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ABSTRACT

Humans learn to trust new partners by evaluating the outcomes of repeated interpersonal
interactions. However, available prior information concerning the reputation of these partners
may alter the way in which outcomes affect learning. This thesis combines for the first time
behavioral, computational, psychophysiological and neural models in a direct comparison of
interaction-based and prior-based decision-to-trust mechanisms. Three studies are presented,
in which participants played repeated and single trust games with anonymous counterparts.
We manipulated several conditions: whether or not reputational priors were provided, the
probability of reciprocation (trustworthiness) of each counterpart, and the time-horizon of
the relationships.

The thesis addresses several challenges involved in understanding the complex behavior of
people in social contexts, by investigating whether and how they integrate reputation into de-
cisions to trust unfamiliar others, by designing ways to combine reputation information and
observed trustworthiness into unified models, and by providing insight into information on
the brain processes underlying social cognition. Numerous models, algorithms, game theo-
retical and neuroscientific methods are used to examine these questions. The thesis presents
several new reinforcement learning (RL) models and explores how well these models explain
the behavioral and neural interactions between trust and reputation.

The performance of the new models was tested using experiments of varying complexity.
These experiments showed that model-based algorithms correlate better with behavioral and
neural responses than model-free RL algorithms. More specifically, when no prior informa-
tion was available our results were consistent with previous studies in reporting the neural
detection of parametric estimates of RL models within the bilateral caudate nuclei. However,
our work additionally showed that this correlation was modified when reputational priors on
counterparts are provided. Indeed participants continued to rely on priors even when experi-
ence shed doubt on their accuracy. Notably, violations of trust from counterparts with high

pro-social reputations elicited both stronger electrodermal responses and caudate deactiva-
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tions when priors were available than when they were not. However, tolerance to such viola-
tions appeared to be mediated by priors-enhanced connectivity between the caudate nucleus
and ventrolateral prefrontal cortex, which was anti-correlated with retaliation rates. Moreover,
in addition to affecting learning mechanisms, violation of trust clearly influenced emotional

arousal and increased subsequent recognition of partners who had betrayed trust.
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The important thing in science is not so much to obtain new

facts as to discover new ways of thinking about them.

Sir William Bragg

Introduction

TRUST is a critical social process that enables human cooperation to prevail in societies and
organizations (Axelrod and Hamilton, 1981). However, some agents can adopt selfish and
myopic behaviors that imply trust violations in order to obtain immediate beneficial outcomes
(Fraser, 2011; Camerer and Weigelt, 1988). Thus relying on someone else’s trustworthiness
(i.e., the fulfillment of trust) is a risky decision in social exchanges because it creates vulner-
abilities and exposes to the harmful consequences of trust violations. In order to reduce so-
cial uncertainty and determine whom to trust or distrust, people rely on relationship-specific
history - based on previous interactions (King-Casas, Tomlin, Anen, Camerer, Quartz, and

Montague, 2005; Simpson, 2007).

However, information transmitted by others (through communications or exploitation of
available data, such as information acquired on the Internet) can reduce uncertainty about the
outcome of social interactions (Delgado, Frank, and Phelps, 2005; Biele, Rieskamp, Krugel,
and Heekeren, 2011). Indeed, reputational signals convey information about the likely be-
haviour of others and are potentially relevant to decide whether or not to trust - for exam-
ple during online transactions. Despite the central role of both reputation information and

observed trustworthiness during personal and impersonal trust-based relationships, no study



has directly confronted interaction-based and reputation-based exchanges.

Previous studies have primarily focused on unbiased, interaction-based trust-decisions, pay-
ing relatively little attention to the reputational component of the interaction (Krueger, Mc-
Cabe, Moll, Kriegeskorte, Zahn, Strenziok, Heinecke, and Grafman, 2007; King-Casas et al.,
2005; Phan, Sripada, Angstadt, and McCabe, 2010). Given the growing importance of repu-
tation in social exchanges (e.g., the popularity of online social media) this work aims to shed
light on the behavioral, computational and neural signature of trust and reputation. This the-
sis addresses the problem of whether, and how, reputational priors affect social decision mak-
ing and learning to trust mechanisms. The work presents behavioral and computational data,
model-based functional neuroimaging and psychophysiological measurements to characterize
the role of priors in social decision making. This project proposes a new framework that takes
insights from neuroscience, economics and computer science to explain neurocognitive pro-
cesses involved in the decision to trust when prior information is available or not. It goes be-
yond previous work in its consideration of the complexities of human reasoning and making

decisions with respect to reputation.

1.1 NEUROECONOMICS

Human decision-making and strategic thinking have been studied in a wide range of domains
for decades. Cognitive scientists and psychologists use behavioral data and psychometric vari-
ables to model and explain behavioral and cognitive manifestations in controlled experimental
designs. Behavioral economists attempt to understand and predict psycho-social biases that
alter economic decisions in more ecological experimental settings in order to improve eco-
nomic theories. Neuroscientists on the other hand, investigate the neural signature of cogni-
tive and mental processes that guide behaviors. Conventionally, the interplay between these
disciplines has been relatively restricted until the recent development of neuroscientific tools
and modern technologies that have allowed the emergence a new interdisciplinary field that
combines the three domains: the neuroeconomics field. Being at the crossroads between eco-
nomics, psychology and neuroscience neuroeconomics aims to provide a unified theoretical
framework of human decision-making. The interdisciplinary approach is vast and includes dif-
ferent perspectives, from neuroimaging studies to electrophysiological studies in non-human
primates and incorporates various topics such as theory of choice under uncertainty, tempo-
ral discounting, framing effects, strategic choice, social decision-making, theory of mind , etc
(See the book Glimcher, Fehr, Camerer, and Poldrack, 2008). The theories and models pro-
posed in this thesis are defined by empirical evidences and by biological processes support-

ing human brain activities. The three studies presented in this work use game theoretical ap-



proaches, computational models and neuroscientific techniques to describe and predict hu-
man behaviours in social environments. In fact, this thesis is aligned with the “two goals of
neuroeconomics” (See Montague, 2007): to understand the biological aspects of a living or-
ganism sustaining itself through time and processing information “efficiently”; and to probe
the algorithms running such biological foundations (Montague and Berns, 2002; Montague,

King-Casas, and Cohen, 2006; Camerer, 2007; Fehr and Camerer, 2007).

1.2 ON MODELING

Interactions between computer science and neuroeconomics can go both ways; algorithmic
ideas can inform decision-making theories, and insights from neuroeconomics can inspire
solutions of engineering problem-solving. In this work, I adopt the former view, i.e., apply-
ing the relatively sophisticated models for prediction and control from machine learning into
new theories of cognitive and brain functions. This thesis aims to improve behavioral and
neural theories of trust and reputation in social context by making use of theoretical and algo-
rithmic ideas from reinforcement learning (RL). Indeed, social learning and social decision-
making where appropriate actions lead to positive reinforcements (rewards) and inappro-
priate actions lead to negative reinforcements (punishments), can be viewed as RL prob-
lems devoted to trial-and-error and goal-directed problem-solving (Kérding, 2007; Lee, 2006;
Balleine, 2007). Originating from psychology, biology, and improved in computational sci-
ence, RL has quickly become an important technique in neuroeconomics where it has been
extensively studied in both humans and animals (Gmytrasiewicz and Doshi, 2005; Daw and
Doya, 2006; Johnson, van der Meer, and Redish, 2007; O’Doherty, Hampton, and Kim, 2007;
Doya, 2008).

In particular, the Temporal Difference algorithm applied to the Q-function (TD-Q learn-
ing, see Box 1) is thought to be instantiated in the neural reward circuitry (mimicking phasic
responses of nigrostriatal dopamine neurons) (Schultz, Dayan, and Montague, 1997; Schultz,
2004), and has also been found to reflect high-cognitive behavioral and neural data (Nakahara,
Itoh, Kawagoe, Takikawa, and Hikosaka, 2004; Wittmann, Daw, Seymour, and Dolan, 2008).
In the family of TD models, the Prediction Error (PE) which is the discrepancy between ex-
pectation and reality, is used to update prediction values of future rewards. Additionally, by
constantly minimizing PE and biasing action towards maximum future rewards, learned ex-
pectations eventually converge to optimal rewards in the long-term (McClure, Berns, and
Montague, 2003). TD-RL appears to be so embedded in the literature (For an excellent re-
view, see Dayan and Niv, 2008), that it allows testing of a wide range of hypotheses about

behavioral, psychophysiological and neural data.



BoX 1: REINFORCEMENT LEARNING

MAaRrkov DecisioN PrRocess (MDP)

Formally, a MDP describes the quintuple S, A, P, R, 7, where S is the state space
of an agent, A is the action space, P is the set of Markovian transition probabilities,
R is the reward function suchas § X A X S —, Rand y € [o,1] is the discount
factor of long-term reward. The space state is sampled so that at each time ¢, the
environment is in one state s; in which the agent can choose one action a; according
to a certain policy, 7 : S — A. The state then changes to s, and the agent receives:
re = R(s, a,5¢+.). The agent’s goal is to follow a Policy which maximises the
expected long-term future reward. This quantity is called the value function and is
defined for a given policy 7 as:

Vi(s) = E[Y, 7'rils0 = 5,7 € RS
Given these equations, the goal is to find 7* € argmax,V”. For this, the action-value
function (Q—function) is defined. This function adds a degree of freedom on the
first action that is chosen:

Q(s,a) = E[} o, v'1tlso = 5,8, = a,71] € RS*A
The value function of the policy 7™ is noted (Q*) V*. If Q* is known then the optimal
policy can be computed with a Greedy behavior as: 7*(s) € argmax,Q* (s, a)

BELLMAN EQUATIONS

Using the Markovian property, the value function (of a specific policy =) satisifies
the Bellman evaluation equation:

Q* (St ar) = B o anlre + Q7 (e, 7(se44) )]
To find the optimal policy, this Bellman equation can be used within a policy
iteration process. A first 7, is chosen. At interation i, the policy =; is evaluated and

the Q—function is excecuted. Since the policy 7;, is defined as being Greedy, then:
Q" : mip,(s) € argmax,Q” (s, a)

TD-Q LEARNING

If the model is unknown, the value function can be estimated through interactions
such as:

Q(St, ar) < Qlst, ae) + ar(re + yQ(st41, a0 + 1) — Q(st, ar))
known as the Temporal Difterence algorithm applied to the Q-function with a being

the lerning rate.




In experiments where trust can emerge as the result of repeated interactions between part-
ners (interaction-based situation), behavioral economics studies have reported that RL learn-
ing models explain existing equilibrium in game theory and the selection of particular equi-
librium in case of multiple equilibria (Camerer and Weigelt, 1988; Fudenberg, Kreps, and
Maskin, 1990). RL models have also been found to reflect behavioral data from people per-
forming repeated interaction tasks (Chang, Doll, van 't Wout, Frank, and Sanfey, 2010; Bos,
Dijk, and Crone, 2012). Besides capturing behavioral changes, the TD-Q learning in particu-
lar also reflects neural activities (Chapter 22 in: Glimcheretal.,, 2008). Investigating interaction-
based decision to trust, recent neuroeconomics studies showed that activity in the dorsal stria-
tum (part of the reward circuitry), shifted, over the course of interactions, from the time when
trustors received trustworthy outcomes to the moment when they made their decision to trust
(see chapter 2, section 3.3). This pattern of activity is similar to a theoretical PE signal, used
to update the value of a predictive signal during learning that shift to the time of the signal itself
after learning (King-Casas et al., 2005).

More formally (see Box 1), the original TD Q-algorithm manipulates summary represen-
tations of the Markov Decision Problem (MDP), (the value function (e.g., Q), and/or the
policy 7) and links received rewards into long-run expectations with the recursive Bellman
Equations (Sutton and Barto, 1990, 1998; Bellman, 2003 ). This algorithm, named the model-
free algorithm, can only update values along experienced state—action trajectories. Choices
estimated by model-free systems can be compared to fast and reflexive choices based only on
experience and describe very well interaction-based decisions (Chang et al., 2010; Bos et al,,
2012). However, these algorithms have no control over the rules of MPD themselves (i.e., the
probability distributions governing transitions between states and the reward function). Since
these rules represent the contingencies and actual outcomes of the problem to learn, model-free
algorithms, similar to stimuli-responses habits, cannot be adjusted by expectations, changes in
goals or rules. In the present work, reputation is assumed to impact on people’s beliefs about
others. Therefore, model-based algorithms, favoring actions suggested by the agent’s internal
model of the environment appear more appropriate to describe prior-based decision-making
where reputational priors play an important role (Doll, Simon, and Daw, 2012; O’Doherty

etal, 2007).

The model-based versus model-free, distinguishing between goal-directed and habitual in-
strumental behaviors (Daw and Doya, 2006), will be tested in this thesis where I propose
new extensions of model-based RL models to account for potential interactions between trust
and reputation mechanisms. These models, using differential representation of the transition
structure T, and the reward function R will be defined and compared to model-free algorithms

using behavioral and neural data. This work also proposes that these two categories of models



are implemented in the brain using synergic and parallel circuits, in line with previous studies
(Daw and Doya, 2006; Balleine, 2007; Tricomi, Balleine, and O’Doherty, 2009; Wunderlich,
Rangel, and O’Doherty, 2009) and aims to extend our understanding of the model-based part

of this neural architecture.

1.3 MOTIVATIONS

The overall goal of this thesis is to advance theories of the dynamic interplay between repu-
tational priors and trustworthiness beliefs from a behavioural, computational, physiological
and neural point of view. The thesis is organized in three steps: (i) theoretical and computa-
tional models are proposed and then tested against behavioural data collected from a relatively
large population to verify their adaptivity and validity (ii) nominated models are used to probe
new behavioural data sets and their estimated parameters are entered into parametric fMRI
analysis - to enrich neural theoretical models of trust and reputation interactions (iii) the new
framework and theory are used in the psychological and emotional domain to validate and

propose a wider range of results.

First, computationally, I propose a selection of model-free and model-based RL algorithms
that can operate in a biologically plausible manner. Their properties are exposed and sensible
extensions are proposed so that the new model-based RL systems can better explain the com-
plexity of trust and reputation in human social context. Thus, the models” accounts of people’s
behaviour are made faithful, confronted directly with the presented data and theoretically with

previous anomalous findings.

Second, at a brain level, the selected “best” models - in terms of behavioural-fit - are used
to assess fMRI data with model-based parametric techniques. In this part, the thesis extends
previous neuroimaging findings in trust-based decision-making with new insights on the func-

tional interplay between the basal ganglia and prefrontal areas in human brains.

Finally, in a psycho-physiological study, the proposed theory of trust and reputation is
tested with inter-individual subjective data such as emotional rating, emotional arousal recorded

with electrodermal methods and eye movements.

1.4 ORGANISATION OF THE THESIS

The thesis first presents the relevant literature followed by the description of three experiments

involving healthy humans: a behavioural/computational study, a functional neuroimaging



study, and a last experiment in which different method of psychophysiological measurement
(eye-tracking and electrodermal response) are combined. All three studies make use of a game
theoretical task, called Trust-Game (TG), with varying experimental parameters. In all of
them interaction-based and prior-based trust decisions are directly compared (i.e., whether rep-
utational priors were provided or not). Between each experiments, the trustworthiness level
of counterparts and different relationship end points are manipulated. Each of these exper-
iments raises theoretical issues and proposes new insights that extend existing models and

theories of social decision-making in several directions.

Chapter two reviews the literature in three broad fields: (i) Economical and behavioral
game theories about social learning, trust and reputation, (ii) computational work in artificial
reinforcement learning and (iii) experimental evidences of behavioral and neural signatures of
trust-based and prior-based social decision-making. This chapter introduces the Trust Game
(TG) which is the methodological experimental task employed in the three presented exper-

iments.

Chapter three addresses the challenges of including the effect of meaningful reputational
prior in RL models, that account for external information and internal beliefs of the agent in
different ways. One family of models (commonly termed model-free or habitual) choose ac-
tions on the only basis of experience and accumulation of reward, whereas a second (named
model-based or goal-directed) choose actions that causally lead to reward according to people’s
internal representation of the situation. In this chapter, several models from these two cate-
gories are defined, adjusted and confronted with behavioral data of people playing repeated
TGs. Evidence suggests that trust and reputation are intertwined in the decision-making pro-
cess and that an Adaptive-Belief model-based RL system robustly accounts for the variability

in people’s interaction behavior when prior are provided.

Chapter 4 uses advanced notions from the previous study in order to explore neural activity
when people play repeated TGs with stochastic endings. The model-based algorithm fitting
behavioral data with the highest accuracy is used to estimate trial-to-trial RL parameters that
are entered into fMRI analysis at time of choices and outcomes. Results suggest a functional
connectivity between the prefrontal cortex, which favors actions suggested by the reputation,
and the caudate nucleus that signals unexpected changes in context. Particularly exciting are
the results showing that model-based techniques can bridge the gap between behavioral and
neural results. This chapter provides a unified and normative account of both the trust-related
neural responses in different areas of the brain and of how the computations these areas carry

out influence learning behavior.

Chapter s examines the way in which varying reputational priors (i.e., from highly pro-



social to highly self-centered) influence the allocation of visual attention and electrodermal
responses when participants play single TG with unfamiliar partners. This third study provides
confirmatory answers about the effect of reputation in allocating trust and presents prelimi-
nary analysis on its effect on emotional reports, physiological arousal and later recognition.
The most encouraging results explore the relationship between violation of social expectation
and later memory-recognition and therefore should guide future experimentation and analysis

in this area.



A general “law of least effort” applies to cognitive as well as
physical exertion. The law asserts that if there are several
ways of achieving the same goal, people will eventually grav-
itate to the least demanding course of action. In the economy
of action, effort is a cost, and the acquisition of skill is driven
by the balance of benefits and costs. Laziness is built deep

into our nature.

Daniel Kahneman

Theoretical background

This section reviews work in neuroeconomics and in reinforcement learning (RL) related to
the foundation of trust, reputation and social learning. After some material introducing key
conceptual definitions, the chapter focuses specifically on previous work related to the theo-
retical issues relevant to the data considered in this thesis. More complete overviews of the
economics and neuroeconomics foundation of trust and reputation mechanisms have been
published in articles and book forms (Bohnet and Huck, 2004; Mailath, 2007; Nooteboom,
2002) and chapter in (Chapter 9 in: Rose, 2011). For reinforcement learning applied to neu-
rosciences, I draw on other reviews and books (Bertsekas, 2012; Sutton and Barto, 1998; Kael-

bling, Littman, and Moore, 1996) in what follows.

2.1  CONCEPTUAL DEFINITIONS

For decades, a wide range of disciplines have demonstrated the role of trust and reputation in
all human interactions. Despite their proposed importance, the definitions of trust and repu-
tation are not fully settled. Psychology and Economics have in common some aspects of their
definitions, and differ in others. Although my purpose is not to settle matters of terminology,

it will be useful to clarify in which way I use the terms of trust and reputation.



2.1.

1

DEFINITIONS OF TRUST AND REPUTATION

TRrRuUST

« InPsychology - also redirected to Cognitive Neurosciences - the term “trust” character-

izes both a state of mind and a social attitude. First, it refers to an individual willingness
to trust, which may vary depending on the context, the personal history or an internal
hormonal state (Boon and Holmes, 1991; Mayer, Davis, and Schoorman, 1995; Rot-
ter, 1967, 1971). Second, it refers to a social attitude and social preference. Trust was
defined by Luhmann (1979) as a “process encompassing beliefs about others and their will-
ingness to use that knowledge as the basis for action” (Luhmann, 1979). Berg and his col-
leagues (Berg, Dickhaut, and McCabe, 1995 ) define trust as a situation in which a first
person (the trustor or investor) is willing to rely on the future actions of another party
(trustee). In such situation, the trustor, with or without his volition, abandons control
over the actions performed by the trustee. As a consequence, the trustor is uncertain
about the outcome of the other’s actions; he can only develop and evaluate expecta-
tions. The uncertainty involves the risk of failure or harm if the trustee does not behave

as desired.

In Economics, “trust” refers to the situation in which a person “expects” another per-
son to “do” something or “behave” in a certain way. Trust fits with moral hazard models
due to repeated interactions and the possibility to punish “off-the-equilibrium” behav-
iors. In fact, the core of trust definition is that it emerges from interpersonal exchanges
(Bohnet and Baytelman, 2007; Cox, 2004; Hong and Bohnet, 2004). The definition
of trust is also linked with economic primitives like social preferences, beliefs about the
trustworthiness of others, or risk attitudes (Coleman, 1994). Bohnet and his colleagues
(2003) also identified betrayal aversion as another key feature in trusting behavior, such
that it leads to the delineation of property rights and contract enforcement (Bohnet and

Zeckhauser, 2003).

REPUTATION

« The definition of “reputation” from a Cognitive Neuroscience point of view is sparse

and does not benefit from a broad range of empirical examples. Because itis still arecent
topic of interest in the domain, there are differing views about the role of reputation.
While studying cooperation and social dilemmas, cognitive scientists and psychologists

have defined reputation as a corporate/collective image socially transmitted that pro-
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vides information about people, organizations or standing (Bromley, 1993, 2000). The
reputation of an agent corresponds to the aggregate of other’s beliefs about that agent
behaving socially. In that sense, reputation is an indirect, derive belief about other’s apti-
tude in a social context. Reputation can be interpreted as the expectation that a trusting
person holds about another person from its past actions and behaviors towards others,

which include trustworthiness, cooperation, reciprocity, or norm-acceptance.

« Reputation refers in Economics to situation in which people “believe” others to act in
a certain way or to “be” a certain “type” of person (Cabral, In press). It's commonly de-
fined as “the estimation in which a person or thing is generally held”, as “a favourable name
or standing” or as “the way in which a person or thing is known or thought of” (Deelmann
and Loos, 2002). The goal of reputation mechanisms is to enable efficient transactions
when cooperation is compromised by possible opportunism (moral hazard) or infor-
mation asymmetry (also refers to as adverse selection'). Reputation has also been de-
fined as beliefs of participants about others’ strategic character (Camerer and Weigelt,

1988). The bases of the reputational mechanism are a Bayesian updating and signaling.

2.1.2 INTERPLAY OF TRUST AND REPUTATION

Given their definitions, trust and reputation are highly interrelated; reputation reinforces trust
(and vice versa) and relates to the measurement of trustworthiness value. Indeed, one can
trust another based on his reputation and its reliability. For example in online marketplaces,
reputation systems have been intentionally used as trust facilitators, and both the decision-
making and incentive process to avoid frauds and deceits (Kim, 2009). The trustworthiness
value of an agent is computed by aggregating all reputational information that is obtained from
other agents. The trustworthiness value, derived by reputation, is classified as indirect, third-
party trust or transitive trust. The idea behind trust transitivity is illustrated as follow: assume
Kevin trusts James, and James trusts Isabelle. When James refers Isabelle to Kevin, then Kevin
derives a quota of trust in Isabelle based on James’ point of view about her. This trust transi-
tivity, defining one aspect of reputation mechanism, is illustrated in the picture below (see

picture 2.1.1).

However, there are, at least, two main differences between trust and reputation mecha-

nisms: (i) trust comes from direct-based interactions and the trustworthiness judgment is

! Adverse selection is present in situations where one person possesses information (about their type, their
innate ability, the quality of what they offer, etc.) that others don’t. These situations often arise in markets for
experience goods.
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Figure 2.1.1: Trust transitivity principle. If Kevin trusts James, James trusts Isabelle and James refer
Isabelle to Kevin, then Kevin derives a quota of trust in Isabelle based on James’ point of view about
her, in combination with his own trust in James.

a direct belief-constract, whereas reputation provides an indirect trustworthiness judgment
transmitted by others, (ii) trust is based on subjective and reflexive representation of others,
whereas reputational information or ratings about specific events, such as attitudes or trans-
actions, are used as a model of trust. Given that trust and reputation are based on different
sources of information, the overlap between the two is a formal certainty on the trustworthi-
ness of others but divergence between the two information might also generate representa-

tional conflict (Deelmann and Loos, 2002; Bromley, 1993 ).

2.2  REPUTATION AND TRUST AS LEARNING MODELS

All definitions of trust mentioned earlier share a common assumption: trust mechanisms
emerge from repeated interaction. If people interact regularly enough, they can build an in-
ternal image of the other that will support their willingness to trust them or not. The two next
paragraphs will present key features of the economic model of trust and reputation. I will also
focus on mechanisms of trust and reputation from the point of view of psychology and cogni-

tive science, and methods to compute these models.

2.2.1 REPEATED GAMES AND FOLK THEOREM: BOOTSTRAP MODEL

For economists, the repetition of a situation creates the possibility of equilibrium action pro-
files that couldn’t exist otherwise. Within Economics, Game Theory investigates repeated and
strategic thinking, and models phenomenon emerging from situations (games) where differ-

ent actors interact (Deelmann and Loos, 2002; Bin Yu, 2002; Cabral, In press).

In order to illustrate trust as a social context, let’s consider an interaction repeated several
times between a seller and a buyer. On one hand, the seller can decide whether or not he wants

to make an effort to offer a high quality product. His effort to propose a high quality product
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has a cost: effort > o. If he exerts effort, the product has a high quality. If he doesn’t, then the
chance for the product to break is high (but effort = o). On another hand, the buyer surely
will prefer to pay price = 1 for the good product that works and o for the one that has a high
chance to break once bought. In this situation, we assume that the buyer does not know the

seller so he cannot determine the seller’s willingness to labor in the manufacture process.

From a theoretical point of view, the willingness to make such an effort to produce depends
on the ratio between effort and price. If effort < 1, then it is efficient for the seller to make an
effort: indeed the difference between the price paid by the buyer and the cost is still positive.
However, selling a high-quality product is evidently not an equilibrium. Regardless of the
beliefs of the buyers towards to seller’s actions, rational economists will claim that the seller
should never make any effort into selling a high quality product. In fact, when the buyer will
realize that the product is not of good quality, the seller will have already been paid and its
benefits will be large: priceeffort = price. In this case, a buyer that understands the seller
strategy should never have paid for the product.

However, if the situation happens several times (game theorist would categorize this case
into the “infinite repeated games with asymmetric information”) then other equilibrium cap-
ture the repetition of the situation and its consequences. As an example, imagine that the
buyer starts by trusting the seller and therefore pays the expected value of a good quality prod-
uct, e.g. 1. If the product breaks down then the buyer has incentive to punish the seller and
stop buying. In this situation, the seller should anticipate such reversal strategy and offer a
good product at each time of the interaction. In terms of patience ', one could propose that

the discounted payoff from keeping his trust would be:

<ﬂ) (2.1)

1 — price

If he decides at any time to not invest effort on the product he will get a 1 in the short-term
but o in the long-term. Therefore trust in this scenario is an equilibrium if (Equation 2.1) is

>= 1 orif price > effort.

One of the central tenets of the repeated game theory, the folk theorem, states that if players
are patient enough, then any rationally possible set of individual payofts can be sustained as the
Nash equilibrium of a repeated game (Cabral, In press). The folk theorem can be interpreted

asamodel of trust: If players are patient and the future matters alot to them, then mutual trust

"We can relate a player’s discount factor § to her patience. How much more does this person value a dollar
today, at time ¢, than a dollar received 7 > o periods later? The relative value of the later dollar to the earlier
is 877 /87, As § < 1, s0 as her discount factor increases she values the later amount more and more nearly
as much as the earlier payment. A person is more patient the less she minds waiting for something valuable
rather than receiving it immediately. So we interpret higher discount factors as higher levels of patience.
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can exist in equilibrium. The basicideais very simple and intuitive: thereis a trade-off between
a myopic short-term gain from defeating the other and a long term loss from destroying trust

and reputation.

2.2.2 REPUTATION AS A BAYESIAN MODEL

The fundamental feature of trust emergence in economics models was discussed earlier: the
bootstrap mechanism explicitly states that trust emerges from repeated interactions when de-
viations of trust can be punished. Now let’s imagine that, the seller could adopt either a good
or a bad profile in each stage of the repeated interaction: (i) he could decide to be trustworthy
and sell a high quality product with a high probability to function: ay or (ii) he could decide
to be untrustworthy and create a low quality product that has a low probability to function:
ar, where o < ar, < ag < 1. On the other hand, the buyer is risk neutral and thus will always
offer a price that is equal to his willingness to pay for that product. We can formalize this situ-
ation with extra parameters: if a product works, it is worth 1 unit and if it doesn’t, it is worth o.
If § is the buyer’s belief that the seller is trustworthy, then buyer will be willing to offer a price
defined as:

price =8 xag + (1 —8) *x a (2.2)

With this equation, the price will increase as a function of § and pertains to the buyer’s belief
that the seller is trustworthy. In this particular situation, this could be qualified as the reputa-
tion of the seller, which will determine how much the buyer is willing to invest in the seller’s
product. Let &, be the prior belief that the seller is trustworthy, T the number of times that
product was of high quality and U when the product was of low quality. Thus the following
equation captures the update of the buyer’s belief:

SOaf{(l — aH)F

Soazr(1 — ap)F 4+ (1 — 8,)af (1 — ar)F

(2.3)

Where the prior belief §, determines the seller’s history (the sum of T'and U) and the reputa-
tion of the seller is given by §. The value of § is a function of T and U. If T increases, then the

reputation of the seller is better and if U increases, the reputation will decrease.

Consequently, if the reputation of the seller increases, the price will also increase (in the
same way, the reputation decreases after proposing low quality products). Finally, this equa-
tion captures another phenomenon: if the seller is trustworthy then § moves closer to 1 and

the price moves closer to ay. If he is untrustworthy, the price converges to ar, where a; < ag.
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2.2.3 TRUST AND REPUTATION: REINFORCEMENT LEARNING PROBLEMS

During the last decade, studies started to apply modeling in conjunction with empirical and
behavior data to better probe social decision-making. In their experiment, Hampton and col-
leagues used computational approaches to investigate the ability of mentalizing about oth-
ers while playing interactive social game (Hampton, Bossaerts, and O’Doherty, 2008). Fur-
thermore, Apesteguia, Huck, and Oechssler (2007) reported that when watching others play-
ing a game, people tend to imitate the strategy of the winner of the game (Apesteguia et al,,
2007), behaviors that can be captured by computation modeling. Using social games, an ex-
tensive literature on the questions of optimal strategies and decision-making proposes to use
reinforcement-learning theories to provide insights in how people solve such optimization

problems (Lee, 2006; Balleine, 2007; Kérding, 2007).

MODEL-FREE AND MODEL-BASED RLL ALGORITHMS

Two candidate families of RL models have figured prominently in recent neuroeconomics the-
ories of learning with evidences from the human and the animal literature. The first comes
from the “law of effect”, which states that agents “habitually repeat actions that have been re-
inforced in the past” (Thorndike, 1911). The second comes from the notion of a “cognitive
map”, an internal representation of the environment that agents utilize to plan goal-directed se-
quences of actions (Tolman, 1948). These two types of learning algorithms are named “model-
free” and “model-based” systems (see box 2). As presented in Chapter 1, TD-Q algorithms are
called model-free because they only learn an error-driven update function (they only learn from
previous experience) that closely resemble the activity of dopaminergic neurons. In contrast,
model-based RL algorithms (dynamic programming) are based on a more flexible and richer

internal model of the learning environment (see box 2).
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Bo0X 2: MODEL-FREE AND MODEL-BASED ALGORITHMS

ENVIROMMENT

REWARD
STATE

Model-free Model-based

| |
4
\ jll T(s,a,5)
= Vree(s,a) l-— R(s) -
Vbased(S, @)

F Hybrid leamer

AGENT /" Softmax

ACTION

Theoretical model for data analysis using both a model-free learner and a model-based learner. Model-free computes a PE
using direct experienced reward and state from the environment to update state-action values. The Model-based learner learns
a model of the state space T(s,a,s’) by means of a state-PE, which is then used to update the state transition matrix. Action
values are computed by maximizing over the expected value at each state. Then, a hybrid learner computes a combined action
value as an exponentially weighted sum of the action values for the model-free and Model-based learner. The combined action
value is then submitted to softmax action selection. (Figure inspired by Glascher et al. (2010).)

1. Model-free computation, illustrated in the left part of the picture uses experience - state and reward - to learn
directly the characteristic of a problem - state and action values -. Given a decision policy, a state has a value which
is defined as the future utility that is expected to increase starting from that state. One advantage of this computation
is that it doesn’t need an internal representation of the world to make a decision, it is a rather guileless and automatic
way to learn without any a-priori of the world. On the contrary, this computation has the disadvantage that (1) alot
of trial-and-error experience is required to correctly predict the state’s values that lead to future consequences, (2)
the model cannot adapt quickly to changes in the environment and (3 ) incorrect information from the environment

would be also combined with previous estimates without the possibility to discard them.

2. Model-based computation, illustrated in the right part of the picture refers to an internal representation of the
problem “a mental map” that has been learned based on observation that does not concern the current problem itself.
This internal representation includes knowledge of the features of the task, (formally, the probabilities of transitions
from one state to another and different immediate outcomes), which can also be conceived as introspective thinking
in human psychology. This is a statistically efficient way to use experience, since each piece of information from the
environment can be memorized in an internal representation that can be re-use. Another advantage of this model
is that it adapt quickly to changes (action selection changes rapidly in the transition contingencies and the utilities

of the outcomes). The inconvenience of the model is that it needs a support for estimating the world a-priori.

A wide range of behavioral and neural studies proposes that the brain employs both model-free and model-based decision-
making processes, with each process dominating the other in certain situations (For a review, see Dickinson and Balleine,
2002) Therefore, different neural substrates are suggested to underpin each process (Balleine, 2005; Daw, Niv, and Dayan,

2005).
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2.2.4 NEURAL CORRELATES OF MODEL-BASED VS. MODEL-FREE IMPLEMENTATIONS

Animal and human studies have reported that agents use model-free and model-based form of
learning processes under different circumstances (Dickinson, 1985; Philiastides, Biele, Va-
vatzanidis, Kazzer, and Heekeren, 2010). Besides, the executive control of the behavior can
alternate between the two systems (Wimmer, Daw, and Shohamy, 2012; Wunderlich, Sym-
monds, Bossaerts, and Dolan, 2011; Beierholm, Anen, Quartz, and Bossaerts, 2011) and spe-
cific brain lesions might impair one system while preserving the second, suggesting that the
brain contained separate, competing systems for model-based and model-free RL - a habit RL
system in which choices are selected based on previous experience and a goal-directed sys-
tem, more adaptive, that implements a cognitive map (Dickinson and Balleine, 2002; Doll

etal, 2012).

Recent electrophysiological studies indicate that the dorsolateral striatum mediates state —
reward habits and thus play an important role in the model-frec implementation theory (Yin,
Knowlton, and Balleine, 2004). However, other electrophysiological studies have shown that
model-based behaviors also require the integrity of the dorsomedial striatum, suggesting that
the striatum plays an important role both in model-based and model-free implementations ( Tri-
comi et al., 2009; Zweifel, Parker, Lobb, Rainwater, Wall, Fadok, Darvas, Kim, Mizumori,
Paladini, Phillips, and Palmiter, 2009; Tsai, Zhang, Adamantidis, Stuber, Bonci, Lecea, and
Deisseroth, 2009). The dichotomy between model-based and model-free is still a recent topic
in fMRI studies. However, converging results indicate model-based value signals in ventro-
medial, ventrolateral prefrontal cortices (vmPFC, vIPFC) and adjacent orbitofrontal cortex
(OFC) which plays an important role in goal-directed sequence of actions (Valentin, Dick-
inson, and O’Doherty, 2007; Wunderlich et al., 2009; Jones, Somerville, Li, Ruberry, Libby,
Glover, Voss, Ballon, and Casey, 2011). Thus, two brains areas, (i) the prefrontal cortex which
is commonly associated with executive functions — higher order cognitive processes that man-
age, control and regulate other brain activities (Ernst and Paulus, 2005 ), and (ii) the limbic
system which has generally been associated with emotion regulation and more recently with
social processes (Bush, Luu, and Posner, 2000; Rilling, Gutman, Zeh, Pagnoni, Berns, and

Kilts, 2002), seem to signals model-free and model-based information respectively.

2.2.5 FIRST HYPOTHESES AND MOTIVATIONS
Whether trust and reputation are distinct constructs or represents a trust-reputation con-

tinuum is a debated topic in the literature. While some studies hold these two concepts as

separate, some others studies integrate the two in an unified model (Bromberg-Martin, Mat-
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sumoto, Hong, and Hikosaka, 2010; Hiroshi Abe, 2011). However no studies so far has tried
to employ the RL framework described in the previous section to test whether trust and rep-
utation can be employed as variable in model-free and model-based RL algorithms. Taking in-
sights from dynamic programming my attempt is to propose a model-based RL algorithm that
integrates reputation priors into the decision-making problem to trust (or not) someone dur-

ing social interaction (See figure 2.2.1).

Model-free
Action system Ny )

selection

I

Experienced
Trustworthiness

Reputation

ﬂ information

Model-based
system

Social
interactions

Figure 2.2.1: Trust and reputation interactions in RL algorithms. Figured inspired by Sutton when
describing the dichotomy between model-based and model-free systems (Sutton and Barto, 1998).
The social interactive environment provides the participant a direct measure of trustworthiness
(states and rewards), whereas the model-based system furnishes the agent with expectation about
the other driven by its reputation cues. The model-free system applies the same policy to select an
action from both real trustworthiness and belief based on reputation.

Indeed, a model-based algorithm involve explicit or implicit secondary structure (such as
counterfactual signals, rules stored in memory or cues from the environment) where infor-
mation about rewards that are not actually received can be inferred or observed. Thus, a pure
model-free RL would be blind to reputation information and only update decision-values to
trust according to observed trustworthiness. However, decision to trust with reputation pri-
ors go beyond model-free RL and allow to directly manipulate the key features of model-based
RL (for the formal definition see box 2 and chapter 3), that is, the computation of decision-
values using prior expectation that influence the reward function and a sequential transition
model of an action’s consequences. The model-based learns the transition and possible reward

of the interaction and uses this model to generate predictions about future reward.
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2.3 BEHAVIORAL AND NEUROBIOLOGICAL EVIDENCES

Politicians and economists have begun to pay attention to the importance of trust on economic
flows and progress when they realized that “much of the economic backwardness in the world
could be explained by the lack of mutual confidence” (Arrow, 1972). As we have seen earlier,
theoretical economic models explain that trust can be a best response in situation when an
agent needs to build social capital (Lewis and Weigert, 1985). These models were proposed
to reconcile empirical evidences from the assumption of pure rationality. Indeed, humans
genuinely trust unrelated strangers and are cooperative even in a double-blind situation, (e.g.
when they will never interact with a person again or when they have no possibility to cultivate
their own reputation) (Berg et al,, 1995; McCabe, Houser, Ryan, Smith, and Trouard, 2001).
Therefore decision to trust and reciprocate trust are thought not to be directed at furthering
one’s own interests but rather are guided by other-regarding preferences (Fehr and Camerer,

2007; Falk and Fischbacher, 2006; Van Lange, 1999).

However reciprocity and trustworthiness have been found to be a behavior dependent on
individual differences in social value orientation (SVO) which characterizes inter-individual

tendency to value the outcome of others (Van Lange, 1999; Lahno, 1995 ).

2.3.1 ASSESSING TRUST

Trust is a nebulous construct. It is difficult to isolate, quantify, and characterize as an experi-
mental cognitive mechanism. Nevertheless, to assess trust in experimental set ups, it is neces-

sary to operationalize it, although this effort may be limited.

THE TRUST GAME

Camerer and Weigelt (1988) developed one of the earliest methods of measuring trust and
trustworthiness in a laboratory setting through an economic game which was as a streamlined
version of the investment or Becker-DeGroot-Marschak method (BDM)® investment game
pioneered by Berg, Dickhaut and McCabe (Berg et al,, 1995). This task is called the Trust

Game, has been employed and modified for many years and is one of the widest spread method

The Becker-DeGroot-Marschak method (BDM), named after Gordon M. Becker, Morris H. DeGroot
and Jacob Marschak for the 1964, Behavioral Science paper, “Measuring Utility by a Single-Response Sequen-
tial Method” is an incentive-compatible procedure used in experimental economics to measure willingness to
pay (WTP)
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to operationalize trust in laboratories, by quantifying both trustworthiness and the willingness

to trust. The mechanics of the game are presented in figure 2.3.1.

A B No trust / Trust

(x3)
A ) [ .'!I.!]IIII”I.'. sent } B
| . )
Trustor Trustee P1,P2
'[4 - ] Keep | Y Repay
Amount l v [FUST
PIE'I.}’{‘I' 1 returned Ijlﬂ.}r("l' 2 A
1,12 T1, T2

Figure 2.3.1: The “trustor” is the first player (A), and the “trustee” is the second player (B). The two
players’ payoffs are given as (P, T, U and T), where P1 is the trustor’s payoff and P2 is the trustee’s
payoft at the beginning of a game. Player A can choose between Trust and No Trust. If A chooses No
Trust then the game ends, without B making a decision, and the payoffs are unchanged (P1 = P2). If
A chooses to trust B, he gives his entire payoff to B, who then chooses between keeping everything,
with payoffs (U1 < I2), and reciprocate in which case the payoffs are equally divided (T1 = T2, and
T1 > P1).

In another version of the TG, the first stage of the game consists of the trustor’s decision
to invest any portion x of his endowment to the trustee. If A decides to invest an x amount of
his money, x will be subtracted from his endowment until the next move. The experimenter
will multiply the money invested, x, by a certain factor f > 1, before sending it to the trustee.
In stage two, B has the choice to either keep the endowment or reciprocate trust and give any

portion y of the money he received back to the trustor.

The TG is made of two sequential stages of economic exchanges in which no one is con-
tractually committed to enforce agreements. In behavioral economics in particular, many par-
ticipants come to the laboratory and receive an initial endowment that is known by all partic-
ipants. Then participants are anonymously paired with each other and assigned to either the

role of trustor (A) or trustee (B).

The amount of money sent by the trustor and the trustee are said to capture trust and trust-
worthiness respectively. The money sent by the trustor captures the willingness to bet that
the trustee will reciprocate, which is a risky move (at a cost to them). Moreover, the decision
to trust is linked with an expectation that the consequences of the decision will be positive
in terms of the trustor’s investment. Particularly, if the second mover repays trust, the trustor

would be better off than if the trustor doesn’t invest to begin with. This definition of trust as a
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behavior was proposed by Coleman (1994; 1995) and can be precisely observed using game

theoretical one-shot games performed anonymously (Coleman, 1994; Berg et al., 1995).

CROSS-NATIONAL DATA

The Trust Game (TG) has come to dominate the field as a way to operationalize trust and
trustworthiness. Outside of laboratories, studies investigating on trust use questionnaires on
large population. One example is the American General Social Survey which is an annual sur-
vey on trust since 1972, and the World Values survey which probes multicultural differences
in trust. Both surveys capture trust using the following question: “Generally speaking, would
you say that most people can be trusted or that you can’t be too careful in dealing with people?” The

71

possible responses are either “Most people can be trusted” or “Can’t be too careful

These questions and corresponding responses have been found to be relatively problematic.
Indeed, a person who is not willing to take small risks even with potential gain could agree to
both choices, since his opinion about people is independent of his general attitude towards
risk (Miller and Mitamura, 2003 ). To rule out this problem, some authors have proposed one
dimensional question that separate trust and distrust, such as: “Do you think that people can be

trusted?” with ratings from “Absolutely” (rated 7) to “not at all” (rated 1) as possible answers.

Other tools have been developed to measure trust determinants (Bohnet and Huck, 2004;
Bohnet and Baytelman, 2007; Eckel and Wilson, 2011; Jamison, Karlan, and Schechter, 2006;
Houser, Schunk, and Winter, 2010), and trust in international data sets. These tools allow two
main advances: (1) to probe the effect of organizations on trust (Bohnet and Huck, 2004)
and, (2) to perform cross analysis on both organizational and political comparisons of trust
(Naef and Schupp, 2009; Porta, Lopez-de Silane, Shleifer, and Vishny, 1996; Houser et al,,

2010).

2.3.2 BEHAVIORAL EVIDENCES

Berg and his colleagues (1995) found a significant willingness to trust and reciprocate trust
among participants that were engaged in one-shot and anonymous TGs - a result that devi-

ates considerably from Nash predictions and simple maximization of people’s own monetary

"The question is very close to asking people about their behavioral inclinations “can’t be too careful” and
it seems quite likely that when people answer this question, they consult either their own experiences or be-
haviors in the past or introspect how they would behave in situations involving a social risk. Therefore, it
seems likely that the answer to the GSS and WVS question is not only shaped by people’s beliefs about others’
trustworthiness, but also by their own preferences towards taking social risks.
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payoffs (Bergetal, 1995). Since (1995 ), studies using the TG have repeatedly reported trust-
related behaviors and reciprocity across gender, age, culture, geography and category socio-
professional and it has shown that majority of trustors in the game send more than half of their
initial endowment and the majority of trustees reciprocated with more than the amount sent

by the trustor. (For a meta-analysis of the trust-game see Johnson and Mislin, 2010).

In repeated TGs, studies report an increase of trust over time when the trustee has proven
to be trustworthy. The theory is rather intuitive: people are more likely to trust someone that
was proven reliable than someone who has the potential to betray them. In “TG terms”, the
best predictor of whether a person will place trust in their partner in a given round is whether
or not this partner previously reciprocated trust. However, if someone betrays us then we stop
trusting that person. This process, also named a tit-for-tat strategy, has been reported to be one

equilibrium in repeated social games (Boyd, 1989) '.

2.3.3 NEURAL CORRELATES OF TRUST AND TRUSTWORTHINESS

Having proved its usefulness and explicability, the Trust Game has been recently employed
in fMRI settings investigating the neural bases of trust (King-Casas et al., 2005 ), cooperation
(Decety, Jackson, Sommerville, Chaminade, and Meltzoff, 2004) and reciprocity (Phan et al.,
2010; Krueger et al., 2007). Most of these fMRI studies have reported that BOLD signal in
the medial prefrontal cortex (mPFC) was higher when participants were interacting with a
human counterpart compare to a computer (McCabe et al.,, 2001; Rilling et al., 2002), and
when participants decided to trust compare to when they decided not to trust (McCabe et al,,
2001; Krueger et al,, 2007; Phan et al.,, 2010; Delgado et al,, 2005; King-Casas et al., 2005).
Hence, it has been proposed that decisions to trust are associated with high activation in the

prefrontal cortex.

The literature has also reported that the dorsal striatum (caudate nucleus) plays a role in sig-
naling the magnitude of an observed social reward (positive and negative) (Knutson, Adams,
Fong, and Hommer, 2001). Rilling et al (2002) showed that activation in the striatum corre-
lates with positive or aversive interactions in a Prisoners Dilemma Game (Rilling et al., 2002;
Rilling, Sanfey, Aronson, Nystrom, and Cohen, 2004) and predicts behavioral reciprocity for
mutual gain (Rilling, King-Casas, and Sanfey, 2008). In another series of studies, activation
of the dorsal striatum also differentiated between positive and negative outcomes in repeated
TG (Delgado et al., 2005; Stanley, Sokol-Hessner, Fareri, Perino, Delgado, Banaji, and Phelps,
2012). Additionally, Krueger and colleagues (2007) reported that the calculation of rewards

is associated with activation in the dorsal striatum (Krueger et al., 2007). Therefore, decision

'In financial aspect, learning to trust allows the trustor to maximize his net payoff.
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to trust or not appears to be the consequences of observations leading to activations in the

caudate nucleus.

In other studies where participants were receiving fair and unfair treatments (during Ul-
timatum Games), authors found activation in the insular cortex (Sanfey, Rilling, Aronson,
Nystrom, and Cohen, 2003; Tabibnia, Satpute, and Lieberman, 2008). These finding are sup-
ported by recent studies which report that untrustworthiness was associated with enhaced
activations the insula, anterior cingulate cortex and caudate (Chang and Sanfey, 2009; Stan-
ley etal,, 2012). It has therefore been suggested that these brains areas play a role in signaling
personal norm violations (King-Casas et al., 2005 ) and signaling positive and negative aspects

of social exchanges.

However, while this pattern of activity is in line with a wide range of studies, King Casas and
his colleagues (2005) were the first to find that these regions were computing social predic-
tion error, theoretically responsible for triggering social learning on the bases of trial-to-trial
reward-learning (Balleine, 2005; Daw et al,, 2005). Because this study was pivot in the field,

the next paragraphs is dedicated to their experimental paradigm and their results.

Authors of this important study asked 48 pairs of participants to play the TG repeatedly
against each other for 25 rounds while their neuronal activities were recorded by two simul-
taneous fMRI acquisitions (hyperscanning techniques as described in figure 2.3.2). The two
participants were assigned randomly to play as trustor or trustee and then keep their role for

the entire scanning session.

Figure 2.3.2: Hypersacnning of the Trust Game. Hyperscanning is a new fMRI acquisition method
where two or more participants interact with each other while being scanned in different MRI scan-
ners.
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First, in order to categorize player moves, the authors specified three categories: (1) benev-
olent reciprocity, where the trustor gave a generous amount despite a decrease in repayment
by the trustee, (2) malevolent reciprocity, where the trustor invested a lower amount after an
increase in repayment by the trustee and finally (3) neutral reciprocity, where there was no
change in investment and repayment moves. The corresponding analysis revealed differen-
tial BOLD activities in brain regions of trustors that encountered a benevolent or malevolent
trustee reciprocity behavior compared to neutral reciprocity behavior. These results suggest
that there is a unique response to deviations in the expected behavior of one’s partner, partic-
ularly in the caudate nucleus, the inferior frontal sulcus, the superior frontal sulcus, the thala-

mus, and the inferior/superior colliculli.

Second, in order to compare the neural responses in dorsal striatum when trustees showed
benevolent or malevolent behaviors, the authors performed region-of-interest (ROI) analyses
and revealed that the BOLD signalin the striatal voxels correlated with the trustee’s subsequent
decision to be trustworthy. Indeed, the trust expressed by the trustor was found to predict the

future changes in trustworthiness expressed by the trustee (King-Casas et al., 2005).

Last and most importantly, cross correlation analyses were performed in the trustor’s dorsal
striatum in order to find if participants learnt to trust (or not) their partners as the game pro-
gressed. Consequently, changes in the striatum were examined across early, middle, and late
rounds (see figure 2.3.3) using cross-brain and within-brain correlational analysis. The au-
thors found that early caudate’s response to trustworthy behavior, at time of outcome, shifted
to the time of the decision, relating for the first time to the shift of reward prediction errors

common to model-free RL systems, but in the context of a social exchange.

This pivotal study gave rise to the currently held view that the reward circuitry computes ef-
ficiently reward-harvesting problems in a way similar to model-free RL algorithms. This fMRI
study was the first of a series confirming that the dorsal striatum is processing outcomes infor-
mation (de Quervain, Fischbacher, Treyer, Schellhammer, Schnyder, Buck, and Fehr, 2004;
Kable and Glimcher, 2007) in order to learn and adapt choices through trial and errors (Schon-

berg, Daw, Joel, and O’Doherty, 2007).

Finally, other studies using fMRI in clinical patients also found that, along with other sub-
cortical areas, the amygdala and midbrain areas that are involved in the processing of fear,
menace, risk and social betrayal, play an important role in the decision to trust. The amygdala
has been found to be involved in avoiding social presence and agoraphobia (Adolphs, Tranel,
and Damasio, 1998) and its activity also increases when seeing untrustworthy faces (Engell,

Haxby, and Todorov, 2007). A decrease in amygdala activation has also been found to be re-
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Figure 2.3.3: Activation of the striatum when reciprocal behavior is revealed. A. Trust game played
simultaneously between two players while recording their brain activities. B. Schematic of authors
reports: they segregated BOLD responses in response to the revelation of the decision to trust (time
=o0s). Hemodynamic amplitudes increase when first trust is revealed. As the game progressed (mid-
dle and bottom), the peak of this differentiated response underwent a temporal transfer from a time
after the revelation of the investor’s decision (t = 14 s; an anticipatory signal). C. ROI were per-
formed in the head caudate of the trustee and revealed activity in the striatum.

sponsible for hyper-sociability (Evans, Wright, Wedig, Gold, Pollack, and Rauch, 2008). Ad-
ditional clinical investigations have linked bilateral damage in the amygdala with the inability
to judge the trustworthiness of peoples’ faces. People suffering from these lesions showed a

propensity to judge others as either good or bad, with no gradient in between (Ohman, 2002).

2.4 THE HUMAN CAPACITY TO TRACK PRIORS AND SOCIAL CUES

Trial and error is not the only method for learning predictability. Indeed, experiments in psy-
chology have proven that trustworthiness can be quickly inferred from information not di-
rectly related to the interaction, and can also affect behavior in the Trust Game. Thus, deci-
sion makers assimilate advice or relevant social cues that discount feedback from interpersonal
history as information to guide their decisions (Biele et al.,, 2011). Humans also infer beliefs
about others from prior information or social cues. Perceptions of moral character are sufhi-
cient to modulate the dorsal striatum during the decision and the outcome phases of a trust
game (Delgado etal., 2005). In this study, participants were presented with descriptions of life

events showing exemplary, neutral, or suspicious moral character of their hypothetical coun-
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terparts in the repeated TR. Results showed differential activations in the striatum between
positive and negative feedback, as well as between no-trust and trust decisions with the “neu-
tral” partner. No differential activity was observed for the “good” partner despite experimen-
tal manipulations to ensure that neutral and good partners responded in the same way. These
findings suggest that prior information can diminish the reliance on brain structures, such as
the dorsal striatum, that are important for behavioral adaptations to feedback information.
These brain structures are also of interest to our experiment as the subjects may feel the need
to adjust their behaviors following inconsistent outcomes. Therefore, if prior information di-
minishes the behavioral adaptation to this feedback, such an effect might be modulated by a

diminished reliance on brain structures involved in behavioral adaptation.

Not only humans use information about moral character (Delgado et al,, 2005), but also
group membership and ethnicity (Stanley et al.,, 2012) to judge trustworthiness. Even more
subtly, facial expressions processed outside of conscious awareness (Morris, Frith, Perrett,
Rowland, Young, Calder, and Dolan, 1996), smiling (Centorrino, Djemai, Hopfensitz, Milin-
ski, and Seabright, 2011), body posture (Ekman, 1992) or attractiveness could be enough in-
formation to infer a person’s trustworthiness before any direct exchange. Other studies re-
port that competence judgments about an individual can be made within 100 ms (Willis and
Todorov, 2006) and affective judgments about an individual can be made as quickly as 160
ms (Pizzagalli, Lehmann, Hendrick, Regard, Pascual-Marqui, and Davidson, 2002). The pres-
ence of relevant cues is thought to correlate with activation of the dorsolateral prefrontal cortex
(Delgado etal., 2005; Li, Delgado, and Phelps, 2011), a region responsible for emotion regula-
tion and cognitive control. Priors unrelated to direct interpersonal evidence affect initial belief
and have a sustaining effect on a person’s learning mechanism. A recent neuroeconomics study
(Chang et al,, 2010) investigating how initial judgment can affect trust also reported that the
implicit assessment of facial traits can predict the amount of monetary risk that a trustor is
willing to take in a TG. Indeed, in one-shot TG, pre-ratings of trustee’s facial trustworthiness

predicted the financial amount trustors were willing to invest in them.

Additionally, another study also found that following the advice of third-party alters the
BOLD responses in the reward system with an increase of activity in the septal area and the

left caudate (HC) when the advice is followed (Biele et al., 2011).

Finally, relying on someone else’s trustworthiness involves uncertainty about the poten-
tial risk of betrayal (Pavlou and Gefen, 2005). A recent meta-analysis of studies of decision-
making under uncertainty has reported the vVIPFC, vmPFC and OFC cortices to be the pri-
mary areas for processing uncertainty (Krain, Wilson, Arbuckle, Castellanos, and Milham,
2006). In one study, it has been found that the activation in these areas increases in magnitude

with higher levels of uncertainty (Huettel, Song, and McCarthy, 2005 ), whereas other studies
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reported that the OFC cortex can distinguish among different uncertainty levels (Hsu, Bhatt,
Adolphs, Tranel, and Camerer, 2005; Gonzalez, Dana, Koshino, and Just, 2005 ). Thus, higher
degree of uncertainty, for example at the beginning of an exchange with an anonymous part-
ner, is hypothesized to be associated with a higher activation in the prefrontal and orbitofrontal

cortices.
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The creator of the universe works in mysterious ways. But he

uses a base ten counting system and likes round numbers.

Scott Adams

Behavioral and computational evidences

3.1  MOTIVATION

PREVIOUS STUDIES IN NEUROECONOMICS have started to investigate the cognitive and neu-
ral processes underpinning human cooperation and trust. Several factors, including available
prior information and personal history have been proven to affect people’s propensity to trust
in subsequent interactions. However, very few studies have been focusing on the interaction
between these two factors during direct exchanges. Our first aim in this chapter is to present
how reputational priors interact with experienced trustworthiness in a repeated Trust Game
(RTG). We made the following hypotheses: (1) available prior information on the reputa-
tion of others and direct evidence reliably influence decision to trust, (2) these two types of
information happen independently and synergistically when reputational prior are provided,
and (3) reinforcement learning (RL) models can be used to test whether trustworthiness are
based on reputational priors, probability of reciprocation or their interaction. This first study
aims at providing a novel quantitative framework that theorizes trust and reputation during

social exchange.
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3.1.1 REINFORCEMENT LEARNING FRAMEWORK

Because of its simplicity, not only the RL paradigm is a robust way to investigate how humans
learn from feedback, but this framework also allows us to probe how social signals from dif-
ferent sources affect learning during repeated interactions. In this first study, our goal is to
use RL algorithms to investigate adaptive social learning during RTGs and to propose new
insights into the processes underpinning adaptive social decision making. Despite the impor-
tance of trust and reputation, no studies to date, have attempted to confront the two situations
(decision to trust with or without reputation information) and relatively few studies have ana-
lyzed social learning with an RL perspective (Behrens, Hunt, Woolrich, and Rushworth, 2008;

King-Casas et al., 2005; Chang et al., 2010).

Nevertheless, using non-social learning tasks, some recent studies have applied computa-
tional models to investigate whether advice provided by a third party would impact learning
mechanisms (Biele, Rieskamp, and Gonzalez, 2009; Biele et al,, 2011). In these experimental
settings, participants received instructions, also named advice, from either other participants
or the experimenter, about the best decision to make. In these presented experiments, authors
have shown that social prior impacts probabilistic-learning mechanisms and leads to learning
bias, (e.g. correct information guides participants toward good decision-making while incor-
rect information damages learning). In a first paper, Biele et al. found evidence supporting
the notion that an “Outcome-bonus” RL model best fits the behavioral data compare to any
other RL models. This model proposes that outcomes consistent with an advice will be grati-
fied a learning “bonus” while outcomes inconsistent with advice would be disregarded (Biele
etal, 2011). In another paper, Doll et al. (2009) suggest that the model explaining more of
the variance in behavioral data initializes the value of decisions that were recommended with
a greater starting value. Thus, the decision value would be reduced in case of inconsistent out-
comes while amplified in case of consistent outcomes (Doll et al., 2009). Taken together, these
studies propose that information transmitted from a third party influences both initial judg-
ment and the way people would learn from feedback. According to these findings, reputational
priors consistent with outcomes would be weighted higher and lead to a more important up-
date while reputational prior inconsistent with outcomes would be weighted less. However,
no study to date has examined how reputation information impacts learning in an interactive

social scenario.
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3.1.2 HYPOTHESIS

In the present study, we investigated how explicit reputational priors interact with observed
level of trustworthiness (i.e. the probability of reciprocation of a given counterpart) in a sim-
plified version of the RT'G. We hypothesized that reputational priors influence initial social
risk-taking in an economical exchange (Delgado et al., 2005; Dominic S Fareri, Luke J. Chang,
and Mauricio R. Delgado, 2012; Stanley et al., 2012). Secondly, we predicted that observa-
tions from direct-based interactions also impact on behavior (Axelrod and Hamilton, 1981;
King-Casas et al., 2005). Lastly, and most importantly, we expected that these two signals,

reputational priors and observed reciprocity, would interact in the learning process.

We thus analyzed behavioural data of participants playing the repeated version of the TG at
two time points: at time of choice and at time of outcome and used RL models to assess three
different hypotheses - (1) Initial decision to trust would be biased by priors, - (2) the trust-
worthiness belief about counterparts would be updated according to direct feedback, and -
(3) participants would have a dynamic representation of the environment. We used differ-
ent RL models dealing differently with the initial values of decision to trust and the way out-
comes are updated. We expected that eventually the two processes could coexist: initial values
can be overridden by the participant’s real observations (i.e. whether or not the counterpart
was trustworthy or not during exchanges). For example, among all models that we tested,
the “Outcome-Bonus” model suggests that initial reputational priors would influence the way
outcomes are updated during interactions. This model also implies that initial expectations
bias learning in its direction (a reputation for being cooperative adds weight to a reciproca-
tive move and would disregard violation of trust). Another RL model, the Prior-Expectation
model suggests that information about other’s reputation would be used as an initial belief that
would be progressively dominated by experience. Inside the RL paradigm, we proposed a new
hybrid model which first predicts that reputation information is used to initialize trustwor-
thiness belief and then is dynamically updated on the basis of observed trustworthiness: the
Adaptive-Belief model. Thus, the reputational prior influences both expectations and learn-
ing mechanisms. By operationalizing the potential cognitive mechanisms involved in decision
to trust and reputation via several RL models, this first study aim was to increase our under-
standing of how reputation priors and learning to trust mechanism interact in social economic

exchanges.
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3.2 EXPERIMENTAL DESIGN AND TASK

3.2.1  TASK

Participants played a simplified version of the RTG in the role of the investor as described
in the introduction. We employed a 2 by 2 within-participants experimental design in which
the counterpart’s type of reputation (unknown or known) was crossed with the counterpart’s
likelihood for reciprocity (high or low). Each counterpart represented one of the four exper-
imental conditions. Level of reputation was assessed with the Social Valuation Orientation

(SVO) task: an independent pro-social questionnaire (See description below).

Participants played a simplified version of the RTG in the role of the investor (or trustor)
as described in the introduction. Each trial lasted 11 seconds and began with a short fixation
cross (0.5 second) followed by a picture of the counterpart (3.5 seconds). Participants then
decided to trust or not the counterpart by pressing “keep” or “share”. After submitting their
investment, counterpart’s decision was computed and the outcome of the game was displayed
in the screen and the trial (as well as the TG stage) ended. If the participant did not submit an
offer in time (in a windows of 2 seconds), a message was displayed, telling that they have lost

the trial (See figure 3.2.1).

We defined the counterpart’s likelihood for reciprocity as a high (80% ) or alow (20% ) prob-
ability of reciprocation. The money first allocated to the participant was 1 euro. If invested by
the participant, this first endowment was multiplied by a factor of 3. If an offer was recipro-
cated, counterpart always reciprocated 50% of the total multiplied amount sent by the trustor.
When trust was not replaced, the counterpart kept all the multiplied amount of money. Par-

ticipants played 10 randomly interspersed rounds with each counterpart (400 trials total).

The pictures for the human counterparts were collected from the FERET program (Phillips,
Moon, Rizvi, and Rauss, 2000). The words “trust” or “trustworthy” were never mentioned .
For each participant the condition in which the prior was provided and the one in which it
was not were randomly assigned to an experienced trustworthiness condition (high vs. low).
The four cells were balanced across participants, 7*(3) = 0.57,p = 0.93. All stimuli were

presented on a laptop via Presentation software (Neurobs inc.).
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Figure 3.2.1: Partners were introduced by seeing the picture of their counterpart for 3.5 sec. Then,
they made sequential decisions as first mover (trustor) presented in a binary way: ”"Share” or "Keep”.
They can choose to keep and quit the game with its initial endowment or can choose to share and
continue the game. The choice of the second mover is then computed while a message is displayed on
the screen “ Wait for counterpart response” and the feedback of the game is displayed on the screen
for both players (3 sec).

3.2.2 PARTICIPANTS

A total of fifty-four healthy graduate students were recruited from the University of Lyon 1 and
2, France (29 females). They all had previously joined the recruitment system on a voluntary
basis and were recruited via an online annoncement in which they were screened to exclude
any with a history of psychiatric or neurological disorders. Two participants were excluded
from the data after indicating that they did not understand the experiment. We report results
from fifty-two participants (29 gitls, Mean age = 19.56 SD = 2.17). These participants gave
written informed consent for the project which was approved by the French National Ethical

Committee.

3.2.3 SoCIAL VALUE ORIENTATION

We instilled reputational priors by providing a cue (triangle and circle) during the presentation
of counterparts in the task. Participants were told that these priors indicated the counterparts’

scores on the Social Value Orientation (SVO) measure (See figure 3.2.2).
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Figure 3.2.2: The value orientation ring. Individuals with vectors lying between 67.5 and 112.5
degrees are altruistic, with vectors between 22.5 and 67.5 degrees are cooperative, with vectors be-
tween -22.5 and 22.5 are individualistic, with vectors lying between -67.5 and -22.5 are competitive
and with vectors between -112.5 and -67.5 are aggressive.

The SVO task is a well-established questionnaire in social psychology (Van Lange, 1999)
that distinguishes between different types of SVO (among all are the cooperative and indi-
vidualistic type). The main difference between each category is the extent to which one cares
about own payofls and that of the other in social dilemma situation. In our study we used re-
sponses of fictive counterparts matching the profiles of cooperative and individualistic persons
which was reflected by two probabilistic way of reciprocating during the game. Cooperative
counterparts show a probability of reciprocation = 80% whereas individualistic counterparts

show a probability of reciprocation = 20%.

3.2.4 EXPERIMENTAL SETUP

Each experimental session lasted 400 trials. Participants sat in the behavioral room and played
on a computer. They were told that all the responses of the second players were recorded and
replayed dynamically as the game progressed. They were also told that their own gain would
depend on their decisions and on the decisions of the others. In each trial, participants chose
to share or keep their allocated money (1 euro). At the end of the experiment, 10 random

trials were extracted from the data and given to the participant '.

This manipulation ensures that each trials are equally motivating for the participants.
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3.2.5 STATISTICAL ANALYSIS

All analyses were performed with the statistical software package Stata, (College Station, TX,
Release 9/SE). A test for normality was performed to verify that data was normally distributed
(Shapiro-Wilk).

3.3 RL MODELING

3.3.1 ACTION SELECTION

To test whether our behavioural data reflected RL processes, we examined responses of dif-
ferent computational RL models. All models made use of a reward prediction error (RPE)
values to update beliefs associated with each choice (share or keep) that determine the prob-
ability to make the decision with the maximum value (Schultz et al., 1997; Egelman, Person,
and Montague, 1998; Holroyd and Coles, 2002; Schultz, 2004; Montague and Berns, 2002).
For example, a negative outcome of the game generated a negative RPE which was used to de-
crease the value of the chosen decision option (e.g., to keep or share with a given participant),

making the model less likely to opt for the same decision on the following trial.

Precisely, the probability P of deciding to share on trial t is the logit transform of the differ-
ence in the value V; associated with each decision, computed with a Softmax policy function

(Sutton and Barto, 1981; Montague, Hyman, and Cohen, 2004):

exp(m )
P(shure)t = ( V(share)¢ ) ( V(keep)¢ (3 . )
expl” = ) fexplT )

where the action value V{,4.), corresponds to the expected reward of sharing and 7 is called a
exploration parameter. For high exploration values (1 — 00) all actions have nearly the same
probability (and the model would select an action randomly) and for low exploration values

(ie, 7 — o) the probability of the action with the highest value tends to 1.

3.3.2 MODEL-FREE AND MODEL-BASED RL

The probabilities of reciprocation had to be learned through the experiment. Therefore we de-
cided to run several model-based RL algorithms that give more flexibility to the reputation in-
formation or to the observed trustworthiness. We compared the performance of several com-

putational RL models when fitting estimates of the models with the participants’ behavioral
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responses. We chose the following six models and their legitimate combinations according to
various hypotheses on the role of priors, learning rates, outcome update and their interactions
for two main reasons: (1) All these RL models have hypothesized neurobiological signatures
(Montague et al., 2004), and thus allow experimental predictions suitable for neuroscience
studies; (2) All parametric changes are appropriate economics variable that account for hu-

man variability in uncertain situation.

BASELINE MODEL: MODEL-FREE RL

The first model implemented is the classical TD learning (For more details, see Chapter 1,
Box 1). Inshort, if we tease apart how rewards and decision policies are learned, then the value
of the decision is equivalent to the immediate reward plus the discount value of future rewards
(that are the direct consequences of the probability function defined in section 3.3.1). One
way to compute this sum of discounted future rewards is to sample the future rewards in a

recursive way (Bellman equation)’. Thus, the value of a current decision is defined as:
Vt = Rt+)L.Vt+1 (3.2)

where R, is the current reward, V., is the next future decision value (that I also named state’s
value in the Chapters 1 and 2) and 1 is the discount parameter. Thus, decisions values can be

implemented directly with an update rule such as:
Vi, = Vi + a[Rt + AV, — Vt] (3.3)
or more simply, if §; is the prediction error such that: §; = R; + 1.V, — V;, then:
Vig, = Vi + a8, (3.4)

which corresponds to the classical TD rule where a is the learning rate.

Note that, in the equation, there is no temporal discounting between the decision and the
feedback. In this task, it would not make sense to discount values of action from the time of the
decision until the time of the feedback, because we fixed the time-window between the two
events at 3.5 seconds and because the outcomes unambiguously resulted from the preceding

decision. However, the model discounts weights from previous and future trials rather than

'Knowing a priori all states and decisions that will be made in the future requires a precise model of state
flow (including future decisions) and tracing all possible future branches is computationally intensive, time
consuming and does not match with the complexity of real environments.
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discounting the action value before receiving the feedback, in line with other studies (Barra-

clough, Conroy, and Lee, 2004; Cohen, 2006; Cohen and Ranganath, 2007).

GAIN LoSs MODEL

The “Gain and losses” model is based on evidence supporting the Prospect Theory which rep-
resents an important achievement in behavioral Economics and studies of decision-making
under uncertainty (Tversky and Kahneman, 1979). These authors demonstrated how people
underweight feedbacks that are merely probable as compare with certain feedbacks. Evidences
supporting this theory have also demonstrated that decision values are differentially assigned
to gains and losses as compare with final rewards. In short, the authors found that people pre-
fer avoiding losses as compared to obtaining gains of the same magnitude. Thus, we propose to
test a second RL model that is an extension of the TD learning but that also weights differently
subjective utility representing losses and gains. Specifically, our second model differentially
updated gains and losses via separate learning rates (Doll et al., 2009; Chang et al,, 2010). This
model computes a predicted value for the next trial for each decision (share or keep) based on

the experienced outcome such as:
Vi+1= Vt+aG.8tG—|—aL.Sf (3.5)

where a€ is the amount that a positive outcome is weighted and a” is the amount that a neg-
ative outcome is weighted in the update (o < a < 1). This allows people to learn from
losses in a different way than gains. We assumed this particular feature to be of particularly
importance in a social task. Indeed, evidences show that sensitivity to social gains and losses
motivate participants differently than in individual contexts (Bault, Coricelli, and Rustichini,
2008). Other findings reveal that participants are more willing to switch their behaviors after
violation of trust (Bohnet and Zeckhauser, 2003 ) rather than unexpected benevolent move.
For this model in particular, we chose to set the initial value V,, for all conditions to the average

amount sent by the participants on the first trial of the game (mean = 1.52 euros).

PRIOR EXPECTATION MODEL

The following models where inspired by the “Novelty-bonus” model introduced by Dayan in
2002 (Kakade and Dayan, 2002). These models, the simple Prior-Expectation model and the
Prior-Decay model, both initialize the initial values of the classical TD learning model accord-
ing to the nature of the prior information. In this task, the Prior-Expectation model assumes

that, when reputation priors are provided, participants have “optimistic” or “pessimistic” ex-
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pectations, at the beginning of the game due to the presence of a positive (P") or negative
Prior (P~), respectively (Biele et al., 2009, 2011; Wittmann et al., 2008). Thus, the values
of initial choices when playing with a Cooperative or Individualistic counterpart in the prior

condition were formally defined as:

Vfg’(;r)+ = gPJr -ngriorJr N (3 6)
Vl(:)g::)_ = gPi 'HePriorf N (37)

where ¢"* and g¥~ are equal to 1 when playing with a counterpart with a positive or negative
prior, respectively; and o otherwise. 0p. and 0p_ are free parameters capturing the optimistic
or pessimistic impact of the priors expectation, y is the expected payoff from choosing ran-
domly among all options, which serves as a normalization constant and N is the number of
trials experienced in the learning condition, which is a scaling factor, allowing for the compar-
ison between an expected decision value and the outcome of the decision. On the other hand,
in the no prior condition, only one parameter weighted the initial expected value of choices,
VI(VCI:O). The Prior-Expectation model predicts that the reputational prior will only influence

the initial expectations and will have no effect on the update function.

PriOR-DECAY MODEL

An alternative hypothesis, the Prior-Decay model is that reputational prior influences initial
trustworthiness belief, but then becomes less important with growing evidence when play-
ing with a counterpart. This is a different test of the Prior-Expectation hypothesis because it
predicts that the reputational prior will influence the update from the beginning of the inter-
actions and not just influence the initial value itself. This model influences the decision values

as a function of time by p and is computed such that:
Vi+1=V,+ a.§ +e PVcox (3.8)

where o < p < 1. This model shares some assumptions with the Outcome-Bonus for the early
period of the interactions, but exponentially reduces the influence of the positive and negative
prior expectation over time. The Prior-Decay model tests the Prior-Expectation hypothesis
seen earlier and predicts that reputational priors will provide a first estimate of an counterpart’s
level of trustworthiness, but will eventually be overwhelm by observed trustworthiness, in line

with previous studies (Chang et al,, 2010).
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OuTCcOME-BONUS MODEL

The “Outcome-Bonus” Model, also named the Confirmation-Bias model (Friedrich, 1993)
was first proposed to account for prior information that do not necessarily influence initial
decision values but rather impact on the way decision values are updated. This model is based
on previous research that has examined the effect of explicit information provided by a third
party (such as advice, information of moral character or facial expression) on learning tasks
(Biele et al., 2009, 2011; Wittmann et al., 2008; Doll et al., 2009; Chang et al., 2010; Doll,
Hutchison, and Frank, 2011). These studies have proposed models that give a higher weight
to feedback that is consistent with the given information, and alower weight to feedback that is
inconsistent with the transmitted information. To examine this hypothesis we tested a model
that is similar to Biele and colleagues (2011) implementing a stochastic prediction error §

computed across conditions such as:

Sf =rn— Ve +gP.y.9,, (3.9)

where g¥ is a dummy function that takes the value 1 if option C corresponds to the one sug-
gested by a Prior and o otherwise, 0, is a free parameter capturing the level of reputational
prior influence and y is the expected payoff from choosing randomly among all options that

serves as a normalization constant (in our case p= 1).

ADAPTIVE-BELIEF MODEL

Our final hypothesisis based on anew model that takes propositions from the Prior-Expectation
and the Outcome-Bonus models. The Adaptive-Belief model also uses reputational prior as a
bonus in the update function, but rather than being a constant value based on the initial belief
like the Outcome-Bonus and Prior-Decay models, it dynamically changes over time based on
the experienced probability of reciprocation. This implies that the Adaptive-Belief model can
induce the trustworthiness belief P, 1) from a reputation signal for each counterpart and will
interpret this information as a bonus or deduction in the update function. We formally define

this new model as:

T(o,TW“') - gPriDr+-H9Prior+-N (3.10)
T(o,Tw—) = gprmi -HGPriorf N ( 3.1 1)
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T(er,mw) = Tietw) + B-[ve — Teow)] (3.12)
Vi+1=Vi+ a8 + 0Ty rwt) — Tierr,mw)) (3.13)

where f is the learning rate of the trustworthiness belief and 6 is a free parameter representing
how much the learning bonus influences the decision value update. P is initialized as in the
Prior-Expectation model: g°.u0p.N and depends on the nature of the reputational prior, if
available. In equation 3.12, we set the value of v as 1 if the counterpart is trustworthy or o if

the counterpart violates trust.

Thus, the Adaptive-Belief model dynamically assesses the level of trustworthiness of each
counterpart by using the reputational prior and rewarding a bonus proportional to the experi-
enced level of reciprocation or alternatively by subtracting a proportional value if the counter-
part violates trust. This model is different from the Outcome-Bonus model because violation
of trust by a counterpart who has a bad reputation implies a smaller deduction to the update
function. Indeed, the Adaptive-Belief allows prior reputation to influence the update function
similarly than the Outcome-Bonus model but it also allows feedback to modify the trustwor-
thiness beliefs. Since this new model captures the experienced level of reciprocity of each

counterpart, it can also be used to assess participant’s sensitivity to trust.

3.4 MODEL EVALUATION

To estimate the fitness of all our models, we run a cross-validation technique which involves
using half of the original data set as the validation data, and the remaining observations as
the training data. This method considerably reduces over-fitting issues as well as it provides
a convenient way to compare models of different complexity. During the first (also named
training) phase, each model was compared to the participant’s actual behavioral by minimizing
the sum of the squared error (SSE). Free parameters were computed for the entire group of
participants. Then, the comparison between models was performed by extracting the most
parsimonious model. Finally, we tested the ability of each model to predict the behavioral
data in the remaining observation data (unused during the classification). This method allows
to controls for the number of free parameters included in the model when fitting to behavioral

data (Hampton et al., 2008).

The TG investment by the participant was multiplied by a factor of 3 and added to the
starting endowment: 1 euro. Then they were divided by 2 because they were split equally
between both parties (when the counterpart reciprocated). The participant’s outcomes thus

corresponded to 2, 1 or 0 euro, received at the end of each trial, which allows the possibility for
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participants to still have a positive monetary amount after at the end of a trial even when there
is negative prediction error (i.e. the counterpart was not trustworthy but participant kept). Af-
ter each trial, a prediction error (PE) was calculated. For example, in the classical RL model,
the PE was the difference between the weighted outcome received (o, 1 or 2 monetary units)
and the specific weight for the chosen target (e.g., §, = o — V(share);) in the case in which the
counterpart decided to keep after a decision to trust made by the participant. Free parameters
were estimated during the training step by minimizing the SSE between the observed data of
our participants and the predicted data from the different models using “fminsearch” (Coleman
and Li, 1996), a multivariate unconstrained nonlinear optimization algorithm implemented
in Matlab (Mathworks, Cambridge, MA).

> (rls)e = V(s)o)? (3.14)

where Vis a decision (or a state value) value s at time ¢, and updated at time t + 1 with the
functions specified above. The parameters were estimated for the entire group of participants

because each RT'G was only composed of 10 trials.

This manipulation implies that whereas the different models were fit to every participant’s
individual data, the error generated when estimating the free parameters was pooled across
all participants. Indeed, this technique, when employed for individual parameter estimates,
has proven to not be stable for a small number of trials and when the collinearity between
parameters is large (which is clearly the case for some of our models) (Daw and Doya, 2006).
As a result, we found that a hierarchy of model works for individual parameter that fits each
participant (we report the more stable group fits). In addition, in order to reduce start location

in local minima, we used a grid search algorithm for the initial values of these parameters.

All models were compared to the first model described, the baseline RL model (Equation
3.3), using both the Akaike Information Criteria (AIC) and the Bayesian Information Criteria
(BIC), two statistical metrics of model-fit that differentially take into account the complexity
of the model (by penalizing differently the number of additional estimated parameters). AIC
is formally defined as:

2.71.RSS

n

AIC = 2k + n[In( +1)] (3.15)

where k is the number of free parameters, n is the number of observations, and RSS is the

residual sum of squares (Akaike, 1974). On the other hand, BIC is formally defined as:

2.7w.RSS

n

BIC = k.In(n) + nlIn( +1)] (3.16)
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Finally, we tested the model with the cross-validation procedure by randomly extracting half
of the samples from the observation data set that was retained as the validation samples for
testing the model and the remaining observations were used for training. We extracted the pa-
rameters that were estimated during the training phase and used them to minimize the SSE re-
sulting from the difference between the behavioral data and the model predictions (and since
no parameters were estimated during this approach, the result of the model-fitness was not the

result of additional free parameters).

3.5 RESULTS

3.5.1 BEHAVIORAL RESULTS

Overall, we found a main effect of the probability of reciprocation on the participants’ decision
to trust. Participants trusted more counterparts who reciprocated 80% of the time (mean =
72.16, se  5.18) as compared to counterparts who only reciprocated 20% of the time (mean

=31.36,se = 3.81) using a repeated measuresANOVAF(l, 51) =119.13,p <0.001, 7> = 0.66.
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Figure 3.5.1: Overall learning in the iterated Trust Game. Note: this figure shows the mean invest-
ment amount across subjects for each trial of each condition.

There was a significant reputation by reciprocity interaction F(2, 102) = 5.25, p = 0.006,
n* = 0.08, such that participants trust more reputed cooperative counterparts that recipro-
cated 80% of the time (mean = 78.12, se & 4.29) and less reputed individualistic counterparts

that reciprocated 20% of the time (mean = 25.64, se & 4.02).
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Finally, this observed interaction was not entirely driven by a strong effect of reputation
at the beginning of the experiment. Indeed, we observed a significant interaction between
reputation and probability of reciprocation on the last trial of the experiment F(2, 102) = 4.31,
p=0.02,7* = 0.06, suggesting that the effect persists throughout all 10 trials (See figure 3.5.1).

These data were log transformed to account for negative skew in the data.

We found that participants made more money when playing with cooperative counterparts
compared with individualistic counterparts. In figure 3.5.2, we have plotted for each of our
participants the average payoff of all interactions with trustees with cooperative reputation as
blue cross, and the average payoff of all interactions with trustees with individualistic reputa-
tions as green open circle. We graph the joint earning of the 52 pairs in a large outer triangle

with point (0,4), (1,1), and (2,2) which indicates the set of feasible earning pairs.

Distribution of joint euros earning

Counte rparts eaming
b3

+ Cooperafion reputation
05 Individualistic reputatan

0 05 i 15 2
Participants earmning
Figure 3.5.2: Representation of trustor’s and trustee’s earnings during the trust game. Each partic-
ipants average earning playing with a certain counterpart is represented by a cross or circle. Blue
crosses are average payoff of all interactions with trustees with cooperative reputations and green
open circles are the average payoft of all interactions with trustees with individualistic reputations.
The outer triangle shows the set of possible earning pairs.

The triangle (0,4), (1,3), and (1,1) indicates the earning pairs with non-positive net re-
turns to participants, while the triangle (1,1), (1,3), and (2,2) indicates the non-negative net
returns to participants. The data suggest that reputation increases the non-negative net returns
to participants and this increase is statistically significant (p-value of paired t test = 4.417°).
Coupled with counterparts with cooperative reputation they gain more (mean = 1.468, se £

0.145) than with counterparts with individualistic reputation (mean = 0.818, se - = 0.132)
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3.5.2 RL RESULTS

All the models that we used explained more variability than the baseline TD RL model (BIC
=7632; RSS = 2265) resulting in best model-fits results. In details, both the Outcome-Bonus
model (BIC =7366; RSS =2134) and the Prior-Expectation model (BIC =7069; RSS = 2201)
explained better the data compare to the baseline model (See figure 3.5.3) . Finally, the Prior-
Decay model (BIC = 6432; RSS = 2231) and the Adaptive-Belief model (BIC = 6489; RSS
= 2133) provided very good fit of all the RL models tested. The one exception was the GL
Initialization model alone, which did not appear to fit the data any better than the baseline
model (BIC = 7678; RSS = 2311). However, once combined with the other models, the GL
model added some statistical power to some models. Indeed, the best fit of all model is the

combination of the GL and the Adaptive-Belief model (BIC = 6318; RSS = 2144).
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Figure 3.5.3: This graph depicts the Baysesian Informetion Criterion for RL models in which every
model was fit to half of the trials and parameters were estimated for the entire group. Note: AB,
Adaptive-Belief model; GL: Gain Losses model; PD: Prior-Decay model; PE: Prior-Expectation
model; OB: Outcome-Bonus model.

These first results suggest that reputation priors do not just merely influence first impres-
sions represented by initial decision values in RL models but rather seem to impact the way
outcomes from interactions are interpreted. The combined GL and Adaptive-Belief model
gathering information from the reputational prior and from the outcomes of the game in a dy-
namic fashion appeared to be the best account of the behavioral data. This model predicts that
the reputational prior would impact both initial value and the update function differentially for
positive and negative reputation and also accounts for the feedback to update the expectation.
Nevertheless, it is important to note that the combination of GL and Adaptive-Belief models
also results in a model that contains more free parameters compare to the others. While the

AIC and BIC metrics are standard techniques of penalizing for additional free parameters in
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Performance of the models estimated with a cross-validation procedure

BIC RSS

Baseline (model-free) TD learning 7721 2332
Gain Losses Model 7708 2187
Outcome Bonus Model 7488 2436
Prior-Expectation Model 7133 2345
Prior-Decay Model 7004 2216
Adaptive-Belief Learning 6566 2431
Outcome Bonus Model with separate update for Gain Losses 7249 2299
Prior-Expectation Model with separate update for Gain Losses 7117 2317
Prior-Decay Model with separate update for Gain Losses 6819 2198
Adaptive-Belief Learning with separate update for Gain Losses 6499 2219

Table 3.5.1: Learning best model Averaged best-fitting parameter estimates (across subjects) SE

theoretical model, we decided to investigate further our results by using the first half of the
data to predict the remaining trials. Since no further parameters are estimated during this test,

then the results are unbiased by free parameters.

Using this rotation estimation, we found a similar hierarchy of results (See table 3.5.1).
The GL model alone gave results that are closer to baseline TD learning algorithm (BIC =
7708; RSS = 2187). The Outcome-Bonus model (BIC = 7488; RSS = 2436) and the Prior-
Expectation model (BIC = 7133; RSS = 2345) both fit the data better than the TD learning
algorithm and both the Adaptive-Belief model and the Prior-Decay model (BIC = 7004; RSS
=2216) exhibits the best fit. These results provide additional evidence that reputation signal
about trustworthiness influence particularly the update function, and that outcomes in turn

can update judgment.

3.5.3 FURTHER RESULTS ON BEST RL MODEL

We tested all RL models in two different ways. In a first step, we explored whether the par-
ticipants’ behavioral data fitted with RL mechanisms. This was achieved by providing to the
model the decision’s history and experimented reinforcements (from each participant, we
used their real actions during RTGs as inputs to the models) and comparing empirical be-
havioral data to the RPE and values of the two decisions (share and keep) that the model
generated for each trial and each participant. In order to perform these analyses, we math-
ematically estimated free parameters for each participant using a maximum likelihood min-

imization function provided by Matlab fminsearch (MathWorks, Natick, MA) (Barraclough
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et al, 2004; Luce, 2005; Cohen, Heller, and Ranganath, 2005). This algorithm uses the non-
linear, unconstrained Nelder—-Mead simplex method to find appropriate free values of the RL
model parameters that maximize the two probabilities to share and keep across the whole ex-

periment.

100

Choice SHARE

Figure 3.5.4: Example of the simulation of one RL model based on real outcomes for the TG

In a second step, we used the resulting best model of the first part to take the role of the
participants and performed the RTG against each counterpart. This was done to infer the be-
havior of the model and examine its prediction errors and decision values as it played the RTG
(for an example of one simulation, See figure 3.5.4). For these analyses, we used the set a;
to 0.4 and A to 1 for both positive and negative feedback. To explore the similarities between
behavioral data and model predictions, we compute the reaction to PE (participants switch or
maintain their previous decision after inconsistent outcomes) as (1) maintain their decision
“inconsistency/no change” (for example, after violation of trust, the participant still believe
the counterpart to be trustworthy) and “inconsistency/change” (in the same example, after
violation of trust, a participant retaliates) as respectively o and 1, and smoothed the generated
vector with a window average filter with a g trial kernel, a computation used to probe simi-
larities between model outputs and behavioral data (Sugrue, Corrado, and Newsome, 2004;

Bayer and Glimcher, 2005; Kazuyuki Samejima, 2005 ).

To probe whether behavioral responses fitted our best RL model; the GL Adaptive-Belief
model, we directly compared participants’ behavioral choices to the outputs of the model that
represented two predictions about participants’ behavioral choices during the task: (1) the
model predicted a strong negative prediction errors after violation of trust of a cooperative
participant which should make the participant more likely to switch decision on the subse-
quent trial, and (2) the model predicted that the greater the value of a decision, the more

likely the participant was to choose that decision.
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We decided to test both hypotheses. First of all, we generated all prediction errors time-
series using the different RL models on each trial for each participant and looked at these
theoretical prediction errors to the smoothed ratio of “Inconsistent/No change” (i.e., when
a counterpart violated participant’s trust but still participant decided to trust again on the fol-
lowing trial) versus “and “Inconsistency/Change” (i.e., with the same example, on the follow-
ing trial, the participant would have decided to switch decision). As illustrated in our picture,
the predictions of the RL algorithm would correlate with the participant’s actions. Particularly,
as predicted by the model data, greater negative prediction errors generated by the RL model
were significantly associated with the larger likelihood of participants deciding to retaliate on

the next trial (average r* = 0.32; p = 0.006, See figure 3.5.5).
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Figure 3.5.5: Outputs of the RL model (black lines) predicted subjects’ trial-to-trial behavioral
changes (blue lines). Results are displayed for one participant for whom the model closely fits the
behavioral results. The calculated prediction error of the model on each trial closely matched the
local fraction (calculated by smoothing behavioral choices, coded as o or 1, with a 10 trial kernel
running-average filter) of participants “Inconsistent/Switch” versus “Inconsistent/No Change” on
each of the relevant trials.

Indeed, further analysis revealed that participants appeared to adapt their behavior more
radically when their counterpart were untrustworthy (their learning rates were higher across
models, mean ay, = 0.45) as compared to when their counterpart reciprocated (mean ag across
models = 0.031). Moreover we found little evidences supporting that reputation would only
influence first impression. When only manipulating independently the way positive and neg-
ative outcomes would be updated, we found that the GL model did not fit the behavioral data
more than the baseline model. However, when conceptually used in other models, free pa-
rameters for gains and losses highly improved some model-fits. In fact, the parameter f

violate

that was estimated in the Adaptive-Learning model (when a counterpart violates trust) was es-
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sentially the highest susceptibility value for learning, indicating that participants were strongly
affected by violation of trust especially from cooperative partners associated to positive repu-

tational priors.

Finally, we explored the second prediction of the RL models: the values generated by the
RL model would fit with decision to trust versus decision to not trust chosen by the partici-
pant. Our best model was used to generate values of the two options for each trial, based on
each participant’s peculiar history of decisions. We computed the difference between the two
values at each trial and compared it with the local ratio of decision to trust versus decision
not to trust (coded as o or 1). In complement to our previous findings, we found a signifi-
cant correlation between what the model estimated and what the participants actually chose.
Particularly, larger relative values of the decision not to trust versus decision to trust were as-
sociated with increased likelihood that the participants would not trust (average r* = 0.41; p <

0.001).

3.6 DiscussiON

This first study explored the behavioral and computational mechanisms underlying the deci-
sion to trust (or not) an unfamiliar person in a repeated financial task which has been explicitly
proposed to operationalize the investigation of trust and trustworthiness (Berg et al.,, 1995).
Previous studies have suggested that both prior information provided by a third party (Del-
gado et al,, 2005; van 't Wout and Sanfey, 2008) and direct observation (King-Casas et al.,
2005; Singer, Seymour, O’Doherty, Stephan, Dolan, and Frith, 2006) directly influence deci-
sions to trust and representation of trustworthiness. For the first time in this study, we account
for both variables (with and without reputation information) to probe how these variables in-
teract in a social setting. We found that both the reputational prior information of a counter-
part and subsequent experience with that counterpart synergistically impact behavioral data

in this game.

3.6.1 BEHAVIORAL MEASURES OF TRUST

Consistent with our hypothesis, we observed that prior reputation of someone unknown di-
rectly influenced participant s initials decision to trust (or not) (van t Wout and Sanfey, 2008 ).
Indeed, participants were willing to take the risk of trusting these counterparts more than 70%
of the time on the first rounds played with someone that has a reputation of cooperator. On

the other hand, if their counterpart had a reputation for being individualistic, then participants
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decided to trust them only 20% of the time. This result, at first, provides more support to the
notion that social behaviors can be conveyed through reputation information and that partici-
pants are indeed sensitive to the nature of the reputation. In a similar study, Changetal (2010)
show that counterpart facial expression (positive versus negative) also influence decision to
trust in RTGs. Therefore, initial knowledge provided by a third party directly influences initial
judgment (Chang et al,, 2010).

In this study, we found that participants were more willing to trust counterparts with a high
pro-social reputation as compare to counterparts with an individualistic reputation. There-
fore, we can suggest that reputational information serve as risk signals that can impact on the
decision to trust and expectation of being trust in return. However, compared to pure risk,
other neuroscientific studies report that unique features to the social nature of trust can be se-
lectively manipulated, for example by introducing a hormone induction into the system (Fehr,
Fischbacher, and Kosfeld, 2005 ). This hormone, called oxytocin, plays a role similar to a neu-
rotransmitter in the central nervous system and influences decision to trust via the amygdala

(Baumgartner, Heinrichs, Vonlanthen, Fischbacher, and Fehr, 2008).

With this first series of analysis, we also replicated results of previous neuroeconomics stud-
ies which report that people use direct observation of past events as a basis for their trustwor-

thiness judgments (King-Casas et al., 2005).

During the course of our experiment, participants learned to trust more often counterparts
that reciprocated frequently, and less often counterparts that did not. Taken together this find-
ing suggest that decision making during repeated interactions is directly impacted by both ex-
plicit reputation priors and also by direct social signals conveyed via experience during the
game. Additionally, reputation and trust seem to act synergistically to impact the observed
behavior of our participants. Indeed counterparts that have a reputation for being cooperative
were initially viewed as more trustworthy and then were trusted more often during the RTG
in the game. This result suggests that reputational priors impact both initial judgment and

experience.

3.6.2 MODELING TRUST

To better understand the individual learning processes underlying our behavioral findings, we
modeled six possible learning processes. While there are of course many other models that
could have been tested, we chose to focus on the ones that have a strong conceptual ground-
ing. Our first analysis focused the model-free TD learning model, classically used in learning

situation. Then, we fine-tuned this baseline model by using model-based RL algorithms. The
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“Gain and Losses” model captures a well-known human bias: a differential sensibility to gains
than losses (the prospect theory). In a third model, we tested a pure Prior-Expectation as-
sumption that just operates on the initial value of decision to trust. Following, we tested the
Prior-Decay algorithm hypothesizing that reputational prior will impact behavior responses
early in the relationship, but will ultimately be overridden by experience, an assumption sim-
ilar to a dual process mechanism (Poldrack, Clark, Paré-Blagoev, Shohamy, Creso Moyano,
Myers, and Gluck, 2001; Frank, O’Reilly, and Curran, 2006). Then, we used a model imply-
ing that the trustworthiness representation impact on how outcomes of the interaction can
be interpreted. The “Outcome-bonus” hypothesis allows that outcomes consistent with the
starting trustworthiness belief will be rewarded a learning “bonus”, whereas outcomes that are
inconsistent (i.e. a reputed cooperative counterpart that defects) will be disregarded (Doll
et al,, 2009; Biele et al., 2009; Chang et al., 2010; Biele et al., 2011). Finally, we tested the
Adaptive-Belief learning algorithm assuming that trustworthiness judgment is reliably used as
a learning advantage in the update calculation but will eventually be updated on the basis of

their counterparts’ behavior after each game.

We employed a cross-validation technique to assess the best-fit of our models. We found
that a simple initialization account does not fit the data as fine as the other RL models that
allowed the starting judgment to impact the update function. In line with this result, we also
found a behavioral interaction between reputations and trust that was not entirely driven by
the first interactions but rather that lasted until the end of the relationship (See figure 3.5.1).
Additionally, we found that our new model and the outcomes bonus model essentially pro-
vide additional confirmation that the general reputational process is not a phenomenon that
is overridden by experience. Further, we found that our model that allows trustworthiness
judgment to both capture reputation signal and that allow the beliefs to be updated based on
the outcome of each interaction explains the behavioral data the most. Notably, our proposed

model predicted two effects that are confirmed by our behavioral data.

Our first finding suggests that the Adaptive-Belief algorithm highly predicted the behavior
of our participants and most specifically, the fact that toward the end of a RTG, participants
decided to trust the most counterparts that reciprocate with a high probability and the least to
counterparts that did not reciprocate frequently. Our results confirmed this hypothesis (figure
reference) and in particular, we report the exact behavior for the data in all the manipulated

experimental conditions and the data predicted by the RL model.

We found that the Adaptive-Belief model predicts that trustworthiness judgment would be
firstinfluenced by the nature of the reputation information and will change over time based on
actual experiences. Because the model-predicted decision to trust switch more rapidly when

inconsistent behavior was observed from counterparts with reputations, the predictions were
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also better able to predict behaviors than models that do not account for interaction between
trust and reputation. These results support and extend previous findings, which have found
that, although instructions alert decisions in uncertain environment, experience overwhelms
explanation in risky choice (Barron and Erev, 2003; Hertwig, Barron, Weber, and Erev, 2004;
Jessup, Bishara, and Busemeyer, 2008). While this notion of prior expectation being dynam-
ically updated with experience is certainly not new, this study proposes for the first time a

computational model of this effect in a social context and provides support for its validity.

3.7 CONCLUSION

Our first study integrates methods and theories from different disciplines: psychology, neu-
roscience and economics with the framework of reinforcement learning. Our goal is to gain a
greater understanding of how high-level social cues such as reputation information and trust-
worthiness are interpreted and used in an iterative social exchange. Our results suggest that de-
cision to trust with or without reputational prior engage different cognitive processes. While
decision to trust without reputational priors is based on actual experiences through repeated
interactions, decision to trust when reputation prior are available is determined by the nature

of the reputation and then dynamically updated based on direct observation.

In this first study, we propose a new computational RL model with an interdisciplinary
approach to conceptualize the notion of learning to trust with or without reputation informa-
tion. This model proposes a novel approach to bridge the division between theoretical models
and empirical evidences of trust and reputation in the social decision-making literature (Jes-
sup et al., 2008). Overall , our study provides new evidence supporting a growing literature
involved in the neural computations underlying adaptive social learning (King-Casas et al.,
2005; Behrens et al., 2008; Biele et al., 2009, 2011; O’Doherty et al., 2007) and decision to
trust mechanisms (Krueger et al., 2007; van 't Wout and Sanfey, 2008). Finally, this first study
illustrates the importance of prior-expectation in social decision-making that can be used as a

risk belief (i.e. the likelihood for reciprocity).

51






Your theory is crazy, but it’s not crazy enough to be true.

Niels Bohr

Neural Correlates of Trust and Reputation1

4.1  BACKGROUND

TRUSTING OTHERS INVOLVES RISK AND UNCERTAINTY: people invest a form of good (i.e.
money, work, time etc.) in interactions that can yield a profit or a loss, depending on whether
others hold to their end of the bargain (Coleman, 1994). Critically, when others are not con-
tractually committed to doing so, they may be untrustworthy for their own benefit and harm
the person that initially placed trust in them (Berg et al., 1995). In financial transactions, in-
vestors should then either anticipate this, and not invest money to begin with, or develop effi-
cient strategies to estimate the trustworthiness of others (Camerer and Weigelt, 1988 ). Exper-
iments with repeated Trust Games (RTGs) allow to empirically observe trust-based dynam-
ics (Chang et al., 2010). Neuroimaging studies employing RTGs have shown that, when no
prior information on transaction partners is available, the brain’s reward circuitry is involved
in learning about their type (i.e. their level of trustworthiness), based on the outcomes of

previous trust-based interactions (King-Casas et al., 2005 ). Indeed, reward-related brain re-

"Parts of this Chapter have been taken from Fouragnan et al. (2013 ). Reputational Priors Magnify Striatal
Responses to Violations of Trust, The Journal of Neuroscience
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gions have been found to respond positively to trustworthiness and negatively to violations of
trust (Krueger et al.,, 2007; Phan et al., 2010; Long, Jiang, and Zhou, 2012). We refer to this
as “interaction-based” learning. However, a second important alternative for investors to effi-
ciently engage in financial decisions is to rely on priors provided by a third-party. Such priors
may affect the way agents evaluate the outcomes of transactions and thus how they learn about
the type of their counterparts. We refer to this as “prior-based” learning. For example, in web-
based transactions, which are increasingly used, investors interact with complete strangers and
rely on available reputation priors (e.g., reports on previous transactions, customer reviews
etc.) to predict expected returns and potential risks associated with investments (Kim, 2009).
However, while the neural correlates of interaction-based learning to trust have been largely
explored, only few studies have investigated the neural bases of trust when reputation priors
are provided (Delgado et al,, 2005; Stanley et al,, 2012). No studies on date have directly
compared the two forms of trust-based decision making within the same experiment. To con-
front this issue, we conducted a functional magnetic resonance imaging (fMRI) experiment
in the attempt to characterize the neural activation patterns related to trust-based decisions
during RTGs. Two situations were analyzed and compared, one in which we provided infor-
mation about the social attitude of counterparts (i.e. reputational priors), and one in which no
such information was provided. Furthermore, in contrast to a previous neuroimaging study
on the same issue (Delgado et al.,, 2005), we also manipulated the actual level of trustwor-
thiness demonstrated by counterparts during an RTG, such as to make it consistent with the
provided priors. Finally, we used standard fMRI analysis, model-free and model-based rein-
forcement learning (RL) models to approach the problem of social learning and reputation
effects. Our main goal was to assess whether and how reputation priors affect RL mechanisms

at both the behavioral and neural level.

4.2 EXPERIMENTAL DESIGN AND METHODS

4.2.1 PARTICIPANTS

Twenty male participants (mean age, 29.5 £ 3.53 years) took part in the fMRI experiment;
two were removed from the analysis for excessive head movement (See fMRI analysis). All
of them were healthy, gave written informed consent, had normal or corrected-to-normal vi-
sion without any history of psychiatric, neurological, or major medical problems, and free of
psychoactive medications at the time of the study. Participants were told that the experiment
aimed at studying decision making in a social context, that they would receive a compensation

of 15 Euros/hour and that the money gained in ten randomly extracted trials would be added
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to their compensation. The study was approved by the local institutional ethical committee of

the University of Trento.

4.2.2  Task

The experimental task was based on the Trust Game (TG) (Berg et al,, 1995). In one round
of our task, each participant played as “investor” with an anonymous counterpart as “trustee”
Both players were endowed with 1 euro before starting a round composed of 2 stages (See
figure 4.2.1): in stage 1 the participant decided whether or not to share his euro with the
trustee. If he decided to share, the euro was multiplied by 3 by the experimenter before being
allotted to the trustee. In stage 2 the response of the trustee could be to either equally share
his money with the investor (1/2 of 4 euros = 2 euros) or keep his money and return nothing.
It follows that if the investor invested and the trustee reciprocated, both players were better
off than if the interaction has not occurred at all. However, investing was risky, as if a trustee

returned nothing, the investor incurred a loss.

Investor

Trust Distrust

Trustee

r
Untrustworthy Qusrwc:m’w
/ \
P1=1 51=0 R1=2
F2=1 T2=4 R2=2

Figure 4.2.1: Experimental design. One round of the two-player repeated trust game (RTG). P1 is
the payoft of the participant, who always plays as investor; P2 is the payoff of his counterpart, who
plays as trustee. Before each round both players are endowed with 1 euro. The participant moves first
and chooses either to “keep” (Trust) or “share” (Distrust) If he keeps, both players maintain their
initial endowments. If he shares the participant’s endowment is multiplied by 3 and passed to the
counterpart. The trustee then decides whether to share in turn by returning 2 euros (Trustworthy),
or to keep by returning nothing (Untrustworthy). RTGs consisted of several consecutive rounds
with a same counterpart. Participants played with many different counterparts and were told that
their counterparts had already made their choices.

We used a repeated version of this TG (RTG), which consisted in a series of consecutive
TG rounds with a same counterpart. However, this alters the nature of the single-shot TG, as

RTGs allow for additional strategic maneuver. For instance, investors tend to invest more (and
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trustees to reciprocate) in initial rounds of RTGs, than in final rounds or single shot games
(Isaac, McCue, and Plott, 1985). For similar reasons, both parties may strategically punish
(by not investing) if they believe this might incentivize uncooperative counterparts to review
their strategies in future rounds. Our study intended to minimize the strategic component of
trust-related behavior; hence our version of the game differentiated from the typical repeated

TG in few but important respects.

1. Subjects were informed that trustees had already made their choices, which thus wouldn’t
have been affected by those of the participant. In other words, participants knew that
counterparts were not interactive. This feature should have eradicated any strategic
component usually present in RT'Gs. In reality, the trustees were computer simulations

and they reciprocated an investment with fixed probabilities unknown to participants.

2. Another feature was also adopted to make learning independent on participants’ ac-
tions. In traditional RT'Gs, when an investor does not trust, the round ends and noth-
ing is learned about the behavior of counterparts. In our study, on the other hand, par-
ticipants learned about the trustees’ choices even when they invested nothing. This
adjustment enabled to keep the amount of feedback fixed (regardless the choice of par-

ticipants), thus allowing us to compare learning mechanisms between conditions.

3. Finally, to further reduce strategic reasoning, participants did not know how many games
composed each RT'G with a given trustee but only that RT'Gs were consecutive and if
they were not paired with the same trustee twice in a row, then they would have never
encountered the counterpart again. Specifically, we fixed a constant probability of 1/3
to continue the game with a same counterpart; this resulted in a minimum of one and

a maximum of eight games with a same trustee.

Then, each trustee was introduced with a picture of his face before a RTG began (See fig-
ure 4.2.2). The association between pictures and RTGs was randomized, as was the order of
RTGs. To reduce facial information extraction and gender attraction, we assembled a database
of colored pictures from 20 to 60 years old Caucasian men (mean age and SE: 34.05 & 11.19)
controlled for attractiveness, emotion and racial traits. 128 pictures were selected and used
with authorization from the FERET database of facial images collected under the FERET pro-

gram (Phillips et al., 2000). The words “trust” or “trustworthy” were never mentioned.
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Figure 4.2.2: Timeline of the first RTG round. Presentation: Face of the counterpart (with a prior or
no-prior) was displayed for 3.5 s, and only presented for the first round of an RTG. Fixation: Fixation
cross was presented during a jittered inter-stimulus interval (ISI). Choice: Participants made their
choice by pressing “Keep” or “Share”. Delay: ISI corresponding to the (simulated) decision of the
counterpart. Outcome: Outcome of the game and the payofs of each player.

4.2.3 EXPERIMENTAL SETUP

Cooperative trustees would reciprocate 80% of the times, while individualistic counterparts
would defect 80% of the times (though participants were not informed of such contingencies).
The distinction between types furthermore allowed confronting the cases in which trustees

behaved consistently (“Cons”) or inconsistently (“Incons”) with their types.

The second key feature of our study was whether or not a reputation prior was provided
(See figure 4.2.3). In the prior-condition, half of the cooperative and half of the individu-
alistic trustees were flagged, respectively by a circle and a triangle. These cues signalled their
“reputation”. Specifically, participants took part in the Social Valuation Orientation (SVO)
(Messick and McClintock, 1968; Van Lange, 1999) and were told that the distinct cues were
based on the trustees’ scores for the same task. This task distinguishes between different types
of social value orientations (e.g., cooperative or individualistic). The main difference between
each category is the extent to which one cares about own payofts and that of the others in social

dilemma situations.

Finally, for the remaining half of the counterparts, no prior information was provided (no-

prior condition).

To ensure no difference in learning scheme in each of the four conditions (Prior Coopera-
tive, Prior Individualistic, No-Prior Cooperative, No-Prior Individualistic), RTG length and

share/keep schedules within each RTG were counterbalanced.
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4.2.4 PROCEDURE

Participants received written instructions, took part in a simplified version of the SVO task,
and completed a 20 min RTG practice session (20 trials). The experiment was implemented

using Presentation software (version 0.70).

A first key manipulation was that trustees were divided into 2 predefined types: they could

be either “cooperative” or “individualistic” (See figure 4.2.3).

PRICR NO PRIOR
TYPE

Individualistic
(80 % KEEP)

Cooperative
(80 % SHARE)

Figure 4.2.3: Experimental conditions. Two conditions were adopted: 1) the “type” of counter-
part, and 2) the presence vs. absence of “reputational priors” Types: counterparts could be either
“cooperative” or “individualistic” in their (simulated) behavior in RTGs; the former shared and the
latter kept in 80% of RT'G rounds. Reputational priors: participants were told that cues indicated
whether the current counterpart had obtained a high or low score in a social orientation task (trian-
gles indicated low scores, circles indicated high scores). Such priors reliably differentiated between
the 2 counterpart types.

In the scanner, subjects completed 356 trials (89 for each condition: Prior Cooperative,
Prior Individualistic, No-Prior Cooperative, No-Prior Individualistic), divided in four runs
of 20 min. Figure 4.2.2 shows the time line of the first trial of an RTG. Each RTG started
with a 3.5 s display of the face of the trustee (which, only in “prior” conditions, was flagged
with a reputational cue). This was followed by a fixation cross and then by a “decision screen,”
which required participants to choose between one of two options, labeled “share” or “keep.”
After making their choice, participants waited a jittered interval before an “outcome screen”
appeared, displaying the trustee’s choice and the corresponding payofts to both players. For

those trials in which participants chose to keep, the outcome screen was still shown.
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4.2.5 ANALYSIS
BEHAVIORAL DATA ANALYSIS

Behavioral data were analyzed using Stata Statistical Software version 9.2 and the R envi-
ronment (Development Core Team, 2008). A two-way repeated measure ANOVA was per-
formed to identify differences between conditions for each variable of interest (e.g., decision
to trust, payoffs made in each condition). Next, we computed regression analyses using mixed-
effects linear models (MEL), in which participants were treated as random effects and hence
were allowed to have individually varying intercepts. Parameter estimates (b), SE, t values and

P values were reported.

RL MODELS
MODEL 1: MODEL-FREE TEMPORAL-DIFFERENCE LEARNING.

We first used a “model-free” temporal-difference (TD) (model 1) learning algorithm (Rum-
mery and Niranjan, 1994; Sutton and Barto, 1998), which assumes that agents are initially
unaffected by the presence of priors, but that, as trials with a counterpart unravel, they may up-
date reward values differently when priors are available as opposed to when they were not avail-
able. Participants would sample the reward probability of two choices (Keep or Share) in the
Cooperative and Individualistic conditions. We then hypothesized that participants would ob-
tain reliable expectation of these conditions updating the estimated value of each choice with
adiscounted “step-size.” Thus the stochastic prediction error §, based on the Rescorla—Wagner

learning rule (Rescorla and Wagner, 1972) was computed as follows:

8 =R, — Vet (4-1)

where R s the payoft obtained at time t, when choosing an option C at time t or t + 1, and V'is
the value of each choice Share or Keep in each trial. In addition to this, the following learning
rule differentially updated the stochastic prediction error in the Prior (P) and No-Prior (NP)

conditions:
Vi+1=V,+ aP.Sfcyt) + aNP.S?gjt) (4.2)

The degrees in which §” and VP influence the new action value are weighted by two learning

rates, aP and aNP, where o < af, aVP < 1.
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MODEL 2: MODEL WITH SEPARATE EXPECTATIONS FOR POSITIVE OR NEGATIVE PRIORS.

Additionally, given the results found in the previous study (See Chapter 3), we hypothesized
that, in the Prior condition, participants have “optimistic” or “pessimistic” expectations, at the
beginning of the game due to the presence of a positive (P™) or negative Prior (P™), respec-
tively (Biele et al., 2009, 201 1; Wittmann et al., 2008). Thus, the values of initial choices when

playing with a Cooperative or Individualistic counterpart in the prior condition were formally

defined as:

Vfg‘;’)* = gp+'H9Prior+‘N (4-3)
Vieo =8 prior— N (4-4)

where ¢"+ and g¥~ are equal to 1 when playing with a counterpart with a positive or negative
prior, respectively; and o otherwise. 0p and 0p_ are free parameters capturing the optimistic
or pessimistic impact of the priors expectation, y is the expected payoff from choosing ran-
domly among all options, which serves as a normalization constant and N is the number of
trials experienced in the learning condition, which is a scaling factor, allowing for the compar-
ison between an expected decision value and the outcome of the decision. On the other hand,

in the no prior condition, only one parameter weighted the initial expected value of choices,

P
(Co)*

The Softmax function was then used for the two models to determine the probability of

choosing a given choice option given the learned values as follows:

p(m )
ex T
P(share)t = ( V(share)¢ V(keep)t (4.5 )

expl” ) expT )

where 7 is called a temperature parameter. For high values of 7, all actions have almost the
same probability (i.e., choices are random), while for low 7 the probability of choosing the

action with the highest expected reward (V1 > V2) is close to 1.

To generate model-based regressors for the imaging analysis, both learning models were
simulated using each subject’s actual sequence of rewards and choices to produce per-trial,
per-subject estimates of the initial values V; and error signals §; (Morris et al., 1996; Wittmann
etal., 2008). All parameters of interest were implemented in MATLAB R2009 and were esti-
mated using the negative log likelihood of trial-by-trial choice prediction. Model comparisons
were performed with the Bayesian Information Criterion, the pseudo r* value using the Log

likelihood of a random distribution, and tested with the likelihood ratio test.
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4.2.6 FMRI DATA ACQUISITION AND ANALYSIS
FMRI DATA ACQUISITION

A 4T Bruker MedSpec Biospin MR scanner (CiMEC, Trento - Italy) and an 8-channel bird-
cage head coil were used to acquire both high-resolution T 1-weighted anatomical MRI using a
3D MPRAGE with a resolution of 1 mm3 voxel and T2*-weighted Echo planar imaging (EPI).
The parameters of the acquisition were the following: 34 slices, acquired in ascending inter-
leaved order, the in-plane resolution was 3 mm3 voxels, the repetition time 2 sec and the echo
time was 33ms. For the main experiment, each participant completed 4 runs of 608 volumes
each. An additional scan was performed in between two different runs in order to determine
the point-spread function that was then used to correct the known distortion in a high-field

MR system.

PREPROCESSING

The first five volumes were discarded from the analyses to allow for stabilization of the MR
signal. The data were analyzed with Statistical Parametric Mapping 8 software (SPM8; Wel-
come Department of Cognitive Neurology, London, UK) implemented in MATLAB R2009
(MathWorks). We used SPMS for the preprocessing steps. Head motions were corrected us-
ing the realignment program of SPM8. Following realignment, the volumes were normalized
to the Montreal Neurological Institute (MNI) space using a transformation matrix obtained
from the normalization process of the first EPI image of each individual subject to the EPI
template. The normalized fMRI data were spatially smoothed with a Gaussian kernel of 8 mm
(full-width at half-maximum) in the (x, y, z) axes. Imaging data for participants with head mo-
tions exceeding one voxel (3 mm) in transition and 3° in rotation were discarded (Eddy et al,,
1996). We also used the xjView package and MRICron to create the pictures presented in the
results (version 1.39, Build 4).

FMRI ANALYSIS
GLM 1A AND B.
Our first analysis considered the main effect of the presence or absence of reputation pri-

ors when a new counterpart is presented for the first time. We used a general linear model

(GLM), estimated in three steps: (1) first, an individual blood oxygenation level-dependent
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(BOLD) signal was modeled by a series of events convolved with a canonical hemodynamic
response function. The regressors representing the events of interest were modeled as a box-
car function with onsets at the beginning of each RTG (“Pre”) and durations of 3.5 s. For
GLM 1a, regressors represented trials in which priors were provided (“Prior_Pre”) and no
priors were provided (“NoPrior_Pre”). For GLM 1b, regressors represented trials in which
priors were provided for a cooperative counterpart (“Prior+ Pre”), priors were provided for
individualistic counterparts (Prior-_Pre), and no priors were provided (NoPrior Pre). For
t contrasts, we then computed first-level one-sample t tests comparing trials with and with-
out priors on the basis of the GLM 1a. (2) We then analyzed second-level group contrasts.
Our fMRI results were initially thresholded at p < 0.001 uncorrected and were subsequently
cluster-thresholded at p < 0.05, familywise error (FWE). All reported coordinates (x, y, z) are
in MNI space. Anatomical localizations were performed by overlaying the resulting maps on
a normalized structural image averaged across subjects, and with reference to an anatomical
atlas. (3) Finally, we used the MarsBaR toolbox from SPM8 to perform functionally defined
(based on the averaged parameter estimates in the cluster found with GLM 1b) region of in-

terest analysis (ROI) and compute percentage signal changes.

GLM 2: PR1OR-MODEL FMRI ANALYSIS.

A second GLM model uses the estimates of the best-fit RL algorithm described in equations

4.3 and 4.4.
A B
" Reward prediction error estimated from model ) HRF
2
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Figure 4.2.4: Illustration of a whole-brain analysis of Trial-to-Trial estimates of Prediction Error
8¢ from the Prior-Expectation model from simulated data. Example of one scan. Convolution of
parametric changes in estimated PE for each decision on each outcome (top plot - left) convolved
with a canonical hemodynamic response function (top plot - right) produced individual participant
relative prediction-error regressors (bottom plot - right).

62



This model still focused on the distinction between prior and no-prior conditions but ad-
ditionally separated between two phases of the RTG: the decision phase and the outcome
phase. This allowed us to assess how the impact on the BOLD signal of priors was parametri-
cally modulated by two behaviorally estimated learning measures (from model 2, See figure
4.2.4): (1) attime of choice, the parameter Q,, weighted the value of options, on a trial-to-trial
basis, depending on RTG history; (2) while &, scaled outcomes on the basis of their estimated
prediction error. Parametric modulation were applied to the magnitude of the stick functions.
We performed this analysis at the individual level and ran group statistics, taking individual
participants as random effects. We then focused on a subset of our resulting brain regions on
the basis of effect strength (p < 0.05, FWE corrected). Specifically, averaged parameter esti-
mates were extracted from bilateral caudate (MNI coordinates: (—14,20,2) and (12, 18, 6)),

separating between prior versus no-prior contexts.

GLM 3: VIOLATION OF TRUST.

In a third GLM we differentiated between consistent (Cons) and inconsistent (Incons) out-
comes. We classified consistent outcomes as those rounds in which either (1) participants
had kept with individualistic counterparts that defected (Cons—) (distribution of trials: M
= 57 + 3) or (2) they had shared with a cooperative counterpart that reciprocated (Cons+)
(M = 56 + 4trials); inconsistent outcomes, on the other hand, occurred when either (3) par-
ticipants had kept with an individualistic counterpart that reciprocated (Incons—) (M =14 +
4 trials) or (4) they shared with a cooperative counterpart that defected (Incons+) (M = 15
=+ 4 trials), and who thus “violated” their trust.

GLM 4: COOPERATIVE VS. INDIVIDUALISTIC.

In a fourth analysis, we were interested in the brain regions that were differentially solicited
when participants were playing against individualistic trustees as compare to playing with co-
operative trustees. We constructed a a new GLM for each participant in which the effects
of playing with an individualistic counterpart ((Individualistic Prior) + (Individualistic No
Prior)), playing with a cooperative counterpart ((Cooperative Prior) + (Cooperative No

prior)) and parameters of head movements served as regressors.
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FUNCTIONAL CONNECTIVITY ANALYSIS (PPI).

To explore the interplay between the caudate and other brain regions following violations of
trust (Incons+), we assessed functional connectivity using psychophysiological analysis (Fris-
ton, Buechel, Fink, Morris, Rolls, and Dolan, 1997; Cohen et al., 2005 ), which compares the
pattern of activity of a seed region to every other regions of the brain. We took the bilateral
caudate resulting from the reported GLM 3 (Cons > Incons) as seed regions, as these areas
showed highest sensitivity to violations of trust (t = 6.78, p < 0.05, FWE). Then, we created
three regressors: (1) the caudate time course (physiological regressor), (2) an event-related
regressor that distinguished between violations of trust in the prior and no-prior conditions
(with a boxcar function ranging from the beginning of the outcome phase until the end of the
interstimulus interval; ISI), and (3) the interaction term. Additionally, we also conducted a
correlation analysis between the retaliation rate for each subject (measured by the percentage
of choices to keep after violation of trust when playing with a cooperative partner) and the
parameter estimates in left ventrolateral prefrontal cortex (VLPFC) (MNI —40, 42, 4) across
subjects. Finally, to examine how striatal responses to violations of trust were related to learn-
ing, we plotted individual parameter estimates against the individual learning rates (estimated

with model 2 described above).

4.3 BEHAVIORAL MEASURES AND COMPUTATIONAL RESULTS

4.3.1 BEHAVIORAL DATA

Our main goal was to determine whether reputation priors influence initial expectations and
decisions in the games, and subsequent learning mechanisms. A repeated measure two-way
ANOVA was performed using type of counterpart (cooperative or individualistic) and prior

condition (prior or no-prior) as within participant factors.

The percentage of decisions to share was significantly higher with cooperative counterparts
(M = 71.77, SE £ 4.03) than with individualistic counterparts (M = 27.34, SE + 3.71; F1,
17 = 174.01, p < 0.001). The results also showed a significant interaction effect of prior with
type of counterpart (F2, 35 = 30.87, p < 0.001). Post hoc tests (t-tests Bonferroni corrected)
indicated that participants decided to share with cooperative partners more when provided
with a prior (M = 81.09, SE+ 4.78) than when priors weren’t provided (M = 62.45, SE +5.81;
t=5.89, p < 0.001), whereas they decided to share with individualistic counterparts less in the

prior (M = 18.37, SE + 4.66) than in the no prior condition (M = 36.3, SE + 5.05; t = 4.23, p
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Figure 4.3.1: Behavioral results. Average percentage of decision to trust across conditions. Mean £

standard error of participants’ decision to trust (share) are broken down for trustee’s type (Coopera-
kkk

tive/Individualistic) and prior condition (Prior/No Prior); *** p<o.0o1. Priors enabled participants

to match (on average) their choices with the counterpart’s level of trustworthiness.

< 0.002, See figure 4.3.1).

When payofls are analyzed with type of counterparts and prior condition as within-subject
variables, we found that payoffs were significantly higher when playing with cooperative coun-
terparts (M = 1.43, SE %+ 0.13) than individualistic counterparts (M = 0.94, SE+0.11; F1, 17 =
138.32, p < 0.001) and significantly higher in the prior condition (M = 1.20, SE % 0.10) than
the no prior condition (M = 1.08, SE & 0.06; F1, 17 = 28.98, p <o0.001, See figure 4.3.2).
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Figure 4.3.2: Average payoffs in the Prior and No-Prior conditions. Average payoffs + standard
error (in euros) in Prior/No Prior conditions. When priors are available, participants significantly
earn more when they adjust their choices to counterparts’ types; ** p<o.o1.

In order to examine the effect of the prior condition, the trustees’ type, the order of the re-
peated game and the interactions of such factors on the decision to share (binary dependent

variable), we performed regression analyses using mixed-effects linear (MEL) models. The re-
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sults revealed that participants shared with cooperative counterparts more often as compared
to individualistic counterparts (b = 1.29 (SE £ 0.08), t = 15.8, p < 0.001); shared less when
they did not receive priors (b =- 1.09 (SE + 0.09), t =- 12.1, p < 0.001); and shared less over
time (b=-0.12 (SE£0.02),t=-6.81, p < 0.001). These results suggest that participants took
into account reputation priors and played according to the counterpart’s level of trustworthi-
ness. Instead, when priors were not available, participants learned counterparts’ types on the
basis of their actions. Interestingly, we found an interaction effect between the trustees’ type
and the prior condition (b = 2.27 (SE £ 0.13), t = 17.39, p < 0.001). These results indicate
that the difference between prior and no prior conditions was greater when playing with a co-
operative than with an individualistic counterpart. Furthermore, even though participants in
the no prior condition adjusted their decisions to their counterparts’ type over rounds, they

still shared with cooperative counterparts less than when they had priors (See figure 4.3.3).
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Figure 4.3.3: Learning dynamics across RT'G rounds. Average percentage of the decision to trust for
each round when playing with a “cooperative” vs. “individualistic” counterpart, and when priors were
present vs. absent. When participants know nothing of their counterparts they tend to randomize
between trusting and not trusting during initial rounds and adjust their choices to their counterparts’
type in succeeding rounds. On the other hand, when priors are present, participants tend to rely on
them already from early rounds. Standards errors are the shaded areas bellow and above the main

curves.

Post hoc t-test revealed that, in the no prior condition, in rounds when cooperative coun-
terparts kept, participants subsequently kept more (Mean percentage of decisions to keep =
0.48,SE + 0.019), whereas they persisted in sharing in the prior condition (M = 0.2, SE +
0.015; t,, = - 4.99, p < 0.001), (See figure 4.3.4 A). Similarly, when individualistic counter-
parts shared in a round, participants subsequently shared more when not provided with a prior

(Mean percentage of decisions to share = 0.34, SE+ 0.015) than when given a prior (M = 0.21,
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SE + 0.009; t,, = - 4.783, p < 0.001, See figure 4.3.4 B).
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Figure 4.3.4: A. Choices following unexpected behavior of cooperative and individualistic counter-
parts. Average (+ standard error) of percentage of “keep” choices in prior vs. no prior condition
at time t, following rounds in which participants shared and a cooperative counterpart violated their
trust by deciding to keep (at t-1). Decisions to Keep at time t (i.e., retaliation) was less frequent when
priors were available. B. Percentage of “share” choices (at t) following rounds in which participants
had kept and an individualistic counterpart has shared (at t-1).

4.3.2 RESULTS FROM LEARNING MODELS

Alikelihood ratio test revealed that the Prior model (model 2) with separated expectations for
cooperative and individualistic counterparts (Prior mode) performed better than the classical

TD learning model (model 1) (p < 0.001) (Additional statistics are reported in Table 4.3.1).

The best-fitting parameters are shown in Table 4.3.2. For these parameters, we found that
the average learning rate estimated from trials in the No Prior condition, ayp, was significantly
higher than the average learning rate estimated from trials in the Prior condition §; (t,, =

2.29;p < 0.05).

We also found that the initial value in the Cooperative Prior condition, VZ" (o) was signifi-
cantly higher than the initial value in the No Prior condition V(o) (t,, = —2.82;p < 0.001),
and the initial value in the Individualistic Prior condition, V¥~ (0) (t,, = —3.07;p < 0.001).
There was no significant difference between the initial value in the Individualistic Prior con-
dition, V¥~ (o) and the initial value in the No Prior condition V**(0),(t = 0.46). Finally, we

found that the average learning rates estimated for each participant when they kept was higher
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Learning model comparison

Classical model-free  Prior+ and Prior- expectations

TD learning model RL learning model
BIC 7619 6460
Log Likelihood -3809 -3230
Pseudo r* 0.14 0.273

Table 4.3.1: Learning model comparison: Bayesian Information Criterion value (BIC), Log like-

lihood and the Pseudo r squared suggest that the Prior+ and Prior-expectations TD learning model

fits the observed behavior better the other TD learning models.

Parameter estimate for best behavioral model, depicted as mean & SE

Mean SE
Learning rate Prior condition §p 0.3373 1t 0.0456
Estimates for Cooperative counterparts 0.327 =+ o0.0424
Estimates for Individualistic counterparts 0.3475 =+ 0.0398
Learning rate No Prior condition §yP 0.5075 =+ 0.0689
Estimates for Cooperative counterparts 0.4686 £ o0.0701
Estimates for Individualistic counterparts 0.539 =+ 0.0599
Estimates learning rates for Invest trials (participants shared) 0.3845 £ 0.0459
Estimates learning rates for Non-Invest trials (participants kept) 0.4603 £ 0.0476
Softmax inv. Temp Betha 7 47769 F0.3149
Initial value Cooperative Prior condition Vp+ (o) 1.3814 =+ o0.1031
Initial value Individualistic Prior condition Vp- (o) 0.9838 =+ o0.1055
Initial value No Prior condition Viyp(0) 1.0641 =+ o0.1260

Table 4.3.2: Learning best model Averaged best-fitting parameter estimates (across subjects) SE
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(M = 0.46, SE £ 0.04) than when they shared (M = 0.38, SE + 0.048;t,, = —2.27,p <
o0.0s,see Table 4.3.2).

4.4 EMRIRESULTS

4.4.1  GLM1 EFFECT OF PRIOR AT TIME OF COUNTERPART PRESENTATION

In a first brain imaging analysis, we investigated whether it was possible to differentiate the
condition in which participants received prior knowledge of the Trustee’s reputation or not
based on their brain activation pattern at the beginning of each new multi-round game. This
period is of particular interest because, as we showed in the behavioral results section, our
participants were able to anticipate the Trustee’s strategy and adjust their own decision to this
strategy before starting each new multi-round game when they had received prior reputation-
related information (i.e., they chose to place trust or not in their counterpart with a probability
close the counterpart probability of reciprocation). Thus, this period took place at a time point
when the decision to trust (or not) could be implemented when the prior was provided. The
contrast (“Prior_Pre” > “NoPrior_Pre”) (see Methods, GLM1a) revealed differential activity
in the mPFC (o, 62, 31), to the presence vs. absence of any priors when new counterparts

were presented (t = 8.26; p < 0.05 FWE cor.)(See figure 4.4.1 and Table 4.4.1).

F_m
>M
A

(MNI 0, 82, 31)
p < 0.05 (cor. FWE) | E—

Figure 4.4.1: mPFC encodes reputational priors when a new counterpart s first presented. Random
Effect Analysis. When contrasting (Prior) > (NoPrior) conditions at time of counterpart presenta-
tion, activity in the medial prefrontal cortex survived FWE correction, p < 0.05.

Further functional ROI analysis, based on GLM1b, qualified this activation pattern as re-

sponding with increased activity to the presence of priors, regardless of their nature (positive
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or negative), and decreased activity to their absence (See figure 4.4.2). The opposite contrast
(“NoPrior_Pre” > “Prior_Pre”) revealed activity in bilateral anterior insula (-36, -4, 15), t =

3.91; p < 0.001 unc., and (38,3,10), t=3.45; p < 0.002 unc.).
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Figure 4.4.2: Functional ROI Analysis in mPFC. Functional ROI analyses further revealed percent-
age signal changes in the medial prefrontal cortex MNI (o, 62, 31). The figure shows an increased
activity when priors were present, regardless of their type, and decreased activity when there were

no priors.

4.4.2 GLM2 EFrFECT OF PRIOR AT RT'G CHOICE

Applying parametric analysis (See Materials and Methods, GLM 2 model-based fMRI anal-
ysis) to the functional MRI data, we focused on trial-to-trial weights on decision values as
represented by per-trial Q, estimate amplitude. We found that decision value estimates were
correlated with neural activity in a network consisting of the mPFC (-2, 64, 10) and the dor-
solateral prefrontal cortex (ALPFC) (-38, 38, 32), surviving p < 0.05, FWE corrected (See
figure 4.4.3 and Table 4.4.1). These two regions reflected the contributions of prior’s va-
lence (positive or negative) to the pattern of activity related to the decision to trust (See fig-
ure 4.4.4). Moreover, the difference at a neural level between prior and no-prior condition
was greater when playing with a cooperative counterpart compared with an individualistic
counterpart. This is consistent with the observed behavioral asymmetry of the effect of priors

between cooperative and individualistic conditions.
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Figure 4.4.3: Brain regions parametrically correlated with the estimated “optimistic” and “pes-
simistic” decision value from the Prior model. Random effect fMRI analysis. To look for neural
correlates of value signals (Q,) at time of choice, we entered the trial-by-trial estimates of the values
of the two stimuli (“Share” and “Keep”) into a regression analysis against the fMRI data. We found
enhanced activation in mPFC and dLPFC, surviving FWE correction, p < 0.0s.
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Figure 4.4.4: Functional ROI analysis in mPFC. Percent signal change by condition in the mPFC
area represented in (A). Similar pattern of activity was found in the dIPFC (not reported). These
regions encoded prior valence (positive and negative) that guided decision to trust at time of choice.

Error bars represent SE.
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4.4.3 GLM3 EFFECT OF PRIOR AT RTG OUTCOME

Across all RTGs, during the outcome phase of the game (see GLM2), individually estimated
trial-wise prediction errors (positive and negative combined) correlated significantly with the
BOLD responses in the bilateral caudate in the No Prior trials only (p < 0.05 FWE), (See
figure 4.4.5 and Table 4.4.1). On the other hand, striatal activity appeared to track estimated
prediction errors in a more blunted fashion when priors were provided (See figure 4.4.5).
Moreover, from a direct comparison between the no prior and prior conditions, we found
higher activity in the left caudate for the no prior condition compare to the prior condition

with a group peak MNI coordinates at -12, 20, 8 (See figure 4.4.6).

NO PRIOR CONDITION PRIOR CONDITION

Priar

-
¥* 18 Left Caudate (<14, 20, 2) T Mo significant voxels
Right Caudate (12, 18, 6)

Figure 4.4.5: Brain regions parametrically correlated with the estimated Prediction Error of the best
fitting RL model. Random effect fMRI analysis: Activity of the caudate showed significant correla-
tion to the estimated PE signal in the no prior condition (p < 0.05 FWE cor.). Such activities were
not observed in this brain area in the prior condition. Peak coordinates are given in MNI space.
Colour bars indicate T-values.

4.4.4 GLM4: INDIVIDUALISTIC VERSUS COOPERATIVE

Playing with a cooperative or an individualistic counterpart requested that participants ad-
justed their own strategy to fit the Trustees’ strategy. This behaviour mechanism had a major
consequence: it restricted participants to behave accordingly to the Trustee’s behavior and not
to their own opinion and social preference. Thus, playing with Cooperative Trustees impli-
cated that participants’ return payofts would be higher by also cooperating and that playing
with Individualistic Trustees implied to also be strategically Individualistic. However, evi-

dence from empirical investigations has shown that most Trustors are willing to place trust

72



Parameter estimates of Prediction Error

in the Caudate Nucleus
1 :
85 m Prior
ife pri
'i- €5 U No Prior

$3

1L
; *
4

Figure 4.4.6: Parameter estimates were extracted from the left caudate (-12, 20, 8) for the direct
comparison between prior and no-prior conditions. Caudate activity correlates with PE in the no-
prior condition only.

and transfer their initial endowment to the Trustees in the case of repeated trust games (Berg
et al,, 1995; Camerer and Weigelt, 1988). Playing with individualistic counterparts as com-
pared with cooperative counterpart was characterized by significant increases in activity of
the anterior Insula, the Medial prefrontal cortex (mPFC), Anterior cingulate cortex (ACC),
the orbito-frontal cortex (OFC) and the Putamen (See figure 4.4.7).

Ant. Insula  Middle PFC

Figure 4.4.7: Differential brain activation pattern while playing with Individualistic Trustees com-
pare to Cooperative Trustees. Illustrated are brain areas where activity exceeded threshold are p <
0.001 with 20 voxels extended threshold. The functional maps are superimposed on a normalized
anatomical image.
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4.4.5 GLMj5 VIOLATION OF TRUST: FUNCTIONAL CONNECTIVITY ANALYSIS

Finally, we specified the changes in activity in the caudate related to violation of trust (e.g.
the decisions to keep of a cooperative counterpart in response to a decision to trust of a par-
ticipant) in the prior and no-prior condition (analysis from GLM3, Table 4.4.1). Results
showed a stronger deactivation of the caudate in the prior condition compared to the no-prior

condition (t = 6.78; See figure 4.4.9 and Table 4.4.1). However, in contrast with the no-

Functional connectivity with Striatum seed (violation of trust)

PPl analysis
9
_ 6
3
0
T

Left Caudate (-10, 16, 4) Left VIPFC (40, 42, 4)
Right Caudate (14, 14, 10) Right vIPFC (38, 46, 4)

Figure 4.4.8: Functional connectivity between the caudate nucleus and vLPFC correlates with the
choice to retaliate after violation of trust in the prior condition. PPI analysis. With a caudate seed,
bilateral vVLPFC shows stronger connectivity with this region in the prior compare to the no prior

conditions.
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Figure 4.4.9: Reputational priors magnify striatal response to violation of trust. The caudate shows
a stronger deactivation to violation of trust from a cooperative counterpart in the prior condition

compared with the no-prior condition.
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Caudate responses to violation of trust and learning rates
NO PRIOR CONDITION PRIOR CONDITION
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Figure 4.4.10: Striatal responses to violation of trust and learning rates. The correlation between
caudate and learning rates is significant only in the no-prior condition, thus striatal responses to vi-
olation of trust in the prior condition are not reflected in learning.

Retaliation rate after violation of trust

PRIOR CONDITION

Betas in vIPFC

Retaliation rate

Figure 4.4.11: VLPFC prevents retaliation to violation of trust in the prior condition. vLPFC anti-
correlates with retaliation rate in the Prior condition after participants experimented violation of
trust from a cooperative counterpart. Spearman r = -0.6, p < 0.009.

prior condition, striatal deactivations to violation of trust were not reflected in behavioral re-
sponses. Indeed, the striatal activity related to violation of trust did correlate with individual
learning rates only in the no-prior condition (from the model 2: r = —0.687, p < 0.001; See
figure 4.4.10). No such correlation was found in the Prior condition. We used PPI to search
for brain areas that could have mediated such striatal responses in the prior condition. We
found that left and right vLPFC showed strong functional connectivity with the caudate seed
region after violation of trust in the prior compared with no-prior conditions; vLPFC, left
(—40, 42, 4), t = 3.73; right (38, 46, 4), t = 6.37, p < 0.05 corrected (See figure 4.4.8). Finally,
we found that the strength of connectivity between caudate—vLPFC was anticorrelated with
participants’ decisions to keep following violation of trust (Spearman correlation r = —0.67,
p < 0.001). Moreover, we found that the activity in the VLPFC was inversely correlated with

individual retaliation rates ' after violations of trust (r = —0.6, p < 0.009; See figure 4.4.11).

!Retaliation rates were computed as the percentage of Keep over Share choices
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MNI (mm)

Analysis and locations BA Side Cluster T p value X Y Z
size FWE cor.

Prior > No Prior (GLM 1)

Medial Prefrontal Cortex 10 — 95 8.26 6.87°¢ o 62 31
Ventra Tegmental Area — — 14 3.177  0.0032* o -1 -5

No Prior > Prior (GLM 1)

Anterior Insula 44  Left 106 3.912  0.0009* -36 -4 15§
Anterior Insula 44  Right 55 3.450  0.0017" 38 3 10
Parametric regression: Choice

(GLM2)

Medial Prefrontal Cortex 10 — 87 6.562 2,779 -2 64 10
Lateral Prefrontal Cortex 46  Left 122 5.987 7.8 -38 38 32
Lateral Prefrontal Cortex 46  Right 109 6.342 2.17°¢ 30 38 34
Superior Parietal Lobule 48  Left 77 5.01 6.7 %4 38 6 24

Parametric regression: Outcome
No Prior condition (GLM 2)

Caudate Nucleus —  Left 77 7.091 8.97° -14 20 2

Caudate Nucleus — Right 56 8.298 7.9 12 16 8

Violation of trust in the Prior

condition (GLM 3)
Caudate Nucleus —  Left 82 6.78 2.87°6 -10 18 11
Caudate Nucleus —  Right 56 6.34 2.47° 12 21§

Cooperative > Individualistic
(GLM 4)

Lateral Middle Prefrontal Cortex 48  Left 49 4.687 3.27°8 -39 19 22
Lateral Middle Prefrontal Cortex 48  Right 72 4.618  4.787°% 40 22 24
Anterior Middle Prefrontal Cortex 46  Right 57 4.259 7.3795 32 36 26

Insula 48 Left 85 3.750  0.0001% -38 14 -2
Insula 48  Right 122 3.644  0.0002* s7 17 -6
Anterior Cingulate Cortex 32 — 151 3.534  0.0003* I3 30 27
Putamen — Right 98 3,518  0.0012* 25 9 4
Middle Orbito Frontal Cortex 46 Right 59 3.525  0.0003* 39 51 -2

Table 4.4.1: Activations correlated with contrasts of interest Note: BA, Brodmann area; * un-
corrected statistics.
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4.5 DiscussioN AND CONCLUSIONS

Reputation-based social decision-making has been investigated both by theoretical and em-
pirical studies (Boero, Bravo, Castellani, and Squazzoni, 2009; Camerer and Weigelt, 1988;
Fudenberg et al., 1990), however research on its neurocognitive bases is still in its infancy.
Though it is rather unlikely that, in daily decisions, people possess absolutely no prior nei-
ther contextual information on who they interact with, the growing literature using RT'Gs in
fMRI focused mainly on situations in which strictly no priors are available (McCabe et al,,
2001; King-Casas et al,, 2005; Krueger et al., 2007). Only two recent fMRI studies investi-
gated how social priors (i.e. the moral character of their counterparts) affect the way people
engage in RTGs (Delgado et al., 2005; Dominic S Fareri et al., 2012). These studies however
did not completely isolate the effect of priors on trust (prior-based trust) by confronting them
to identical conditions with no priors (interaction-based trust). Our experimental setting is
the first to allow this direct comparison. The main goal of our study was to determine whether,
and how, reliable reputational priors affect initial decisions and subsequent learning mecha-
nisms at both the behavioral and neural level. From a behavioral point of view, we show that
priors affect decisions to trust in at least 2 ways: 1) in initial stages of the interaction, partici-
pants clearly chose to trust or distrust according to the positive or negative reputation of their
counterparts; furthermore, 2) players tend to keep relying on reputation priors, even when
their counterpart’s behavior was inconsistent with it. As a consequence, and since priors were
accurate predictors of trustworthiness in our study, players earned more when reputational

cues were available than when they were not.

4.5.1 MPFC ENCODES REPUTATIONAL PRIORS

From a neural point of view, our fMRI results revealed that the presentation of a new counter-
part yielded enhanced activation in the mPFC when accompanied by a prior (irrespective of it
signaling a positive or negative reputation). We suggest that the enhanced mPFC activity may
reflect the fact the prior information reduced the uncertainty about the behavior of the other
faced by participants when beginning a new RTG. Indeed, this region has been previously im-
plicated in uncertainty resolution in interactive contexts (Yoshida and Ishii, 2006). This is fur-
thermore consistent with the inverse activation pattern observed in the insula, which showed
stronger activity when priors were not available, consistently with previous findings report-
ing a role for this region in tracking increased uncertainty (Preuschoff, Quartz, and Bossaerts,

2008).
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4.5.2 MPFC AND DLPFC ENCODE THE VALUE OF REPUTATION PRIORS

At time of choice, the valence of priors elicited dissociable activation patterns when integrated
with the behaviorally estimated (from the prior-based RL model) option values (Qf). Specif-
ically, the mPFC and dLPFC differentially responded to cooperative versus individualistic
counterparts, however, only when priors were available. As reported in previous studies, our
results suggest that this brain network keeps track of contextually modulated decision values

over trials, and doing so improves participants’ performance (Wunderlich et al., 2009).

As reputational priors conveyed information on the social attitudes of counterparts in our
study, this activation is also consistent with a well established role of the mPFC in ascribing
attitudes to others (2), and anticipating their choices (Krueger et al., 2007; Hampton et al,,
2008; ?). Thus the mPFC is encoding a first response to reputational priors as well as the effect
of priors during subsequent interactions. This is in accordance with findings from humans
(Rilling et al., 2002; Hampton et al., 2008) and nonhuman primates (Barraclough et al., 2004)

on the role of the PFC in encoding value-related signals in repeated interactions.

4.5.3 CAUDATE NUCLEUS ENCODES REWARD PE ONLY WHEN PRIOR INFORMATION IS NOT

PROVIDED

Consistent with previous studies, trial-by-trial prediction errors estimated by RL models cor-
related with activity in the striatum (Bunge, 2004; McClure, Laibson, Loewenstein, and Co-
hen, 2004; O’Doherty, Dayan, Schultz, Deichmann, Friston, and Dolan, 2004; King-Casas
et al,, 2005; Schonberg et al., 2007) but, critically, only when no priors were available. This
confirms a role for the caudate in tracking the difference between expected and obtained out-
comes in RTGs, triggering learning. However, when priors were available they appeared to
prevent participants from reinforcement-based learning, which was reflected in the reduced

covariance between caudate responses and estimated prediction errors.

4.5.4 PRIORS MAGNIFY REWARD-PREDICTION ERROR SIGNALS IN THE CAUDATE NUCLEUS

As regards the striatal activation patterns, these are well-aligned with an established role of the
striatum in tracking reward contingencies, in both non-social (O’Doherty et al., 2004) and
social domains (Delgado et al., 2005; King-Casas et al.,, 2005; Jones et al., 2011). More specif-
ically, the observed patterns are consistent with the idea that the caudate mediates the neural
computation of reward prediction error (RPE). Indeed, we observed RPE-pliant signals in the

caudate only when no priors were provided, while the same signals appeared blunted when
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priors were available. Previous studies on non-social tasks (Li et al., 2011; Doll et al., 2009,
2011) and social tasks (Delgado et al., 2005; Biele et al,, 2011; Fareri, Chang, and Delgado,
2012) have shown that, when priors are available, participants tended to hinge on to them,

and to relatively discount the impact of the outcomes of their past decisions.

However, in addition to the previous studies, our results show that the presence of priors
magnifies striatal deactivation to violations of trust (i.e. when a counterpart with positive repu-
tation, as opposed to no reputation, violated trust), rather than blunting their response. Why
previous studies didn’t find such magnified response due to violation of priors requires fur-
ther investigation, though several hypotheses are possible. For instance, two studies (Delgado
etal,, 2005; Fareri et al., 2012 ) focused on the subset of unreliable priors, that is, on priors that
carried no information on trustees’ actual choices; it is likely that, in such a scenario, partic-
ipants were gradually learning to disregard such priors, converging towards their extinction
rather than exploitation. On the other hand, the opposite may have occurred in a more recent
study on the non-social domain (Li et al., 2011), in which priors were perhaps too reliable. In-
deed, in that study, agents were explicitly instructed on the precise probabilities of outcomes,
which may have reduced their surprise when infrequent, though anticipated losses occurred.
In both these previous studies, the space for learning via priors may have been reduced, as
the actual prior-to-reward contingencies appeared either non-existent (Delgado et al., 2005;
Fareri et al., 2012), or already completely exploited (Li et al., 2011). It is also possible that
the different methods used to instil priors tapped on different neural mechanisms: Delgado
and colleagues (2005) provided short descriptions of the “moral character” of counterparts,
whereas Fareriand colleagues (2012) used direct evidence from previous experience (i.e. play-
ing a ball task). Such methods of instilling priors may have also made them more salient or
intuitive and, as a result, harder to extinguish in spite of conflicting evidence. On the other
hand, our task reported on characteristics of counterparts that were possibly more directly
linked to the main task (i.e. the priors were based on results indicating the extent to which
one cares about his own payoffs and that of others - SVO task). Further investigation specifi-
cally manipulating prior reliability should clarify some of the points of divergence. Until then,
the open question in our study regarded the reason as to why striatal deactivations to trust

violations were not leading to behavioral adjustments when priors were available.

4.5.5 VLPFC CAUDATE STRONGER FUNCTIONAL CONNECTIVITY PREVENTING RETALIA-

TION

On the other hand, when priors were present, we suggest that the impact on learning of the

striatal deactivations to violations of trust may have been disrupted by other brain areas. Our
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results are in line with attributing this role to the vVLPFC, which we found to functionally cor-
relate with such striatal deactivations. In particular, the strength of connectivity between cau-
date and vLPFC was stronger in the prior compared to the no prior condition. We thus pro-
pose that the vVLPFC contributes in maintaining choices aligned with the reliable prior beliefs,
when beliefs momentarily conflict with observations. This might occur by compensating for
the relatively automatic behavioral changes to reward prediction error signals. In line with
this interpretation previous literature has implicated the vLPFC in top-down cognitive con-
trol by biasing processing in other brain regions towards contextually appropriate represen-
tations (Cohen, Mcclelland, and Dunbar, 1990; Miller and Cohen, 2001 ). Furthermore, not
only the vLPFEC plays a role in modulating bottom-up fashion cognition processes, but this
area has also been found to play a role in goal-directed behavior (Souza, Donohue, and Bunge,
2009; Valentin et al., 2007). In conclusion, our study integrates theories and methods from
cognitive neuroscience, economics, and RL to gain a greater understanding of how reputation
priors are encoded in the brain and how they affect learning to trust anonymous others. Our
findings suggest that priors influence both initial decisions to trust and the following learn-
ing mechanisms involved in repeated interactions. Specifically, the present study showed that
reputational priors magnify striatal responses to violations of trust. However, when such pri-
ors are reliable, other phylogenetically younger brain regions involved in higher cognition may
contribute to keep decisions anchored to those priors, thus relatively discounting the weight
of conflicting evidence. The interplay between striatum and lateral orbitofrontal cortex may
prevent unnecessary retaliation when others violate our trust, and thus constitute an impor-

tant neuro-cognive mechanism that favors social stability.
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All trust involves vulnerability and risk, and nothing would

count as trust if there were no possibility of betrayal.

Robert C. Solomon

Simultaneous eye-tracking and galvanic skin

response

5.1 BACKGROUND

IN THE PREVIOUS CHAPTERS, we have shown the behavioral, computational and neural pat-
terns underlying adaptive social learning and how reputational priors affect this learning mech-
anism. We investigated two mains effects: the absence or presence of reputation information
and two probabilities of reciprocation (high and low). In the first study, the responses of par-
ticipants in long RTG (10 exchanges) were best predicted by an Adaptive-Belief RL model
which captures long-term relationships between reputation and experienced trustworthiness.
However, when interactions end stochastically (RTGs are shorts), people rely more on prior
expectations driven by reputations and this is best explained by a Prior-Expectation RL model.
Indeed, the first trial of the interaction with a new counterpart provides the best behavioral
discrimination between the prior and no prior condition, and this is reflected in enhanced
Medial-Prefrontal cortex activity. This motivated us to further explore how reputation priors

affect first trustworthiness judgments in single-shot Trust Games.
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Moreover, the two first studies suggest that participants are particularly sensible to trust
violation when partners have high pro-social reputation. Trust violations happen when the
trustors (e.g. our participants) have trustworthy expectations of the trustees and when these
later contradict expectations. Previous studies report that trust violation can cause severe psy-
chological and relationship damages (Slovic, 1993; Lewicki, McAllister, and Bies, 1998), and
(Chapter 7 in Roy J. Lewicki, 1996) and even in some cases, lost trust can never be restored. In
their studies, Lewicki and colleagues propose theoretical models for trust violation in which
they assume that trust betrayal may permanently harm trust. However, no study has investi-

gated on the memory, emotional and psychophysiological consequences of violating trust.

In this new study, we decided to focus on single-stage Trust Games when no learning takes
place. Participants played as trustor in single TGs with partners of different pro-social nature
with or without reliable reputational priors. We used probabilistic responses to simulate part-
ners with different reputations (from competitive to altruistic) while recording electrodermal

activity as an autonomic index of affective state as well as eye movements.

Electrodermal responses and eye-movements were recorded while participants played single-
stage TGs with different anonymous partners. We used eye-tracking technique to investigate
whether reputational priors affected eye saccades when viewing face-stimuli of their counter-
parts. Extensive research on face perception has shown that people use holistic and features-
based processing to evaluate facial expression when they encounter new partners (Dalton,
Nacewicz, Johnstone, Schaefer, Gernsbacher, Goldsmith, Alexander, and Davidson, 2005;
Stacey, Walker, and Underwood, 2005; Belle, Ramon, Lefévre, and Rossion, 2010; Eisenbarth
and Alpers, 2011). Critical information in inter-personal communication is evaluated from
the eyes and, to a reduced extent, the nose and the mouth. In addition, these evaluations have
been found to be predictive of people’s ability to perceive trustworthiness and aggressiveness
(Bar, Neta, and Linz, 2006; Willis and Todorov, 2006). In one recent study, using oxytocine
(OT), authors have shown that that OT nasal administration (enhancing trust) modified the
way people evaluate faces of others, increase the amount of eye-gaze (Guastella, Mitchell, and
Dadds, 2008). In this new study, we tested the hypothesis that reputational prior reduce un-
certainty about the counterpart’s type and thus decreases the amount of eye-exploration. It
was hypothesized that participants’ saccades when scanning face-stimuli of counterparts who
were associated with a reliable prior would be less important than when they were exploring

the face-stimuli of counterparts with no reputation.

Recording electrodermal activity is a well-established method in psychophysiology that in-
forms about the activity of the autonomic nervous system. Its relationship with emotional
arousal and emotions has been proven to be robust in a lot of experimental studies. In a re-

cent neuroeconomics study, electrodermal responses were found to be higher for unfair offers
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compare to fair offers and were concomitant with the rejection of unfair offers when partic-
ipants played the Ultimatum Game (Dunn, Evans, Makarova, White, and Clark, 2012). We
speculated that decision making with reliable reputation information may decrease electro-
dermal activity responses during a trust-related social situation since uncertainty is reduced.
We also hypothesised to find interactions between trust and reputation at behavioral and psy-
chophysiological level. Additionally, we postulated that violation of trust of counterparts with
the highest pro-social reputations would be directly linked to physiological changes (i.e. auto-
nomic nervous system responses at time of violation of trust). In line with the last hypothesis,
we investigated whether intra-individual differences in participants’ electrodermal responses
(EDRs) recorded when observing violation of trust predicted subsequent recognition of part-

ners who had betrayed trust.

5.2 EXPERIMENTAL DESIGN AND METHODS

5.2.1 PARTICIPANTS

Forty-four Italian college students of the University of Trento within the ages of 19 to 28 (M =
22 + 2) were recruited through online announcements. There were 11 males and 33 females
and 43 of the 44 participants were right-handed. Participants had normal or corrected-to-
normal vision, no history of psychiatric, neurological or major medical problems and were not
under psychoactive medications at the time of the study. They gave written informed consent
to participate in an eye-tracking and electrodermal activity decision making experiment and
decided to either be paid 10 euros. In addition to this, the participant received an additional
payment based on their performance in the two tasks The study was approved by the local
institutional ethical board of the University of Trento. Because of technical issues with the

eye-tracking, only 31 participants remained in the analysis of the eye-mouvements.

5.2.2 TASK

In the experiment, participants played one trial of the Trust Game (TG) (Berg et al,, 1995)
with several counterparts (i.e. each trial with a different counterpart). In the game, the par-
ticipant, also known as “Investor”, is given 1 euro and has to decide whether to share half of
his endowment with an anonymous counterpart (“Trustee”) or keep the money. If the partic-
ipant decides to share, the amount that the Trustee receives is tripled by the experimenter and
added to the amount he currently has (1+3 euros = 4 euros) and the Trustee decides whether

to share or keep the money with the Investor. If he decides to share the money, the Investor
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and the Trustee end the game with 2 euros each, but if the Trustee decides to keep the 4 eu-
ros, the Investor receives nothing. Each trial begins with a fixation cross for 1000 ms, followed
by the presentation of a prior with or without an occluder covering the prior, which is then

followed by a picture of the face of the counterpart (See figure s.2.1).

Presentation of

NO
PRIOR

PRIOR

Priors

B Conpetinie
_ Indradualists o vt comdivbder
EEEM Cooperatve

EEY

Figure s5.2.1: Experimental design. One round of the two-player repeated trust game (RTG). P1 is
the payoft of the participant, who always plays as investor; P2 is the payoff of his counterpart, who
plays as trustee. Before each round both players are endowed with 1 euro. The participant moves first
and chooses either to “keep” or “share” If he keeps, both players maintain their initial endowments. If
he shares the participant”s endowment is multiplied by 3 and passed to the counterpart. The trustee
then decides whether to share in turn (by returning 2 euros), or to keep (by returning nothing).
RTGs consisted of several consecutive rounds with a same counterpart. Participants played with
many different counterparts and were told that their counterparts had already made their choices.

Faces of Caucasian males, aged 20-60 years old (M = 34.09, SE + 11.19) were selected
and extracted with permission from the FERET database of colored facial images (Phillips
et al,, 2000). Two databases of images were created, 64 were used for the experiment while
an additional 32 were used for the post-experiment questionnaire. All 96 images were con-
trolled for attractiveness, emotion and race. After the main experiment, participants took a
five-minute break before proceeding to the post-experiment questionnaire - the memory task.
The purpose of the memory task is to ascertain whether the outcome of the trust game and sat-
isfaction regarding the interaction influences the recognition of the Trustee’s face. Participants

were shown a face of either a previous counterpart in the experiment or a face not previously
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presented. The question “Do you remember this person?” was presented and they were asked to
indicate whether they remembered the face or not by pressing on the left (Yes) or right (No)

buttons of the mouse.

5.2.3 EXPERIMENTAL CONDITIONS

Trustees were divided into four types (Altruistic, Cooperative, Individualistic and Competi-
tive), pertaining to their probability of reciprocation, or the probability of choosing to Share
their money with the Investor. Altruistic trustees reciprocate 90% of the time, Cooperative
trustees reciprocate 70% of the time, Individualistic trustees reciprocate 30% of the time and

Competitive trustees reciprocate 10% of the time.

The presence and absence of a reputation prior was also manipulated for this study. Half of
the trustees in each type were presented with a reputation prior pertaining to their type, while
the other half came with no prior information. Participants were informed that all trustees
completed the Social Value Orientation (SVO) questionnaire (Van Lange, 1999) and that
they may or may not be provided with information about the trustees’ performance in the
questionnaire. For the prior condition, stars were presented to show the type of trustee based
on the questionnaire. Altruistic trustees had 4 stars, Cooperative trustees had 3 stars, Indi-
vidualistic trustees had 1 star while Competitive trustees had o star ratings. For the no prior

condition, participants were presented with an occluder to cover the star ratings.

Once the trust game with the counterpart is finished, the participant was asked to give a

satisfaction rating of his previous interaction with the Trustee on a scale of -50 to +5o0.

Participants were paid a fixed amount of 10 euros for participation and additional money
was paid based on their performance in the two tasks. For the main experiment, participants
were paid an additional o, § or 10 euros based on the outcome of a randomly extracted trial
in the trust game. Furthermore, participants were paid up to § euros more based on their
accuracy rates in the memory task of the post-experiment questionnaire (50% or less accuracy
= 0 euros, §1-60% = 1 euro, 61-70% = 2 euros, 70-80% = 3 euros, 80-90% = 4 euros, 90-100%

= 5 euros). Hence, participants earned a total of 10-25 euros (M = 18.5 + 3.69).

5.2.4 TASK AND ELECTRODERMAL PROCEDURES

Participants were first given oral instructions about the task in Italian. After being debriefed
about the experiment task, electrodes from the Biopac MP150 were placed in two of the par-

ticipant’s fingers in the non-dominant hand (usually the left) and he or she was fitted with
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the eye-tracking helmet (See next paragraph). The electrodermal response was then ampli-
fied via the amplifier module GSR100C. Participants were instructed to follow the dots with
their eyes. Participants did 5 practice trials and then 64 experimental trials (8 per condition:
Prior Altruistic, Prior Cooperative, Prior Individualistic, Prior Competitive, NoPrior Altru-
istic, NoPrior Cooperative, NoPrior Individualistic, NoPrior Competitive) with a short self-
determined resting period provided after 32 trials. Figure §.2.1 shows the timeline of one
trial. They were given a short rest period followed by debriefing about the post-experiment
memory task, and 3 practice trials were presented before completing 64 trials in the mem-
ory task. Eye-tracking and electrodermal activitywere measured in both the experiment and

post-experiment trials.

5.2.5 EYE-TRACKING PROCEDURES

Participants were seated in a chair with a soft head restraint to ensure a viewing distance of
60 cm to the monitor. Presentation of the stimuli was performed using a custom made pro-
gram written using the Matlab Psychophysical toolbox. Eye movements were monitored and
recorded using an Eyelink II system (SR. Research Ontario Canada) with a sampling rate of
500 Hz. A fixation was defined as an interval in which gaze was focused within 1° of visual an-
gle for at least 100 ms (Manor and Gordon, 2003 ). A nine-point calibration was performed at
the beginning of each block. Calibration phase was repeated until the difference between the
different positions of the points on the screen and the corresponding eye locations was less
than 1° After the calibration phase, a nine-point validation phase was performed (similarly
to the calibration phase) to make sure that the calibration was accurate. Recalibrations were
performed if needed, and eye-tracking was stopped if these were unsuccessful. Before the be-
ginning of each trial a drift correction was performed (except for the first trial of each block).
Then, a fixation point was presented in the same position of the last point of the drift correc-
tion (last point of the validation phase for the first trial of each block) for soo ms. The fixation
point was located in the middle of the two possible choices (Keep or Share). To minimize
biases related to the starting fixation point and anchoring effects, the position of the words
(Keep or Share) were counterbalanced. Eye movements were recorded during the entire time
of the trial. To minimize noise, information displayed on the monitor was limited to few words
and numbers. In order to calibrate the areas of interest of each face, the pictures were spatially
transformed (using Photoshop) so that the center of each eye (the iris) and the center of the
mouth (where the lips meet) correspond to the same coordinate positions in the transformed

picture.
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5.3 DATA ANALYSIS

5.3.1 BEHAVIORAL DATA

In order to look at whether prior information has an effect on the decision to trust, repeated
measures ANOVA was performed with Prior information (No prior, o-star prior, 1-star prior,
3-stars prior, 4-stars prior) as independent variable and percentage of decisions to “share” per
participant as dependent variable. Repeated Measures ANOVA was also performed on reac-
tion times at time of choice, in order to determine if lesser ambiguity provided by prior infor-
mation lead to faster reaction times. The outcome of a previous interaction with a counterpart
is also hypothesized to influence the decision to share with a similar counterpart. Hence, logis-
tic regression was performed in order to determine if the outcome of the previous interaction
with a counterpart type could predict the participants’ decision to share for a subsequent coun-
terpart of the same type. It is hypothesized that there would be a higher negative emotional
valence when the outcome of the interaction is negative (participant shared and counterpart
kept), and the counterpart does not act in congruence with the prior information. Hence, the
emotion scale was analysed through Repeated Measures ANOVA, extracting only the trials
with Prior condition and those when the participant shared and the opponent kept. For the
post-experiment questionnaire, it is hypothesized that participants would have a higher accu-
racy for the faces of counterparts whom they decided to trust (participant shared), and for
faces of counterparts who betrayed them (participant shared and counterpart kept). Hence,
paired t-tests would be performed on accuracy rates, comparing counterparts for whom par-

ticipants shared vs. kept, and where participants shared and counterpart kept vs. counterpart
shared.

5.3.2 ELECTRODERMAL PREPROCESSING

In order to preprocess the galvanic data, we used the toolbox developed by Mateus Joffily
(Toolbox for Electrodermal Activity (EDA) analysis) based on Matlab. The first step of our
analysis was to verify the quality of the data acquired during the experimental session by gen-
erating and visually examining plots of the electrodermal signal at different steps of the prepro-
cessing (See raw data example - figure 5.4.1). Secondly, we applied both a high-pass filter in
order to remove most of the tonic changes as well as the slow drifts (Freedman, Scerbo, Daw-
son, Raine, McClure, and Venables, 1994), and a low-pass filter to remove the high-frequency
noise (sth-order low-pass Butterworth filter with cutoff frequency at 1Hz). The resulting
band-pass filtered signal was then downsampled respecting the Shannon-Nyquist sampling
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Figure 5.3.1: A. Example of raw galvanic skin response for one participant over time. B. Power
Spectrum representing the frequency of the signal.
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rule (ie. the sampling rate fs must be greater than twice the bandwidth of the signal). Once
the data was preprocessed, we ran an automatic detection algorithm that finds Electrodermal
Response (EDR) in the galvanic responses by calculating a first time-derivative of the data us-
ing a difference function, and detecting the main characteristic of the galvanic response (the
valleys and peaks) when the derivative changes sign. Onsets of valleys are identified through
a negative to positive zero crossing, whereas peaks are defined by an opposite change (pos-
itive to negative zero crossing). The amplitude of the galvanic response is computed as the
difference between the amplitudes at the peak and valley levels. The slope corresponds to the
rate of changes and it is computed as the ratio between the 2 EDR amplitudes and the ride

time. Overlapping EDRs were disjointed at minima in the first derivative and used as separate

mm Condition 1
sl | \ | B Condition 2

CIOSeRiM B

Figure 5.3.2: Representative regressor for one participant distinguishing between 2 conditions
above preprocessed EDA. Note that the red dots represent the peak estimates and the blue dots rep-
resent the valleys.

EDRs. Short responses (below 0.005 .S) were excluded from the analysis since they are likely

to indicate environmental noise. In order to correct for slope, we log-transformed the EDRs,
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and range-corrected the data using each participant’s maximum range response. Thus, we re-

port all our analysis in units of range-corrected logE(y.S) (See preprocessed data example

-figure 5.4.2).

5.3.3 ELECTRODERMAL ANALYSIS

The main goal of this study was to assess the difference between “direct-based” interaction and
“reputation-based” interaction; if the strength of reputational priors affect “reputation-based”
interaction and if the link between the strength of the reputational prior in the experiment
will facilitate recall of faces in the post-experiment task. Accordingly, the following analyses

investigated two main onsets of time: at time of decision-making and at time of outcomes.

1. We first applied a search grid algorithm with a moving window EDR average that allows
us to determine the onsets for choice and outcome periods at 1.25 seconds and 1.4 sec-
onds respectively. These two onsets are the time points after participants were asked
to decide whether to trust the counterpart or not, and when they saw the outcome of
the game. The EDR magnitudes that were used in our statistical model correspond to
individual mean responses across all trials from all onsets corresponding to a specific
condition. In order to verify that our data were not contaminated by habituation ef-
tects, we looked for individual mean responses in both the experiment and the post

experiment task, and tested for habituation effects.

2. Our first analysis examined whether the skin conductance level at time of choice was
sensitive to decision-making and outcome anticipation. We probed whether this ac-
tivity was larger for the decision to share than for the decision to keep and how these

decisions were influenced by prior conditions.

3. Secondly, we looked at the EDR at time of outcome and investigated the discrepancy
between observed outcomes and anticipated outcomes. Additionally, we checked for

correlation between the reported emotional levels and the EDR recorded.

4. Then we analyzed participants’ EDRs when evaluating the outcomes of decisions in
the experiment. We correlated individual changes in EDR magnitudes with individual
changes in the percentage of correct recognition in the post-experiment questionnaire.
We correlated participant’s EDR magnitudes and their mean emotional rating when ob-
serving the outcomes of each interaction. To assess whether there is a differential re-
sponse magnitude to the experience of betrayal and trustworthiness in the prior and
the no prior conditions, we calculated a Violation-Trust-EDR score for each partici-

pant, and correlated it with the correct recall in the second session. This score was the
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absolute differential EDR magnitudes at time of outcome in two situations: (1) while
being betrayed by a presumably cooperative counterpart, and (2) while being repaid
for placing trust with the same type of counterpart: “Violation-Trust-EDR”. To assess
whether the presence of a prior information for “Violation-Trust-EDR” conditions and
the differential scores contribute to the variance in recognition in the memory task,
we used a hierarchical multiple regression analysis using “Violation-Trust-EDR -Prior”,
“Violation-Trust-EDR -No-Prior” and the differential scores as regressors. In order to
discern the relationship between violation of trust and percentage of recognition, re-
gardless of the effect of prior information, we used force entry for “Violation-Trust-
EDR-No-Prior” in the first step. Consecutively, we used the two variables of “Violation-
Trust-EDR-Prior” and “Violation-Trust-EDR-No-Prior” scores to investigate whether
they captured some of the variance. In order to evaluate regressors in the model with-
out accounting for their order of entry, we used a stepwise procedure. For each variable,
we identified outliers as responses that were over 3 standard deviations from the mean,
and Pearson correlations that were significant at p < 0.05, one-tailed, unless otherwise

specified.

5.3.4 EYE-TRACKING ANALYSIS

For each pictures, we define 4 areas of interest (facial-AOlIs, as seen in the figure 5.4.3), one
for each eye, the nose and the mouth. The 2 eyes-AOIs had a circular shape with 11182 pix-
els; the nose-AOT had a circular shape with 10073 pixels and the mouth-AOI an ellipse with
12302 pixels. We centered the eyes-AOlIs in the iris. This allowed us to avoid the possibility
that small errors in the calibration procedures could result in a wrong allocation of the eye-
tracking parameters. This is especially useful for those situations in which the parameter was
located on the border of a facial-AOI. Facial-AOIs do not cover the face area entirely but just
the part of the face known to be relevant for facials extractions and never overlap. In this way,
facial-AOIs include only saccades whose interpretations are not ambiguous. Because I report
just preliminary results, only one type of variable is described, corresponding to the number
and type of saccades participants made when looking at the face of others. These saccades
relate to the eye gaze transitions made by the participants from one region of the screen to
another. For the analysis, we distinguished between (1) the facial-relevant saccades being the
transitions from one facial-AOI to another facial-AOI and (2) the non-relevant saccades as

being the transitions starting or ending outside and facial-AOL
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Figure 5.3.3: Areas of interest. Example of areas of interest (AOIs) for one face-stimulus. For each
face stimulus, we defined AOIs: the eyes, nose, and mouth. The brown lines represent examples of
the relevant saccades for facial perception.

5.4 REsuLTS

5.4.1 EFFECTS OF PRIOR MANIPULATION

In order to check for the prior effect in the direct-based and reputation-based conditions, we
extracted EDRs at time of choice in situations when participants had a prior versus when they
didn’t. We also examined conditions when participants decided to share in the prior condition
as compared with the no prior condition. First, we found that EDRs were significantly stronger
when participants shared (M = 0.748, SE £ 0.3), as compared to kept (M = 0.415, SE + 0.09),
t(41) = 5.05,p<0.001, > =0.63 (See figure 5.5.1 A). EDRs were also found to be significantly
stronger for choices made in the no prior condition (M = 0.975, SE = 0.07) as compared to
the prior condition (M = 0.525, SE £ 0.02), t(41) = 3.74, p = 0.001, 1* = 0.45 (See figure
s.5.1 B). For counterparts that shared, we found higher mean EDRs for counterparts that
were presented without a prior (M = 1.123, SE & 0.45) than with a prior (M = 0.6, SE +
0.43, t(41) = 3.32, p<0.001, > = 0.41). In addition, mean EDRs for counterparts that kept
were lower for those presented with a prior (M = 0.259, SE = 0.39) than without a prior (M =
0.681, SE & 2.85), t(41) = 2.78, p<0.006, > = 0.29) (See figure 5.5.2).
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Figure 5.4.1: A. Main effect of decision of the participant at time of choice. We found an overall
effect of the type of decision. The EDR was higher for decisions to share than for decision to keep. B.
We found the EDR was higher for decisions made in the no prior condition than for decisions made
in the prior condition.
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Figure 5.4.2: Differential effect of decision of the participant at time of choice in the prior and no
prior conditions.

The results of the ANOVAs with the factor (prior/no prior) and time (first half/second
half of the experiment), that were computed separately for conditions in which participants
decided to share and keep in the TG, showed no difference overtime. This shows that EDRs
were not affected by habituation (See Table s.5.1).

5.4.2 EFFECT OF INCONSISTENT OUTCOMES AND RECOGNITION

On average, people recall the correct picture in 73.65% (SE = 5.5) of the cases. They recognize
correctly 76.6% of the pictures in the no prior condition and 70.74% in the no prior condition
(SE =6.3), but this trend was not significant (p=0.23 ). Analysis comparing EDR responses in

the experiment and post-experiment questionnaire indicate no effects of time, indicating no
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ANOVAs

F(1,41) P n*

Factor decision - Shared 28.39 <0.001  0.41

Factor decision - Kept 24.91 <0.001 0.37

Factor time - Shared 0.051 0.84 0.002

Factor time - Kept 0.076 0.82 0.003

Interaction decision x time - Shared 0.65 0.44 0.033
Interaction decision x time - Kept 0.16 0.69 0.008

Table 5.4.1: Anovas. Results of ANOVAs with the factor (prior/no prior) and time (first
half/second half of the experiment).
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Figure §.4.3: Differential effect of decision of the participant at time of outcome in the prior and no

prior conditions.

habituation across trials (Mann-Whitney test, U = 44856.9, Z = —0.13, p = 0.92). Analysis at
time of outcome revealed a main effect of prior on autonomic responses of your participants
electrodermal responses. Indeed, EDRs were higher in the no-prior condition (M = 0.742, SE
+ 0.098) compare to the prior condition (M = 0.511, SE =+ 0.132), (t(41) = 2.01, p=0.01)
(See figure 5.4.3). We also found that electrodermal responses were correlated with emo-
tional report (r = 0.35, p=0.03). In line with this result and the prior effect, we found that
the amplitude of participants’ emotional reports were higher in the no prior compare with
the prior condition. Indeed, when counterparts shared in the prior condition, participants re-

ported a smaller emotional rate (M = 32.12, SE & 9.55) than when they shared in the no-prior
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condition (M = 41.03, SE & 8.56), (t=7.0, p<0.001). A similar result was found when coun-
terparts kept (See figure 5.4.3). Results also revealed that participants were more affected by
inconsistent outcomes compared to consistent outcomes in general. Inconsistent outcomes
are computed in two ways: (1) in the prior condition, inconsistencies are calculated as the dif-
ference between the expectation of a given decision corresponding to a prior suggestion (i.e.
trustworthiness if the counterpart has 3 or 4 stars and untrustworthiness if the counterpart
has o or 1 stars) and the unexpected outcome (the 3 or 4 stars counterpart violated trust etc.).
(2) In the no prior condition, we assumed that players were expecting a trustworthy decision
of the counterpart when they decided to share and vice versa when they kept. In that case,
the inconsistency was a basic prediction error. Across all inconsistent outcomes, EDR results
show higher activity for negative prediction error (M = 0.732, SE & 0.08) than for positive
prediction error (M =0.387, SE + 0.04), t(41) = 3.75, p=0.001, * = 0.42. Additionally, when
altruistic and cooperative counterparts violated trust, EDRs were higher for the prior condi-
tion (3 and 4 stars) (M = 0.876, SE & 0.07) than for the no-prior condition(M = 0.587, SE =
0.09), t(41) = 3.05, p=0.003, * = 0.38. Within the prior condition, no difference was found
between 3 and 4 stars. No difference was also found when counterparts reciprocated trust in

the prior and no prior conditions (t(41) = 0.45, p=0.67).

5.4.3 CORRELATION ANALYSES

We found a positive correlation between emotional rating magnitudes (absolute values of
emotional reports) and EDRs at time of outcome, r(41) = 0.52, p = 0.02. Thus, we decided to
further investigate the skin conductance data, integrating it with participant’s reported emo-
tions. According to our previous analysis, when investigating inconsistent outcomes, we iso-
lated the outcomes in “Violation-Trust-EDR" and looked at the percentage of correct recogni-
tion in Task 2 as well as the rating of trustworthiness. We found a strong correlation between
individual magnitude of EDRs after violation of trust and the percentage of trials in which par-

ticipants remembered the counterparts in second session, r(41) = 0.63, p = 0.003 (see figure

5).

Since the correlation between emotional ratings and EDRs yield to a significant correlation,
we investigated the difference between emotional rating, trustworthiness rating and recogni-
tion in the next task. We found that EDRs after violation of trust were anti-correlated with
untrustworthiness ratings (r(41) = —0.37, p = 0.053). Finally, we found a positive relation-
ship between the absolute emotional rating in the first task and the recognition in the second
task (r(41) = 0.37, p = 0.008). This result indicates that the strongest the violation of trust

telt by the participants and the more often they were able to remember their counterparts
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Skin conductance response to violation of trust
predicts later recognition
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Figure 5.4.4: This plot shows a significant positive correlation between participant’s electrodermal
responses (EDRs) when seeing that others violated trust and the percentage of correct recognition
of these counterparts in the second task (out of a total of 40 trials).

in subsequent tasks. The hierarchical multiple regression analysis indicated that “Violation-
Trust-EDR” alone was a significant predictor for later recognition, F(1,41) = 6.45, p = 0.021;
adjusted R2 = 0.22 (see table 2). When we added the “Violation-Trust-EDR-Prior” variable in
the model, the difference score resulted in an additional 19.78% of variance being explained,
F(2,41) =7.51,p=0.005; adjusted R* =0.42, A * R* = 0.2, p(F change) = 0.02. The “Violation-
Trust-EDR-No-Prior” variable didn’t contribute to the regression model. The same result was

obtained when reversing the entry of the two variables in the model.

5.4.4 EYE TRACKING PRELIMINARY RESULTS

Consistent with our prediction, our participants looked at the keys features of the face (facial-
AOQIs described in method) longer (mean (total fixations) relevant= 1160, s.d. = 190) than at
the background region (non-specified regions) (mean (total fixations) no relevant= 199, s.d.

= 76) when viewing pictures of their counterparts (£,,=30.516, p < 0.0001), See figure 5.4.5.

Between the prior and the no-prior conditions we found an equal number of saccades (mean
(total saccade) no prior = 18132, mean (total saccades) prior = 18009, t,, = 0.61, p = 0.54,).
However, our results show that participants made more relevant saccades (i.e., a transition

between one facial-AOI to another facial-AOI) when encountering a counterparts without
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proportion of saccades

Figure §.4.5: Participants made more relevant saccades (i.e., a transition between one facial-AOI
to another facial-AOI) when encountering a counterparts without priors than when encountering a
counterparts with priors.

Exploration of facial regions
in the Prior and No Prior condition

= -
- 8
«- No PRIOR
= = PRIOR
g o ‘
g S
[T
ﬂ (=]
| [==]
T
£
E
38
No-relevant Relevant

Figure 5.4.6: Cross-interaction between facial-relevance and prior conditions when participants
were shown pictures of their counterparts.

priors (Nb =268, Sd & 68) than when encountering a counterparts with priors (Nb = 242, Sd
=75; Fyo = 15.71, p = 0.0004). This result indicates that participants were exploring more at-
tentively the relevant facials features of others when having no prior information about them.
At the same time, it also indicates that the reputational prior diminishes the reliance on facial

perception.

To examine the effect of prior and no-prior conditions on relevant and non-relevant sac-

cades, we tested the interactions between saccades relevance and prior’s conditions. Non-
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relevant saccades were computed as any transition from a facial-AOI to the background - or

from the background to a facial-AOI equally -.

A significant cross-interaction was found between facial-relevance and prior’s condition
when participants were shown pictures of their counterparts (See figure 5.4.6). In partic-
ular, they made more irrelevant saccades in the prior condition (Nb = 338, Sd + 68) compare

to the no-prior condition (Nb = 316, Sd & 72; F,, = 32.79,p =3~ ).

5.5 CONCLUSIONS

In thislast we recorded electrodermal responses and eye-movements while participants played
single-TG with counterparts of various pro-social types. We manipulated the probability of
reciprocation of each counterpart that represented their types: competitive (10%), individu-
alistic (30%), cooperative (70%) and altruistic (90%). For half of these counterparts, partic-
ipants were given reliable reputational priors signaling their types (priors were similar to the
ones used in online marketplaces like EBay). Our results show for the first time the effects
of reputation the way people evaluate others by observing their face. Indeed, we found that
participants paid less attention to the critical parts of the face (eyes, mouth and nose) when
they had received a reputation information regarding their counterparts compare to when no
prior was provided. This result suggests that reputation allows participants to form a first im-
pression about their counterparts thus paying less attention to their facial-traits. Indeed, when
they had received prior information about their counterparts and had to make the decision on
whether or not to trust them, we found that the magnitude of their autonomic response was
smaller compare to the no-prior condition. This result is in line with others studies showing
that physiological emotional responses increase with uncertainty (Epstein and Roupenian,
1970; Critchley, Mathias, and Dolan, 2001). Finally, this study reports for the first time how
trust violation affects later recognition. Indeed, our results suggest that the more emotionally
aroused participants were when observing untrustworthy outcomes, the more accurate they

were at remembering the person that betrayed them in a later task.
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We cannot direct the wind, but we can adjust the sails.

Dolly Parton

Discussion and conclusion

In THIS THESIS I have presented empirical and theoretical accounts of the decision to trust in
social learning and in single-interaction contexts where reputation information is available or
not. This work extends previous findings and theories in a number of directions. The work
proposes an enhanceda theoretical framework for understanding social decision-making pro-
cesses and for designing and analyzing future experiments. In particular, richer computational
and theoretical models have been introduced which provide new insights and more accurate

explanations for behavioral and neural responses in social interactive contexts.

6.1 SUMMARY OF CONTRIBUTIONS

Chapter 3 introduces an Adaptive-Belief RL model that combines learning about relatively
long-term social reward expectancies and prior expectations driven by reputation information.
A theoretical model has been provided to explain behavioral results of participants playing as
trustors in repeated economic games (repeated trust games: RTGs) and to suggest a model of
trustworthiness-reputation interactions. The model-based formalism used in this new model,

along with a non-deterministic update of belief, is clearly more realistic to approach the prob-
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ability distribution of reciprocity with parameters that depend both on reputation informa-
tion and trustworthiness observed during RT'Gs. To demonstrate the accuracy of the model,
we compared its results with those obtained from other RL algorithms that are based on dif-
ferent theoretical principles. In chapter 3, I have also presented other connections between
behavioral and computational data suggested by the new model, and found the closest fit to

trial-to-trial variability when participants were encountering social inconsistency.

Chapter 4 subsequently expanded the previous study with fMRI techniques, incorporat-
ing RT'Gs with stochastic ending and demonstrates that models of the same family as the one
studied in Chapter 3 also fit neural responses to social interactions. We found that the Prior-
Expectation model was more relevant for studying RT'Gs where relationship timing can vary,
and this model was used to explain neural patterns recorded when participants made the deci-
sion to trust someone and when they updated their beliefs about others. This chapter also ex-
poses a novel hypothesis about the interaction between a prefrontal cortical representational
system who’s function is to preserve actions suggested by the reputation in case of social in-
consistency, and a dopaminergic reward-learning system that continuously tracks reward con-
tingencies. Results support the notion of an “actor/critic” organization in which both social
prediction error and action selection are anatomically separated in the brain but function-
ally correlated (Li, McClure, King-Casas, and Read Montague, 2006; Mahmoudi, Principe,
and Sanchez, 2009; Potjans, Morrison, and Diesmann, 2009). FMRI techniques proposed for
thisinteraction combine model-based and model-free reinforcement learning algorithms. The
work in this second study also provides important information for understanding how trust
and reputation signals are part of a large set of brain systems involved in reducing uncertainty,

predicting, learning and maintaining goals.

Chapter s embodies a new experimental task designed to probe the consequence of a va-
riety of reputation information and type of partners in behavioral and psychophysiological
response changes during TGs as well as in a later recognition task. This new study provides
confirmatory and conclusive answers about the effect of reputation in first interactions and of
social reward on outcomes evaluations. It presents preliminary data showing that behavioral
changes to social inconsistency correlated strongly with sympathetic activity and emotional
arousal reports. The most encouraging results explore the relationship between violation of
social expectation and memory-recognition and therefore should guide future experimenta-

tion and analysis in this area.
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6.2 SUMMARY OF RESULTS

In the context of social decision-making, in particular the decision to trust unfamiliar persons,
four main findings are particularly interesting: (i) reputational priors are key social signals to
reduce uncertainty at the beginning of a trust-based relationship, (ii) prediction errors under-
lying social learning mechanisms are modified by reputational priors, (iii) the neural network
involved in the decision to trust illustrates the hierarchical role of reputation priors in compen-
sating for social inconsistencies (iv) discrepancies between high-social expectations and trust
betrayal influence the recognition-memory system. While (i), (ii) and (iii) allow us to pro-
pose new biologically plausible social learning models to illustrate the relationship between
reputation and trust, (iv) raises new questions regarding our capacity to trust, learn and re-

member.

6.2.1 REPUTATION REDUCES UNCERTAINTY IN INITIAL EXCHANGES
BEHAVIORAL AND PSYCHOPHYSIOLOGICAL EVIDENCES

Chapters 3, 4 and 5 present new empirical data confirming that, in the absence of objectively
known probabilities of trustworthiness, people exploit reputational cues. Across all three ex-
periments, evidence indicated that people consistently made choices aligned with reputation
priors matching the various counterparts’ types. In the third study, this effect implied higher
psychophysiological (electrodermal) activities in situations of higher uncertainty (when par-
ticipants had no priors) compared to when reputation information was provided. These re-
sults are in line with those reported by other authors on individual and social decision tasks
showing that people reduce uncertainty by sampling and exploiting available environmental

cues.

FMRI EVIDENCES WHEN FIRST A COUNTERPART IS PRESENTED FOR THE FIRST TIME

As well as behavioural results, chapter 4 also provides new insights into the role of reputation
in modifying brain responses to an unfamiliar person. Enhanced activation in medial-PFC was
observed only when reputational priors were provided, regardless of whether they signalled
a positive or negative reputation. Along with converging evidence from previous studies, our
results validate the role that the medial-PFC plays in guiding social decision-making under
uncertainty (Yoshida and Ishii, 2006). In chapter 4, new analyses were used to support this

theory showing that the insula displayed higher activity when no reputation information was
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available, aligned with previous studies in which insular activity was found to process uncer-
tainty (Preuschoff et al,, 2008). Our fMRI investigation supports the notion that these two
brain regions, the Medial PFC and the Insula play complementary roles in uncertainty reduc-

tion and risk prediction.

COMPUTATIONAL EVIDENCE OF PRIOR-EXPECTATION MECHANISMS

Chapters 3 and 4 propose new RL models of trust-related decisions that reject the assump-
tion from previous models that initial values of social decision-making are allocated randomly
(Erev and Roth, 1998). While a large number of previous studies in cognitive science have
shown that people use social signals to select initial actions (Li et al., 2011; Delgado et al,,
2005; Changetal., 2010), none had previously incorporated reputation signals in social learn-
ing models and acknowledge that these signals have a lot of implications for the performance
of the modeled system. The present work bridges the gap by making use of a new version of
the RL rule that is equivalent in some aspects to the novelty model proposed by Daw et al
in (2010) (Glischer et al,, 2010) but which combines individual sensibilities to uncertainty
and the nature of available reputation information. We found that the Prior-Expectation RL
model captured most of the inter-individual variability in short relationships and revealed bet-
ter fits with neural and behavioral activity than the Adaptive-Belief RL model adapted forlong-
horizon interactions. This result is not surprising considering that our participants had rela-
tively few trials to accumulate sufficient knowledge about the others’ types. Thus, when un-
certainty about other’s type stays rather high, the Prior-Expectation model is more suitable to

explain behavioral and neural responses to social interaction valuations.

6.2.2 REPUTATIONAL PRIORS MODIFY SOCIAL PREDICTION ERRORS
BEHAVIORAL AND COMPUTATIONAL EVIDENCES

Another important finding in this work is that computing social reward prediction (RPE) sig-
nals similarly than computing primary RPE, such as in animal studies and human probabilis-
tic learning tasks, explain behavioral data better than classical Bayesian learning models (Doll
etal, 2012; Beierholm et al,, 2011). These results, in conjunction with evidence from human
and nonhuman models of reward, suggest that social and primary rewards when inputted into
computational models trigger learning in a common fashion. Furthermore, in Chapter 3, I re-
port that the Adaptive-Belief model predicts interaction between social PE and the nature of

the reputation. Because the model predicted differential magnitudes for PE when priors were
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provided or not, the predictions were more accurate in predicting behaviors than models that
do not account for this interaction. While the notion of prior expectation being dynamically
shaped by experience is certainly not new, this work proposes for the first time a computa-
tional model of this effect in a social context and provides support for its validity. In Chapter
5,1 confirm the notion that reputation priors modify outcome-valuation by showing that elec-
trodermal responses to inconsistent behaviors were stronger when following choices aligned
with a reputation prior compared to unbiased choices. Indeed, when counterparts with al-
truistic or cooperative reputations violated trust, electrodermal activity was higher than when

counterparts had no reputations.

NEURAL RESPONSE TO SOCIAL PREDICTION ERROR WITH AND WITHOUT PRIORS

In Chapter 4 I present differential activities in the caudate nucleus (part of the reward cir-
cuitry) in mediating trial-to-trial adjustments to PE when reputational priors were provided
or not. Indeed, using parametric analysis of trial-to-trial estimated PE, we showed that bilat-
eral caudate nuclei were encoding RTG outcomes as an unbiased reward prediction problem
only when no priors were given. In fact, in the prior condition, dorso-striatal activity min-
imally tracked computed-PE and responded selectively to violation of trust. Although this
brain area was not found to capture the trial-to-trial variability suggested by the RL model,
activation in the dorso-striatum was maximal when a counterpart with a cooperative reputa-
tion violated trust. In chapter 4, I argue that the dorso-striatum is still capturing a conflicting
signal between expectation and reality and such conflict is actually maximized in the scenario
of violation of trust by a partner with a high pro-social reputation. Indeed, when a particu-
lar prior is provided, the expectation of a corresponding behavioral is stronger and so should
be the discrepancy between this expectation and the negative outcomes. Taken together, the
results reported in Chapter 4 suggest that although reputational priors moderate trial-to-trial
variability of reward-based learning mechanisms in the brain, the neural signatures of conflict

monitoring remain unchanged and even enhanced when reputation priors are present.

EXPERIENCE ATTENUATE REPUTATION PRIORS

In Chapters 3 and 4, I report that accumulated observations diminish initial reputation influ-
ences over time across all RL modeled data fitting behavioral responses. These results support
and extend previous findings which have found shown that, although priors modify PE in un-
certain environment, experience accumulated over time without initial bias overwhelm beliefs

suggested by social cues in risky choices (Cohen, 2006; Huettel et al.,, 2005). As we have seen
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in chapter 3 and 4, the properties of social feedback-based valuation emerged robustly over
time even if reputational priors influenced early valuation and have a sustainable effect on
outcome-decision. These findings underline the well-established role of the reward circuitry
(and in particular the role of the striatum) in encoding decision-outcome associations for tar-
get rewards (Kable and Glimcher, 2007; Farerietal., 2012; Schonberg et al., 2007) and enlarge
its role in triggering learning to the social domain. The results of this work fall very much in
line with other recent studies (Glascher et al.,, 2010; Daw, Gershman, Seymour, Dayan, and

Dolan, 2011)

6.2.3 TRUST AND REPUTATION DYNAMIC
BEHAVIORAL AND PSYCHOPHYSIOLOGICAL EVIDENCES

In chapters 3 and 4 Ireport a robust and consistent interaction between valuation of outcomes
and subsequent decisions aligned with or without reputation information. More specifically,
we found that trust-violations damaged interpersonal trust more when the decision to trust
was made without reputational bias compared to when the decision was aligned with repu-
tation. This intriguing result is counter-intuitive given the results that I have just presented.
Indeed, while we found greater emotional and neural responses to negative inconsistency in
the prior condition, participants neglected this conflict-related signal and were persistent with
their initial decision in subsequent trials. In fact, general evidences from behavioral economic
and cognitive decision-making research have established that the outcome of one decision
influences the subsequent decision (McCabe et al,, 2001; King-Casas et al., 2005; Krueger
et al,, 2007), but this study is the first to show that initial reputation-related information me-
diate these adjustments in behavioral strategies. I argue that (i) decision-making is a dynamic
process interfacing several sub-processes (evaluating the outcome, adjusting future behavior,
pursuing goals etc.) that can conflict with one another and (ii) that brain patterns involved
in such sub-processes would exhibit activity that reflects strategic adjustments in behavior oc-
curring as a result of the evaluation of conflicting signals. In the next paragraph, I review our

fMRI results on the topic.

VLPFC MODULATES THE REWARD-RELATED SIGNAL IN THE DORSO-STRIATUM
Chapter 4 presents one of the most unexpected and intriguing result found during our fMRI

investigation. We have seen that the striatum was strongly deactivated when violation of trust

happened, consistent with its well-described spontaneous changes to unexpected outcomes.
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However, we discovered that a high functional connectivity between the caudate nucleus and
the lateral prefrontal cortex prevented participants from retaliation after violation of trust in
the prior condition. In fact, the strength of connectivity between the dorsal striatum and
vLPFC was greater when priors were provided than when they were not. This result suggests a
role of the prefrontal cortico-striatal loop in modulating goal directed behavior (in our study,
reputational prior were reliable predictors to optimum strategies) in line with previous stud-
ies (Valentin et al., 2007; Souza et al., 2009). We thus propose that the vLPFC contributes in
maintaining choices aligned with the reputational prior when expectations conflict with re-
ality. This finding supports recent empirical evidences showing that the vLPFC exerts a top-
down cognitive modulation of other brain patterns toward contextually appropriate beliefs
(Cohen et al.,, 1990; Miller and Cohen, 2001). We argue that the vLPFC, a phylogenetically
younger brain regions involved in higher cognition, may contribute to maintain beliefs and
decisions anchored to reputational priors, thus relatively discount the weight of conflicting
evidence. The interplay between striatum and vLPFC may prevent unnecessary retaliation
when others violate our trust, and thus constitutes an important neurocognitive modulator

that favors social stability.

6.2.4 VIOLATION OF TRUST INFLUENCES THE RECOGNITION-MEMORY SYSTEM

In the last study presented in this thesis, we investigated the link between a person’s auto-
nomic responses (EDRs) when observing trust violation and later recognition of the person
responsible for that damage. As a preliminary result we observed, for the first time, that inter-
individual differences in spontaneous EDRs predicted later recognition of counterparts that
violated trust. This finding relates to previous studies which probed inter-individual galvanic
responses variability, emotional ratings and social evaluation (Critchley, 2002). Specifically,
we found that the magnitude of EDRs when observing trust violation was correlated with peo-
ple’s differential emotional ratings, confirming that sympathetic activity reflects the vicarious
emotional reports to social outcomes. Taken together, these encouraging preliminary results
support the assumption that damage to trust has consequences in the reward and memory

system.

Finally, the work presented here may guides future investigations onf a number of issues,

some of which I now review.
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6.3 FUTURE DIRECTIONS

Many questions are raised by the computational theories and results proposed here that could

fruitfully be investigated in future theoretical and experimental studies.

1. The experimental task proposed in this work is based on a simplified version of the
trust game that allows a clear distinction between choices (trust/no trust) and simi-
larly, a clear distinction between opponent’s responses (trustworthy/untrustworthy).
However, it would be interesting to use the original version of the trust game, in future
studies manipulating priors, in which participants can invest any amount of their ini-
tial endowment (for example from o to 20 euros by increment of 1) to the other player.
Such experimental set-ups would allow for a rather precise investigation of how starting
values of RL models impact the estimated parameters of the update rule. Such a design
would also specify the behavior of the Adaptive-Prior and the Prior-Expectation mod-
els. Analyzing how the trial-to-trial variation of money invested in each RTG would

allow confirming or rejecting the proposed models in social contexts.

2. In addition, hierarchical reinforcement learning model in which the suggestion carried
by reputation is transferred to a sub-process that trigger learning from direct feedback
could be rather tested instead of pure Markovian (or semi-Markovian) RL processes
sampling events through beliefs and time dimensions. Hierarchical RL models treat
problem solving by introducing representation (or beliefs) into the planning/expecting
systems. These types of models allow the notion of a hierarchy between beliefs and up-
dates functions and the possibility for a certain representation to evoke within a single

action-goal, an entire sequences of possible actions.

3. In (2001) Knutson et al. underlined the important aspect of representation of costs
when decisions are made that lead to a broad new series of studies exploring cost-value
decisions (Knutson et al,, 2001). In the domain of social decision-making however,
none have explored the cost to obtain reputation signals in order to make rapid and
costless decision in first interactions. For example, in an experimental setting closed
to EBay’s type of website where reputation is a key feature to consider before engaging
in a transaction, future studies could explore the amount of money people would be
willing to pay in order to access reputational information. Not only this type of studies
would provide new insights on how people explore and exploit reputation-cues in order
to engage in economical transactions but it will also help us understand how the brain

integrates costs and valuable-cues during social decision-making.
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4. In addition, the reliability of the prior seems to be an extra sensible parameter to con-
sider. In fact, previous studies using social information as proxy for reputation signals
(information about moral character of others, cultural attributes, advices, instructions
etc.) also found an effect of those signals on decisions, even when they did not con-
vey any reliable information (e.g. the simulation of partner’s responses were randomly
distributed). Our results, complementing these previous studies, suggest that the reli-
ability of pro-social signals could be investigated as an independent variable in studies
and models that probe adaptive social decision-making. For example, still in an EBay
type of scenario, the reliability of the reputation would be the amount of persons that
gave feedback scores for a certain seller. If just one person gave report about a seller’s
trustworthiness the rating is less valuable and reliable than if 100 persons contribute
to the rating. Future studies would benefit in taking into consideration these types of

uncertainty, including uncertainty about the providers of reputation information.

6.4 GENERAL CONCLUSION

In this thesis, I provide a general background and formalism for studying trust and reputation
in humans using a combination of techniques such as game theoretical experiments, com-
putational models, functional neuroimaging and electrodermal recording. Describing social
interaction with model-free and model-based reinforcement learning processes, I present new
models allowing robustness and efficient patterns in risky environments that fit behavioral and
neural responses of participants engaged in TGs. This work delves beyond previous research
in its consideration of the complexities of assessing environmental cues, weighting options,

making decisions and evaluating social outcomes with respect to trust and reputation.
g g P 1%
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