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AĶňŉŇĵķŉ

Humans learn to trust new partners by evaluating the outcomes of repeated interpersonal

interactions. However, available prior information concerning the reputationof thesepartners

may alter the way in which outcomes affect learning. ĉis thesis combines for the ėrst time

behavioral, computational, psychophysiological and neural models in a direct comparison of

interaction-based and prior-based decision-to-trust mechanisms. ĉree studies are presented,

in which participants played repeated and single trust games with anonymous counterparts.

We manipulated several conditions: whether or not reputational priors were provided, the

probability of reciprocation (trustworthiness) of each counterpart, and the time-horizon of

the relationships.

ĉe thesis addresses several challenges involved in understanding the complex behavior of

people in social contexts, by investigating whether and how they integrate reputation into de-

cisions to trust unfamiliar others, by designing ways to combine reputation information and

observed trustworthiness into uniėed models, and by providing insight into information on

the brain processes underlying social cognition. Numerous models, algorithms, game theo-

retical and neuroscientiėc methods are used to examine these questions. ĉe thesis presents

several new reinforcement learning (RL) models and explores how well these models explain

the behavioral and neural interactions between trust and reputation.

ĉe performance of the new models was tested using experiments of varying complexity.

ĉese experiments showed that model-based algorithms correlate beĨer with behavioral and

neural responses than model-ěee RL algorithms. More speciėcally, when no prior informa-

tion was available our results were consistent with previous studies in reporting the neural

detection of parametric estimates of RL models within the bilateral caudate nuclei. However,

our work additionally showed that this correlation was modiėed when reputational priors on

counterparts are provided. Indeed participants continued to rely on priors even when experi-

ence shed doubt on their accuracy. Notably, violations of trust from counterparts with high

pro-social reputations elicited both stronger electrodermal responses and caudate deactiva-
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tions when priors were available than when they were not. However, tolerance to such viola-

tions appeared to be mediated by priors-enhanced connectivity between the caudate nucleus

and ventrolateral prefrontal cortex, whichwas anti-correlatedwith retaliation rates. Moreover,

in addition to affecting learning mechanisms, violation of trust clearly inĚuenced emotional

arousal and increased subsequent recognition of partners who had betrayed trust.
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ĉe important thing in science is not so much to obtain new
facts as to discover new ways of thinking about them.

Sir William Bragg

1
IntroduČion

TŇŊňŉ is a critical social process that enables human cooperation to prevail in societies and
organizations (Axelrod and Hamilton, ǉǑǐǉ). However, some agents can adopt selėsh and
myopic behaviors that imply trust violations in order to obtain immediate beneėcial outcomes
(Fraser, Ǌǈǉǉ; Camerer and Weigelt, ǉǑǐǐ). ĉus relying on someone else’s trustworthiness
(i.e., the fulėllment of trust) is a risky decision in social exchanges because it creates vulner-
abilities and exposes to the harmful consequences of trust violations. In order to reduce so-
cial uncertainty and determine whom to trust or distrust, people rely on relationship-speciėc
history - based on previous interactions (King-Casas, Tomlin, Anen, Camerer, Quartz, and
Montague, ǊǈǈǍ; Simpson, ǊǈǈǏ).

However, information transmiĨed by others (through communications or exploitation of
available data, such as information acquired on the Internet) can reduce uncertainty about the
outcome of social interactions (Delgado, Frank, and Phelps, ǊǈǈǍ; Biele, Rieskamp, Krugel,
and Heekeren, Ǌǈǉǉ). Indeed, reputational signals convey information about the likely be-
haviour of others and are potentially relevant to decide whether or not to trust - for exam-
ple during online transactions. Despite the central role of both reputation information and
observed trustworthiness during personal and impersonal trust-based relationships, no study

ǉ



has directly confronted interaction-based and reputation-based exchanges.

Previous studies have primarily focused on unbiased, interaction-based trust-decisions, pay-
ing relatively liĨle aĨention to the reputational component of the interaction (Krueger, Mc-
Cabe, Moll, Kriegeskorte, Zahn, Strenziok, Heinecke, and Grafman, ǊǈǈǏ; King-Casas et al.,
ǊǈǈǍ; Phan, Sripada, Angstadt, and McCabe, Ǌǈǉǈ). Given the growing importance of repu-
tation in social exchanges (e.g., the popularity of online social media) this work aims to shed
light on the behavioral, computational and neural signature of trust and reputation. ĉis the-
sis addresses the problem of whether, and how, reputational priors affect social decision mak-
ing and learning to trust mechanisms. ĉe work presents behavioral and computational data,
model-based functional neuroimaging and psychophysiological measurements to characterize
the role of priors in social decisionmaking. ĉis project proposes a new framework that takes
insights from neuroscience, economics and computer science to explain neurocognitive pro-
cesses involved in the decision to trust when prior information is available or not. It goes be-
yond previous work in its consideration of the complexities of human reasoning and making
decisions with respect to reputation.

ǉ.ǉ NĹŊŇŃĹķŃłŃŁĽķň

Human decision-making and strategic thinking have been studied in a wide range of domains
for decades. Cognitive scientists andpsychologists use behavioral data andpsychometric vari-
ables tomodel and explain behavioral and cognitivemanifestations in controlled experimental
designs. Behavioral economists aĨempt to understand and predict psycho-social biases that
alter economic decisions in more ecological experimental seĨings in order to improve eco-
nomic theories. Neuroscientists on the other hand, investigate the neural signature of cogni-
tive and mental processes that guide behaviors. Conventionally, the interplay between these
disciplines has been relatively restricted until the recent development of neuroscientiėc tools
and modern technologies that have allowed the emergence a new interdisciplinary ėeld that
combines the three domains: the neuroeconomics ėeld. Being at the crossroads between eco-
nomics, psychology and neuroscience neuroeconomics aims to provide a uniėed theoretical
framework of humandecision-making. ĉe interdisciplinary approach is vast and includes dif-
ferent perspectives, from neuroimaging studies to electrophysiological studies in non-human
primates and incorporates various topics such as theory of choice under uncertainty, tempo-
ral discounting, framing effects, strategic choice, social decision-making, theory of mind , etc
(See the book Glimcher, Fehr, Camerer, and Poldrack, Ǌǈǈǐ). ĉe theories and models pro-
posed in this thesis are deėned by empirical evidences and by biological processes support-
ing human brain activities. ĉe three studies presented in this work use game theoretical ap-
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proaches, computational models and neuroscientiėc techniques to describe and predict hu-
man behaviours in social environments. In fact, this thesis is aligned with the “two goals of
neuroeconomics” (See Montague, ǊǈǈǏ): to understand the biological aspects of a living or-
ganism sustaining itself through time and processing information “efficiently”; and to probe
the algorithms running such biological foundations (Montague and Berns, ǊǈǈǊ; Montague,
King-Casas, and Cohen, Ǌǈǈǎ; Camerer, ǊǈǈǏ; Fehr and Camerer, ǊǈǈǏ).

ǉ.Ǌ OłŁŃĸĹŀĽłĻ

Interactions between computer science and neuroeconomics can go both ways; algorithmic
ideas can inform decision-making theories, and insights from neuroeconomics can inspire
solutions of engineering problem-solving. In this work, I adopt the former view, i.e., apply-
ing the relatively sophisticated models for prediction and control from machine learning into
new theories of cognitive and brain functions. ĉis thesis aims to improve behavioral and
neural theories of trust and reputation in social context bymaking use of theoretical and algo-
rithmic ideas from reinforcement learning (RL). Indeed, social learning and social decision-
making where appropriate actions lead to positive reinforcements (rewards) and inappro-
priate actions lead to negative reinforcements (punishments), can be viewed as RL prob-
lems devoted to trial-and-error and goal-directed problem-solving (Körding, ǊǈǈǏ; Lee, Ǌǈǈǎ;
Balleine, ǊǈǈǏ). Originating from psychology, biology, and improved in computational sci-
ence, RL has quickly become an important technique in neuroeconomics where it has been
extensively studied in both humans and animals (Gmytrasiewicz and Doshi, ǊǈǈǍ; Daw and
Doya, Ǌǈǈǎ; Johnson, van derMeer, andRedish, ǊǈǈǏ;O’Doherty, Hampton, andKim, ǊǈǈǏ;
Doya, Ǌǈǈǐ).

In particular, the Temporal Difference algorithm applied to the Q-function (TD-Q learn-
ing, see Box ǉ) is thought to be instantiated in the neural reward circuitry (mimicking phasic
responses of nigrostriatal dopamine neurons) (Schultz, Dayan, andMontague, ǉǑǑǏ; Schultz,
Ǌǈǈǌ), andhas also been found to reĚect high-cognitive behavioral andneural data (Nakahara,
Itoh, Kawagoe, Takikawa, and Hikosaka, Ǌǈǈǌ; WiĨmann, Daw, Seymour, and Dolan, Ǌǈǈǐ).
In the family of TD models, the Prediction Error (PE) which is the discrepancy between ex-
pectation and reality, is used to update prediction values of future rewards. Additionally, by
constantly minimizing PE and biasing action towards maximum future rewards, learned ex-
pectations eventually converge to optimal rewards in the long-term (McClure, Berns, and
Montague, Ǌǈǈǋ). TD-RL appears to be so embedded in the literature (For an excellent re-
view, see Dayan and Niv, Ǌǈǈǐ), that it allows testing of a wide range of hypotheses about
behavioral, psychophysiological and neural data.
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BŃŎ ǉ: RĹĽłĺŃŇķĹŁĹłŉ ŀĹĵŇłĽłĻ

MĵŇĿŃŋDĹķĽňĽŃł PŇŃķĹňň (MDP)

Formally, a MDP describes the quintuple S, A, P, R, γ, where S is the state space
of an agent, A is the action space, P is the set of Markovian transition probabilities,
R is the reward function such as S × A × S →, R and γ ∈ [Ƥ, ƥ] is the discount
factor of long-term reward. ĉe space state is sampled so that at each time t, the
environment is in one state st in which the agent can choose one action at according
to a certain policy, π : S→ A. ĉe state then changes to st+ƥ, and the agent receives:
rt = R(st, at, st+ƥ). ĉe agent’s goal is to follow a Policy which maximises the
expected long-term future reward. ĉis quantity is called the value function and is
deėned for a given policy π as:

Vπ(s) = E[
∑

t≥Ƥ γtrt|sƤ = s, π] ∈ RS

Given these equations, the goal is to ėnd π∗ ∈ argmaxπVπ . For this, the action-value
function (Q−function) is deėned. ĉis function adds a degree of freedom on the
ėrst action that is chosen:

Qπ(s, a) = E[
∑

t≥Ƥ γtrt|sƤ = s, aƤ = a, π] ∈ RS×A
ĉevalue function of the policy π∗ is noted (Q∗)V∗. IfQ∗ is known then the optimal
policy can be computed with a Greedy behavior as: π∗(s) ∈ arg maxaQ∗(s, a)

BĹŀŀŁĵł ĹŅŊĵŉĽŃłň

Using the Markovian property, the value function (of a speciėc policy π) satisiėes
the Bellman evaluation equation:

Qπ(St, at) = Est+ƥ|st,at [rt + γQπ(st+ƥ, π(st+ƥ))]

To ėnd the optimal policy, this Bellman equation can be used within a policy
iteration process. A ėrst πƤ is chosen. At interation i, the policy πi is evaluated and
theQ−function is excecuted. Since the policy πi+ƥ is deėned as being Greedy, then:

Qπi : πi+ƥ(s) ∈ arg maxaQπi(s, a)

TD-Q ŀĹĵŇłĽłĻ

If the model is unknown, the value function can be estimated through interactions
such as:

Q(St, at)← Q(st, at) + αt(rt + γQ(st+ƥ, aa + ƥ)− Q(st, at))
known as the Temporal Difference algorithm applied to theQ-functionwith α being
the lerning rate.
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In experiments where trust can emerge as the result of repeated interactions between part-
ners (interaction-based situation), behavioral economics studies have reported that RL learn-
ing models explain existing equilibrium in game theory and the selection of particular equi-
librium in case of multiple equilibria (Camerer and Weigelt, ǉǑǐǐ; Fudenberg, Kreps, and
Maskin, ǉǑǑǈ). RL models have also been found to reĚect behavioral data from people per-
forming repeated interaction tasks (Chang, Doll, van ’t Wout, Frank, and Sanfey, Ǌǈǉǈ; Bos,
Dijk, and Crone, ǊǈǉǊ). Besides capturing behavioral changes, the TD-Q learning in particu-
lar also reĚectsneural activities (Chapter ǊǊ in:Glimcher et al., Ǌǈǈǐ). Investigating interaction-
based decision to trust, recent neuroeconomics studies showed that activity in the dorsal stria-
tum (part of the reward circuitry), shiěed, over the course of interactions, from the timewhen
trustors received trustworthy outcomes to themomentwhen theymade their decision to trust
(see chapter Ǌ, section ǋ.ǋ). ĉis paĨern of activity is similar to a theoretical PE signal, used
to update the value of a predictive signal during learning that shiě to the time of the signal itself
aěer learning (King-Casas et al., ǊǈǈǍ).

More formally (see Box ǉ), the original TD Q-algorithm manipulates summary represen-
tations of the Markov Decision Problem (MDP), (the value function (e.g., Q), and/or the
policy π) and links received rewards into long-run expectations with the recursive Bellman
Equations (SuĨon and Barto, ǉǑǑǈ, ǉǑǑǐ; Bellman, Ǌǈǈǋ). ĉis algorithm, named the model-
ěee algorithm, can only update values along experienced state–action trajectories. Choices
estimated by model-ěee systems can be compared to fast and reĚexive choices based only on
experience and describe very well interaction-based decisions (Chang et al., Ǌǈǉǈ; Bos et al.,
ǊǈǉǊ). However, these algorithms have no control over the rules ofMPD themselves (i.e., the
probability distributions governing transitions between states and the reward function). Since
these rules represent the contingencies and actual outcomes of the problem to learn,model-ěee
algorithms, similar to stimuli-responses habits, cannot be adjusted by expectations, changes in
goals or rules. In the present work, reputation is assumed to impact on people’s beliefs about
others. ĉerefore, model-based algorithms, favoring actions suggested by the agent’s internal
model of the environment appear more appropriate to describe prior-based decision-making
where reputational priors play an important role (Doll, Simon, and Daw, ǊǈǉǊ; O’Doherty
et al., ǊǈǈǏ).

ĉe model-based versus model-ěee, distinguishing between goal-directed and habitual in-
strumental behaviors (Daw and Doya, Ǌǈǈǎ), will be tested in this thesis where I propose
new extensions of model-based RL models to account for potential interactions between trust
and reputation mechanisms. ĉese models, using differential representation of the transition
structure T, and the reward function R will be deėned and compared to model-ěee algorithms
using behavioral and neural data. ĉis work also proposes that these two categories of models
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are implemented in the brain using synergic and parallel circuits, in line with previous studies
(Daw and Doya, Ǌǈǈǎ; Balleine, ǊǈǈǏ; Tricomi, Balleine, and O’Doherty, ǊǈǈǑ; Wunderlich,
Rangel, and O’Doherty, ǊǈǈǑ) and aims to extend our understanding of the model-based part
of this neural architecture.

ǉ.ǋ MŃŉĽŋĵŉĽŃłň

ĉe overall goal of this thesis is to advance theories of the dynamic interplay between repu-
tational priors and trustworthiness beliefs from a behavioural, computational, physiological
and neural point of view. ĉe thesis is organized in three steps: (i) theoretical and computa-
tionalmodels are proposed and then tested against behavioural data collected froma relatively
large population to verify their adaptivity and validity (ii) nominatedmodels are used to probe
new behavioural data sets and their estimated parameters are entered into parametric fMRI
analysis - to enrich neural theoretical models of trust and reputation interactions (iii) the new
framework and theory are used in the psychological and emotional domain to validate and
propose a wider range of results.

First, computationally, I propose a selection of model-ěee and model-based RL algorithms
that can operate in a biologically plausible manner. ĉeir properties are exposed and sensible
extensions are proposed so that the new model-based RL systems can beĨer explain the com-
plexity of trust and reputation in human social context. ĉus, themodels’ accounts of people’s
behaviour aremade faithful, confronteddirectlywith thepresenteddata and theoreticallywith
previous anomalous findings.

Second, at a brain level, the selected “best” models - in terms of behavioural-ėt - are used
to assess fMRI data with model-based parametric techniques. In this part, the thesis extends
previous neuroimaging ėndings in trust-based decision-makingwith new insights on the func-
tional interplay between the basal ganglia and prefrontal areas in human brains.

Finally, in a psycho-physiological study, the proposed theory of trust and reputation is
testedwith inter-individual subjectivedata suchas emotional rating, emotional arousal recorded
with electrodermal methods and eye movements.

ǉ.ǌ OŇĻĵłĽňĵŉĽŃł Ńĺ ŉļĹ ŉļĹňĽň

ĉethesis ėrst presents the relevant literature followedby thedescriptionof three experiments
involving healthy humans: a behavioural/computational study, a functional neuroimaging
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study, and a last experiment in which different method of psychophysiological measurement
(eye-tracking and electrodermal response) are combined. All three studiesmake use of a game
theoretical task, called Trust-Game (TG), with varying experimental parameters. In all of
them interaction-based and prior-based trust decisions are directly compared (i.e., whether rep-
utational priors were provided or not). Between each experiments, the trustworthiness level
of counterparts and different relationship end points are manipulated. Each of these exper-
iments raises theoretical issues and proposes new insights that extend existing models and
theories of social decision-making in several directions.

Chapter two reviews the literature in three broad ėelds: (i) Economical and behavioral
game theories about social learning, trust and reputation, (ii) computational work in artificial
reinforcement learning and (iii) experimental evidences of behavioral and neural signatures of
trust-based and prior-based social decision-making. ĉis chapter introduces the Trust Game
(TG) which is the methodological experimental task employed in the three presented exper-
iments.

Chapter three addresses the challenges of including the effect of meaningful reputational
prior in RL models, that account for external information and internal beliefs of the agent in
different ways. One family of models (commonly termed model-ěee or habitual) choose ac-
tions on the only basis of experience and accumulation of reward, whereas a second (named
model-based or goal-directed) choose actions that causally lead to reward according to people’s
internal representation of the situation. In this chapter, several models from these two cate-
gories are deėned, adjusted and confronted with behavioral data of people playing repeated
TGs. Evidence suggests that trust and reputation are intertwined in the decision-making pro-
cess and that an Adaptive-Belief model-based RL system robustly accounts for the variability
in people’s interaction behavior when prior are provided.

Chapter ǌ uses advanced notions from the previous study in order to explore neural activity
when people play repeated TGs with stochastic endings. ĉe model-based algorithm ėĨing
behavioral data with the highest accuracy is used to estimate trial-to-trial RL parameters that
are entered into fMRI analysis at time of choices and outcomes. Results suggest a functional
connectivity between the prefrontal cortex, which favors actions suggested by the reputation,
and the caudate nucleus that signals unexpected changes in context. Particularly exciting are
the results showing that model-based techniques can bridge the gap between behavioral and
neural results. ĉis chapter provides a unified and normative account of both the trust-related
neural responses in different areas of the brain and of how the computations these areas carry
out influence learning behavior.

Chapter Ǎ examines the way in which varying reputational priors (i.e., from highly pro-
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social to highly self-centered) inĚuence the allocation of visual aĨention and electrodermal
responseswhenparticipants play singleTGwithunfamiliar partners. ĉis third studyprovides
conėrmatory answers about the effect of reputation in allocating trust and presents prelimi-
nary analysis on its effect on emotional reports, physiological arousal and later recognition.
ĉemost encouraging results explore the relationship between violation of social expectation
and latermemory-recognition and therefore should guide future experimentation andanalysis
in this area.
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A general “law of least effort” applies to cognitive as well as
physical exertion. ĉe law asserts that if there are several
ways of achieving the same goal, people will eventually grav-
itate to the least demanding course of action. In the economy
of action, effort is a cost, and the acquisition of skill is driven
by the balance of beneėts and costs. Laziness is built deep
into our nature.

Daniel Kahneman

2
ĉeoretical background

ĉis section reviews work in neuroeconomics and in reinforcement learning (RL) related to
the foundation of trust, reputation and social learning. Aěer some material introducing key
conceptual deėnitions, the chapter focuses specifically on previous work related to the theo-
retical issues relevant to the data considered in this thesis. More complete overviews of the
economics and neuroeconomics foundation of trust and reputation mechanisms have been
published in articles and book forms (Bohnet and Huck, Ǌǈǈǌ; Mailath, ǊǈǈǏ; Nooteboom,
ǊǈǈǊ) and chapter in (Chapter Ǒ in: Rose, Ǌǈǉǉ). For reinforcement learning applied to neu-
rosciences, I drawonother reviews andbooks (Bertsekas, ǊǈǉǊ; SuĨon andBarto, ǉǑǑǐ;Kael-
bling, LiĨman, and Moore, ǉǑǑǎ) in what follows.

Ǌ.ǉ CŃłķĹńŉŊĵŀ ĸĹĺĽłĽŉĽŃłň

For decades, a wide range of disciplines have demonstrated the role of trust and reputation in
all human interactions. Despite their proposed importance, the deėnitions of trust and repu-
tation are not fully seĨled. Psychology and Economics have in common some aspects of their
deėnitions, and differ in others. Although my purpose is not to seĨle maĨers of terminology,
it will be useful to clarify in which way I use the terms of trust and reputation.
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Ǌ.ǉ.ǉ DĹĺĽłĽŉĽŃłň Ńĺ ŉŇŊňŉ ĵłĸ ŇĹńŊŉĵŉĽŃł

TŇŊňŉ

• In Psychology - also redirected toCognitiveNeurosciences - the term “trust” character-
izes both a state of mind and a social aĨitude. First, it refers to an individual willingness
to trust, which may vary depending on the context, the personal history or an internal
hormonal state (Boon and Holmes, ǉǑǑǉ; Mayer, Davis, and Schoorman, ǉǑǑǍ; Rot-
ter, ǉǑǎǏ, ǉǑǏǉ). Second, it refers to a social aĨitude and social preference. Trust was
deėned by Luhmann (ǉǑǏǑ) as a “process encompassing beliefs about others and their will-
ingness to use that knowledge as the basis for action” (Luhmann, ǉǑǏǑ). Berg and his col-
leagues (Berg, Dickhaut, and McCabe, ǉǑǑǍ) deėne trust as a situation in which a ėrst
person (the trustor or investor) is willing to rely on the future actions of another party
(trustee). In such situation, the trustor, with or without his volition, abandons control
over the actions performed by the trustee. As a consequence, the trustor is uncertain
about the outcome of the other’s actions; he can only develop and evaluate expecta-
tions. ĉe uncertainty involves the risk of failure or harm if the trustee does not behave
as desired.

• In Economics, “trust” refers to the situation in which a person “expects” another per-
son to “do” something or “behave” in a certain way. Trust ėts withmoral hazardmodels
due to repeated interactions and the possibility to punish “off-the-equilibrium” behav-
iors. In fact, the core of trust deėnition is that it emerges from interpersonal exchanges
(Bohnet and Baytelman, ǊǈǈǏ; Cox, Ǌǈǈǌ; Hong and Bohnet, Ǌǈǈǌ). ĉe deėnition
of trust is also linkedwith economic primitives like social preferences, beliefs about the
trustworthiness of others, or risk aĨitudes (Coleman, ǉǑǑǌ). Bohnet andhis colleagues
(Ǌǈǈǋ) also identiėed betrayal aversion as another key feature in trusting behavior, such
that it leads to the delineation of property rights and contract enforcement (Bohnet and
Zeckhauser, Ǌǈǈǋ).

RĹńŊŉĵŉĽŃł

• ĉe deėnition of “reputation” from a Cognitive Neuroscience point of view is sparse
anddoesnot beneėt fromabroad rangeof empirical examples. Because it is still a recent
topic of interest in the domain, there are differing views about the role of reputation.
While studying cooperation and social dilemmas, cognitive scientists andpsychologists
have deėned reputation as a corporate/collective image socially transmiĨed that pro-
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vides information about people, organizations or standing (Bromley, ǉǑǑǋ, Ǌǈǈǈ). ĉe
reputation of an agent corresponds to the aggregate of other’s beliefs about that agent
behaving socially. In that sense, reputation is an indirect, derive belief about other’s apti-
tude in a social context. Reputation can be interpreted as the expectation that a trusting
person holds about another person from its past actions and behaviors towards others,
which include trustworthiness, cooperation, reciprocity, or norm-acceptance.

• Reputation refers in Economics to situation in which people “believe” others to act in
a certain way or to “be” a certain “type” of person (Cabral, In press). It’s commonly de-
ėned as “the estimation in which a person or thing is generally held”, as “a favourable name
or standing” or as “the way in which a person or thing is known or thought of” (Deelmann
and Loos, ǊǈǈǊ). ĉe goal of reputation mechanisms is to enable efficient transactions
when cooperation is compromised by possible opportunism (moral hazard) or infor-
mation asymmetry (also refers to as adverse selection¹). Reputation has also been de-
ėned as beliefs of participants about others’ strategic character (Camerer and Weigelt,
ǉǑǐǐ). ĉe bases of the reputational mechanism are a Bayesian updating and signaling.

Ǌ.ǉ.Ǌ IłŉĹŇńŀĵŏ Ńĺ ŉŇŊňŉ ĵłĸ ŇĹńŊŉĵŉĽŃł

Given their deėnitions, trust and reputation are highly interrelated; reputation reinforces trust
(and vice versa) and relates to the measurement of trustworthiness value. Indeed, one can
trust another based on his reputation and its reliability. For example in online marketplaces,
reputation systems have been intentionally used as trust facilitators, and both the decision-
making and incentive process to avoid frauds and deceits (Kim, ǊǈǈǑ). ĉe trustworthiness
value of an agent is computed by aggregating all reputational information that is obtained from
other agents. ĉe trustworthiness value, derived by reputation, is classiėed as indirect, third-
party trust or transitive trust. ĉe idea behind trust transitivity is illustrated as follow: assume
Kevin trusts James, and James trusts Isabelle. When James refers Isabelle toKevin, thenKevin
derives a quota of trust in Isabelle based on James’ point of view about her. ĉis trust transi-
tivity, deėning one aspect of reputation mechanism, is illustrated in the picture below (see
picture Ǌ.ǉ.ǉ).

However, there are, at least, two main differences between trust and reputation mecha-
nisms: (i) trust comes from direct-based interactions and the trustworthiness judgment is

¹Adverse selection is present in situations where one person possesses information (about their type, their
innate ability, the quality of what they offer, etc.) that others don’t. ĉese situations oěen arise in markets for
experience goods.
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Figure Ǌ.ǉ.ǉ: Trust transitivity principle. If Kevin trusts James, James trusts Isabelle and James refer
Isabelle to Kevin, then Kevin derives a quota of trust in Isabelle based on James’ point of view about
her, in combination with his own trust in James.

a direct belief-constract, whereas reputation provides an indirect trustworthiness judgment
transmiĨed by others, (ii) trust is based on subjective and reĚexive representation of others,
whereas reputational information or ratings about speciėc events, such as aĨitudes or trans-
actions, are used as a model of trust. Given that trust and reputation are based on different
sources of information, the overlap between the two is a formal certainty on the trustworthi-
ness of others but divergence between the two information might also generate representa-
tional conĚict (Deelmann and Loos, ǊǈǈǊ; Bromley, ǉǑǑǋ).

Ǌ.Ǌ RĹńŊŉĵŉĽŃł ĵłĸ ŉŇŊňŉ ĵň ŀĹĵŇłĽłĻ ŁŃĸĹŀň

All deėnitions of trust mentioned earlier share a common assumption: trust mechanisms
emerge from repeated interaction. If people interact regularly enough, they can build an in-
ternal image of the other that will support their willingness to trust them or not. ĉe two next
paragraphs will present key features of the economicmodel of trust and reputation. I will also
focus onmechanisms of trust and reputation from the point of view of psychology and cogni-
tive science, and methods to compute these models.

Ǌ.Ǌ.ǉ RĹńĹĵŉĹĸ ĻĵŁĹň ĵłĸ FŃŀĿ TļĹŃŇĹŁ: BŃŃŉňŉŇĵń ŁŃĸĹŀ

For economists, the repetition of a situation creates the possibility of equilibrium action pro-
ėles that couldn’t exist otherwise. Within Economics, Gameĉeory investigates repeated and
strategic thinking, and models phenomenon emerging from situations (games) where differ-
ent actors interact (Deelmann and Loos, ǊǈǈǊ; Bin Yu, ǊǈǈǊ; Cabral, In press).

In order to illustrate trust as a social context, let’s consider an interaction repeated several
times between a seller and a buyer. Ononehand, the seller can decidewhether or not hewants
to make an effort to offer a high quality product. His effort to propose a high quality product
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has a cost: effort > ǈ. If he exerts effort, the product has a high quality. If he doesn’t, then the
chance for the product to break is high (but effort = Ƥ). On another hand, the buyer surely
will prefer to pay price = ƥ for the good product that works and ǈ for the one that has a high
chance to break once bought. In this situation, we assume that the buyer does not know the
seller so he cannot determine the seller’s willingness to labor in the manufacture process.

From a theoretical point of view, the willingness tomake such an effort to produce depends
on the ratio between effort and price. If effort < ƥ, then it is efficient for the seller to make an
effort: indeed the difference between the price paid by the buyer and the cost is still positive.
However, selling a high-quality product is evidently not an equilibrium. Regardless of the
beliefs of the buyers towards to seller’s actions, rational economists will claim that the seller
should never make any effort into selling a high quality product. In fact, when the buyer will
realize that the product is not of good quality, the seller will have already been paid and its
beneėts will be large: priceeffort = price. In this case, a buyer that understands the seller
strategy should never have paid for the product.

However, if the situation happens several times (game theorist would categorize this case
into the “inėnite repeated games with asymmetric information”) then other equilibrium cap-
ture the repetition of the situation and its consequences. As an example, imagine that the
buyer starts by trusting the seller and therefore pays the expected value of a good quality prod-
uct, e.g. ǉ. If the product breaks down then the buyer has incentive to punish the seller and
stop buying. In this situation, the seller should anticipate such reversal strategy and offer a
good product at each time of the interaction. In terms of patience ¹, one could propose that
the discounted payoff from keeping his trust would be:(

ƥ− effort
ƥ− price

)
(Ǌ.ǉ)

If he decides at any time to not invest effort on the product he will get a ǉ in the short-term
but ǈ in the long-term. ĉerefore trust in this scenario is an equilibrium if (Equation Ǌ.ǉ) is
>= ǉ or if price > effort.

One of the central tenets of the repeated game theory, the folk theorem, states that if players
are patient enough, then any rationally possible set of individual payoffs canbe sustained as the
Nash equilibrium of a repeated game (Cabral, In press). ĉe folk theorem can be interpreted
as amodel of trust: If players are patient and the futuremaĨers a lot to them, thenmutual trust

¹We can relate a player’s discount factor δ to her patience. Howmuchmore does this person value a dollar
today, at time t, than a dollar received τ > Ƥ periods later? ĉe relative value of the later dollar to the earlier
is δt+τ/δτ . As δ ← ƥ, so as her discount factor increases she values the later amount more and more nearly
as much as the earlier payment. A person is more patient the less she minds waiting for something valuable
rather than receiving it immediately. So we interpret higher discount factors as higher levels of patience.
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can exist in equilibrium. ĉebasic idea is very simple and intuitive: there is a trade-offbetween
a myopic short-term gain from defeating the other and a long term loss from destroying trust
and reputation.

Ǌ.Ǌ.Ǌ RĹńŊŉĵŉĽŃł ĵň ĵ BĵŏĹňĽĵł ŁŃĸĹŀ

ĉe fundamental feature of trust emergence in economics models was discussed earlier: the
bootstrapmechanism explicitly states that trust emerges from repeated interactions when de-
viations of trust can be punished. Now let’s imagine that, the seller could adopt either a good
or a bad proėle in each stage of the repeated interaction: (i) he could decide to be trustworthy
and sell a high quality product with a high probability to function: αH or (ii) he could decide
to be untrustworthy and create a low quality product that has a low probability to function:
αL, where Ƥ < αL < αH < ƥ. On the other hand, the buyer is risk neutral and thus will always
offer a price that is equal to his willingness to pay for that product. We can formalize this situ-
ation with extra parameters: if a product works, it is worth ǉ unit and if it doesn’t, it is worth ǈ.
If δ is the buyer’s belief that the seller is trustworthy, then buyer will be willing to offer a price
deėned as:

price = δ ∗ αH + (ƥ− δ) ∗ αL (Ǌ.Ǌ)

With this equation, the price will increase as a function of δ and pertains to the buyer’s belief
that the seller is trustworthy. In this particular situation, this could be qualiėed as the reputa-
tion of the seller, which will determine how much the buyer is willing to invest in the seller’s
product. Let δƤ be the prior belief that the seller is trustworthy, T the number of times that
product was of high quality and U when the product was of low quality. ĉus the following
equation captures the update of the buyer’s belief:

δƤαSH(ƥ− αH)F

δƤαSH(ƥ− αH)F + (ƥ− δƤ)αSL(ƥ− αL)F
(Ǌ.ǋ)

Where the prior belief δƤ determines the seller’s history (the sum ofT andU) and the reputa-
tion of the seller is given by δ. ĉe value of δ is a function of T and U. If T increases, then the
reputation of the seller is beĨer and if U increases, the reputation will decrease.

Consequently, if the reputation of the seller increases, the price will also increase (in the
same way, the reputation decreases aěer proposing low quality products). Finally, this equa-
tion captures another phenomenon: if the seller is trustworthy then δ moves closer to ǉ and
the pricemoves closer to αH. If he is untrustworthy, the price converges to αL, where αL < αH.
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Ǌ.Ǌ.ǋ TŇŊňŉ ĵłĸ ŇĹńŊŉĵŉĽŃł: RĹĽłĺŃŇķĹŁĹłŉ LĹĵŇłĽłĻ ńŇŃĶŀĹŁň

During the last decade, studies started to apply modeling in conjunction with empirical and
behavior data to beĨer probe social decision-making. In their experiment, Hampton and col-
leagues used computational approaches to investigate the ability of mentalizing about oth-
ers while playing interactive social game (Hampton, Bossaerts, and O’Doherty, Ǌǈǈǐ). Fur-
thermore, Apesteguia, Huck, andOechssler (ǊǈǈǏ) reported that when watching others play-
ing a game, people tend to imitate the strategy of the winner of the game (Apesteguia et al.,
ǊǈǈǏ), behaviors that can be captured by computation modeling. Using social games, an ex-
tensive literature on the questions of optimal strategies and decision-making proposes to use
reinforcement-learning theories to provide insights in how people solve such optimization
problems (Lee, Ǌǈǈǎ; Balleine, ǊǈǈǏ; Körding, ǊǈǈǏ).

MŃĸĹŀ-ĺŇĹĹ ĵłĸ ŁŃĸĹŀ-ĶĵňĹĸ RL ĵŀĻŃŇĽŉļŁň

Twocandidate families ofRLmodels have ėguredprominently in recent neuroeconomics the-
ories of learning with evidences from the human and the animal literature. ĉe ėrst comes
from the “law of effect”, which states that agents “habitually repeat actions that have been re-
inforced in the past” (ĉorndike, ǉǑǉǉ). ĉe second comes from the notion of a “cognitive
map”, an internal representationof the environment that agents utilize to plan goal-directed se-
quences of actions (Tolman, ǉǑǌǐ). ĉese two types of learning algorithms are named “model-
ěee” and “model-based” systems (see box Ǌ). As presented in Chapter ǉ, TD-Q algorithms are
calledmodel-ěeebecause they only learn an error-driven update function (they only learn from
previous experience) that closely resemble the activity of dopaminergic neurons. In contrast,
model-based RL algorithms (dynamic programming) are based on a more Ěexible and richer
internal model of the learning environment (see box Ǌ).
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BŃŎ Ǌ:MŅĺĻł-ļŉĻĻ ĵłĸMŅĺĻł-ĸķŊĻĺ ĵŀĻŃŇĽŉļŁň

ĉeoretical model for data analysis using both a model-ěee learner and a model-based learner. Model-ěee computes a PE
using direct experienced reward and state from the environment to update state-action values. ĉeModel-based learner learns
a model of the state space T(s,a,s′) by means of a state-PE, which is then used to update the state transition matrix. Action
values are computed bymaximizing over the expected value at each state. ĉen, a hybrid learner computes a combined action
value as an exponentially weighted sum of the action values for themodel-ěee andModel-based learner. ĉe combined action
value is then submiĨed to soěmax action selection. (Figure inspired by Gläscher et al. (Ǌǈǉǈ).)

ǉ. Model-free computation, illustrated in the leě part of the picture uses experience – state and reward - to learn
directly the characteristic of a problem – state and action values -. Given a decision policy, a state has a value which
is defined as the future utility that is expected to increase starting from that state. One advantage of this computation
is that it doesn’t need an internal representation of theworld tomake a decision, it is a rather guileless and automatic
way to learn without any a-priori of the world. On the contrary, this computation has the disadvantage that (ǉ) a lot
of trial-and-error experience is required to correctly predict the state’s values that lead to future consequences, (Ǌ)
themodel cannot adapt quickly to changes in the environment and (ǋ) incorrect information from the environment
would be also combined with previous estimates without the possibility to discard them.

Ǌ. Model-based computation, illustrated in the right part of the picture refers to an internal representation of the
problem“amentalmap” that has been learnedbasedonobservation that does not concern the current problem itself.
ĉis internal representation includes knowledge of the features of the task, (formally, the probabilities of transitions
fromone state to another and different immediate outcomes), which can also be conceived as introspective thinking
in human psychology. ĉis is a statistically efficient way to use experience, since each piece of information from the
environment can be memorized in an internal representation that can be re-use. Another advantage of this model
is that it adapt quickly to changes (action selection changes rapidly in the transition contingencies and the utilities
of the outcomes). ĉe inconvenience of the model is that it needs a support for estimating the world a-priori.

A wide range of behavioral and neural studies proposes that the brain employs both model-ěee and model-based decision-
making processes, with each process dominating the other in certain situations (For a review, see Dickinson and Balleine,
ǊǈǈǊ) ĉerefore, different neural substrates are suggested to underpin each process (Balleine, ǊǈǈǍ; Daw, Niv, and Dayan,
ǊǈǈǍ).
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Ǌ.Ǌ.ǌ NĹŊŇĵŀ ķŃŇŇĹŀĵŉĹň Ńĺ MŃĸĹŀ-ĶĵňĹĸ ŋň. MŃĸĹŀ-ĺŇĹĹ ĽŁńŀĹŁĹłŉĵŉĽŃłň

Animal and human studies have reported that agents use model-ěee and model-based form of
learning processes under different circumstances (Dickinson, ǉǑǐǍ; Philiastides, Biele, Va-
vatzanidis, Kazzer, and Heekeren, Ǌǈǉǈ). Besides, the executive control of the behavior can
alternate between the two systems (Wimmer, Daw, and Shohamy, ǊǈǉǊ; Wunderlich, Sym-
monds, Bossaerts, and Dolan, Ǌǈǉǉ; Beierholm, Anen, Quartz, and Bossaerts, Ǌǈǉǉ) and spe-
ciėc brain lesions might impair one system while preserving the second, suggesting that the
brain contained separate, competing systems for model-based and model-ěee RL - a habit RL
system in which choices are selected based on previous experience and a goal-directed sys-
tem, more adaptive, that implements a cognitive map (Dickinson and Balleine, ǊǈǈǊ; Doll
et al., ǊǈǉǊ).

Recent electrophysiological studies indicate that the dorsolateral striatummediates state−
reward habits and thus play an important role in the model-ěee implementation theory (Yin,
Knowlton, and Balleine, Ǌǈǈǌ). However, other electrophysiological studies have shown that
model-based behaviors also require the integrity of the dorsomedial striatum, suggesting that
the striatumplays an important role both inmodel-based andmodel-ěee implementations (Tri-
comi et al., ǊǈǈǑ; Zweifel, Parker, Lobb, Rainwater, Wall, Fadok, Darvas, Kim, Mizumori,
Paladini, Phillips, and Palmiter, ǊǈǈǑ; Tsai, Zhang, Adamantidis, Stuber, Bonci, Lecea, and
Deisseroth, ǊǈǈǑ). ĉe dichotomy between model-based and model-ěee is still a recent topic
in fMRI studies. However, converging results indicate model-based value signals in ventro-
medial, ventrolateral prefrontal cortices (vmPFC, vlPFC) and adjacent orbitofrontal cortex
(OFC) which plays an important role in goal-directed sequence of actions (Valentin, Dick-
inson, and O’Doherty, ǊǈǈǏ; Wunderlich et al., ǊǈǈǑ; Jones, Somerville, Li, Ruberry, Libby,
Glover, Voss, Ballon, andCasey, Ǌǈǉǉ). ĉus, two brains areas, (i) the prefrontal cortex which
is commonly associatedwith executive functions – higher order cognitive processes thatman-
age, control and regulate other brain activities (Ernst and Paulus, ǊǈǈǍ), and (ii) the limbic
system which has generally been associated with emotion regulation and more recently with
social processes (Bush, Luu, and Posner, Ǌǈǈǈ; Rilling, Gutman, Zeh, Pagnoni, Berns, and
Kilts, ǊǈǈǊ), seem to signals model-ěee and model-based information respectively.

Ǌ.Ǌ.Ǎ FĽŇňŉ HŏńŃŉļĹňĹň ĵłĸ MŃŉĽŋĵŉĽŃłň

Whether trust and reputation are distinct constructs or represents a trust–reputation con-
tinuum is a debated topic in the literature. While some studies hold these two concepts as
separate, some others studies integrate the two in an uniėed model (Bromberg-Martin, Mat-
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sumoto, Hong, and Hikosaka, Ǌǈǉǈ; Hiroshi Abe, Ǌǈǉǉ). However no studies so far has tried
to employ the RL framework described in the previous section to test whether trust and rep-
utation can be employed as variable in model-ěee and model-based RL algorithms. Taking in-
sights from dynamic programming my aĨempt is to propose a model-based RL algorithm that
integrates reputation priors into the decision-making problem to trust (or not) someone dur-
ing social interaction (See ėgure Ǌ.Ǌ.ǉ).

Figure Ǌ.Ǌ.ǉ: Trust and reputation interactions in RL algorithms. Figured inspired by SuĨon when
describing the dichotomy between model-based and model-ěee systems (SuĨon and Barto, ǉǑǑǐ).
ĉe social interactive environment provides the participant a direct measure of trustworthiness
(states and rewards), whereas the model-based system furnishes the agent with expectation about
the other driven by its reputation cues. ĉe model-ěee system applies the same policy to select an
action from both real trustworthiness and belief based on reputation.

Indeed, a model-based algorithm involve explicit or implicit secondary structure (such as
counterfactual signals, rules stored in memory or cues from the environment) where infor-
mation about rewards that are not actually received can be inferred or observed. ĉus, a pure
model-ěee RL would be blind to reputation information and only update decision-values to
trust according to observed trustworthiness. However, decision to trust with reputation pri-
ors go beyond model-ěee RL and allow to directly manipulate the key features of model-based
RL (for the formal deėnition see box Ǌ and chapter ǋ), that is, the computation of decision-
values using prior expectation that inĚuence the reward function and a sequential transition
model of an action’s consequences. ĉe model-based learns the transition and possible reward
of the interaction and uses this model to generate predictions about future reward.
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Ǌ.ǋ BĹļĵŋĽŃŇĵŀ ĵłĸ łĹŊŇŃĶĽŃŀŃĻĽķĵŀ ĹŋĽĸĹłķĹň

Politicians andeconomists havebegun topay aĨention to the importanceof trust oneconomic
Ěows and progress when they realized that “much of the economic backwardness in the world
could be explained by the lack of mutual conėdence” (Arrow, ǉǑǏǊ). As we have seen earlier,
theoretical economic models explain that trust can be a best response in situation when an
agent needs to build social capital (Lewis and Weigert, ǉǑǐǍ). ĉese models were proposed
to reconcile empirical evidences from the assumption of pure rationality. Indeed, humans
genuinely trust unrelated strangers and are cooperative even in a double-blind situation, (e.g.
when they will never interact with a person again or when they have no possibility to cultivate
their own reputation) (Berg et al., ǉǑǑǍ; McCabe, Houser, Ryan, Smith, and Trouard, Ǌǈǈǉ).
ĉerefore decision to trust and reciprocate trust are thought not to be directed at furthering
one’s own interests but rather are guided by other-regarding preferences (Fehr and Camerer,
ǊǈǈǏ; Falk and Fischbacher, Ǌǈǈǎ; Van Lange, ǉǑǑǑ).

However reciprocity and trustworthiness have been found to be a behavior dependent on
individual differences in social value orientation (SVO) which characterizes inter-individual
tendency to value the outcome of others (Van Lange, ǉǑǑǑ; Lahno, ǉǑǑǍ).

Ǌ.ǋ.ǉ AňňĹňňĽłĻ ŉŇŊňŉ

Trust is a nebulous construct. It is difficult to isolate, quantify, and characterize as an experi-
mental cognitive mechanism. Nevertheless, to assess trust in experimental set ups, it is neces-
sary to operationalize it, although this effort may be limited.

TļĹ TŇŊňŉ GĵŁĹ

Camerer and Weigelt (ǉǑǐǐ) developed one of the earliest methods of measuring trust and
trustworthiness in a laboratory seĨing through an economic gamewhich was as a streamlined
version of the investment or Becker–DeGroot–Marschak method (BDM)¹ investment game
pioneered by Berg, Dickhaut and McCabe (Berg et al., ǉǑǑǍ). ĉis task is called the Trust
Game, has beenemployed andmodiėed formanyyears and is oneof thewidest spreadmethod

¹ĉe Becker–DeGroot–Marschak method (BDM), named aěer Gordon M. Becker, Morris H. DeGroot
and JacobMarschak for the ǉǑǎǌ, Behavioral Science paper, “Measuring Utility by a Single-Response Sequen-
tial Method” is an incentive-compatible procedure used in experimental economics to measure willingness to
pay (WTP)
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to operationalize trust in laboratories, by quantifyingboth trustworthiness and thewillingness
to trust. ĉe mechanics of the game are presented in ėgure Ǌ.ǋ.ǉ.

Figure Ǌ.ǋ.ǉ: ĉe “trustor” is the ėrst player (A), and the “trustee” is the second player (B).ĉe two
players’ payoffs are given as (P, T, U and T), where Pƥ is the trustor’s payoff and PƦ is the trustee’s
payoff at the beginning of a game. Player A can choose between Trust andNoTrust. If A chooses No
Trust then the game ends, without Bmaking a decision, and the payoffs are unchanged (Pƥ = PƦ). If
A chooses to trust B, he gives his entire payoff to B, who then chooses between keeping everything,
with payoffs (Uƥ < IƦ), and reciprocate in which case the payoffs are equally divided (Tƥ = TƦ, and
Tƥ > Pƥ).

In another version of the TG, the ėrst stage of the game consists of the trustor’s decision
to invest any portion x of his endowment to the trustee. If A decides to invest an x amount of
his money, x will be subtracted from his endowment until the next move. ĉe experimenter
will multiply the money invested, x, by a certain factor f > ƥ, before sending it to the trustee.
In stage two, B has the choice to either keep the endowment or reciprocate trust and give any
portion y of the money he received back to the trustor.

ĉe TG is made of two sequential stages of economic exchanges in which no one is con-
tractually commiĨed to enforce agreements. In behavioral economics in particular, many par-
ticipants come to the laboratory and receive an initial endowment that is known by all partic-
ipants. ĉen participants are anonymously paired with each other and assigned to either the
role of trustor (A) or trustee (B).

ĉe amount of money sent by the trustor and the trustee are said to capture trust and trust-
worthiness respectively. ĉe money sent by the trustor captures the willingness to bet that
the trustee will reciprocate, which is a risky move (at a cost to them). Moreover, the decision
to trust is linked with an expectation that the consequences of the decision will be positive
in terms of the trustor’s investment. Particularly, if the second mover repays trust, the trustor
would be beĨer off than if the trustor doesn’t invest to begin with. ĉis deėnition of trust as a
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behavior was proposed by Coleman (ǉǑǑǌ; ǉǑǑǍ) and can be precisely observed using game
theoretical one-shot games performed anonymously (Coleman, ǉǑǑǌ; Berg et al., ǉǑǑǍ).

CŇŃňň-łĵŉĽŃłĵŀ ĸĵŉĵ

ĉe Trust Game (TG) has come to dominate the ėeld as a way to operationalize trust and
trustworthiness. Outside of laboratories, studies investigating on trust use questionnaires on
large population. One example is the AmericanGeneral Social Survey which is an annual sur-
vey on trust since ǉǑǏǊ, and the World Values survey which probes multicultural differences
in trust. Both surveys capture trust using the following question: “Generally speaking, would
you say that most people can be trusted or that you can’t be too careful in dealing with people?”ĉe
possible responses are either “Most people can be trusted” or “Can’t be too careful” ¹.

ĉese questions and corresponding responses have been found to be relatively problematic.
Indeed, a person who is not willing to take small risks even with potential gain could agree to
both choices, since his opinion about people is independent of his general aĨitude towards
risk (Miller andMitamura, Ǌǈǈǋ). To rule out this problem, some authors have proposed one
dimensional question that separate trust and distrust, such as: “Do you think that people can be
trusted?” with ratings from “Absolutely” (rated Ǐ) to “not at all” (rated ǉ) as possible answers.

Other tools have been developed to measure trust determinants (Bohnet and Huck, Ǌǈǈǌ;
Bohnet and Baytelman, ǊǈǈǏ; Eckel andWilson, Ǌǈǉǉ; Jamison, Karlan, and Schechter, Ǌǈǈǎ;
Houser, Schunk, andWinter, Ǌǈǉǈ), and trust in international data sets. ĉese tools allow two
main advances: (ǉ) to probe the effect of organizations on trust (Bohnet and Huck, Ǌǈǈǌ)
and, (Ǌ) to perform cross analysis on both organizational and political comparisons of trust
(Naef and Schupp, ǊǈǈǑ; Porta, Lopez-de Silane, Shleifer, and Vishny, ǉǑǑǎ; Houser et al.,
Ǌǈǉǈ).

Ǌ.ǋ.Ǌ BĹļĵŋĽŃŇĵŀ ĹŋĽĸĹłķĹň

Berg and his colleagues (ǉǑǑǍ) found a signiėcant willingness to trust and reciprocate trust
among participants that were engaged in one-shot and anonymous TGs – a result that devi-
ates considerably from Nash predictions and simple maximization of people’s own monetary

¹ĉe question is very close to asking people about their behavioral inclinations “can’t be too careful” and
it seems quite likely that when people answer this question, they consult either their own experiences or be-
haviors in the past or introspect how they would behave in situations involving a social risk. ĉerefore, it
seems likely that the answer to the GSS andWVS question is not only shaped by people’s beliefs about others’
trustworthiness, but also by their own preferences towards taking social risks.
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payoffs (Berg et al., ǉǑǑǍ). Since (ǉǑǑǍ), studies using the TG have repeatedly reported trust-
related behaviors and reciprocity across gender, age, culture, geography and category socio-
professional and it has shown thatmajority of trustors in the game sendmore than half of their
initial endowment and the majority of trustees reciprocated with more than the amount sent
by the trustor. (For a meta-analysis of the trust-game see Johnson and Mislin, Ǌǈǉǈ).

In repeated TGs, studies report an increase of trust over time when the trustee has proven
to be trustworthy. ĉe theory is rather intuitive: people are more likely to trust someone that
was proven reliable than someone who has the potential to betray them. In “TG terms”, the
best predictor of whether a person will place trust in their partner in a given round is whether
or not this partner previously reciprocated trust. However, if someone betrays us thenwe stop
trusting that person. ĉis process, also named a tit-for-tat strategy, has been reported to be one
equilibrium in repeated social games (Boyd, ǉǑǐǑ) ¹.

Ǌ.ǋ.ǋ NĹŊŇĵŀ ķŃŇŇĹŀĵŉĹň Ńĺ ŉŇŊňŉ ĵłĸ ŉŇŊňŉŌŃŇŉļĽłĹňň

Having proved its usefulness and explicability, the Trust Game has been recently employed
in fMRI seĨings investigating the neural bases of trust (King-Casas et al., ǊǈǈǍ), cooperation
(Decety, Jackson, Sommerville, Chaminade, andMeltzoff, Ǌǈǈǌ) and reciprocity (Phan et al.,
Ǌǈǉǈ; Krueger et al., ǊǈǈǏ). Most of these fMRI studies have reported that BOLD signal in
the medial prefrontal cortex (mPFC) was higher when participants were interacting with a
human counterpart compare to a computer (McCabe et al., Ǌǈǈǉ; Rilling et al., ǊǈǈǊ), and
when participants decided to trust compare to when they decided not to trust (McCabe et al.,
Ǌǈǈǉ; Krueger et al., ǊǈǈǏ; Phan et al., Ǌǈǉǈ; Delgado et al., ǊǈǈǍ; King-Casas et al., ǊǈǈǍ).
Hence, it has been proposed that decisions to trust are associated with high activation in the
prefrontal cortex.

ĉe literature has also reported that the dorsal striatum (caudate nucleus) plays a role in sig-
naling the magnitude of an observed social reward (positive and negative) (Knutson, Adams,
Fong, and Hommer, Ǌǈǈǉ). Rilling et al (ǊǈǈǊ) showed that activation in the striatum corre-
lates with positive or aversive interactions in a Prisoners Dilemma Game (Rilling et al., ǊǈǈǊ;
Rilling, Sanfey, Aronson, Nystrom, and Cohen, Ǌǈǈǌ) and predicts behavioral reciprocity for
mutual gain (Rilling, King-Casas, and Sanfey, Ǌǈǈǐ). In another series of studies, activation
of the dorsal striatum also differentiated between positive and negative outcomes in repeated
TG (Delgado et al., ǊǈǈǍ; Stanley, Sokol-Hessner, Fareri, Perino, Delgado, Banaji, and Phelps,
ǊǈǉǊ). Additionally, Krueger and colleagues (ǊǈǈǏ) reported that the calculation of rewards
is associated with activation in the dorsal striatum (Krueger et al., ǊǈǈǏ). ĉerefore, decision

¹In ėnancial aspect, learning to trust allows the trustor to maximize his net payoff.
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to trust or not appears to be the consequences of observations leading to activations in the
caudate nucleus.

In other studies where participants were receiving fair and unfair treatments (during Ul-
timatum Games), authors found activation in the insular cortex (Sanfey, Rilling, Aronson,
Nystrom, and Cohen, Ǌǈǈǋ; Tabibnia, Satpute, and Lieberman, Ǌǈǈǐ). ĉese ėnding are sup-
ported by recent studies which report that untrustworthiness was associated with enhaced
activations the insula, anterior cingulate cortex and caudate (Chang and Sanfey, ǊǈǈǑ; Stan-
ley et al., ǊǈǉǊ). It has therefore been suggested that these brains areas play a role in signaling
personal norm violations (King-Casas et al., ǊǈǈǍ) and signaling positive and negative aspects
of social exchanges.

However, while this paĨern of activity is in linewith awide range of studies, KingCasas and
his colleagues (ǊǈǈǍ) were the ėrst to ėnd that these regions were computing social predic-
tion error, theoretically responsible for triggering social learning on the bases of trial-to-trial
reward-learning (Balleine, ǊǈǈǍ; Daw et al., ǊǈǈǍ). Because this study was pivot in the ėeld,
the next paragraphs is dedicated to their experimental paradigm and their results.

Authors of this important study asked ǌǐ pairs of participants to play the TG repeatedly
against each other for ǊǍ rounds while their neuronal activities were recorded by two simul-
taneous fMRI acquisitions (hyperscanning techniques as described in ėgure Ǌ.ǋ.Ǌ). ĉe two
participants were assigned randomly to play as trustor or trustee and then keep their role for
the entire scanning session.

Figure Ǌ.ǋ.Ǌ: Hypersacnning of the Trust Game. Hyperscanning is a new fMRI acquisitionmethod
where two or more participants interact with each other while being scanned in different MRI scan-
ners.
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First, in order to categorize playermoves, the authors speciėed three categories: (ǉ) benev-
olent reciprocity, where the trustor gave a generous amount despite a decrease in repayment
by the trustee, (Ǌ) malevolent reciprocity, where the trustor invested a lower amount aěer an
increase in repayment by the trustee and ėnally (ǋ) neutral reciprocity, where there was no
change in investment and repayment moves. ĉe corresponding analysis revealed differen-
tial BOLD activities in brain regions of trustors that encountered a benevolent or malevolent
trustee reciprocity behavior compared to neutral reciprocity behavior. ĉese results suggest
that there is a unique response to deviations in the expected behavior of one’s partner, partic-
ularly in the caudate nucleus, the inferior frontal sulcus, the superior frontal sulcus, the thala-
mus, and the inferior/superior colliculli.

Second, in order to compare the neural responses in dorsal striatumwhen trustees showed
benevolent ormalevolent behaviors, the authors performed region-of-interest (ROI) analyses
and revealed that theBOLDsignal in the striatal voxels correlatedwith the trustee’s subsequent
decision to be trustworthy. Indeed, the trust expressed by the trustor was found to predict the
future changes in trustworthiness expressed by the trustee (King-Casas et al., ǊǈǈǍ).

Last andmost importantly, cross correlation analyseswere performed in the trustor’s dorsal
striatum in order to ėnd if participants learnt to trust (or not) their partners as the game pro-
gressed. Consequently, changes in the striatum were examined across early, middle, and late
rounds (see ėgure Ǌ.ǋ.ǋ) using cross-brain and within-brain correlational analysis. ĉe au-
thors found that early caudate’s response to trustworthy behavior, at time of outcome, shiěed
to the time of the decision, relating for the ėrst time to the shiě of reward prediction errors
common to model-ěee RL systems, but in the context of a social exchange.

ĉis pivotal study gave rise to the currently held view that the reward circuitry computes ef-
ėciently reward-harvesting problems in a way similar to model-ěee RL algorithms. ĉis fMRI
study was the ėrst of a series conėrming that the dorsal striatum is processing outcomes infor-
mation (de Quervain, Fischbacher, Treyer, Schellhammer, Schnyder, Buck, and Fehr, Ǌǈǈǌ;
Kable andGlimcher, ǊǈǈǏ) inorder to learn andadapt choices through trial anderrors (Schön-
berg, Daw, Joel, and O’Doherty, ǊǈǈǏ).

Finally, other studies using fMRI in clinical patients also found that, along with other sub-
cortical areas, the amygdala and midbrain areas that are involved in the processing of fear,
menace, risk and social betrayal, play an important role in the decision to trust. ĉe amygdala
has been found to be involved in avoiding social presence and agoraphobia (Adolphs, Tranel,
and Damasio, ǉǑǑǐ) and its activity also increases when seeing untrustworthy faces (Engell,
Haxby, and Todorov, ǊǈǈǏ). A decrease in amygdala activation has also been found to be re-
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Figure Ǌ.ǋ.ǋ: Activation of the striatum when reciprocal behavior is revealed. A. Trust game played
simultaneously between two players while recording their brain activities. B. Schematic of authors
reports: they segregated BOLD responses in response to the revelation of the decision to trust (time
= ǈ s). Hemodynamic amplitudes increase when ėrst trust is revealed. As the game progressed (mid-
dle and boĨom), the peak of this differentiated response underwent a temporal transfer from a time
aěer the revelation of the investor’s decision (t = ǉǌ s; an anticipatory signal). C. ROI were per-
formed in the head caudate of the trustee and revealed activity in the striatum.

sponsible for hyper-sociability (Evans, Wright, Wedig, Gold, Pollack, and Rauch, Ǌǈǈǐ). Ad-
ditional clinical investigations have linked bilateral damage in the amygdala with the inability
to judge the trustworthiness of peoples’ faces. People suffering from these lesions showed a
propensity to judge others as either good or bad, with no gradient in between (Öhman, ǊǈǈǊ).

Ǌ.ǌ TļĹ ļŊŁĵł ķĵńĵķĽŉŏ ŉŃ ŉŇĵķĿ ńŇĽŃŇň ĵłĸ ňŃķĽĵŀ ķŊĹň

Trial and error is not the only method for learning predictability. Indeed, experiments in psy-
chology have proven that trustworthiness can be quickly inferred from information not di-
rectly related to the interaction, and can also affect behavior in the Trust Game. ĉus, deci-
sionmakers assimilate advice or relevant social cues that discount feedback from interpersonal
history as information to guide their decisions (Biele et al., Ǌǈǉǉ). Humans also infer beliefs
about others from prior information or social cues. Perceptions of moral character are suffi-
cient to modulate the dorsal striatum during the decision and the outcome phases of a trust
game (Delgado et al., ǊǈǈǍ). In this study, participantswere presentedwith descriptions of life
events showing exemplary, neutral, or suspicious moral character of their hypothetical coun-
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terparts in the repeated TR. Results showed differential activations in the striatum between
positive and negative feedback, as well as between no-trust and trust decisions with the “neu-
tral” partner. No differential activity was observed for the “good” partner despite experimen-
tal manipulations to ensure that neutral and good partners responded in the same way. ĉese
ėndings suggest that prior information can diminish the reliance on brain structures, such as
the dorsal striatum, that are important for behavioral adaptations to feedback information.
ĉese brain structures are also of interest to our experiment as the subjects may feel the need
to adjust their behaviors following inconsistent outcomes. ĉerefore, if prior information di-
minishes the behavioral adaptation to this feedback, such an effect might be modulated by a
diminished reliance on brain structures involved in behavioral adaptation.

Not only humans use information about moral character (Delgado et al., ǊǈǈǍ), but also
group membership and ethnicity (Stanley et al., ǊǈǉǊ) to judge trustworthiness. Even more
subtly, facial expressions processed outside of conscious awareness (Morris, Frith, PerreĨ,
Rowland, Young, Calder, and Dolan, ǉǑǑǎ), smiling (Centorrino, Djemai, Hopfensitz, Milin-
ski, and Seabright, Ǌǈǉǉ), body posture (Ekman, ǉǑǑǊ) or aĨractiveness could be enough in-
formation to infer a person’s trustworthiness before any direct exchange. Other studies re-
port that competence judgments about an individual can be made within ǉǈǈ ms (Willis and
Todorov, Ǌǈǈǎ) and affective judgments about an individual can be made as quickly as ǉǎǈ
ms (Pizzagalli, Lehmann,Hendrick, Regard, Pascual-Marqui, andDavidson, ǊǈǈǊ). ĉe pres-
enceof relevant cues is thought to correlatewith activationof thedorsolateral prefrontal cortex
(Delgado et al., ǊǈǈǍ; Li, Delgado, andPhelps, Ǌǈǉǉ), a region responsible for emotion regula-
tion and cognitive control. Priors unrelated to direct interpersonal evidence affect initial belief
andhave a sustaining effect on aperson’s learningmechanism. A recent neuroeconomics study
(Chang et al., Ǌǈǉǈ) investigating how initial judgment can affect trust also reported that the
implicit assessment of facial traits can predict the amount of monetary risk that a trustor is
willing to take in a TG. Indeed, in one-shot TG, pre-ratings of trustee’s facial trustworthiness
predicted the ėnancial amount trustors were willing to invest in them.

Additionally, another study also found that following the advice of third-party alters the
BOLD responses in the reward system with an increase of activity in the septal area and the
leě caudate (HC) when the advice is followed (Biele et al., Ǌǈǉǉ).

Finally, relying on someone else’s trustworthiness involves uncertainty about the poten-
tial risk of betrayal (Pavlou and Gefen, ǊǈǈǍ). A recent meta-analysis of studies of decision-
making under uncertainty has reported the vlPFC, vmPFC and OFC cortices to be the pri-
mary areas for processing uncertainty (Krain, Wilson, Arbuckle, Castellanos, and Milham,
Ǌǈǈǎ). In one study, it has been found that the activation in these areas increases inmagnitude
with higher levels of uncertainty (HueĨel, Song, andMcCarthy, ǊǈǈǍ), whereas other studies
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reported that the OFC cortex can distinguish among different uncertainty levels (Hsu, BhaĨ,
Adolphs, Tranel, andCamerer, ǊǈǈǍ; Gonzalez, Dana, Koshino, and Just, ǊǈǈǍ). ĉus, higher
degree of uncertainty, for example at the beginning of an exchange with an anonymous part-
ner, is hypothesized tobe associatedwith ahigher activation in theprefrontal andorbitofrontal
cortices.
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ĉe creator of the universe works in mysterious ways. But he
uses a base ten counting system and likes round numbers.

ScoĨ Adams

3
Behavioral and computational evidences

ǋ.ǉ MŃŉĽŋĵŉĽŃł

PŇĹŋĽŃŊň ňŉŊĸĽĹň Ľł NĹŊŇŃĹķŃłŃŁĽķň have started to investigate the cognitive and neu-
ral processes underpinning human cooperation and trust. Several factors, including available
prior information and personal history have been proven to affect people’s propensity to trust
in subsequent interactions. However, very few studies have been focusing on the interaction
between these two factors during direct exchanges. Our ėrst aim in this chapter is to present
how reputational priors interact with experienced trustworthiness in a repeated Trust Game
(RTG). We made the following hypotheses: (ǉ) available prior information on the reputa-
tion of others and direct evidence reliably inĚuence decision to trust, (Ǌ) these two types of
information happen independently and synergistically when reputational prior are provided,
and (ǋ) reinforcement learning (RL) models can be used to test whether trustworthiness are
based on reputational priors, probability of reciprocation or their interaction. ĉis ėrst study
aims at providing a novel quantitative framework that theorizes trust and reputation during
social exchange.
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ǋ.ǉ.ǉ RĹĽłĺŃŇķĹŁĹłŉ ŀĹĵŇłĽłĻ ĺŇĵŁĹŌŃŇĿ

Because of its simplicity, not only the RL paradigm is a robust way to investigate how humans
learn from feedback, but this framework also allows us to probe how social signals from dif-
ferent sources affect learning during repeated interactions. In this ėrst study, our goal is to
use RL algorithms to investigate adaptive social learning during RTGs and to propose new
insights into the processes underpinning adaptive social decisionmaking. Despite the impor-
tance of trust and reputation, no studies to date, have aĨempted to confront the two situations
(decision to trust with or without reputation information) and relatively few studies have ana-
lyzed social learningwith anRLperspective (Behrens,Hunt,Woolrich, andRushworth, Ǌǈǈǐ;
King-Casas et al., ǊǈǈǍ; Chang et al., Ǌǈǉǈ).

Nevertheless, using non-social learning tasks, some recent studies have applied computa-
tional models to investigate whether advice provided by a third party would impact learning
mechanisms (Biele, Rieskamp, and Gonzalez, ǊǈǈǑ; Biele et al., Ǌǈǉǉ). In these experimental
seĨings, participants received instructions, also named advice, from either other participants
or the experimenter, about the best decision tomake. In these presented experiments, authors
have shown that social prior impacts probabilistic-learning mechanisms and leads to learning
bias, (e.g. correct information guides participants toward good decision-making while incor-
rect information damages learning). In a ėrst paper, Biele et al. found evidence supporting
the notion that an “Outcome-bonus” RL model best ėts the behavioral data compare to any
other RL models. ĉis model proposes that outcomes consistent with an advice will be grati-
ėed a learning “bonus” while outcomes inconsistent with advice would be disregarded (Biele
et al., Ǌǈǉǉ). In another paper, Doll et al. (ǊǈǈǑ) suggest that the model explaining more of
the variance in behavioral data initializes the value of decisions that were recommended with
a greater starting value. ĉus, the decision value would be reduced in case of inconsistent out-
comeswhile ampliėed in case of consistent outcomes (Doll et al., ǊǈǈǑ). Taken together, these
studies propose that information transmiĨed from a third party inĚuences both initial judg-
ment and thewaypeoplewould learn from feedback. According to these ėndings, reputational
priors consistent with outcomes would be weighted higher and lead to a more important up-
date while reputational prior inconsistent with outcomes would be weighted less. However,
no study to date has examined how reputation information impacts learning in an interactive
social scenario.

ǋǈ



ǋ.ǉ.Ǌ HŏńŃŉļĹňĽň

In the present study, we investigated how explicit reputational priors interact with observed
level of trustworthiness (i.e. the probability of reciprocation of a given counterpart) in a sim-
pliėed version of the RTG. We hypothesized that reputational priors inĚuence initial social
risk-taking in an economical exchange (Delgado et al., ǊǈǈǍ;Dominic S Fareri, Luke J. Chang,
and Mauricio R. Delgado, ǊǈǉǊ; Stanley et al., ǊǈǉǊ). Secondly, we predicted that observa-
tions from direct-based interactions also impact on behavior (Axelrod and Hamilton, ǉǑǐǉ;
King-Casas et al., ǊǈǈǍ). Lastly, and most importantly, we expected that these two signals,
reputational priors and observed reciprocity, would interact in the learning process.

We thus analyzed behavioural data of participants playing the repeated version of the TG at
two time points: at time of choice and at time of outcome and used RLmodels to assess three
different hypotheses - (ǉ) Initial decision to trust would be biased by priors, - (Ǌ) the trust-
worthiness belief about counterparts would be updated according to direct feedback, and -
(ǋ) participants would have a dynamic representation of the environment. We used differ-
ent RL models dealing differently with the initial values of decision to trust and the way out-
comes are updated. We expected that eventually the twoprocesses could coexist: initial values
can be overridden by the participant’s real observations (i.e. whether or not the counterpart
was trustworthy or not during exchanges). For example, among all models that we tested,
the “Outcome-Bonus” model suggests that initial reputational priors would inĚuence the way
outcomes are updated during interactions. ĉis model also implies that initial expectations
bias learning in its direction (a reputation for being cooperative adds weight to a reciproca-
tive move and would disregard violation of trust). Another RL model, the Prior-Expectation
model suggests that information about other’s reputationwould be used as an initial belief that
would be progressively dominated by experience. Inside theRL paradigm, we proposed a new
hybrid model which ėrst predicts that reputation information is used to initialize trustwor-
thiness belief and then is dynamically updated on the basis of observed trustworthiness: the
Adaptive-Belief model. ĉus, the reputational prior inĚuences both expectations and learn-
ingmechanisms. By operationalizing the potential cognitivemechanisms involved in decision
to trust and reputation via several RL models, this ėrst study aim was to increase our under-
standing of how reputation priors and learning to trustmechanism interact in social economic
exchanges.

ǋǉ



ǋ.Ǌ EŎńĹŇĽŁĹłŉĵŀ DĹňĽĻł ĵłĸ TĵňĿ

ǋ.Ǌ.ǉ TĵňĿ

Participants played a simpliėed version of the RTG in the role of the investor as described
in the introduction. We employed a Ǌ by Ǌ within-participants experimental design in which
the counterpart’s type of reputation (unknown or known) was crossed with the counterpart’s
likelihood for reciprocity (high or low). Each counterpart represented one of the four exper-
imental conditions. Level of reputation was assessed with the Social Valuation Orientation
(SVO) task: an independent pro-social questionnaire (See description below).

Participants played a simpliėed version of the RTG in the role of the investor (or trustor)
as described in the introduction. Each trial lasted ǉǉ seconds and began with a short ėxation
cross (ǈ.Ǎ second) followed by a picture of the counterpart (ǋ.Ǎ seconds). Participants then
decided to trust or not the counterpart by pressing “keep” or “share”. Aěer submiĨing their
investment, counterpart’s decision was computed and the outcome of the gamewas displayed
in the screen and the trial (as well as the TG stage) ended. If the participant did not submit an
offer in time (in a windows of Ǌ seconds), a message was displayed, telling that they have lost
the trial (See ėgure ǋ.Ǌ.ǉ).

Wedeėned the counterpart’s likelihood for reciprocity as ahigh (ǐǈƻ)or a low(Ǌǈƻ)prob-
ability of reciprocation. ĉe money ėrst allocated to the participant was ǉ euro. If invested by
the participant, this ėrst endowment was multiplied by a factor of ǋ. If an offer was recipro-
cated, counterpart always reciprocated Ǎǈƻ of the total multiplied amount sent by the trustor.
When trust was not replaced, the counterpart kept all the multiplied amount of money. Par-
ticipants played ǉǈ randomly interspersed rounds with each counterpart (ǌǈǈ trials total).

ĉepictures for thehumancounterpartswere collected fromtheFERETprogram(Phillips,
Moon, Rizvi, and Rauss, Ǌǈǈǈ). ĉe words “trust” or “trustworthy” were never mentioned .
For each participant the condition in which the prior was provided and the one in which it
was not were randomly assigned to an experienced trustworthiness condition (high vs. low).
ĉe four cells were balanced across participants, ηƦ(Ƨ) = Ƥ.Ʃƫ, p = Ƥ.ƭƧ. All stimuli were
presented on a laptop via Presentation soěware (Neurobs inc.).

ǋǊ



Figure ǋ.Ǌ.ǉ: Partners were introduced by seeing the picture of their counterpart for ǋ.Ǎ sec. ĉen,
theymade sequential decisions as ėrst mover (trustor) presented in a binary way: ”Share” or ”Keep”.
ĉey can choose to keep and quit the game with its initial endowment or can choose to share and
continue the game. ĉechoice of the secondmover is then computedwhile amessage is displayed on
the screen “ Wait for counterpart response” and the feedback of the game is displayed on the screen
for both players (ǋ sec).

ǋ.Ǌ.Ǌ PĵŇŉĽķĽńĵłŉň

A total of ėěy-four healthy graduate studentswere recruited from theUniversity of Lyon ǉ and
Ǌ, France (ǊǑ females). ĉey all had previously joined the recruitment system on a voluntary
basis and were recruited via an online annoncement in which they were screened to exclude
any with a history of psychiatric or neurological disorders. Two participants were excluded
from the data aěer indicating that they did not understand the experiment. We report results
from ėěy-two participants (ǊǑ girls, Mean age = ǉǑ.Ǎǎ SD± Ǌ.ǉǏ). ĉese participants gave
wriĨen informed consent for the project which was approved by the French National Ethical
CommiĨee.

ǋ.Ǌ.ǋ SŃķĽĵŀ VĵŀŊĹ OŇĽĹłŉĵŉĽŃł

We instilled reputational priors byproviding a cue (triangle andcircle)during thepresentation
of counterparts in the task. Participants were told that these priors indicated the counterparts’
scores on the Social Value Orientation (SVO) measure (See ėgure ǋ.Ǌ.Ǌ).
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Figure ǋ.Ǌ.Ǌ: ĉe value orientation ring. Individuals with vectors lying between ǎǏ.Ǎ and ǉǉǊ.Ǎ
degrees are altruistic, with vectors between ǊǊ.Ǎ and ǎǏ.Ǎ degrees are cooperative, with vectors be-
tween -ǊǊ.Ǎ and ǊǊ.Ǎ are individualistic, with vectors lying between -ǎǏ.Ǎ and -ǊǊ.Ǎ are competitive
and with vectors between -ǉǉǊ.Ǎ and -ǎǏ.Ǎ are aggressive.

ĉe SVO task is a well-established questionnaire in social psychology (Van Lange, ǉǑǑǑ)
that distinguishes between different types of SVO (among all are the cooperative and indi-
vidualistic type). ĉe main difference between each category is the extent to which one cares
about own payoffs and that of the other in social dilemma situation. In our study we used re-
sponsesof ėctive counterpartsmatching theproėles of cooperative and individualistic persons
which was reĚected by two probabilistic way of reciprocating during the game. Cooperative
counterparts show a probability of reciprocation = ǐǈƻ whereas individualistic counterparts
show a probability of reciprocation = Ǌǈƻ.

ǋ.Ǌ.ǌ EŎńĹŇĽŁĹłŉĵŀ SĹŉŊń

Each experimental session lasted ǌǈǈ trials. Participants sat in the behavioral room and played
on a computer. ĉey were told that all the responses of the second players were recorded and
replayed dynamically as the game progressed. ĉey were also told that their own gain would
depend on their decisions and on the decisions of the others. In each trial, participants chose
to share or keep their allocated money (ǉ euro). At the end of the experiment, ǉǈ random
trials were extracted from the data and given to the participant ¹.

¹ĉis manipulation ensures that each trials are equally motivating for the participants.
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ǋ.Ǌ.Ǎ SŉĵŉĽňŉĽķĵŀ ĵłĵŀŏňĽň

All analyses were performed with the statistical soěware package Stata, (College Station, TX,
Release Ǒ/SE). A test for normalitywas performed to verify that datawas normally distributed
(Shapiro-Wilk).

ǋ.ǋ RLMŃĸĹŀĽłĻ

ǋ.ǋ.ǉ AķŉĽŃł ňĹŀĹķŉĽŃł

To test whether our behavioural data reĚected RL processes, we examined responses of dif-
ferent computational RL models. All models made use of a reward prediction error (RPE)
values to update beliefs associated with each choice (share or keep) that determine the prob-
ability to make the decision with the maximum value (Schultz et al., ǉǑǑǏ; Egelman, Person,
and Montague, ǉǑǑǐ; Holroyd and Coles, ǊǈǈǊ; Schultz, Ǌǈǈǌ; Montague and Berns, ǊǈǈǊ).
For example, a negative outcome of the game generated a negative RPEwhich was used to de-
crease the value of the chosen decision option (e.g., to keep or share with a given participant),
making the model less likely to opt for the same decision on the following trial.

Precisely, the probability P of deciding to share on trial t is the logit transform of the differ-
ence in the value Vt associated with each decision, computed with a Soěmax policy function
(SuĨon and Barto, ǉǑǐǉ; Montague, Hyman, and Cohen, Ǌǈǈǌ):

P(share)t =
exp(

V(share)t
τ )

exp(
V(share)t

τ ) + exp(
V(keep)t

τ )
(ǋ.ǉ)

where the action valueV(share)t corresponds to the expected reward of sharing and τ is called a
exploration parameter. For high exploration values (τ → ∞) all actions have nearly the same
probability (and the model would select an action randomly) and for low exploration values
(i.e., τ → Ƥ+) the probability of the action with the highest value tends to ǉ.

ǋ.ǋ.Ǌ MŃĸĹŀ-ĺŇĹĹ ĵłĸ ŁŃĸĹŀ-ĶĵňĹĸ RL

ĉeprobabilities of reciprocation had to be learned through the experiment. ĉereforewe de-
cided to run several model-based RL algorithms that givemore Ěexibility to the reputation in-
formation or to the observed trustworthiness. We compared the performance of several com-
putational RL models when ėĨing estimates of the models with the participants’ behavioral
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responses. We chose the following six models and their legitimate combinations according to
various hypotheses on the role of priors, learning rates, outcome update and their interactions
for two main reasons: (ǉ) All these RL models have hypothesized neurobiological signatures
(Montague et al., Ǌǈǈǌ), and thus allow experimental predictions suitable for neuroscience
studies; (Ǌ) All parametric changes are appropriate economics variable that account for hu-
man variability in uncertain situation.

BĵňĹŀĽłĹ ŁŃĸĹŀ: ŃŅĺĻł-ļŉĻĻ RL

ĉe ėrst model implemented is the classical TD learning (For more details, see Chapter ǉ,
Boxǉ). In short, if we tease apart how rewards anddecisionpolicies are learned, then the value
of the decision is equivalent to the immediate reward plus the discount value of future rewards
(that are the direct consequences of the probability function deėned in section ǋ.ǋ.ǉ). One
way to compute this sum of discounted future rewards is to sample the future rewards in a
recursive way (Bellman equation)¹. ĉus, the value of a current decision is deėned as:

Vt = Rt + λ.Vt+ƥ (ǋ.Ǌ)

where Rt is the current reward, Vt+ƥ is the next future decision value (that I also named state’s
value in theChapters ǉ and Ǌ) and λ is the discount parameter. ĉus, decisions values can be
implemented directly with an update rule such as:

Vt+ƥ = Vt + α[Rt + λ.Vt+ƥ − Vt] (ǋ.ǋ)

or more simply, if δt is the prediction error such that: δt = Rt + λ.Vt+ƥ − Vt, then:

Vt+ƥ = Vt + α.δt (ǋ.ǌ)

which corresponds to the classical TD rule where α is the learning rate.

Note that, in the equation, there is no temporal discounting between the decision and the
feedback. In this task, it wouldnotmake sense to discount values of action from the timeof the
decision until the time of the feedback, because we ėxed the time-window between the two
events at ǋ.Ǎ seconds and because the outcomes unambiguously resulted from the preceding
decision. However, the model discounts weights from previous and future trials rather than

¹Knowing a priori all states and decisions that will be made in the future requires a precise model of state
Ěow (including future decisions) and tracing all possible future branches is computationally intensive, time
consuming and does not match with the complexity of real environments.

ǋǎ



discounting the action value before receiving the feedback, in line with other studies (Barra-
clough, Conroy, and Lee, Ǌǈǈǌ; Cohen, Ǌǈǈǎ; Cohen and Ranganath, ǊǈǈǏ).

GĵĽł LŃňň ŁŃĸĹŀ

ĉe “Gain and losses”model is based on evidence supporting the Prospectĉeory which rep-
resents an important achievement in behavioral Economics and studies of decision-making
under uncertainty (Tversky and Kahneman, ǉǑǏǑ). ĉese authors demonstrated how people
underweight feedbacks that aremerelyprobable as comparewith certain feedbacks. Evidences
supporting this theory have also demonstrated that decision values are differentially assigned
to gains and losses as compare with ėnal rewards. In short, the authors found that people pre-
fer avoiding losses as compared to obtaining gains of the samemagnitude. ĉus, we propose to
test a secondRLmodel that is an extension of theTD learning but that alsoweights differently
subjective utility representing losses and gains. Speciėcally, our second model differentially
updated gains and losses via separate learning rates (Doll et al., ǊǈǈǑ; Chang et al., Ǌǈǉǈ). ĉis
model computes a predicted value for the next trial for each decision (share or keep) based on
the experienced outcome such as:

Vt + ƥ = Vt + αG.δGt + αL.δLt (ǋ.Ǎ)

where αG is the amount that a positive outcome is weighted and αL is the amount that a neg-
ative outcome is weighted in the update (Ƥ < α < ƥ). ĉis allows people to learn from
losses in a different way than gains. We assumed this particular feature to be of particularly
importance in a social task. Indeed, evidences show that sensitivity to social gains and losses
motivate participants differently than in individual contexts (Bault, Coricelli, and Rustichini,
Ǌǈǈǐ). Other ėndings reveal that participants are more willing to switch their behaviors aěer
violation of trust (Bohnet and Zeckhauser, Ǌǈǈǋ) rather than unexpected benevolent move.
For thismodel in particular, we chose to set the initial valueVƤ for all conditions to the average
amount sent by the participants on the ėrst trial of the game (mean = ǉ.ǍǊ euros).

PŇĽŃŇ ĹŎńĹķŉĵŉĽŃł ŁŃĸĹŀ

ĉe following models where inspired by the “Novelty-bonus” model introduced by Dayan in
ǊǈǈǊ (Kakade and Dayan, ǊǈǈǊ). ĉese models, the simple Prior-Expectation model and the
Prior-Decaymodel, both initialize the initial values of the classical TD learningmodel accord-
ing to the nature of the prior information. In this task, the Prior-Expectation model assumes
that, when reputation priors are provided, participants have “optimistic” or “pessimistic” ex-
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pectations, at the beginning of the game due to the presence of a positive (P+) or negative
Prior (P−), respectively (Biele et al., ǊǈǈǑ, Ǌǈǉǉ; WiĨmann et al., Ǌǈǈǐ). ĉus, the values
of initial choices when playing with a Cooperative or Individualistic counterpart in the prior
condition were formally deėned as:

VPrior+
(C,Ƥ) = gP+.μθPrior+.N (ǋ.ǎ)

VPrior−
(C,Ƥ) = gP−.μθPrior−.N (ǋ.Ǐ)

where gP+ and gP− are equal to ǉ when playing with a counterpart with a positive or negative
prior, respectively; and ǈ otherwise. θP+ and θP− are free parameters capturing the optimistic
or pessimistic impact of the priors expectation, μ is the expected payoff from choosing ran-
domly among all options, which serves as a normalization constant and N is the number of
trials experienced in the learning condition, which is a scaling factor, allowing for the compar-
ison between an expected decision value and the outcome of the decision. On the other hand,
in the no prior condition, only one parameter weighted the initial expected value of choices,
VNP
(C,Ƥ). ĉe Prior-Expectation model predicts that the reputational prior will only influence

the initial expectations and will have no effect on the update function.

PŇĽŃŇ-DĹķĵŏ ŁŃĸĹŀ

An alternative hypothesis, the Prior-Decay model is that reputational prior influences initial
trustworthiness belief, but then becomes less important with growing evidence when play-
ing with a counterpart. ĉis is a different test of the Prior-Expectation hypothesis because it
predicts that the reputational prior will influence the update from the beginning of the inter-
actions and not just inĚuence the initial value itself. ĉis model inĚuences the decision values
as a function of time by ρ and is computed such that:

Vt + ƥ = Vt + α.δt + e−ρ.V(C,Ƥ)t (ǋ.ǐ)

where Ƥ < ρ < ƥ. ĉismodel shares some assumptionswith theOutcome-Bonus for the early
period of the interactions, but exponentially reduces the inĚuence of the positive and negative
prior expectation over time. ĉe Prior-Decay model tests the Prior-Expectation hypothesis
seen earlier andpredicts that reputational priorswill provide a ėrst estimate of an counterpart’s
level of trustworthiness, butwill eventually be overwhelmbyobserved trustworthiness, in line
with previous studies (Chang et al., Ǌǈǉǈ).
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OŊŉķŃŁĹ-BŃłŊň ŁŃĸĹŀ

ĉe “Outcome-Bonus” Model, also named the Conėrmation-Bias model (Friedrich, ǉǑǑǋ)
was ėrst proposed to account for prior information that do not necessarily inĚuence initial
decision values but rather impact on the way decision values are updated. ĉismodel is based
on previous research that has examined the effect of explicit information provided by a third
party (such as advice, information of moral character or facial expression) on learning tasks
(Biele et al., ǊǈǈǑ, Ǌǈǉǉ; WiĨmann et al., Ǌǈǈǐ; Doll et al., ǊǈǈǑ; Chang et al., Ǌǈǉǈ; Doll,
Hutchison, and Frank, Ǌǈǉǉ). ĉese studies have proposed models that give a higher weight
to feedback that is consistentwith the given information, and a lowerweight to feedback that is
inconsistent with the transmiĨed information. To examine this hypothesis we tested a model
that is similar to Biele and colleagues (Ǌǈǉǉ) implementing a stochastic prediction error δ
computed across conditions such as:

δPt = rt − VCt + gP.μ.θv (ǋ.Ǒ)

where gP is a dummy function that takes the value ǉ if option C corresponds to the one sug-
gested by a Prior and ǈ otherwise, θv is a free parameter capturing the level of reputational
prior inĚuence and μ is the expected payoff from choosing randomly among all options that
serves as a normalization constant (in our case μ = ƥ).

AĸĵńŉĽŋĹ-BĹŀĽĹĺ ŁŃĸĹŀ

Ourėnal hypothesis is basedonanewmodel that takespropositions fromthePrior-Expectation
and the Outcome-Bonus models. ĉe Adaptive-Belief model also uses reputational prior as a
bonus in the update function, but rather than being a constant value based on the initial belief
like the Outcome-Bonus and Prior-Decay models, it dynamically changes over time based on
the experienced probability of reciprocation. ĉis implies that the Adaptive-Belief model can
induce the trustworthiness beliefP(t,TW) froma reputation signal for each counterpart andwill
interpret this information as a bonus or deduction in the update function. We formally define
this new model as:

T(Ƥ,TW+) = gPrior+.μθPrior+.N (ǋ.ǉǈ)

T(Ƥ,TW−) = gPrior−.μθPrior−.N (ǋ.ǉǉ)
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T(t+ƥ,TW) = T(t,TW) + β.[υt − T(t,TW)] (ǋ.ǉǊ)

Vt + ƥ = Vt + α.δt + θ[T(t+ƥ,TW+) − T(t+ƥ,TW−)] (ǋ.ǉǋ)

where β is the learning rate of the trustworthiness belief and θ is a free parameter representing
how much the learning bonus inĚuences the decision value update. P is initialized as in the
Prior-Expectation model: gP.μθP.N and depends on the nature of the reputational prior, if
available. In equation ǋ.ǉǊ, we set the value of υ as ǉ if the counterpart is trustworthy or ǈ if
the counterpart violates trust.

ĉus, the Adaptive-Belief model dynamically assesses the level of trustworthiness of each
counterpart by using the reputational prior and rewarding a bonus proportional to the experi-
enced level of reciprocation or alternatively by subtracting a proportional value if the counter-
part violates trust. ĉis model is different from the Outcome-Bonus model because violation
of trust by a counterpart who has a bad reputation implies a smaller deduction to the update
function. Indeed, the Adaptive-Belief allows prior reputation to influence the update function
similarly than the Outcome-Bonus model but it also allows feedback to modify the trustwor-
thiness beliefs. Since this new model captures the experienced level of reciprocity of each
counterpart, it can also be used to assess participant’s sensitivity to trust.

ǋ.ǌ MŃĸĹŀ ĹŋĵŀŊĵŉĽŃł

To estimate the ėtness of all our models, we run a cross-validation technique which involves
using half of the original data set as the validation data, and the remaining observations as
the training data. ĉis method considerably reduces over-ėĨing issues as well as it provides
a convenient way to compare models of different complexity. During the ėrst (also named
training)phase, eachmodelwas compared to theparticipant’s actual behavioral byminimizing
the sum of the squared error (SSE). Free parameters were computed for the entire group of
participants. ĉen, the comparison between models was performed by extracting the most
parsimonious model. Finally, we tested the ability of each model to predict the behavioral
data in the remaining observation data (unused during the classiėcation). ĉismethod allows
to controls for the number of free parameters included in themodel when ėĨing to behavioral
data (Hampton et al., Ǌǈǈǐ).

ĉe TG investment by the participant was multiplied by a factor of ǋ and added to the
starting endowment: ǉ euro. ĉen they were divided by Ǌ because they were split equally
between both parties (when the counterpart reciprocated). ĉe participant’s outcomes thus
corresponded to Ǌ, ǉ or ǈ euro, received at the end of each trial, which allows the possibility for

ǌǈ



participants to still have a positivemonetary amount aěer at the end of a trial even when there
is negative prediction error (i.e. the counterpartwas not trustworthy but participant kept). Af-
ter each trial, a prediction error (PE) was calculated. For example, in the classical RL model,
the PE was the difference between the weighted outcome received (ǈ, ǉ or Ǌ monetary units)
and the speciėc weight for the chosen target (e.g., δƥ = Ƥ−V(share)t) in the case in which the
counterpart decided to keep aěer a decision to trust made by the participant. Free parameters
were estimated during the training step by minimizing the SSE between the observed data of
our participants and thepredicteddata from thedifferentmodels using “fminsearch” (Coleman
and Li, ǉǑǑǎ), a multivariate unconstrained nonlinear optimization algorithm implemented
in Matlab (Mathworks, Cambridge, MA).∑

(r(s)t − V(s)t)Ʀ (ǋ.ǉǌ)

where V is a decision (or a state value) value s at time t, and updated at time t + ƥ with the
functions speciėed above. ĉe parameters were estimated for the entire group of participants
because each RTG was only composed of ǉǈ trials.

ĉis manipulation implies that whereas the different models were ėt to every participant’s
individual data, the error generated when estimating the free parameters was pooled across
all participants. Indeed, this technique, when employed for individual parameter estimates,
has proven to not be stable for a small number of trials and when the collinearity between
parameters is large (which is clearly the case for some of our models)(Daw and Doya, Ǌǈǈǎ).
As a result, we found that a hierarchy of model works for individual parameter that ėts each
participant (we report themore stable group ėts). In addition, in order to reduce start location
in local minima, we used a grid search algorithm for the initial values of these parameters.

All models were compared to the ėrst model described, the baseline RL model (Equation
ǋ.ǋ), using both theAkaike InformationCriteria (AIC) and theBayesian InformationCriteria
(BIC), two statistical metrics of model-fit that differentially take into account the complexity
of the model (by penalizing differently the number of additional estimated parameters). AIC
is formally deėned as:

AIC = Ʀk + n[ln(
Ʀ.π.RSS

n
+ ƥ)] (ǋ.ǉǍ)

where k is the number of free parameters, n is the number of observations, and RSS is the
residual sum of squares (Akaike, ǉǑǏǌ). On the other hand, BIC is formally deėned as:

BIC = k.ln(n) + n[ln(
Ʀ.π.RSS

n
+ ƥ)] (ǋ.ǉǎ)
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Finally, we tested the model with the cross-validation procedure by randomly extracting half
of the samples from the observation data set that was retained as the validation samples for
testing themodel and the remaining observations were used for training. We extracted the pa-
rameters that were estimated during the training phase and used them tominimize the SSE re-
sulting from the difference between the behavioral data and the model predictions (and since
no parameters were estimated during this approach, the result of themodel-ėtnesswas not the
result of additional free parameters).

ǋ.Ǎ RĹňŊŀŉň

ǋ.Ǎ.ǉ BĹļĵŋĽŃŇĵŀ RĹňŊŀŉň

Overall, we found amain effect of the probability of reciprocationon theparticipants’ decision
to trust. Participants trusted more counterparts who reciprocated ǐǈƻ of the time (mean =
ǏǊ.ǉǎ, se± Ǎ.ǉǐ) as compared to counterparts who only reciprocated Ǌǈƻ of the time (mean
= ǋǉ.ǋǎ, se± ǋ.ǐǉ) using a repeatedmeasures ANOVA F(ǉ, Ǎǉ) = ǉǉǑ.ǉǋ, p< ǈ.ǈǈǉ, ηƦ = ǈ.ǎǎ.

Figure ǋ.Ǎ.ǉ: Overall learning in the iterated Trust Game. Note: this figure shows the mean invest-
ment amount across subjects for each trial of each condition.

ĉere was a signiėcant reputation by reciprocity interaction F(Ǌ, ǉǈǊ) = Ǎ.ǊǍ, p = ǈ.ǈǈǎ,
ηƦ = Ƥ.ƤƬ, such that participants trust more reputed cooperative counterparts that recipro-
cated ǐǈƻ of the time (mean = Ǐǐ.ǉǊ, se± ǌ.ǊǑ) and less reputed individualistic counterparts
that reciprocated Ǌǈƻ of the time (mean = ǊǍ.ǎǌ, se± ǌ.ǈǊ).
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Finally, this observed interaction was not entirely driven by a strong effect of reputation
at the beginning of the experiment. Indeed, we observed a signiėcant interaction between
reputation and probability of reciprocation on the last trial of the experimentF(Ǌ, ǉǈǊ) = ǌ.ǋǉ,
p=ǈ.ǈǊ, ηƦ =ǈ.ǈǎ, suggesting that the effect persists throughout all ǉǈ trials (Seeėgureǋ.Ǎ.ǉ).
ĉese data were log transformed to account for negative skew in the data.

We found that participantsmademoremoneywhen playing with cooperative counterparts
compared with individualistic counterparts. In ėgure ǋ.Ǎ.Ǌ, we have ploĨed for each of our
participants the average payoff of all interactions with trustees with cooperative reputation as
blue cross, and the average payoff of all interactions with trustees with individualistic reputa-
tions as green open circle. We graph the joint earning of the ǍǊ pairs in a large outer triangle
with point (ǈ,ǌ), (ǉ,ǉ), and (Ǌ,Ǌ) which indicates the set of feasible earning pairs.

Figure ǋ.Ǎ.Ǌ: Representation of trustor’s and trustee’s earnings during the trust game. Each partic-
ipants average earning playing with a certain counterpart is represented by a cross or circle. Blue
crosses are average payoff of all interactions with trustees with cooperative reputations and green
open circles are the average payoff of all interactions with trustees with individualistic reputations.
ĉe outer triangle shows the set of possible earning pairs.

ĉe triangle (ǈ,ǌ), (ǉ,ǋ), and (ǉ,ǉ) indicates the earning pairs with non-positive net re-
turns to participants, while the triangle (ǉ,ǉ), (ǉ,ǋ), and (Ǌ,Ǌ) indicates the non-negative net
returns to participants. ĉedata suggest that reputation increases the non-negative net returns
to participants and this increase is statistically signiėcant (p-value of paired t test = ƨ.ƨƥ−Ƥƭ).
Coupled with counterparts with cooperative reputation they gain more (mean = ǉ.ǌǎǐ, se±
ǈ.ǉǌǍ) than with counterparts with individualistic reputation (mean = ǈ.ǐǉǐ, se± = ǈ.ǉǋǊ)
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ǋ.Ǎ.Ǌ RL ŇĹňŊŀŉň

All the models that we used explained more variability than the baseline TD RL model (BIC
= ǏǎǋǊ; RSS = ǊǊǎǍ) resulting in best model-ėts results. In details, both the Outcome-Bonus
model (BIC=Ǐǋǎǎ; RSS=Ǌǉǋǌ) and thePrior-Expectationmodel (BIC=ǏǈǎǑ; RSS=ǊǊǈǉ)
explained beĨer the data compare to the baselinemodel (Seeėgureǋ.Ǎ.ǋ) . Finally, the Prior-
Decay model (BIC = ǎǌǋǊ; RSS = ǊǊǋǉ) and the Adaptive-Belief model (BIC = ǎǌǐǑ; RSS
= Ǌǉǋǋ) provided very good fit of all the RL models tested. ĉe one exception was the GL
Initialization model alone, which did not appear to fit the data any beĨer than the baseline
model (BIC = ǏǎǏǐ; RSS = Ǌǋǉǉ). However, once combined with the other models, the GL
model added some statistical power to some models. Indeed, the best ėt of all model is the
combination of the GL and the Adaptive-Belief model (BIC = ǎǋǉǐ; RSS = Ǌǉǌǌ).

Figure ǋ.Ǎ.ǋ: ĉis graph depicts the Baysesian Informetion Criterion for RLmodels in which every
model was fit to half of the trials and parameters were estimated for the entire group. Note: AB,
Adaptive-Belief model; GL: Gain Losses model; PD: Prior-Decay model; PE: Prior-Expectation
model; OB: Outcome-Bonus model.

ĉese ėrst results suggest that reputation priors do not just merely inĚuence ėrst impres-
sions represented by initial decision values in RL models but rather seem to impact the way
outcomes from interactions are interpreted. ĉe combined GL and Adaptive-Belief model
gathering information from the reputational prior and from the outcomes of the game in a dy-
namic fashion appeared to be the best account of the behavioral data. ĉismodel predicts that
the reputational priorwould impact both initial value and theupdate functiondifferentially for
positive and negative reputation and also accounts for the feedback to update the expectation.
Nevertheless, it is important to note that the combination of GL and Adaptive-Belief models
also results in a model that contains more free parameters compare to the others. While the
AIC and BIC metrics are standard techniques of penalizing for additional free parameters in
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Performance of the models estimated with a cross-validation procedure

BIC RSS

Baseline (model-ěee) TD learning ǏǏǊǉ ǊǋǋǊ
Gain Losses Model ǏǏǈǐ ǊǉǐǏ
Outcome Bonus Model Ǐǌǐǐ Ǌǌǋǎ
Prior-Expectation Model Ǐǉǋǋ ǊǋǌǍ
Prior-Decay Model Ǐǈǈǌ ǊǊǉǎ
Adaptive-Belief Learning ǎǍǎǎ Ǌǌǋǉ
Outcome Bonus Model with separate update for Gain Losses ǏǊǌǑ ǊǊǑǑ
Prior-Expectation Model with separate update for Gain Losses ǏǉǉǏ ǊǋǉǏ
Prior-Decay Model with separate update for Gain Losses ǎǐǉǑ ǊǉǑǐ
Adaptive-Belief Learning with separate update for Gain Losses ǎǌǑǑ ǊǊǉǑ

Table ǋ.Ǎ.ǉ: Learning best model Averaged best-ėĨing parameter estimates (across subjects) SE

theoretical model, we decided to investigate further our results by using the ėrst half of the
data to predict the remaining trials. Since no further parameters are estimated during this test,
then the results are unbiased by free parameters.

Using this rotation estimation, we found a similar hierarchy of results (See table ǋ.Ǎ.ǉ).
ĉe GL model alone gave results that are closer to baseline TD learning algorithm (BIC =
ǏǏǈǐ; RSS = ǊǉǐǏ). ĉe Outcome-Bonus model (BIC = Ǐǌǐǐ; RSS = Ǌǌǋǎ) and the Prior-
Expectation model (BIC = Ǐǉǋǋ; RSS = ǊǋǌǍ) both fit the data beĨer than the TD learning
algorithm and both the Adaptive-Belief model and the Prior-Decay model (BIC = Ǐǈǈǌ; RSS
= ǊǊǉǎ) exhibits the best fit. ĉese results provide additional evidence that reputation signal
about trustworthiness inĚuence particularly the update function, and that outcomes in turn
can update judgment.

ǋ.Ǎ.ǋ FŊŇŉļĹŇ ŇĹňŊŀŉň Ńł ĶĹňŉ RL ŁŃĸĹŀ

We tested all RL models in two different ways. In a ėrst step, we explored whether the par-
ticipants’ behavioral data ėĨed with RL mechanisms. ĉis was achieved by providing to the
model the decision’s history and experimented reinforcements (from each participant, we
used their real actions during RTGs as inputs to the models) and comparing empirical be-
havioral data to the RPE and values of the two decisions (share and keep) that the model
generated for each trial and each participant. In order to perform these analyses, we math-
ematically estimated free parameters for each participant using a maximum likelihood min-
imization function provided by Matlab fminsearch (MathWorks, Natick, MA) (Barraclough
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et al., Ǌǈǈǌ; Luce, ǊǈǈǍ; Cohen, Heller, and Ranganath, ǊǈǈǍ). ĉis algorithm uses the non-
linear, unconstrained Nelder–Mead simplex method to ėnd appropriate free values of the RL
model parameters that maximize the two probabilities to share and keep across the whole ex-
periment.

Figure ǋ.Ǎ.ǌ: Example of the simulation of one RL model based on real outcomes for the TG

In a second step, we used the resulting best model of the ėrst part to take the role of the
participants and performed the RTG against each counterpart. ĉis was done to infer the be-
havior of themodel and examine its prediction errors and decision values as it played the RTG
(for an example of one simulation, See ėgure ǋ.Ǎ.ǌ). For these analyses, we used the set αt
to ǈ.ǌ and λ to ǉ for both positive and negative feedback. To explore the similarities between
behavioral data andmodel predictions, we compute the reaction to PE (participants switch or
maintain their previous decision aěer inconsistent outcomes) as (ǉ) maintain their decision
“inconsistency/no change” (for example, aěer violation of trust, the participant still believe
the counterpart to be trustworthy) and “inconsistency/change” (in the same example, aěer
violation of trust, a participant retaliates) as respectively ǈ and ǉ, and smoothed the generated
vector with a window average ėlter with a Ǎ trial kernel, a computation used to probe simi-
larities between model outputs and behavioral data (Sugrue, Corrado, and Newsome, Ǌǈǈǌ;
Bayer and Glimcher, ǊǈǈǍ; Kazuyuki Samejima, ǊǈǈǍ).

To probe whether behavioral responses ėĨed our best RL model; the GL Adaptive-Belief
model, we directly compared participants’ behavioral choices to the outputs of themodel that
represented two predictions about participants’ behavioral choices during the task: (ǉ) the
model predicted a strong negative prediction errors aěer violation of trust of a cooperative
participant which should make the participant more likely to switch decision on the subse-
quent trial, and (Ǌ) the model predicted that the greater the value of a decision, the more
likely the participant was to choose that decision.
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We decided to test both hypotheses. First of all, we generated all prediction errors time-
series using the different RL models on each trial for each participant and looked at these
theoretical prediction errors to the smoothed ratio of “Inconsistent/No change” (i.e., when
a counterpart violated participant’s trust but still participant decided to trust again on the fol-
lowing trial) versus “and “Inconsistency/Change” (i.e., with the same example, on the follow-
ing trial, the participant would have decided to switch decision). As illustrated in our picture,
the predictions of theRLalgorithmwould correlatewith the participant’s actions. Particularly,
as predicted by the model data, greater negative prediction errors generated by the RL model
were signiėcantly associated with the larger likelihood of participants deciding to retaliate on
the next trial (average rƦ = ǈ.ǋǊ; p = ǈ.ǈǈǎ, See ėgure ǋ.Ǎ.Ǎ).

Figure ǋ.Ǎ.Ǎ: Outputs of the RL model (black lines) predicted subjects’ trial-to-trial behavioral
changes (blue lines). Results are displayed for one participant for whom the model closely ėts the
behavioral results. ĉe calculated prediction error of the model on each trial closely matched the
local fraction (calculated by smoothing behavioral choices, coded as ǈ or ǉ, with a ǉǈ trial kernel
running-average ėlter) of participants “Inconsistent/Switch” versus “Inconsistent/No Change” on
each of the relevant trials.

Indeed, further analysis revealed that participants appeared to adapt their behavior more
radically when their counterpart were untrustworthy (their learning rates were higher across
models,mean αL =ǈ.ǌǍ) as compared towhen their counterpart reciprocated (mean αG across
models = ǈ.ǈǋǉ). Moreover we found liĨle evidences supporting that reputation would only
inĚuence ėrst impression. When only manipulating independently the way positive and neg-
ative outcomes would be updated, we found that the GLmodel did not ėt the behavioral data
more than the baseline model. However, when conceptually used in other models, free pa-
rameters for gains and losses highly improved some model-ėts. In fact, the parameter βviolate
thatwas estimated in theAdaptive-Learningmodel (when a counterpart violates trust)was es-
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sentially the highest susceptibility value for learning, indicating that participantswere strongly
affected by violation of trust especially from cooperative partners associated to positive repu-
tational priors.

Finally, we explored the second prediction of the RL models: the values generated by the
RL model would ėt with decision to trust versus decision to not trust chosen by the partici-
pant. Our best model was used to generate values of the two options for each trial, based on
each participant’s peculiar history of decisions. We computed the difference between the two
values at each trial and compared it with the local ratio of decision to trust versus decision
not to trust (coded as ǈ or ǉ). In complement to our previous ėndings, we found a signiė-
cant correlation between what the model estimated and what the participants actually chose.
Particularly, larger relative values of the decision not to trust versus decision to trust were as-
sociated with increased likelihood that the participants would not trust (average rƦ = ǈ.ǌǉ; p <
ǈ.ǈǈǉ).

ǋ.ǎ DĽňķŊňňĽŃł

ĉis ėrst study explored the behavioral and computational mechanisms underlying the deci-
sion to trust (or not) an unfamiliar person in a repeated ėnancial taskwhich has been explicitly
proposed to operationalize the investigation of trust and trustworthiness (Berg et al., ǉǑǑǍ).
Previous studies have suggested that both prior information provided by a third party (Del-
gado et al., ǊǈǈǍ; van ’t Wout and Sanfey, Ǌǈǈǐ) and direct observation (King-Casas et al.,
ǊǈǈǍ; Singer, Seymour, O’Doherty, Stephan, Dolan, and Frith, Ǌǈǈǎ) directly inĚuence deci-
sions to trust and representation of trustworthiness. For the ėrst time in this study, we account
for both variables (with and without reputation information) to probe how these variables in-
teract in a social seĨing. We found that both the reputational prior information of a counter-
part and subsequent experience with that counterpart synergistically impact behavioral data
in this game.

ǋ.ǎ.ǉ BĹļĵŋĽŃŇĵŀ ŁĹĵňŊŇĹň Ńĺ ŉŇŊňŉ

Consistent with our hypothesis, we observed that prior reputation of someone unknown di-
rectly inĚuencedparticipant’s initials decision to trust (or not) (van ’tWout andSanfey, Ǌǈǈǐ).
Indeed, participants werewilling to take the risk of trusting these counterpartsmore than Ǐǈƻ
of the time on the ėrst rounds played with someone that has a reputation of cooperator. On
the other hand, if their counterpart had a reputation for being individualistic, thenparticipants
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decided to trust them only Ǌǈƻ of the time. ĉis result, at ėrst, provides more support to the
notion that social behaviors can be conveyed through reputation information and that partici-
pants are indeed sensitive to the nature of the reputation. In a similar study, Chang et al (Ǌǈǉǈ)
show that counterpart facial expression (positive versus negative) also inĚuence decision to
trust in RTGs. ĉerefore, initial knowledge provided by a third party directly inĚuences initial
judgment (Chang et al., Ǌǈǉǈ).

In this study, we found that participants weremore willing to trust counterparts with a high
pro-social reputation as compare to counterparts with an individualistic reputation. ĉere-
fore, we can suggest that reputational information serve as risk signals that can impact on the
decision to trust and expectation of being trust in return. However, compared to pure risk,
other neuroscientiėc studies report that unique features to the social nature of trust can be se-
lectivelymanipulated, for example by introducing a hormone induction into the system (Fehr,
Fischbacher, and Kosfeld, ǊǈǈǍ). ĉis hormone, called oxytocin, plays a role similar to a neu-
rotransmiĨer in the central nervous system and inĚuences decision to trust via the amygdala
(Baumgartner, Heinrichs, Vonlanthen, Fischbacher, and Fehr, Ǌǈǈǐ).

With this ėrst series of analysis, we also replicated results of previous neuroeconomics stud-
ies which report that people use direct observation of past events as a basis for their trustwor-
thiness judgments (King-Casas et al., ǊǈǈǍ).

During the course of our experiment, participants learned to trust more oěen counterparts
that reciprocated frequently, and less oěen counterparts that did not. Taken together this ėnd-
ing suggest that decisionmaking during repeated interactions is directly impacted by both ex-
plicit reputation priors and also by direct social signals conveyed via experience during the
game. Additionally, reputation and trust seem to act synergistically to impact the observed
behavior of our participants. Indeed counterparts that have a reputation for being cooperative
were initially viewed as more trustworthy and then were trusted more oěen during the RTG
in the game. ĉis result suggests that reputational priors impact both initial judgment and
experience.

ǋ.ǎ.Ǌ MŃĸĹŀĽłĻ ŉŇŊňŉ

To beĨer understand the individual learning processes underlying our behavioral ėndings, we
modeled six possible learning processes. While there are of course many other models that
could have been tested, we chose to focus on the ones that have a strong conceptual ground-
ing. Our ėrst analysis focused the model-ěee TD learning model, classically used in learning
situation. ĉen, we ėne-tuned this baseline model by using model-based RL algorithms. ĉe
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“Gain and Losses” model captures a well-known human bias: a differential sensibility to gains
than losses (the prospect theory). In a third model, we tested a pure Prior-Expectation as-
sumption that just operates on the initial value of decision to trust. Following, we tested the
Prior-Decay algorithm hypothesizing that reputational prior will impact behavior responses
early in the relationship, but will ultimately be overridden by experience, an assumption sim-
ilar to a dual process mechanism (Poldrack, Clark, Paré-Blagoev, Shohamy, Creso Moyano,
Myers, and Gluck, Ǌǈǈǉ; Frank, O’Reilly, and Curran, Ǌǈǈǎ). ĉen, we used a model imply-
ing that the trustworthiness representation impact on how outcomes of the interaction can
be interpreted. ĉe “Outcome-bonus” hypothesis allows that outcomes consistent with the
starting trustworthiness belief will be rewarded a learning “bonus”, whereas outcomes that are
inconsistent (i.e. a reputed cooperative counterpart that defects) will be disregarded (Doll
et al., ǊǈǈǑ; Biele et al., ǊǈǈǑ; Chang et al., Ǌǈǉǈ; Biele et al., Ǌǈǉǉ). Finally, we tested the
Adaptive-Belief learning algorithm assuming that trustworthiness judgment is reliably used as
a learning advantage in the update calculation but will eventually be updated on the basis of
their counterparts’ behavior aěer each game.

We employed a cross-validation technique to assess the best-ėt of our models. We found
that a simple initialization account does not ėt the data as ėne as the other RL models that
allowed the starting judgment to impact the update function. In line with this result, we also
found a behavioral interaction between reputations and trust that was not entirely driven by
the ėrst interactions but rather that lasted until the end of the relationship (See ėgure ǋ.Ǎ.ǉ).
Additionally, we found that our new model and the outcomes bonus model essentially pro-
vide additional conėrmation that the general reputational process is not a phenomenon that
is overridden by experience. Further, we found that our model that allows trustworthiness
judgment to both capture reputation signal and that allow the beliefs to be updated based on
the outcome of each interaction explains the behavioral data themost. Notably, our proposed
model predicted two effects that are conėrmed by our behavioral data.

Our ėrst ėnding suggests that the Adaptive-Belief algorithm highly predicted the behavior
of our participants and most speciėcally, the fact that toward the end of a RTG, participants
decided to trust themost counterparts that reciprocate with a high probability and the least to
counterparts that did not reciprocate frequently. Our results conėrmed this hypothesis (ėgure
reference) and in particular, we report the exact behavior for the data in all the manipulated
experimental conditions and the data predicted by the RL model.

We found that the Adaptive-Belief model predicts that trustworthiness judgment would be
ėrst inĚuenced by the nature of the reputation information andwill change over time based on
actual experiences. Because the model-predicted decision to trust switch more rapidly when
inconsistent behavior was observed from counterparts with reputations, the predictions were
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also beĨer able to predict behaviors than models that do not account for interaction between
trust and reputation. ĉese results support and extend previous ėndings, which have found
that, although instructions alert decisions in uncertain environment, experience overwhelms
explanation in risky choice (Barron and Erev, Ǌǈǈǋ; Hertwig, Barron, Weber, and Erev, Ǌǈǈǌ;
Jessup, Bishara, and Busemeyer, Ǌǈǈǐ). While this notion of prior expectation being dynam-
ically updated with experience is certainly not new, this study proposes for the ėrst time a
computational model of this effect in a social context and provides support for its validity.

ǋ.Ǐ CŃłķŀŊňĽŃł

Our ėrst study integrates methods and theories from different disciplines: psychology, neu-
roscience and economics with the framework of reinforcement learning. Our goal is to gain a
greater understanding of how high-level social cues such as reputation information and trust-
worthiness are interpreted andused in an iterative social exchange. Our results suggest that de-
cision to trust with or without reputational prior engage different cognitive processes. While
decision to trust without reputational priors is based on actual experiences through repeated
interactions, decision to trust when reputation prior are available is determined by the nature
of the reputation and then dynamically updated based on direct observation.

In this ėrst study, we propose a new computational RL model with an interdisciplinary
approach to conceptualize the notion of learning to trust with or without reputation informa-
tion. ĉismodel proposes a novel approach to bridge the division between theoreticalmodels
and empirical evidences of trust and reputation in the social decision-making literature (Jes-
sup et al., Ǌǈǈǐ). Overall , our study provides new evidence supporting a growing literature
involved in the neural computations underlying adaptive social learning (King-Casas et al.,
ǊǈǈǍ; Behrens et al., Ǌǈǈǐ; Biele et al., ǊǈǈǑ, Ǌǈǉǉ; O’Doherty et al., ǊǈǈǏ) and decision to
trust mechanisms (Krueger et al., ǊǈǈǏ; van ’tWout and Sanfey, Ǌǈǈǐ). Finally, this ėrst study
illustrates the importance of prior-expectation in social decision-making that can be used as a
risk belief (i.e. the likelihood for reciprocity).
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Your theory is crazy, but it’s not crazy enough to be true.

Niels Bohr

4
Neural Correlates of Trust and Reputation¹

ǌ.ǉ BĵķĿĻŇŃŊłĸ

TŇŊňŉĽłĻ ŃŉļĹŇň ĽłŋŃŀŋĹň ŇĽňĿ ĵłĸ ŊłķĹŇŉĵĽłŉŏ: people invest a form of good (i.e.
money, work, time etc.) in interactions that can yield a proėt or a loss, depending on whether
others hold to their end of the bargain (Coleman, ǉǑǑǌ). Critically, when others are not con-
tractually commiĨed to doing so, they may be untrustworthy for their own beneėt and harm
the person that initially placed trust in them (Berg et al., ǉǑǑǍ). In ėnancial transactions, in-
vestors should then either anticipate this, and not invest money to begin with, or develop effi-
cient strategies to estimate the trustworthiness of others (Camerer andWeigelt, ǉǑǐǐ). Exper-
iments with repeated Trust Games (RTGs) allow to empirically observe trust-based dynam-
ics (Chang et al., Ǌǈǉǈ). Neuroimaging studies employing RTGs have shown that, when no
prior information on transaction partners is available, the brain’s reward circuitry is involved
in learning about their type (i.e. their level of trustworthiness), based on the outcomes of
previous trust-based interactions (King-Casas et al., ǊǈǈǍ). Indeed, reward-related brain re-

¹Parts of this Chapter have been taken from Fouragnan et al. (Ǌǈǉǋ). Reputational Priors Magnify Striatal
Responses to Violations of Trust, ĉe Journal of Neuroscience
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gions have been found to respond positively to trustworthiness and negatively to violations of
trust (Krueger et al., ǊǈǈǏ; Phan et al., Ǌǈǉǈ; Long, Jiang, and Zhou, ǊǈǉǊ). We refer to this
as “interaction-based” learning. However, a second important alternative for investors to effi-
ciently engage in ėnancial decisions is to rely on priors provided by a third-party. Such priors
may affect theway agents evaluate the outcomes of transactions and thus how they learn about
the type of their counterparts. We refer to this as “prior-based” learning. For example, in web-
based transactions, which are increasingly used, investors interactwith complete strangers and
rely on available reputation priors (e.g., reports on previous transactions, customer reviews
etc.) to predict expected returns and potential risks associated with investments (Kim, ǊǈǈǑ).
However, while the neural correlates of interaction-based learning to trust have been largely
explored, only few studies have investigated the neural bases of trust when reputation priors
are provided (Delgado et al., ǊǈǈǍ; Stanley et al., ǊǈǉǊ). No studies on date have directly
compared the two forms of trust-based decisionmaking within the same experiment. To con-
front this issue, we conducted a functional magnetic resonance imaging (fMRI) experiment
in the aĨempt to characterize the neural activation paĨerns related to trust-based decisions
during RTGs. Two situations were analyzed and compared, one in which we provided infor-
mation about the social aĨitude of counterparts (i.e. reputational priors), and one inwhich no
such information was provided. Furthermore, in contrast to a previous neuroimaging study
on the same issue (Delgado et al., ǊǈǈǍ), we also manipulated the actual level of trustwor-
thiness demonstrated by counterparts during an RTG, such as to make it consistent with the
provided priors. Finally, we used standard fMRI analysis, model-ěee and model-based rein-
forcement learning (RL) models to approach the problem of social learning and reputation
effects. Ourmain goal was to assess whether and how reputation priors affect RLmechanisms
at both the behavioral and neural level.

ǌ.Ǌ EŎńĹŇĽŁĹłŉĵŀ DĹňĽĻł ĵłĸMĹŉļŃĸň

ǌ.Ǌ.ǉ PĵŇŉĽķĽńĵłŉň

Twenty male participants (mean age, Ʀƭ.Ʃ ± Ƨ.ƩƧ years) took part in the fMRI experiment;
two were removed from the analysis for excessive head movement (See fMRI analysis). All
of them were healthy, gave wriĨen informed consent, had normal or corrected-to-normal vi-
sion without any history of psychiatric, neurological, or major medical problems, and free of
psychoactive medications at the time of the study. Participants were told that the experiment
aimed at studying decisionmaking in a social context, that theywould receive a compensation
of ǉǍ Euros/hour and that the money gained in ten randomly extracted trials would be added
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to their compensation. ĉe study was approved by the local institutional ethical commiĨee of
the University of Trento.

ǌ.Ǌ.Ǌ TĵňĿ

ĉe experimental task was based on the Trust Game (TG) (Berg et al., ǉǑǑǍ). In one round
of our task, each participant played as “investor” with an anonymous counterpart as “trustee”.
Both players were endowed with ǉ euro before starting a round composed of Ǌ stages (See
ėgure ǌ.Ǌ.ǉ): in stage ǉ the participant decided whether or not to share his euro with the
trustee. If he decided to share, the euro was multiplied by ǋ by the experimenter before being
alloĨed to the trustee. In stage Ǌ the response of the trustee could be to either equally share
his money with the investor (ǉ/Ǌ of ǌ euros = Ǌ euros) or keep his money and return nothing.
It follows that if the investor invested and the trustee reciprocated, both players were beĨer
off than if the interaction has not occurred at all. However, investing was risky, as if a trustee
returned nothing, the investor incurred a loss.

Figure ǌ.Ǌ.ǉ: Experimental design. One round of the two-player repeated trust game (RTG). Pǉ is
the payoff of the participant, who always plays as investor; PǊ is the payoff of his counterpart, who
plays as trustee. Before each round both players are endowedwith ǉ euro. ĉeparticipantmoves ėrst
and chooses either to “keep” (Trust) or “share” (Distrust) If he keeps, both players maintain their
initial endowments. If he shares the participant’s endowment is multiplied by ǋ and passed to the
counterpart. ĉe trustee then decides whether to share in turn by returning Ǌ euros (Trustworthy),
or to keep by returning nothing (Untrustworthy). RTGs consisted of several consecutive rounds
with a same counterpart. Participants played with many different counterparts and were told that
their counterparts had already made their choices.

We used a repeated version of this TG (RTG), which consisted in a series of consecutive
TG rounds with a same counterpart. However, this alters the nature of the single-shot TG, as
RTGs allow for additional strategicmaneuver. For instance, investors tend to investmore (and
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trustees to reciprocate) in initial rounds of RTGs, than in ėnal rounds or single shot games
(Isaac, McCue, and PloĨ, ǉǑǐǍ). For similar reasons, both parties may strategically punish
(by not investing) if they believe this might incentivize uncooperative counterparts to review
their strategies in future rounds. Our study intended to minimize the strategic component of
trust-related behavior; hence our version of the game differentiated from the typical repeated
TG in few but important respects.

ǉ. Subjectswere informed that trusteeshadalreadymade their choices,which thuswouldn’t
have been affected by those of the participant. In other words, participants knew that
counterparts were not interactive. ĉis feature should have eradicated any strategic
component usually present in RTGs. In reality, the trustees were computer simulations
and they reciprocated an investment with ėxed probabilities unknown to participants.

Ǌ. Another feature was also adopted to make learning independent on participants’ ac-
tions. In traditional RTGs, when an investor does not trust, the round ends and noth-
ing is learned about the behavior of counterparts. In our study, on the other hand, par-
ticipants learned about the trustees’ choices even when they invested nothing. ĉis
adjustment enabled to keep the amount of feedback ėxed (regardless the choice of par-
ticipants), thus allowing us to compare learning mechanisms between conditions.

ǋ. Finally, to further reduce strategic reasoning, participantsdidnot knowhowmanygames
composed each RTG with a given trustee but only that RTGs were consecutive and if
they were not paired with the same trustee twice in a row, then they would have never
encountered the counterpart again. Speciėcally, we ėxed a constant probability of ǉ/ǋ
to continue the game with a same counterpart; this resulted in a minimum of one and
a maximum of eight games with a same trustee.

ĉen, each trustee was introduced with a picture of his face before a RTG began (See ėg-
ure ǌ.Ǌ.Ǌ). ĉe association between pictures and RTGs was randomized, as was the order of
RTGs. To reduce facial information extraction and gender aĨraction, we assembled a database
of colored pictures from Ǌǈ to ǎǈ years old Caucasianmen (mean age and SE: ǋǌ.ǈǍ± ǉǉ.ǉǑ)
controlled for aĨractiveness, emotion and racial traits. ǉǊǐ pictures were selected and used
with authorization from the FERETdatabase of facial images collected under the FERETpro-
gram (Phillips et al., Ǌǈǈǈ). ĉe words “trust” or “trustworthy” were never mentioned.
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Figureǌ.Ǌ.Ǌ: Timeline of the ėrstRTGround. Presentation: Face of the counterpart (with a prior or
no-prior)was displayed for ǋ.Ǎ s, and only presented for the ėrst round of anRTG. Fixation: Fixation
cross was presented during a jiĨered inter-stimulus interval (ISI). Choice: Participants made their
choice by pressing “Keep” or “Share”. Delay: ISI corresponding to the (simulated) decision of the
counterpart. Outcome: Outcome of the game and the payoffs of each player.

ǌ.Ǌ.ǋ EŎńĹŇĽŁĹłŉĵŀ SĹŉŊń

Cooperative trustees would reciprocate ǐǈƻ of the times, while individualistic counterparts
would defect ǐǈƻof the times (thoughparticipantswere not informedof such contingencies).
ĉe distinction between types furthermore allowed confronting the cases in which trustees
behaved consistently (“Cons”) or inconsistently (“Incons”) with their types.

ĉe second key feature of our study was whether or not a reputation prior was provided
(See ėgure ǌ.Ǌ.ǋ). In the prior-condition, half of the cooperative and half of the individu-
alistic trustees were Ěagged, respectively by a circle and a triangle. ĉese cues signalled their
“reputation”. Speciėcally, participants took part in the Social Valuation Orientation (SVO)
(Messick and McClintock, ǉǑǎǐ; Van Lange, ǉǑǑǑ) and were told that the distinct cues were
based on the trustees’ scores for the same task. ĉis task distinguishes between different types
of social value orientations (e.g., cooperative or individualistic). ĉemain difference between
each category is the extent towhichone cares about ownpayoffs and that of the others in social
dilemma situations.

Finally, for the remaining half of the counterparts, no prior information was provided (no-
prior condition).

To ensure no difference in learning scheme in each of the four conditions (Prior Coopera-
tive, Prior Individualistic, No-Prior Cooperative, No-Prior Individualistic), RTG length and
share/keep schedules within each RTG were counterbalanced.
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ǌ.Ǌ.ǌ PŇŃķĹĸŊŇĹ

Participants received wriĨen instructions, took part in a simpliėed version of the SVO task,
and completed a Ǌǈ min RTG practice session (Ǌǈ trials). ĉe experiment was implemented
using Presentation soěware (version ǈ.Ǐǈ).

A ėrst key manipulation was that trustees were divided into Ǌ predeėned types: they could
be either “cooperative” or “individualistic” (See ėgure ǌ.Ǌ.ǋ).

Figure ǌ.Ǌ.ǋ: Experimental conditions. Two conditions were adopted: ǉ) the “type” of counter-
part, and Ǌ) the presence vs. absence of “reputational priors”. Types: counterparts could be either
“cooperative” or “individualistic” in their (simulated) behavior in RTGs; the former shared and the
laĨer kept in ǐǈƻ of RTG rounds. Reputational priors: participants were told that cues indicated
whether the current counterpart had obtained a high or low score in a social orientation task (trian-
gles indicated low scores, circles indicated high scores). Such priors reliably differentiated between
the Ǌ counterpart types.

In the scanner, subjects completed ǋǍǎ trials (ǐǑ for each condition: Prior Cooperative,
Prior Individualistic, No-Prior Cooperative, No-Prior Individualistic), divided in four runs
of Ǌǈ min. Figure ǌ.Ǌ.Ǌ shows the time line of the ėrst trial of an RTG. Each RTG started
with a ǋ.Ǎ s display of the face of the trustee (which, only in “prior” conditions, was Ěagged
with a reputational cue). ĉis was followed by a ėxation cross and then by a “decision screen,”
which required participants to choose between one of two options, labeled “share” or “keep.”
Aěer making their choice, participants waited a jiĨered interval before an “outcome screen”
appeared, displaying the trustee’s choice and the corresponding payoffs to both players. For
those trials in which participants chose to keep, the outcome screen was still shown.
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ǌ.Ǌ.Ǎ AłĵŀŏňĽň

BĹļĵŋĽŃŇĵŀ ĸĵŉĵ ĵłĵŀŏňĽň

Behavioral data were analyzed using Stata Statistical Soěware version Ǒ.Ǌ and the R envi-
ronment (Development Core Team, Ǌǈǈǐ). A two-way repeated measure ANOVA was per-
formed to identify differences between conditions for each variable of interest (e.g., decision
to trust, payoffsmade in each condition). Next, we computed regression analyses usingmixed-
effects linear models (MEL), in which participants were treated as random effects and hence
were allowed to have individually varying intercepts. Parameter estimates (b), SE, t values and
p values were reported.

RL ŁŃĸĹŀň

MŃĸĹŀ ǉ: ŃŅĺĻł-ļŉĻĻ ŉĹŁńŃŇĵŀ-ĸĽĺĺĹŇĹłķĹ ŀĹĵŇłĽłĻ.

We ėrst used a “model-free” temporal-difference (TD) (model ǉ) learning algorithm (Rum-
mery and Niranjan, ǉǑǑǌ; SuĨon and Barto, ǉǑǑǐ), which assumes that agents are initially
unaffected by the presence of priors, but that, as trials with a counterpart unravel, theymay up-
date rewardvaluesdifferentlywhenpriors are available as opposed towhen theywerenot avail-
able. Participants would sample the reward probability of two choices (Keep or Share) in the
Cooperative and Individualistic conditions. We thenhypothesized thatparticipantswouldob-
tain reliable expectation of these conditions updating the estimated value of each choice with
a discounted “step-size.”ĉus the stochastic prediction error δ, based on theRescorla–Wagner
learning rule (Rescorla and Wagner, ǉǑǏǊ) was computed as follows:

δt = Rt − VC,t (ǌ.ǉ)

where R is the payoff obtained at time t, when choosing an optionC at time t or t+ ƥ, andV is
the value of each choice Share or Keep in each trial. In addition to this, the following learning
rule differentially updated the stochastic prediction error in the Prior (P) and No-Prior (NP)
conditions:

Vt + ƥ = Vt + αP.δP(C,t) + αNP.δNP(C,t) (ǌ.Ǌ)

ĉe degrees in which δP and δNP inĚuence the new action value are weighted by two learning
rates, αP and αNP, where Ƥ < αP, αNP < ƥ.
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MŃĸĹŀǊ: ŁŃĸĹŀŌĽŉļňĹńĵŇĵŉĹĹŎńĹķŉĵŉĽŃłňĺŃŇńŃňĽŉĽŋĹŃŇłĹĻĵŉĽŋĹńŇĽŃŇň.

Additionally, given the results found in the previous study (SeeChapter ǋ), we hypothesized
that, in the Prior condition, participants have “optimistic” or “pessimistic” expectations, at the
beginning of the game due to the presence of a positive (P+) or negative Prior (P−), respec-
tively (Biele et al., ǊǈǈǑ, Ǌǈǉǉ;WiĨmann et al., Ǌǈǈǐ). ĉus, the values of initial choices when
playingwith aCooperative or Individualistic counterpart in the prior conditionwere formally
deėned as:

VPrior+
(C,Ƥ) = gP+.μθPrior+.N (ǌ.ǋ)

VPrior−
(C,Ƥ) = gP−.μθPrior−.N (ǌ.ǌ)

where gP+ and gP− are equal to ǉ when playing with a counterpart with a positive or negative
prior, respectively; and ǈ otherwise. θP+ and θP− are free parameters capturing the optimistic
or pessimistic impact of the priors expectation, μ is the expected payoff from choosing ran-
domly among all options, which serves as a normalization constant and N is the number of
trials experienced in the learning condition, which is a scaling factor, allowing for the compar-
ison between an expected decision value and the outcome of the decision. On the other hand,
in the no prior condition, only one parameter weighted the initial expected value of choices,
VNP
(C,Ƥ).

ĉe Soěmax function was then used for the two models to determine the probability of
choosing a given choice option given the learned values as follows:

P(share)t =
exp(

V(share)t
τ )

exp(
V(share)t

τ ) + exp(
V(keep)t

τ )
(ǌ.Ǎ)

where τ is called a temperature parameter. For high values of τ, all actions have almost the
same probability (i.e., choices are random), while for low τ the probability of choosing the
action with the highest expected reward (Vǉ > VǊ) is close to ǉ.

To generate model-based regressors for the imaging analysis, both learning models were
simulated using each subject’s actual sequence of rewards and choices to produce per-trial,
per-subject estimates of the initial valuesVt and error signals δt (Morris et al., ǉǑǑǎ;WiĨmann
et al., Ǌǈǈǐ). All parameters of interest were implemented in MATLAB RǊǈǈǑ and were esti-
mated using the negative log likelihood of trial-by-trial choice prediction. Model comparisons
were performed with the Bayesian Information Criterion, the pseudo rƦ value using the Log
likelihood of a random distribution, and tested with the likelihood ratio test.
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ǌ.Ǌ.ǎ ĺMRI Dĵŉĵ AķŅŊĽňĽŉĽŃł ĵłĸ AłĵŀŏňĽň

ĺMRI ĸĵŉĵ ĵķŅŊĽňĽŉĽŃł

A ǌT Bruker MedSpec Biospin MR scanner (CiMEC, Trento - Italy) and an ǐ-channel bird-
cage head coil were used to acquire both high-resolutionTǉ-weighted anatomicalMRI using a
ǋDMPĆGEwith a resolution of ǉmmǋvoxel andTǊ*-weightedEcho planar imaging (EPI).
ĉe parameters of the acquisition were the following: ǋǌ slices, acquired in ascending inter-
leaved order, the in-plane resolution was ǋmmǋ voxels, the repetition time Ǌ sec and the echo
time was ǋǋms. For the main experiment, each participant completed ǌ runs of ǎǈǐ volumes
each. An additional scan was performed in between two different runs in order to determine
the point-spread function that was then used to correct the known distortion in a high-ėeld
MR system.

PŇĹńŇŃķĹňňĽłĻ

ĉe ėrst ėve volumes were discarded from the analyses to allow for stabilization of the MR
signal. ĉe data were analyzed with Statistical Parametric Mapping ǐ soěware (SPMǐ; Wel-
come Department of Cognitive Neurology, London, UK) implemented in MATLAB RǊǈǈǑ
(MathWorks). We used SPMǐ for the preprocessing steps. Head motions were corrected us-
ing the realignment program of SPMǐ. Following realignment, the volumes were normalized
to the Montreal Neurological Institute (MNI) space using a transformation matrix obtained
from the normalization process of the ėrst EPI image of each individual subject to the EPI
template. ĉe normalized fMRI data were spatially smoothedwith aGaussian kernel of ǐmm
(full-width at half-maximum) in the (x, y, z) axes. Imaging data for participants with headmo-
tions exceeding one voxel (ǋ mm) in transition and ǋ° in rotation were discarded (Eddy et al.,
ǉǑǑǎ). We also used the xjView package andMRICron to create the pictures presented in the
results (version ǉ.ǋǑ, Build ǌ).

ĺMRI ĵłĵŀŏňĽň

GLMǉĵ ĵłĸ Ķ.

Our ėrst analysis considered the main effect of the presence or absence of reputation pri-
ors when a new counterpart is presented for the ėrst time. We used a general linear model
(GLM), estimated in three steps: (ǉ) ėrst, an individual blood oxygenation level-dependent
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(BOLD) signal was modeled by a series of events convolved with a canonical hemodynamic
response function. ĉe regressors representing the events of interest were modeled as a box-
car function with onsets at the beginning of each RTG (“Pre”) and durations of ǋ.Ǎ s. For
GLM ǉa, regressors represented trials in which priors were provided (“Prior_Pre”) and no
priors were provided (“NoPrior_Pre”). For GLM ǉb, regressors represented trials in which
priors were provided for a cooperative counterpart (“Prior+_Pre”), priors were provided for
individualistic counterparts (Prior-_Pre), and no priors were provided (NoPrior_Pre). For
t contrasts, we then computed ėrst-level one-sample t tests comparing trials with and with-
out priors on the basis of the GLM ǉa. (Ǌ) We then analyzed second-level group contrasts.
Our fMRI results were initially thresholded at p < ǈ.ǈǈǉ uncorrected and were subsequently
cluster-thresholded at p < ǈ.ǈǍ, familywise error (FWE). All reported coordinates (x, y, z) are
in MNI space. Anatomical localizations were performed by overlaying the resulting maps on
a normalized structural image averaged across subjects, and with reference to an anatomical
atlas. (ǋ) Finally, we used the MarsBaR toolbox from SPMǐ to perform functionally deėned
(based on the averaged parameter estimates in the cluster found with GLM ǉb) region of in-
terest analysis (ROI) and compute percentage signal changes.

GLMǊ: PŉĿŅŉ-ŃŅĺĻł ĺMRI ĵłĵŀŏňĽň.

A second GLM model uses the estimates of the best-ėt RL algorithm described in equations
ǌ.ǋ and ǌ.ǌ.

Figure ǌ.Ǌ.ǌ: Illustration of a whole-brain analysis of Trial-to-Trial estimates of Prediction Error
δt from the Prior-Expectation model from simulated data. Example of one scan. Convolution of
parametric changes in estimated PE for each decision on each outcome (top plot - leě) convolved
with a canonical hemodynamic response function (top plot - right) produced individual participant
relative prediction-error regressors (boĨom plot - right).
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ĉis model still focused on the distinction between prior and no-prior conditions but ad-
ditionally separated between two phases of the RTG: the decision phase and the outcome
phase. ĉis allowed us to assess how the impact on the BOLD signal of priors was parametri-
cally modulated by two behaviorally estimated learning measures (from model Ǌ, See ėgure
ǌ.Ǌ.ǌ): (ǉ) at timeof choice, the parameterQt, weighted the value of options, on a trial-to-trial
basis, depending onRTGhistory; (Ǌ) while δt scaled outcomes on the basis of their estimated
prediction error. Parametricmodulation were applied to themagnitude of the stick functions.
We performed this analysis at the individual level and ran group statistics, taking individual
participants as random effects. We then focused on a subset of our resulting brain regions on
the basis of effect strength (p < ǈ.ǈǍ, FWE corrected). Speciėcally, averaged parameter esti-
mates were extracted from bilateral caudate (MNI coordinates: (−ǉǌ, Ǌǈ, Ǌ) and (ǉǊ, ǉǐ, ǎ)),
separating between prior versus no-prior contexts.

GLMǋ: ŋĽŃŀĵŉĽŃł Ńĺ ŉŇŊňŉ.

In a third GLM we differentiated between consistent (Cons) and inconsistent (Incons) out-
comes. We classiėed consistent outcomes as those rounds in which either (ǉ) participants
had kept with individualistic counterparts that defected (Cons−) (distribution of trials: M
= ǍǏ± ǋ) or (Ǌ) they had shared with a cooperative counterpart that reciprocated (Cons+)
(M = Ʃƪ±ƨtrials); inconsistent outcomes, on the other hand, occurred when either (ǋ) par-
ticipants had kept with an individualistic counterpart that reciprocated (Incons−) (M= ǉǌ±
ǌ trials) or (ǌ) they shared with a cooperative counterpart that defected (Incons+) (M = ǉǍ
± ǌ trials), and who thus “violated” their trust.

GLMǌ: CŃŃńĹŇĵŉĽŋĹ ŋň. IłĸĽŋĽĸŊĵŀĽňŉĽķ.

In a fourth analysis, we were interested in the brain regions that were differentially solicited
when participants were playing against individualistic trustees as compare to playing with co-
operative trustees. We constructed a a new GLM for each participant in which the effects
of playing with an individualistic counterpart ((Individualistic_Prior) + (Individualistic_No
Prior)), playing with a cooperative counterpart ((Cooperative_Prior) + (Cooperative_No
prior)) and parameters of head movements served as regressors.
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FŊłķŉĽŃłĵŀ ķŃłłĹķŉĽŋĽŉŏ ĵłĵŀŏňĽň (PPI).

To explore the interplay between the caudate and other brain regions following violations of
trust (Incons+), we assessed functional connectivity using psychophysiological analysis (Fris-
ton, Buechel, Fink, Morris, Rolls, and Dolan, ǉǑǑǏ; Cohen et al., ǊǈǈǍ), which compares the
paĨern of activity of a seed region to every other regions of the brain. We took the bilateral
caudate resulting from the reported GLM ǋ (Cons > Incons) as seed regions, as these areas
showed highest sensitivity to violations of trust (t = ǎ.Ǐǐ, p < ǈ.ǈǍ, FWE). ĉen, we created
three regressors: (ǉ) the caudate time course (physiological regressor), (Ǌ) an event-related
regressor that distinguished between violations of trust in the prior and no-prior conditions
(with a boxcar function ranging from the beginning of the outcome phase until the end of the
interstimulus interval; ISI), and (ǋ) the interaction term. Additionally, we also conducted a
correlation analysis between the retaliation rate for each subject (measured by the percentage
of choices to keep aěer violation of trust when playing with a cooperative partner) and the
parameter estimates in leě ventrolateral prefrontal cortex (vLPFC) (MNI −ǌǈ, ǌǊ, ǌ) across
subjects. Finally, to examine how striatal responses to violations of trust were related to learn-
ing, we ploĨed individual parameter estimates against the individual learning rates (estimated
with model Ǌ described above).

ǌ.ǋ BĹļĵŋĽŃŇĵŀMĹĵňŊŇĹň ĵłĸCŃŁńŊŉĵŉĽŃłĵŀ RĹňŊŀŉň

ǌ.ǋ.ǉ BĹļĵŋĽŃŇĵŀ ĸĵŉĵ

Our main goal was to determine whether reputation priors inĚuence initial expectations and
decisions in the games, and subsequent learning mechanisms. A repeated measure two-way
ANOVA was performed using type of counterpart (cooperative or individualistic) and prior
condition (prior or no-prior) as within participant factors.

ĉe percentage of decisions to share was signiėcantly higher with cooperative counterparts
(M = Ǐǉ.ǏǏ, SE ± ƨ.ƤƧ) than with individualistic counterparts (M = ǊǏ.ǋǌ, SE ± Ƨ.ƫƥ; Fǉ,
ǉǏ = ǉǏǌ.ǈǉ, p < ǈ.ǈǈǉ). ĉe results also showed a signiėcant interaction effect of prior with
type of counterpart (FǊ, ǋǍ = ǋǈ.ǐǏ, p < ǈ.ǈǈǉ). Post hoc tests (t-tests Bonferroni corrected)
indicated that participants decided to share with cooperative partners more when provided
with a prior (M= ǐǉ.ǈǑ, SE± ǌ.Ǐǐ) than when priors weren’t provided (M= ǎǊ.ǌǍ, SE± Ʃ.Ƭƥ;
t = Ǎ.ǐǑ, p < ǈ.ǈǈǉ), whereas they decided to share with individualistic counterparts less in the
prior (M = ǉǐ.ǋǏ, SE± ƨ.ƪƪ) than in the no prior condition (M = ǋǎ.ǋ, SE± Ʃ.ƤƩ; t = ǌ.Ǌǋ, p
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Figure ǌ.ǋ.ǉ: Behavioral results. Average percentage of decision to trust across conditions. Mean±
standard error of participants’ decision to trust (share) are broken down for trustee’s type (Coopera-
tive/Individualistic) and prior condition (Prior/NoPrior); *** p<ǈ.ǈǈǉ. Priors enabled participants
to match (on average) their choices with the counterpart’s level of trustworthiness.

< ǈ.ǈǈǊ, See ėgure ǌ.ǋ.ǉ).

When payoffs are analyzed with type of counterparts and prior condition as within-subject
variables, we found that payoffswere signiėcantly higherwhen playingwith cooperative coun-
terparts (M= ǉ.ǌǋ, SE±Ƥ.ƥƧ) than individualistic counterparts (M= ǈ.Ǒǌ, SE±Ƥ.ƥƥ; Fǉ, ǉǏ =
ǉǋǐ.ǋǊ, p < ǈ.ǈǈǉ) and signiėcantly higher in the prior condition (M = ǉ.Ǌǈ, SE± Ƥ.ƥƤ) than
the no prior condition (M = ǉ.ǈǐ, SE± Ƥ.Ƥƪ; Fǉ, ǉǏ = Ǌǐ.Ǒǐ, p < ǈ.ǈǈǉ, See ėgure ǌ.ǋ.Ǌ).

Figure ǌ.ǋ.Ǌ: Average payoffs in the Prior and No-Prior conditions. Average payoffs ± standard
error (in euros) in Prior/No Prior conditions. When priors are available, participants signiėcantly
earn more when they adjust their choices to counterparts’ types; ** p<ǈ.ǈǉ.

In order to examine the effect of the prior condition, the trustees’ type, the order of the re-
peated game and the interactions of such factors on the decision to share (binary dependent
variable), we performed regression analyses usingmixed-effects linear (MEL)models. ĉe re-
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sults revealed that participants shared with cooperative counterparts more oěen as compared
to individualistic counterparts (b = ǉ.ǊǑ (SE ± Ƥ.ƤƬ), t = ǉǍ.ǐ, p < ǈ.ǈǈǉ); shared less when
they did not receive priors (b = - ǉ.ǈǑ (SE± Ƥ.Ƥƭ), t = - ǉǊ.ǉ, p < ǈ.ǈǈǉ); and shared less over
time (b = - ǈ.ǉǊ (SE±Ƥ.ƤƦ), t = - ǎ.ǐǉ, p < ǈ.ǈǈǉ). ĉese results suggest that participants took
into account reputation priors and played according to the counterpart’s level of trustworthi-
ness. Instead, when priors were not available, participants learned counterparts’ types on the
basis of their actions. Interestingly, we found an interaction effect between the trustees’ type
and the prior condition (b = Ǌ.ǊǏ (SE ± Ƥ.ƥƧ), t = ǉǏ.ǋǑ, p < ǈ.ǈǈǉ). ĉese results indicate
that the difference between prior and no prior conditions was greater when playing with a co-
operative than with an individualistic counterpart. Furthermore, even though participants in
the no prior condition adjusted their decisions to their counterparts’ type over rounds, they
still shared with cooperative counterparts less than when they had priors (See ėgure ǌ.ǋ.ǋ).

Figure ǌ.ǋ.ǋ: Learning dynamics across RTG rounds. Average percentage of the decision to trust for
each roundwhenplayingwith a “cooperative” vs. “individualistic” counterpart, andwhenpriorswere
present vs. absent. When participants know nothing of their counterparts they tend to randomize
between trusting and not trusting during initial rounds and adjust their choices to their counterparts’
type in succeeding rounds. On the other hand, when priors are present, participants tend to rely on
them already from early rounds. Standards errors are the shaded areas bellow and above the main
curves.

Post hoc t-test revealed that, in the no prior condition, in rounds when cooperative coun-
terparts kept, participants subsequently kept more (Mean percentage of decisions to keep =
ǈ.ǌǐ,SE ± Ƥ.Ƥƥƭ), whereas they persisted in sharing in the prior condition (M = ǈ.Ǌ, SE ±
ǈ.ǈǉǍ; tƥƫ = - ǌ.ǑǑ, p < ǈ.ǈǈǉ), (See ėgure ǌ.ǋ.ǌ A). Similarly, when individualistic counter-
parts shared in a round, participants subsequently sharedmorewhennot providedwith a prior
(Mean percentage of decisions to share = ǈ.ǋǌ, SE±Ƥ.ƤƥƩ) thanwhen given a prior (M=ǈ.Ǌǉ,
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SE± Ƥ.ƤƤƭ; tƥƫ = - ǌ.Ǐǐǋ, p < ǈ.ǈǈǉ, See ėgure ǌ.ǋ.ǌ B).

Figure ǌ.ǋ.ǌ: A. Choices following unexpected behavior of cooperative and individualistic counter-
parts. Average (± standard error) of percentage of “keep” choices in prior vs. no prior condition
at time t, following rounds in which participants shared and a cooperative counterpart violated their
trust by deciding to keep (at t-ǉ). Decisions toKeep at time t (i.e., retaliation)was less frequentwhen
priors were available. B. Percentage of “share” choices (at t) following rounds in which participants
had kept and an individualistic counterpart has shared (at t-ǉ).

ǌ.ǋ.Ǌ RĹňŊŀŉň ĺŇŃŁ ŀĹĵŇłĽłĻ ŁŃĸĹŀň

A likelihood ratio test revealed that the Priormodel (model Ǌ)with separated expectations for
cooperative and individualistic counterparts (Priormode) performed beĨer than the classical
TD learning model (model ǉ) (p < ǈ.ǈǈǉ) (Additional statistics are reported inTable ǌ.ǋ.ǉ).

ĉe best-fiĨing parameters are shown in Table ǌ.ǋ.Ǌ. For these parameters, we found that
the average learning rate estimated from trials in theNoPrior condition, αNP, was significantly
higher than the average learning rate estimated from trials in the Prior condition δt (tƥƫ =

Ʀ.Ʀƭ; p < Ƥ.ƤƩ).

We also found that the initial value in the Cooperative Prior condition, VP+(Ƥ)was signiė-
cantlyhigher than the initial value in theNoPrior conditionVNP(Ƥ) (tƥƫ = −Ʀ.ƬƦ; p < Ƥ.ƤƤƥ),
and the initial value in the Individualistic Prior condition, VP−(Ƥ) (tƥƫ = −Ƨ.Ƥƫ; p < Ƥ.ƤƤƥ).
ĉere was no signiėcant difference between the initial value in the Individualistic Prior con-
dition, VP−(Ƥ) and the initial value in the No Prior condition VNP(Ƥ),(t = Ƥ.ƨƪ). Finally, we
found that the average learning rates estimated for each participant when they kept was higher
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Learning model comparison

Classical model-free Prior+ and Prior- expectations
TD learning model RL learning model

BIC ǏǎǉǑ ǎǌǎǈ
Log Likelihood -ǋǐǈǑ -ǋǊǋǈ
Pseudo rƦ ǈ.ǉǌ ǈ.ǊǏǋ

Table ǌ.ǋ.ǉ: Learningmodel comparison: Bayesian Information Criterion value (BIC), Log like-
lihood and the Pseudo r squared suggest that the Prior+ and Prior-expectations TD learning model
ėts the observed behavior beĨer the other TD learning models.

Parameter estimate for best behavioral model, depicted as mean± SE

Mean SE

Learning rate Prior condition δP ǈ.ǋǋǏǋ ± ǈ.ǈǌǍǎ
Estimates for Cooperative counterparts ǈ.ǋǊǏ ± ǈ.ǈǌǊǌ
Estimates for Individualistic counterparts ǈ.ǋǌǏǍ ± ǈ.ǈǋǑǐ

Learning rate No Prior condition δNP ǈ.ǍǈǏǍ ± ǈ.ǈǎǐǑ
Estimates for Cooperative counterparts ǈ.ǌǎǐǎ ± ǈ.ǈǏǈǉ
Estimates for Individualistic counterparts ǈ.ǍǋǑ ± ǈ.ǈǍǑǑ
Estimates learning rates for Invest trials (participants shared) ǈ.ǋǐǌǍ ± ǈ.ǈǌǍǑ
Estimates learning rates for Non-Invest trials (participants kept) ǈ.ǌǎǈǋ ± ǈ.ǈǌǏǎ

Soěmax inv. Temp Betha τ ǌ.ǏǏǎǑ ± ǈ.ǋǉǌǑ

Initial value Cooperative Prior condition VP+(Ƥ) ǉ.ǋǐǉǌ ± ǈ.ǉǈǋǉ
Initial value Individualistic Prior condition VP−(Ƥ) ǈ.Ǒǐǋǐ ± ǈ.ǉǈǍǍ
Initial value No Prior condition VNP(Ƥ) ǉ.ǈǎǌǉ ± ǈ.ǉǊǎǈ

Table ǌ.ǋ.Ǌ: Learning best model Averaged best-ėĨing parameter estimates (across subjects) SE
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(M = Ƥ.ƨƪ, SE ± Ƥ.Ƥƨ) than when they shared (M = Ƥ.ƧƬ, SE ± Ƥ.ƤƨƬ; tƥƫ = −Ʀ.Ʀƫ, p <

Ƥ.ƤƩ,see Table ǌ.ǋ.Ǌ).

ǌ.ǌ ĺMRI RĹňŊŀŉň

ǌ.ǌ.ǉ GLMǉ EĺĺĹķŉ Ńĺ ńŇĽŃŇ ĵŉ ŉĽŁĹ Ńĺ ķŃŊłŉĹŇńĵŇŉ ńŇĹňĹłŉĵŉĽŃł

In a first brain imaging analysis, we investigated whether it was possible to differentiate the
condition in which participants received prior knowledge of the Trustee’s reputation or not
based on their brain activation paĨern at the beginning of each new multi-round game. ĉis
period is of particular interest because, as we showed in the behavioral results section, our
participants were able to anticipate the Trustee’s strategy and adjust their own decision to this
strategy before starting each newmulti-round game when they had received prior reputation-
related information (i.e., they chose to place trust or not in their counterpart with a probability
close the counterpart probability of reciprocation). ĉus, this period tookplace at a timepoint
when the decision to trust (or not) could be implemented when the prior was provided. ĉe
contrast (“Prior_Pre” > “NoPrior_Pre”) (seeMethods, GLMǉa) revealed differential activity
in the mPFC (ǈ, ǎǊ, ǋǉ), to the presence vs. absence of any priors when new counterparts
were presented (t = ǐ.Ǌǎ; p < ǈ.ǈǍ FWE cor.)(See ėgure ǌ.ǌ.ǉ and Table ǌ.ǌ.ǉ).

Figureǌ.ǌ.ǉ: mPFCencodes reputational priorswhen a newcounterpart is ėrst presented. Random
Effect Analysis. When contrasting (Prior) > (NoPrior) conditions at time of counterpart presenta-
tion, activity in the medial prefrontal cortex survived FWE correction, p < ǈ.ǈǍ.

Further functional ROI analysis, based on GLMǉb, qualiėed this activation paĨern as re-
sponding with increased activity to the presence of priors, regardless of their nature (positive
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or negative), and decreased activity to their absence (Seeėgure ǌ.ǌ.Ǌ). ĉe opposite contrast
(“NoPrior_Pre” > “Prior_Pre”) revealed activity in bilateral anterior insula (-ǋǎ, -ǌ, ǉǍ), t =
ǋ.Ǒǉ; p < ǈ.ǈǈǉ unc., and (ǋǐ, ǋ, ǉǈ), t = ǋ.ǌǍ; p < ǈ.ǈǈǊ unc.).

Figure ǌ.ǌ.Ǌ: Functional ROI Analysis inmPFC. Functional ROI analyses further revealed percent-
age signal changes in the medial prefrontal cortex MNI (ǈ, ǎǊ, ǋǉ). ĉe ėgure shows an increased
activity when priors were present, regardless of their type, and decreased activity when there were
no priors.

ǌ.ǌ.Ǌ GLMǊ EĺĺĹķŉ Ńĺ ńŇĽŃŇ ĵŉ RTG ķļŃĽķĹ

Applying parametric analysis (SeeMaterials andMethods, GLM Ǌ model-based fMRI anal-
ysis) to the functional MRI data, we focused on trial-to-trial weights on decision values as
represented by per-trial Qt estimate amplitude. We found that decision value estimates were
correlated with neural activity in a network consisting of the mPFC (−Ǌ, ǎǌ, ǉǈ) and the dor-
solateral prefrontal cortex (dLPFC) (−ǋǐ, ǋǐ, ǋǊ), surviving p < ǈ.ǈǍ, FWE corrected (See
ėgure ǌ.ǌ.ǋ and Table ǌ.ǌ.ǉ). ĉese two regions reĚected the contributions of prior’s va-
lence (positive or negative) to the paĨern of activity related to the decision to trust (See ėg-
ure ǌ.ǌ.ǌ). Moreover, the difference at a neural level between prior and no-prior condition
was greater when playing with a cooperative counterpart compared with an individualistic
counterpart. ĉis is consistent with the observed behavioral asymmetry of the effect of priors
between cooperative and individualistic conditions.
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Figure ǌ.ǌ.ǋ: Brain regions parametrically correlated with the estimated “optimistic” and “pes-
simistic” decision value from the Prior model. Random effect fMRI analysis. To look for neural
correlates of value signals (Qt) at time of choice, we entered the trial-by-trial estimates of the values
of the two stimuli (“Share” and “Keep”) into a regression analysis against the fMRI data. We found
enhanced activation in mPFC and dLPFC, surviving FWE correction, p < ǈ.ǈǍ.

Figure ǌ.ǌ.ǌ: Functional ROI analysis in mPFC. Percent signal change by condition in the mPFC
area represented in (A). Similar paĨern of activity was found in the dlPFC (not reported). ĉese
regions encoded prior valence (positive and negative) that guided decision to trust at time of choice.
Error bars represent SE.
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ǌ.ǌ.ǋ GLMǋ EĺĺĹķŉ Ńĺ ńŇĽŃŇ ĵŉ RTG ŃŊŉķŃŁĹ

Across all RTGs, during the outcome phase of the game (see GLMǊ), individually estimated
trial-wise prediction errors (positive and negative combined) correlated signiėcantly with the
BOLD responses in the bilateral caudate in the No Prior trials only (p < ǈ.ǈǍ FWE), (See
ėgure ǌ.ǌ.Ǎ andTable ǌ.ǌ.ǉ). On the other hand, striatal activity appeared to track estimated
prediction errors in a more blunted fashion when priors were provided (See ėgure ǌ.ǌ.Ǎ).
Moreover, from a direct comparison between the no prior and prior conditions, we found
higher activity in the leě caudate for the no prior condition compare to the prior condition
with a group peak MNI coordinates at -ǉǊ, Ǌǈ, ǐ (See ėgure ǌ.ǌ.ǎ).

Figure ǌ.ǌ.Ǎ: Brain regions parametrically correlatedwith the estimated Prediction Error of the best
ėĨing RL model. Random effect fMRI analysis: Activity of the caudate showed signiėcant correla-
tion to the estimated PE signal in the no prior condition (p < ǈ.ǈǍ FWE cor.). Such activities were
not observed in this brain area in the prior condition. Peak coordinates are given in MNI space.
Colour bars indicate T-values.

ǌ.ǌ.ǌ GLMǌ: IłĸĽŋĽĸŊĵŀĽňŉĽķ ŋĹŇňŊň CŃŃńĹŇĵŉĽŋĹ

Playing with a cooperative or an individualistic counterpart requested that participants ad-
justed their own strategy to ėt the Trustees’ strategy. ĉis behaviour mechanism had a major
consequence: it restricted participants to behave accordingly to theTrustee’s behavior andnot
to their own opinion and social preference. ĉus, playing with Cooperative Trustees impli-
cated that participants’ return payoffs would be higher by also cooperating and that playing
with Individualistic Trustees implied to also be strategically Individualistic. However, evi-
dence from empirical investigations has shown that most Trustors are willing to place trust
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Figure ǌ.ǌ.ǎ: Parameter estimates were extracted from the leě caudate (-ǉǊ, Ǌǈ, ǐ) for the direct
comparison between prior and no-prior conditions. Caudate activity correlates with PE in the no-
prior condition only.

and transfer their initial endowment to the Trustees in the case of repeated trust games (Berg
et al., ǉǑǑǍ; Camerer and Weigelt, ǉǑǐǐ). Playing with individualistic counterparts as com-
pared with cooperative counterpart was characterized by signiėcant increases in activity of
the anterior Insula, the Medial prefrontal cortex (mPFC), Anterior cingulate cortex (ACC),
the orbito-frontal cortex (OFC) and the Putamen (See ėgure ǌ.ǌ.Ǐ).

Figure ǌ.ǌ.Ǐ: Differential brain activation paĨern while playing with Individualistic Trustees com-
pare to Cooperative Trustees. Illustrated are brain areas where activity exceeded threshold are p <
ǈ.ǈǈǉ with Ǌǈ voxels extended threshold. ĉe functional maps are superimposed on a normalized
anatomical image.
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ǌ.ǌ.Ǎ GLMǍ VĽŃŀĵŉĽŃł Ńĺ ŉŇŊňŉ: ĺŊłķŉĽŃłĵŀ ķŃłłĹķŉĽŋĽŉŏ ĵłĵŀŏňĽň

Finally, we speciėed the changes in activity in the caudate related to violation of trust (e.g.
the decisions to keep of a cooperative counterpart in response to a decision to trust of a par-
ticipant) in the prior and no-prior condition (analysis from GLMǋ, Table ǌ.ǌ.ǉ). Results
showed a stronger deactivation of the caudate in the prior condition compared to the no-prior
condition (t = ǎ.Ǐǐ; See ėgure ǌ.ǌ.Ǒ and Table ǌ.ǌ.ǉ). However, in contrast with the no-

Figure ǌ.ǌ.ǐ: Functional connectivity between the caudate nucleus and vLPFC correlates with the
choice to retaliate aěer violation of trust in the prior condition. PPI analysis. With a caudate seed,
bilateral vLPFC shows stronger connectivity with this region in the prior compare to the no prior
conditions.

Figure ǌ.ǌ.Ǒ: Reputational priors magnify striatal response to violation of trust. ĉe caudate shows
a stronger deactivation to violation of trust from a cooperative counterpart in the prior condition
compared with the no-prior condition.
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Figure ǌ.ǌ.ǉǈ: Striatal responses to violation of trust and learning rates. ĉe correlation between
caudate and learning rates is signiėcant only in the no-prior condition, thus striatal responses to vi-
olation of trust in the prior condition are not reĚected in learning.

Figure ǌ.ǌ.ǉǉ: vLPFC prevents retaliation to violation of trust in the prior condition. vLPFC anti-
correlates with retaliation rate in the Prior condition aěer participants experimented violation of
trust from a cooperative counterpart. Spearman r = -ǈ.ǎ, p < ǈ.ǈǈǑ.

prior condition, striatal deactivations to violation of trust were not reĚected in behavioral re-
sponses. Indeed, the striatal activity related to violation of trust did correlate with individual
learning rates only in the no-prior condition (from the model Ǌ: r = −ǈ.ǎǐǏ, p < ǈ.ǈǈǉ; See
ėgure ǌ.ǌ.ǉǈ). No such correlation was found in the Prior condition. We used PPI to search
for brain areas that could have mediated such striatal responses in the prior condition. We
found that leě and right vLPFC showed strong functional connectivity with the caudate seed
region aěer violation of trust in the prior compared with no-prior conditions; vLPFC, leě
(−ǌǈ, ǌǊ, ǌ), t = ǋ.Ǐǋ; right (ǋǐ, ǌǎ, ǌ), t = ǎ.ǋǏ, p < ǈ.ǈǍ corrected (See ėgure ǌ.ǌ.ǐ). Finally,
we found that the strength of connectivity between caudate–vLPFC was anticorrelated with
participants’ decisions to keep following violation of trust (Spearman correlation r = −ǈ.ǎǏ,
p < ǈ.ǈǈǉ). Moreover, we found that the activity in the vLPFC was inversely correlated with
individual retaliation rates ¹ aěer violations of trust (r = −ǈ.ǎ, p < ǈ.ǈǈǑ; See ėgure ǌ.ǌ.ǉǉ).

¹Retaliation rates were computed as the percentage of Keep over Share choices
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MNI (mm)

Analysis and locations BA Side Cluster T p value X Y Z
size FWE cor.

Prior>NoPrior (GLM ǉ)

Medial Prefrontal Cortex ǉǈ − ǑǍ ǐ.Ǌǎ ƪ.Ƭ−Ƥƪ ǈ ǎǊ ǋǉ
Ventra Tegmental Area − − ǉǌ ǋ.ǉǏǏ ǈ.ǈǈǋǊ* ǈ -ǉ -Ǎ

NoPrior> Prior (GLM ǉ)

Anterior Insula ǌǌ Leě ǉǈǎ ǋ.ǑǉǊ ǈ.ǈǈǈǑ* -ǋǎ -ǌ ǉǍ
Anterior Insula ǌǌ Right ǍǍ ǋ.ǌǍǈ ǈ.ǈǈǉǏ* ǋǐ ǋ ǉǈ

Parametric regression: Choice
(GLMǊ)

Medial Prefrontal Cortex ǉǈ − ǐǏ ǎ.ǍǎǊ Ʀ.ƫ−Ƥƪ -Ǌ ǎǌ ǉǈ
Lateral Prefrontal Cortex ǌǎ Leě ǉǊǊ Ǎ.ǑǐǏ ƫ.Ƭ−ƤƩ -ǋǐ ǋǐ ǋǊ
Lateral Prefrontal Cortex ǌǎ Right ǉǈǑ ǎ.ǋǌǊ Ʀ.ƥ−Ƥƪ ǋǈ ǋǐ ǋǌ
Superior Parietal Lobule ǌǐ Leě ǏǏ Ǎ.ǈǉ ƪ.ƫ−Ƥƨ -ǋǐ ǎ Ǌǌ

Parametric regression: Outcome
No Prior condition (GLM Ǌ)

Caudate Nucleus − Leě ǏǏ Ǐ.ǈǑǉ Ƭ.ƭ−Ƥƪ -ǉǌ Ǌǈ Ǌ
Caudate Nucleus − Right Ǎǎ ǐ.ǊǑǐ ƫ.ƭ−Ƥƪ ǉǊ ǉǎ ǐ

Violation of trust in the Prior
condition (GLM ǋ)

Caudate Nucleus − Leě ǐǊ ǎ.Ǐǐ Ʀ.Ƭ−Ƥƪ -ǉǈ ǉǐ ǉǉ
Caudate Nucleus − Right Ǎǎ ǎ.ǋǌ Ʀ.ƨ−Ƥƪ ǉǊ Ǌǉ Ǎ

Cooperative> Individualistic
(GLM ǌ)

Lateral Middle Prefrontal Cortex ǌǐ Leě ǌǑ ǌ.ǎǐǏ Ƨ.Ʀ−ƤƩ -ǋǑ ǉǑ ǊǊ
Lateral Middle Prefrontal Cortex ǌǐ Right ǏǊ ǌ.ǎǉǐ ƨ.ƫƬ−ƤƩ ǌǈ ǊǊ Ǌǌ
Anterior Middle Prefrontal Cortex ǌǎ Right ǍǏ ǌ.ǊǍǑ ƫ.Ƨ−ƤƩ -ǋǊ ǋǎ Ǌǎ
Insula ǌǐ Leě ǐǍ ǋ.ǏǍǈ ǈ.ǈǈǈǉ* -ǋǐ ǉǌ -Ǌ
Insula ǌǐ Right ǉǊǊ ǋ.ǎǌǌ ǈ.ǈǈǈǊ* ǍǏ ǉǏ -ǎ
Anterior Cingulate Cortex ǋǊ − ǉǍǉ ǋ.Ǎǋǌ ǈ.ǈǈǈǋ* Ǎ ǋǈ ǊǏ
Putamen − Right Ǒǐ ǋ,Ǎǉǐ ǈ.ǈǈǉǊ* ǊǍ Ǒ ǌ
Middle Orbito Frontal Cortex ǌǎ Right ǍǑ ǋ.ǍǊǍ ǈ.ǈǈǈǋ* ǋǑ Ǎǉ -Ǌ

Table ǌ.ǌ.ǉ: Activations correlated with contrasts of interest Note: BA, Brodmann area; * un-
corrected statistics.
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ǌ.Ǎ DĽňķŊňňĽŃł ĵłĸCŃłķŀŊňĽŃłň

Reputation-based social decision-making has been investigated both by theoretical and em-
pirical studies (Boero, Bravo, Castellani, and Squazzoni, ǊǈǈǑ; Camerer and Weigelt, ǉǑǐǐ;
Fudenberg et al., ǉǑǑǈ), however research on its neurocognitive bases is still in its infancy.
ĉough it is rather unlikely that, in daily decisions, people possess absolutely no prior nei-
ther contextual information on who they interact with, the growing literature using RTGs in
fMRI focused mainly on situations in which strictly no priors are available (McCabe et al.,
Ǌǈǈǉ; King-Casas et al., ǊǈǈǍ; Krueger et al., ǊǈǈǏ). Only two recent fMRI studies investi-
gated how social priors (i.e. the moral character of their counterparts) affect the way people
engage in RTGs (Delgado et al., ǊǈǈǍ; Dominic S Fareri et al., ǊǈǉǊ). ĉese studies however
did not completely isolate the effect of priors on trust (prior-based trust) by confronting them
to identical conditions with no priors (interaction-based trust). Our experimental seĨing is
the ėrst to allow this direct comparison. ĉemain goal of our studywas to determinewhether,
and how, reliable reputational priors affect initial decisions and subsequent learning mecha-
nisms at both the behavioral and neural level. From a behavioral point of view, we show that
priors affect decisions to trust in at least Ǌ ways: ǉ) in initial stages of the interaction, partici-
pants clearly chose to trust or distrust according to the positive or negative reputation of their
counterparts; furthermore, Ǌ) players tend to keep relying on reputation priors, even when
their counterpart’s behavior was inconsistent with it. As a consequence, and since priors were
accurate predictors of trustworthiness in our study, players earned more when reputational
cues were available than when they were not.

ǌ.Ǎ.ǉ ŁPFC ĹłķŃĸĹň ŇĹńŊŉĵŉĽŃłĵŀ ńŇĽŃŇň

From a neural point of view, our fMRI results revealed that the presentation of a new counter-
part yielded enhanced activation in themPFCwhen accompanied by a prior (irrespective of it
signaling a positive or negative reputation). We suggest that the enhancedmPFC activitymay
reĚect the fact the prior information reduced the uncertainty about the behavior of the other
faced by participants when beginning a newRTG. Indeed, this region has been previously im-
plicated in uncertainty resolution in interactive contexts (Yoshida and Ishii, Ǌǈǈǎ). ĉis is fur-
thermore consistent with the inverse activation paĨern observed in the insula, which showed
stronger activity when priors were not available, consistently with previous ėndings report-
ing a role for this region in tracking increased uncertainty (Preuschoff, Quartz, and Bossaerts,
Ǌǈǈǐ).
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ǌ.Ǎ.Ǌ ŁPFC ĵłĸ ĸLPFC ĹłķŃĸĹ ŉļĹ ŋĵŀŊĹ Ńĺ ŇĹńŊŉĵŉĽŃł ńŇĽŃŇň

At time of choice, the valence of priors elicited dissociable activation paĨernswhen integrated
with the behaviorally estimated (from the prior-based RLmodel) option values (Qt). Specif-
ically, the mPFC and dLPFC differentially responded to cooperative versus individualistic
counterparts, however, only when priors were available. As reported in previous studies, our
results suggest that this brain network keeps track of contextually modulated decision values
over trials, and doing so improves participants’ performance (Wunderlich et al., ǊǈǈǑ).

As reputational priors conveyed information on the social aĨitudes of counterparts in our
study, this activation is also consistent with a well established role of the mPFC in ascribing
aĨitudes to others (?), and anticipating their choices (Krueger et al., ǊǈǈǏ; Hampton et al.,
Ǌǈǈǐ; ?). ĉus themPFC is encoding a ėrst response to reputational priors aswell as the effect
of priors during subsequent interactions. ĉis is in accordance with ėndings from humans
(Rilling et al., ǊǈǈǊ;Hampton et al., Ǌǈǈǐ) and nonhuman primates (Barraclough et al., Ǌǈǈǌ)
on the role of the PFC in encoding value-related signals in repeated interactions.

ǌ.Ǎ.ǋ CĵŊĸĵŉĹ łŊķŀĹŊň ĹłķŃĸĹň ŇĹŌĵŇĸ PE ŃłŀŏŌļĹł ńŇĽŃŇ ĽłĺŃŇŁĵŉĽŃł Ľň łŃŉ
ńŇŃŋĽĸĹĸ

Consistent with previous studies, trial-by-trial prediction errors estimated by RL models cor-
related with activity in the striatum (Bunge, Ǌǈǈǌ; McClure, Laibson, Loewenstein, and Co-
hen, Ǌǈǈǌ; O’Doherty, Dayan, Schultz, Deichmann, Friston, and Dolan, Ǌǈǈǌ; King-Casas
et al., ǊǈǈǍ; Schönberg et al., ǊǈǈǏ) but, critically, only when no priors were available. ĉis
conėrms a role for the caudate in tracking the difference between expected and obtained out-
comes in RTGs, triggering learning. However, when priors were available they appeared to
prevent participants from reinforcement-based learning, which was reĚected in the reduced
covariance between caudate responses and estimated prediction errors.

ǌ.Ǎ.ǌ PŇĽŃŇň ŁĵĻłĽĺŏ ŇĹŌĵŇĸ-ńŇĹĸĽķŉĽŃł ĹŇŇŃŇ ňĽĻłĵŀň Ľł ŉļĹ ķĵŊĸĵŉĹ łŊķŀĹŊň

As regards the striatal activation paĨerns, these are well-alignedwith an established role of the
striatum in tracking reward contingencies, in both non-social (O’Doherty et al., Ǌǈǈǌ) and
social domains (Delgado et al., ǊǈǈǍ; King-Casas et al., ǊǈǈǍ; Jones et al., Ǌǈǉǉ). More specif-
ically, the observed paĨerns are consistent with the idea that the caudate mediates the neural
computation of reward prediction error (RPE). Indeed, we observedRPE-pliant signals in the
caudate only when no priors were provided, while the same signals appeared blunted when
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priors were available. Previous studies on non-social tasks (Li et al., Ǌǈǉǉ; Doll et al., ǊǈǈǑ,
Ǌǈǉǉ) and social tasks (Delgado et al., ǊǈǈǍ; Biele et al., Ǌǈǉǉ; Fareri, Chang, and Delgado,
ǊǈǉǊ) have shown that, when priors are available, participants tended to hinge on to them,
and to relatively discount the impact of the outcomes of their past decisions.

However, in addition to the previous studies, our results show that the presence of priors
magniėes striatal deactivation to violationsof trust (i.e. when a counterpartwithpositive repu-
tation, as opposed to no reputation, violated trust), rather than blunting their response. Why
previous studies didn’t ėnd such magniėed response due to violation of priors requires fur-
ther investigation, though several hypotheses are possible. For instance, two studies (Delgado
et al., ǊǈǈǍ; Fareri et al., ǊǈǉǊ) focused on the subset of unreliable priors, that is, on priors that
carried no information on trustees’ actual choices; it is likely that, in such a scenario, partic-
ipants were gradually learning to disregard such priors, converging towards their extinction
rather than exploitation. On the other hand, the opposite may have occurred in amore recent
study on the non-social domain (Li et al., Ǌǈǉǉ), in which priors were perhaps too reliable. In-
deed, in that study, agents were explicitly instructed on the precise probabilities of outcomes,
which may have reduced their surprise when infrequent, though anticipated losses occurred.
In both these previous studies, the space for learning via priors may have been reduced, as
the actual prior-to-reward contingencies appeared either non-existent (Delgado et al., ǊǈǈǍ;
Fareri et al., ǊǈǉǊ), or already completely exploited (Li et al., Ǌǈǉǉ). It is also possible that
the different methods used to instil priors tapped on different neural mechanisms: Delgado
and colleagues (ǊǈǈǍ) provided short descriptions of the “moral character” of counterparts,
whereasFareri andcolleagues (ǊǈǉǊ)useddirect evidence fromprevious experience (i.e. play-
ing a ball task). Such methods of instilling priors may have also made them more salient or
intuitive and, as a result, harder to extinguish in spite of conĚicting evidence. On the other
hand, our task reported on characteristics of counterparts that were possibly more directly
linked to the main task (i.e. the priors were based on results indicating the extent to which
one cares about his own payoffs and that of others - SVO task). Further investigation speciė-
callymanipulating prior reliability should clarify some of the points of divergence. Until then,
the open question in our study regarded the reason as to why striatal deactivations to trust
violations were not leading to behavioral adjustments when priors were available.

ǌ.Ǎ.Ǎ VLPFC CĵŊĸĵŉĹ ňŉŇŃłĻĹŇ ĺŊłķŉĽŃłĵŀ ķŃłłĹķŉĽŋĽŉŏ ńŇĹŋĹłŉĽłĻ ŇĹŉĵŀĽĵ-
ŉĽŃł

On the other hand, when priors were present, we suggest that the impact on learning of the
striatal deactivations to violations of trust may have been disrupted by other brain areas. Our
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results are in line with aĨributing this role to the vLPFC, which we found to functionally cor-
relate with such striatal deactivations. In particular, the strength of connectivity between cau-
date and vLPFC was stronger in the prior compared to the no prior condition. We thus pro-
pose that the vLPFC contributes inmaintaining choices alignedwith the reliable prior beliefs,
when beliefs momentarily conĚict with observations. ĉis might occur by compensating for
the relatively automatic behavioral changes to reward prediction error signals. In line with
this interpretation previous literature has implicated the vLPFC in top-down cognitive con-
trol by biasing processing in other brain regions towards contextually appropriate represen-
tations (Cohen, Mcclelland, and Dunbar, ǉǑǑǈ; Miller and Cohen, Ǌǈǈǉ). Furthermore, not
only the vLPFC plays a role in modulating boĨom-up fashion cognition processes, but this
area has also been found to play a role in goal-directed behavior (Souza, Donohue, and Bunge,
ǊǈǈǑ; Valentin et al., ǊǈǈǏ). In conclusion, our study integrates theories and methods from
cognitive neuroscience, economics, and RL to gain a greater understanding of how reputation
priors are encoded in the brain and how they affect learning to trust anonymous others. Our
ėndings suggest that priors inĚuence both initial decisions to trust and the following learn-
ing mechanisms involved in repeated interactions. Speciėcally, the present study showed that
reputational priors magnify striatal responses to violations of trust. However, when such pri-
ors are reliable, other phylogenetically younger brain regions involved in higher cognitionmay
contribute to keep decisions anchored to those priors, thus relatively discounting the weight
of conĚicting evidence. ĉe interplay between striatum and lateral orbitofrontal cortex may
prevent unnecessary retaliation when others violate our trust, and thus constitute an impor-
tant neuro-cognive mechanism that favors social stability.
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All trust involves vulnerability and risk, and nothing would
count as trust if there were no possibility of betrayal.

Robert C. Solomon

5
Simultaneous eye-tracking and galvanic skin

reĝonse

Ǎ.ǉ BĵķĿĻŇŃŊłĸ

Ił ŉļĹ ńŇĹŋĽŃŊň ķļĵńŉĹŇň, we have shown the behavioral, computational and neural pat-
ternsunderlying adaptive social learning andhowreputational priors affect this learningmech-
anism. We investigated two mains effects: the absence or presence of reputation information
and two probabilities of reciprocation (high and low). In the ėrst study, the responses of par-
ticipants in long RTG (ǉǈ exchanges) were best predicted by an Adaptive-Belief RL model
which captures long-term relationships between reputation and experienced trustworthiness.
However, when interactions end stochastically (RTGs are shorts), people rely more on prior
expectations drivenby reputations and this is best explainedby aPrior-ExpectationRLmodel.
Indeed, the ėrst trial of the interaction with a new counterpart provides the best behavioral
discrimination between the prior and no prior condition, and this is reĚected in enhanced
Medial-Prefrontal cortex activity. ĉis motivated us to further explore how reputation priors
affect ėrst trustworthiness judgments in single-shot Trust Games.
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Moreover, the two ėrst studies suggest that participants are particularly sensible to trust
violation when partners have high pro-social reputation. Trust violations happen when the
trustors (e.g. our participants) have trustworthy expectations of the trustees and when these
later contradict expectations. Previous studies report that trust violation can cause severe psy-
chological and relationship damages (Slovic, ǉǑǑǋ; Lewicki, McAllister, and Bies, ǉǑǑǐ), and
(Chapter Ǐ inRoy J. Lewicki, ǉǑǑǎ) and even in some cases, lost trust can never be restored. In
their studies, Lewicki and colleagues propose theoretical models for trust violation in which
they assume that trust betrayal may permanently harm trust. However, no study has investi-
gated on the memory, emotional and psychophysiological consequences of violating trust.

In this new study, we decided to focus on single-stage Trust Games when no learning takes
place. Participants played as trustor in single TGs with partners of different pro-social nature
with or without reliable reputational priors. We used probabilistic responses to simulate part-
ners with different reputations (from competitive to altruistic) while recording electrodermal
activity as an autonomic index of affective state as well as eye movements.

Electrodermal responses andeye-movementswere recordedwhileparticipantsplayed single-
stage TGs with different anonymous partners. We used eye-tracking technique to investigate
whether reputational priors affected eye saccades when viewing face-stimuli of their counter-
parts. Extensive research on face perception has shown that people use holistic and features-
based processing to evaluate facial expression when they encounter new partners (Dalton,
Nacewicz, Johnstone, Schaefer, Gernsbacher, Goldsmith, Alexander, and Davidson, ǊǈǈǍ;
Stacey,Walker, andUnderwood, ǊǈǈǍ; Belle, Ramon, Lefèvre, andRossion, Ǌǈǉǈ; Eisenbarth
and Alpers, Ǌǈǉǉ). Critical information in inter-personal communication is evaluated from
the eyes and, to a reduced extent, the nose and themouth. In addition, these evaluations have
been found to be predictive of people’s ability to perceive trustworthiness and aggressiveness
(Bar, Neta, and Linz, Ǌǈǈǎ; Willis and Todorov, Ǌǈǈǎ). In one recent study, using oxytocine
(OT), authors have shown that that OT nasal administration (enhancing trust) modiėed the
way people evaluate faces of others, increase the amount of eye-gaze (Guastella, Mitchell, and
Dadds, Ǌǈǈǐ). In this new study, we tested the hypothesis that reputational prior reduce un-
certainty about the counterpart’s type and thus decreases the amount of eye-exploration. It
was hypothesized that participants’ saccades when scanning face-stimuli of counterparts who
were associated with a reliable prior would be less important than when they were exploring
the face-stimuli of counterparts with no reputation.

Recording electrodermal activity is a well-establishedmethod in psychophysiology that in-
forms about the activity of the autonomic nervous system. Its relationship with emotional
arousal and emotions has been proven to be robust in a lot of experimental studies. In a re-
cent neuroeconomics study, electrodermal responses were found to be higher for unfair offers
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compare to fair offers and were concomitant with the rejection of unfair offers when partic-
ipants played the Ultimatum Game (Dunn, Evans, Makarova, White, and Clark, ǊǈǉǊ). We
speculated that decision making with reliable reputation information may decrease electro-
dermal activity responses during a trust-related social situation since uncertainty is reduced.
We also hypothesised to ėnd interactions between trust and reputation at behavioral and psy-
chophysiological level. Additionally, we postulated that violation of trust of counterparts with
the highest pro-social reputations would be directly linked to physiological changes (i.e. auto-
nomic nervous system responses at time of violation of trust). In line with the last hypothesis,
we investigated whether intra-individual differences in participants’ electrodermal responses
(EDRs) recordedwhen observing violation of trust predicted subsequent recognition of part-
ners who had betrayed trust.

Ǎ.Ǌ EŎńĹŇĽŁĹłŉĵŀ ĸĹňĽĻł ĵłĸŁĹŉļŃĸň

Ǎ.Ǌ.ǉ PĵŇŉĽķĽńĵłŉň

Forty-four Italian college students of theUniversity ofTrentowithin the ages of ǉǑ to Ǌǐ (M =

ƦƦ ± Ʀ) were recruited through online announcements. ĉere were ǉǉ males and ǋǋ females
and ǌǋ of the ǌǌ participants were right-handed. Participants had normal or corrected-to-
normal vision, no history of psychiatric, neurological ormajormedical problems andwere not
under psychoactive medications at the time of the study. ĉey gave wriĨen informed consent
to participate in an eye-tracking and electrodermal activity decision making experiment and
decided to either be paid ǉǈ euros. In addition to this, the participant received an additional
payment based on their performance in the two tasks ĉe study was approved by the local
institutional ethical board of the University of Trento. Because of technical issues with the
eye-tracking, only ǋǉ participants remained in the analysis of the eye-mouvements.

Ǎ.Ǌ.Ǌ TĵňĿ

In the experiment, participants played one trial of the Trust Game (TG) (Berg et al., ǉǑǑǍ)
with several counterparts (i.e. each trial with a different counterpart). In the game, the par-
ticipant, also known as “Investor”, is given ǉ euro and has to decide whether to share half of
his endowment with an anonymous counterpart (“Trustee”) or keep themoney. If the partic-
ipant decides to share, the amount that the Trustee receives is tripled by the experimenter and
added to the amount he currently has (ǉ+ǋ euros = ǌ euros) and the Trustee decides whether
to share or keep the money with the Investor. If he decides to share the money, the Investor
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and the Trustee end the game with Ǌ euros each, but if the Trustee decides to keep the ǌ eu-
ros, the Investor receives nothing. Each trial begins with a ėxation cross for ǉǈǈǈms, followed
by the presentation of a prior with or without an occluder covering the prior, which is then
followed by a picture of the face of the counterpart (See ėgure Ǎ.Ǌ.ǉ).

Figure Ǎ.Ǌ.ǉ: Experimental design. One round of the two-player repeated trust game (RTG). Pǉ is
the payoff of the participant, who always plays as investor; PǊ is the payoff of his counterpart, who
plays as trustee. Before each round both players are endowedwith ǉ euro. ĉeparticipantmoves ėrst
and chooses either to ”keep” or ”share” If he keeps, both playersmaintain their initial endowments. If
he shares the participant”s endowment is multiplied by ǋ and passed to the counterpart. ĉe trustee
then decides whether to share in turn (by returning Ǌ euros), or to keep (by returning nothing).
RTGs consisted of several consecutive rounds with a same counterpart. Participants played with
many different counterparts and were told that their counterparts had already made their choices.

Faces of Caucasian males, aged Ǌǈ-ǎǈ years old (M = Ƨƨ.Ƥƭ, SE ± ƥƥ.ƥƭ) were selected
and extracted with permission from the FERET database of colored facial images (Phillips
et al., Ǌǈǈǈ). Two databases of images were created, ǎǌ were used for the experiment while
an additional ǋǊ were used for the post-experiment questionnaire. All Ǒǎ images were con-
trolled for aĨractiveness, emotion and race. Aěer the main experiment, participants took a
ėve-minute break before proceeding to the post-experiment questionnaire - thememory task.
ĉepurpose of thememory task is to ascertainwhether the outcomeof the trust game and sat-
isfaction regarding the interaction inĚuences the recognition of theTrustee’s face. Participants
were shown a face of either a previous counterpart in the experiment or a face not previously
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presented. ĉe question “Do you remember this person?” was presented and they were asked to
indicate whether they remembered the face or not by pressing on the leě (Yes) or right (No)
buĨons of the mouse.

Ǎ.Ǌ.ǋ EŎńĹŇĽŁĹłŉĵŀ ķŃłĸĽŉĽŃłň

Trustees were divided into four types (Altruistic, Cooperative, Individualistic and Competi-
tive), pertaining to their probability of reciprocation, or the probability of choosing to Share
their money with the Investor. Altruistic trustees reciprocate Ǒǈƻ of the time, Cooperative
trustees reciprocate Ǐǈƻ of the time, Individualistic trustees reciprocate ǋǈƻ of the time and
Competitive trustees reciprocate ǉǈƻ of the time.

ĉe presence and absence of a reputation prior was also manipulated for this study. Half of
the trustees in each type were presented with a reputation prior pertaining to their type, while
the other half came with no prior information. Participants were informed that all trustees
completed the Social Value Orientation (SVO) questionnaire (Van Lange, ǉǑǑǑ) and that
they may or may not be provided with information about the trustees’ performance in the
questionnaire. For the prior condition, stars were presented to show the type of trustee based
on the questionnaire. Altruistic trustees had ǌ stars, Cooperative trustees had ǋ stars, Indi-
vidualistic trustees had ǉ star while Competitive trustees had ǈ star ratings. For the no prior
condition, participants were presented with an occluder to cover the star ratings.

Once the trust game with the counterpart is ėnished, the participant was asked to give a
satisfaction rating of his previous interaction with the Trustee on a scale of -Ǎǈ to +Ǎǈ.

Participants were paid a ėxed amount of ǉǈ euros for participation and additional money
was paid based on their performance in the two tasks. For the main experiment, participants
were paid an additional ǈ, Ǎ or ǉǈ euros based on the outcome of a randomly extracted trial
in the trust game. Furthermore, participants were paid up to Ǎ euros more based on their
accuracy rates in thememory task of the post-experiment questionnaire (Ǎǈƻor less accuracy
= ǈ euros, Ǎǉ-ǎǈƻ = ǉ euro, ǎǉ-Ǐǈƻ = Ǌ euros, Ǐǈ-ǐǈƻ = ǋ euros, ǐǈ-Ǒǈƻ = ǌ euros, Ǒǈ-ǉǈǈƻ
= Ǎ euros). Hence, participants earned a total of ǉǈ-ǊǍ euros (M = ƥƬ.Ʃ± Ƨ.ƪƭ).

Ǎ.Ǌ.ǌ TĵňĿ ĵłĸ ĹŀĹķŉŇŃĸĹŇŁĵŀ ńŇŃķĹĸŊŇĹň

Participants were ėrst given oral instructions about the task in Italian. Aěer being debriefed
about the experiment task, electrodes from the Biopac MPǉǍǈ were placed in two of the par-
ticipant’s ėngers in the non-dominant hand (usually the leě) and he or she was ėĨed with
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the eye-tracking helmet (See next paragraph). ĉe electrodermal response was then ampli-
ėed via the ampliėer module GSRǉǈǈC. Participants were instructed to follow the dots with
their eyes. Participants did Ǎ practice trials and then ǎǌ experimental trials (ǐ per condition:
Prior Altruistic, Prior Cooperative, Prior Individualistic, Prior Competitive, NoPrior Altru-
istic, NoPrior Cooperative, NoPrior Individualistic, NoPrior Competitive) with a short self-
determined resting period provided aěer ǋǊ trials. Figure Ǎ.Ǌ.ǉ shows the timeline of one
trial. ĉey were given a short rest period followed by debrieėng about the post-experiment
memory task, and ǋ practice trials were presented before completing ǎǌ trials in the mem-
ory task. Eye-tracking and electrodermal activitywere measured in both the experiment and
post-experiment trials.

Ǎ.Ǌ.Ǎ EŏĹ-ŉŇĵķĿĽłĻ ńŇŃķĹĸŊŇĹň

Participants were seated in a chair with a soě head restraint to ensure a viewing distance of
ǎǈ cm to the monitor. Presentation of the stimuli was performed using a custom made pro-
gram wriĨen using the Matlab Psychophysical toolbox. Eye movements were monitored and
recorded using an Eyelink II system (SR. Research Ontario Canada) with a sampling rate of
ǍǈǈHz. A ėxation was deėned as an interval in which gaze was focused within ǉ° of visual an-
gle for at least ǉǈǈms (Manor andGordon, Ǌǈǈǋ). A nine-point calibration was performed at
the beginning of each block. Calibration phase was repeated until the difference between the
different positions of the points on the screen and the corresponding eye locations was less
than ǉ°. Aěer the calibration phase, a nine-point validation phase was performed (similarly
to the calibration phase) to make sure that the calibration was accurate. Recalibrations were
performed if needed, and eye-tracking was stopped if these were unsuccessful. Before the be-
ginning of each trial a driě correction was performed (except for the ėrst trial of each block).
ĉen, a ėxation point was presented in the same position of the last point of the driě correc-
tion (last point of the validation phase for the ėrst trial of each block) for Ǎǈǈms. ĉe ėxation
point was located in the middle of the two possible choices (Keep or Share). To minimize
biases related to the starting ėxation point and anchoring effects, the position of the words
(Keep or Share) were counterbalanced. Eyemovements were recorded during the entire time
of the trial. Tominimize noise, information displayed on themonitorwas limited to fewwords
and numbers. In order to calibrate the areas of interest of each face, the pictures were spatially
transformed (using Photoshop) so that the center of each eye (the iris) and the center of the
mouth (where the lips meet) correspond to the same coordinate positions in the transformed
picture.
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Ǎ.ǋ Dĵŉĵ AłĵŀŏňĽň

Ǎ.ǋ.ǉ BĹļĵŋĽŃŇĵŀ Dĵŉĵ

In order to look at whether prior information has an effect on the decision to trust, repeated
measures ANOVA was performed with Prior information (No prior, ǈ-star prior, ǉ-star prior,
ǋ-stars prior, ǌ-stars prior) as independent variable and percentage of decisions to “share” per
participant as dependent variable. Repeated Measures ANOVA was also performed on reac-
tion times at time of choice, in order to determine if lesser ambiguity provided by prior infor-
mation lead to faster reaction times. ĉe outcome of a previous interactionwith a counterpart
is also hypothesized to inĚuence thedecision to sharewith a similar counterpart. Hence, logis-
tic regression was performed in order to determine if the outcome of the previous interaction
with a counterpart type couldpredict theparticipants’ decision to share for a subsequent coun-
terpart of the same type. It is hypothesized that there would be a higher negative emotional
valence when the outcome of the interaction is negative (participant shared and counterpart
kept), and the counterpart does not act in congruence with the prior information. Hence, the
emotion scale was analysed through Repeated Measures ANOVA, extracting only the trials
with Prior condition and those when the participant shared and the opponent kept. For the
post-experiment questionnaire, it is hypothesized that participants would have a higher accu-
racy for the faces of counterparts whom they decided to trust (participant shared), and for
faces of counterparts who betrayed them (participant shared and counterpart kept). Hence,
paired t-tests would be performed on accuracy rates, comparing counterparts for whom par-
ticipants shared vs. kept, and where participants shared and counterpart kept vs. counterpart
shared.

Ǎ.ǋ.Ǌ EŀĹķŉŇŃĸĹŇŁĵŀ ńŇĹńŇŃķĹňňĽłĻ

In order to preprocess the galvanic data, we used the toolbox developed by Mateus Joffily
(Toolbox for Electrodermal Activity (EDA) analysis) based on Matlab. ĉe ėrst step of our
analysis was to verify the quality of the data acquired during the experimental session by gen-
erating and visually examining plots of the electrodermal signal at different steps of the prepro-
cessing (See rawdata example - ėgure Ǎ.ǌ.ǉ). Secondly, we applied both a high-pass ėlter in
order to remove most of the tonic changes as well as the slow driěs (Freedman, Scerbo, Daw-
son, Raine, McClure, and Venables, ǉǑǑǌ), and a low-pass ėlter to remove the high-frequency
noise (Ǎth-order low-pass BuĨerworth ėlter with cutoff frequency at ǉHz). ĉe resulting
band-pass ėltered signal was then downsampled respecting the Shannon-Nyquist sampling
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Figure Ǎ.ǋ.ǉ: A. Example of raw galvanic skin response for one participant over time. B. Power
Spectrum representing the frequency of the signal.

rule (i.e. the sampling rate fs must be greater than twice the bandwidth of the signal). Once
the data was preprocessed, we ran an automatic detection algorithm that ėnds Electrodermal
Response (EDR) in the galvanic responses by calculating a ėrst time-derivative of the data us-
ing a difference function, and detecting the main characteristic of the galvanic response (the
valleys and peaks) when the derivative changes sign. Onsets of valleys are identiėed through
a negative to positive zero crossing, whereas peaks are deėned by an opposite change (pos-
itive to negative zero crossing). ĉe amplitude of the galvanic response is computed as the
difference between the amplitudes at the peak and valley levels. ĉe slope corresponds to the
rate of changes and it is computed as the ratio between the Ǌ EDR amplitudes and the ride
time. Overlapping EDRs were disjointed at minima in the ėrst derivative and used as separate

Figure Ǎ.ǋ.Ǌ: Representative regressor for one participant distinguishing between Ǌ conditions
above preprocessed EDA. Note that the red dots represent the peak estimates and the blue dots rep-
resent the valleys.

EDRs. Short responses (belowǈ.ǈǈǍ μ.S)were excluded from the analysis since they are likely
to indicate environmental noise. In order to correct for slope, we log-transformed the EDRs,
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and range-corrected the data using each participant’s maximum range response. ĉus, we re-
port all our analysis in units of range-corrected logE(μ.S) (See preprocessed data example
- ėgure Ǎ.ǌ.Ǌ).

Ǎ.ǋ.ǋ EŀĹķŉŇŃĸĹŇŁĵŀ ĵłĵŀŏňĽň

ĉe main goal of this study was to assess the difference between “direct-based” interaction and
“reputation-based” interaction; if the strength of reputational priors affect “reputation-based”
interaction and if the link between the strength of the reputational prior in the experiment
will facilitate recall of faces in the post-experiment task. Accordingly, the following analyses
investigated two main onsets of time: at time of decision-making and at time of outcomes.

ǉ. We ėrst applied a search grid algorithmwith amovingwindowEDRaverage that allows
us to determine the onsets for choice and outcome periods at ǉ.ǊǍ seconds and ǉ.ǌ sec-
onds respectively. ĉese two onsets are the time points aěer participants were asked
to decide whether to trust the counterpart or not, and when they saw the outcome of
the game. ĉe EDR magnitudes that were used in our statistical model correspond to
individual mean responses across all trials from all onsets corresponding to a speciėc
condition. In order to verify that our data were not contaminated by habituation ef-
fects, we looked for individual mean responses in both the experiment and the post
experiment task, and tested for habituation effects.

Ǌ. Our ėrst analysis examined whether the skin conductance level at time of choice was
sensitive to decision-making and outcome anticipation. We probed whether this ac-
tivity was larger for the decision to share than for the decision to keep and how these
decisions were inĚuenced by prior conditions.

ǋ. Secondly, we looked at the EDR at time of outcome and investigated the discrepancy
between observed outcomes and anticipated outcomes. Additionally, we checked for
correlation between the reported emotional levels and the EDR recorded.

ǌ. ĉen we analyzed participants’ EDRs when evaluating the outcomes of decisions in
the experiment. We correlated individual changes in EDR magnitudes with individual
changes in the percentage of correct recognition in the post-experiment questionnaire.
We correlated participant’s EDRmagnitudes and theirmean emotional ratingwhenob-
serving the outcomes of each interaction. To assess whether there is a differential re-
sponse magnitude to the experience of betrayal and trustworthiness in the prior and
the no prior conditions, we calculated a Violation-Trust-EDR score for each partici-
pant, and correlated it with the correct recall in the second session. ĉis score was the
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absolute differential EDR magnitudes at time of outcome in two situations: (ǉ) while
being betrayed by a presumably cooperative counterpart, and (Ǌ) while being repaid
for placing trust with the same type of counterpart: “Violation-Trust-EDR”. To assess
whether the presence of a prior information for “Violation-Trust-EDR” conditions and
the differential scores contribute to the variance in recognition in the memory task,
we used a hierarchical multiple regression analysis using “Violation-Trust-EDR -Prior”,
“Violation-Trust-EDR -No-Prior” and the differential scores as regressors. In order to
discern the relationship between violation of trust and percentage of recognition, re-
gardless of the effect of prior information, we used force entry for “Violation-Trust-
EDR-No-Prior” in the ėrst step. Consecutively, we used the two variables of “Violation-
Trust-EDR-Prior” and “Violation-Trust-EDR-No-Prior” scores to investigate whether
they captured some of the variance. In order to evaluate regressors in the model with-
out accounting for their order of entry, we used a stepwise procedure. For each variable,
we identiėed outliers as responses that were over ǋ standard deviations from themean,
and Pearson correlations that were signiėcant at p < ǈ.ǈǍ, one-tailed, unless otherwise
speciėed.

Ǎ.ǋ.ǌ EŏĹ-ŉŇĵķĿĽłĻ ĵłĵŀŏňĽň

For each pictures, we deėne ǌ areas of interest (facial-AOIs, as seen in the ėgure Ǎ.ǌ.ǋ), one
for each eye, the nose and the mouth. ĉe Ǌ eyes-AOIs had a circular shape with ǉǉǉǐǊ pix-
els; the nose-AOI had a circular shape with ǉǈǈǏǋ pixels and the mouth-AOI an ellipse with
ǉǊǋǈǊ pixels. We centered the eyes-AOIs in the iris. ĉis allowed us to avoid the possibility
that small errors in the calibration procedures could result in a wrong allocation of the eye-
tracking parameters. ĉis is especially useful for those situations in which the parameter was
located on the border of a facial-AOI. Facial-AOIs do not cover the face area entirely but just
the part of the face known to be relevant for facials extractions and never overlap. In this way,
facial-AOIs include only saccades whose interpretations are not ambiguous. Because I report
just preliminary results, only one type of variable is described, corresponding to the number
and type of saccades participants made when looking at the face of others. ĉese saccades
relate to the eye gaze transitions made by the participants from one region of the screen to
another. For the analysis, we distinguished between (ǉ) the facial-relevant saccades being the
transitions from one facial-AOI to another facial-AOI and (Ǌ) the non-relevant saccades as
being the transitions starting or ending outside and facial-AOI.
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Figure Ǎ.ǋ.ǋ: Areas of interest. Example of areas of interest (AOIs) for one face-stimulus. For each
face stimulus, we deėned AOIs: the eyes, nose, and mouth. ĉe brown lines represent examples of
the relevant saccades for facial perception.

Ǎ.ǌ RĹňŊŀŉň

Ǎ.ǌ.ǉ EĺĺĹķŉň Ńĺ ńŇĽŃŇ ŁĵłĽńŊŀĵŉĽŃł

In order to check for the prior effect in the direct-based and reputation-based conditions, we
extracted EDRs at time of choice in situations when participants had a prior versus when they
didn’t. We also examined conditionswhenparticipants decided to share in the prior condition
as comparedwith thenoprior condition. First, we found thatEDRswere signiėcantly stronger
when participants shared (M=ǈ.Ǐǌǐ, SE± ǈ.ǋ), as compared to kept (M=ǈ.ǌǉǍ, SE± ǈ.ǈǑ),
t(ǌǉ)=Ǎ.ǈǍ, p<ǈ.ǈǈǉ, ηƦ =ǈ.ǎǋ (SeeėgureǍ.Ǎ.ǉA). EDRswere also found to be signiėcantly
stronger for choices made in the no prior condition (M = ǈ.ǑǏǍ, SE± ǈ.ǈǏ) as compared to
the prior condition (M = ǈ.ǍǊǍ, SE ± ǈ.ǈǊ), t(ǌǉ) = ǋ.Ǐǌ, p = ǈ.ǈǈǉ, ηƦ = ǈ.ǌǍ (See ėgure
Ǎ.Ǎ.ǉ B). For counterparts that shared, we found higher mean EDRs for counterparts that
were presented without a prior (M = ǉ.ǉǊǋ, SE ± ǈ.ǌǍ) than with a prior (M = ǈ.ǎ, SE ±
ǈ.ǌǋ, t(ǌǉ) = ǋ.ǋǊ, p<ǈ.ǈǈǉ, ηƦ = ǈ.ǌǉ). In addition, mean EDRs for counterparts that kept
were lower for those presented with a prior (M = ǈ.ǊǍǑ, SE = ǈ.ǋǑ) than without a prior (M =
ǈ.ǎǐǉ, SE± Ǌ.ǐǍ), t(ǌǉ) = Ǌ.Ǐǐ, p<ǈ.ǈǈǎ, ηƦ = ǈ.ǊǑ) (See ėgure Ǎ.Ǎ.Ǌ).
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Figure Ǎ.ǌ.ǉ: A. Main effect of decision of the participant at time of choice. We found an overall
effect of the type of decision. ĉe EDRwas higher for decisions to share than for decision to keep. B.
We found the EDR was higher for decisions made in the no prior condition than for decisions made
in the prior condition.

Figure Ǎ.ǌ.Ǌ: Differential effect of decision of the participant at time of choice in the prior and no
prior conditions.

ĉe results of the ANOVAs with the factor (prior/no prior) and time (ėrst half/second
half of the experiment), that were computed separately for conditions in which participants
decided to share and keep in the TG, showed no difference overtime. ĉis shows that EDRs
were not affected by habituation (See Table Ǎ.Ǎ.ǉ).

Ǎ.ǌ.Ǌ EĺĺĹķŉ Ńĺ ĽłķŃłňĽňŉĹłŉ ŃŊŉķŃŁĹň ĵłĸ ŇĹķŃĻłĽŉĽŃł

On average, people recall the correct picture in Ǐǋ.ǎǍƻ (SE= Ǎ.Ǎ) of the cases. ĉey recognize
correctly Ǐǎ.ǎƻ of the pictures in the no prior condition and Ǐǈ.Ǐǌƻ in the no prior condition
(SE = ǎ.ǋ), but this trendwas not signiėcant (p=ǈ.Ǌǋ). Analysis comparing EDR responses in
the experiment and post-experiment questionnaire indicate no effects of time, indicating no
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ANOVAs

F(ǉ,ǌǉ) P ηƦ

Factor decision - Shared Ǌǐ.ǋǑ <ǈ.ǈǈǉ ǈ.ǌǉ
Factor decision - Kept Ǌǌ.Ǒǉ <ǈ.ǈǈǉ ǈ.ǋǏ
Factor time - Shared ǈ.ǈǍǉ ǈ.ǐǌ ǈ.ǈǈǊ

Factor time - Kept ǈ.ǈǏǎ ǈ.ǐǊ ǈ.ǈǈǋ
Interaction decision x time - Shared ǈ.ǎǍ ǈ.ǌǌ ǈ.ǈǋǋ

Interaction decision x time - Kept ǈ.ǉǎ ǈ.ǎǑ ǈ.ǈǈǐ

Table Ǎ.ǌ.ǉ: Anovas. Results of ANOVAs with the factor (prior/no prior) and time (ėrst
half/second half of the experiment).

Figure Ǎ.ǌ.ǋ: Differential effect of decision of the participant at time of outcome in the prior and no
prior conditions.

habituation across trials (Mann-Whitney test, U = ǌǌǐǍǎ.Ǒ, Z = −ǈ.ǉǋ, p = ǈ.ǑǊ). Analysis at
time of outcome revealed a main effect of prior on autonomic responses of your participants
electrodermal responses. Indeed, EDRswere higher in the no-prior condition (M= ǈ.ǏǌǊ, SE
± ǈ.ǈǑǐ) compare to the prior condition (M = ǈ.Ǎǉǉ, SE ± ǈ.ǉǋǊ), (t(ǌǉ) = Ǌ.ǈǉ, p=ǈ.ǈǉ)
(See ėgure Ǎ.ǌ.ǋ). We also found that electrodermal responses were correlated with emo-
tional report (r = ǈ.ǋǍ, p=ǈ.ǈǋ). In line with this result and the prior effect, we found that
the amplitude of participants’ emotional reports were higher in the no prior compare with
the prior condition. Indeed, when counterparts shared in the prior condition, participants re-
ported a smaller emotional rate (M=ǋǊ.ǉǊ, SE± Ǒ.ǍǍ) thanwhen they shared in the no-prior
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condition (M = ǌǉ.ǈǋ, SE± ǐ.Ǎǎ), (t=Ǐ.ǈ, p<ǈ.ǈǈǉ). A similar result was found when coun-
terparts kept (See ėgure Ǎ.ǌ.ǋ). Results also revealed that participants were more affected by
inconsistent outcomes compared to consistent outcomes in general. Inconsistent outcomes
are computed in twoways: (ǉ) in the prior condition, inconsistencies are calculated as the dif-
ference between the expectation of a given decision corresponding to a prior suggestion (i.e.
trustworthiness if the counterpart has ǋ or ǌ stars and untrustworthiness if the counterpart
has ǈ or ǉ stars) and the unexpected outcome (the ǋ or ǌ stars counterpart violated trust etc.).
(Ǌ) In the no prior condition, we assumed that players were expecting a trustworthy decision
of the counterpart when they decided to share and vice versa when they kept. In that case,
the inconsistency was a basic prediction error. Across all inconsistent outcomes, EDR results
show higher activity for negative prediction error (M = ǈ.ǏǋǊ, SE ± ǈ.ǈǐ) than for positive
prediction error (M= ǈ.ǋǐǏ, SE± ǈ.ǈǌ), t(ǌǉ) = ǋ.ǏǍ, p=ǈ.ǈǈǉ, ηƦ = ǈ.ǌǊ. Additionally, when
altruistic and cooperative counterparts violated trust, EDRs were higher for the prior condi-
tion (ǋ and ǌ stars) (M = ǈ.ǐǏǎ, SE± ǈ.ǈǏ) than for the no-prior condition(M = ǈ.ǍǐǏ, SE =
ǈ.ǈǑ), t(ǌǉ) = ǋ.ǈǍ, p=ǈ.ǈǈǋ, ηƦ = ǈ.ǋǐ. Within the prior condition, no difference was found
between ǋ and ǌ stars. No difference was also found when counterparts reciprocated trust in
the prior and no prior conditions (t(ǌǉ) = ǈ.ǌǍ, p=ǈ.ǎǏ).

Ǎ.ǌ.ǋ CŃŇŇĹŀĵŉĽŃł ĵłĵŀŏňĹň

We found a positive correlation between emotional rating magnitudes (absolute values of
emotional reports) and EDRs at time of outcome, r(ǌǉ) = ǈ.ǍǊ, p = ǈ.ǈǊ. ĉus, we decided to
further investigate the skin conductance data, integrating it with participant’s reported emo-
tions. According to our previous analysis, when investigating inconsistent outcomes, we iso-
lated the outcomes in “Violation-Trust-EDR“ and looked at the percentage of correct recogni-
tion in Task Ǌ as well as the rating of trustworthiness. We found a strong correlation between
individualmagnitude of EDRs aěer violation of trust and the percentage of trials inwhich par-
ticipants remembered the counterparts in second session, r(ǌǉ) = ǈ.ǎǋ, p = ǈ.ǈǈǋ (see ėgure
Ǎ).

Since the correlation between emotional ratings andEDRs yield to a signiėcant correlation,
we investigated the difference between emotional rating, trustworthiness rating and recogni-
tion in the next task. We found that EDRs aěer violation of trust were anti-correlated with
untrustworthiness ratings (r(ǌǉ) = −ǈ.ǋǏ, p = ǈ.ǈǍǋ). Finally, we found a positive relation-
ship between the absolute emotional rating in the ėrst task and the recognition in the second
task (r(ǌǉ) = ǈ.ǋǏ, p = ǈ.ǈǈǐ). ĉis result indicates that the strongest the violation of trust
felt by the participants and the more oěen they were able to remember their counterparts
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Figure Ǎ.ǌ.ǌ: ĉis plot shows a signiėcant positive correlation between participant’s electrodermal
responses (EDRs) when seeing that others violated trust and the percentage of correct recognition
of these counterparts in the second task (out of a total of ǌǈ trials).

in subsequent tasks. ĉe hierarchical multiple regression analysis indicated that “Violation-
Trust-EDR” alone was a signiėcant predictor for later recognition, F(ǉ,ǌǉ) = ǎ.ǌǍ, p = ǈ.ǈǊǉ;
adjusted RǊ = ǈ.ǊǊ (see table Ǌ). Whenwe added the “Violation-Trust-EDR-Prior” variable in
the model, the difference score resulted in an additional ǉǑ.Ǐǐƻ of variance being explained,
F(Ǌ,ǌǉ) = Ǐ.Ǎǉ, p = ǈ.ǈǈǍ; adjustedRƦ =ǈ.ǌǊ, Δ∗RƦ = ǈ.Ǌ, p(F change) = ǈ.ǈǊ. ĉe “Violation-
Trust-EDR-No-Prior” variable didn’t contribute to the regressionmodel. ĉe same result was
obtained when reversing the entry of the two variables in the model.

Ǎ.ǌ.ǌ EŏĹ ŉŇĵķĿĽłĻ ńŇĹŀĽŁĽłĵŇŏ ŇĹňŊŀŉň

Consistent with our prediction, our participants looked at the keys features of the face (facial-
AOIs described in method) longer (mean (total ėxations) relevant= ǉǉǎǈ, s.d. = ǉǑǈ) than at
the background region (non-speciėed regions) (mean (total ėxations) no relevant= ǉǑǑ, s.d.
= Ǐǎ) when viewing pictures of their counterparts (tƧƤ=ǋǈ.Ǎǉǎ, p < ǈ.ǈǈǈǉ), See ėgure Ǎ.ǌ.Ǎ.

Between theprior and theno-prior conditionswe foundanequal numberof saccades (mean
(total saccade) no prior = ǉǐǉǋǊ, mean (total saccades) prior = ǉǐǈǈǑ, tƧƤ = ǈ.ǎǉ, p = ǈ.Ǎǌ).
However, our results show that participants made more relevant saccades (i.e., a transition
between one facial-AOI to another facial-AOI) when encountering a counterparts without
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Figure Ǎ.ǌ.Ǎ: Participants made more relevant saccades (i.e., a transition between one facial-AOI
to another facial-AOI) when encountering a counterparts without priors than when encountering a
counterparts with priors.

Figure Ǎ.ǌ.ǎ: Cross-interaction between facial-relevance and prior conditions when participants
were shown pictures of their counterparts.

priors (Nb= Ǌǎǐ, Sd± ǎǐ) thanwhen encountering a counterparts with priors (Nb= ǊǌǊ, Sd
= ǏǍ; FƧƤ = ǉǍ.Ǐǉ, p = ǈ.ǈǈǈǌ). ĉis result indicates that participants were exploring more at-
tentively the relevant facials features of others when having no prior information about them.
At the same time, it also indicates that the reputational prior diminishes the reliance on facial
perception.

To examine the effect of prior and no-prior conditions on relevant and non-relevant sac-
cades, we tested the interactions between saccades relevance and prior’s conditions. Non-
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relevant saccades were computed as any transition from a facial-AOI to the background - or
from the background to a facial-AOI equally -.

A signiėcant cross-interaction was found between facial-relevance and prior’s condition
when participants were shown pictures of their counterparts (See ėgure Ǎ.ǌ.ǎ). In partic-
ular, theymademore irrelevant saccades in the prior condition (Nb = ǋǋǐ, Sd± ǎǐ) compare
to the no-prior condition (Nb = ǋǉǎ, Sd± ǏǊ; FƧƤ = ǋǊ.ǏǑ, p = Ƨ−Ƥƪ).

Ǎ.Ǎ CŃłķŀŊňĽŃłň

In this lastwe recorded electrodermal responses and eye-movementswhile participants played
single-TG with counterparts of various pro-social types. We manipulated the probability of
reciprocation of each counterpart that represented their types: competitive (ǉǈƻ), individu-
alistic (ǋǈƻ), cooperative (Ǐǈƻ) and altruistic (Ǒǈƻ). For half of these counterparts, partic-
ipants were given reliable reputational priors signaling their types (priors were similar to the
ones used in online marketplaces like EBay). Our results show for the ėrst time the effects
of reputation the way people evaluate others by observing their face. Indeed, we found that
participants paid less aĨention to the critical parts of the face (eyes, mouth and nose) when
they had received a reputation information regarding their counterparts compare to when no
prior was provided. ĉis result suggests that reputation allows participants to form a ėrst im-
pression about their counterparts thus paying less aĨention to their facial-traits. Indeed, when
they had received prior information about their counterparts and had tomake the decision on
whether or not to trust them, we found that the magnitude of their autonomic response was
smaller compare to the no-prior condition. ĉis result is in line with others studies showing
that physiological emotional responses increase with uncertainty (Epstein and Roupenian,
ǉǑǏǈ; Critchley, Mathias, and Dolan, Ǌǈǈǉ). Finally, this study reports for the ėrst time how
trust violation affects later recognition. Indeed, our results suggest that the more emotionally
aroused participants were when observing untrustworthy outcomes, the more accurate they
were at remembering the person that betrayed them in a later task.
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We cannot direct the wind, but we can adjust the sails.

Dolly Parton

6
Discussion and conclusion

Ił ŉļĽň ŉļĹňĽň I have presented empirical and theoretical accounts of the decision to trust in
social learning and in single-interaction contexts where reputation information is available or
not. ĉis work extends previous ėndings and theories in a number of directions. ĉe work
proposes an enhanceda theoretical framework for understanding social decision-making pro-
cesses and for designing and analyzing future experiments. In particular, richer computational
and theoretical models have been introduced which provide new insights and more accurate
explanations for behavioral and neural responses in social interactive contexts.

ǎ.ǉ SŊŁŁĵŇŏ Ńĺ ķŃłŉŇĽĶŊŉĽŃłň

Chapter ǋ introduces an Adaptive-Belief RL model that combines learning about relatively
long-termsocial reward expectancies andprior expectationsdrivenby reputation information.
A theoretical model has been provided to explain behavioral results of participants playing as
trustors in repeated economic games (repeated trust games: RTGs) and to suggest a model of
trustworthiness-reputation interactions. ĉe model-based formalism used in this new model,
along with a non-deterministic update of belief, is clearly more realistic to approach the prob-

ǑǑ



ability distribution of reciprocity with parameters that depend both on reputation informa-
tion and trustworthiness observed during RTGs. To demonstrate the accuracy of the model,
we compared its results with those obtained from other RL algorithms that are based on dif-
ferent theoretical principles. In chapter ǋ, I have also presented other connections between
behavioral and computational data suggested by the new model, and found the closest ėt to
trial-to-trial variability when participants were encountering social inconsistency.

Chapter ǌ subsequently expanded the previous study with fMRI techniques, incorporat-
ing RTGs with stochastic ending and demonstrates that models of the same family as the one
studied in Chapter ǋ also ėt neural responses to social interactions. We found that the Prior-
Expectation model was more relevant for studying RTGs where relationship timing can vary,
and this model was used to explain neural paĨerns recordedwhen participantsmade the deci-
sion to trust someone and when they updated their beliefs about others. ĉis chapter also ex-
poses a novel hypothesis about the interaction between a prefrontal cortical representational
system who’s function is to preserve actions suggested by the reputation in case of social in-
consistency, and a dopaminergic reward-learning system that continuously tracks reward con-
tingencies. Results support the notion of an “actor/critic” organization in which both social
prediction error and action selection are anatomically separated in the brain but function-
ally correlated (Li, McClure, King-Casas, and Read Montague, Ǌǈǈǎ; Mahmoudi, Principe,
and Sanchez, ǊǈǈǑ; Potjans,Morrison, andDiesmann, ǊǈǈǑ). FMRI techniques proposed for
this interaction combinemodel-based andmodel-free reinforcement learning algorithms. ĉe
work in this second study also provides important information for understanding how trust
and reputation signals are part of a large set of brain systems involved in reducing uncertainty,
predicting, learning and maintaining goals.

Chapter Ǎ embodies a new experimental task designed to probe the consequence of a va-
riety of reputation information and type of partners in behavioral and psychophysiological
response changes during TGs as well as in a later recognition task. ĉis new study provides
conėrmatory and conclusive answers about the effect of reputation in ėrst interactions and of
social reward on outcomes evaluations. It presents preliminary data showing that behavioral
changes to social inconsistency correlated strongly with sympathetic activity and emotional
arousal reports. ĉe most encouraging results explore the relationship between violation of
social expectation and memory-recognition and therefore should guide future experimenta-
tion and analysis in this area.
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ǎ.Ǌ SŊŁŁĵŇŏ Ńĺ ŇĹňŊŀŉň

In the context of social decision-making, in particular the decision to trust unfamiliar persons,
four main ėndings are particularly interesting: (i) reputational priors are key social signals to
reduce uncertainty at the beginning of a trust-based relationship, (ii) prediction errors under-
lying social learning mechanisms are modiėed by reputational priors, (iii) the neural network
involved in the decision to trust illustrates the hierarchical role of reputation priors in compen-
sating for social inconsistencies (iv) discrepancies between high-social expectations and trust
betrayal inĚuence the recognition-memory system. While (i), (ii) and (iii) allow us to pro-
pose new biologically plausible social learning models to illustrate the relationship between
reputation and trust, (iv) raises new questions regarding our capacity to trust, learn and re-
member.

ǎ.Ǌ.ǉ RĹńŊŉĵŉĽŃł ŇĹĸŊķĹň ŊłķĹŇŉĵĽłŉŏ Ľł ĽłĽŉĽĵŀ ĹŎķļĵłĻĹň

BĹļĵŋĽŃŇĵŀ ĵłĸ ńňŏķļŃńļŏňĽŃŀŃĻĽķĵŀ ĹŋĽĸĹłķĹň

Chapters ǋ, ǌ and Ǎ present new empirical data conėrming that, in the absence of objectively
known probabilities of trustworthiness, people exploit reputational cues. Across all three ex-
periments, evidence indicated that people consistently made choices aligned with reputation
priors matching the various counterparts’ types. In the third study, this effect implied higher
psychophysiological (electrodermal) activities in situations of higher uncertainty (when par-
ticipants had no priors) compared to when reputation information was provided. ĉese re-
sults are in line with those reported by other authors on individual and social decision tasks
showing that people reduce uncertainty by sampling and exploiting available environmental
cues.

ĺMRI ĹŋĽĸĹłķĹň ŌļĹł ĺĽŇňŉ ĵ ķŃŊłŉĹŇńĵŇŉ Ľň ńŇĹňĹłŉĹĸ ĺŃŇ ŉļĹ ĺĽŇňŉ ŉĽŁĹ

As well as behavioural results, chapter ǌ also provides new insights into the role of reputation
inmodifyingbrain responses to anunfamiliar person. Enhanced activation inmedial-PFCwas
observed only when reputational priors were provided, regardless of whether they signalled
a positive or negative reputation. Along with converging evidence from previous studies, our
results validate the role that the medial-PFC plays in guiding social decision-making under
uncertainty (Yoshida and Ishii, Ǌǈǈǎ). In chapter ǌ, new analyses were used to support this
theory showing that the insula displayed higher activity when no reputation information was

ǉǈǉ



available, aligned with previous studies in which insular activity was found to process uncer-
tainty (Preuschoff et al., Ǌǈǈǐ). Our fMRI investigation supports the notion that these two
brain regions, theMedial PFC and the Insula play complementary roles in uncertainty reduc-
tion and risk prediction.

CŃŁńŊŉĵŉĽŃłĵŀ ĹŋĽĸĹłķĹ Ńĺ ńŇĽŃŇ-ĹŎńĹķŉĵŉĽŃł ŁĹķļĵłĽňŁň

Chapters ǋ and ǌ propose new RL models of trust-related decisions that reject the assump-
tion from previousmodels that initial values of social decision-making are allocated randomly
(Erev and Roth, ǉǑǑǐ). While a large number of previous studies in cognitive science have
shown that people use social signals to select initial actions (Li et al., Ǌǈǉǉ; Delgado et al.,
ǊǈǈǍ; Chang et al., Ǌǈǉǈ), none had previously incorporated reputation signals in social learn-
ing models and acknowledge that these signals have a lot of implications for the performance
of the modeled system. ĉe present work bridges the gap by making use of a new version of
the RL rule that is equivalent in some aspects to the novelty model proposed by Daw et al
in (Ǌǈǉǈ) (Gläscher et al., Ǌǈǉǈ) but which combines individual sensibilities to uncertainty
and the nature of available reputation information. We found that the Prior-Expectation RL
model capturedmost of the inter-individual variability in short relationships and revealed bet-
ter ėtswith neural andbehavioral activity than theAdaptive-BeliefRLmodel adapted for long-
horizon interactions. ĉis result is not surprising considering that our participants had rela-
tively few trials to accumulate sufficient knowledge about the others’ types. ĉus, when un-
certainty about other’s type stays rather high, the Prior-Expectationmodel is more suitable to
explain behavioral and neural responses to social interaction valuations.

ǎ.Ǌ.Ǌ RĹńŊŉĵŉĽŃłĵŀ ńŇĽŃŇň ŁŃĸĽĺŏ ňŃķĽĵŀ ńŇĹĸĽķŉĽŃł ĹŇŇŃŇň

BĹļĵŋĽŃŇĵŀ ĵłĸ ķŃŁńŊŉĵŉĽŃłĵŀ ĹŋĽĸĹłķĹň

Another important ėnding in this work is that computing social reward prediction (RPE) sig-
nals similarly than computing primary RPE, such as in animal studies and human probabilis-
tic learning tasks, explain behavioral data beĨer than classical Bayesian learning models (Doll
et al., ǊǈǉǊ; Beierholm et al., Ǌǈǉǉ). ĉese results, in conjunction with evidence from human
and nonhumanmodels of reward, suggest that social and primary rewards when inpuĨed into
computational models trigger learning in a common fashion. Furthermore, in Chapter ǋ, I re-
port that the Adaptive-Belief model predicts interaction between social PE and the nature of
the reputation. Because the model predicted differential magnitudes for PE when priors were
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provided or not, the predictions were more accurate in predicting behaviors thanmodels that
do not account for this interaction. While the notion of prior expectation being dynamically
shaped by experience is certainly not new, this work proposes for the ėrst time a computa-
tional model of this effect in a social context and provides support for its validity. In Chapter
Ǎ, I conėrm the notion that reputation priorsmodify outcome-valuation by showing that elec-
trodermal responses to inconsistent behaviors were stronger when following choices aligned
with a reputation prior compared to unbiased choices. Indeed, when counterparts with al-
truistic or cooperative reputations violated trust, electrodermal activity was higher than when
counterparts had no reputations.

NĹŊŇĵŀ ŇĹňńŃłňĹ ŉŃ ňŃķĽĵŀ ńŇĹĸĽķŉĽŃł ĹŇŇŃŇ ŌĽŉļ ĵłĸ ŌĽŉļŃŊŉ ńŇĽŃŇň

In Chapter ǌ I present differential activities in the caudate nucleus (part of the reward cir-
cuitry) in mediating trial-to-trial adjustments to PE when reputational priors were provided
or not. Indeed, using parametric analysis of trial-to-trial estimated PE, we showed that bilat-
eral caudate nuclei were encoding RTG outcomes as an unbiased reward prediction problem
only when no priors were given. In fact, in the prior condition, dorso-striatal activity min-
imally tracked computed-PE and responded selectively to violation of trust. Although this
brain area was not found to capture the trial-to-trial variability suggested by the RL model,
activation in the dorso-striatum was maximal when a counterpart with a cooperative reputa-
tion violated trust. In chapter ǌ, I argue that the dorso-striatum is still capturing a conĚicting
signal between expectation and reality and such conĚict is actually maximized in the scenario
of violation of trust by a partner with a high pro-social reputation. Indeed, when a particu-
lar prior is provided, the expectation of a corresponding behavioral is stronger and so should
be the discrepancy between this expectation and the negative outcomes. Taken together, the
results reported in Chapter ǌ suggest that although reputational priors moderate trial-to-trial
variability of reward-based learning mechanisms in the brain, the neural signatures of conĚict
monitoring remain unchanged and even enhanced when reputation priors are present.

EŎńĹŇĽĹłķĹ ĵŔĹłŊĵŉĹ ŇĹńŊŉĵŉĽŃł ńŇĽŃŇň

In Chapters ǋ and ǌ, I report that accumulated observations diminish initial reputation inĚu-
ences over time across all RLmodeled data ėĨing behavioral responses. ĉese results support
and extend previous ėndings which have found shown that, although priors modify PE in un-
certain environment, experience accumulatedover timewithout initial bias overwhelmbeliefs
suggested by social cues in risky choices (Cohen, Ǌǈǈǎ; HueĨel et al., ǊǈǈǍ). As we have seen
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in chapter ǋ and ǌ, the properties of social feedback-based valuation emerged robustly over
time even if reputational priors inĚuenced early valuation and have a sustainable effect on
outcome-decision. ĉese ėndings underline the well-established role of the reward circuitry
(and in particular the role of the striatum) in encoding decision-outcome associations for tar-
get rewards (Kable andGlimcher, ǊǈǈǏ; Fareri et al., ǊǈǉǊ; Schönberg et al., ǊǈǈǏ) and enlarge
its role in triggering learning to the social domain. ĉe results of this work fall very much in
line with other recent studies (Gläscher et al., Ǌǈǉǈ; Daw, Gershman, Seymour, Dayan, and
Dolan, Ǌǈǉǉ)

ǎ.Ǌ.ǋ TŇŊňŉ ĵłĸ ŇĹńŊŉĵŉĽŃł ĸŏłĵŁĽķ

BĹļĵŋĽŃŇĵŀ ĵłĸ ńňŏķļŃńļŏňĽŃŀŃĻĽķĵŀ ĹŋĽĸĹłķĹň

In chapters ǋ and ǌ I report a robust and consistent interaction between valuation of outcomes
and subsequent decisions aligned with or without reputation information. More speciėcally,
we found that trust-violations damaged interpersonal trust more when the decision to trust
was made without reputational bias compared to when the decision was aligned with repu-
tation. ĉis intriguing result is counter-intuitive given the results that I have just presented.
Indeed, while we found greater emotional and neural responses to negative inconsistency in
the prior condition, participants neglected this conĚict-related signal andwere persistent with
their initial decision in subsequent trials. In fact, general evidences from behavioral economic
and cognitive decision-making research have established that the outcome of one decision
inĚuences the subsequent decision (McCabe et al., Ǌǈǈǉ; King-Casas et al., ǊǈǈǍ; Krueger
et al., ǊǈǈǏ), but this study is the ėrst to show that initial reputation-related information me-
diate these adjustments in behavioral strategies. I argue that (i) decision-making is a dynamic
process interfacing several sub-processes (evaluating the outcome, adjusting future behavior,
pursuing goals etc.) that can conĚict with one another and (ii) that brain paĨerns involved
in such sub-processes would exhibit activity that reĚects strategic adjustments in behavior oc-
curring as a result of the evaluation of conĚicting signals. In the next paragraph, I review our
fMRI results on the topic.

ŋLPFC ŁŃĸŊŀĵŉĹň ŉļĹ ŇĹŌĵŇĸ-ŇĹŀĵŉĹĸ ňĽĻłĵŀ Ľł ŉļĹ ĸŃŇňŃ-ňŉŇĽĵŉŊŁ

Chapter ǌ presents one of the most unexpected and intriguing result found during our fMRI
investigation. We have seen that the striatumwas strongly deactivated when violation of trust
happened, consistent with its well-described spontaneous changes to unexpected outcomes.
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However, we discovered that a high functional connectivity between the caudate nucleus and
the lateral prefrontal cortex prevented participants from retaliation aěer violation of trust in
the prior condition. In fact, the strength of connectivity between the dorsal striatum and
vLPFCwas greater when priors were provided thanwhen theywere not. ĉis result suggests a
role of the prefrontal cortico-striatal loop in modulating goal directed behavior (in our study,
reputational prior were reliable predictors to optimum strategies) in line with previous stud-
ies (Valentin et al., ǊǈǈǏ; Souza et al., ǊǈǈǑ). We thus propose that the vLPFC contributes in
maintaining choices aligned with the reputational prior when expectations conĚict with re-
ality. ĉis ėnding supports recent empirical evidences showing that the vLPFC exerts a top-
down cognitive modulation of other brain paĨerns toward contextually appropriate beliefs
(Cohen et al., ǉǑǑǈ; Miller and Cohen, Ǌǈǈǉ). We argue that the vLPFC, a phylogenetically
younger brain regions involved in higher cognition, may contribute to maintain beliefs and
decisions anchored to reputational priors, thus relatively discount the weight of conĚicting
evidence. ĉe interplay between striatum and vLPFC may prevent unnecessary retaliation
when others violate our trust, and thus constitutes an important neurocognitive modulator
that favors social stability.

ǎ.Ǌ.ǌ VĽŃŀĵŉĽŃł Ńĺ ŉŇŊňŉ ĽłĺŀŊĹłķĹň ŉļĹ ŇĹķŃĻłĽŉĽŃł-ŁĹŁŃŇŏ ňŏňŉĹŁ

In the last study presented in this thesis, we investigated the link between a person’s auto-
nomic responses (EDRs) when observing trust violation and later recognition of the person
responsible for that damage. As a preliminary result we observed, for the ėrst time, that inter-
individual differences in spontaneous EDRs predicted later recognition of counterparts that
violated trust. ĉis ėnding relates to previous studies which probed inter-individual galvanic
responses variability, emotional ratings and social evaluation (Critchley, ǊǈǈǊ). Speciėcally,
we found that themagnitude of EDRswhenobserving trust violationwas correlatedwith peo-
ple’s differential emotional ratings, conėrming that sympathetic activity reĚects the vicarious
emotional reports to social outcomes. Taken together, these encouraging preliminary results
support the assumption that damage to trust has consequences in the reward and memory
system.

Finally, the work presented here may guides future investigations onf a number of issues,
some of which I now review.
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ǎ.ǋ FŊŉŊŇĹ ĸĽŇĹķŉĽŃłň

Many questions are raised by the computational theories and results proposed here that could
fruitfully be investigated in future theoretical and experimental studies.

ǉ. ĉe experimental task proposed in this work is based on a simpliėed version of the
trust game that allows a clear distinction between choices (trust/no trust) and simi-
larly, a clear distinction between opponent’s responses (trustworthy/untrustworthy).
However, it would be interesting to use the original version of the trust game, in future
studies manipulating priors, in which participants can invest any amount of their ini-
tial endowment (for example from ǈ to Ǌǈ euros by increment of ǉ) to the other player.
Such experimental set-upswould allow for a rather precise investigation of how starting
values of RLmodels impact the estimated parameters of the update rule. Such a design
would also specify the behavior of the Adaptive-Prior and the Prior-Expectation mod-
els. Analyzing how the trial-to-trial variation of money invested in each RTG would
allow conėrming or rejecting the proposed models in social contexts.

Ǌ. In addition, hierarchical reinforcement learning model in which the suggestion carried
by reputation is transferred to a sub-process that trigger learning from direct feedback
could be rather tested instead of pure Markovian (or semi-Markovian) RL processes
sampling events through beliefs and time dimensions. Hierarchical RL models treat
problem solving by introducing representation (or beliefs) into the planning/expecting
systems. ĉese types of models allow the notion of a hierarchy between beliefs and up-
dates functions and the possibility for a certain representation to evoke within a single
action-goal, an entire sequences of possible actions.

ǋ. In (Ǌǈǈǉ) Knutson et al. underlined the important aspect of representation of costs
when decisions are made that lead to a broad new series of studies exploring cost-value
decisions (Knutson et al., Ǌǈǈǉ). In the domain of social decision-making however,
none have explored the cost to obtain reputation signals in order to make rapid and
costless decision in ėrst interactions. For example, in an experimental seĨing closed
to EBay’s type of website where reputation is a key feature to consider before engaging
in a transaction, future studies could explore the amount of money people would be
willing to pay in order to access reputational information. Not only this type of studies
would provide new insights on howpeople explore and exploit reputation-cues in order
to engage in economical transactions but it will also help us understand how the brain
integrates costs and valuable-cues during social decision-making.
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ǌ. In addition, the reliability of the prior seems to be an extra sensible parameter to con-
sider. In fact, previous studies using social information as proxy for reputation signals
(information about moral character of others, cultural aĨributes, advices, instructions
etc.) also found an effect of those signals on decisions, even when they did not con-
vey any reliable information (e.g. the simulation of partner’s responses were randomly
distributed). Our results, complementing these previous studies, suggest that the reli-
ability of pro-social signals could be investigated as an independent variable in studies
and models that probe adaptive social decision-making. For example, still in an EBay
type of scenario, the reliability of the reputation would be the amount of persons that
gave feedback scores for a certain seller. If just one person gave report about a seller’s
trustworthiness the rating is less valuable and reliable than if ǉǈǈ persons contribute
to the rating. Future studies would beneėt in taking into consideration these types of
uncertainty, including uncertainty about the providers of reputation information.

ǎ.ǌ GĹłĹŇĵŀ ķŃłķŀŊňĽŃł

In this thesis, I provide a general background and formalism for studying trust and reputation
in humans using a combination of techniques such as game theoretical experiments, com-
putational models, functional neuroimaging and electrodermal recording. Describing social
interactionwithmodel-free andmodel-based reinforcement learning processes, I present new
models allowing robustness and efficient paĨerns in risky environments that ėt behavioral and
neural responses of participants engaged in TGs. ĉis work delves beyond previous research
in its consideration of the complexities of assessing environmental cues, weighting options,
making decisions and evaluating social outcomes with respect to trust and reputation.
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