time of 8.25 µs, i.e. the instant in which the liner reaches its maximum 

velocity. 
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Figure 122. Velocity modulus field [mm/s] in the shaped charge 8.25 µs after the initial 
instant. The peak velocity of 5.926 km/s is reached. 
 

Figure 122 shows a maximum liner velocity modulus near to 6 km/s. This value 

looks coherent with experimental observations discussed in Novokshanov and 

Ockendon, 2006, and also with some communications from the industrial partner, 
which are further pointed-out in Ambrosi and Briganti, 2010. After reaching this 

maximum value, the liner slightly slows down and impacts the carrier with a velocity 

modulus of 5.524 km/s. 

Following Figs. 123 to 130 aim at showing in details the carrier response. 

Results are evaluated in terms of the equivalent plastic strain rate field, the von 
Mises stress field, the pressure field and the equivalent plastic strain field. In order 

to better assess the phenomenological output, only the shaped charge and the 

carrier are shown. Furthermore, the considered fields are plotted only for the carrier.  
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Figure 123. Equivalent plastic strain rate field [s-1] in the carrier at four different simulation times. 
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Figure 124. Equivalent plastic strain rate field [s-1] in the carrier at four different simulation times. 
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Figure 125. von Mises stress field [MPa] in the carrier at four different simulation times. 
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Figure 126. von Mises stress field [MPa] in the carrier at four different simulation times. 
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Figure 127. Pressure field [MPa] in the carrier at four different simulation times. 
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Figure 128. Pressure field [MPa] in the carrier at four different simulation times. 

25.00 µs 

50.00 µs 

75.00 µs 

94.25 µs 



227 
 

             

             

              

              
Figure 129. Equivalent plastic strain field in the carrier at four different simulation times. 
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Figure 130. Equivalent plastic strain field in the carrier at four different simulation times. 
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In order to better assess the simulation results, the maximum and minimum 

values reached throughout the FEM analysis by the four considered variables are 
reported in following Table 44. 

 

 MIN MAX 

Equivalent plastic strain rate [s-1] 0 2.865·106 

Von Mises stress [MPa] 0 1379 

Pressure [MPa] -1082 17920 

Equivalent plastic strain 0 0.874 

Table 44 
Maximum and minimum values for the four considered variables. It is recalled that in 
LS-DYNA positive pressures are intended as compressive and negative pressures as 
tensile. 

 

Some considerations regarding the simulation results are made in the following, 

similarly to what previously done for the Lagrangian FEM results. Moreover, 

appropriate considerations about the comparison between the obtained Eulerian 
and Lagrangian outcomes are pointed-out. 

Regarding the equivalent plastic strain rate, it is possible to see that, although 

very high values are involved, they are sensibly lower than those computed in the 

Lagrangian FEM simulations. The maximum equivalent plastic strain rate value 

reached through the Eulerian approach is about one order of magnitude lower than 
that computed with the Lagrangian approach, as readily noticeable by comparing 

the values reported in Tables 34 and 44. These very high equivalent plastic strain 

rate values are maintained throughout the piercing phase. Approximately, it may be 

said that this perforating phase happens at an equivalent plastic strain rate average 
value of about 1·106 s-1, i.e. about an order of magnitude lower than what predicted 

by the Lagrangian FEM simulations. In this regard, it is also worthwhile to note that 

the impact between the liner and the carrier happens at a velocity of 4 km/s for the 

Lagrangian FEM simulations and at 5.524 km/s for the Eulerian FEM simulations. 

Nevertheless, the equivalent plastic strain rates in the Lagrangian FEM simulations 
are 1 order of magnitude higher. This aspect leads to the belief that the equivalent 

plastic strain rates computed in the Lagrangian FEM simulations may be strongly 

overestimated. This may be due to the fact that the Lagrangian FEM simulations 

considers the impact of a rigid liner, which actually does not correspond to the true 

physical phenomenon under analysis. Some references, such as Ambrosi and 
Briganti, 2010, stated that the liner may be coherently modeled as a rigid body, due 

to the huge velocity of the impact between the liner and the carrier. This approach 

considers that modeling the liner as a rigid body or as a deformable body should 

not comport sensible differences in the results computed on the carrier. On the 
basis of the results obtained here, such last consideration appears to be rather 
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untrue, at least for the evaluation of the equivalent plastic strain rates on the carrier. 

In view of this, it may be interesting to further investigate the role played by the 
deviatoric and volumetric resistances of the liner on the carrier overall response. In 

this regard, considerations about limit liner velocities at which its deviatoric 

resistance starts to play an important role are provided in Gooch et al., 2001. 

As for the Lagrangian results, the highest equivalent plastic strain rate values 
are confined within a thin zone near the liner trajectory. Outside this zone, the 

equivalent plastic strain rate values appear to be sensibly lower, ranging from 

2·103 s-1 to 2·105 s-1, approximately. It is worthwhile to note that the lower value of 

this range is about twice the highest equivalent plastic strain rate value 

experimentally tested for the carrier steel, namely 1100 s-1. After the perforation 
phase, the rear part of the liner and the detonation products begin to impact the 

carrier. Comparing to the effect of the tip of the liner, this second phase involves a 

much wider zone of the carrier. The resulting deformations occur at equivalent 

plastic strain rates ranging from 5·103 s-1 to 7·104 s-1, approximately. As a matter of 
fact, very high equivalent plastic strain rates are involved in this second phase as 

well, although the values are quite lower comparing to those related to the first 

phase, namely when the front part of the liner pierces the carrier. 

Temperature increments have been computed but they could not be plotted. 

However, it is known that temperature increments are computed only through 
Eq. (86). From the analysis of the obtained results, it can be said that the Eulerian 

equivalent plastic strain rates are approximately one order of magnitude lower than 

the Lagrangian ones. Assuming that the stress components computed in the 

Eulerian analysis do not strongly deviate from those calculated in the Lagrangian 

analysis, it can be said that the temperature increments involved in the Eulerian 
FEM analysis are about one order of magnitude lower than those involved in the 

Lagrangian FEM simulations. This assumption is due to the form of Eq. (86). 

Following these considerations, it can be said that the peak temperature increments 

involved in the Eulerian analysis may be around 1200 K, approximately, i.e. one 
order of magnitude lower than the peak temperature increments that arise in the 

Lagrangian FEM simulations. This aspect means that melting temperatures may 

never be reached during the Eulerian analysis. It is interesting to note how this point 

correlates particularly well with some experimental observations, reported in Yin et 

al., 2004, and Novokshanov and Ockendon, 2006, in which the presence of 
localized heating up to 1273 K was hypothesized. This assumption was related to 

the presence of some recrystallized austenite grains whose existence did imply the 

manifestation of such temperatures. 

For what it concerns the von Mises stress, it is clear that the values here are 
heavily influenced by the equivalent plastic strain rates and by the temperatures, as 

ruled by the Johnson-Cook hardening function. The von Mises stress field appears 
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to present high values in a wider zone comparing to the very localized zone in 

which the higher equivalent plastic strain rates and temperatures are present. 
Comparing to the Lagrangian simulations, the von Mises stress field appears to 

present lower values but much more widespread throughout the carrier. This point 

is mainly due to the impact of the rear part of the liner and of the detonation 

products against the carrier. 
Regarding the pressure, the highest compressive value reached on the carrier is 

equal to about 17.9 GPa. This value is much lower than the 263 GPa registered in 

the Lagrangian FEM simulations, and it is quite coherent with the expected results, 

i.e. a value at around 20 GPa. It is recalled that the pressure values have an 

important role also because they act directly in the computation of the Johnson-
Cook damage, through the term in which the stress triaxiality is involved. As 

previously stated, the Mie-Grüneisen equation of state provides good modeling 

coherency up to compressive pressures of a few GPa. The values involved in this 

analysis are widely inside this range. As for the Lagrangian simulations, the highest 
compressive pressure values are reached in the first microseconds after the first 

liner impact with the carrier. After that, the compressive pressure appears to relax 

down to lower values. Similarly to what happens for the equivalent plastic strain 

rates, the highest compressive pressure values are confined in a tiny zone near the 

liner trajectory. Outside this zone, the compressive pressure values appear to lie 
between 0.1 GPa and 1 GPa, which are values one order of magnitude lower than 

those computed in the Lagrangian simulations, approximately. Regarding the 

tensile pressure, the highest value turns-out equal to about 1 GPa. This value is 

strongly lower than those reached in the Lagrangian simulations, which reach the 

imposed spall limit of 13 GPa. Thus, the Eulerian FEM simulations do not predict 
spall in the carrier. 

Regarding the equivalent plastic strain, the piercing effect of the front part of the 

liner causes very localized effects, as predicted by the Lagrangian simulations. 

However, marked differences occur in the next phase, in which the rear part of the 
liner and the detonation products impact the carrier. Indeed, these two stressing 

factors determine a much severe and widespread deformation of the carrier, 

comparing to the very localized Lagrangian FEM results. First of all, the inner part of 

the carrier is heavily flared by the rear part of the liner. Second, the detonation 

products contribute to radially deform the carrier, resulting in a localized bulge. 
Furthermore, the Eulerian FEM maximum equivalent plastic strain is equal to about 

0.854, while the Lagrangian FEM maximum is equal to 4.573. This aspect is due to 

the fact that the Lagrangian equivalent plastic strain are much more localized but 

also much higher, due to very severe deformations in some finite elements.  
The Johnson-Cook damage variable has been computed but it is also not 

available for plotting. However, it can be said that results very similar to those of the 
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equivalent plastic strain are expected, due to the form of the Johnson-Cook 

damage and failure model, Eq. (69), as confirmed by the Lagrangian FEM 
simulations. The results obtained for the equivalent plastic strain are then 

considered to be very indicative of the values of the Johnson-Cook damage 

variable as well. It is also worthwhile to note that high positive stress triaxialities are 

no longer involved. Indeed, the maximum value is equal to about 1.3, thus not 
exceeding the limit value for the validity of the Johnson-Cook damage and failure 

model, i.e. 1.5. The positive stress triaxialities values are around one order of 

magnitude lower than those involved in the Lagrangian simulations. This aspect is 

mainly due to the fact that Eulerian tensile pressures are about one order of 

magnitude lower than those computed by the Lagrangian simulations. 
Following Figs. 131 and 132 show the final equivalent plastic strain fields in the 

carrier for the Lagrangian and for the Eulerian simulations, in order to compare the 

deformations suffered by such component in the two cases.  
 

 
Figure 131. Lagrangian (left figure) and Eulerian (right figure) equivalent plastic strain fields 
in the carrier at the final instant of the simulations. The inner side is shown. 
 

 
Figure 132. Lagrangian (left figure) and Eulerian (right figure) equivalent plastic strain fields 
in the carrier at the final instant of the simulations. The outer side is shown. 
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In general, it can be said that the piercing effect of the front part of the liner 

influences a very thin zone of the carrier, resulting in a very localized effect that 
takes place in a narrow band in the scallop zone, as previously stated for the 

Lagrangian FEM simulations. However, the Eulerian FEM simulations show that the 

rear part of the liner does play a role in stressing the carrier. The rear side of the 

liner impacts the carrier at lower velocities comparing to the tip, i.e. velocities in the 
range between 0.5 km/s and 1 km/s. As already discussed, the rear part of the liner 

causes the inner side of the exit hole to become heavily flared, and contributes also 

at stressing the carrier in the radial direction, resulting in a localized bulge. This last 

aspect is further strengthened by the subsequent action of the detonation products, 

which pushes radially on the carrier. 
On the basis of the pointed-out considerations, it can be said that the carried-out 

Eulerian FEM simulations allow for investigating the firing of a perforating gun with 

much more coherency comparing to the Lagrangian FEM simulations. This last 

assumption is motivated by the good coherency of some of the obtained Eulerian 
FEM results to recorded experimental observations, such as the liner velocity, the 

compressive pressure that the liner produces on the carrier, the estimated 

temperatures and of course the final configuration of the carrier, which shows the 

produced exit hole and the localized bulge. 
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CONCLUSIONS 

 

 

Some conclusive remarks are outlined in the following. Conclusions are presented 

by considering the three main parts treated in this work, i.e. the review of the 
constitutive modeling of large strain and high strain rate phenomena, the 

introduction of a new strength model and the analysis of a specific perforating gun 

device of industrial interest. 

The first part of the thesis presented a brief review of the constitutive modeling 
of large strain and high strain rate phenomena, by introducing some basic 

considerations on strength models, equations of state and damage and failure 

models. Models extensively used in subsequent parts of the work have been 

investigated with specific attention. In particular, a detailed review of the Johnson-

Cook strength model has been made. The specific interest on this model is due to 
its popularity and wide use in computational codes, together with the fact that it has 

been later used for the modeling of the industrial application analyzed in the present 

thesis. 

An extensive, mainly original discussion of various calibration strategies of the 

Johnson-Cook model has been presented. Related issues and problematics have 
been investigated. Through a reasoned approach, five main calibration strategies 

have been identified, proposed and debated. These approaches have been then 

applied to a real material case, i.e. the determination of the Johnson-Cook 

parameters for a structural steel, based on experimental data from the literature. 
The obtained results have allowed to assess the strengths and weaknesses of the 

various calibration strategies, by directly evaluating the obtainable fittings of the 

considered experimental data. The outcomes of the Johnson-Cook model 

calibrated with the different strategies have been widely commented, by pointing-

out the most important aspects and consequences of each calibration approach. It 
has been shown how choosing the different calibration strategies leads to quite 

different results, intended in terms of the produced errors relative to experimental 

data fittings. More in detail, average percentage yield stress root mean square 

errors spanning from 16.86% to 34.85% have been obtained. 
The importance of the procedure adopted for calibrating the parameters of the 

Johnson-Cook model has been highlighted, by addressing how it may influence the 

aim of setting-up a strength model capable to reproduce a good coherency 

throughout the equivalent plastic strain, equivalent plastic strain rate and 

temperature ranges of interest. Due to its nature, the Johnson-Cook model comes 
with positive aspects, such as simplicity and readiness of implementation in FEM 

codes, but also weaknesses, i.e. incoherencies introduced into the modeling. The 
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choice of the calibration strategy allows to redistribute the errors according to 

different criteria, as extensively explained in this work. Such choice should be done 
by considering all the aspects exposed and explained, thus being aware of the 

nature and consequences of each selected calibration strategy. 

The proposed considerations should provide a guideline in the process of 

determining the best Johnson-Cook parameters based on available experimental 
data, i.e. a set of hardening functions at different equivalent plastic strain rates and 

temperatures, depending on the quested target of the considered use of the model. 

The second part of the work has regarded the introduction of a new strength 

model, named Split Johnson-Cook model, since it has been formulated as a 

generalization of the original Johnson-Cook model. Since the new model is a 
refinement of the Johnson-Cook model, it keeps a total empiric nature. The aims 

were those of improving the original Johnson-Cook hardening function, in order to 

mitigate shortcomings such as the fact that the equivalent plastic strain, the 

equivalent plastic strain rate and the temperature effects on the yield stress are 
totally independent from each other. More in detail, the Split Johnson-Cook model 

allows to separately model the dependence of the lower yield stress and of the 

plastic flow on the equivalent plastic strain rate and on the temperature. 

Furthermore, the Split Johnson-Cook model has been conceived in such a way 

capable of maintaining the same computational appeal of the original Johnson-
Cook model. Indeed, it operates by requiring only the knowledge of the equivalent 

plastic strain, the equivalent plastic strain rate and the temperature, thus allowing to 

perfectly fit in the same computational framework of the original Johnson-Cook 

model. 

The features of the new model have been widely discussed, together with a 
comprehensive discussion on its calibration strategies. Through a reasoned 

approach, three different calibration approaches have been presented. The new 

model has been also applied to the same real material case and results have been 

compared to those obtained through the original Johnson-Cook model. The 
replacement of the original Johnson-Cook model with the new model appears to 

almost exclusively introduce positive consequences. Negative implications, if any, 

appear to be very limited. Even though the model requires four extra parameters, 

the need of experimental data, the heaviness of calibration and the computational 

weight remain almost unchanged, comparing to the original Johnson-Cook model. 
Of course, the proposed model should be considered only when totally empiric 

approaches are under consideration. If the necessity to adopt more physically-

based models becomes important, other strength models which specifically address 

this aspect should be taken into consideration. As a future development, the new 
model may be implemented in FEM codes. Structural results may then be 

compared to those provided by the original Johnson-Cook model, in particular by 
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considering some benchmark reference cases. For instance, the model may be 

implemented in the FEM code LS-DYNA, in order to allow for using the Split 
Johnson-Cook model in the perforating gun simulations carried-out in the present 

work and then achieve a possible refinement of the outcomes in quantitative terms. 

The third and last part treated in the present work aimed at analyzing a 

perforating gun device proposed by the industrial partner that has co-sponsored the 
present research project. The main target was that of assessing the resistance of 

the carrier component, in particular when subjected to different stressing factors 

produced by the firing of the device. 

First of all, perforating gun devices have been briefly described. Particular 

attention has been paid to the analysis of shaped charge explosions and the 
description of the resulting hyperfast liners, together with the main features and 

problematics related to the carrier. Afterwards, Lagrangian and Eulerian FEM 

simulations have been carried-out, by considering the firing of a specific perforating 

gun device. The main target of this investigation was that of assessing the 
performance of the carrier. For what it concerns the Lagrangian FEM simulations, 

single scallop and three scallop simulations have been carried-out. Eulerian FEM 

analyses have been carried-out for the single scallop configuration only, accordingly 

to the available computational capacities. The coherency of the obtained results 

has been assessed by considering the few available experimental data, specifically 
in terms of liner velocity, peak pressure at the first impact between the travelling 

liner and the carrier, and peak temperatures. Based on these findings, it is possible 

to state that the outcomes of the Eulerian FEM simulations appear to be much more 

reliable than those of the Lagrangian FEM simulations. 

In particular, the present Lagrangian FEM simulations appear to greatly 
overestimate many key variables, such as the equivalent plastic strain rate, the 

temperature and the pressure. The obtained values are about one order of 

magnitude higher than the expected values. As previously stated, this aspect is 

believed to be strictly related to the strong simplifying hypotheses made for 
carrying-out the present Lagrangian FEM simulations, in particular for the taken 

assumption of a rigid liner. These aspects imply that the present Lagrangian FEM 

simulations may not actually model the true physical phenomenon under 

examination. All the listed negative aspects lead to the belief that the Lagrangian 

FEM results, in the present form, are not very reliable. Anyway, it is worthwhile to 
note that the carried-out Lagrangian FEM simulations appear to determine a 

considerable improvement comparing to those already presented in Ambrosi and 

Briganti, 2010, i.e. in the previous investigation on the carrier resistance conducted 

by the industrial partner. In particular, such improvements consist in the 
replacement of a linear equation of state with a Mie-Grüneisen EOS, in having 

tripled the number of finite elements on the carrier thickness, in a better 
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determination of the Johnson-Cook damage and failure parameters, and in all 

consequent outcomes. 
Concerning the Eulerian FEM simulations, the obtained results appear to be 

much coherent, due to the good correlation of the outcomes with the few 

experimental values available and mentioned above. Furthermore, the final carrier 

deformed configuration appears to be quite coherent with the expected results. 
However, it is important to recall that both the carried-out Lagrangian and Eulerian 

FEM simulations are heavily influenced by lack of data, both geometrical and 

material. In particular, the lack of material data is quite evident. For the carrier, the 

Johnson-Cook hardening function has been calibrated with only two experimental 

observations in the equivalent plastic strain rate range, with a maximum value of 
1100 s-1, that is about three orders of magnitude lower than the peak values 

registered a posteriori in the Eulerian FEM simulations. Furthermore, no data have 

been provided for the calibration of the temperature term of the Johnson-Cook 

hardening function. Regarding the damage of the carrier, no data have been made 
available, resulting in the necessity to totally rely on literature values. Analogously, 

the Mie-Grüneisen EOS parameters for the carrier have not been calibrated and 

come from the literature, as for the spall strength limit. Similar considerations hold 

for the material parameters of the other components, i.e. the case, the explosive, 

the liner, the casing, the concrete coating and the soil. All these uncertainties shall 
exclude the possibility to consider the obtained Eulerian FEM results as truly 

quantitative. However, they shall be considered very valuable and probably 

innovative in qualitative terms. As a matter of fact, the present Eulerian FEM 

simulations appear to set as cutting-edge in the field of computational simulations of 

perforating gun devices. In particular, these simulations appear to be innovative for 
the fact of considering truly full tridimensional analyses. This aspect allows for 

future investigations regarding the simultaneous explosion and interaction of 

additional shaped charges, e.g. three shaped charges. Moreover, it may be said 

that the obtained Eulerian FEM results already allow to outline some interesting 
considerations on the operating phase and on the design of the considered 

perforating gun. For instance, by considering the fact that the analyzed carrier has 

resisted the firing process quite well, it may be proposed to diminish the thickness 

of the scallops, in order to achieve a higher liner velocity after having pierced the 

carrier. Other design tips may come by considering the strong flaring effect of the 
rear part of the liner on the inner side of the carrier. For instance, the inner part of 

the carrier may be somehow reinforced in the nearby of each scallop. 

In order to further improve the coherency of the obtainable results, the first point 

to follow would be that of carrying-out further experimental tests on the considered 
materials, with specific attention to the carrier steel, considering that investigating 

the structural response of such component is set as a primary aim. In particular, 
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carrier plastic flow temperature behavior should be investigated. The use of other 

strength models may be considered as well. On the basis of the very high 
equivalent plastic strain rates involved, the adoption of the Steinberg-Cochran-

Guinan or the Steinberg-Lund models may be attempted. In the case of enlarging 

the database of available experimental data, another interesting option would be 

that of improving the coherence of the simulations by replacing the Johnson-Cook 
hardening function with the enhanced Split Johnson-Cook model proposed in 

Chapter 3, after having implemented it into a FEM code. 

Similarly to what stated for the carrier steel strength model, the Johnson-Cook 

damage and failure model needs to be calibrated in its five material parameters. 

Furthermore, a more coherent spall model may be introduced, even though the 
Eulerian FEM simulations do not appear to reveal the presence of very high tensile 

pressures in the carrier. However, the implementation of the Cochran-Banner spall 

model may be interesting to be pursued, together with an experimental investigation 

of the spall resistance of the steel carrier. Some other investigations may concern 
the use of equations of state different from the Mie-Grüneisen. As instance, the 

Tillotson EOS may be taken into consideration. In this regard, Lee, 2002, provided 

two dimensional Eulerian FEM simulations of a perforating gun by adopting a 

Tillotson equation of state for modeling the volumetric behavior of an oil shale, while 

the Mie-Grüneisen EOS was maintained for modeling the other components of the 
perforating gun device. 

Beyond the carrier, the material parameters of all the other components should 

be better evaluated as well. Furthermore, the FEM simulations should rely on more 

specific geometrical parameters, with particular reference to those of the shaped 

charge and to the standoff distance. Another interesting point may be that of 
introducing in the simulations the support and detonation systems of the shaped 

charge. FEM simulations that considered also the shaped charge support are 

exposed in Grove et al., 2006. 

The listed improvements should allow to obtain more quantitative results, which 
in turn shall permit to proceed with an optimization of some parameters of the 

perforating gun device. As instance, a strategy may be that of optimizing the carrier 

resistance, e.g. in terms of minimizing the bulging, together with an optimization of 

the penetration capacity, which may be assessed in terms of the length of 

perforated soil or of the liner velocity after having pierced the carrier. Another 
important point is that of maximizing the efficiency of the upcoming hydrocarbons 

flow toward the surface, which may be related to, e.g., the fact of having a larger 

hole in the casing and in the concrete coating, as suggested in Lee, 2002. 

The variables on which act in order to achieve such optimization may be the 
geometrical parameters of the scallops, the material parameters of the carrier steel, 

the standoff distance, the shaped charge deployment strategy, the liner material 
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and many others. As instance, Han and Ference, 2010, provided interesting 

considerations regarding the effect of the shaped charge case material on the 
detonation of the main explosives and the resulting liners. Steel and zinc cases 

were considered, showing sensible differences in the pressures and temperatures 

due to the explosion. Another example of a reference in which some specific 

perforating gun parameters are investigated is provided in Jin et al., 2011, which 
presented a study on the effect of the liner cone angle on the produced liner, and 

therefore on the impact between the liner and the carrier. Furthermore, Lee, 2002, 

presented a study on the effect of adopting different external shaped charges 

diameters on the produced liners. 

Of course, the optimization should also consider other technical parameters, 
such as the soil and rock properties, the difference of pressure between the 

reservoir and the well, the capacity to remove after detonation debris and so on. In 

this regard, some considerations may be found in Tariq, 1987, Behrmann and 

Elbel, 1991, Behrmann and Nolte, 1998, Baxter et al., 2009, and Burman et 
al., 2011, with particular reference to the analysis of the phenomenon of fracturing 

the carrier and the subsequent targets. 

Beyond the FEM simulations obtained in this work, further investigations may be 

conducted as well. First of all, Eulerian simulations of a configuration with three 

shaped charges may be carried-out. The results should allow to evaluate the third 
stressing effect on the carrier, i.e. possible impacts with fragments or parts of the 

exploded shaped charges and their support and detonation systems. Furthermore, 

Eulerian three scallop simulations should allow to assess the possibility of synergic 

interactions of the stressing factors acting on the carrier, with particular reference to 

the actions of the explosives and the rear parts of the impacting liners. The 
possibility of the arising of splits and cracking may be assessed. It may also be 

interesting to further investigate the opportunity to carry-out simulations with the 

SPH method, that has been inquired only marginally in the present research 

project. This method may present problems related to the modeling of the 
detonation of the main explosive, but, on the other side, it may allow to carry-out 

more elaborated simulations. See, e.g., Swift et al., 1998, for an analysis carried-

out with the SPH method. 

Further investigations may also be conducted with the aim to evaluate the firing 

of the perforating gun in another ambient fluid. In particular, the air outside the 
carrier may be replaced by water, possibly at high pressures, in order to investigate 

underwater explosions of the device at various depths, i.e. at various water 

pressure. 

As final conclusion, the results obtained and presented in this work are believed 
to satisfy both the academic and industrial sides involved in the present research 

program. The new proposed strength model may actually be considered as an 
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original scientific proposal. It appears capable in principle to improve the coherency 

of the original Johnson-Cook model and therefore it provides a theoretical and 
computational tool potentially useful in many practical situations. Furthermore, the 

obtained perforating gun FEM simulations appear to set as cutting-edge in the 

specific modeling field. They actually seem to be capable of providing detailed 

information on the process of industrial interest, i.e. the firing of a perforating gun 
device. Beyond all the possible future improvements, the FEM simulation results 

presented and discussed in this work appear to be useful for establishing some 

relevant considerations towards the design of the specific analyzed perforating gun 

device, although the investigations are still in an unfinished stage. In particular, 

important points regarding the structural resistance of the carrier have been 
clarified, i.e. the main target of the campaign of FEM simulations conducted and 

exposed in the present work. The obtained outcomes allow to point-out several 

considerations immediately usable in the optimization process of the device 

components. Indeed, this information is believed to be potentially helpful for the 
design and optimization processes of the analyzed industrial device. 
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