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Summary 

The use of Constructed Wetlands (CWs) has been increasing over the last twenty years for 

decentralized wastewater treatment projects (e.g. rural communities, isolated houses, etc.) because 

of the low maintenance requirements and operational costs, efficiency in terms of organic matter, 

nitrogen and suspended solid removal. Nevertheless, the application of these systems in mountain 

areas is faced with some issues related to the specific characteristics of these areas, namely: the 

complex morphology with steep slopes and limited extensions of flat land, low temperatures and, in 

tourist contexts, population variations throughout the year. Limited availability of suitable land is a 

key issue for the application of a technology requiring considerable surfaces to produce effluents of 

good quality. Land area requirements constitute a well-known problem of CWs that is related to a 

lack of knowledge on the biological reactions occurring inside the bed. In fact, usually CWs are 

designed by considering simple first order decay models and specific surface area requirements, 

while the real requirements are not taken into account, leading most of the times to an 

overestimation of the area required. The limited knowledge on the processes and relative 

efficiencies of CW leads to overdesign of CW, mainly in low temperatures contexts and where there 

is a fluctuation on the resident population. Despite the efficiency that could be achieved through 

overestimation, those systems would be underutilized for a large part of the year. Ultimately, 

overestimated CWs consume more land than needed, eventually leading to the decision of switching 

to other systems. 

This research aims to identify approaches and configurations that may improve the applicability of 

CWs for wastewater treatment of mountain communities. These approaches try to overcome the 

cross-cutting issue of land area requirement, as well as those related to the variation of temperature 

and population through the year. This was done by exploring the use of respirometric techniques for 

the estimation of kinetic and stoichiometric reactions inside the bed and by testing, in a pilot plant, 

the influence of the tourist presence and low temperatures on the efficiency of innovative CW 

configurations.  

The research was developed at both the lab and the field scale. At the lab scale, two different tests 

were used in order to estimate the oxygen consumption in CW filter material: liquid respirometry 

and the off-gas technique. Liquid respirometry proved to be a reliable method when used to 

measure kinetic and stoichiometric parameters of the CW’s biomass. The off-gas technique was 

applied at the lab scale showing promising results, though further research is needed to improve the 

applicability of the method to CWs. Along with that, at the lab scale, a modified AUR method was 

applied on the CW material to quantify the nitrification rate of real systems at different 

temperatures and therefore to predict the removal efficiency throughout the year.  

At the field scale, several tests were performed in a pilot plant composed by two hybrid CWs 

(VSSF+HSSF). Among these: operation under continuous and discontinuous winter conditions, 
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operation with overload during the summer (to simulate the presence of tourists) and the application 

of innovative configurations (Recirculated and Aerated VSSF). All these tests were designed with 

the purpose of dealing with the trade-off between the reduction of a CW’s land area requirement 

and the enhancement of its efficiency. Two innovative configurations were tested in the pilot plant: 

Recirculated VSSF CW and Aerated VSSF CW. Both configurations can provide saturated and 

unsaturated conditions, which allow the nitrification/denitrification inside the bed. During the 

period when experimental configurations were tested, the traditional VSSF CW was operated with 

an average specific surface area to 3.5 m
2
/PE, the Recirculated VSSF of 1.5 m

2
/PE and the Aerated 

VSSF of 1.9 m
2
/PE on average. The results showed that the CW’s surface can be considerably 

reduced without a significant reduction in the removal efficiency. The extra investment needed to 

equip VSSF CWs with aeration/recirculation would be compensated by a lower area requirement. 

This study explored some of the problems associated with the application of traditional CWs under 

the physical and social conditions that characterize mountain contexts, providing important 

information for future research and application. First of all, a reliable tool, the respirometric 

technique, was explored for the estimation of kinetic and stoichiometric parameters that will allow a 

more precise estimation of the land area required for these systems. Moreover, two innovative 

configurations (the use of recirculation and aeration in CWs) were proposed to be used where 

traditional configurations, though well designed, are still too large to be applied. Such 

configurations can also be used as a temporary solution to increase the treatment capacity during 

tourist peak seasons, while a traditional configuration is kept over the rest of the year. While this 

research focused on mountain environments, the configurations and results contained therein could 

be applied to a wide variety of settings where shortage of land or difficult climate conditions would 

exclude CWs from the list of wastewater treatment options available. 

  



 

 

Chapter 1  

Scope and outline of the thesis 

1.1 Introduction 

Reducing the impact caused by human settlements on water bodies is undeniable for the 

preservation of the environment and the protection of human health (inter alia UNEP et al., 

2004; Corcoran et al., 2010). Among various measures that can be adopted to achieve this 

goal, wastewater treatment plays a major role. Despite such importance, however, adequate 

wastewater treatment is still inadequate in many parts of the world due to the economic cost 

of facilities and the technological challenges associated with the context of application. In 

western countries, where wastewater treatment is generally efficient and widespread, 

mountain areas still present several challenges to the implementation of high quality 

wastewater treatment facilities. Reliable solutions for the wastewater treatment in these areas 

have been proposed, among others, by the Austrian Water and Waste Association in 2000 

(OEWAV, 2000) and by the EcoSan Club in 2011 (Müllegger et al., 2011). The first one 

describes general approaches for wastewater treatment in mountain areas, while the second 

one deals with the specific case of refuges or mountain huts. Several technical solutions have 

been proposed for wastewater related problems, but hardly any other field of wastewater 

treatment is dominated by the specific boundary conditions that are present in mountainous 

regions, e.g. difficult access to certain sites, shortage of sites and challenging load variations 

caused by varying seasonal and weather conditions (OEWAV, 2000). 

 

The wastewater produced in the mountain can be transferred to treatment plants located in the 

valley, depending on the distance between the sources and plants (OEWAV, 2000). However, 

domestic wastewater produced by mountain communities cannot always be collected to a 

centralized wastewater treatment plant (WWTP) as a consequence of the difficult 

geomorphologic conditions and the need for long collecting pipes. This situation calls for 

alternative solutions that ensure high quality standards, low energy consumption and 

adaptability to an environment characterized by steep slopes, limited space and eventually 

considerable natural value.  
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In some mountain communities, after collection, wastewater is simply treated by sieving and 

settling in a septic tank/Imhoff tank, even though this kind of treatment provides effluents that 

may be characterized by a significant presence of suspended solids, thus calling for an 

improved/secondary treatment that may preserve water resources. There is not a standard 

solution, and each context has its own best option according to ecological, social and 

economic criteria. Among technologies that are widely accepted as a post treatment for septic 

tanks, Constructed Wetlands (CWs) may represent a good option in this context.  

 

CWs are commonly used in small and decentralized communities due to their low 

maintenance requirements, reduced operation costs when compared to conventional systems 

and their efficiency in the reduction of organic matter, nitrogen and suspended solids. CWs 

neither involve complicated and expensive technology, nor require specifically trained 

technicians for operation. CWs are also one of the most sustainable wastewater treatment 

technologies, requiring very little maintenance to achieve a good treatment quality. Another 

advantage is their reliability: when properly designed, they can cope with large fluctuations in 

wastewater influent, both in terms of hydraulic and organic loading (Paing and Voisin, 2005; 

Molle et al., 2005). On sufficiently sloping sites there can be no power requirements (Paing 

and Voisin, 2005), while construction, capital and operational costs are lower than those of 

other systems, such as activated sludge. 

 

However, when applying CWs to small mountain communities, two issues can arise, that are 

related to the peculiar characteristics of these lands, namely: cold temperatures and flow 

variations. Mountain areas are exposed, at least during part of the year and particularly in 

some geographic regions, to significantly low temperatures. This may considerably reduce the 

efficiency of CWs, which must be designed to guarantee high effluent standards even in the 

winter season. Boosting the knowledge on the temperature influence on the biological activity 

in CWs is essential for ensuring their efficiency during the year. Further, mountain villages 

that are popular tourist destinations experience flow variations due to the fluctuation of 

population throughout the year. In many mountain regions around the world, including the 

Alps, the population of tourist villages increases dramatically during the high season. As it 

may be very expensive to design CWs based on the high organic load discharged during such 

season (i.e. very large area requirement), the capability of a CW to deal with higher loads for 

short periods of time, as well as its possibility to quickly recover after long idle periods (that 

usually occur during the winter) should be tested. 

 

A cross-cutting issue to the above-mentioned ones is that of the large surface required by 

CWs to guarantee high effluent standards. While this problem is relevant to any context for 
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the resulting conflict with other land uses (e.g. agriculture, urban, etc.), it becomes 

particularly binding in mountain areas, where the extension of flat land is limited. 

 

The need to overdesign CWs is often related to a lack of knowledge on the biological 

reactions occurring inside the bed and partly due to the conservative approaches normally 

used by designers. The design is usually based on the use of simple first order decay models 

or specific surface area requirements (e.g. 4 m
2
/PE). Even though several models have been 

developed to evaluate the organic matter, nitrogen and phosphorus removal in CWs (inter alia 

Rousseau et al., 2004; Langergraber et al., 2009), often the kinetics and stoichiometric 

parameters of bacterial biomass appearing in the models are theoretically assumed and not 

based on real measurements. Therefore, a better measurement of kinetic and stoichiometric 

parameters is needed to allow designers to better estimate the area that ensures high removal 

performances. Respirometric tests are an option to directly measure the kinetic parameters 

(e.g. maximum oxidation rate of biodegradable COD, heterotrophic yield coefficient, etc.) 

used in mathematical models and this may help to design CWs with a reduced land area 

requirement. Although respirometric tests are widely used in activated sludge processes to 

evaluate kinetic and stoichiometric parameters (Ubay Çokgör et al., 1998; Majone et al., 

1999), the application of respirometric tests in CWs is still limited to a few experiences, and 

an in-depth study is needed to optimize this technique (Giraldo and Zarate, 2001; Andreottola 

et al., 2007, Morvannou et al., 2011).  

 

In order to reduce the surface required by these systems, different approaches have been 

proposed. Some of them are based on the improvement of removal rates, by means of 

artificial aeration (Ouellet-Plamondon et al., 2006; Nivala et al., 2007), the use of alternative 

feeding periods, the modification of the filter material’s thickness, or the recirculation of a 

fraction of the HSSF outlet wastewater to the VSSF inlet (Tunçsiper, 2009; Ayaz et al., 2012).  

1.2 Objectives 

This research aims to improve the applicability of CWs to treatment of mountain 

communities’ wastewater by identifying approaches and configurations that can tackle some 

of the limitations of these systems, like the large land area requirement and poor performance 

under cold climates. 

 

This was done through a comprehensive investigation of biological processes occurring in 

CWs, an analysis of how CWs are affected by the specific conditions characterizing mountain 

regions and a study of whether and how innovative configurations can reduce the area 

requirement of CWs.  
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The research has three specific objectives, which are listed below along with related research 

questions.  

 

Objective 1: Providing reliable tools for the estimation of kinetic and stoichiometric 

parameters in CWs that might be used in the design phase. 

 

Several models have been developed to estimate the removal of pollutants in CWs but the 

kinetic parameters of bacterial biomass appearing in the models are often assumed 

theoretically, rather than based on real measurements. In this research, respirometric 

techniques were applied to the CW filter material for the estimation of these parameters. 

 

Research questions: 

- Are respirometric tests a reliable tool for the measurement of stoichiometric and 

kinetic parameters associated to heterotrophic and autotrophic bacteria in CWs?  

- Can liquid respirometry capture the changes in the biomass during the 

acclimatization period of CW lab cores?  

- Is it possible to estimate kinetic and stoichiometric parameters in CW using the 

off-gas technique (normally used in activated sludge)? 

 

Objective 2: Assessing the performance of Vertical Sub Surface Flow (VSSF) CWs 

under conditions commonly found in mountain communities.  

 

Mountain communities may be exposed to significantly low temperatures and peculiar 

fluctuations in flow due to the presence of tourists. CWs that are applied to mountain 

communities should be able to deal with these conditions, without reducing the quality of the 

effluent. A better knowledge of how CWs work under these conditions may help to design 

systems that can maintain high quality standards without requiring unreasonable surfaces. 

 

Research questions: 

- Can a hybrid CW plant designed on the basis of just the resident population treat 

the additional pollutant load produced during the tourist period?  

- How does the removal efficiency of a VSSF CW vary under cold climates and 

flow variations? 

- Is an enhanced AUR (Ammonia Uptake Rate) test an effective tool for the 

estimation of the maximum specific nitrification rate (vN) of the CW biomass 

under different temperatures?  
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Objective 3: Proposing alternative configurations that can reduce the area of a CW 

without reducing its efficiency. 

 

The land area requirement is still one of the main constraints to the application of CWs. This 

becomes even more binding in contexts, like mountainous ones, where the extent of flat land 

is limited. In order to deal with this issue, two hybrid CWs (each one composed by a VSSF 

and a HSSF) with different filter material in the VSSF CW were compared. 

 

Research questions: 

- Does the filter material play a major role on the efficiency and cost of the system? 

- Is the recirculation of the VSSF’s effluent effective for the treatment of higher 

organic loads? 

- Does aeration of VSSF-CWs increase the efficiency in the treatment of higher 

organic loads? 

1.3 Outline of the thesis 

The thesis was divided into 12 chapters. Figure 1shows the structure of the thesis. The 

literature review on CWs, including an overview on applications and common configurations, 

is found in Chapter 2, while Chapter 3 provides a detailed description of the respirometric 

tests and the pilot plant used in this research. 

 

As a new approach in CWs, respirometric tests were used in this research to estimate kinetic 

and stoichiometric parameters with greater precision. Once included in mathematical models, 

these parameters should allow design to be performed with greater accuracy. Chapter 4 and 

Chapter 5 regard the application of liquid respirometric tests (saturated conditions) in VSSF-

CW lab cores. The application of liquid respirometry was carried out during the 

acclimatization of the lab cores (Chapter 4). Respirometric tests were also performed with 

acclimatized CW lab cores (Chapter 5), where kinetic and stoichiometric parameters of 

heterotrophic biomass and wastewater biodegradability were evaluated, providing information 

that may support the optimisation of design procedures or the estimation of the maximum 

oxygen requirements in CWs.  
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Figure 1 Outline of the thesis 

 

Although the application of liquid respirometry for the measurement of oxygen consumption 

provided reliable results, the use of a saturated test on unsaturated material could sound 

controversial. Hence, other tests were conducted in order to estimate the oxygen consumption 

in the gas phase. Among these, the off-gas technique, which is widely used for evaluating the 

oxygen transfer efficiency in activated sludge, was applied in CWs (Chapter 6).  

 

Moving from the design phase to the goal of testing the behaviour of CWs under specific 

physical conditions, part of this research relied on the use of a pilot plant. Experiments done 

in the pilot plant are described in Chapters 7 to 11. Chapter 7 is a technical and economic 

comparison between two kinds of VSSF-CWs used in the pilot plant. 

 

The presence of a variable population, which is a common issue in tourist areas, and its 

influence on the performance of a CW were evaluated during summer and winter periods. 

During summer, a hybrid CW system designed for the resident population only, was operated 

for a period of 2 months with higher loads, simulating the presence of tourists (Chapter 8). In 

order to simulate winter conditions, the pilot plant was tested under regular operation and 

discontinuous operation during the winters of 2010 and 2011 (Chapter 9). Moreover, in this 

period, AUR tests were also performed to estimate the temperature influence on the 

nitrification capacity of CW cores.  
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Pursuing the objective of making CWs more suitable for mountain communities, and with the 

knowledge that the land area requirement is an important constraint on it, innovative CW 

configurations were proposed. These were specifically aimed at increasing the oxygen 

transfer and subsequently reducing the land area requirements of VSSF CWs. The first 

configuration tested was the Recirculated VSSF CW (Chapter 10). This configuration is based 

on the recirculation of the wastewater inside the VSSF CW: the wastewater fed in the system 

is maintained inside the system by closing an electronic valve, and it is recirculated from the 

bottom to the top of the system every hour during the cycle (6 hours/cycle). The second 

configuration tested was an Aerated VSSF CW (Chapter 11): the wastewater is also kept 

inside the VSSF, which receives an aeration pulse of 5 minutes every half an hour, during a 6 

hours cycle. In both systems the valve is opened at the end of the cycle and wastewater 

discharged to the HSSF for 4h.  

 

Chapter 12 discusses the main findings of the research as well as the pros and cons of tested 

configurations. Recommendations for future research are also presented. 

 



 



 

 

Chapter 2  

Research context 

2.1 Domestic wastewater treatment in the European Union 

Domestic wastewater is generated in residential settlements and services and originates 

predominantly from the human metabolism and household activities. The pollutant content in 

wastewater can be divided in three main groups: dissolved substances, colloids and suspended 

solids (Wiesmann et al, 2006). Dissolved substances can be divided in organic (e.g. Chemical 

Oxygen Demand and Biological Oxygen Demand - COD and BOD) and inorganic (e.g. nutrients, 

metals and heavy metals) substances. The colloids are suspension of small particles like droplets of 

oil or other insoluble liquids, like water-in-oil emulsions and solid in water colloids (turbid water). 

Colloids are not separated from suspended solids. Suspended solids are measured using a graduated 

Imhoff cone and the mineral and organic fractions are defined after filtration, by drying, weighing, 

incinerating at 500°C and re-weighing the ash. Standardized generation rates per-person (population 

equivalent) when the black water and grey water are not separated is showed in the Table 1. 

 

Table 1 Standardized production rates per-person (population equivalent) from Wallace et al (2006). 

Parameter Production per person (raw average) 

BOD5 60 grams/day 

Nitrogen 12 grams/day 

Suspended solids 70 grams/day 

Phosphorus 2 grams/day 

Average flow 

220 litres/day (United States) 

110 litres/day (others developed countries) 

60 – 80 litres/day (developing countries) 

 

All these components could be naturally degraded if they were released in limited quantities into 

water bodies. However, in the case of urban settlements, water bodies do not have the capability to 

degrade the enormous amount of pollutants generated, thus leading to environmental problems, and 

threat to human safety. In this context, wastewater treatment is a fundamental tool to prevent 

environmental degradation, water pollution and health problems in the communities. 

 

Each country has its own institutional framework that guarantees environmental protection. The 

European Commission’s Department for the Environment has produced a Water Policy that 
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includes various recommendations aimed at protecting water quantity and quality in the European 

Union. In the field of Water Pollution, there is the Urban Wastewater Directive (91/271/EEC), 

which ensures that the environment will be protected from adverse effects of the discharge of 

wastewater. Member states are required to establish systems of prior regulation or authorization for 

all discharges of urban and industrial wastewater into urban sewage collecting systems. Following 

the member states’ regulation, agglomerations with more than 2000 PE must be provided with 

wastewater collecting systems. Agglomerations with a population equivalent of less than 2000 must 

be equipped with a collecting system and appropriate treatment must be provided. Any process or 

disposal system, which after discharge allows the receiving waters to meet the relevant quality 

objectives, is intended to be an appropriate treatment of urban waste water (industrial and domestic 

wastewater, and run-off rain water).Small communities (less than 2000 PE) often cannot afford full 

time services as well as operational and maintenance staff. Plants for such communities, though 

having as little mechanical equipment as possible and being constructed with local materials, should 

produce an effluent quality according to the standards. In communities that are near to urban areas 

the wastewater treatment is generally efficient and widespread, but this condition is not always 

present in mountain areas, where several challenges to the implementation of high quality 

wastewater treatment facilities are still present. 

 

The use of Constructed Wetland (CW) has soared in decentralized wastewater treatment projects, 

single home projects and rural communities (Wallace et al., 2006). This is also related to the very 

advantages of these systems, namely low maintenance requirements and operational costs, lower 

costs compared to conventional systems and the considerable efficiency in terms of BOD, nitrogen 

suspended solid removal (Langegraber, 2008).  

 

In Italy, the use of CW as a solution for the wastewater treatment of small communities was 

officially introduced with the Decree-Law 152 (1999, May 11
th

). This establishes that constructed 

wetlands and stabilization ponds are indicated for urban areas with populations between 50 and 

2000 people equivalent (P.E.). In 2002, the Autonomous Province of Trento introduced a guideline 

for the design, construction, management and use of constructed wetlands (Delibera 992 della 

Giunta Provinciale). Among the main obstacles towards the construction of these systems in Italy is 

the lack of trust by administrators due to some unsatisfactory early applications. Besides that, the 

Italian name for constructed wetland (“fitodepurazione”), which means “purification by means of 

plants”, does not give biomass and filtration their real importance, further decreasing the trust in 

these systems. 

2.2 State of art in Constructed Wetlands 

Wetlands are transition zones between water and land where vegetation has developed in response 

to saturated conditions, occurring for at least part of the year. They are an unique ecosystem with 

unique hydrology, soils, and vegetation. Wetlands can be divided into two major types: Natural and 



 CHAPTER 2 

__________________________________________________________________________________________   

30 

 

Constructed Wetlands. Natural Wetlands are portions of a landscape that exist due to natural 

processes rather than a direct or indirect anthropogenic influence (Fonder and Headley, 2010) and 

Constructed Wetlands (CWs) are engineered systems that optimize and control the processes that 

occur in natural wetlands.  

 

The common or traditional classification of CWs divides them directly in surface flow and 

subsurface flow CW (Cooper et al, 1996). More recently, Fonder and Headley (2010) introduced a 

wider classification system encompassing the Restored Wetlands (i.e. areas which were formerly 

natural wetlands that were lost or heavily degraded in the past and now support a near-natural 

wetland ecosystem), the Created Wetlands (i.e. non-wetland areas which have been converted to a 

wetland ecosystem by civil engineering works) and Treatment Wetlands (i.e. artificially created 

wetland systems designed to provide a specific water treatment function). The treatment wetlands 

were previously known as CWs. 

 

Constructed Wetlands (in this thesis, CW are intended as treatment wetlands in the classification of 

Fonder and Headley, 2010) provide an enhancement / optimization of the physical, chemical and 

biological processes in order to remove pollutants from the water. According to Fonder and 

Headley (2010), three characteristics are common to all CWs: the presence of macrophytic 

vegetation, the existence of water-logged or saturated substrate conditions for at least part of the 

time and the inflow of contaminated waters with constituents that are to be removed. In the research 

context, sometimes treatment wetlands may be “unplanted” in order to exclude the effect of plants 

in the system. However, apart from the research context, treatment units without wetland 

vegetation, such as gravel or sand filters, should not be classified as a CW (Fonder and Headley, 

2010). 

 

According to hydraulic conditions of the system (water position), constructed wetlands can be 

divided in two main categories: surface flow and subsurface flow. The main difference between 

these systems is that subsurface flow systems are media-based systems. Surface Flow Constructed 

Wetlands (SFCW) are defined as aquatic systems in which the majority of flow occurs through a 

water column overlying a benthic substrate. In Subsurface Flow Constructed Wetlands (SSFCW) 

the water flows through the porous medium. Figure 2shows the classification tree proposed by 

Fonder and Headley (2010) for Constructed Wetlands. In this research, just the SSF CWs are going 

to be explored. 
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Figure 2 CW’s classification tree proposed by Fonder and Headley (2010). 
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2.2.1 Subsurface flow CW 

In the Subsurface Flow Constructed Wetland (SSFCW) the majority of the flow passes through the 

porous media, where most of the biogeochemical processes of wastewater treatment takes place. 

Subsurface flow systems are sub-classified based on flow direction into those with a horizontal flow 

and those with a vertical flow.  

 

a. Horizontal Subsurface Flow Constructed Wetland (HSSF CW -Figure 3): In 1952, Kathe 

Seidel started the investigation of the potential capability of bulrush in treating wastewater in 

artificial environments. A new wetland treatment was developed in 1960 and it was called root-zone 

method. The use of a common reed was based in the theory that it would increase the hydraulic 

conductivity of the soil matrix. HSSF is a large gravel and sand-filled channel through which 

wastewater flows horizontally, the filter material filters out particles and microorganisms degrade 

organic matters (Healy et al; 2006). HSSFCW presents anoxic/anaerobic conditions (saturated filter 

bed),which provide good conditions for denitrification (Vymazal, 2007). The bed is usually planted 

with herbaceous emergent macrophytes. The macrophyte used in Europa is the Common Reed 

(Phragmites australis) and elsewhere, the genera Schoenoplectus, Cyperus, Typha, Baumea and 

Juncus. 

 

 

Figure 3 Schematic representation of HSSF CW (Morel and Diener, 2006). 

 

b. Vertical Subsurface Flow Constructed Wetland (VSSF CW –Figure 4): it is a new type of 

constructed wetland that became widespread in the mid-1990s even though research on it had 

started also with Kathe Seidel in 1952. At that time, this system was called Max Planck Institute 

Process. In this process, a gravel media served as the rooting media for the plants that were 

considered to be the main mechanism in this process (this idea is now criticized). In VSSF the 

wastewater is dosed onto the wetland surface using a mechanical dosing system. The water flows 

vertically down through the filter matrix (Healy et al.; 2006). During the feeding, the air pressure 
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increases inside the bed, because the air is trapped between the two layers of water (on the top and 

on the bottom), it increases the dissolution of oxygen in the water. After the feeding, the water 

drainage between the filter material creates under pressure conditions that sucks air inside the bed. 

Due to the higher availability of oxygen, VSSFCW has good rates in ammonia-N removal, but very 

limited denitrification takes places in the bed (Vymazal, 2007). 

 

 
Figure 4 Schematic representation of VSSF CW (Morel and Diener, 2006) 

 

Fonder and Headley (2010) further divided the VSSF in three standard types of CW: Down Flow 

(DF) CW (free-draining and without surface flooding), Up Flow (UP) CW (flooded surface) and 

Fill and Drain (FaD) CW (mixed flow direction, normally alternating between up and down flow), 

as following: 

 

The Down Flow (DF) CW is the normal VSSF CW with free-drainage (open outlet) that remains 

unsaturated (also called in this thesis VSSF). Pipes distributed the flow on the top surface of the bed 

and the surface flooding is avoided. On the bottom, a network of perforated drainage pipes is 

located in a layer of coarse media (Cooper et al., 1996). Sometimes the drainage pipes on the 

bottom are connected to the atmosphere in order to promote passive aeration of the substrate. 

Influent distribution pipes may be located above the substrate, or, in cold climates, buried within the 

granular media bed or under a layer of insulating mulch.  

 

The Up Flow (UF) CW (sometimes referred to as Anaerobic Bed) is a constantly saturated media 

permanently flooded over the surface. The wastewater is introduced at the bottom of the media bed 

via a series of distribution pipes and moves slowly upwards to the substrate surface. For practical 

reasons of conveying the effluent to the outlet, these systems have a flooded surface.  

 



 CHAPTER 2 

__________________________________________________________________________________________   

34 

 

In the Fill and Drain (FaD) CW (also Tidal Flow and Fill and Draw wetlands) the flow alternates 

between upward and downward flow. The media in these systems has an intermittent saturation 

level (saturated and unsaturated conditions resulting of the filling and draining sequences). 

Normally the upper surface of the media is not flooded. Their application at full scale is increasing 

due to the relatively high rates of oxygen transfer and nitrogen removal: in one reactor, nitrification 

occurs under aerobic conditions while the bed is drained, and denitrification with anaerobic 

condition and carbon source provided by the second filling sequence (Austin, 2006). 

 

Different kinds of CW can be combined in order to enhance the performance of the system. A 

combination of CW is normally called a Hybrid system, and it usually involves different sequences 

of VSSF and HSSF CWs, and the most commons are VSSF+HSSF and HSSF+VSSF. In a Hybrid 

plant composed by a VSSF followed by a HSSF, the first stage of the plant is responsible by 

providing suitable conditions (aerobic) for nitrification while the second stage provides a suitable 

condition (anoxic/anaerobic) for denitrification. Conversely, when applying a Hybrid system 

composed by a HSSF followed by a VSSF, the organic load removal will take place in the first 

stage and the ammonia removal in the second stage. In this second Hybrid system, the removal of 

the total nitrogen would be very low due to the nearly zero denitrification in the last stage. The 

ammonia nitrogen is oxidized to nitrate in the vertical-flow stage but without recycling is then 

discharged (Vymazal, 2007). 

 

2.2.2 Design parameters in VSSF and HSSF CWs 

Subsurface flow CWs are normally a part of a treatment process. Normally it comes after a primary 

treatment (e.g.: septic tank, settling tanks) that removes the settleable and floating solids prior to 

entering the CW bed. In some cases, a CW can be used also after secondary treatment with a 

polishing function (e.g. after stabilization ponds). The design of CWs could be divided roughly in 

two categories: sizing calculations (which require characterization of the incoming water, regional 

climate and goals of the CW) and physical specifications (basic data recorded over the years as 

depth, plants, media size, etc.) (Wallace et al., 2006). The 4 following approaches on the design of 

CWs are an evolution of the experience in CW construction:  

 

a) Sizing methods/ Scaling factors. 

Scaling factors are the simplest approach to CW design. They are the most used method in Europe, 

where national guidelines encourage the use of these factors that specify the superficial area of the 

system with appropriate filter material and wastewater concentrations. Indeed the use of scaling 

factor is highly dependent on experience in the use of the CW for the same wastewater flows and 

characteristics and under the same climatic conditions. Guidelines that support the design of 

constructed wetlands can be found in Table 2 and Table 3. Normally, factors like the contribution of 

a person equivalent and the superficial area requirement are taken into account. Different countries 
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developed their own legislation that fixed a minimum value for design parameters, as shown in 

Table 2 and Table 3 for the HSSF and the VSSF (intended as down flow CW), respectively. 

 

b) Loading specifications  

Loading charts can be used as a design tool to size CW: an influent loading rate is selected to 

produce a target effluent concentration and the CW area is calculated from the influent mass load 

(Wallace et al., 2006). A prescription of a specified area-loading rate for biochemical oxygen 

demand (BOD) is a common method for design, but there are also charts available for TSS and 

TKN (for both HSSF and VSSF), and Organic N, Ammonia N, Total N, total P and faecal coliforms 

(for HSSF). 

 

The use of charts that specify the Average Load Rates (ALR) applied per unit area in relation to the 

final effluent concentration as design criteria is possible, if CWs have similar wastewater 

characteristics and climatic conditions. For designing a VSSF or HSSF, graphs are expressed as 

ALR in g m
-2

d
-1

, and are drawn by multiplying the volume of wastewater applied (m
3
/d) and the 

wastewater concentration (for example mg COD/L), and dividing this by the superficial area (m
2
). 

The estimation of the outlet data can be just considered as a central tendency for the final 

concentration of the effluent and not as a real concentration at all times (Wallace et al., 2006). One 

of the limitations of the loading chart method is the need of a functional relationship between the 

inlet loading and the effluent concentration (which does not occur for example with TSS where only 

the first part of the bed is involved in its removal). Another limitation regards the scatter in loading 

chart data, because CW design, climatic and loading parameters are not the same for all the system 

that composed the dataset and a large component of the CW rely on the designer’s judgment (as 

depth, filter material and others). 

 

c) First-order models 

In performance-based design, the effects of degradation coefficients rate (k-rates), temperature (θ) 

and the combined effects of internal hydraulics and pollutant weathering are considered. US EPA 

(1983) was the first one to introduce simple first-order models of pollutant removal in the wetland 

literature. In 2004, Rousseau et al. (2004) confirmed that, according to the state of art, k-C* models 

seem to be the best available design tool for HSSF if all the assumptions are fulfilled. In their book, 

Wallace et al. (2006) used the first-order model as the primary tool in the design process. First-order 

kinetics (k-C*) model use equation 1 for the estimation of the area of a HSSF and VSSF CW: 
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Where A is the area in m
2
; Q is the inflow (m

3
 yr

-1
), Ci is the wastewater concentration at the inlet 

(mg/L), Ce is the wastewater concentration at the effluent (mg/L), C* is the background 
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concentration and kT is the removal rate for a specific temperature and area (m
3
 m

-2
 yr

-1
). Among 

these parameters, the estimation of kT is rather important during the design phase. 

 

The biological activity in the subsurface CW is extremely correlated with temperature: a decrease of 

temperature results in a lower bacterial growth and metabolic rates are reduced as well. A modified 

van’t Hoff-Arrhenius equation is used to estimate temperature effects on the biological reaction 

rates: 

 

       
               (2) 

 

where k and k20 are the reaction rate (d
-1

) at temperature T (˚C) and at 20˚C and θ is the temperature 

coefficient. In the case of HSSF, it is also possible to calculate the volume of the system (V 

represents the void volume of the system – the porosity volume) 

 

T

i

e

k

CC

CC
Q

V




















*

*

ln.

         (3) 

One of the most important issues in using a first-order kinetic model is that one must be sure that 

the kinetics parameters available in literature are representative of the system that is going to be 

designed and the context where the system will be located, weather conditions and filling material 

(porosity, diameter, etc.). 

 

d) Advanced mathematical modelling  

Computer models have been developed to support the desisgn of CW. Langergraber and Simunek 

(2005) developed the CW2D and the updated version CWM1 (Langergraber et al., 2009). Both 

models are implemented in the platform Hydrus-2D flow model (Simunek et al., 1999), that can 

simulate saturated and unsaturated flow and describe the biochemical transformation and 

degradation processes in subsurface-flow constructed wetlands. CW2D, the first version, describe 

the processes related to the organic matter, nitrogen and phosphorus degradation based on 12 

components and 9 processes. The CWM1 is a general model to describe biochemical transformation 

and degradation processes for organic matter, nitrogen and sulphur in HSSF and VSSF CWs. It is 

based on the mathematical formulation introduced by the IWA Activated Sludge Models (ASMs). 

CWM1 describes aerobic, anoxic and anaerobic processes within 17 processes and 16 components 

(8 soluble and 8 particulate). Various calibration studies have been conducted and the model seems 

to have a good potential as a design tool. However, also in the case of this design approach, it is 

important to make sure that the kinetic and stoichiometric parameters used are reliable. 
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Table 2 Sizing parameters in the design of HSSF CW. 

Reference 
Surface Area 

Requirements 
Depth Filter material 

Permeability (main 

layer) 
Hydraulic load Organic load 

Germany ATV, 1998 5 m
2
/PE 0,5 m U= d60/d10<5 Ks = 10

-3
 - 10

-4
 m/s 4 cm/d - 

Germany DWA, 2006   
U= d60/d10<5 and 0.2mm ≤d10 ≤ 

0.4mm 
Ks = 10

-3
 - 10

-4
 m/s   

Austria Onorm, 1998 6 m
2
/PE - 

Distribution: gravel 16/32 (4/8); 

main layer 4/8 (2/4) 
- 5 cm/d 112 kg/ha/d 

Czech Republic Vymazal, 1998 
2

nd 
 treatment: 5 m

2
/PE 

3
rd

 treatment: 1 m
2
/PE 

0,6 - 0,8 m Washed gravel: 3-16 mm Ks = 10
-3

 - 3.10
-3

 m/s - < 80 kg/ha/d 

United Kingdon Cooper, 1996 

2
nd 

 treatment: 5 m
2
/PE 

3
rd

 treatment: 0,5 - 1 

m
2
/PE 

0,6 m 
Washed gravel: 3-6 mm, or 5-10 

mm, or 6-12 mm 
Ks = 10

-3
 m/s 

2
nd 

 treatment <5 

cm/d 

3
rd

 treatment <20 

cm/d 

- 

United Kingdon 
GBG 42 (Griggs 

and Grant, 2001) 
- - Washed gravel: 3-16 mm - - - 

France 
CEMAGREF-EC, 

2001 

5 m
2
/PE (BOD in 150-

300)  

10 m
2
/PE (BOD in 300-

600) 

0,6 m 
Washed gravel: 3-6 mm, or 5-10 

mm, or 6-12 mm 
Ks = 10

-3
 -3.10

-3
 m/s - - 

France 
CEMAGREF-EC, 

2004 
      

Denmark Brix, 2004 5 m
2
/PE 0,6 m 

U= d60/d10<4  

0,3<d10<2mm 0,5<d60<8mm 
K=10

-4
 m/s - - - 

Italy PAT, 2002 6 m
2
/PE 0,6 m Main layer:   60 cm  4/8 o 2/4 < Ks = 2x10

-3
  m/s - - 
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Table 3 Sizing parameters in the design of VSSF CWs. 

Reference 
Surface Area 

Requirements 
Depth Filter material 

Permeability 

(main layer) 
Hydraulic load Organic load 

Germany ATV, 1998 2,5 m
2
/PE 0,8 m U= d60/d10<5 and d10 ≥ 0.2mm Ks = 10

-3
 - 10

-4
 m/s 60 mm/d 

20 -25 g 

BOD
5
/m

2
 

Austria Onorm, 2008 4 m
2
/PE 0.7-0.8 m 

From the top to the bottom:  

5/10 cm washed gravel 4/8 or 

8/16mm;  

50 cm sand 0/4mm (0.2mm ≤d10 ≤ 

0.4mm);  

5-10 cm gravel 4/8mm;  

20 cm gravel 8/16 or 16/32 mm 

-   

Czech Republic Vymazal, 1998 

2
nd 

 treatment: 

1° stage: 0,8- 2m
2
/PE 

2° stage: 2 - 5 m
2
/PE 

3
rd

 treatment:  2 - 

5m
2
/PE 

0,6 m 
Sand and Gravel (0 - 12 mm) U= 

d
60

/d
10

<5 
Ks = 10

-3
 - 10

-4
 m/s 20 - 80 mm/d - 

United Kingdon Cooper, 1996 

1 -2 m
2
/PE<100 PE:  

1° stage: 3,5 x PE
0,35

 

+0,6 x PE 

2° stage: 50% of 1° 

stage 

1 m 

From the top to the bottom: 8 cm 

sand; 15 cm gravel 6 mm;  10 cm 

gravel 12 mm;  15 cm gravel 3/6 mm 

Ks = 10
-3

 - 10
-4

 m/s 70 - 80 mm/d 
23 -25 g 

BOD
5
/m

2
 

United Kingdon 
GBG 42 (Griggs 

and Grant, 2001) 
- - 0.2/0.5mm con d<0.1% = 0.1mm - - - 

France 
CEMAGREF-EC, 

2001 

1° stage: 1,2 - 1,5 

m
2
/PE 

2° stage:0,8 m
2
/PE 

0,6 - 0,8 m 

From the top to the bottom: 1° stage 

40 cm gravel 2/8 mm;  30 cm gravel 

10/20mm;  20 cm gravel 20/40mm;       

2° stage: the first 40 cm are sand 

- 30 mm/d 
24 -25 g 

BOD
5
/m

2
 

Denmark Brix, 2004 2 m
2
/PE 1,2 m 

From the top to the bottom: 15 cm 

insulation;  90 cm sand;  15 cm 

gravel 

- 100 mm/d 30 g BOD
5
/m

2
 

Denmark 
Brix and Arias, 

2005 
3 m

2
/PE 1 m 

From the top to the bottom: 0.2 m 

insulation;  1 m filtersand 

(0.25mm<d10< 1.2mm; 

1mm<d60<4mm; U=d60/d10<3.5);  

0.2 m drainage (Ø 8-16mm) 

- 45-50 mm/d 20 g BOD
5
/m

2 
/d 

Italy PAT, 2002 4 m
2
/PE - 

From the top to the bottom: 15-20 

cm gravel 8/16mm;  60 cm sand 

0/4mm;  20 cm gravel 8/16mm o 

16/32mm 

Ks = 2x10
-3

 - 10
-4

 

m/s 
30-40 mm/d - 



 

2.2.3 Advantages and drawbacks of CW application 

Constructed wetlands offer several advantages for use in small and decentralised 

wastewater treatment plants. One of these advantages is their efficiency in the reduction of 

BOD, nitrogen and suspended solids. Constructed wetlands normally do not require 

complicated or expensive technology, nor specifically trained technicians. They are also 

one of the most sustainable technology, requiring very little maintenance or management to 

achieve a good treatment quality. Another advantage of constructed wetlands is their 

reliability: when properly designed, they can cope with large fluctuations in wastewater 

influent, both in hydraulic and organic loading (Paing and Voisin, 2005; Molle et al., 2005). 

On sufficiently sloping sites there can be no power requirements (Paing and Voisin, 2005) 

and maintenance may be limited to cleaning the influent pipe (Molle et al., 2005). 

Construction, capital and operational costs are lower than those of other systems, such as 

activated sludge. The lifetime of a constructed wetland used for wastewater treatment will 

be determined by wastewater loadings, the capacity of the wetland to remove and store 

contaminants, and the buildup of litter: there are systems operating for more than 20 years 

with little, if any, loss of effectiveness. 

 

Besides the above mentioned advantages, CWs do have limitations as well. Some 

limitations are hardly connected to their biological activity. The removal of pollutants in 

CW undergoes various processes, like: filtration, sedimentation, adsorption and biological 

degradation. The biological activity is extremely correlated with temperature, as the 

decrease of temperature reduces the bacterial growth and its metabolic rates. Although, 

several studies have shown that seasonal temperature variation does not always affect COD 

and BOD removal (Kadlec and Reddy, 2001) the activity of nitrifying bacteria is 

considered strongly limited below 10˚C and denitrification activity is detected only above 

5˚C (Brodrick et al., 1988; Herskowitz et al., 1987; Werker et al., 2002).  

 

Another drawback is the clogging of the filter material. In CW, pre treatment of the 

influent, mostly made with a septic tank, is required to avoid clogging problems in the bed 

(Langegraber, 2008). However, clogging is a complex process and its mechanisms are not 

completely clear. The total accumulated matter within CW systems which occupies pore 

volume is considered to be one of the major factors of clogging, but both biofilm growth 

and suspended solid accumulation could occupy the pore space. It occurs in nearly half of 

the wetlands after running for 5 years. Appropriate operation that allow feeding and rest 

periods can be adopted for ensuring enough oxygen supply inside the bed for the 

mineralizationof the accumulated organic matters by microorganisms and the 

reoxygenation of the substrate (Zhao et al, 2009). 

39 
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Along with other limitations, large land area requirements might be considered as the single 

major drawback of CWs. The design procedures used (Table 1 and 2) are usually based on 

specific surface area requirements usually overestimate the area in order to protect the 

surface water. However this specific area requirement sometimes limited the use of CW in 

mountain regions where it is not always available due to the geomorphologic conditions, 

natural slopes and also agricultural uses. The main problem is that the CW are still being 

seen as black box systems, which are designed by considering simple first order decay 

models. Several models have been developed to evaluate the organic matter, nitrogen and 

phosphorus removal in CWs (inter alia Rousseau et al., 2004, Langergraber et al., 2009), 

but the kinetics parameters (e.g. growth rate and decay rate of heterotrophic biomass or 

nitrifiers) required in the models are often assumed theoretically and not based on real 

measurements.  

 

The monitoring of microbial biomass, substrate consumption and/or product formation 

provides the information needed to estimate certain kinetics parameters such as the cell 

growth, production and uptake rates, and as well corresponding yields. The respirometric 

approach seems to be promising to measure directly some kinetic parameters used in the 

mathematical models, such as the maximum oxidation rate of readily biodegradable COD, 

the maximum nitrification rate or the endogenous respiration (Ortigara et al., 2010). On 

other hand, innovative CWs have been proposed to deal with the compromise of reducing 

the area of CWs systems without decreasing their efficiency. This would allow a wider 

application of CWs, even in sensitive areas. Innovative configurations are normally based 

on alternate feeding periods which may increase the loads applied, on the conditions of 

saturation in CW systems being varied, on the recirculation of the treated wastewater and 

eventually the forced aeration. Among the most promising techniques utilized in order to 

improve the nitrogen removal and reduce area requirement simultaneously are the 

recirculation and the forced aeration. 

2.3 Innovative configurations for reducing the area of CWs 

The main problem of CWs is associated with their considerable land area requirement. In 

fact, guidelines suggest that surfaces up to 4 m
2
/PE have to be considered when designing a 

CW. This is mostly due to the fact that, given the current knowledge on CWs, only large 

surfaces are supposed to guarantee the desired removal rates. Unfortunately, such land area 

requirements may constitute a significant problem where the cost of land is particularly 

high or the availability of land is limited. The latter is typically the case of mountain 

regions, where the geomorphologic context may not offer suitable conditions for a CW to 

be hosted in the vicinity of a community. Hence, new configurations are needed, that can 

reduce the size of a CW, while maintaining or even enhancing its nitrification and nitrogen 
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removal performances. Among the most promising techniques, utilized in order to improve 

the nitrogen removal and reduce area requirement simultaneously, are the recirculation and 

forced aeration. 

 

2.3.1 Recirculation of wastewater 

Recirculation in CWs in usually intended as taking part of the CW outlet effluent and 

transfering it to the intlet CW, or also to the septic tank. The effluent recirculation may 

improve the treatment efficiency of the CW in terms of BOD5 and TSS, due to the 

enhancement of microbial activity, through intense interactions between pollutants and 

microorganisms. Adapting full-scale CW facilities to the recirculation modification may 

increase operation costs, because of additional energy consumption for pumping 

(Stefanakis et al., 2009). 

 

A possible configuration of recirculation in hybrid systems composed by HSSF + VSSF is 

the recirculation of the nitrified VSSF effluent in the HSSF where denitrification occurs 

(Tunçsiper, 2009; Ayaz et al., 2012). This kind of recirculation has the advantage of 

performing the organic matter removal in the HSSF and achieving nitrification in the 

VSSF, due to the low level of organic matter in the inlet wastewater. The denitrification of 

the VSSF effluent will happen because of the recycle in the HSSF. 

 

Stefanakis et al. (2009) tested the recirculation of 50% of a HSSF effluent to a second stage 

HSSF and found out that effluent recirculation at a rate of 50% seems to have negatively 

affected the performance of the HSSF: pollutant removal rates were reduced after 

recirculation application, especially for nitrogen and phosphorus. 

 

In VSSF CWs, recirculation can be applied to VSSF treating pre-settled wastewater. In 

particular, a fraction of the nitrified VSSF effluent wastewater is recirculated in the primary 

settler (or septic tank) where nitrate is denitrified due to anoxic conditions and the 

availability of biodegradable organic matter (Brix and Arias, 2005; ÖNORM B 2505, 

2008). Another VSSF recirculated configuration was developed to treat domestic 

wastewater produced from single houses, in order to reutilize in irrigation. Groos et al. 

(2007) tested a combination of a VSSF CW (with recirculation) and a trickling filter: the 

effluent of VSSF CW was collected in a storage tank and then recirculated at the top of the 

VSSF to extend the contact time in the CW (Sklarz et al., 2009). Efficient removal was 

observed for TSS and BOD. Nitrogen was converted to nitrate and could partially fulfill 

plant nutrient requirements, reducing the need for fertilizer and hence providing 

environmental and economic benefits. 
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2.3.2 Artificial aeration in CW 

Biological degradation of organic matter and transformation of ammonium–nitrogen are 

processes limited by the oxygen availabity (Vymazal J., 2007). The insufficient oxygen 

supplying through the CW surface or plants transfer results in poor nitrogen removal in 

various types of CWS. These conditions are mainly observed in HSSF systems, where 

saturated conditions limit the oxygen diffusion from air to water. Moreover, oxygen 

availability in HSSF is even more limiting in winter when the plants are dormant.Hybrid 

systems have been used in order to increase the oxygen concentration in CWs. In the hybrid 

system, the presence of a VSSF CWs before the HSSF CWs, improve the aerobic 

concentrations in the HSSF, enhancing the nitrogen removal in the final effluent (Norvee et 

al., 2007). 

 

Artificial aeration is an alternative and has been proposed as a solution in the enhancement 

of removal performances in HSSF CW. Compressed air can be insufflate in the bed by 

pipes located at the bottom of the bed(Nivala et al., 2007) or in the initial section of the bed 

(Ouellet-Plamondon et al., 2006). The application in the initial section is related to the 

organic load, that is usually high in the first meters of a HSSF. Aeration can be applied 

continuously or discontinuously, depending on the dissolved oxygen concentration in the 

bed (Zhang et al., 2010) and also on the purpose of the treatment. The possibility of 

designing a CW with aerobic and anaerobic regions in the wetland bed would improve 

nutrients removal from the system. 

 

The additional energy demand associated with artificial aeration is compensated by an 

improvement in the removal of pollutants. In particular, artificial aeration may improve 

nitrogen and organic matter removal, especially in winter, when it stimulates heterotrophic 

bacterial activity without reducing denitrification (Ouellet-Plamondon et al., 2006). TSS 

removal may also be improved, because aeration maintains empty spaces in the lower part 

of the gravel bed (Ouellet-Plamondon et al., 2006). Zhang et al. (2010) stated that a limited 

artificial aeration in CWs may be a cost-effective method for treating domestic wastewater, 

because it requires smaller land areas as compared to a traditional HSSF CW. 

2.4 Respirometric Technique 

The dynamic of the Oxygen Uptake Rate (OUR) is widely used in activated sludge 

processes to evaluate kinetic and stoichiometric parameters and to characterise wastewater 

biodegradability (Ubay Çokgör et al., 1998; Majone et al., 1999). The relationship between 

the specific growth rate or the specific substrate removal rate and the substrate 

concentration has been considered to determine the maximum specific growth rate for 
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heterotrophs (μh). To this purpose, a linearized form of the Monod equation was used, and 

overall VSS and COD measurements enabled biomass and substrate to be defined 

(Williamson and McCarty, 1975, Ubay Cokgor et al, 1998). However, due to difficulties in 

the interpretation of COD and VSS measurements, experimental procedures based on 

respirometric measurements for the assessment of kinetic constants were developed. Ekama 

et al.(1986), in one of the pioneering studies in this field, proposed to make aerobic or 

anoxic reactors run at suitably low initial food/microorganism ratios for the assessment of 

readily biodegradable substrate (Ubay Cokgor et al, 1998). More recently, Andreottola et 

al. (2007) suggested the application of the respirometric techniques to measure kinetics of 

organic matter oxidation and nitrification using columns that simulate cores of VFCW.  

 

Respirometric tests are based on the oxygen consumption in the substrate degradation in 

biological systems. In a respirometric test, during biological degradation, the oxygen 

concentration is measured through time in order to obtain the Oxygen Uptake Rate (OUR). 

The OUR dynamics allow the calculation of kinetic parameters, such as: the maximum 

oxidation rate of readily biodegradable COD, the maximum nitrification rate and the 

endogenous respiration. 

 

The first applications of equipments, that perform oxygen measurements in environmental 

matrices (respirometers), started with Jenkins and Montgomery in the 60s, but the first 

application in the wastewater treatment plants was in the 80s, mainly for the 

characterization of wastewater biodegradability. According to Andreottola et al (2002), 

respirometers can be classified in manometric (the oxygen consumption creates a pressure 

difference inside the reactor), electrolytic (after the oxygen consumption, electrolytic 

compounds add new oxygen in the reactor to compensate the pressure created) and 

electrochemical (the oxygen concentration is measured by a probe whose sensors are 

submerged in an electrolytic solution).  

 

A normal respirometer has two phases: liquid (L) and gaseous (G) where the oxygen can be 

measured (as dissolved oxygen in water or saturation in the air). These phases can have 

exchanges with the atmosphere (open respirometers – flow of gaseous and/or liquid phase 

from inside to outside of the reactor) or not (in the case of closed respirometer –static 

gaseous and/or liquid phase). Spanjers et al. (1998) and Andreotolla et al (2002) classified 

the respirometers according to the phase where the oxygen is measured (in the liquid or in 

the gaseous phase) and based on the gaseous and liquid flows inside the reactor. This 

resulted in a 3 letter classification, where the first letter identifies where the oxygen is 

measured (L or G), the second letter refers to flow in the gaseous phase (S – static or F- 

with Flow) and the third letter refers to flow in the liquid phase (S or F). For example, an 
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LFS reactor is a respirometer in which the measurement is made in the liquid phase (L), the 

gaseous phase is open to the atmosphere or the reactor is aerated (F) and the liquid phase is 

static in the reactor (S) (Figure 5).  

 

Figure 5 LFS respirometer (Ziglio et al., 2001) 

 

Figure 5 shows the respirometer that is most commonly used to obtain kinetic parameters in 

activated sludge. It consists of a batch reactor, with temperature control, constant mixing 

and aeration. The data collected by the probes (oxygen values trough time) is acquired by a 

computer system. Oxygen can be introduced in the reactor in a continuous or intermittent 

way. The aeration is an important mechanism in the OUR test: dissolved oxygen should be 

maintainedabove 2mg/L, asbelow this value, the oxygen is a limiting factor in the system. 

 

Figure 6 shows the OD measurements during a respirometric test with continuous 

aeration.A respirometric test starts with the aeration of the activated sludge, to allow the 

aerobic degradation of the organic material, which is still present in the sludge. When all 

the biodegradable materials have been consumed by the biomass, the OUR values represent 

the endogenous respiration.In Figure 6, endogenous respiration is the line before the 

addition of substrate, which is characterized by the OD saturation level. During the 

endogenous phase, biodegradable substrate can be added to the activated sludge and the 

OUR values obtained from that moment (substracting the endogenous OUR) represent the 

exogenous respiration of the biomass (maximum substrate consumption rate). During this 

phase the biomass activity continues at this maximum level until all external substrate is 

taken up for storage and growth. After the substrate depletion, OUR curves change the 

slope and the OUR values drop from the maximum level to a level around the endogenous 

values. 
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Figure 6 OD behavior after the addition of substrate during a respirometric test with continuous aeration 

(Andreottola et al., 2002a) 

 

In the test with intermittent aeration two ranges of oxygen concentration are fixed, the 

maximum value (aeration stops) and the minimum value (aeration starts again). The 

activated sludge is aerated until the maximum values are reached and then the aeration 

stops. The dissolved oxygen concentration starts to decrease due to the biomass 

consumption until it reaches the minimum value, and then the aeration starts again (Figure 

7). The OUR (Oxygen Uptake Rate) value is calculated as the average slope of the OD line 

(during the decreasing phase) associated with the average time of descending tract. 

 

 

Figure 7 OD behavior during a respirometric test with continuous aeration. OUR is calculated for each 

decreasing line (Foladori et al., 2004) 
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An OUR value is associated to each decreasing line of the oxygen measurement. The 

respirogram ( 

Figure 8) is a sequence of OUR values, which represents the trend of the values of OUR 

through time.  

 

Figure 8 Typical respirogram for acetate consumption in activated sludge (Foladori et al., 2004) 

 

During the substrate consumption under dynamic conditions, the formation of intracellular 

polymers (storage process) is the main mechanism for the removal of the readily 

biodegradable carbon sources. Dynamic conditions are characterized mainly by feast 

(presence of external substrate) and famine (absence of external substrate) conditions, 

where the microorganisms are exposed to the substrate for a relatively short period of time. 

During feast conditions, microorganisms store the substrate as intracellular products period 

and then consuming the stored substrate under famine conditions (inter alia von Loosdrecht 

et al, 1997; Ni and Yu, 2007). Figure 9 is a representation of the difference in the 

respirogram between substrate consumption with and without storage (Majone et al., 1999). 

 

  

Figure 9 Substrate consumption: on the left hand the consumption is without storage (I) and with the storage 

effect (II) (adapted from Majone et al., 1999). 
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According to Sin et al. (2005), the accumulation rate of storage products is linearly 

correlated to the difference between the maximum substrate uptake rate and the substrate 

uptake rate required for growth: when the maximum substrate uptake rate of the biomass is 

higher than the amount needed for the growth rate, the difference between them is 

converted into storage products. The kind of storage polymers that is formed depends on 

the substrate type. For example, acetic acid is a simple substrate that is stored as 

polyhydroxyalkanoates (PHA) (Karahan et al., 2008 and Ni and Yu, 2007) and soluble 

starc, which is a hydrolysable organic compound, can be stored simultaneously as poly-

glucose (glycogen like substances) and/or utilized for direct growth (Karahan et al., 2005, 

Karahan et al., 2006). 

 

The description of this process has important consequences on activated sludge modelling. 

The Activated Sludge Model No. 1 (ASM1) and Activated Sludge Model No. 3 (ASM3) 

incorporate hydrolysis of complex substrates as rate limiting processes using surface 

reaction kinetics. These models describe the utilization of hydrolysis products with 

different mechanisms: in ASM1 the compounds resulting from hydrolysis are utilized only 

for heterotrophic growth (Henze et al., 1987 apud Karahan et al., 2005), while the ASM3 

considers that the readily biodegrable substrate is firstly stored and then the stored material 

is utilized for growth in the famine phase (Karahan et al., 2005, Ni and Yu, 2008). 

However, experiments indicate that the storage processes and the level of internal 

hydrolysis depend much on system operation parameters and on feast and famine 

conditions. Modelling efforts attempt to account for simultaneous substrate storage and 

growth during the feast phase (Karahan-Gül et al., 2003; Ni and Yu, 2008; Ni and Yu, 

2007; Karahan et al., 2008) in order to obtain a better interpretation of the experimental 

results.  

 

The basic stoichiometric for the storage process is expressed in the equation 4.  

 

       (      )           (4) 

 

After the consumption of the readily biodegradable COD (SS1), equation 4 can be 

manipulated in order to obtain the storage yield (YSTO), as shown in equation 5: 

 

      (  
     

   
)         (5) 

 

Karahan-Gül et al. (2002) calculated YSTO graphically using the OUR curve as show in 

Figure 10.  
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Figure 10 Graphical procedure for the determination of OSTO (Karahan-Gul et al., 2002a). 

 

The area under the whole OUR curve and above the endogenous OUR level represents the 

amount of oxygen utilized for the consumption of the specific amount of substrate fed to 

the system (O2). The YSTO (storage yield) is determined using the area under the OUR 

curve and above the straight line drawn from the endogenous decay level to the inflection 

point on the OUR curve, which is the end of the feast phase according to ASM3 (Karahan-

Gül et al., 2002a). 

 

Karahan et al. (2005 and 2006) studied the utilization of starch by activated sludge for 

simultaneous microbial growth on external substrates and formation of storage products. 

The ASMGS (Activated Sludge Model for Growth and Storage) was proposed for the 

utilization of starch and reflects an appropriate combination and adaptation of ASM1 and 

ASM3, with simultaneous substrate storage and growth concept, together with the addition 

of adsorption (Karahan et al., 2005 and Karahan et al., 2006).  

 

2.4.1 Respirometric experimental techniques in CWs 

Current experimental techniques for the measurement of oxygen consumption in CW are 

the following: solid respirometry in-situ (Giraldo and Zarate, 2001), solid respirometry off-

site (unsaturated conditions), applied on samples taken from the CW system (Giraldo and 

Zarate, 2001; Morvannou et al., 2010) and liquid respirometry off-site (saturated 

conditions), applied on samples taken from the CW system (Andreottola et al., 2007, 

Ortigara et al., 2010). 
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a) Solid respirometry in-situ:  

In situ measurements of gas content (CO2, CH4 and H2S) during an operation cycle are 

performed directly on CW bed assuming three different depths: 20 cm, 40 cm and 60 cm. 

The measurements are taken after feeding, when the oxygen content reached 21%. The 

observation of CO2 profile showed that two reactions with different kinetic rates occurred: 

a fast one (sorption of particulate and dissolved organic matter straight after the feeding) 

and a slow one (biological oxidation that continues several hours after the discharge). The 

biological oxidation is divided in two steps: hydrolysis (solubilization of particulate organic 

matter) and the biological oxidation of dissolved organic matter. Regarding the CH4 and 

H2S, their concentration increases after the feeding and starts to decrease some time after it. 

The presence of methane in the bed indicates that anaerobic reaction is taking place, despite 

the oxygen concentration inside the bed (about 12%) (Giraldo and Zarate, 2001). This test 

was done in a vertical subsurface flow constructed wetland (VSSFCW), but could also be 

performed in a horizontal subsurface flow constructed wetland (HSSF CW) because the 

measurements are done directly on the bed and in the air phase.  

 

b) Solid respirometry off-site (unsaturated conditions): 

Two main studies describe this category of respirometric tests: 

(1) Giraldo and Zarate (2001): unaltered sample of the sand was taken from the wetland 

bed straight after the feeding and put into a Erlenmeyer. A respirometric test was carried 

out to measure the metabolic activity, inside the sand once the sorption of BOD has 

occurred, in terms of oxygen consumption, CO2 production, methane concentration and 

organic matter degradation. The oxygen concentration decayed with time and when the 

oxygen has reached a constant value, the Erlenmeyer was opened for reaeration. Afterthe 

reaeration of the Erlenmeyer, the slope increase drastically indicating a dependence of 

organic matter degradation kinetics and the concentration of oxygen in the atmosphere. The 

authors do not estimate the kinetic rates based on their tests. 

(2) Morvannou et al. (2010): unsaturated samples of the porous media taken from VSSF-

CW were used to estimate biological process parameters of models like HYDRUS/CW2D 

(Langergraber et al.,2009). The biological method was adapted from thatapplied to 

household waste characterization and is aimed to measure the Dynamic Respiration Index 

(DRI). DRI is the difference in oxygen concentration between the entrance and the exit of 

the reactor in % of O2 and it allows to estimate the nitrification rate as well. The oxygen 

demand is measured versus time in the gas passing through a reactor, containing a mixture 

of an organic matrix mixed and a bulking agent (wood). Different sample/bulking agent 

ratios were considered to increase the porosity (for aeration efficiency) and maintain the 

humidity (for bacterial growth). As opposed to the former study (Giraldo and Zarate, 2001), 
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this research adopted a continuous air supply not to limit oxygen uptake rates, and the 

kinetic rates of nitrification were calculated.  

 

c) Liquid respirometry off-site (saturated conditions): 

This test could be applied on samples taken from the CW system and CWs cores. The filter 

material is extracted from the filter bed and put into the core. The core is filled with water 

from the bottom to avoid air entrapment. The liquid is recirculated by a peristaltic pump 

and passed in front of two oxygen probes (one at the top and another at the bottom). The 

respirogram is obtained bycomputing the difference between these two probes. The Oxygen 

Uptake Rate (OUR) was measured in the liquid phase in terms of Dissolved Oxygen (DO) 

in order to obtain the OUR dynamic, which is known as respirogram (Andreottola et al., 

2007, Ortigara et al., 2010). From the respirogram, exogenous and endogenous respiration 

can be distinguished and kinetics of organic matter oxidation (due to the heterotrophic 

biomass) and nitrification can be calculated. This test was done with VSSF CW samples. 



 

 

Chapter 3 

Materials and Methods 

3.1Liquid respirometry off-site (saturated conditions) 

A new concept of respirometer suitable for the application with CW cores developed by 

Andreottola et al. (2007) was used in this research (Figure 11).The respirometer consists of 

a saturated CW core being connected to a pump which forces a continuous recirculation of 

the water flow from the bottom to the top of the core. Aeration is supplied continuously on 

the top of the core. During the recirculation, wastewater passes in front of two dissolved 

oxygen (DO) probes located on the top and on the bottom of the core (Hach Lange 5740 

sc).  

 

The probe on the top is immersed and the fluid is aerated by a compressor, the sensor 

measures the concentration of oxygen in the liquid above the material. The probe located 

on the bottom of the core is placed within a cell that does not allow the entry of outside air 

to the circuit and it measures the concentration of oxygen of the liquid that has already 

passed through the core. Figure 12 shows the behaviour of both probes after the addition of 

an organic readily biodegradable substrate (acetate). The difference in concentration 

between the two probes (probe located on the top minus probe located on the bottom) is 

assumed to represent the oxygen consumption by the system. 
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Figure 11 Scheme of the respirometers used to test CW cores (adapted from Andreottola et al., 2007). 

 

 

Figure 12 Behaviour of OD and temperature after the addition of acetate. 

 

Oxygen Uptake Rate (OUR) expressed as mgO2L
-1

h
-1

 (Figure 13), was calculated as the 

difference between the DO concentration on the top and the bottom of the core and taking 

into account the hydraulic retention time (equation 6). 

 

 
HRT

DODO
hLmgOOUR

bottomtop 
 11

2

        (6) 
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where: 

DOtop= dissolved oxygen measured on the top of the column, expressed as mgO2 L
-1

; 

DObottom= dissolved oxygen measured on the bottom of the column, expressed as mgO2 L
-1

; 

HRT= hydraulic retention time (contact time in the core, from the top to the bottom of the 

core, calculated as the ratio VL/Q and expressed as hours). 

 

 

Figure 13 Respirogram from acetate consumption during the acclimatization of lab cores 

 

Some kinetic parameters related to the bacterial activity (heterotrophic and autotrophic) can 

be obtained by respirometric tests: 

(1) endogenous respiration (OURend): OUR measured in the absence of external substrates, 

such as biodegradable COD and ammonia, coming from raw wastewater; 

(2) maximum oxidation rate of biodegradable COD(vCOD,max): OUR related to the oxidation 

of biodegradable organic matter present in the wastewater (readily and slowly 

biodegradable); 

(3) maximum nitrification rate (vN,max): OUR related to the oxidation of ammonia; 

(4) heterotrophic yield coefficient (YH): represents the fraction of substrate converted into 

heterotrophic biomass. 

 

The maximum oxidation rate of biodegradable COD (vCOD,max) and the heterotrophic 

yieldcoefficient (YH) can be obtained by adding, after conditions of endogenous respiration 

have been reached, a rapidly biodegradable COD source (RBCOD), represented by an 

acetate solution (CH3COONa). The addition of acetate results in an immediate reduction of 

the oxygen content as measured by the probe. Consequently, the value of OUR increases 

until it reaches a peak value (OURmax - Figure 13). After the peak has been reached, values 
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start decreasing and once the substrate has been consumed, values become those 

characterizing the endogenous phase.  

 

OUR values during the endogenous phase are associated with an exponential curve 

extrapolated for the entire duration of the test; and the contribution in terms of oxygen 

consumed in this phase is calculated as the area under the exponential line that 

characterizes it. Instead, the total consumption of oxygen needed to degrade organic matter 

(ΔO2) is obtained by calculating the area under the respirogram since the addition of 

substrate (to) until the return of the curve to endogenous conditions (tf), which is subtracted 

from the endogenous decay (equation 7):  

   dttOURtOURLmgOO

tf

to

end  )()(/22
      (7) 

The maximum oxidation rate of biodegradable COD(vCOD,max) and the heterotrophic yield 

coefficient (YH) can be calculated as follows: 
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Where Ss is the amount of rapidly biodegradable COD added at the beginning of the test, 

and OURmax is the OUR value obtained in the peak of COD consumption minus the OUR 

value during the endogenous phase.  

 

The YSTO (storage yield) is determined using the area under the OUR curve and above the 

straight line drawn from the endogenous decay level to the inflection point on the OUR 

curve (ΔOSTO - Figure 13), which is the end of the feast phase according to ASM3 

(Karahan-Gül et al., 2002). The YSTO can be estimated through equation 10. 

 

S

STO

STO
S

O
gCODgCODY


1)/(

      (10) 

In the same way, a known amount of ammonia (NH4-N) can be added in the system in 

order to achieve the parameters related to the ammonia consumption. The resulting 

respirogram can be seen in Figure 14. 
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Figure 14 Respirogram obtained in a CW core after the NH4 addition. 

 

The respirogram is obtained from the resulting peak value of OUR from which you subtract 

the new value of endogenous respiration (OURend,N) to find the maximum value of OUR 

(OURmax,N). The OURmax,N is used to calculate the maximum nitrification rate (vN, max) (1 g 

of ammonia transformed into nitrate needed 4,57 gO2): 

 

 
57,4

max,11

4max,

N

N

OUR
hLNHmgNv  

     (11) 

 

The rates of consumption for AOB (Ammonia Oxidizing Bacteria) and NOB (Nitrate 

Oxidizing Bacteria) can be also obtained from a respirogram of ammonia consumption 

when nitrite storage can be observed (Foladori et al., 2012) as shown in Figure 14. Equation 

12 and 13 introduce the AOB and NOB consumption rate calculation. 
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        (13) 

Figure 15 shows two lab cores under respirometric test. 
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Figure 15 View of the cores under respirometric test. 

 

3.1.1Addition of biodegradable substrate 

Sodium acetate (CH3COONa) was used as a readily biodegradable carbonaceous substrate. 

For the respirometric test an amount of acetate correspondent to 200 mgCOD/L was added 

in the core through a spiked addition (60 mL of acetate 10 g/L).The contribution of 

autotrophic microorganisms was evaluated by addition of 30 mL of NH4-N (2g/L) in the 

CW cores. For tests realized with the material collected from the pilot plant (described later 

on in this chapter), the amount of NH4-N added was 30 mL of Ammonia solution (10g/L). 

 

Wastewater was added in the CW lab cores in order to evaluate its consumption. 

Wastewater with COD concentration of 324-465 mgCOD/L was used. For the respirometric 

test the core was aerated until endogenous conditions were reached and then 1.5 L of 

wastewater was gently added in the water column on top of the core, replacing 1.5 L of 

liquid which was extracted from the bottom of the core, while ensuring that no air was 

trapped in. 

 

3.1.2CW cores 

Four lab cores were made to use in the lab experimentation. All the cores have the filling 

material that represents a VSSF CW used in the pilot plant (that will be described later). 

Two cores were built similar to the VSSF in the E-lineand two, with the VSSF in theC-line. 

These two configurations were choosen in order to represent the conditions actually found 
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in the pilot plant located in Ranzo (which is described latter). The cores have a height of 

0.74 m high, a diameter of 0.125 m and a volume of 9.08 L (Figure 16). The liquid volume 

(VL) in the respirometer was 4.2 L, including the porosity of the media, water in the pipes 

and in the cell where de DO is measured and a small water column on top of the core. The 

velocity of the recirculation used in these test was 300 mL/L. 

 

 

Figure 16 View of the lab cores configuration: the column in the left hand side is the C-line configuration and 

the column in the right hand side is the E-line configuration. 

 

The E-line configuration (cores are called VSSF 1 and VSSF 2) included the following 

layers (from the bottom to the top): 0.2 m of gravel with grain size of 15 - 30 mm (porosity 

p= 31%); 0.1 m of gravel with grain size of 7 -15 mm (p= 30%); 0.2 m of sand with grain 

size of 1-6 mm (p= 28%); 0.1 m of sand with grain size of 1-3 mm (p= 31%). The liquid 

volume in the column was 2.2 L inside of the filter material. 

 

The C-line configuration (also called VSSF 3 and VSSF 4) included the following layers 

instead (from the bottom to the top): 0.2 m of gravel with grain size of 15-30 mm (porosity 

p= 31%); 0.1 m gravel 7-15 mm (p= 30%); 0.2 m of sand with grain size of 1-6 mm (p= 

28%); 0.1 m of sand with grain size of 1-3 mm (p= 31%). The liquid volume in the column 

was 2.14 L. 

 

The columns had been acclimatised under unsaturated conditions for several months using 

pre-settled municipal wastewater and applying various COD loads (40 gCOD m
-2

 d
-1

; 2.75 



CHAPTER 3 

________________________________________________________________________________________ 

58 

 

m
2
/PE). During the acclimatisation period, oxygen transfer was provided only 

spontaneously during filling and discharge of the cores.  

 

3.1.3 Biodegradable COD estimation 

Traditional respirometers, as described previously in Ziglio et al. (2002), were also used in 

this research. The closed-respirometers used in this research consisted in batch reactors 

with temperature controlled where 1.2 L of activated sludge (taken from the oxidation tank 

of Trento Nord WWTP, Italy) was aerated intermittently between two DO set-points. 

Aeration and mixing were provided by compressed air and magnetic stirrer. DO was 

monitored by oximeters (OXI 340, WTW GmbH, Weilheim, Germany) connected to a data 

acquisition system. OUR was calculated as the slope of DO concentration during a phase 

without aeration and between the two set-points. In order to inhibit nitrification, 

allylthiourea was added at the beginning of the respirometric tests. 

 

24-h respirometric tests were carried out according to the approach proposed by 

Vanrolleghem et al. (1999) for COD characterisation in raw wastewater. The measurement 

of biodegradable COD in influent and effluent wastewater taken from the CW units was 

performed by respirometry. The respirogram obtained for a conventional activated sludge 

used as reference was compared to the respirogram obtained after the addition of a known 

amount of wastewater to the activated sludge. The comparison allows calculation of the 

amount of biodegradable COD in the tested wastewater on the basis of the oxygen 

consumed for its oxidation. 

3.2 Pilot plant description 

The outdoor CW pilot plant is located in Ranzo, a small village in the eastern Alps 

(Province of Trento, Italy) at an elevation of 739 m above the sea level (coordinates 46° 03' 

N ande 10° 56' E). It is located 22 km away from the city of Trento and 120 km away from 

the city of Verona. Meteorological data for the whole period were collected from the 

nearest meteorological station located at 2 km from the pilot plant (S. Massenza, Province 

of Trento, Italy). The geographic location is shown Figure 17, while the village is shown in 

Figure 18. 
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Figure 17 Geographic location of Ranzo (B – red dot) and Trento (A). 

 

Figure 18 View of the village of Ranzo. 

 

3.2.1 Control line and Experimental line 

Ranzo is a small community of 435 inhabitants with no commercial or industrial activities 

in it. The wastewater produced by people living in the village is collected by pipes (rainfall 

water is collected separately) and transported by gravity until the pilot plant. Wastewater 
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passes through a mechanical grid and a two chamber Imhoff tank in order to minimize the 

risk of clogging. After that part of the wastewater from the Imhoff tank is pumped to the 

pilot plant (Figure 19). Figure 20 and Figure 21 show a view of the pilot plant installation 

and the Imhoff tank, respectively. 

 

Figure 19 Scheme of the pilot plant. 

 

 

Figure 20 View of the pilot plant installation 

 

The pilot plant consists of two lines in parallel composed by a Hybrid CW: a VSSF 

followed by a HSSF (Figure 22). The pilot plant is divided into two main lines: one is the 

control line called C-line (whose design characteristics follow the indications provided by 

the Province Law n. 992/2002) and the other is the experimental line called E-line. In the E-

line the innovative configurations were tested, while the C-line has the same operation 

conditions during all the period. Figure 24 describes the layers of the VSSF and HSSF and 

Figure 23 shows the distribution system placed above the VSSF. 

Table 4 shows the description of the filter material layers used in VSSF and HSSF. 
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Figure 21 View of the Imhoff tank 

 

Table 4 Description of the filter material layers used in VSSF and HSSF. 

 
Units 

VSSF  HSSF 

 E-line C-line  E-line and C-line 

Depth (filter material) m 0.60 0.80  0.60 

Superficial Area m
2 

2.25 2.25  9.00 

Width m 1.50 1.50  1.50 

Length m 1.50 1.50  6.00 

 

Figure 22 Scheme of the Hybrid CW used in the pilot plant. 

 

The main physical difference between these two systems lies in the kind of filter material 

used in the VSSF (Figure 24). The E-line configuration presents the following layers from 

the bottom to the top: 0.2 m of gravel with grain size of 15 - 30 mm (porosity p= 31%); 0.1 

m of gravel with grain size of 7 -15 mm (p= 30%); 0.2 m of sand with grain size of 1-6 mm 

(p= 28%); 0.1 m of sand with grain size of 1-3 mm (p= 31%). Initially two separate layers 

were on top of the VSSF with grain size of Ø1-3 mm and Ø1-6 mm, but these were turned 

into one single layer with size distribution Ø1-6 mm after few months of operation. 
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Figure 23 Distribution system above the VSSF on both lines: E-line and C-line. 

 

The C-line configuration was made of the following layers (from the bottom to the top): 0.2 

m of gravel with grain size 15-30 mm (porosity p= 31%); 0.1 m of gravel with grain size 7-

15 mm (p= 30%); 0.5 m of sand with grain size 1-6 mm (p= 28%); 0.1 m of sand with grain 

size of 1-3 mm (p= 31%). Both VSSFs are unplanted. 

 

The HSSF (Figure 25) had the same configuration in both systems: a 0.5 m wide gravel-

made drainage layer with grain size of 15-30 mm (porosity p=30%) on both sides of the 

filter and in the middle a 5 m wide layer with gravel of grain size 3-7 mm (p=26%). The 

HSSF is equipped with a group of three taps at a distance of 1.5 m from each other that 

allow the effluent to be sampled along the side at different heights (0.2 m, 0.4 m and 0.6 

from the bottom) (Figure 25). HSSF is planted with 4 plants/m
2
 of PhragmitesAustralis. 

 

Figure 24 Layout of the VSSF for theE-line and C-line configurations 

 

VSSF E-line VSSF C-line 
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Figure 25 Layout of the HSSF 

 

The pilot plant is equipped with a control panel (Figure 26) for the regulation of various 

parameters, such as: the feeding and resting period of the feeding pump; operation and 

resting period of the recirculation pump; the duration of the cycle (intended as intervals 

between feeding periods) and the control of the automatic valve. 

 

 
Figure 26 Control panel of the pilot plant: E-line controlsare located on the left hand side, whileC-line 

controlsare located on the right hand side. 

 

Different working phases in the E-line are controlled by a timer as well as by level probes 

positioned in the pipe outside the bed (Figure 27) that work as a piezometer. 
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Figure 27 Piezometer pipe where the level probes are installed in the E-line 

 

Figure 28 and Figure 29 show a view of the pilot plant on March 2010 and July 2011, 

respectively. 

 

 

  
Figure 28 View of the pilot Plant in March 2010. 
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Figure 29 View of the pilot Plant in July 2011, before and after plants were cut. 

 

3.2.2 Operational periods 

The pilot plant was operated for two years (2010 and 2011).In this period, different 

configurations were tested in the E-line. The C-line has been operated with the same 

configuration over the entire research period. The initial configuration maintained that both 

lines were operated with the same organic and hydraulic load. After 3 months, the hydraulic 

and organic loads in the E-line were increased in order to explore the limits of the 

configuration. Further, recirculation of wastewater and aeration were tested in the VSSF. 

Table 5 shows the main parameters of the different configurations. 

 

Table 5 Main parameters for the different configurations adopted in this study 

Configuration 

VSSF HSSF 

Hydraulic 

Load 

(L m
-2 

d
-1

) 

Organic  

Load 

(gCOD m
-2 

d
-1

) 

Specific  

Surface 

(m
2
/PE) 

Hydraulic  

Load 

(L m
-2 

d
-1

) 

Specific  

Surface  

(m
2
/PE) 

Low Load VSSF+HSSF (C-line) 63 33 3.5 16 19.6 

Low Load VSSF+HSSF (E-line) 55 37 3.2 14 12.8 

High Load VSSF+HSSF(E-line) 123 87 1.3 31 5.2 

High Load VSSF+HSSF / recirculated 

VSSF (Recirculated E-line) 
169 82 1.5 42 5.8 

High Load VSSF+HSSF / aerated 

VSSF (Aerated E-line) 
135 58 1.9 34 8.7 

 

The value of COD, TSS, NH4-N, NO3-N, NO2-N, TKN, Total P, P-PO4
3-

 was assessed in 

the influent and effluent of the CW pilot plant by chemical analysis. Samples of influent 

and effluent from VSSF and HSSF systems were collected once to twice a week over a 2 

year period. Figure 30 shows the sampling points in the pilot plant. Particulate COD was 

calculated as difference between total COD and filtered COD. Analyses were performed 

according to Standard Methods (APHA, 2005). 



CHAPTER 3 

________________________________________________________________________________________ 

66 

 

 

Intensive monitoring campaigns (track-studies) were conducted during the VSSF normal 

operation cycle to obtain the concentration time-profiles of wastewater effluent from the 

VSSF over 8 different time frames (track-studies): 0-5 minutes, 5-10 minutes, 10-20 

minutes, 20-30 minutes, 30 minutes-1 hour, 1-2 hours, 2-4 hours and 4-6 hours. Samples 

along the HSSF unit were taken from taps to obtain the longitudinal profile of 

concentrations in the bed (3 sample points). 

 

(a)  (b)  (c)  

Figure 30 Sampling point: (a) Distribution from the VSSF to the HSSF; (b) Taps on the side of the HSSF; 

(c) Collection point of the HSSF final effluent. 

 

The operation periods tested in this research are described as follows: 

 

a) Low Load VSSF+HSSF C-line and E-line:  

The VSSF system was operated with a conventional down-flow configuration with a single 

feeding per cycle applied on top of the VSSF bed (6.6 h/cycle, 3.6 cycles/day on average) 

and the VSSF effluent flows to the HSSF. The VSSF C-line: operated with about 3.7 m
2
/PE 

in the period 2009-2011 and configurationE-line operated with 3.2 m
2
/PE(results are 

shownin Chapter 7); 

 

b) High load VSSF+HSSF (E-line):  

The VSSF of theE-line was operated with a conventional down-flow configuration with a 

single feeding per cycle applied on top of the VSSF bed (6.6 h/cycle, 3.6 cycles/day on 

average). The specific surface area of the VSSF in the E-line and in the C-line was 1.3 

m
2
/PE and 3.2 m

2
/PE, respectively (results are shownin Chapter 8); 
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c) High load recirculated VSSF + HSSF (Recirculated E-line) 

The VSSF of the E-line was operated with a recirculated configuration with a single 

feeding per cycle applied on top of the bed (10.5 h/cycle, 2.3 cycles/day on average). The 

specific surface area of the E-line was 1.5 m
2
/PE on average, while in the C- line it was 3.6 

m
2
/PE on average. Recirculation in the VSSF CW was performed closing the automatic 

valve (Figure 31) at the bottom of the bed to maintain saturated conditions in the bottom 

layers for approximately 6 h/cycle (6-h-phase). Periodic short recirculations (5 minutes per 

hours, 6 times per cycle) were performed from the bottom to the top of the bed in an 

attempt to improve the spontaneous aeration and favour nitrification. At the end of the 

cycle the valve was opened and the discharge of wastewater occurred from the bottom of 

the bed to the HSSF for 4 hours (results are shown in Chapter 10); 

 

(a)  (b)  

Figure 31 Pump for the recirculation of wastewater: (a) General view and (b) Close-up view. 

 

d) High load aerated VSSF + HSSF (Aerated E-line) 

The aerated VSSF in the E-line was based on the saturation of the bottom of the VSSF bed, 

where the aeration is applied. The aeration allows the alternation of anoxic and aerobic 

condition on the saturated bottom of the bed. VSSF system was operated with an aerated 

configuration with a single feeding per cycle applied on top of the bed (10.8 h/cycle, 2.2 

cycles/day on average). The VSSF specific surface area in the E.line was 1.9 m
2
/PE on 

average. The automatic valve at the bottom of the bed was closed to maintain saturated 

conditions in the bottom layers for approximately 6 h/cycle (6-h-phase). During this phase, 

5 min of aeration was provided every 30 min in the VSSF CW by means of holed pipes 

installed at the bottom of the bed. The air compressor capacity is 8Nm
3
/h and its operation 

is controlled by the panel (Figure 32). At the end of the cycle the valve was opened and 

wastewater was discharged to the HSSF for 4 h (results are shown in Chapter 11). 
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(a) 

 

 

(b) 

 
Figure 32 Aeration scheme: (a) scheme of the perforated pipes positioned on the bottom of the VSSF CW and 

connected with Ø 2 cm pipe to the air compressor; (b) Air compressor and flow meter. 

3.2.2.1 Winter operation of the pilot plant 

 

The VSSF run in parallel during the winter operation and results are shown in Chapter 9. C-

line (called in Chapter 9 Low-Load VSSF) operated with 70 Lm
-2

d
-1

 and 25.9 gCODm
-2

d
-

1
of hydraulic and organic load respectively and E-line (called in Chapter 9 High-Load 

VSSF) operated with 178 Lm
-2

d
-1

and 73.6 gCODm
-2

d
-1 

of hydraulic and organic load 

respectively. 

 

The pilot plant was operated during the winter under two different configurations: regular 

and discontinuous feeding. During the regular operation period (continuous feeding period) 

the influent wastewater was applied in both VSSF CWs by pumping from the septic tank 

every 6.5-6.6 h (3.7-3.8 cycles/day on average). In the period with discontinuous feeding 

influent wastewater was put into the VSSF CW only few times (i.e. every 2-4 weeks) to 

cause a long-term stress in the system. Figure 33 shows the pilot plant under winter 

conditions. 
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Figure 33 View of the pilot plant under winter conditions. 

 

The Ammonia Oxidation Rate (AUR) test was applied in order to estimate the nitrifying 

activity under different temperatures. The AUR is a test developed to measure the activity 

of nitrifying bacteria in activated sludge through the determination of maximum specific 

utilization rates of ammonia in activated sludge. It can also be used to evaluate the 

inhibition in the nitrifying biomass or the influence of temperature, oxygen and pH on the 

nitrification activity. The test isusually performed in a batch reactor with few liters of 

activated sludge (concentration of 3-4 gSST/L). Parameters like pH, temperature, and 

dissolved oxygen must be carefully monitored due to their influence on the nitrification 

rate. 

 

The mixture is continuously aerated in order to avoid the oxygen limitation (OD> 4 

mgO2/L), temperature and pH are monitored to keep them around 20°C and 7.5-8.0, 

respectively. At the beginning of the test a known amount of ammonia nitrogen is added in 

order to have an initial concentration of 20-30 mgN/L. Samples of activated sludge are 

taken every 15-30 minutes over a total period of 3-4 hours and, after filtration, they are 

analyzed to determine the concentration of ammonia, nitrous and nitric acids. The 

maximum specific nitrification rate (vN) can be calculated as the slope of the production of 

NO2 and NO3 or the slope of the curve consumption of NH4.  

 

In order to use the AUR test in the field of CW, the cores used for respirometric test were 

used for this test. At the end of the typical VSSF cycle, when wastewater was drained by 

gravity, a little amount of liquid remained in the interparticle voids (pore water content was 

approximately 5% of the wet sand/gravel weight). Thus the amount of water in the column 

was 370 mL before the beginning of the AUR test. The modified AUR test was realized 

with 600 mL of water fed on top of the column with a concentration of 30-50 mgNH4-N/L 

which drained throughout the column. The water collected on the bottom is put on top of 

the column again every 15 minutes. The samples collected from the bottom were analyzed 
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for NH4-N, NO2-N, NO3-N, pH and temperature every 30 minutes. The overall test lasted 5 

to 8 h until the complete oxidation of the NH4 added. Each test was run with different 

temperatures (around 2.0˚C, 6.0˚C, 9.0˚C 12.0˚C, 14.8˚C, 18.0˚C and 20˚C). The maximum 

specific nitrification rate (vN, expressed as mgN m
-2

 d
-1

) was calculated considering the 

consumption of NH4-N instead of the production of nitrite and nitrate because 

denitrification can take place in the porous of the filter material.  

 

Filter material from the pilot plant: AUR tests were also applied to the granular material 

collected from the VSSF CW pilot plant in order to evaluate the effects on the nitrification 

activity after three months at low temperatures and discontinuous feeding. Samples were 

extracted during the winter after a two month period of intermittent feeding and at 

temperatures inside the CW between 1 and 10°C. Few kilograms of the granular material 

were collected in the top layers of the VSSF CWs and placed in the column where AUR 

test was performed at controlled temperature.  

 



 

 

Chapter 4  

Kinetics of heterotrophic biomass and storage 

mechanism in wetland cores measured by respirometry
1
 

4.1 Introduction 

Numerical models of different complexity have been published in recent years to simulate 

hydraulic behaviour, biochemical transformation and degradation processes for organic 

matter and/or nitrogen in CW, for example, using mechanistic models describing reactive 

transport in saturated or variably saturated conditions as reviewed by Langergraber (2008). 

Although some of these models have been used in several applications and a good match of 

the measured data has been obtained, the parameters used in the models are often assumed 

from literature and not always obtained from the specific CW plant. Kinetic and 

stoichiometric parameters involved in biological processes such as CWs cannot be taken as 

universal, since they may be influenced by many factors e.g. the influent wastewater 

composition, properties of gravel/sand bed, operational strategies, etc. Procedures for the 

direct and experimental measurement of the kinetic parameters of microbial biomass in 

CWs are still rare or absent today (Langergraber and Šimůnek, 2005). Some authors have 

highlighted the need for further research to develop experimental methods for estimating 

model parameters, both kinetic and stoichiometric, with the aim of improving the accuracy 

of numerical models to be used as a reliable design tool for CWs (Langergraber, 2008). 

 

                                                           
1
 This chapter was published as: Ortigara A. R. C., Foladori P., Andreottola G. (2010). Kinetics of 

heterotrophic biomass and storage mechanism in wetland cores measured by respirometry. Water Science and 

Technology 64(2), 409-415. 
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The application of respirometric techniques to investigate carbonaceous substrate oxidation 

or nitrification using columns that simulate cores of VSSF CW was first proposed by 

Andreottola et al. (2007). The dynamic of the oxygen uptake rate (OUR) is usually known 

as respirogram, and batch OUR tests have been widely used in activated sludge processes 

to measure kinetic and stoichiometric parameters or to characterise wastewater 

biodegradability. Furthermore, respirometry is often considered as a traditional method in 

the calibration of activated sludge models (inter aliaVanrolleghemet al., 1999). Although 

the use of OUR dynamics is still new and not yet fully investigated and understood in the 

field of CWs, this approach seems promising to obtain kinetic and stoichiometric 

parameters involved in the oxidation of organic matter, such as the maximum oxidation rate 

of readily biodegradable COD, endogenous respiration and maximum growth yield. 

 

This chapter shows how respirograms can be interpreted to improve the knowledge of the 

kinetic and stoichiometric parameters of heterotrophic biomass processes occurring in CW 

cores, interpreting the respirograms obtained under aerobic respirometric tests carried out 

with pure substrate permitted the calculation of the maximum growth yield of heterotrophic 

biomass, while respirometric tests carried out with raw wastewater allowed us to quantify 

the biodegradable COD of wastewater when applied in a CW system. Particular emphasis 

was given to the description of the storage mechanisms, which lead to the formation of 

internal storage products under “feast” conditions and their degradation under “famine” 

conditions, very similar to the phenomena already observed in activated sludge systems 

(inter aliaMajoneet al., 1999; Sin et al., 2005). 

4.2 Materials and Methods 

CW cores of the E-line configuration were tested in this Chapter (more details about the 

cores can be found in Chapter 3). The columns were differently acclimatised for several 

months using raw municipal wastewater and applying average COD loads of 40 gCOD m
-2

 

d
-1

 (equivalent to 2.8 m
2
/PE). All CW cores performed COD removal and nitrification. 

 

During the respirometric tests, CW cores were connected to pipes and to a peristaltic pump 

with a known flow rate (Q = 18 L/h in our tests). Aeration is supplied continuously on top 

of the core at aeration rate ranging from 2 to 7 NL/min. The liquid volume (VL) in the 

respirometer was 3.2 L, including the porosity of the media (2.20 L) and the water in the 

pipes, dissolved oxygen (DO) chamber and a small water column on top of the core (0.98 

L). Two DO probes are placed at the top and the bottom of the core. CW cores were firstly 

aerated overnight until endogenous respiration was achieved. Sodium acetate was used as a 
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readily biodegradable carbonaceous substrate and a spike addition correspondent to 187 

mgCOD/L was applied in the core.  

 

Alternatively in this chapter, raw municipal wastewater (taken from the wastewater 

treatment plant of the city of Trento, Italy) with COD concentrations of 324-465 mgCOD/L 

was used. During the respirometric test with wastewater, the CW core was aerated until 

endogenous conditions were achieved and then 1.5 L of wastewater was gently added to the 

water column at the top of the core, replacing 1.5 L of liquid which was extracted from the 

bottom of the core, being careful to avoid air entrapment. Ammonia in excess was present 

in all the tests. Allylthiourea was always added to the CW cores to avoid nitrification and to 

measure only the oxygen consumption of heterotrophic bacteria.  

 

Respirometry of activated sludge – Closed-respirometers consisted of temperature 

controlled batch reactors where 1.2 L of activated sludge (taken from the oxidation tank of 

Trento Nord WWTP, Italy) was aerated intermittently between two DO set-points. Aeration 

and mixing were provided by compressed air and magnetic stirrer. DO was monitored by 

oximeters (OXI 340, WTW GmbH, Weilheim, Germany) connected to a data acquisition 

system. OUR was calculated as the slope of DO concentration during a phase without 

aeration and between the two set-points. In order to inhibit nitrification, allylthiourea was 

added at the beginning of the respirometric tests. 

4.3 Results and Discussion 

4.3.1 Calculation of the respirogram of the CW cores 

A respirometric test starts providing aeration overnight in the CW core in order to achieve 

endogenous respiration. DO concentrations at the top and the bottom of the column are 

indicated in the example in Figure 34 (a) and depend on: 

- room temperature (ranging from 22.3 to 26.1°C), which causes daily DO variations; 

- the substrate spike addition (acetate) which causes an immediate significant decrease of 

DO concentration at the bottom of the column and a slight decrease at the top. 

 

Using equation 6, the OUR was calculated and indicated in Figure 34 (b). The OUR profile 

calculated at room temperature is affected by the daily variations of temperature and 

therefore it is not easy to identify exactly the profile of endogenous respiration. In order to 

exclude the influence of temperature variations, the respirogram has to be corrected 

considering a reference temperature of 20°C (however another reference temperature could 

be considered). The correction of temperature was calculated considering the following 

form of the Arrhenius equation: 



CHAPTER 4 

________________________________________________________________________________________ 

74 

 

 

 
t

20 C T 20 C

OUR
OUR   


     (=1.08)      (14) 

 

but maintaining the same integral under the respirogram (by applying the trapezium rule 

and changing the time). The respirogram corrected to 20°C is indicated in Figure 34 (c), 

where the expected regular profile of the data can be immediately observed, which allows 

us a better understanding of how the process and the endogenous respiration change over 

time. 

 

(a)  

(b)  
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(c)  

Figure 34 Calculation of the respirogram and correction of temperature: (a) DO and T at the top and bottom of 

the CW core; (b) OUR at room temperature; (c) OUR after the correction of temperature to 20°C. 

4.3.2 Respirometry of CW cores using acetate and storage mechanisms 

Respirograms of two different CW cores obtained after the addition of 187 mgCOD/L of 

acetate (SS) and after correction to 20°C are indicated in Figure 35. The following phases 

can be observed:  

- phase 1: initial endogenous respiration (OUR = 4-5 mgO2 L
-1

 h
-1

); 

- phase 2: rapid increase of OUR immediately after the addition of SS (OUR peak of 14.5-

32 mgO2 L
-1

 h
-1

) and rapid decrease of OUR after SS depletion; 

- phase 3: slow decrease of OUR due to the utilization of the stored compounds, until the 

endogenous respiration is reached; 

- phase 4: endogenous respiration (OUR = 4-5 mgO2 L
-1

 h
-1

). 

 

(a)

 

(b)

 

Figure 35 Respirograms of CW cores (a)(b) obtained after the addition of 187.5 mgCOD/L of acetate (SS) 
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After the addition of SS, “feast” conditions were formed in the CW core and the OUR 

increased rapidly up to a peak of 15 and 32 mgO2 L
-1

 h
-1

in the CW cores (a) and (b), 

respectively (phase 2 inFigure 35). Simultaneously, internal storage products were 

gradually formed (XSTO) until all the external SS was consumed. When SS was completely 

removed from the bulk liquid, OUR dropped from the maximum level to a level above the 

endogenous respiration. During the following phase (phase 3 in Figure 35) OUR decreased 

more slowly and in general in a non-linear way, to reach the values of endogenous 

respiration maintained prior to substrate addition. Phase 3 is associated with “famine” 

conditions, in which the growth of heterotrophic biomass occurs using XSTO. 

 

The internal storage products, mainly polysaccharides and lipids, are intermediate products 

in overall carbonaceous substrate removal, which are formed especially when the biomass 

is subjected to feast and famine conditions, as widely observed in activated sludge systems 

(inter alia Majone et al., 1999; Carucciet al., 2001; Dirckset al., 2001). The occurrence of 

the storage mechanism in CW cores is probably due to the intermittent loads applied to the 

CW cores, causing transient and highly dynamic load conditions, especially when long 

feast/famine periods are applied. Dynamic conditions can lead to a storage response, even 

in the absence of any external limitation for the growth. The storage of substrate available 

under feast conditions allows microorganisms capable of substrate storage to survive during 

the subsequent famine conditions when the external substrate is depleted (Karahan-Gül al., 

2003; van Loosdrecht et al., 1997). In biological systems with high SRT and low growth 

rate – CW systems can be consider as belonging to this category – the formation of storage 

polymers was frequently observed (Sin et al., 2005). 

 

Important stoichiometric parameters in carbonaceous substrate oxidation and storage 

mechanisms are: the maximum growth yield YH which represents the fraction of substrate 

converted into biomass and the storage yield YSTO which represents the fraction of substrate 

converted into storage products then utilised for growth. These parameters can be easily 

determined by respirometry using acetate, also in the case of CW cores, as performed in 

this research. For the calculation of YH the following expression was used:  

 

   dttOURtOUR
S

O
mgCODmgCODY

Tf

to

end

s

H  


 )()(11 2               (15) 

 

where the total amount of oxygen (ΔO2) needed for the oxidation of the external substrate 

was calculated as the integral between the respirogram and the endogenous respiration 

calculated from t0(time of addition of acetate) to tf(when endogenous respiration is reached 
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again). YH for CW cores was 0.56-0.59 (Table 6) which is lower than the typical value of 

0.67 expected for conventional activated sludge. 

 

To calculate YSTO (according to the definition in ASM No.3, Gujeret al., 1999, in which it 

is considered that substrate storage is the preliminary step and the subsequent growth 

occurs solely on the stored products) from the respirograms of CW cores indicated in 

Figure 2 we adapted a simplified graphic method which does not require model simulation, 

as proposed by Karahan-Gület al. (2002). As shown in Figure 35, a straight line was drawn 

connecting the first OUR point and the final OUR point of phase 2. The area between the 

respirogram and this straight line is oxygen used for storage (ΔOSTO) and so YSTO can be 

easily calculated using the equation 10 in Chapter 3 (results in Table 6). The values of YSTO 

for CW cores using acetate were 0.75-0.77 mgCOD/mgCOD, lower than the value of 0.85 

suggested in ASM No. 3 for activated sludge, but only slightly lower than the value of 0.78 

obtained by Karahan-Gület al. (2003) for activated sludge fed with acetate.  

 

Although the storage mechanism has been extensively investigated and modelled in the 

field of activated sludge, this phenomenon is new in the field of CWs and models of CW 

processes have not yet been adapted to include the storage mechanism. In the field of 

activated sludge, some conceptual modifications have recently been introduced to describe 

storage mechanisms, such as the concept that biomass growth occurs during both feast and 

famine phases, using both SS and storage products (Karahan-Gület al., 2003; Sin et al., 

2005), but further research should be done to investigate whether these recent conceptual 

models are reliable in CW systems.  

 

The main kinetic and stoichiometric parameters for CW cores are summarised inTable 6, 

where kinetics were calculated to 20°C and expressed per unit of volume and surface of 

CWs. Considering the duration of the respirograms in Figure 35, a period longer than 24 h 

is needed to ensure the complete consumption of biodegradable substrate and to reach 

stable endogenous respiration. Therefore the organic load applied as a spike addition 

corresponds to a daily organic load of 81 gCOD m
-3

 d
-1

 and 49 gCOD m
-2

 d
-1

. The kinetics 

indicated in Table 6 are calculated per hour because the exogenous maximum rates last 

several hours. The values indicated in Table 6 may appear high when compared to the 

typical COD removal rates expected in real CWs. The reason is because during 

respirometric tests conditions are prevalently aerobic and the biodegradation kinetics may 

be overestimated with respect to the kinetics expected in real CWs, where the oxygen 

transfer from the atmosphere is limited and not enough to ensure a fully aerobic 

environment. It is well known that anoxic/anaerobic processes are important in CWs, and 

anaerobic kinetics are considered slower than aerobic ones. However, the high kinetics 
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found in CW cores suggest the high potential of CW systems in biodegradation, if oxygen 

were not the limiting factor. 

 

Although the kinetics of CW cores A and B were different, and higher for core B, the 

parameters YH and YSTO were similar. The reason is because the kinetics depend on the 

amount of bacterial biomass in the core, while the stoichiometric parameters are 

independent of the biomass amount. 

 

Table 6 Main kinetics at 20°C and stoichiometric parameters of heterotrophic biomass in CW cores A and B 

estimated from Figure 35. 

Parameter 
CW core A CW core B 

CW volume unit CW surface unit CW volume unit CW surface unit 

Endogenous respiration 1.9 gO2 m
-3

h
-1

 1.1 gO2 m
-2

h
-1

 2.0 gO2 m
-3

h
-1

 1.2 gO2 m
-2

h
-1

 

Maximum OUR 

 (with acetate) 
4.4 gO2 m

-3
h

-1
 2.7 gO2 m

-2
h

-1
 11.8 gO2 m

-3
h

-1
 7.1 gO2 m

-2
h

-1
 

Max COD removal rate 

(with acetate) 
10.7 gCOD m

-3
h

-1
 6.5 gCOD m

-2
h

-1
 26.8 gCOD m

-3
h

-1
 16.2 gCOD m

-2
h

-1
 

Maximum OUR  

(with wastewater) 
5.0 gO2 m

-3
h

-1
 3.0 gO2 m

-2
h

-1
 - - 

YH 0.59 mgCOD/mgCOD 0.56 mgCOD/mgCOD 

YSTO 0.75 mgCOD/mgCOD 0.77 mgCOD/mgCOD 

 

4.3.3 Respirometry of CW cores using municipal wastewater and comparison with 

activated sludge 

Respirograms obtained in a CW core and in activated sludge taken from a conventional 

WWTP (3.5 kgTSS/m
3
) during the oxidation of the same raw municipal wastewater are 

compared in Figure 36 (a) and (b) respectively. In both cases, after wastewater addition (at 

time t0) the higher OUR values were due to the oxidation of readily biodegradable 

substrates, while a gradual decrease of OUR was observed successively, due to the 

consumption of slowly biodegradable compounds limited by hydrolysis. When the 

biodegradable substrates were completely oxidised the endogenous respiration (at time tf) 

was achieved. 

 

The calculation of the integral between the respirogram and endogenous respiration (O2) 

allowed us to quantify the biodegradable COD (CODB) in wastewater, according to the 

procedures proposed by Spanjers and Vanrolleghem (1995) and Vanrolleghem et al. (1999) 

for activated sludge, and adapted to the case of CW cores. In particular, the following 

expression was used for CW cores: 

f

0

t

ww L
B endogenous

H ww t

1 V V
COD (mgCOD/L) OUR(t) OUR (t) dt

1 Y V


     

 (16) 
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Where VL is the liquid volume in the respirometer (3.2 L in this case) and Vww is the 

wastewater added (1.5 L in this case). Once YH is known, as determined above (0.575 on 

average), the concentration of CODB in the wastewater was easily calculated. 

 
(a) 

 

 (b)

 

Figure 36 Respirograms for the oxidation of raw municipal wastewater (a) in CW core and (b) in activated 

sludge. 

 

Comparing the respirograms in Figure 36 some similarities and differences can be 

highlighted: 

- a long time was required for the complete oxidation of biodegradable substrate in the 

CW core (29.6 h) compared to activated sludge (7.5 h); 

- the maximum exogenous OUR obtained for the oxidation of readily biodegradable 

COD was higher in activated sludge (18.5 mgO2 L
-1

 h
-1

) compared to the CW core (11.6 

mgO2 L
-1

 h
-1

); 

- YH was 0.575 in the CW core and assumed 0.67 in activated sludge; 

- CODB in the wastewater was 182 mgCOD/L when applied in the CW core and 214 

mgCOD/L when applied in the activated sludge, corresponding to 39.1% and 46% of 

total COD in the wastewater respectively. 

 

Comparing the endogenous respiration in Figure 36, it can be observed that in the CW core 

the decay rate was close to zero, much slower than the value measured for activated sludge 

in Figure 36 (b). This behaviour of CW cores suggests that the decay of biomass is slow or 

its variations are negligible within a relatively short period of 60 h. 
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Chapter 5  

Application of off-site liquid respirometric tests for the 

estimation of kinetic parameters during CW lab core 

acclimatization 

5.1 Introduction 

CWs are widely known for their high efficiency in BOD removal after only few days of 

operation. However, few investigationshave been conducted during the acclimatization 

phase in order to verify how the estabilishement of the biomass occurs inside the bed 

(Ramond et al., 2012). Weber and Legge (2011) demonstrated, through the analysis of a 

CLPP (community-level physiological profiling), that microbial communities reach a 

steady-state after a period of 75-100 days by the use of (CLPP). Ramond et al. (2012) 

investigated, through PCR-DGGE (Polymerase chain reaction - denaturing gradient gel 

electrophoresis), the evolution of the biomass and the time needed to achieve community 

equilibrium in CW. The authors found that after 89 days of nutrient supplementation of the 

pilot-scale CW, the microbial biomass community was presenting a highly similar 

fingerprint in the surface and the deep sediments, and it would take around 100 days to the 

overall system to reach similar microbial community structures. 

 

CLPP and PCR are tecniques used in CWs for an in-depth analysis of the microbial 

community structure. Most laboratory studies using CW cores are based on different filter 

materials or different operational conditions being compared. In the latter case, the use of 

complex techniques like CLPP and PCR to establish the steady state can be 

disproportionate to the final scope of the analysis. Nevertheless, when comparing two 

different operational conditions, it is important to ensure that the system is going to start the 

operation underthe same biological conditions. In this case, the use of respirometric 
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techniques could be a reliable option to follow the evolution of the biomass and to detect 

the achievement of steady-state conditions, due to their relative simplicity and limited cost. 

Liquid respirometry has already been tested with VSSF filter material obtaining consistent 

and repeatable results (see Chapter 4). However, in Chapter 4 it was used to estimate 

kinetic and stoichiometric parameter in already acclimatized lab cores and no data were 

available during the acclimatization phase.  

 

The aim of this Chapter is to investigate the acclimatization period of CW cores by the use 

of respirometric tests. The evolution of the biomass inside the CW bed and the achievement 

of steady-state conditions were investigated through analysis of the respirograms and 

chemical analysis performed during the acclimatization phase. 

5.2 Materials and Methods 

Four VSSF CW cores at lab-scale were built to evaluate the acclimatization period. The 

cores presented two different layer configurations, as it is described below starting from the 

top of the column:  

- VSSF-1 and VSSF-2: 0.1 m sand 1/3 mm (p=31%), 0.2 m sand 1/6 mm 

(p=28%); 0.1 m gravel 7/15 mm (p=30%); 0.2 m gravel 15/30 mm 

(p=31%)(similar to E-line in the pilot plant – see chapter 3); 

- VSSF-3 and VSSF-4: 0.05 m gravel 7/15 mm (p=30%); 0.5 m sand 1/3 mm 

(p=31%) and 0.05 m gravel 7/15 mm (p=30%)(similar to C-line in the pilot 

plant – see chapter 3); 

CW cores were fed using the same pre-settled municipal wastewater and an average COD 

load of 28 gCOD m
-2

 d
-1

 (equivalent to 3.86 m
2
/PE) was applied in both cores. The feeding 

was done four times a day (i.e. every 6 hours). 

 

5.2.1 Respirometric tests 

The acclimatization of the four lab cores started on the same day (week 0). VSSF CW cores 

were divided in two groups (group 1: VSSF-1 and VSSF-3; group 2: VSSF-2 and VSSF-4) 

in order to perform respirometric tests for two cores every week. Table 7 shows the 

summary of the respirometric tests performed during the acclimatization phase. 
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Table 7 Summary of the respirometric tests performed during the acclimatization phase. 

Respirometric Tests Cores Tested Acclimatization period 

1
st
 Test 

VSSF 1 and VSSF 3 1
st
 week 

VSSF 2 and VSSF 4 2
nd

 week 

2
nd

 Test 
VSSF 1 and VSSF 3 3

rd
 week 

VSSF 2 and VSSF 4 4
th

 week 

3
rd

 Test 
VSSF 1 and VSSF 3 5

th
 week 

VSSF 2 and VSSF 4 6
th

 week 

4
th

 Test 
VSSF 1 and VSSF 3 7

th
 week 

VSSF 2 and VSSF 4 8
th

 week 

5
th

 Test 
VSSF 1 and VSSF 3 9

th
 week 

VSSF 2 and VSSF 4 10
th

 week 

 

Respirometric tests were done on a weekly basis over a period of 10 weeks. Hence, each 

core was tested five times. Tests for heterotrophic and autotrophic biomass were done on 

the same week, with the addition of acetate at the beginning of the week and the ammonia 

after the core had returned to the endogenous respiration. During all the experimentation 

period the columns remained under the same feeding conditions and they were tested again 

two more times: after 120 and 480 days after the beginning of the acclimatization (these are 

called middle-term respirometric test and long-term respirometric test, respectively).  

 

In order to investigate the behaviour obtained of heterotrophic bacteria in the respirometric 

test, conventional respirometric tests (Spanjers et al., 1995) were proposed with detached 

biofilm and with pre-settled municipal wastewater. At the end of the experimentation 

period, the first 10 centimeters of filter material from the VSSF-cores were gently washed 

in 1.3 L of water in order to detach the biomass from the gravel. This liquid (water + 

biomass) was used in a conventional respirometric test for activated sludge (with acetate). 

Conventional respirometric tests for activated sludge (with acetate) were also done with 

fresh pre-settled municipal wastewater used to feed the lab cores. 

 

For the respirometric tests done with the addition of NH4, Ammonia Uptake Rate (AUR) 

tests were done. AUR test is a test developed to measure the activity of nitrifying bacteria 

in activated sludge measuring the amount of NH4, NO2 and NO3 through time, with the aim 

of measuring the maximum specific nitrification rate. In the CW cores, an AUR test was 

realized with the addition of solution of NH4 (15 mL of a solution with 2gNH4/L). Samples 

were collected from the top using a needle and they were analyzed for NH4-N, NO2-N, 

NO3-N, pH and temperature. The overall test lasted 8 h until the complete oxidation of the 

NH4 added.  
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5.3 Results and Discussion 

COD and NH4-N removal efficiency are shown in Figure 37. COD removal already reached 

60% in the first weeks of operation and this value increase up to 80% after 60 days. NH4 

removal efficiency in the lab cores was around 40% since the first weeks of operation and it 

increases up to 60% after 2 months. The removal efficiency of NH4 was related with the 

biological development inside the core, which was further investigated by respirometric 

tests. Table 8 shows the result of chemical analysis obtained in the first 5 months of 

experimentation. 

 
(a)

 

 (b)

 
 

Figure 37 Removal efficiency of VSSF cores during this experimentation: (a) COD (b) NH4. 

 

Table 8 Results from chemical analysis done during the experimentation. 

 IN VSSF 1 VSSF 2 VSSF 3 VSSF 4 

COD (mg/L) 224.6±94.9 45.2±26.8 49.2±27.5 40.1±20.4 44.4±25.3 

NH4-N (mg/L) 34±14 15.6±7.2 17.6±6.6 13.4±7.4 14.2±7.6 

NO2
-
-N (mg/L) 0.3±0.2 1.6±1.1 1.3±0.7 1.4±1.0 1.4±1.0 

NO3
-
-N (mg/L) 3.6±1.0 17.7±7.8 16.1±6.4 19.7±8.3 19.4±7.5 

 

5.3.1 Respirometric tests during acclimatization – acetate removal 

Alongwith the chemical analysis that was conducted to verify the pollutant removal 

performances, respirometric tests were carried out to investigate the evolution of the 

biomass until it reaches the steady-state conditions. Respirometric tests conducted in the lab 

cores during the acclimatization show a different behaviour from the behaviour observed in 

already colonized lab cores (see Chapter 4, Figure 35). 

 

Figure 38 (a) shows an example the DO concentration in the VSSF 1 of the probe placed 

above (probe called Top) and the probe located on the bottom (probe called Bottom). 
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Figure 38 (b) shows the behaviour of the OUR that was typical during the first 10 weeks of 

respirometric tests. In Figure 38 (b) it is also possible to observe the endogenous respiration 

line and the effect caused by the acetate addition.  

 

Figure 38 Respirogram of acetate consumption for VSSF 1 (a) DO concentration of the probes places in the 

Top and Bottom and (b) OUR response at the 2
nd

 Test. 

 

OUR behaviour in the cores under acclimatization was divided in OUR1 and OURmax in 

order to allow the elaboration of the data from the respirometric test (Figure 38 b). The 

OUR values do not increase rapidly to the maximum values after the addition of acetate. 

They increase until a first step called OUR1 and then increase smoothly until they reach the 

OURmax. OUR1 evolution during the acclimatization period can be observed in 

Figure 39, where initial values were lower than the values obtained in the last tests, starting 

from 1 mgO2L
-1

h
-1

to 2.5mgO2L
-1

h
-1

, except for the core VSSF 3. 

 

(a)  

(b)  
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Figure 39 OUR1 values obtained during the acclimatization phase. 

The expected behaviour can be seen in Figure 40, which shows the long-term respirometric 

tests of VSSF 1 and VSSF 3 at 480 days. However, this behaviour had already been 

reached 120 days after the start up of the system. After 120 days, the system can be 

assumed to be working under steady state conditions, showing that respirometric tests can 

be used as a non expensive tool to estimate the attainment of steady state conditions of CW 

filter material. 

 

(a)  

(b)  

Figure 40 Long term respirometric test (480 days) and COD analysis of the liquid phase done during the test 

for (a) VSSF 1 (b) VSSF 3. 
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In Figure 40, it is also possible to observe that internal storage products were gradually 

formed (XSTO) until all the external SS was consumed. When SS was completely removed 

from the bulk liquid, OUR dropped from the maximum level to a level above the 

endogenous respiration. OUR decreased slowly to reach the values of endogenous 

respiration maintained prior to substrate addition. 

 

Even though respirometric tests could be used to verify the achievement of steady state 

conditions, the shape of the respirograms during the acclimatization phase was not 

explained and further studies are needed to investigate it in greater detail. 

 

The amount of biomass present in the VSSF cores (X0) during the acclimatization period 

was estimated using the method of Wentzel et al. (1998), already used by Andreottola et al. 

(2002), as follows: 

 

    
 (         )

      
    

 (       )
                    (17) 

 

where YSTO is the storage yield coefficient for heterotrophic biomass obtained in the 

respirogram, b is the specific decay rate (values between 0.1 and 0.6 d
-1

) and the intercept is 

obtained from the linear interpolation of ln(OUR) vs. time inthe exponential growth 

between OURI and OURmax minus storage products (see Figure 38). Values of X0 for the 

VSSF are shown in Figure 41. Besides the results obtained with the VSSF 3 core, the cores 

presented an increasing amount of the biomass. 

 

 

Figure 41 (a) X0 values for the VSSF during the acclimatization period. 

 

The X0 estimation was also calculated for the middle and long-term respirometric test. In 

the case of these respirometric tests, the values of OUR1 were difficult to detect. This 
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occurs due to the increasing importance of the biofilm in the biomass present in the core, 

that reduces the exponential growth of the OUR. OUR values grow quickly and directly to 

the OURmax and plateau values (Figure 40). The correlation between X0 values and values 

of COD retained inside the core(that was considered as being 60% of the total COD) during 

the evaluated period was studied. A linear relation was found between the biodegradable 

COD (60% of the total COD) that was trapped in the bed and the amount of biomass 

computed by respirograms (Figure 42). 

 

 

Figure 42 Correlation between the biodegradable trapped COD and X0 values obtained from the respirograms 

 

Table 9 shows the average results for all the VSSF cores obtained from the respirometric 

tests, during the acclimatization period, middle and long-term respirometric tests. 

 

Table 9 Average values of kinetic parameters for heterotrophic biomass for all VSSF cores. 

Parameter 

Acclimatization period Middle term test Long term test 

CW liquid 

unit 

(mgO2 L
-1

 

h
-1

) 

CW 

surface 

unit (gO2 

m
-2

d
-1

)– h
-1

 

CW liquid 

unit (mgO2 

L
-1

h
-1

) 

CW 

surface unit 

 (gO2 m
-2 

d
-1

) – h
-1

 

CW liquid 

unit (mgO2 

L
-1

 h
-1

) 

CW surface 

unit  (gO2 m
-

2
d

-1
) – h

-1
 

Endogenous respiration 1.17 8.22 / 0.34 2.61 18.38/ 0.77 1.08 13.04/ 0.54 

OURmax 6.46 
45.47 / 

1.89 
10.06 70.83/ 2.95 11.96 84.17/ 3.51 

v
COD,max

 16.70 
117.56 / 

4.90 
23.25 

163.69/ 

6.82 
34.06 239.76/ 9.99 

X0 (g/m
-2

) 
8.5-26.9 g m

-2 

 (1
st
-5

th
 test) 

133.0 gm
-2

 335.3 gm
-2

 

YH(mgCOD/mgCOD) 0.61 mgCOD/mgCOD 0.57 mgCOD/mgCOD 0.64 mgCOD/mgCOD 

YSTO(mgCOD/mgCOD) 0.74 mgCOD/mgCOD 0.85 mgCOD/mgCOD 0.93 mgCOD/mgCOD 

 

The values obtained in this research can be compared with values obtained in Ortigara et al. 

(2011) (Chapter 4) with a good agreement between the results of those acclimatized cores 

and the middle-term tests, except for the values of the endogenous respiration and Ysto. 
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Storage is a complex phenomenon which involves the accumulation of readily 

biodegradable COD as internal storage products that are consumed after the COD depletion 

in the liquid phase. Even if the Ysto values in this research were higher than those obtained 

in Chapter 4 (Table 6), the storage can be observed inFigure 40, where the concentration of 

acetate in the liquid phase was around zero but the OUR values were still above the 

endogenous respiration line. The maximum COD removal rates obtained were around 18- 

22mgO2 L
-1

h
-1

for the chemical analysis against values of 16-19 mgO2 L
-1

h
-1

 in the 

respirometric test for the same test with different cores. Andreottola et al. (2007) had also 

applied liquid respirometry to CW lab cores but the results presented for vCOD,maxwere 

lower than those obtained in this research (5.8 mgO2 L
-1

 h
-1

). However, the values of the 

endogenous respiration are higher (6-10 mgO2 L
-1

 h
-1

) and such difference can be due to the 

use of different materials and different feeding conditions. 

 

5.3.2 Respirometric tests durin acclimatization – NH4 removal 

After reaching the endogenous phase, an ammonia solution of (30 mL of 2g/L) was added 

in the core. The behaviour of NH4-N consumption in the VSSF cores did not show any 

evolution in time as opposed to what observed for the tests with acetate. The behaviour 

observed in Figure 43 has the same pattern from the second week of respirometric tests (i.e. 

third week after the acclimatization had started). It can also be observed in Figure 44, 

where the values of maximum ammonia removal rate did not show an increasing pattern 

during 10 weeks. Thus, for the ammonia removal no middle and long term tests were done. 

Instead AUR tests were done for comparison with the results from the respirometric tests 

(Figure 45). 

 

(a)  
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Figure 43 Respirogram of ammonia consumption of VSSF 2 (a) DO concentration of the probes places in the 

Top and Bottom probe and (b) typical behavior of the OUR during 10 weeks of respirometric tests. 

 

From the respirogram, the vN,max was calculated and its values are shown in Figure 44. 

Observing Figure 43, it is also possible to verify the nitrite accumulation characterized by 

the slope above the endogenous respiration after the ammonia consumption (signed by the 

end of the “time for NH4 consumption”). In this case, the consumption rate of Ammonia 

Oxidizing Bacteria (AOB – vN,AOB) and Nitrite Oxidizing Bacteria (NOB – vN,NOB) can be 

calculated using the equation 12 and 13. 

 

 

Figure 44Maximum ammonia removal rate (vN,max) for the VSSF during the acclimatization period. 

 

Kinetic parameters obtained from the respirograms of NH4 consumption are shown in Table 

10.  

 

(b)  
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Table 10 Average values of kinetic parameters for autotrophic biomass for all VSSF cores obtained by liquid 

respirometry 

Parameter 
Acclimatization period 

CW liquid unit (mgO2 L
-1

 h
-1

) CW surface unit (gO2 m
-2

d
-1

) –h
-1

 

Endogenous respiration 1.48 10.38/ 0.43 

OURmax,N 4.98 35.05/ 1.46 

v
N,max

 1.10 7.75/ 0.32 

v
N,AOB

 1.13 7.99/ 0.33 

v
N,NOB

 1.29 9.05/ 0.38 

 

AUR tests were done by adding half of an ammonia solution that is usually added in 

respirometric tests (concentration inside the core around 10 mgNH4/L instead of 20 

mgNH4/L) in order to reduce the duration of the test to 8 hours. Ammonia consumption and 

NOx formation can be observed in Figure 45. The maximum specific nitrification rate 

(vAUR) was calculated considering the consumption of NH4-N rather than the production of 

nitrite and nitrate because denitrification might have taken place inside the biomass. The 

values obtained for vAURwere 1.14 mgO2 L
-1

 h
-1

 whereas the vN, max calculated from the 

respirogram were 1.08 mgO2 L
-1

 h
-1

 considering the same tests. 

 

As opposed to the results obtained for the COD consumption, the vN, max values obtained in 

this research were similar to the values obtained by Andreottola et al. (2007) (4.2 mgO2 L
-1

 

h
-1

) and lower than those obtained by and Morvannou et al. (2011) (32-50 mgO2 L
-1

 h
-1

). It 

is important to highlight that the tests by Morvannou et al. (2011) were performed under 

conditions different from those considered in this research, which make a comparison of the 

results difficult. The main difference is in the phase in which oxygen consumption took 

place: air in Morvannou’s test and in liquid in our study. 

 

(a)  
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(b)  

Figure 45 Respirometric test and AUR test for the (a)VSSF 2 (b)VSSF 4. 

 

Liquid respirometric testsproved to be a reliable tool for the estimation of kinetic and 

stoichiometric parameters of CW material at the lab scale. Moreover, they could also be 

used to determine wheter a filter material is operating under steady-state conditions. 

Knowing that the biomass presentin a CW filter material operates under steady state 

conditions it is important to start experiments that aim to compare different operational 

conditions. For example, before starting any experiment aimedat comparingthe influence of 

a certain contaminantin one out of two systems, it is important to know that the biomass 

present in both has the same kinetic and stoichiometric parameters.Some limitations were 

found on the use of liquid respirometric tests. The main question that can arise iswhether 

the use of a saturated test, such as liquid respirometry, can be used to evaluate the 

unsaturated biomass present in the VSSF. Further investigations are needed to compare 

respirometric tests under unsaturated conditions (as the tests performed by Morvannou et 

al., 2010) and liquid respirometry, for the same VSSF material and for similar test 

conditions in order to establish the conditions under which one is preferable to the other.  

 

In order not to change the conditions in which the filter material is operating in the field, 

there is also the possibility of using the off-gas technique to assess the kinetic and 

stoichiometric parameter conditions whitout the need to transport the material to the lab. 

Chapter 6 will discuss the preliminary results of the application of the off- gas technique for 

CW filter material. The off-gas technique is widely used for activated sludge and in this 

research a preliminary investigation was done at the lab scale to evaluate the reliability of 

the test in CWs. 

 

 



 

 

Chapter 6  

Preliminary applications of the off-gas technique in 

aerated CWs for obtaining kinetic parameters 

6.1 Introduction 

Addressing the problem of large land area requirement is a key step towards the application 

of CWs in areas where the availability of land is limited, due to environmental as well as 

socio-economic conditions. Some of the biological reactions occurring in CW are oxygen 

demanding, mainly in the case of VSSF CW. The oxygen required can be supplied 

naturally during the feeding in non-saturated beds, but large land areas are necessary to 

reach higher removal efficiency. The aeration of CWs could be a viable strategy to increase 

the efficiency per unit area, because it enables a higher amount of wastewater to be treated 

within the same surface (see Chapter 11).The amount of oxygen required in both cases to 

degrade the organic matter could be assessed by respirometric tests. 

 

Respirometric tests conducted with material from VSSF CWs need such material to be 

transferred to a lab for analysis. During the test proposed by Andreottola et al. (2007) and 

applied in Chapters 4 and 5, the material passes from an unsaturated condition (in the field) 

to a saturated one (during the respirometric test), which is not desirable in case of 

unsaturated CWs because tests would be performed under conditions different from those 

of the field. Despite this drawback, the technique allows the estimation of stoichiometric 

and kinetic parameters. OUR measurement under unsaturated conditions has been 

performed by Morvannou et al. (2011) adapting a methodology used for computing the 

Dynamic Respiration Index (DRI) of urban waste and made it applicable to constructed 

wetland materials. The authors used bulking material during the test in order to maintain 

the humidity of the material, modifying the initial conditions that the material has on the 

field.  
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The off-gas analysis is a reliable method to measure the Oxygen Transfer Efficiency (OTE) 

and obtain precise data for the design of aeration systems on activated sludge (Redmon et 

al., 1983). In particular, this methodology would allow onsite oxygen consumption 

measurements in CWs. Estimating the maximum oxygen consumption on aerated CW 

plants can give an indication on the estimation of oxygen demand of these systemsand on 

the kinetic parameters of their biomass. This chapter presents some preliminary results 

from an application of the off-gas technique to aerated CWs at lab scale. 

 

6.1.1 Basics of off-gas technique 

The off-gas technique was developed by Redmon et al. (1983) to measure the oxygen 

transfer capacity of different aeration systems in the liquid phase and therefore gain insights 

into the efficiency of such systems. By increasing the efficiency of the aeration systems, it 

would be possible to get a better trade-off between energy consumption and the removal of 

pollutants. 

 

The oxygen capability of a submerged air device may be estimated by means of a gas phase 

mass balance over aerated volume (Redmon et al., 1983). Since its first applications, some 

assumptions were made in order to simplify the analysis, such as: inert gases are 

conservative (nitrogen is included in this category), the air flow rate to the basin is constant 

during the test, etc. The gas mass balance over the liquid volume, described by Redmon et 

al (1983), may be written as follows: 

 

 VCCaKYqYq
dt

dC
V LogoRi  *' 

     (18) 

 

Where: 

- ρ': density of liquid at temperature and pressure at which gas flow is expressed (M/L
3
), 

- ρ: density of oxygen at temperature and pressure at which gas flow is expressed (M/L
3
), 

- qi,qo: total gas volume flow rates of inlet and outlet gases (L3/t), 

- YR, Yog: mole fractions (or volumetric fractions) of oxygen gas in inlet and outlet gases, 

- KLa = the oxygen mass transfer coefficient (1/t) 

- C
*
: saturation concentration of oxygen in test liquid in equilibrium with exit gas (M/L

3
), 

- C: equilibrium concentration of oxygen in test liquid (M/L
3
), 

- V: test cell volume (L
3
). 

 

Considering that the volume of CO2, produced to the gas stream is just equals that of 

oxygen absorbed, and that nitrogen is conservative, KLa can be calculated as follows.  



 Off-gas technique application in aerated CWs 

________________________________________________________________________________________ 

95 

 

 

 
 CC

YY
q

V
aK

ogR

L





*



        (19) 

 

In the equation 18 q=qi=qo. Measurements are made of YR and Yog (the inlet and outlet 

mole fractions of oxygen), q (the total gas flow rate) and C, and an estimation must be 

made of C
* 

under test conditions. The oxygen transfer can also be reported by the 

calculation of the OTE (Oxygen Transfer Efficiency, expressed as a fraction) with no 

estimation of C
*
 and assuming that CO2 evolution is equivalent to oxygen absorption: 

 

R

ogR

Y

YY 
OTE

        (20) 

 

Where: 
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       (21) 
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        (22) 

 

YW(og), YW(R): mole fraction of water vapor in the inlet gas (R) or off-gas (og). 

MV(og), MV(R): millivolts output readings of the partial pressure of oxygen.  

 

According to Leu et al (2010), the off-gas flow rate or flux and total air flow can also be 

determined using air flow rate captured by the hood, hood area and tank surface area. The 

Oxygen Transfer Rate (OTR, KgO2h
-1

) is the product of OTE and off-gas flow rate. The 

OTR is calculated as follows: 

 

Hood

Tank

IN

OUTIN
Hood

g
Area

Area
x

O

OO
QOTR

2

22 


     (23) 

 

According to the experiment carried out by Harris et al. (1996) in biofilters, the off-gas 

analysis shows an increase of OTE when the air flow decreases and the volumetric loading 

rate increases. The OTE influences the oxygenation capacity (OC - amount the oxygen 
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transferred per unit of time- kgO2/h): the OC quickly rises from the lowest superficial air 

velocity used up to 7m/h, and after that the OC increase is gradual.  

 

Above these air flow values the authors believe that oxygen near the biofilm is partially 

depleted causing a better use of the available oxygen (Harris et al., 1996). OTE is also 

increased during periods with high organic load, because biological activity is higher and 

also associated oxygen demand (Lee and Stensel 1986 apud Harris et al., 1996). 

 

6.1.2 KLa and OTE determination 

Chemical and physical methods can be used for KLa determination. Chemical methods 

were the first ones to become widely accepted for oxygen transfer estimation, but physical 

methods are the most used ones. Physical methods are based on the measurement of 

dissolved oxygen concentration in the liquid during the absorption or desorption of oxygen 

in the solution (Garcia-Ochoa and Gomez, 2009).  

 

The dynamic method is based on the measurement of dissolved oxygen concentration in the 

medium by absorption or desorption of oxygen. The dynamic technique of absorption 

involves the elimination of oxygen in the liquid phase, for example by means of bubbling 

nitrogen or by the addition of sodium sulfite, until the oxygen concentration is equal to 

zero. After the depletion, aeration is turned on again and the oxygen concentration is 

measured by an oxygen probe. The increase in dissolved oxygen concentration over time 

can be used to calculate kLa (Garcia-Ochoa and Gomez, 2009). In the absence of biomass, 

when biochemical reactions do not take place, OUR is equal to zero. In this case, the basic 

equation of oxygen transfer is: 

 

 CCaK
dt

dc
SL 

        (24) 

 

Figure 46 shows the expected conditions in the gas and liquid phase when this kind of KLa 

estimation is performed. It is possible to observe that the oxygen is depleted after the 

Na2SO3 addition and until Na2SO3 has been completely consumed, the values obtained are 

stable. The oxygen values obtained during the re-aeration phase are used for the estimation 

of KLa. 
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Figure 46 DO concentration and Oxygen mole fraction in the off-gas during a clean water re-aeration test 

(from Stenstrom et al., 2006). 

 

Nonlinear regression is used to estimate KLa and CS. Values are adjusted to standard 

temperatures by using the Arrhenius equation. The Standard Oxygen Transfer Rate (SOTR 

in gO2 h
-1

) is obtained as the average of the products of the adjusted KLa values (h
-1

), which 

corresponds to the adjusted CS (in g/m
3
) value and the tank volume (V in m

3
). 

 

           (  )          (25) 

 

Oxygen Transfer Efficiency (OTE) is the fraction of oxygen in an injected air stream 

dissolved into the liquid under given conditions. The Standard Oxygen Transfer Efficiency 

(SOTE) is the oxygen transfer efficiency under standard conditions of temperature and 

pressure. It can be computed through the following equation: 

 

     
    

   
         (26) 

 

WO2 is the mass flow rate in the air stream (kg/h). It can be calculated by multiplying the air 

flow rate (m
3
/h) by air density (≈ 1250 g/m

3
) and fraction weight/weight for oxygen in the 

atmospheric air (0,232). 

 

The objective of this chapter was to determine the KLa, through which the capacity of YSI 

oxygen probe in reading/ measuring oxygen consumption in CW lab cores might be 

estimated and if this tool can be used for measuring kinetic and stoichiometric parameters 

in CW. 
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6.2 Materials and Methods 

6.2.1 Lab cores 

The acclimatized cores (height = 0.60 m; diameter = 0.125 m, volume = 7.4 L) VSSF 2 and 

VSSF 4 (showed in chapter 3) were used in this research. The filling media has the 

following characteristics from the bottom to the top of the column: 

- VSSF-2: 0.1 m of sand with size of 1-3 mm (p=31%), 0.2 m of sand with size 1-

6 mm (p=28%); 0.1 m of gravel with size of 7-15 mm (p=30%); 0.2 m of gravel 

with size of 15/30 mm (p=31%) (E-line); 

- VSSF-4: 0.05 m of gravel with size of 7-15 mm (p=30%); 0.5 m of sand with 

size of 1/3 mm (p=31%) and 0.05 m of gravel with size of 7/15 mm (p=30%) 

(C-line). 

 

6.2.2 Off-gas apparatus of Lab cores 

The apparatus used in the off-gas technique is shown in Figure 47.  

 

 

Figure 47 Scheme of the off-gas used at lab scale. (1)Air pump; (2) Air Flowmeter; (3)Pump CW core 

sample; (4) Dehumidification with silica; (5) Micropump; (6) WTW O2 Probe (7) Air oulet. 

 

The system is composed by an air pump (n° 3 in Figure 47) that introduces air inside the 

CW core (n° 3 in Figure 47). The air flow is measured in a Flowmeter Rota with a capacity 

for 40-740 L/h of air (n° 2 in Figure 47). After passing through the CW core, a micro pump 

(0.75L/min - n° 5 in Figure 47) captures the air from the lab core and transfers it to a silica 

container (for dehumidification - n° 4 in Figure 47) and subsequently introduces the air into 

the cell where the oxygen is measured (SondaWTW - n° 6 in Figure 47). After the reading 

the air is released to the atmosphere. 
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6.2.3 Test with OD probes 

The OD probe used in this research (n° 6 in Figure 47) is a WTW model Trioxomatic 701-7 

(WTW), provided with a special 25 micron thick membrane to maximize resolution and 

response time, and an NTC probe for temperature measurement (range: 0.0 ÷ 200.0 %, 

response time lower than 30 seconds, resolution below 0.1 %, temperature range from -5°C 

to +50°C). For oxygen values above 20%, results were given with a 0.1% interval, while 

for values below 20% results were given with a 0.01% interval (precision ±1% of 

measured value). There are two probes with the same characteristics: Probe 1 and Probe 2. 

Most of the experiments were performed with Probe 1.Whenever Probe 2 was used, it is 

specified in the text. 

 

Probe 1 was connected to a datalogger (Pico green) that supplies a signal in mA (00.000). 

This signal was converted to % for oxygen and ºC for temperature, by plotting the result 

given by the datalogger in mA (x) and the result given in % by the probe (y). From this 

result a calibration line was drawn, and the equation given by the linear equation was used 

to convert the results in % and ºC. Data obtained from the calibration line had a precision of 

three decimals. Figure 48 shows the calibration line obtained and the equation used to 

transform the data. 

 

  

Figure 48 Calibration line obtained from the data logger and probe readings. 

 

In order to verify the reliability of the O2 probes two tests were done: 

- Test 1: The Probe was calibrated and left in the lab in a vertical position for 

about 40 hours, reading the O2 concentration in the air. Initial slope: 1.04. 

Final slope: 1.03. 

- Test 2: The Probe was put inside the oxygen measurement circuit and data 

were collected for about 80 hours. A CW core without biomass was used and 

the aeration was turned on at the bottom of the core in order to simulate the 

normal conditions proposed in the test. 
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6.2.4 KLa and OTE determination in lab cores 

Tests 3, 4 and 5 were conducted using a new CW core with a VSSF 4 configuration in 

order to determine the kLa (the filter material was new and washed to performe the test). 

Oxygen measurements were performed with two different probes: Probe 1 (the same O2 

oxygen probe used so far) was used in Tests 3 and 5 and Probe 2 in Test 4. 

 

Measurements in the air and in the liquid phase were done before the test in order to assess 

probes’ stability. During the test values were collected once a minute in the case of air 

measurement and once every 30 seconds in the case of water measurements. Air 

measurements were done after dehumidification and the CO2 stripping. 

 

A solution with 5 g/L of NaSO (3.6 liters) was put into the core from the bottom. 

Recirculation was done for about 10 minutes in order to ensure that all the pores had been 

filled with the solution. After 10 minutes, recirculation was stopped. Initial concentrations 

of OD, inside the core and before aeration, were around 0.10 mg/L. The aeration was 

turned on (air tube was on the bottom of the column with a flow rate of 40 nL/h) and the re-

aeration phase started after 6 hours of aeration (when the reaction with NaSO has finished). 

 

6.2.5 Application of the Off-gas technique 

The off-gas technique was applied for saturated cores, with the liquid respirometric test 

running in parallel. Tests were given numbers 6, 7 and 8 and were all of then the response 

of off-gas technique and liquid respirometer to the addition of a spike of 60 mL of acetate 

solution (10g/L).  

 

VSSF 2 and 4 were tested in the liquid respirometer (Andreottola et al., 2007; Ortigara et 

al., 2010) and with the off-gas test. The respirometric test implies that aeration is performed 

on top of the core, the liquid is recirculated from the bottom to the top and two oxygen 

dissolved probes measure the amount of oxygen consumed inside the core (for a thorough 

explanation of this procedure refer to Chapter 2). The inflow oxygen was measured before 

the column using an air flow meter (40 L/h and 100L/h were used). The off-gas apparatus 

(Figure 47) was positioned on top of the lab core. Tests lasted about 20 hours. The core is 

filled with water (3.6 L), the recirculation starts along with off-gas measurements. Acetate 

(Volume 60 mL of a solution with concentration of 10g/L) was added after the core reach 

endogenous conditions and the measurements were done until it reaches the endogenous 

phase again.  
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The off-gas was estimated by considering the difference between inlet and outlet oxygen 

concentration: O2 inlet concentration in the airflow is assumed to be 20.9% and the outlet 

concentration is measured by a probe (% of O2 concentration in the air). The system is 

assumed to be working at atmospheric pressure (1atm). To transform the oxygen 

concentration from % to mg/h, the air was considered an ideal gas (Gay Lussac law): 

 

                   (27) 

 

      
       

   
               (28) 

 

Where nO2 is the oxygen concentration (mg/h);ρ is the pressure (in the test a 1 atm pressure 

was assumed);V is the air flow rate from the aeration system (L/h);%O2 is the amount of 

oxygen estimated in the air (inlet) or measured (outlet);R is a constant (0.0821 L atm K
-

1
mol

-1
);T is the temperature in °K (the probe reads the temperature in the cell in °C, the 

values were converted in Kelvin). 

 

The difference between the inlet and outlet concentration (ΔO2) was considered as the 

oxygen consumed by the biomass inside the core. This value was used in the estimation of 

kinetic parameters. 

6.3 Results and Discussion 

6.3.1 Test of the OD probes 

The oxygen measurement inside the cell was performed under two different conditions: 

with dehumidification and without dehumidification. Figure 49 shows the results obtained 

with the O2 probe in the air (Tests 1 and 2). It is possible to observe a high influence of the 

temperature and fluctuations in the oxygen measurement. The influence might be due to 

probe fluctuations and/or humidity of the air content. Figure 50 shows the readings 

obtained inside the oxygen measurement cells after the humidity stripping using a silica 

tube (n° 4 in Figure 47). 
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Figure 49 O2 measurements in air (Test 1). 

 

 

Figure 50 O2 and temperature measurement inside the oxygen measurement circuit after the humidity 

stripping using a silica tube (Test 2). 

 

The importance of humidity stripping before the oxygen measurement (Figure 50) was 

confirmed and the following tests were done using the silica tube. 

 

6.3.2 KLa and OTE determination in lab cores 

KLa was determined for a new CW core in order to verify the response of the O2 probe 

during the reaeration phase when the oxygen concentration in the liquid phase is zero. The 

determination of KLa in the liquid phase was done with an unsteady state aeration test, in 

which the addition of sodium sulfite (without the addition of cobalt) makes the oxygen 

concentration in the water drop to values around zero. When values around zero are reached 

the aeration starts. 
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Oxygen measurements were done with two different probes: Probe 1 (the same O2 oxygen 

probe used so far) was used in Tests 3 and 5 and probe 2 in Test 4. Figure 51 shows the 

results obtained in the Tests 1 and 2.  

 

(a) 

 
 

(b) 

 

(c) 

 

(d) 

 

Figure 51 Oxygen concentration in the liquid phase (mg/L) and air phase (%) from Test 3(a and b) 

and 4 (c and d). 

 

From Figure 51 it is possible to observe that both probes present problems in reading the 

off-gas concentrations. Probe 1 allows a small variation in the oxygen concentration to be 

detected. However, the probe has a trend in the values: data always show a decreasing 

pattern. Probe 2 is connected with a data acquisition system and values above 20% are 

recorded with intervals of 0.05 %. This interval is not enough to capture the difference we 

had in the gas phase during the test to determine KLa. 

 

Test 3 presents lower values of KLa when compared with subsequent tests. This was 

assumed to be an effect of the first filling of the VSSF core that might have influenced the 

performance of aeration, with short cuts that do not allow the bubbles hold-up. Tests 4 and 

5 give similar results, even if using different probes (Probe 1 and Probe 2) as shown in 

Table 11. 
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Table 11 Parameters estimated from the re-aeration test with sodium sulfide 

 KLa (h
-1

) Cs (mg/L) C(mg/L) SOTR (gO2/h) SOTE (%) 

Test 3 0.894 9.33 1.69 0.030 0.258 

Test 4 2.412 7.80 -1.45 0.068 0.583 

Test 5 2.385 7.83 2.456 0.067 0.579 

 

An OTE of 0.6% means that only 0.6% of the oxygen introduced in the core will be 

transferred. Considering an initial oxygen concentration of 21%, it means that the probe 

should be able to read differences around 0.126% (≈0.13%). The difference of 0.13% in the 

oxygen values might be measured by a probe that supplies results with at least two 

decimals even for values above 20%. This precision in the measurements is not achievable 

with our current probes (problems and limitations will be discussed on Chapter 12). 

 

6.3.3 Application of off-gas technique compared with liquid respirometry 

Figure 52, Figure 54 and Figure 56 show the response of O2 concentration and temperature 

during the Test 6, 7 and 8 respectively. Figure 53, Figure 55 and Figure 57show the results 

of tests 6, 7 and 8 after correction of temperature and transformation from % of oxygen to 

mg of O2. It is possible to observe the response of both probes after the addition of acetate. 

The results obtained are promising, even though some problems with the OD probes were 

encountered. In particular, the probe seems to detect a deviation that does not take place, 

even if it had been calibrated before the tests. 

 

 

Figure 52 O2 concentration and temperature during the Test 6 
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Figure 53 Results from Liquid respirometry and Off-gas application obtained in Test 6 using the core VSSF 4. 

 

 

Figure 54 O2 concentration and temperature during the Test 7. 

 

 

Figure 55 Results from Liquid respirometry and Off-gas application obtained in Test 7 using the core VSSF 2. 
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Figure 56 O2 concentration and temperature during the Test 8. 

 

 

Figure 57 Results from Liquid respirometry and Off-gas application obtained in Test 8 using the core VSSF 2. 

 

Liquid respirometry provides reliable and repeatable results in all the tests. Results of the 

application of the Off-gas technique showed the consumption in the air phase, though 

values obtained from the O2 probe were not reliable due to the above-mentioned problems. 

Probe has its own deviation even if calibration was conducted before its use and the slope 

was in the range recommended by the WTW (from 0.60 to 1.20 which means that the probe 

is working well). Moreover, small variations in the O2 initial concentration can drive to 

higher differences in the ΔO2 value. For example, varying the concentration of initial 

oxygen from 21% (Figure 54) to 20.93% (Figure 58), the endogenous phase drops from a 

value around 4g m
2
h

-1 
to 0.5 g m

2
h

-1
, and in this case the values of the endogenous phase 

are similar between the liquid respirometry and the off-gas analysis. 

 

The comparison between the kinetic parameters estimated using the same amount of readily 

biodegradable COD (acetate) and initial O2 concentration of 21% is shown in Table 12. 

Data were corrected for 20°C of temperature, using the Arrhenius equation (Θ=1.08). 
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Figure 58 Test 7 results when changing the initial concentration of oxygen from 21% to 20.92%. 

 

Table 12 Results obtained from Step 1 (comparison between liquid respirometry and off-gas analysis): 

 

Core 
Air flow 

rate (L/h) 

Liquid Respirometry Off-gas analysis 

ΔO2  

[gO2m
-2

] 

YH[mgCO

D/mgCOD

] 

Max 

Removal 

Rate 

 [g m
2
h

-1
)] 

ΔO2 

[gO2m
-2

] 

YH[mgCO

D/mgCOD

] 

Max 

Removal 

Rate 

[g m
-2

h
-1

)] 

Test 6 VSSF 4 100 14.96 0.69 22.59 14.52 0.70 14.15 

Test 7 VSSF 2 40 13.12 0.73 9.26 6.21 0.87 0.59 

Test 8 VSSF 2 100 15.73 0.68 11.29 7.69 0.84 2.48 

 

Results obtained during Test 6 were satisfactory, and consistency was found between liquid 

respirometry and off-gas analysis (YH and ΔO2 value). However, the results were not as 

good in Tests7 and 8, where values of ΔO2 were higher in the liquid respirometry, and 

Yhwas slower in the off-gas test.  

 

The off gas technique seems a promising one for the measurement of kinetic parameters in 

CWs, though various limitations emerged from the analyses that we have conducted. 

Hence, further studies are needed in order to tackle the problems observed during this 

research. In particular, probes guaranteeing higher precision standards must be usedand 

oxygen transfer efficiency has to be improved. Even though the off-gas technique was 

applied here as a proposal for the measurement of oxygen consumption on aerated VSSF 

(that are going to be presented in Chapter 11), the test could be a viable solution to evaluate 

the oxygen consumption (and also the efficiency of oxygen transfer) in aerated HSSF CW, 

as already proposed for wastewater treatment by Nivala et al. (2007); Ouellet-Plamondon et 

al. (2006); Zhang et al. (2010) among others. 

 

 



 



 

 

Chapter 7  

Comparison of two different configurations of VSSF in 

terms of efficiency and cost 

7.1 Introduction 

CWs are widely applied to decentralized wastewater treatment plants, single home projects 

and rural communities. Among the problems associated with the decentralization of 

wastewater treatments is that of investment. The fact that a treatment unit receives 

wastewater from few households results in considerable costs being paid by few people. 

According to Rousseau et al. (2004), the ‘economy of scale’ also applies to the design of 

VSSF CW: the investment cost per PE decreases as the design size of the constructed 

wetland increases. The main investment costs in CWs are due to: (1) use of land depending 

on the CW surface and the applied load, (2) sealing (waterproofing) of the CW bottom, (3) 

digging activity and depth of the bed, (4) filter material such as gravel and sand. As 

demonstrated by Chen et al. (2008) for the case of HSSF CW, the main expenditure for the 

construction of CWs is due to the substrate (41.2%), followed by the construction 

engineering fee (30.1%), the plants (14.3%), the membrane (10.1%), pumps, pipes and 

other facilities (4.3%). Hence, a significant reduction in the cost of CWs can primarily be 

obtained by reducing the depth of the substrate. 

 

In the case of VSSF CWs, a technology that is widely applied to obtain nitrification and 

organic matter oxidation, national or regional guidelines indicate the specific layers of 

gravel and sand to be used, the size of the filter material and the recommended depth (Table 

13). The main filter media, which plays a major role in biological and physico-chemical 

removal processes, is generally the layer of sand. 
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Table 13Parameters for the design of a VSSF CW as obtained from the guidelines of various countries. 

Reference Surface Area Requirements 
Depth (all layers 

included) 
Organic load 

Germany ATV, 1998 2.5 m
2
/PE 0,8 m 20 -25 g BOD5m

-2
 

Austria Önorm, 2008 4 m
2
/PE 0,7 - 0,8 m - 

Czech 

Republic 
Vymazal, 1998 

2
nd 

 treatment: 

1° stage: 0.8- 2 m
2
/PE 

2° stage: 2 - 5 m
2
/PE 

3
rd

 treatment: 2 - 5 m
2
/PE 

0,6 m - 

United 

Kingdom 
Cooper, 1996 

1 -2 m
2
/PE<100 PE:  

1° stage: 3.5 x PE
0.35

 +0.6 x PE 

2° stage: 50% of 1° stage 

1 m 23 -25 g BOD5m
-2

 

France 
Cemagref-EC, 

2001 

1° stage: 1.2 - 1.5 m
2
/PE 

2° stage:0.8 m
2
/PE 

0.6 - 0.8 m 24 -25 g BOD5m
-2

 

Denmark 
Brix and Arias, 

2005 
3 m

2
/PE 1 m 20 g BOD5m

-2
 

Italy APAT, 2005 

2-5 m
2
/p.e for discharge in 

surface water  

4-6 m
2
/p.e for discharge in 

surface water in sensible areas 

0.55 m - 

 

For VSSF CWs located in regions characterized by low temperatures (e.g. the Alps, where 

this research was carried out), Austrian and German guidelines can be considered: the 

Önorm B2505 (2008) indicates the use of a 0.5 m sand layer with size 0/4 mm, while the 

DWA-A 262 (2006) indicates the use of sand with uniformity coefficient U=d60/d10<5, 

permeability Kf = 10
-3

-10
-4

 m/s and d10 in the range 0.2-0.4 mm. 

 

The comparison between the two VSSF CWs was carried out on the basis of conventional 

parameters (COD, N forms, P, TSS) and more in-depth investigations such as respirometric 

tests. In this research, respirometric tests were used to investigate the biodegradable COD 

fractions in the effluents from VSSF CWs at various times of the typical cycle, evaluating 

the fate of readily and slowly biodegradable COD and inert COD fractions. 

 

This research aims to assess how a reduced filter depth (and therefore a cheaper 

construction) affects the removal efficiency. This was achieved by considering two VSSF 

CWs with the same applied loads. One of them was designed according to local guidelines 

(PAT n. 902/2002) similar to the Austrian Önorm guidelines, while the other had a lower 

depth and a modified sand composition in order to test the removal efficiency differences 

from these two configurations.The comparison between the two VSSF CWs was carried out 

on the basis of (1) conventional and innovative parameters (COD, N forms, P, TSS and 

COD fractionation, respirometric tests) to assess the removal efficiency and (2) costs 

involved in the construction of VSSF CW, including those associated with the 

transportation of the filling material from the quarry to the construction site.  
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7.2 Materials and Methods 

The two VSSF CWs of the pilot plant were operated in parallel. The main difference 

between them is the filter materials as follows: 

1) C-line: this configuration was based on a single main layer of sand and layers of gravel 

at the top and at the bottom, according to local guidelines (PAT n. 902/2002) and 

similar to the indications of Austrian Önorm B2505 (2008), described as follows 

starting from the top: 0.1 m gravel 7-15 mm; 0.5 m sand 1-3 mm (porosity (p) = 31%, 

d60/d10=1.6); 0.05 m gravel 7-15 mm (p= 30%); 0.2 m gravel 15-30 mm (p= 31%); this 

VSSF CW is called afterward “0.5m-VSSF”; 

2) E-line: this configuration was based on 2 main layers of fine and coarse sand and gravel 

at the bottom, described as follows starting from the top: 0.1 m sand 1-3 mm (p= 31%, 

d60/d10=1.6); 0.2 m sand 1-6 mm (p= 28%, d60/d10=2.6); 0.1 m gravel 7-15 mm (p= 

30%); 0.2 m gravel 15-30 mm (porosity p= 31%). The coarse sand (fine gravel) had a 

commercially available size different from fine sand recommended by guidelines (0/4 

mm) (Austrian Önorm B2505, German DWA-A 262) but similar hydraulic conductivity 

(10
-3

-10
-4

 m/s); this VSSF CW is called afterward “0.3m-VSSF”. 

 

Washed sand was used in both VSSF CWs, in order to limit the presence of silt which may 

decrease significantly the hydraulic conductivity of the bed even if present in a very small 

fraction. The saturated hydraulic conductivity (Kf) of sand layers was very similar between 

the two VSSF configurations as indicated in  

Table 14. Even if the presence of plants would create a complex environment much more 

similar with the full scale CWs operating in Italy, both VSSF CWs were completely 

unplanted. This decision is acceptable for pilot plants and consistent with the purpose of 

comparing the influence of different filter material, thus eliminating any possible influence 

of plants on the performance of the configurations to be compared. 

 

Table 14 Physical characteristics of sands recommended in guidelines and used in this study. 

Description Depth of 

main 

filter 

material 

Size of 

the main 

filter 

material 

Porosity 

(-) 

d10 

(mm) 

d60 

(mm) 

d60/d10 Hydraulic  

conductivity 

(m/s) 

Austrian Önorm B2505 

(2008) 

0.5 m 0/4 mm - - - - - 

German DWA-A 262 

(2006) 

≥0.5 m - - 0.2-

0.4 

- <5 10
-3

-10
-4

 

     

“0.5m-VSSF” (C-line) 0.5 m 1/3 mm 0.31 1.0 1.5 1.6 6.3x10
-4

 

“0.3m-VSSF” (E-line) 
0.1 m 1/3 mm 0.31 1.0 1.5 1.6 6.3x10

-4
 

0.2 m 1/6 mm 0.28 1.0 2.6 2.6 5.8x10
-4
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The distribution of wastewater is enabled by four pipes ending with a plate located few cm 

above the gravel surface for the 0.5m-VSSF and the 0.3m-VSSF. Drainage occurs through 

one hole on the lower side of the wetland. While this is not really appropriate, it can be 

accepted considering the small size of the plant. Hydraulic and organic loads applied to the 

VSSF CWs are shown in the Table 15.  

 

Table 15 Mean values of the hydraulic and organic loads applied to the VSSF CWs. 

Parameter Units 0.5m-VSSF (C-line) 0.3m-VSSF (E-line) 

Feeds Times per day
 

3.6 3.5 

Resting period (between feeds) hours 6.6 6.5 

Hydraulic load L m
-2

 d
-1

 [mm/d] 56 60 

Superficial organic load gCOD m
-2

 d
-1

 33.8 36. 7 

Area/person equivalent m
2
/PE* 3.5 3.2 

*one person equivalent (PE) is assumed to be the organic biodegradable load having a chemical oxygen 

demand (COD) of 110 g per day. 

 

In this research, the data shown are related just to the period in which both systems 

operated with the same organic and hydraulic loads. However is important to say that the 

0.5m-VSSF is still operating with the same organic load (3 years of operation) without 

presentingany problem with clogging or decrease in removal efficiency. In the case of the 

0.3m VSSF, the system was tested with this organic and hydraulic load for just a two month 

period, after that the system was operated with higher organic loads (E-line in the Chapters 

8,10 and 11). 

 

7.2.1 Wastewater analyses 

Wastewater analyses of COD, 0.45-µm-filtered COD, Total Suspended Solids (TSS), NH4-

N, NO2-N, NO3-N, TKN, total P were carried out twice a week over a two month period 

(16 samples) in the influent and effluents from the two VSSF CWs. Temperature data for 

the whole period were collected from the nearest meteorological station, located 2 km far 

from the pilot plant (S. Massenza, Province of Trento, Italy). The weather temperature 

during this period varied from 13ºC to 22.6ºC, while the average wastewater temperature 

was 17.8°C (influent), 19.3°C (0.5m-VSSF) and 19.7°C (0.3m-VSSF). Particulate COD 

was calculated as difference between total COD and filtered COD. Analyses were 

performed according to Standard Methods (APHA, 2005).  

 

The quality standards for the effluent are those suggested by the Italian Decree 152/2006, 

that is 125, 25 and 35 mg/L for COD, BOD5 and TSS, respectively. In the case of CWs the 

values of TSS may be greater than or equal to 150 mg/L. Nutrient standards are imposed 

only on sensitive areas where the annual average should not be higher than 15 and 2 mg/L 
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for total N and total P, respectively. For small wastewater treatment plants (less than 2000 

PE) an appropriate treatment may be chosen in order to meet the relevant quality objectives 

of receiving waters according to EU Directives. 

 

7.2.2 Cost Evaluation 

Beyond their treatment performance, VSSF CWs were evaluated on the basis of their costs. 

These were computed by considering hypothetical plants built to serve a community of 500 

inhabitants, and following the local guideline that recommends 4m
2
/PE (i.e. total area of 

2000 m
2
) (Table 16). 

 

The cost comparison is maybe a bit simplistic, asonly one design option (i.e. VSSF) was 

considered, while hybrid systems (e.g. HSSF+VSSF or VSSF+VSSF) should also be 

considered. However, we focused on just the VSSF because the aim of the study was to 

verify how a difference of 20 cm in the filter material may affect the total cost of a pilot 

plant,given a basic area of the system. 

 

In accordance with rules proposed by ONORM, a size of 400 m
2
 was chosen for beds, as 

the optimal trade off between expenditure and maintenance. The analysis accounted for the 

main costs (e.g. digging activity, filling material, transportation of material, which depends 

on the distance between the quarry and the plant site), while disregarded others that are 

either difficult to compute or equal for both configurations (e.g. sieving, piping, pumps, 

etc.). In particular, we did not consider the cost of land acquisition, which is ultimately an 

opportunity cost related to the potential alternative uses of that portion of land. 

 

Table 16 Amount of material used in the VSSF CWs. 

Layer 
0.5m-VSSF (C-line) 0.3m-VSSF (E-line) 

M m
3 

m m
3 

7/15 0.10 200 0.10 200 

1/3 0.50 1000 0.20 400 

1/6 - - 0.10 200 

15/30 0.20 400 0.20 400 

Total depth (material to dig)  0.80 1600 0.60 1200 

 

The cost of all items was derived from the official price list provided by the local 

administration for the 2012 period (however one should consider that costs may change 

from one region to another, and that they may be affected by additional factors that are not 

taken into account here, such as the purchase of plants, pipes, pumps, and the acquisition of 

land). Masi et al. (2003), found that the cost of the primary treatment and the acquisition of 

land is about 8 €/m
2
, but this is not considered in this research. The two configurations were 

compared on the basis of their removal performance per unit of investment (kg of COD 
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removed per Euro per year, kg of TKN removed per Euro per year), considering an 

expected lifetime of 20 years, and the investment per inhabitant.  

7.3 Results and Discussion 

7.3.1 Overall performances of the VSSF CWs 

The rapid feeding of influent wastewater in the VSSF CWs causes a hydraulic short-circuit 

in the first minutes immediately after feeding (Figure 59). Fifty percent of the volume of 

influent wastewater passed through the bed just during the first 30 minutes, 75% passed in 

the first 2 h and 90% passed in 4 h in similar manner in the 0.5m-VSSF and in the 0.3m-

VSSF. The similar hydraulic behaviour between the two VSSF CWs was the result of the 

similar hydraulic conductivity of the filter materials (indicated in  

Table 14).  

 

The two VSSF CWs were operated at the same hydraulic and organic loads (Table 15) with 

a slight difference of 8.5% due to the use of different pumps. The slight difference was also 

evident between the applied COD loads (on average 33.8 and 36.7 gCOD m
-2

 d
-1 

in the 

0.5m-VSSF and 0.3m-VSSF, respectively) and the removed COD loads (28.6 and 29.2 

gCOD m
-2

 d
-1 

in the 0.5m-VSSF and 0.3m-VSSF respectively), while effluent COD 

concentration was lower in the 0.5m-VSSF (63 mg/L on average compared to 87 mg/L in 

the 0.3m-VSSF effluent) probably due to the higher depth of the filter material. The mean 

values of the chemical parameters in the influent and effluents are shown in Table 17.  
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Figure 59 Profiles of effluent flow rates and cumulated wastewater volumes during a typical cycle of the 

VSSF systems. 

 

The filtered COD/total COD ratio increased from 56% in the influent wastewater to 66% 

and 73% in the effluents from the 0.3m-VSSF and 0.5m-VSSF, due to the retention of the 

particulate COD in the filter material where the slowly biodegradable organic matter 

undergoes subsequent biological oxidation during the resting period (Giraldo and Zarate, 

2001). Accordingly, particulate solids measured as TSS were reduced by 87% in the 0.5m-

VSSF and 80% in the 0.3m-VSSF, showing that the 0.5m-VSSF has a higher efficiency in 

TSS entrapment due to the higher depth and the lower sand size which enhances the 

filtration effect.  

 

Table 17 Characterisation of influent and effluent wastewater (mean  ± standard deviation). 

Parameter Units 
Influent 

wastewater  

Effluent from the 

0.5m-VSSF 

Effluent from the 

0.3m-VSSF 

COD mg/L 574 ± 110 63 ± 28 87 ± 34 

0.45-µm-filtered COD mg/L 334 ± 79 44 ± 10 51 ± 14 

TSS mg/L 187 ± 29 25 ± 23 37 ± 29 

TKN mg/L 72.3 ± 5.0 12.8 ± 11.5 18.3 ± 8.1 

NH4-N mg/L 56.4 ± 7.6 11.7 ± 7.4 17.0 ± 5.0 

NO2-N mg/L 0.05 ± 0.04 1.50 ± 0.90 0.82 ± 1.2 

NO3-N mg/L 3.0 ± 0.7 41.4 ± 15.7 38.6 ± 19.8 

Total N mg/L 75.5 ± 6.1 57.5 ± 14.5 57.7 ± 19.8 

Total P mg/L 7.9 ± 0.7 3.3 ± 0.6 4.0 ± 0.5 

Temperature °C 17.8°C 19.5°C 19.5°C 

 

A very high TKN concentration in the range 61.4-77.2 mgN/L was observed in the influent 

wastewater (Table 17), which is not unusual in wastewater coming from very small villages 

and pre-settled in anaerobic septic tanks. As a consequence of the prevalent aerobic 
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conditions in the VSSF systems, a stable nitrification occurred in both VSSF CWs. The 

influent TKN (72.4 and 74.2 mgN/L in the 0.5m-VSSF and 0.3m-VSSF, respectively) was 

discharged partially in the effluent (11.7 mgN/L in the 0.5m-VSSF and 17 mgN/L in the 

0.3m-VSSF), part was utilized for biomass synthesis and the main part was nitrified. The 

average TKN loads applied and converted into NO3 were 4.1 and 3.4 gTKN m
-2 

d
-1

 

respectively in the 0.5m-VSSF and 4.4 and 3.3 gTKN m
-2 

d
-1

 in the 0.3m-VSSF. Total N 

concentration in the effluents was exactly the same in both the two VSSF CWs (57.5 

mgN/L and 57.7 mgN/L in the 0.5m-VSSF and 0.3m-VSSF respectively) and the removal 

of 18 mgTN/L in both systems was due mainly to synthesis and filtration of particulate N 

while denitrification was minimal. 

 

A higher NO2
-
-N concentration was observed in the effluent from the 0.5m-VSSF (1.50 

mgNO2
-
-N/L on average) compared to the 0.3m-VSSF (0.82 mgNO2

-
-N/L on average), 

probably due to the formation of local not fully aerobic microzones in the deeper bed of the 

0.5m-VSSF, which may cause local limiting conditions for nitratation and an accumulation 

of nitrite. 

 

With regards to total P, the removal efficiency in the deeper 0.5m-VSSF (57.7%) was better 

than in the0.3m-VSSF (49.6%). In this case, the major efficiency might be related to a 

larger quantity of filter material in the 0.5m-VSSF, where the P removal occurred by 

adsorption on the sand. 

 

7.3.2 Cost evaluation 

In Table 18 and Table 19 the values of filter material needed for VSSF CWs and digging 

activity in the construction of VSSF CW are shown. In Table 20, the total fixed costs are 

summarised.  

 

Table 18 Values of the filter material used in the VSSF CW construction . 

Material/activity 
Typical 

price 
unit 

0.5m-VSSF (C-line) 0.3m-VSSF (E-line) 

m
3
 unit €  unit €

 

Gravel 7/15 20
 

€/m
3 

200 m
3
 4,000 200 m

3
 4,000 

Sand 1/3 30 €/m
3
 1,000 m

3
 30,000 400 m

3
 12,000 

Sand 1/6 35 €/m
3
 - -  200 m

3
 7000 

Gravel 15/30 20 €/m
3
 400 m

3
 8,000 400 m

3
 8,000 

Total - - - - 42,000 - - 31,000 
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Table 19 Values of the material in waterproofing impermeabilization and in the construction of VSSF CW. 

Material/activity 
Typical 

price 
Unit 

0.5m-VSSF (C-line) 0.3m-VSSF (E-line) 

 Unit   unit 
 

Impermeabilization 

with HDPE 2 mm 
15 €/m

2
 2,754 m

2
 41,306 2,672 m

2
 40,076 

Mechanical 

excavation  
 9 €/m

3
 1,600 m

3
 14,400 1,200 m3 10,800 

Regularization of the 

floor and ramps 
0.65 €/m

2
 2,328 m

2
 1,513 2,246 m

2
 1,460 

Total - -   57,219     52,335 

*Hypothetically 5 beds of 400 m
2
 each (ÖNORM 2505, 2008). 

 

Table 20 Fixed costs in the VSSF CWs construction. 

Fixed costs 0.5m-VSSF (C-line) % 0.3m-VSSF (E-line) % 

Filter Material 42,000 42 31,000  37 

Impermeabilization and 

Digging Activity 
57,219 58 52,335 63 

Total* 99,219€  83,335€  

*These costs do not include plants, pipes, pumps, and land acquisition. 

 

Given the hydraulic load applied, the amounts of COD removed were about 20.890 kg.yr
-1

 

with the 0.5m-VSSF and 21.331 kg.yr
-1

 with the 0.3m-VSSF (Figure 60). The amounts of 

TKN removed were about 2.432 kg.yr
-1

 and 2.365 kg.yr
-1

, respectively. These values were 

used to calculate the removal-investment ratio (Figure 61).  

 

While the 0.5m-VSSF performs slightly better than the 0.3m-VSSF in terms of treatment, 

the outcome is inverted when considering the removal-investment ratio (Figure 60): the 

better performance of the 0.5m-VSSF may compensate its higher monetary costs. Figure 6 

shows that, for increasing transportation distances of the filling material, the above-

mentioned ratio keeps constant between the two configurations. This suggests that, given 

the design characteristics of the two configurations, varying costs due to transportation are 

not likely to modify the difference between their “removal efficiency” return on 

investments. On the other hand, the investment per inhabitant and the investment per m
2
 

emphasise an increasing economic difference between the two proposed configurations for 

increasing transportation costs (Figure 61).  

 

In the Flanders database, the design size of the VSSF CW varies from 4 up to 2000 PE with 

an average surface area of 3.8 m
2
/PE and an average investment cost of 507 €/PE 

(Rousseau et al., 2004). In our study, the investment per person (without considering the 

acquisition of land, pipes, pumps, etc.) ranges from 229 to 352 €/PE for the 0.5m-VSSF and 

from 190 to 282 €/PE for the 0.3m-VSSF when the distance (one way) between the quarry 

and the site passes from 10 km to 50 km. The investment per unit area ranges from 57 to 88 
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€/m
2 

in the case of the 0.5m-VSSF and from 47 to 70 €/m
2
 in the case of the 0.3m-VSSF 

(without considering the acquisition of land, pipes, pumps, etc.). These values are 

comparable to those obtained by Masi et al (2003) in their study on 34 SSFCW in Italy, 

they observed that the price changes according to the area, the land morphology and the 

design criteria. When considering CWs larger than 2000 m
2
 values are about 100 Euros/m

2
 

and 500-600 Euros/PE (Masi et al., 2005). 

 
(a) 

 

(b) 

 

Figure 60(a) COD removed per euro invested for increasing transportation distances of the filling material. (b) 

TKN removed per euro invested for increasing transportation distances of the filling material (these costs do 

not include plants, pipes, pumps, and land acquisition.) 

 
(a) 

 
 

(b) 

 

Figure 61(a) Investment in euro per person (500 inhabitant) for increasing transportation distances of the 

filling material. (b) Investment in euro per m
2
 for increasing transportation distances of the filling material. 

 

Figure 62 shows the cost calculated on a 50 km transport distance per inhabitant 

considering just the filter material, impermeabilization and digging activity. It was assumed 

that two beds of 100m
2 

each are used for 50 PE, two beds of 200 m
2
each are used for 100 

PE and that, for increasing population, one bed of 400 m
2
 is added every 100 PE, respecting 

the maximum area recommended by the Onorm (2008). According with Chen et al. (2008), 

the cost of substrate, membrane and construction engineering fee (digging activity in the 
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present paper) corresponds to 81,4% of the total costs of a constructed wetland (without the 

price of the land). 

 

Figure 62 Cost per inhabitant on a 50 km transport distance. 

 

Although the economic evaluation was performed on a specific case study and the use of 

different data could have generated different results, it may provide some insights about 

how to choose the best technology when money does matter. In particular, it stresses the 

importance of considering the transportation of the filling material as a significant variable 

cost. While it is evident that the 0.5m VSSF will always cost more (and in this case it 

perform worse in terms of economic efficiency) than the 0.3m VSSF (Figure 60) no matter 

the transportation distance, differences can vary when considering the investment per 

inhabitant and the investment per area (Figure 61). In this case, increasing transportation 

distances may result in an increasing difference between the two configurations, with 

possible consequences on the decision of whether to apply one configuration or the other. 

The selection of the suitable configuration is indeed a complex task where multiple and 

often conflicting objectives must be achieved. This study showed, as expected, that the 

0.5m-VSSF performs slightly better from the point of view of the removal efficiency, but 

this may not be enough when the filling material comes from faraway. This is a step when 

the judgment of decision-makers will play a fundamental role and the different importance 

given to the environmental and economic issues will drive the final selection.  

 



 



 

 

Chapter 8 

Influence of high organic loads during the summer 

period on the performance of Hybrid Constructed 

Wetlands (VSSF+HSSF) treating domestic wastewater in 

the Alps region
2
 

8.1 Introduction 

In many mountain areas in the Alps (excluding ski areas) the tourism is mostly 

concentrated in a 2 and a half month period (from mid June through the end of August). 

Therefore the population increases significantly during the summer due to the presence of 

large floating population compared to the resident population who live there for the whole 

year. In the Province of Trento (north-eastern Italy) the amount of resident population and 

total population (resident + floating in the 2-month tourist period) was monitored for 31 

small tourist alpine villages (with less than 1,000 resident population and not collected to a 

centralised WWTP) and results are shown in Figure 1.  

 

                                                           
2
This chapter was published as: Foladori P., Ortigara A. R. C., Ruaben J., Andreottola G. (2012). Influence of 

high organic loads during the summer period on the performance of Hybrid Constructed Wetlands 

(VSSF+HSSF) treating domestic wastewater in the Alps region. Water Science and Technology 65(5), 890-

897. 
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Figure 63 Correlation between resident population and total population (resident + floating) in 31 small tourist 

villages and fractions (Province of Trento, Italy) during 2-month summer period. 

 

Because the total population is twice the resident population for just two months throughout 

the year (Figure 64), it may be very expensive to design a CW plant for wastewater 

treatment based on the high organic load discharged during the summer period. For 

example, a small tourist village with a resident population of 600 and a tourist population of 

600 would require a hybrid CW plant for 1200 PE. When considering a specific surface of 

approximately 4 m
2
/PE, 4.800 m

2
 of contiguous land surface would be needed, which 

represents an amount of land hardly found in a mountain region due to slope characteristics 

and the importance to conserve wildness.  

 

This chapter aimed to evaluate whether a hybrid CW plant designed on the basis of the 

resident population only, can treat the additional nitrogen and organic load produced by the 

floating population during the 2-month tourist period, without drastic decrease of efficiency 

in organic matter removal and nitrification and without clogging problems. If the 

performance of the CW plant during this overloaded period were maintained at acceptable 

levels, a significant reduction of the land area for the hybrid CW system would be obtained.  

8.2 Materials and Methods 

The E-line (VSSF+HSSF) was evaluated in this Chapter. The influent wastewater was 

applied in the VSSF unit discontinuously (3.6 cycles/day on average) and pumping of 

influent wastewater took few minutes. The VSSF effluent drained and flowed by gravity 

into the HSSF unit. Two operation periods were tested in this study as showed in Table 21.  
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Table 21 Main operational parameters of the VSSF and HSSF systems during the 1
st
 low-load period and the 

2
nd

 high-load period. 

 
Parameter Units 

1
st
 low-load period 

(May-June 2010) 

2
nd

 high-load period 

(July-August 2010) 

VSSF 

Influent flow rate 

 (hydraulic load) 
L/d 124 276 

Specific hydraulic load  L m
-2

 d
-1

 55 123 

Surface organic load gCODm
-2

d
-1

 37 87 

Specific area m
2
/PE 3.2 1.3 

Cycles per day (feeds per day) #/d 3.6 3.6 

Resting period (between feeds) H 6.6 6.6 

HSSF 
Specific hydraulic load* L m

-2
 d

-1
 27 61 

Specific area* m
2
/PE 6.4 2.6 

* in this chapter only two sections of the HSSF were considered: H1 and H2. 

8.2.1 Chemical analyses 

Samples of influent and effluents from VSSF and HSSF systems were collected twice a 

week. Intensive monitoring campaigns were conducted during the VSSF normal operation 

cycle to obtain the concentration time-profiles of wastewater effluent from the VSSF over 8 

different time frames (track-studies): 0-5 minutes, 5-10 minutes, 10-20 minutes, 20-30 

minutes, 30 minutes-1 hour, 1-2 hours,2-4 hours and 4-6 hours. Samples along the HSSF 

unit were taken from taps to obtain the longitudinal profile of concentrations in the bed (2 

sample points – H1 and H2). Track-studies were performed 3 times when steady-state 

conditions in VSSF and HSSF systems were reached. 

 

Concentrations of COD, TKN, NH4-N, NO2-N, NO3-N, PO4-P and total P were analyzed 

according to Standard Methods (APHA, 2005). Soluble COD was measured after filtration 

of the sample on 0.45-m-membrane and Biodegradable COD was estimated in influent 

and effluent wastewater taken from the CW units as described in Chapter 3. The 

respirogram obtained for a conventional activated sludge used as reference was compared 

to the respirogram obtained after the addition of a known amount of wastewater to the 

activated sludge. The comparison allows calculation of the amount of biodegradable COD 

in the tested wastewater on the basis of the oxygen consumed for its oxidation. 

8.3 Results and Discussion 

In the 1
st
 low-load period temperature was 19.7°C and 19.2°C on average in VSSF and 

HSSF units respectively, while in the 2
nd

 high-load period (summer) temperature was 

22.4°C and 22.3°C respectively. The period with tourist population and with high loads in 

the hybrid CW system coincides exactly with the most favourable temperatures for the 

biological kinetics and the plants are in the period of maximum growth.  
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In the 1
st
 period the typical hydraulic and organic loads were applied in the hybrid CW 

units (55 L m
-2

 d
-1

 and 37 gCOD m
-2

 d
-1

 on average in the VSSF) in order to represent the 

typical loads usually considered in the conventional design of hybrid CW systems. This 

organic load corresponded to 3.2 m
2
/PE in the VSSF system and to about 6 m

2
/PE in the 

HSSF system.  

 

In the 2
nd

 period, which lasted 2 months from the beginning of July to the end of August 

2010, higher hydraulic and organic loads were applied to simulate the additional presence 

of the tourist floating population, according to the ratio of Figure 63. In this case the 

hydraulic and organic loads in the VSSF reached 123 L m
-2

 d
-1

 and 87 gCOD m
-2

 d
-1

 on 

average, correspondent to the use of 1.3 m
2
/PE in the VSSF system (2.6 m

2
/PE in the 

subsequent HSSF system until H2). The specific area used in the VSSF unit during the 2
nd

 

high-load period (1.3 m
2
/PE) can be considered significantly low and not so common in the 

design of VSSF systems. Clogging problems were not observed during the 2-month period 

at high load although the progressive accumulation of the suspended solids in the VSSF 

(settleable solids were always lower than 6 mL/L in the pre-settled wastewater) and the 

growth of microorganisms, which will undergo mineralization during the rest 10-month 

period operating at low load. 

 

Table 22 Characterisation of the influent and effluent wastewater during the 1
st
 low-load period and the 2

nd
 

high-load period. *CODB = biodegradable COD measured by respirometry 

Parameter 

(mg/L) 

1
st
 low-load period (May-June 2010) 2

nd
 high-load period (July-August 2010) 

Influent  
Effluent 

VSSF 

Effluent hybrid 

CW 

(VSSF+HSSF) 

Influent 
Effluent 

VSSF 

Effluent hybrid CW 

(VSSF+HSSF) 

Total COD 572 105 36 692 179 82 

Soluble COD 325 61 - 360 102 38 

CODB/total COD* 0.71 0.45 0.53 0.78 0.56 0.21 

TKN 72.3  18.3  14.6 79.8  30.2 22.6 

NH4-N 57.5  17.0  11.4 64.7  26.3  20.2 

NO2-N 0.046  0.82  0.57 0.02  1.94  0.05 

NO3-N 3.0  38.6  22.5 2.9  17.9  2.8 

Total N 75.5 57.7 16.8 82.6  49.6  20.9 

Total P 7.9 4.0  0.19 9.6  6.1  3.5 

pH (-) 8.3 8.1  8.1 7.8  7.7  7.6 

ORP (mV) -103 105 70 -190 115 87 

Temp. (°C) 17.8 19.7 19.2 21.1 22.4 22.3 

 

The characterisation of the influent and effluent wastewater in the 1
st
 low-load and the 2

nd
 

high-load periods are indicated in Table 22. Due to the dependence of the profile of COD 

and nitrogen on time during a VSSF cycle (as described more in depth in the following 

paragraphs), flow-weighted composite samples were collected and analysed to assess the 

average value indicated in Table 22. During the 2
nd

 high-load period the concentrations of 

COD, nitrogen forms and phosphorus in the influent wastewater increased compared to 
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those observed in the 1
st
 period, as expected when the tourist floating population is present. 

Furthermore, occasional high TKN peaks appeared in the influent during the 2
nd

 high-load 

period, reaching values higher than 90 mgTKN/L.  

 

Due to the configuration used in this Hybrid CW system, the major role in the removal of 

COD and nitrogen forms was played by the VSSF unit, while the HSSF unit completed the 

treatment by providing a "polishing/finishing function", mainly in the 2
nd

 high-load period, 

when the COD concentration effluent from the VSSF was higher (179 mgCOD/L). In the 

VSSF unit the nitrification process occurred in both periods as demonstrated by the 

significant decrease of TKN and NH4-N concentration in the effluent from the VSSF unit. 

The organic and nitrogen loads applied and removed in the VSSF unit during the 1
st
 low-

load period and the 2
nd

 high-load period are shown in Table 23. 

 

Table 23 Applied and removed loads in the VSSF system and removal efficiency. 

 

Parameter 

1
st
 period 

 (low organic load) 

May-June 2010 

2
nd

 period  

(high organic load) 

July-August 2010 

COD 

Applied COD load in VSSF [gCOD m
-2

 d
-1

] 36.7 86.9 

Removed COD load in VSSF [gCOD m
-2

 d
-1

] 29.9 64.3 

COD removal efficiency in VSSF (%) 82% 74% 

COD removal efficiency in VSSF +HSSF (%) 94% 88% 

TKN 

Applied TKN load in VSSF [gTKN m
-2

 d
-1

] 4.4 10.3 

Removed TKN load in VSSF [gTKN m
-2

 d
-1

] 3.3 6.6 

TKN removal efficiency in VSSF (%) 75% 62% 

TKN removal efficiency in VSSF +HSSF (%) 80% 72% 

Total 

N 

Applied total N load in VSSF [gN m
-2

 d
-1

] 4.5 10.6 

Removed total N load in VSSF [gN m
-2

 d
-1

] 1.6 4.8 

Total N removal efficiency in VSSF (%) 24% 40% 

Total N removal efficiency in VSSF +HSSF (%) 78% 75% 

 

8.3.1 Comparison of COD removal during low-load and high-load conditions 

Due to the discontinuous feeding in the VSSF unit, the effluent is drained and flowed by 

gravity with a flow rate variable during the time. During the 1
st
 low-load period, when the 

hydraulic load applied was low, the COD removal efficiency was 81% even in the first 30 

minutes after feeding with no significant differences until the end of the cycle (see time-

profile in Figure 64). In the 2
nd

 high-load period the hydraulic load was doubled, which 

caused an immediate effluent peak from the VSSF unit (hydraulic short-circuit caused by 

the higher volume applied): about 50% of the applied wastewater volume passed through 

the VSSF unit in the first 5 minutes in which COD removal was about 48% and COD 

concentration in the VSSF effluent was 360 mgCOD/L (see time-profile in Figure 64).  

However, COD concentration decreased progressively during the cycle and after 1 h from 

the feeding it reached 135 mgCOD/L, while after 6h it reached the minimum value of 60 

mgCOD/L (Figure 64). The significant removal of COD observed in the first hour for both 
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periods (Figure 64) may be due to two phenomena: (1) physical retention of COD, 

especially in particulate form, by sedimentation and filtration; (2) a dilution effect due to 

the mixing of the influent wastewater with the pore water content during itsrapid passage 

throughout the VSSF bed. When the VSSF was drained by gravity a little amount of liquid 

is retained in the interparticle voids. Considering that the pore water content at the end of 

the typical VSSF cycle was approximately 5% of the gravel weight (corresponding to 120 L 

in the whole bed), a partial dilution of the influent wastewater can occur. As confirmed by 

Giraldo and Zarate (2001), when the hydraulic retention time inside the bed is of only a few 

minutes, the physical retention into the bed is the major mechanism for the removal of 

organic matter, while the biological oxidation takes place for a longer time until the next 

feeding and therefore low concentrations are expected in the pore water at the end of the 

cycle.  

 

Figure 64Profiles of COD in the hybrid CW system: time-profiles in the VSSF unit, longitudinal profiles in 

the HSSF unit. 

 

The COD load removed in the VSSF during the 2
nd

 high-load period (Table 22) was 64.3 

gCOD m
-2

 d
-1

 more than double the load removed during the 1
st
 low-load period (29.9 

gCOD m
-2

 d
-1

). Although this high organic load applied in the VSSF unit, COD removal 

during the 2
nd

 high-load period remained acceptable, around 74%, compared to the removal 

efficiency of 82% in the 1
st
 low-load period. The increase of COD concentration in the 

VSSF effluent during the 2
nd

 high-load period, especially at the beginning of the cycle, was 

compensated by a further reduction of COD concentration in the subsequent HSSF system, 

whose effluent concentration was lower than 82 mgCOD/L in both periods (see 

longitudinal profile inFigure 64). Despite the double organic load applied during the 2
nd

 

high-load period, the overall COD removal efficiency in the hybrid CW system (VSSF 

+HSSF) did not change significantly and it was 94% in the 1
st
 low-load period and 88% in 
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the 2
nd

 high-load period. That is because the peaks of COD concentration effluent from the 

VSSF unit at the beginning of the cycle were removed in the subsequent HSSF, which 

contributed to remove 14% of the influent COD during the 2
nd

 high-load period compared 

to 12% in the 1
st
 low-load period.  

 

8.3.2 Comparison of nitrogen removal during low-load and high-load conditions 

In the VSSF unit the nitrification process was stable during both the 1
st
 low-load period and 

the 2
nd

 high-load period with similar removed concentrations. In fact in the VSSF unit, the 

mean TKN concentration decreased from 72.3 mgTKN/L to 18.3 mgTKN/L in the 1
st
 low-

load period (reduction of -54 mgTKN/L), while it decreased from 79.8 mgTKN/L to 30.2 

mgTKN/L in the 2
nd

 high-load period (reduction of -49.6 mgTKN/L) (see Table 22). 

However the applied and removed TKN loads were significantly different. The average 

applied and removed TKN loads in the VSSF unit during the 1
st
 low-load period were 4.4 

and 3.3 gTKN m
-2 

d
-1

respectively, while in the 2
nd

 high-load period the applied and 

removed loads were higher (applied load 10.3 gTKN m
-2 

d
-1

; removed load 6.6 gTKN m
-2 

d
-

1
). The increased TKN load resulted in a decrease of the removal efficiency in the VSSF 

unit from 75% to 62%.  

 

 

Figure 65 Profiles of NH4-N and NO3-N in the hybrid CW system: time-profiles in the VSSF unit, 

longitudinal profiles in the HSSF unit. 

 

Observing the time-profile during the 1
st
 low-load period (Figure 65), it can be observed 

that NH4-N concentration dropped from 56.4 mgN/L in the influent wastewater to 15.1 

mgN/L in the first 30 minutes and successively the NH4-N concentration remained quite 

constant until the end of the cycle. Conversely, when a high load was applied during the 2
nd 
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period, the removal efficiency in the first 10 minutes from the feeding is modest (about 46-

58%), compared to a removal of 68-72% between 2 and 6 hours. The NH4-N concentration 

effluent from the VSSF unit during the 2
nd

 high-load period was 26.3 mgNH4-N/L 

compared to 17 mgNH4-N/L in the 1
st
 low-load period. This higher concentration of NH4-N 

remained also along the longitudinal profile in the HSSF unit (Figure 65) and a decrease of 

28-35 mV in ORP was observed along the HSSF bed (Table 22). 

 

Considering the difference between NH4-N in the influent and in the effluent from the 

VSSF unit, it was possible to estimate the specific nitrification rate in the VSSF, which 

resulted 2.4 gNH4-N m
-2

 d
-1

 in the 1
st
 low-load period and 4.7 gNH4-N m

-2
 d

-1
 in the 2

nd
 

high-load period. Although the high organic load applied, we did not observe a decline in 

nitrification rate during the 2-month research period. The amount of nitrifying biomass 

developed in the previous low-load period and the favourable temperatures during the 

summer allowed the activity of the nitrifying biomass and a significant nitrification rate.  

 

Due to nitrification in the VSSF unit, the NO3-N concentration increased of 35.6 mgNO3-

N/L in the 1
st
 low-load period, while the increase was lower in the 2

nd
 high-load period. The 

dynamic of NO3-N production in the two periods was different due to the different 

influence of simultaneous denitrification. In the 1
st
 low-load period the NO3-N 

concentration was quite constant during the entire cycle, from the first minutes until the end 

of the cycle after about 6 h (see time-profiles in Figure 65). Conversely, in the 2
nd

 high-load 

period, NO3-N concentration was lower at the beginning of the cycle (during the first 30 

minutes after the feeding) and increased drastically after 30 minutes (Figure 65). VSSF unit 

adsorbs a huge amount of COD immediately after feeding, the oxygen in the bed decreases 

rapidly (for the rapid oxidation of readily biodegradable COD), the water content in the bed 

increases and oxygen transfer is limited and these are suitable conditions for the occurrence 

of the simultaneous denitrification. After 0.5-1 h from the feeding, 80% of the water 

volume was drained and aerobic conditions are restored, causing a progressive increase of 

NO3-N concentration (Figure 65). 

 

The HSSF unit played an important role in denitrification, especially during the 2
nd

 high-

load period, when a higher COD concentration was discharged from the VSSF unit to the 

HSSF unit (Figure 65). The biodegradable COD measured by respirometry in the VSSF 

effluent was 55% of total COD: this high presence of biodegradable compounds (mainly 

due to the hydraulic short-circuit in the first minutes after the feeding) supported the 

denitrification in the HSSF unit. In the HSSF effluent the biodegradable COD was 21% of 

total COD, indicating its consumption by denitrification. Contextually the NO3-N 

concentration dropped significantly, as indicated in the longitudinal profile of Figure 65. 
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During the 2
nd

 high-load period the specific denitrification rate was 0.9-1.9 gNO3-N m
-2

 d
-1

, 

higher than the value of 1.0 gNO3-N m
-2

 d
-1

 estimated in the 1
st
 low-load period. 

 

In the 2
nd

 high-load period the presence of nitrification and a significant simultaneous 

denitrification in the VSSF unit caused an appreciable increase of NO2-N, which passed 

from 0.8 mgNO2-N/L on average during the 1
st
 low-load period to 1.9 mgNO2-N/L during 

the 2
nd

 high-load period. However, this increase of NO2-N was not a problem for the 

effluent discharged from the plant because the VSSF effluent passed through the HSSF 

unit. In the HSSF system the concentration of NO2-N dropped rapidly reaching a final 

effluent concentration of about 0.5 mgNO2-N/L. 

 

The phosphorus removal in the VSSF unit was 49.3% in the 1
st
 low-load period and 36.5% 

in the 2
nd

 high-load period. P removal was completed when wastewater passed through the 

HSSF unit in which removal efficiency was 27-48% and this behaviour did not change 

significantly in the two periods.  

 

 



 



 

 

Chapter 9  

Constructed wetlands for mountain regions: 

investigation on the effect of discontinuous loads and low 

temperatures
3
 

9.1 Introduction 

As previously demonstrated, VSSF can effectively treat wastewater with high hydraulic and 

organic loads during few months in summer. Nevertheless, doubts remain on whether 

VSSF CWs are applicable and efficient in winter with low temperatures and discontinuous 

loads, that is the conditions found in winter months with the presence of tourists.  

 

Another constraint to the application of CWs in mountain areas is related to the large area 

required. Geomorphologic conditions – only small extensions of flat land – constitute a 

primary limiting factor to the installation of CWs. In Europe, the design of CWs is mostly 

done by using simple scaling factors (e.g. each country specifies the minimal area required 

for construction). Nevertheless, this is done only where a significant competences is 

availablein the same weather/environmental conditions. In other cases, the design is still 

done by the use of sizing models based on first-order kinetics rather than the use of 

advanced mathematical models. First-order kinetics models use the following equation for 

                                                           
3
 This chapter was presented at SIDISA 2012: Ortigara A. R. C., Foladori P., Ruaben J. and Andreottola G. 

(2012). Constructed wetlands for mountain regions: investigation on the effect of discontinuous loads and low 

temperatures. Proceedings of the 9th SIDISA – Sustainable Technology for Environmental Protection. Milan, 

Italy, 2012. ISBN: 978-88-9035572-1. 
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the estimation of the area of a VSSF CW. Among the parameters necessary to the first 

order kinetics models is the estimation of kT is rather important during the design phase. 

 

The biological activity in subsurface CWs is also correlated with temperature: a decrease of 

temperature results in a lower bacterial growth and metabolic rates are reduced as well. A 

modified van’t Hoff-Arrhenius equation is used to estimate temperature effects on the 

biological reaction rates (equation 2). Even though studies have shown that seasonal 

temperature variations do not always significantly affect COD and BOD removal in CWs 

(Kadlec and Reddy, 2001), the activity of nitrifying bacteria is strongly limited below 10˚C 

and denitrification activity is detected only above 5˚C (Brodrick et al., 1988; Herskowitz et 

al., 1987; Werker et al., 2002). The temperature coefficient θ is 1.11-1.37 for nitrification at 

T below 10°C (Kadlec and Reddy, 2001). Temperature coefficient strongly affects the 

design procedure, especially in regions where the average temperature in winter is below 

10°C. The use of the wrong coefficient can lead to an overestimation of the system’s area, 

which eventually make designers and administrators prefer other technologies. 

 

The estimation of the temperature coefficient can be done using the removal rates obtained 

from real or lab scale applications of the CW or by the use of specific lab tests. In the case 

of the nitrification rate, it can be estimated on the basis of the consumption of ammonia or 

oxygen concentrations for a period of few hours. Ammonia Uptake Rate (AUR) is a test 

developed to measure the activity of nitrifying bacteria in activated sludge measuring the 

amount of NH4, NO2 and NO3 through time, with the aim to measure the maximum specific 

nitrification rate. AUR tests can also be used to evaluate the inhibition of the nitrifying 

biomass or the influence of temperature, oxygen and pH in the nitrification process. In this 

Chapter an AUR test opportunely modified for the application to VSSF CWs cores at the 

lab scale or collected from full-scale CW plants was proposed and applied. 

 

This Chapter focuses on the monitoring of COD and nitrogen removal performance in the 

pilot plant described in the Chapter 3 under the following conditions: (1) low temperatures 

of 2-10°C; (2) discontinuous feeding causing long idle periods (which may reduce the 

active biomass within the CW bed) and low temperatures. AUR tests carried out on VSSF 

cores and on the granular material collected from the VSSF pilot plant were applied to 

evaluate the influence of temperature and discontinuous loads on the nitrification rate. 

9.2 Materials and Methods 

Both VSSFconfigurations were operated under winter conditions: C-line will be called 

Low-Load VSSF and E-line will be called High-Load VSSF in this Chapter.Samples of 

influent and effluents from the VSSF were collected during two winter periods (2010/2011 
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and 2011/2012). In the period with continuous feeding (winter months in 2011/12) the 

temperature of the VSSF effluent dropped from 10 to 2ºC, while the air temperature 

decreased to 0.6°C. In the period with discontinuous feeding, sampling campaigns were 

done with intervals from 13 to 30 days, to simulate the tourist presence during the winter 

holidays. 

 

9.2.1 AUR Tests onVSSF lab cores 

VSSF cores at lab-scale were used for evaluating the influence of temperatures on the 

nitrification. VSSF-1 and VSSF-2 were used (see Chapter 3 – Materials and Methods for 

more details on the cores’ composition). At the end of the typical VSSF cycle, when 

wastewater was drained by gravity, a little amount of liquid remained in the interparticle 

voids (pore water content was approximately 5% of the wet sand/gravel weight). Thus the 

amount of water in the column was 370 mL before the beginning of the AUR test. The 

AUR test was realized with 600 mL of water fed on the top of the column with a 

concentration of 30-50 mgNH4/L which drained throughout the column. The water 

collected at the bottom was fed again on the top of the column every 15 min. The samples 

collected from the bottom were analyzed for NH4-N, NO2-N, NO3-N, pH and temperature. 

The overall test lasted 5 to 8 h until the complete oxidation of the NH4 added. The 

maximum specific nitrification rate (vN, expressed as mgN m
-2

 d
-1

) was calculated 

considering the consumption of NH4-N instead of the production of nitrite and nitrate 

because denitrification can take place.  

 

AUR tests were also performed on the granular material collected from the VSSF pilot 

plant in order to evaluate the effects on the nitrification activity after three months at low 

temperatures and discontinuous feeding. Few kilograms of the granular material were 

collected in the top layers of the VSSFand placed in the column where AUR test was 

performed at controlled temperature. 

9.3 Results and Discussion 

9.3.1 Performances of the VSSF CWs during the regular operation period at low 

temperatures 

During the regular operation period, air temperatures decreased to 0.6°C, while the 

temperature of the VSSF effluent (considered similar to the temperature inside the VSSF 

bed) was in the range 2.4-8.9°C in the Low-Load VSSF and 3.7-9.7°C in the High-Load 

VSSF. The influent and effluent concentrations and the specific loads applied in this period 

are indicated in Table 24. 
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Table 24 Average influent and effluent concentrations in the VSSF CWs and specific loads applied in the 

regular operation period at low temperatures. 

Parameters Units 
Low-Load VSSF (C-line) High-Load VSSF (E-line) 

Influent VSSF effluent  Influent VSSF effluent 

Temperature °C 12.8 2.4-8.9 (mean 6.8) 12.3 3.7-9.7 (mean 6.9) 

Total COD mg/L 371 71 410 63 

Soluble COD (S) mg/L 146 42 166 40 

Total N mg/L 71.9 52.1 70.4 38.9 

TKN mg/L 70.3 20.1 69.0 31.6 

NH4-N mg/L 58.5 17.0 56.2 26.8 

NO2-N mg/L 0.0 0.6 0.0 0.1 

NO3-N mg/L 1.6 31.5 1.6 9.4 

Total P mg/L 8.2 3.9 8.2 6.5 

SST mg/L 137 38 140 21 

pH - 7.2 7.3 7.2 7.2 

Specific hydraulic load L m
-2

 d
-1

 70 178 

Specific organic load gCOD m
-2

 d
-1

 25.9 73.6 

Specific surface m
2
/PE 4.3 1.7 

 

Although the average applied organic load in the High-Load VSSF (73.6 gCOD m
-2

 d
-1

) 

was higher than in the Low-Load VSSF (25.9 gCOD m
-2

 d
-1

), the COD removal efficiency 

was similar (80% and 81% on average, respectively). A very slight influence of 

temperatures in the range 2-10°C on the COD removal efficiency was observed in both the 

VSSF CWs as shown by the coincident regression lines indicated in Figure 66 (a). Even at 

2-4°C, COD removal efficiency was around 70%. 

 

A significant TKN removal was observed even at 2-10°C (Figure 1B). On average, the 

TKN loads applied and removed in the High-Load VSSF were 11.9 gTKN m
-2

 d
-1

 and 6.4 

gTKN m
-2

 d
-1

 respectively, while the loads applied and removed in the Low-Load VSSF 

were 4.9 gTKN m
-2

 d
-1

 and 3.5 gTKN m
-2

 d
-1

 respectively (Figure 66 (b)). The higher 

organic load reduced the TKN removal efficiency from 71% on average in the Low-Load 

VSSF to 54% in the High-Load VSSF (Figure 66 (b)). The result was a higher TKN 

concentration in the effluent from the High-Load VSSF (31.6 mg/L on average) compared 

to the Low-Load VSSF (20.1 mg/L on average). 

 

For comparison, in the field of activated sludge, it is well known that the activity of 

nitrifying biomass is strongly reduced at temperatures below 10°C and it can disappear at 

temperatures below 5°C. However, in the VSSF CWs tested in this research the nitrification 

efficiency decreased when temperature dropped to 2°C but not disappeared, and the mean 

removal efficiency in the Low-Load VSSF at 2-3°C was 59% for TKN and 58% for NH4-

N. 
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(a)

 

(b)

 

Figure 66 Removal efficiency of COD (a) and TKN (b) in the Low-Load VSSF (C-line) and High-Load VSSF 

CWs (E-line) as a function of the temperature. 

 

9.3.2 VSSF CWs performance during the period with discontinuous feeding at low 

temperatures 

The VSSF CWs were fed discontinuously (1-2 feedings per month) in order to simulate the 

discontinuous flows discharged by the occasional presence of tourists during weekends and 

holiday in winter in not skiing locations. The monitoring period lasted 3 months (December 

2010-February 2011) with air temperatures below 0°C for about one month (minimum of -

5°C). The aim was to evaluate the performances of VSSF CWs after a long-term stress due 

to discontinuous feeding coupled with temperatures of VSSF effluent wastewater in the 

range 1.2-3.6°C for both lines. The influent and effluent concentrations in the VSSF CWs 

are indicated in Table 25. Due to the feeding of influent wastewater occurring once or twice 

per month, it was not possible to calculate the average specific hydraulic and organic loads 

in the systems during the entire period. Thus, the specific loads indicated in Table 25are 

referred to a single cycle instead of per day.  

 

The COD removal efficiency was 65% in the Low-Load VSSF (specific surface of 3.2 

m
2
/PE) and 55% in the High-Load VSSF (specific surface of 1.5 m

2
/PE). The appreciable 

COD removal even at low water temperatures (around 2°C) was due to physical retention 

of particulate COD by sedimentation, filtration and the dilution associated with the mixing 

of the influent wastewater with the pore water content in the VSSF CW. Although the 

feeding occurred 1-2 fold per month, resulting in the total absence of feeding in the VSSF 

CWs for some weeks, an immediate recovery of performances was observed when the 

influent wastewater was applied in the bed.  
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Table 25 Average influent and effluent concentrations in the VSSF CWs in the period with discontinuous 

feeding and low temperatures. Specific loads were calculated per cycle. 

Parameters Units 
Low-load VSSF (C-line) High-load VSSF (E-line) 

Influent VSSF effluent  Influent VSSF effluent 

Temperature °C 6.2 1.3-3.6 (mean 2.2) 5.9 1.2-3.5 (mean 2.1) 

Total COD mg/L 520 181 524 228 

Soluble COD mg/L 239 88 220 79 

Total N mg/L 109.5 82.6 75.5 87.5 

TKN mg/L 104 44.1 72 59.5 

NH4-N mg/L 64.5 42.1 56.6 45.3 

NO2-N mg/L 0.1 2.9 0 3 

NO3-N mg/L 4.4 35.7 3.4 25 

Total P mg/L 9.8 6.2 8.2 7.5 

SST mg/L 159 74 139 90 

pH - 7.7 7.5 6.8 7.1 

Specific hydraulic load L m
-2

 cycle
-1

 17.8 17.8-35.6 

Specific organic load gCOD m
-2

 cycle
-1

 8.8 14.8 

Specific surface m
2
/PE 3.2 1.5 

 

Applied and removed TKN loads during the discontinuous period in the Low-Load and 

High-Load VSSF are indicated in Figure 67 compared to the TKN loads in the regular 

operation period. During the period with absence of feeding and air temperatures below 

zero degrees, the average TKN removal in the Low-Load VSSF was 57%, while in the 

High-Load VSSF the TKN removal decreased from 55% in December to 0-18% in 

January-February. This decrease in the TKN removal efficiency in the High-Load VSSF 

was affected also by the higher organic load applied in the system during the previous 

summer and autumn periods. Conversely, in the Low-Load VSSF, the TKN removal 

remained always beyond 42% even after the 3 months with discontinuous feeding. In the 

TKN removal, the dilution of influent wastewater may be important, because the pore water 

content at the end of the VSSF cycle was approximately 5% of the wet sand weight. 
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(a)

 

(b)

 

Figure 67 Applied and removed TKN loads in the continuous and discontinuous feeding for (a) Low-Load 

VSSF (C-line) and (b) High-Load VSSF (E-line)as a function of the temperature. 

 

9.3.3 Influence of temperature on nitrification rate in lab VSSF cores measured by 

AUR tests 

The influence of temperature of 2-18ºC on the maximum specific nitrification rate (vN, 

expressed in gNH4-N m
-2

 d
-1

) was investigated in two lab cores (VSSF-1 and VSSF-2) 

using AUR tests. In particular, vN was estimated using the slope of NH4-N consumption 

instead of the slope of NO3+NO2 production, because denitrification may occur inside the 

granular material in pores not completely reached by oxygen and in the biofilm. Values of 

vN as a function of temperature are indicated in Figure 68. 

 

Similar values of vN were found for the two types of VSSF cores used, considering the 

same organic loads applied in the cores. However, the slight difference in the vN values 

may be due to the depth of the main sand layer which was 0.5 m in the VSSF-1 and 0.3 m 

in the VSSF-2. 

 

Strong temperature dependence was observed in both cores, with vN values ranging from 

14.5-16.2 gNH4-N m
-2

 d
-1

 at 18°C to 2.8-2.9 gNH4-N m
-2

 d
-1

 at 2°C. Considering an 

Arrhenius-type temperature dependence ( (T )
N,T N, Cv v 

  20
20 ), the parameters vN,20°C and  

were estimated from the data of Figure 3 using the least square method and indicated in 

Table 26. The Arrhenius-type curves obtained for the two VSSFare indicated graphically in 

Figure 68.  
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Figure 68 Influence of temperatures on vN measured in lab VSSF cores with AUR tests. 

 

Table 26 Estimation of vN,20°C and  according to the Arrhenius-type temperature dependence from the AUR 

tests. 

Parameter Units VSSF-1 VSSF-2 

vN,20°C g m
-2

 d
-1

 21.3 18.2 

 - 1.12 1.13 

 

The values obtained for θ fall within the range indicated in the literature: 1.11-1.37 for 

temperatures of 5-10ºC, 1.08-1.16 for temperatures of 10-15ºC and 1.06-1.12 for 

temperatures of 15-20ºC (Kadlec and Reddy, 2001).The values obtained for  (1.12 – 1.13) 

can be used in equation 2 in order to obtain a more precise estimation of the kT. The 

estimation of this parameter for the design of a VSSF CW configuration tested in this 

research (using the same material granulometry, organic and hydraulic loads) would be 

helpful to avoid an overestimation of the superficial area of these systems. On other hand, 

the AUR test shown to be a reliable tool that can be used for the estimation of this 

parameter also in other CW configurations. 

 

9.3.4 Comparison between nitrification rates measured in lab VSSF cores and in the 

VSSF pilot plant at low temperatures 

In lab cores the nitrification rate followed an Arrhenius-type law with a strong decrease of 

vN at low temperatures. The same influence was observed in the VSSF pilot plant, where 

the influence of the feeding periods can be observed as well (Figure 69). For the High-Load 

VSSF during the regular operation period with continuous feeding, the values of vN were 

consistent with the data estimated for lab cores on the basis of the Arrhenius-type law (from 

AUR data). Conversely, during the regular operation period in the Low-Load VSSF, the vN 

values were lower than those measured by AUR in lab cores. At 3.5ºC the value of vN was 
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3.2 gNH4-N m
-2

 d
-1

 in lab cores and 1.47 gNH4-N m
-2

 d
-1

 in the pilot plant. At 12ºC the 

value of vN was 8.9 gNH4-N m
-2

 d
-1

 in lab cores and 4.09 gNH4-N m
-2

 d
-1

 in the pilot plant. 

 

 

Figure 69 Nitrification rate in the VSSF pilot plants compared with the Arrhenius-type curves measured by 

lab AUR tests 

 

During the winter period with discontinuous feeding it was observed that the long-time 

stress caused by long idle periods without feeding and low temperatures caused a strong 

reduction of the nitrification rate, mainly in the High-Load VSSF. In the High-Load VSSF, 

the nitrification rate at 1.2°C was 3.93 gNH4-N m
-2

 d
-1

, but it decreased strongly after a 

month operating with discontinuous feeding, confirming the simultaneous effects of long-

time stress and low temperatures (TKN removal was reduced to about 18%). Conversely, in 

the Low-Load VSSF, vN values were very similar to those obtained in the lab cores and 

interpreted with Arrhenius-type law.  

 

The granular material collected from the Low-Load VSSF with discontinuous feeding 

underwent a lab AUR test at 15°C and a recovery in NH4 removal efficiency was observed. 

The vN,15 was 7.2 gNH4-N m
-2

 d
-1

, slightly lower than the vN,15 expected from lab cores and 

Arrhenius-type law (Figure 69). After 3 months with discontinuous feeding, both the VSSF 

CWs showed a fast recovery (few days) of TKN removal efficiency with the spring 

arrival.Therefore, the AUR method developed for application on the VSSF material is 

useful to quantify the nitrification rate of real systems at different temperatures and 

eventually to predict the removal efficiency throughout the year. 
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Chapter 10  

Recirculation in VSSF –CWs: a new configuration tested 

to reduce land area requirements
4
 

10.1 Introduction 

The use of Constructed Wetlands has been spreading around the world since its first 

application in Europe at the beginning of the 60’s. However, a true widespread application 

has been partly limited by a critical issue, namely the large surface required to ensure high 

removal rates and subsequently meet the standards specified in national and international 

guidelines. The PAT (2002), for example, suggests a surface per inhabitant equivalent of up 

to 4 m
2
/PE for the VSSF and 6 m

2
/PEfor the HSSF. 

 

In order to reduce the surface required by these systems, different approaches have been 

proposed. Some of them are based on the improvement of HSSF’s removal rates, by means 

of artificial aeration, the use of alternative feeding periods, the modification of the filter 

material’s thickness, the recirculation of a fraction of the HSSF outlet wastewater to the 

VSSF inlet(Tunçsiper, 2009; Ayaz et al., 2012), etc. Most of these approaches are used in 

order to increase the ammonia removal in HSSF, because it is normally limited by the 

prevalent anoxic conditions in the bed.  

 

Approaches found in the literaturethat are aimed at improving removal rates per unit area in 

the VSSF are based on changing or alternating feeding periods, recirculating the outlet 

                                                           
4
 This chapter is based on: Foladori P., Ruaben J., Ortigara A. R. C., Andreottola G. (2012). Comparison of 

innovative Constructed wetland configurations aimed to area reduction. Proceedings of the 9th SIDISA – 

Sustainable Technology for Environmental Protection. Milan, Italy, 2012. ISBN: 978-88-9035572-1. 
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wastewater to the septic tank or to the first stage bed in the case of hybrid systems (Brix 

and Johansen, 2004; Brix and Arias, 2005; ÖNORM B 2505, 2008). Another recirculated 

configuration was developed to treat domestic wastewater produced from single houses: 

wastewater is treated in a vegetated VSSF CW and the effluent is collected in a storage tank 

and then recirculated at the top of the VSSF to prolong the contact time in the CW (Gross et 

al., 2007; Sklarz et al., 2009). VSSF CWs are widely known for maintaining aerobic 

conditions inside the bed due to the intermittent feeding conditions. The prevalence of 

aerobic conditions makes these systems more efficient in ammonia removal than the HSSF.  

 

Fonder and Headley (2011) divided VSSF in 3 different categories: Down Flow (DF) CW 

(traditional VSSF with free-draining, open outlet, without surface flooding and with 

intermittent feeding), Up Flow (UP) CW (permanently flooded surface, sometimesreferred 

to as Anaerobic Bed) and Fill and Drain (FaD) CW (mixed flow direction, normally 

alternating between up and down flow with saturated and unsaturated conditions resulting 

from the filling and draining sequences, without surface flooding). According to Austin 

(2003), cyclical flood and drain steps applied within the wetland bed promotes the 

occurrence of nitrification and denitrification: NH4+ adsorbed to the filter material biofilms 

during the flood stage are rapidly nitrify when exposed to atmospheric oxygen in the drain 

stage and NO
3-

 desorbed into bulk water in the next flood stage and are used as terminal 

electron acceptors in bacterial respiration when a carbon source is available.  

 

The use of saturated and unsaturated conditions in VSSF may be another possibility for 

increasing the removal performance per unit area, coupling the nitrification and 

denitrification inside the same system, in order to reduce the area of the system and area of 

the post treatment. Nitrification capacity inside the VSSF can be limited by the amount of 

oxygen transferred during the feeding phase, mainly when high organic loads are applied. 

During the feeding, the air pressure increases inside the bed, because the air is trapped 

between the two layers of water (on the top and on the bottom), it increases the dissolution 

of oxygen in the water. After the feeding, the water drainage within the filter materials 

creates a negative pressure condition that sucks air inside the bed. The theoretical 

computation of the amount of air that can be trapped in during the feeding was already 

proposed by Platzer (1999) and the amount of oxygen transferred during a feeding step is 

limited by the volume of liquid fed.  

 

This chapter proposes a new configuration for VSSF CWs that allows a reduction of the 

land surface required by these systems. The proposed configuration is based on the 

recirculation of wastewater inside of the VSSF and it couples the benefits provided by 

natural aeration being performed during the feeding and the benefits of having saturated 
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and unsaturated conditions inside the bed (as FaD CW). One of the advantages of this 

system is that the recirculation of the wastewater inside the bed does not just support the re-

aeration of the bed, but it also improves the contact between wastewater and the biomass 

attached to filter material in the upper layers, thus improving the efficiency in COD 

removal, nitrification and denitrification. 

10.2 Materials and Methods 

C-line and E-line were evaluated in this chapter (VSSF + HSSF) while operating in 

parallel, but with different configurations (both lines are described in Chapter 3). The C-

line was operated as a free drainage CW, following the guidelines provided by the Province 

of Trento (around 67 L m
-2

 d
-1

 and 31.7 gCOD m
-2

 d
-1

 on average in the VSSF, 6.36 hours 

between each feeding) and the automatic control was limited to the start of the feeding 

pump. 

 

E-line was operated as a Recirculated VSSF. Even if just the VSSF was recirculated, the E-

line will be called in this chapter Recirculated E-line. The Recirculated E-line has three 

main phases of operation were automatically controlled: 

1) Feeding: the automatic valve is closed at the bottom of the VSSF and the 

feeding starts. The wastewater is pumped over the bed with intervals of 15 

minutes until the water reaches a probe that controls the level inside the bed. 

The level inside the bed increases during the experiments, in order to test the 

limits of the system. 

2) Recirculation: a pump starts to recirculate the water from the bottom to the top 

of the VSSF just after the end of the feeding phase. The duration of the 

recirculation is 5 minutes and about 105 litres of water are recirculated. After the 

first recirculation, the bed remains idle for one hour, when a new recirculation 

starts. This phase lasts 6 hours during which 6 recirculation steps are performed. 

Samples were taken from the recirculated water. 

3) Drainage: after 6 recirculation steps, the automatic valve opens and the 

wastewater is drained to the HSSF. The bed rests for 4 hours before a new feed. 

The average cycle duration was 10.5 hours. 

 

The amount of wastewater treated in the VSSF of the Recirculated E-line was 169 L m
-2

d
-1

, 

higher than using the C-line (67 L m
-2

 d
-1

). The Control-line (C-line) was operated with 

aspecific surface area equivalent to 3.6 m
2
/PE, and the Recirculated E-line was operated 

with 1.5 m
2
/PE. The Recirculated E-line was operated with recirculated VSSF for about 

10.5 months, though not continuously (operations were interrupted during winter and 

summer when other experiments where run in the pilot plant). The level of wastewater 
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inside the 0.6 m deep filter material varied from 0.24 m,when all the volume was fed into 

the bed, toa theoretical 0.9 m, when all the volume were in the recirculation phase. 

 

After passing through the VSSF, the wastewater flows by gravity to the HSSF. The HSSF 

is equipped with a group of three taps at 1,5 m from each other that allow the effluent to be 

sampled at 3 different elevations: 0.2 m, 0.4 m and 0.6 from the bottom. It also allows to 

sample along the side of the HSSF, and to simulate the outlet at different distances from the 

inlet, for example: collecting in the first group of taps the HSSF would represent a bed with 

2.25 m
2
, in the second tap it would be 5.50 m

2
 and in the third, 7.75 m

2
. When collecting a 

sample at the outlet, al the area of the HSSF will be use, and the HSSF would have 9m
2
. 

Table 27 summarizes the main operational parameters of the VSSF and HSSF used in this 

chapter. 

 

Table 27 Main operational parameters of the VSSF and HSSF systems in the C-line and Recirculated E-line 

 Parameter Units C-line Recirculated E-line 

VSSF 

Influent flow rate 

 (hydraulic load) 
L/d 150 380 

Specific hydraulic load  L m
-2

 d
-1

 67 169 

Surface organic load gCODm
-2

d
-1

 32 82 

Specific area m
2
/PE 3.6 1.5 

Cycles per day (feeds per day) #/d 3.6 2.2 

Resting period (between feeds) H 6.6 10.8 

HSSF 
Specific hydraulic load L m

-2
 d

-1
 17 42 

Specific area (all the bed=9m
2
) m

2
/PE 14.7 5.8 

 

10.2.1 Chemical analyses 

Samples of influent and effluents from VSSF and HSSF systems were collected once a 

week. Intensive monitoring campaigns were conducted during the VSSF Recirculated E-

line operation to obtain the concentration of wastewater effluent after each recirculation. 

The samples were called R1 for the first recycle, R2 for the second and so on. For the 

HSSF, the monitoring campaigns consisted in sampling the taps over the longitudinal 

profile. Concentrations of COD, TKN, NH4-N, NO2-N, NO3-N, PO4-P and total P were 

analysed according to Standard Methods (APHA, 2005). Soluble COD was measured after 

filtration of the sample on 0.45-m-membrane and Biodegradable COD was estimated as 

described in Chapter 3. 
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10.3 Results and Discussion 

10.3.1 Performance of the overall systems (C-line and Recirculated E-line -

VSSF+HSSF) 

The average results obtained in the weekly analysis for the inlet and outlet VSSF+HSSF for 

C-line and Recirculated E- line are shown in Table 28. The wastewater temperature varied 

between 0.5 and 25°C, while the average value was around 15°C. This variation seems not 

to have an influence on the COD removal of the whole system (VSSF+HSSF), which was 

always lower than 70 mg/L after passing the VSSF+HSSF. 

 

When comparing the C-line and Recirculated E-line (VSSF recirculated), the COD removal 

efficiency of the VSSF only was 79% and 86%, respectively. Considering the whole system 

(VSSF+HSSF), a higher efficiency was observed in the C-line, but the values obtained 

were similar (95.7% and 93.5% for the C-line and Recirculated E-line, respectively). Even 

though the removal efficiencies are not very different, the organic loads applied and 

removed are higher in the Recirculated E-line.  

 

Table 28 Characterization of influent and effluent wastewater (mean  ± standard deviation). 

Parameter Units 
Influent 

wastewater 
VSSF C-line 

Recirculated 

E-line 

(VSSF) 

HSSF  

C-line 

Recirculated 

E-line 

(HSSF) 

Temperature °C 16.2±3.1 15.5±3.2 16.7±6.6 14.6±6.9 15.4±7.4 

COD mg/L 498±113 100±31 71±30 18±3 26±19 

Soluble COD mg/L 227±74 52±13 39±14 17±3 20±7 

BOD mg/L 159 21 12 2 3 

TSS mg/L 162±28 48±20 33±19 1.3±0.6 2.4±3.3 

TKN mg/L 73.7±10.0 19.7±6.3 22.5±10.0 3.2±2.5 8.6±8.3 

NH4-N mg/L 58.5±9.0 14.9±5.6 17.4±9.0 2.4±2.6 6.4±7.5 

NO2-N mg/L 0.03±0.07 0.74±0.53 0.32±0.49 0.06±0.04 0.07±0.06 

NO3-N mg/L 2.0±1.0 34.6±10.15 21.4±11.3 17.1±8.4 11.1±8.2 

Total N mg/L 75.4±10.0 55±10.9 41.7±7.1 20.2±9.0 19.3±11.5 

Total P mg/L 8.7±1.0 6.2±0.6 6.7±0.8 2.7±1.0 3.5±1.7 

pH - 7.3±0.2 7.6±0.3 7.4±0.3 7.5±0.2 7.4±0.2 

ORP mV -203±87 93.8±46.1 115±44 106±58 115±41 

 

The average value of organic load applied in the Recirculated E-line was 81.5 gCODm
-2

d
-1

, 

though it reached peak values around 100 gCOD m
-2

 d
-1

, while the values applied in the C-

line were 31.7 gCOD m
-2

 d
-1

. The organic load removed in the Recirculated E-line was 69.7 

gCOD m
-2

 d
-1

 as opposed to a mere 24.9 gCOD m
-2

 d
-1

 in the C-line. This means that the 

recirculated VSSF in the Recirculated E-line is able to treat higher volumes of wastewater 

without a significant decrease in efficiency. The application of higher organic loads in the 

VSSF of the Recirculated E-line is not recommended when the system is operating under 

low temperature due to the poor efficiency, as well as the clogging problems that are 

normally associated with a prolonged overload. 
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The wastewater treated by the VSSF flows by gravity to the HSSF where further removal 

occurs. The applied and removed organic loads are 1.68 and 1.38 gCOD m
-2

 d
-1 

respectively 

for the HSSF C-line and 3.8 and 2.2 gCOD m
-2

d
-1

respectively for the HSSF on the 

Recirculated E-line. When considering the overall system (VSSF+HSSF), the applied and 

removed organic loads are 6.3 and 6.1 gCOD m
-2

 d
-1

 for the C-line and 16.3 and 15.5 

gCOD m
-2

 d
-1

 for the Recirculated E-line, respectively. Figure 70 shows the applied and 

removed organic loads in the VSSF of C-line and Recirculated E-line (a) and VSSF+HSSF 

of C-line and Recirculated E-line (b).  

 
(a)

 
 

(b)

 

Figure 70 Applied and removed organic loads in the (a) VSSF of C-line and Recirculated E-line and (b) 

VSSF+HSSF of C-line and Recirculated E-line. 

 

The VSSF on the Recirculated E-line was conceived in an attempt to foster the removal of 

nitrogen compounds, due to the re-aeration provided by the wastewater recirculation and 

the alternation of saturated and unsaturated periods. The NH4 present in the influent 

wastewater was partially removed in both VSSF lines (average outlet concentrations were 

15 mgNH4/L in the C-line and 20 mgNH4/L in the Recirculated E-line). The nitrification 

process in the C-line generated 33.7 mgN/L of NO2-N + NO3-N in the effluent of the 

VSSF, while allowing44.7 mg/L of NH4 to be removed. When analysing the VSSF effluent 

of the Recirculated E-line, the values of NO2-N + NO3-N were lower (16.8 mgN/L) and the 

amount of NH4 removed was 39.6mg/L. It confirms the occurrence of 

nitrification/denitrification inside the recirculated VSSF. The NO2-N + NO3-N present in 

the effluent of both VSSF were further removed in the HSSF where the final effluent 

concentration was lower than 20 mgN/L on average (Table 28). 
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TKN average concentrations in the inlet were 73.7 mgN/L. The maximum values in the 

outlet effluent were found in the coldest month, with wastewater temperatures around 5°C 

(16.5 mgN/L and 45 mgN/L for the C-line and Recirculated E-line respectively, and 

considering VSSF+HSSF). The average TKN removal efficiency was around 96% during 

the whole year for the C-line considering VSSF+HSSF. In the Recirculated E-line, similar 

removal rates were obtained during the summer period, where the biological activity where 

fostered by the temperature (around 93% with average temperature of 17°C). However, 

during the period with overload (where the TKN load was higher than 20 gTKNm
-2

d
-1

) or 

when the temperature values were around 5°C, the removal efficiency decreased (TKN 

average removal 66% in the Recirculated E-line). The average TKN applied and removed 

loads were 4.9 and 3.5 gTKN m
-2

 d
-1

 for the VSSF-C-line and 12.6 and 8.3 gTKN m
-2

 d
-1

 

for the VSSF in the Recirculated E-line (Figure 71a). The TKN loads applied and removed 

considering the overall system (VSSF+HSSF) were 0.98 and 0.94gTKN m
-2

 d
-1

for the C-

line and 2.9 and 2.3 gTKN m
-2

 d
-1

for the Recirculated E-line (Figure 71b).  

 
(a)

 

(b)

 

Figure 71 TKN applied and removed loads in the (a) VSSF of C-line and Recirculated E-line and (b) 

VSSF+HSSF of C-line and Recirculated E-line. 

 

The P removal was higher in the Recirculated E-line due to the higher volume of 

wastewater treated. Regarding Total P removal, the decrease in the removal efficiency that 

was observed during this study was assumed to be an effect of the limited capacity of the 

filter material to retain P. Table 29 shows the applied and removed loads in the C-line and 

Recirculated E-line and the removal efficiency achieved in these tests. 
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Table 29 Applied and removed loads in the C-line and Recirculated E-line and removal efficiency. 

 Parameter C-line Recirculated E-line 

COD 

Applied COD load in VSSF [gCOD m
-2

 d
-1

] 31.7 81.5 

Removed COD load in VSSF [gCOD m
-2

 d
-1

] 24.9 69.7 

COD removal efficiency in VSSF (%) 79% 86% 

COD removal efficiency in VSSF +HSSF (%) 96% 95% 

TKN 

Applied TKN load in VSSF [gTKN m
-2

 d
-1

] 4.9 12.6 

Removed TKN load in VSSF [gTKN m
-2

 d
-1

] 3.5 8.3 

TKN removal efficiency in VSSF (%) 71% 66% 

TKN removal efficiency in VSSF +HSSF (%) 96% 86% 

Total 

N 

Applied total N load in VSSF [gN m
-2

 d
-1

] 5.3 13.0 

Removed total N load in VSSF [gN m
-2

 d
-1

] 1.5 5.9 

Total N removal efficiency in VSSF (%) 28% 45% 

Total N removal efficiency in VSSF +HSSF (%) 78% 74% 

 

10.3.2 Intensive monitoring campaigns in the C-line 

The VSSF in the C-line was operated with a typical down flow configuration, where 43 

liters of wastewater are applied and drained through the bed and moved to the HSSF during 

the next six hours. In this case, track studies involved the collection of all the water that 

was drained during the time intervals (0-5min, 5-10 min, 10-30min, 30min- 1h, 1-2 hours, 

2-4 hours and 4-6 hours), and a sample representing each time step was taken out of this 

water. In the first 10 minutes a peak of drained water can be observed that decreases 

gradually until, after 3 hours, flow is almost constant (Figure 59). The VSSF drainage 

system developed during this study and in the first year almost 75% of the water was 

drained in the first hour, whereas in the second year these values decreased to 65%. This 

decrease could be correlated with the biomass development, even if clogging conditions 

were not observed. 

 

The removal efficiency is higher starting from the first minutes after the application of the 

wastewater in the bed: the COD concentration of the inlet averaged 454 mg/L and the COD 

concentration at the time-step 0-5 min was 135mg/L (which means a removal of 70% of 

total COD in the first 5 minutes). The removal rate increased from around 75% after 30 

minutes to 85% after 4 hours to 88% at the end of the cycle. Table 2 shows the fractions of 

COD at each time step. It is possible to observe the physical retention of COD particulate 

that occurs in the first minutes due to filtration. 
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Table 30 Average values of COD fractions during the entire cycle of C-line. 

 
Inlet 

Wastewater 

0-5 

min 

5-10 

min 

10-20 

min 

20-30 

min 

30-60 

min 
1-2 h 2-4 h 4-6 h 

Total COD (mg/L) 454 135 163 129 110 116 76 68 50 

Soluble COD (mg/L) 227 69 67 37 48 45 41 45 44 

Soluble COD/Total COD (%) 49 56 40 29 44 40 58 70 90 

Biodegradable COD (mg/L) 277 - 57 49 30 13 11 - 9 

Biodegradable COD/Total 

COD (%) 
65 - 39 52 25 18 19 - 18 

 

Table 31 shows the evolution of NH4-N removal and the formation of NOx compounds 

during the down flow cycle. The NH4 removal is around 50% in the first 5 minutes. It is 

maintained around 75% during the first hour and a slight increase is observed until the end 

of the cycle (85% of NH4 removal). The nitrate formation reaches its peak after around 2 

hours. Total Nitrogen removal is around 37% at the end of the cycle. The maximum 

specific nitrification rate (vN) of 3.7 mgNH4-N L
-1

 h
-1

or 1.7 mgNH4-N m
-2

d
-1

was obtained 

based on average values. 

 

Table 31 Average values of nitrogen fractions during the entire cycle of the C-line. 

 
Inlet 

Wastwewater 

0-5 

min 

5-10 

min 

10-

20min 

20-

30min 

30-

60min 
1-2 h 2-4 h 4-6 h 

NH4-N (mg/L) 65.6 25.9 17.1 18.5 17.0 16.1 14.5 12.8 10.5 

NO
2
-N (mg/L) 0.05 1.62 0.55 0.58 0.54 0.60 0.82 1.13 1.55 

NO
3
-N (mg/L) 0.1 31.0 32.0 43.0 42.2 41.9 45.0 35.0 39.7 

Organic N 

(mg/L) 
22.4 15.4 12.2 8.0 7.7 12.8 5.4 12.2 3.4 

TKN(mg/L) 88.0 41.4 29.3 26.5 24.7 28.8 20.0 25.0 14.0 

Total N (mg/L) 88.2 74.0 61.8 70.1 67.4 71.4 65.8 61.1 55.2 

 

10.3.3 Intensive monitoring campaigns in the Recirculated E-line (Recirculated VSSF) 

Recirculated VSSF and subsequently HSSF profiles for COD and nitrogen compounds are 

shown in Figure 72 and Figure 73 respectively. Recirculated VSSF profile is derived from 

analysis of the sample collected during each recirculation step, in order to evaluate the 

removal efficiency at each step. COD removal during each recirculation, can be seen in its 

fraction: Total COD, Soluble COD and Biodegradable COD (by respirometry) on Figure 

72. After the first recirculation (R1) the COD removal already reaches 42% for Total COD, 

56% for Soluble COD and 58% for Biodegradable COD. The removal of the COD fraction 

from the wastewater in its first passage through the bed is not just to the physical retention 

of particulate COD, but due to biological retention of soluble compounds takes place. In the 

case of the C-line (free drainage VSSF), around 50% of the wastewater volume passed 

through the VSSF bed in the first 30 minutes (Figure 59) and goes to the HSSF, where the 

amount of biodegradable COD remaining from the VSSF could be used in denitrification.  
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Figure 72 Time Profile for COD removal in the VSSF of Recirculated E-line and Longitudinal Profile in the 

subsequent HSSF. 

 

In the system operating as a recirculated VSSF, the wastewater is maintained in the bed and 

is recirculated six times more, thus improving the removal of COD in the same bed: around 

80% of the whole COD removal is obtained at the fourth recirculation step (R4 that 

corresponds to 4 hours of cycle). After 6 hours, the COD removal reaches 85% for Total 

COD, 82% for Soluble COD and 93% for biodegradable COD, with values of 79 mg Total 

COD/L, 37 mg Soluble COD/L and 10 mg biodegradable COD/L. The evolution of COD 

fractions along the recirculation steps can be observed in Table 32. 

 

As shown in Figure 72, the HSSF was divided along its longitudinal profile according to 

the position of the taps where the samples were taken: H1, H2, H3 and Hout are a 1.5, 3.0, 

4.5 and 6 meters from the HSSF inlet respectively. In the case of the Recirculated E-line, 

four different portions of the HSSF system (H1, H2, H3 and Hout) can be evaluated, whose 

average specific surfaces were 1.4, 2.8, 4.3, 5.8 m
2
/PE, respectively. The HSSF had a 

polishing role for the removal of organic matter in that the final concentration of COD was 

already reached at the first tap (H1) and remained constant until the outlet (Hout), with 

average values around 26 mg/L of Total COD (Figure 72). This means that the first part of 

the HSSF (i.e. H1) would already be enough to achieve the removal performance achieved 

by the entire HSSF. This suggests that a significant reduction in area can be obtained when 

using a hybrid system with recirculated VSSF + HSSF of 2.9 m
2
/PE (1.5 m

2
/PE in the 

VSSF and 1.4 m
2
/PE in the HSSF).  
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Table 32 Average values of COD fractions during the entire cycle of Recirculated E-line. 

 Inlet Wastewater R1 R2 R3 R4 R5 R6 
VSSF 

OUT 

Total COD (mg/L) 517 283 180 148 115 108 93 92 

Soluble COD (mg/L) 211 97 65 55 51 47 46 44 

Soluble COD/Total 

COD (%) 
41 34 36 37 44 43 49 48 

Biodegradable COD 

(mg/L) 
191 119 51 33 31 26 12 13 

Biodegradable 

COD/Total COD (%) 
37 42 28 22 27 24 13 14 

 

In the case of the HSSF in the C-line, four different portions of the HSSF system (H1, H2, 

H3 and Hout) can be evaluated, whose average specific surfaces were 3.7, 7.4, 11.0, 14.7 

m
2
/PE, respectively. If the HSSF in the C-line was reduced at the first tap (H1) as it was 

suggested to do in the Recirculated E-line, a hybrid system with VSSF + HSSF of 7.4 

m
2
/PE (3.7 m

2
/PE in the VSSF and 3.7 m

2
/PE in the HSSF). 

 

Figure 73 shows the evolution of the nitrogen compound and the redox potential (ORP) 

inside the bed during the recirculation. It is possible to see the decreasing profile of the NH4 

concentration in the recirculated VSSF of the Recirculated E-line. 42% of NH4 removal in 

the first recirculation step, which means that this removal happen during the first passage of 

the wastewater through the filter material, even when the system is operated at the normal 

Down-flow configuration. In the C-line, this removal corresponds to 50% of the volume 

that is drained in the first 30 minutes and flows to the HSSF (in the Figure 59). In the case 

of the Recirculated E-line, the removal is occurring across the entire volume treated. 

 

During the recirculation steps the NH4 removal increased until 73% in the last recirculation 

step. The NH4 removal is followed by the formation of NOx compounds and the increase of 

ORP values. The removal of NH4 was 40 mgN/L on average and the NO2-N + NO3-N 

formation was just 20 mg/L, confirming the occurrence of nitrification and denitrification 

inside the bed. The amount of NO2-N + NO3-N formed is partially removed in the HSSF 

CW, and the final effluent has values of NO2-N + NO3-N around 12 mg/L. The average 

removal of Norg was 92%, which means that the sytem achieved values of 2.5 mgNorg/L 

in the effluent of the VSSF (Recirculated E-line), when the initial concentration was about 

30 mgNorg/L. The final concentration of Norg was < 1 mgNorg/L. The removal rate of 

TKN reaches 82%, which means values of 16 mgTKN/L at the outlet of the VSSF CW, and 

around 3 mgTKN/L at the final effluent. 
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Table 33 Average values of nitrogen fractions during the entire cycle of Recirculated E-line. 

 
Inlet 

Wastewater 
R1 R2 R3 R4 R5 R6 

VSSF 

OUT 

NH4-N (mg/L) 58.1 35.8 31.9 29.1 25.5 23.2 21.1 20.1 

NO2-N (mg/L) 0.04 1.91 0.45 0.33 0.28 0.23 0.24 0.21 

NO3-N (mg/L) 1.5 10.5 12.7 14.6 18.8 20.3 20.4 20.1 

N Org (mg/L) 22.6 22.5 16.4 9.0 4.5 3.5 4.1 1.7 

TKN(mg/L) 66.2 61.8 50.6 39.9 29.1 30.4 28.8 18.5 

N totale (mg/L) 67.2 72.4 60.7 50.9 43.0 45.8 43.2 43.2 

 

 

Figure 73 Time Profile for Nitrogen compounds and ORP in the recirculated VSSF and Longitudinal Profile 

in the subsequent HSSF in the Recirculated E-line. 

 

Even if the COD removal did not improve after the 4
th

 recirculation step, the same did not 

happen with the NH4 removal where the removal was increasing until the last recirculation 

step. Regarding the HSSF, average NH4 values were lower than 20 mg/L at the first tap 

(H1), reaching 10 mg/L at the second sampling point (H2). When using the entire HSSF, 

the specific surface of the system reached5.8 m
2
/PE on average. Considering the removal of 

nitrogen compounds and reducing the area of the HSSF to the sampling point H2, the 

specific surface area would befurther reduced, leading to a hybrid system with 1.5 m
2
/PE in 

the recirculated VSSF and 2.8 m
2
/PE in the HSSF. 

 

The influence of temperature variation from 3 to 22ºC on the maximum specific 

nitrification rate (vN, expressed in gNH4-N m
-2

 d
-1

) was investigated during track studies. 

The value of vN was estimated using the slope of NH4-N consumption instead of the slope 

of NO3+NO2 production, because of the denitrification that was occurring inside the filter. 

Values of vN as a function of temperature are indicated in Figure 74. 
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(a)

 

(b)

 

Figure 74 Maximum specific nitrification rate (vN) expressed in (a) gNH4-N m
-2

 d
-1

 and (b) gNH4-N L
-1

 h
-1

. 

 

As temperature varied between 3.5°C and 22°C during track studies done during the 

experiments run for this chapter, though the values of ammonia removal rate also had a 

variation from 3.9 to 13 gNH4-N m
-2

d
-1 

at 3°C and 22°C, respectively. These values are in 

accordance with the values obtained with the AUR test in lab cores where the maximum 

specific nitrification rate was of 3.2 gNH4-N m
-2

d
-1

at a temperature of 3.5°C and 14.5-16.2 

gNH4-N m
-2

d
-1

at a temperature of 18°C (see Chapter 9). 

 

Considering the removal efficiency expressed as a percentage, the two VSSFs (C-line and 

Recirculated E-line) showed similar performances. However, the main difference lies in the 

actual amount of pollutant removed (Kg) per m
2
: the average TKN removed load was 3.5 

gTKN m
-2

 d
-1

 in the VSSF C-line and 8.7 gTKN m
-2

 d
-1

 in the VSSF E-line, that isthe 

amount of TKN removed was more than double in the latter case. Regarding the organic 

load removed, the Recirculated E-line removed three times as much as the C-line. 

 



 

 



 

 

Chapter 11  

Use of aeration in VSSF CWs as a tool for area 

reduction
5
 

11.1 Introduction 

In subsurface flow constructed wetlands, plants were usually known to be the dominant 

oxygen-transfer mechanism. However some studieshave shown that oxygen-transfer rates 

convened by plants are smaller than the oxygen demand exerted bythe wastewater, even 

under common loading conditions (Wu et al., 2001). This has led to the development of 

treatment system that could provide higher rates of oxygen transfer as tidal flow CW, the 

use of passive air pumps on VSSF CW and artificial aeration at the bottom of the HSSF 

CW. 

 

Tidal flow CWs are also known as flood and drain wetland (FaD) system and they can 

provide effective treatment for nitrification and nitrogen removal (Austin, 2006). The 

nitrification is enhanced due to the cation exchange capacity that happens during the 

flooding and drainage phases in these systems. When the CW is flooded, ammonium 

cations (NH4
+
) adsorb to negatively charge surfaces and when the wetland drains the pore 

volumes are filled with air. The air diffusion favours the oxygen transfer and enhances 

nitrification of adsorbed ammonium ions, which are nitrified under these conditions 

(McBride and Tanner, 2000). Nitrate (NO3
−
) and nitrite (NO2

−
) anions would be desorbed 

in the wastewater in the next flood cycle as terminal electron acceptors for bacterial 

respiration. 

                                                           
5
 This chapter is based on: Foladori P., Ruaben J., Ortigara A. R. C., Andreottola G. (2012). Comparison of 

innovative Constructed wetland configurations aimed to area reduction. Proceedings of 9th SIDISA – 

Sustainable Technology for Environmental Protection. Milan, Italy, 2012. ISBN: 978-88-9035572-1 
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Green et al. (1998) tested the use of passive air pumps in an enhanced VSSF CW. Their 

system comprises of an unsaturated zone of gravel media overlaid by coarse sand (which 

results in surface ponding to uniform distribution wastewater across the media), vertical 

aeration pipes connect the outer atmosphere with the sub layers of the bed and a siphon 

which regulates the drain and flood phases. In this case, oxygen transfer is enhanced by a 

cyclical sequence of slow and fast draw of the lower layers which induces the exchange of 

air in the bed via the vertical pipes. The volume of effluent drained by the siphon is 

displaced by an equal volume of fresh airpassively sucked from the atmosphere into 

themedia. While the air exchange between the system and the atmosphere is mainly 

governed by the convection mechanism, oxygen distribution in the system is governed 

mainly by the diffusion mechanism (Green et al, 1998).  

 

Artificial aeration systems have been used to improve oxygen transfer in HSSF CW. These 

systems usually operate under anaerobic conditions due to the limited oxygen diffusion 

from air to water. This is a consequence of the constant level of saturation that is 

maintained in these beds. In this case compressed air is diffused at the bottom of the HSSF 

CW by means of perforated pipes. The distribution system can be placed at the bottom of 

the whole bed (Nivala et al., 2007) or just in the initial section of the bed where the load is 

applied (Ouellet-Plamondon et al., 2006; Maltais-Landry et al., 2009). The artificial 

aeration can be supplied continuously or discontinuously depending on the dissolved 

oxygen concentration in the bed (Zhang et al., 2010). 

 

In this chapter, an enhanced configuration of VSSF will be tested. This configuration is 

characterized by the saturation of the bottom of the VSSF and cyclical artificial aeration. It 

was tested in an attempt to increase the applied loads in the pilot plant (conventional 

VSSF+HSSF configuration) and investigate the efficiency of these systems under high 

hydraulic and organic loads, assessing the area reduction that can be achieved with this 

configuration. 

11.2 Materials and Methods 

C-line (as described in the Chapter 3) works as a traditional system of free drainage (as in 

Chapter 7 and 10): the supply of effluent from the Imhoff tank is every 6.56 h. The VSSF 

effluent flows by gravity in the sector HSSF. The specific surface area was 4.2 m
2
/PE on 

average. The hydraulic load was 65.2 Lm
-2

d
-1

. The specific surface area in the subsequent 

HSSF was around 19.5 m
2
/PE. 
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E-line operated with artificial aeration in the VSSF (Aerated E-line): the VSSF system was 

operated with an aerated configuration (10.8 h/cycle, 2.2 cycles/day on average). The 

applied organic load was twice as much as the loads applied in the C-line configuration 

resulting in a VSSF specific surface area of 1.9 m
2
/PE on average. The hydraulic load 

applied in the Aerated E-line was 135 L m
-2

d
-1

. The wastewater was applied on top of the 

VSSF and the automatic valve at the bottom of the bed was closed in order to maintain 

saturated conditions in the bottom layers. During this phase, the aeration system worked for 

5 minutes every 30 minutes through holed pipes installed at the bottom of the VSSF bed. 

This phase lasted approximately 6 h/cycle (6h-phase). Table 34 summarizes the main 

operational parameters of the VSSF and HSSF used in this chapter. 

 

Table 34 Main operational parameters of the VSSF and HSSF systems in the C-line and Aerated E-line. 

 Parameter Units C-line Aerated E-line 

VSSF 

Influent flow rate 

 (hydraulic load) 
L/d 149 304 

Specific hydraulic load  L m
-2

 d
-1

 65 135 

Surface organic load gCODm
-2

d
-1

 25 58 

Specific area m
2
/PE 4.2 1.9 

Cycles per day (feeds per day) #/d 3.6 2.2 

Resting period (between feeds) H 6.6 10.8 

HSSF 
Specific hydraulic load L m

-2
 d

-1
 16 34 

Specific area (all the bed=9m
2
) m

2
/PE 19.5 8.7 

 

11.2.1 Chemical analyses 

Samples of influent and effluents from VSSF and HSSF systems were collected once a 

week. Intensive monitoring campaigns were conducted during the VSSF Aerated E-line 

operation to obtain the concentration of wastewater effluent after each aeration. Samples of 

wastewater were taken in correspondence of the aeration every 30 minutes using a 

piezometer connected with the bottom of the system. The samples were called A1 is the one 

just after the feeding, the A2 corresponds to 30 minutes after feeding, and so on until the 

A12 that corresponds to 5h 30 min from the beginning of the cycle and the outlet sample 

that is a composite sample of the first 20 minutes of the draining phase. At the end of the 

cycle the valve was opened and wastewater was discharged to the HSSF for 4 h. 

Concentrations of COD, TKN, NH4-N, NO2-N, NO3-N, PO4-P and total P were analysed 

according to Standard Methods (APHA, 2005). Soluble COD was measured after filtration 

of the sample on 0.45-m-membrane and Biodegradable COD was estimated as described 

in Chapter 3. 
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11.3 Results and Discussion 

11.3.1 Performance of the overall systems (C-line and Aerated E-line -VSSF+HSSF) 

The average temperature of the inlet wastewater ranged from 17.1 to 20.2°C, while the 

temperature of the effluent of the Aerated E-line’s VSSF ranged from 13.8 to 21.2 °C and 

the temperature of the effluent of the HSSF ranged from 12.1 to 21.8°C. For the C-line the 

range of temperature was from 12.3 to 20.2 °C for the VSSF and 12.1 to 21.2 °C for the 

HSSF. The average results obtained in the weekly analysis for the inlet and outlet 

VSSF+HSSF for the C-line and the Aerated E- line are shown in Table 35. 

 

When considering the VSSF only, the COD removal efficiency of the C-line and the 

Aerated E-line was 78.4% and 88.6%, respectively. Considering the whole system 

(VSSF+HSSF), a higher efficiency was observed in the C-line, but the values obtained 

were similar (95.6% and 94.9% for the C-line and the Aerated E-line, respectively).  

 

Table 35 Characterization of influent and effluent wastewater (mean  ± standard deviation). 

Parameter Units 
Influent 

wastewater 
VSSF C-line 

Aerated E-

line VSSF  
HSSF C-line 

Aerated  

E-line HSSF  

Temperature °C 18.6±1.1 17.0±2.9 18.0±2.6 16.9±3.1 17.0±3.1 

COD mg/L 406±129 100±38 51±17 17±2 20±2 

Soluble COD mg/L 175±29 80±9 31±3 16±2 18±2 

TSS mg/L 121±20 56±6 22±16 1.2±0.4 4.9±9.3 

TKN mg/L 82.0±9.1 17.3±1.7 23.4±5.2 2.4±1.8 6.0±0.14 

NH4-N mg/L 64.7±7.8 13.2±1.6 19.4±4.6 1.2±1.2 3.6±2.0 

NO2-N mg/L 0.01±0.005 0.53±0.18 0.18±0.07 0.01±0.01 0.04±0.08 

NO3-N mg/L 1.54±0.7 34.8±7.6 20.4±8.9 17.7±5.4 12.7±5.2 

Total N mg/L 83.2±8.7 51.4±12 37.2±6.3 19.2±7.7 18.5±7.0 

Total P mg/L 8.6±0.9 6.2±0.5 6.5±0.2 2.9±0.2 3.7±0.6 

pH - 7.1±0.2 7.7±0.2 7.7±0.1 7.5±0.2 7.3±0.1 

ORP mV -315±6 66.3±11.7 76±27 100±39 92±24 

 

The maximum organic load applied in the VSSF of the Aerated E-line was around 70 

gCOD m
-2

 d
-1

. The average value of organic load applied and removed in the VSSF of the 

Aerated E-line was 57.6 gCO m
-2

d
-1

 and 50.7 gCODm
-2

d
-1

, respectively (88.6% of removal 

efficiency). The values applied in the VSSF of the C-line were lower, around 24.8 gCOD 

m
-2

d
-1

 and the removed organic load was 19.7 gCODm
-2

d
-1

 (79% of removal efficiency).  

 

The wastewater treated by the VSSF flows by gravity to the HSSF where further removal 

occurs. The applied and removed organic loads were 1.3 and 1.0 gCOD m
-2

 d
-1 

respectively 

for the HSSF of the C-line and 1.7 and 1.0 gCOD m
-2

d
-1 

respectively for the HSSF of the 

Aerated E-line. When considering the overall system (VSSF+HSSF), the applied and 

removed organic loads were 2.66 and 2.46 gCOD m
-2

 d
-1

 for the C-line and 11.5 and 11.0 

gCODm
-2

 d
-1

 for the Aerated E-line, respectively. Figure 75 shows the applied and removed 
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organic loads in the VSSF of C-line and Aerated E-line (a) and VSSF+HSSF of C-line and 

Aerated E-line (b). 

 

The aeration provided in the VSSF Aerated E-line for 5 minutes every 30 minutes allows a 

shift from aerated to non-aerated periods in the saturated bottom of the VSSF bed. The NH4 

present in the influent wastewater (65 mgNH4/L) was partially removed in both VSSF lines 

(average outlet concentrations were 13 mgNH4/L in the C-line and 19 mgNH4/L in the E-

line, respectively 79% and 69% of removal efficiency). 

 

The amount of NO2-N + NO3-N produced in the C-line was 34 mgN/L and the amount of 

NH4 removed was 49 mgN/L. Even though the E-line was aerated, the occurrence of 

nitrification/denitrification could be observed when analysing the effluent of the VSSF of 

the Aerated E-line. The values of NO2-N + NO3-N produced were lower (18mgN/L) than 

the amount of NH4 removed (42 mgN/L), confirming the occurrence of denitrification. The 

NO2-N + NO3-N present in the effluent of both VSSF were further denitrified in the HSSF, 

with higher removal in the Aerated E-line where the final effluent concentration was 

around 13 mgN/L on average, while in the C-line the average value was 18 mgN/L (Table 

35). 

 
(a)

 

(b)

 

Figure 75 Applied and removed organic loads in the (a) VSSF of C-line and Aerated E-line and (b) 

VSSF+HSSF of C-line and Aerated E-line. 

 

Figure 76 shows the TKN removal obtained during this phase. TKN concentrations in the 

inlet were around 82 mgN/L. TKN removal efficiency in the VSSF were 78% and 74% for 

the C-line and Aerated E-line, respectively. The removal efficiency in the VSSF in the 

Aerated E-line was lower than observed in the VSSF C-line due to the higher volumes of 

wastewater treated. The saturation of the bottom of the bed during the filling phase, and the 
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subsequent aerationphases (5 minutes every 30 minutes) were not enough to reach the same 

efficiency obtained with the free drainage system. However, the amount of wastewater 

system was almost twice as much.  

 

Considering the overall system (VSSF+HSSF), the average TKN removal efficiency was 

very similar: around 96% for the C-line and around 93% for the Aerated E-line. The 

average TKN applied and removed loads were 5.4 and 4.3 gTKN m
-2

 d
-1

 for the VSSF C-

line and 12.4 and 9.2 gTKN m
-2

 d
-1

 for the VSSF Aerated E-line (Figure 76a). The TKN 

loads applied and removed considering the overall system (VSSF+HSSF) were 1.09 and 

1.05 gTKN m
-2

 d
-1

for the C-line and 2.48 and 2.29 gTKN m
-2

 d
-1

for the Aerated E-line 

(Figure 2b). Total nitrogen removal is higher in the Aerated E-line VSSF (53%) than in the 

C-line (35%). This occurs because denitrification in the Aerated E-line already starts in the 

saturated bottom of the VSSF, and it continues in the HSSF. In the case of the C-line, 

denitrification occurs mainly in the HSSF. The final concentration in the system is 16.9 

mg/L (C-line) and 21.5 mg/L (Aerated E-line). 

 
(a)

 

(b) 

 

Figure 76 TKN applied and removed loads in the (a) VSSF of C-line and Aerated E-line and (b) VSSF+HSSF 

of C-line and Aerated E-line. 

 

Total P concentrations in the VSSF C-line and the VSSF Aerated E-line effluents were 

similar (6.2 and 6.5 mg/l, respectively). Regarding the HSSF, the output was slightly lower 

at the C-line (2.9 mg/L) when compared to the Aerated E-line (3.7 mg/L). Table 36 shows 

the applied and removed loads in the C-line and Recirculated E-line and removal 

Efficiency. 
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Table 36 Applied and removed loads in the C-line and Recirculated E-line and removal efficiency. 

 Parameter C-line Aerated E-line 

COD 

Applied COD load in VSSF [gCOD m
-2

 d
-1

] 24.8 57.6 

Removed COD load in VSSF [gCOD m
-2

 d
-1

] 19.7 50.7 

COD removal efficiency in VSSF (%) 79% 89% 

COD removal efficiency in VSSF +HSSF (%) 92% 96% 

TKN 

Applied TKN load in VSSF [gTKN m
-2

 d
-1

] 5.4 12.4 

Removed TKN load in VSSF [gTKN m
-2

 d
-1

] 4.3 9.2 

TKN removal efficiency in VSSF (%) 80% 74% 

TKN removal efficiency in VSSF +HSSF (%) 96% 93% 

Total 

N 

Applied total N load in VSSF [gN m
-2

 d
-1

] 5.5 13.6 

Removed total N load in VSSF [gN m
-2

 d
-1

] 1.9 7.2 

Total N removal efficiency in VSSF (%) 35% 53% 

Total N removal efficiency in VSSF +HSSF (%) 75% 76% 

 

11.3.2 Intensive monitoring campaigns in the C-line 

During the period when aeration tests were performed in the Aerated E-line, only one 

intensive monitoring campaign was conducted in the C-line. In general, the results obtained 

during this period in the C-line were similar to those shown in Chapter 10, which were 

obtained under the same operation conditions. During that specific campaign, the total 

COD concentration in the inlet was 375 mg/L, and the composite sample of the first 5 

minutes the concentration in the outlet was already 170 mg/L (80% of removal efficiency) 

and it slightly decreased until the end of the cycle (final concentration was 17 mg/L). 

Soluble COD concentration in the inlet was 116 mg/L (31% of the total COD) and it 

decreased to 55 mg/L in the first 5 minutes of composite sample and reached 22 mg/L at 

the composite sample correspondent to 1-2 hours from the feeding (81% of the Total 

COD), showing that the bed retained the particulate COD present in the inlet wastewater. 

 

Nitrogen fractions on the C-line are shown in Table 37. It is possible to observe a decrease 

in the NH4-N concentration of 65% after the first 5 minutes of the cycle, increasing to 90% 

after 6 hours. NO3-Nproduction (from almost zero in the influent to 40.2 mg/L at the 

effluent) confirms that nitrification occured inside the bed. 

 

Table 37 Average values of nitrogen fractions during the entire cycle of C-line. 

 
Inlet 

Wastewater 

0-5 

min 

5-10 

min 

10-

20min 

20-

30min 

30-

60min 
1-2 h 2-4 h 4-6 h 

NH4-N (mg/L) 76.8 26.9 27.9 22.8 19.9 17.2 13.6 10.0 7.3 

NO2-N (mg/L) 0.01 0.25 0.25 0.31 0.44 0.52 0.98 1.41 2.05 

NO3-N (mg/L) 0.1 27.9 27.8 31.4 32.7 32.9 36.7 43.1 40.2 

N Org (mg/L) 11.6 7.1 4.7 4.3 3.2 0.1 0.8 0.5 1.4 

TKN(mg/L) 88.4 34.0 32.6 27.1 23.1 17.3 14.4 10.5 8.7 

Total N (mg/L) 88.5 62.1 60.7 58.8 56.2 50.7 52.1 55.0 50.9 
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11.3.3 Intensive monitoring campaigns in the Aerated E-line (VSSF) 

The profile of COD fractions in the Aerated E-line is shown in Figure 77. The average 

COD concentration of the inlet wastewater of the E-line was around 413 mg/L, while the 

Soluble COD was 130 mg/L (32% of the Total COD). 

 

 

Figure 77 Average values of COD removal in the VSSF in the Aerated E-line over time. 

 

Table 38 shows the results obtained in one intensive monitoring campaign as an example of 

the profile obtained in the tests. In the inlet wastewater, the concentration of biodegradable 

COD was 311 mg/L, corresponding to 68% of the Total COD. After the first aeration (A1) 

the COD removal already reached 46% for Total COD, 65% for Soluble COD and 48% for 

Biodegradable COD. After the ninth aeration step (A9), Biodegradable COD/Total COD 

ratios between 29 and 31% were observed from the A9 to the VSSF outlet. The effluent of 

the Aerated E-line was 62 mg/L for Total COD, 28 mg/L and Soluble COD (45% of the 

Total COD) and 10 mg/L of Biodegradable COD (29% of the Total COD). This remaining 

COD was depleted in the subsequent HSSF until it reached values of 18 mg/L of Total 

COD (Figure 79). 
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Table 38 COD fractions during the entire cycle of Aerated E-line resulting from one monitoring campaign. 

 Inlet A 1 A 2 A 3 A 7 A 8 A 9 A 10 A 11 A 12 Outlet 

Total COD (mg/L) 457 211 150 116 126 44 65 55 44 55 34 

Soluble COD (mg/L) 116 75 53 32 32 22 37 27 27 22 22 

Soluble COD/Total 

COD (%) 
25 36 35 28 25 50 57 49 61 40 65 

Biodegradable COD 

(mg/L) 
311 136 90 67 44 - 21 - 14 - 10 

Biodegradable COD 

/Total COD (%) 
68 64 60 57 35 - 30 - 31 - 29 

 

Figure 78 and Table 39 show the average results obtained for nitrogen fractions and ORP 

during the cycle of the VSSF Aerated E-line. With regards to nitrification (Figure 78), the 

concentration of NH4-N in the influent wastewater was reduced from 55 mg/L to 20.2 mg/L 

(values of 22.5 mg/L of NH4-N were reached at A8), confirming the average reduction of 

63% over the entire monitoring period (2 months, from August to October). In the aerated 

configuration, wastewater drains to the saturated bottom layers where oxygen is supplied, 

but wastewater is not put in contact with the nitrifying biomass present in the top layers of 

the bed as occurred in the Recirculated configuration shown in Chapter 10.  

 

 

Figure 78 Time profile for nitrogen compounds and ORP in the VSSF and HSSF of the Aerated E-line. 

 

Time profiles shown in Figure 77 and Figure 78 suggest that the number of aeration steps 

could be reduced. Stopping the aeration phase at the A8 aeration step, for example, would 

reduce the depuration cycle and, subsequently the area of the system. However, studies 

should be conducted to evaluate the effects of cutting the aeration cycle and discharging the 

effluent in the HSSF. 
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Table 39 Average values of nitrogen fractions during the entire cycle of Aerated E-line. 

 Inlet A 1 A 2 A 3 A 7 A 8 A 9 A 10 A 11 A 12 Outlet 

NH4-N (mg/L) 55.5 43.0 30.6 30.3 23.0 22.5 25.1 23.9 23.1 21.4 20.2 

NO2-N (mg/L) 0.01 0.35 0.32 0.18 0.13 0.11 0.14 0.13 0.13 0.12 0.01 

NO3-N (mg/L) 1.8 8.8 14.3 16.1 19.1 17.9 16.9 16.5 16.5 17.7 20.7 

 

In the aerated configuration, the occurrence of saturated conditions in bottom layers 

(aerated only few minutes per hour) enabled denitrification. The NO3-N concentration in 

the effluent reached 19.9 mg/L as confirmed by the ORP profile that highlights the 

occurrence of denitrification. The removal of Total N was 49% in the VSSF. The effects of 

aeration applied in the VSSF bed are different from expected. In CW systems, even when 

air is supplied at the bottom of the bed, it is not possible to reach all the pores and 

subsequently the liquid volume is not entirely aerated. This causes the formation of anoxic 

sites in the granular medium. This heterogeneity allows the simultaneous nitrification and 

denitrification in saturated layers at the bottom of the bed. 

 

 

Figure 79 Longitudinal profile for Total COD in the HSSF (C-line and Aerated E-line) 

 

After passing the VSSF, the wastewater flowed by gravity to the HSSF, where further 

removal of pollutants was observed. Even though few intensive monitoring campaigns were 

conducted in the HSSF during the aeration phase, the fact that wastewaterwas sampled at 

different distances from the inlet of the HSSF allowed the estimation of the land area 

reduction possible in this kind of system (Aerated VSSF + HSSF).  

 

The COD concentration after the passage through the HSSF was reduced from 79 mg/L in 

the C-line to 20 mg/L (Figure 80). In the case of the C-line, the 9 m
2 

HSSF system 

corresponds to a specific surface of 19.5 m
2
/PE, given the organic load applied. If the 

surface of the HSSF in the C-line were reduced to the H1 sampling point, the specific 
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surface of the HSSF would be around 9.7 m
2
/PE, resulting in a hybrid system 

(VSSF+HSSF) with a total specific surface of 14.3 m
2
/PE. 

 

In the Aerated E-line, when considering that this removal (from 50 mgCOD/L to 20 

mgCOD/L) was already achieved at the first sampling point (H1 in Figure 79); the total 

area of the HSSF could be reduced to this point. The area of the HSSF system is 9 m
2
, 

which corresponds to a specific surface area of 8.7 m
2
/PE, given the organic load applied. 

When considering a hybrid system composed of an Aerated VSSF and a HSSF,whose 

areais given by the original HSSF that has been limited at the first sampling point H1 

(specific surface area = 2.1 m
2
/PE), the specific surface area of the whole system would be 

4.0 m
2
/PE. 

 

The fate of nitrogen inside the HSSF (Aerated E-line) can be observed in Figure 79, where 

the increase of NO
3
-N present in the effluent and further removal of NH4 are shown. The 

average results obtained were around 1.3 and 3.6 mgNH4/L and 17.8 and 13.1 mgNO3-N 

for the C-line and the Aerated E-line, respectively. Given the removal obtained at the first 

sampling point H1 (Figure 78), the area of the HSSF system could be reduced significantly, 

while still obtaining adequate removal performances. 



 

 



 

 

Chapter 12  

Conclusions 

12.1 Introduction 

The main goal of this research was to improve the applicability of CWs to the treatment of 

mountain communities’ wastewater. The work was driven by three specific objectives:  

 

- The provision of reliable tools for the estimation of kinetic and stoichiometric 

parameters in CWs, that might be used in the design phase. 

- The assessment of CWs performance under conditions commonly found in 

mountain communities. 

- The proposal of alternative configurations that can reduce the area of a CW without 

reducing its efficiency. 

 

The use of CWs in small communities located in mountain areas is limited by some 

intrinsic characteristics of such systems, namely the large land area requirement and the 

reduced performance under cold climates. A literature review on CW and respirometric 

techniques highlighted approaches and configurations that could tackle some of the 

limitations of these systems when applied in mountain areas. 

 

A comprehensive investigation of the biological processes occurring in CWs, through the 

use of respirometric techniques and AUR tests, was conducted in order to analyse how 

CWs are affected by the specific conditions characterizing mountain regions (i.e. low 

temperature and flow variation). Finally, some innovative CW configurations were tested in 

a pilot plant to analyse their ability to reduce the CW area requirements. Such 

configurations can also be used as a temporary solution to increase the treatment capacity 

during tourist peak seasons, while a traditional configuration is kept over the rest of the 

year. While this research focused on mountain environments, the configurations and results 
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contained therein could be applied to a wide variety of settings, where shortage of land or 

difficult climate conditions would exclude CWs from the list of wastewater treatment 

options available.  

 

In this chapter the main findings of the research, grouped by the three specific objectives, 

are discussed by reviewing their strengths and weaknesses and proposing some 

recommendations for future research. 

12.1 Kinetic and stoichiometric parameters in CWs 

12.1.1 Main findings 

Investigations were performed at the lab scale to identify a viable test to measure the 

kinetic and stoichiometric parameters that are commonly used in mathematical models for 

the design of CWs. Design is an important phase for the application of CW, mainly in 

situations where the land area available might be a constraint, as is the case of mountain 

regions. In order to estimate kinetic and stoichiometric parameters of the autotrophic and 

heterotrophic biomass, two different tests were applied: liquid respirometric test and off gas 

technique. 

 

Respirometric tests were used to investigate the mechanisms involved in the oxidation of 

carbonaceous substrates in CW systems by heterotrophic biomass in acclimatized cores. 

From respirograms of CW cores, some kinetic and stoichiometric parameters (YH and 

YSTO) of heterotrophic biomass and wastewater biodegradability were evaluated. The 

values obtained for YH (0.56-0.59 mgCOD/mgCOD) are lower than the values obtained for 

activated sludge (0.67 mgCOD/mgCOD). 

 

An important mechanism occurring in CW cores during the oxidation of carbonaceous 

substrates was the substrate storage mechanism by the heterotrophic biomass. The values of 

YSTO for CW cores using acetate were 0.75-0.77 mgCOD/mgCOD, lower than the value of 

0.85 suggested in ASM No. 3 for activated sludge, but only slightly lower than the value of 

0.78 obtained by Karahan-Gület al. (2003) for activated sludge fed with acetate.  

 

The storage mechanism is probably a response to the intermittent/low feeding in CW 

systems, which creates transient concentrations of readily biodegradable substrate. Kinetics 

varied significantly between the two different CW cores, probably due to the different 

amounts of heterotrophic bacterial biomass which can be present in such cores, while 

stoichiometric parameters YH and YSTO were similar in both cores, because stoichiometric 

parameters are independent from the amount of biomass.  
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Respirometry was also applied during the CW core acclimatization in order to identify if 

this technique is able to capture the changes in biomass during the first weeks of operation 

and eventually establish when the biomass has reached its steady state. While the removal 

efficiency during the first weeks of operation was usually considered as an effect of the 

filter material, respirometric tests allowed new insights into the formation of the biomass 

inside the filter material.  

 

A shift in the biomass towards the steady state was observed in the respirograms from the 

first to the tenth respirometric test conducted in the cores during the acclimatization phase. 

In the same period, respirometric tests were performed to study the NH4 consumption. The 

respirograms showed that the Ammonia oxydizing bacteria (AOB) is already present in the 

filter material after the third week. Despite an increase in the NH4 removal efficiency (from 

40 to 60%), kinetic parameters such as the NH4-N maximum removal rate does not increase 

significantly during the acclimatization phase. 

 

Even though the kind of biomass present in the filter material and the amount of biomass 

inside the core can be better studied via microbiological tests as the qPCR and Flow 

cytometry, respirometric tests can provide some insights into the evolution of the biomass 

in CWs. Respirometric tests constitute a valuable, reliable and cheap tool when the 

objective is not to analyse biomass composition and structure, but to know and measure 

kinetic and stoichiometric parameters. These tests are also suitable if the objective is to 

identify when the biomass reaches its steady state in order to verify if two systems are 

ready to start the experimentation phase when they will be compared under different 

conditions. 

 

The second kind of test that was performed in CW was the off-gas technique. This 

approach is usually used in activated sludge to measure the oxygen transfer efficiency of 

these systems. The use of this technique in CWs is rather new and the preliminary results 

showed the potential of the technique for the estimation of oxygen demand in CWs, as well 

as the possibility to estimate kinetic and stoichiometric parameters with the measurement in 

the gas phase.  

 

Consistency was found in the estimation of kinetic and stoichiometric parameters between 

respirometric tests and off-gas analysis. Besides that, the possibility to estimate oxygen 

consumption in the air phase provides insights into the amount of oxygen transferred in 

aerated CWs, which might eventually be used to improve the aeration equipments usually 

used in these systems, therefore increasing CWs’ efficiency per unit area. 
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12.1.2 Strengths and Weaknesses 

 

Strengths 

The estimation of the maximum oxygen requirements in CWs by liquid respirometry 

proved to be a reliable tool providing consistent results on the estimation of kinetic and 

stoichiometric parameters. The method requires limited and cheap equipment, the OD 

probes being the most expensive tool needed. The method is easy to apply in lab cores and 

it can be used with filter material sampled from real CWs. The sampled material would be 

inserted inside the cores and tested, providing reliable measurements of CW filter material 

parameters. The new information obtained by this research may optimize design 

procedures, by providing real measurements for kinetics and stoichiometric parameters, 

which are usually taken from literature. 

 

Regarding the off-gas technique, its main advantage is the possibility to measure the 

amount of oxygen consumed in CW in the air phase, as opposed to respirometric tests, 

which rely on measurements performed in the liquid phase. Once the technique will be 

improved for application to CWs, analyses will be directly carried out in the field 

eliminating the transport of material to the lab.  

 

The use of aerated VSSF CW, as it was done in this research, is still not as common as 

traditional CW in the field. However, some authors have been using aerated HSSF with 

good performance under cold climates (inter alia Oullet-Plamondon et al., 2006). It 

suggests that the use of off-gas technique might be an advantage also in designing and 

operating Aerated HSSF, due to the possibility to increase the oxygen transfer efficiency in 

these systems. In this case, the possibility of measuring the amount of oxygen needed and 

the oxygen transfer efficiencymay reduce the power consumption in this kind of system. 

 

Weaknesses 

Kinetics measured with liquid respirometry can be overestimated, due to the fully aerobic 

conditions that are present in the respirometer during the test. In fact, such conditions are 

not present in real CWs, where oxygen transfer from the atmosphere is limited and 

insufficent to ensure a fully aerobic environment, eventually leading to a possible 

overestimation of kinetics. Moreover, the fact that in liquid respirometry an unsaturated 

filter material (as the VSSF) is tested under saturated conditions (liquid respirometry) may 

sound controversial and further tests should be conducted to estimate the oxygen 

consumption in the gas phase. 
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Regarding the off gas technique, it seems to be a promising technique for the measurement 

of kinetic parameters and the oxygen demand in CWs, though various limitations emerged 

from the analyses that were conducted in this thesis. The most limiting issue of this test is 

the need of extremely precise and sensitive oxygen probes that can detect minimal changes 

in the content of oxygen in the air phase, between the inlet and the outlet. Probes used for 

analyses in CWs must guarantee higher precision standards than those used in activated 

sludge, where in fact oxygen consumption is much higher due to the higher amount of 

biomass in the system.  

 

A second problem regards the aeration systems commonly used in CWs, which consist in 

holed pipes placed on the bottom of these systems. This kind of aeration system might be in 

part responsible for the low values of SOTE found during the experiments: most of the air 

blown by the air pump passed through the filter material without being consumed. Even 

though part of the air bubbles is retained inside the filter material, this effect of “holding 

bubbles” is not enough to guarantee higher oxygen transfer efficiency. This confirms the 

need of using more efficient aeration systems on CW experiments. At the lab scale, for 

example, the use of an air stone at the bottom of the core, under the gravel, might be an 

option to be tested. In real systems that are aerated, as is the case of the already operating 

HSSF, the use of aeration systems better than those usually applied in CWs would be 

advisable (e.g. membranes or perforated plates instead of holed pipes). This would be more 

expensive in the construction and operation phases, but the increased oxygen transfer 

efficiency and the energy consumption might compensate it. 

 

12.2.3 Recommendations for future research 

At lab scale, liquid respirometric tests proved to be a reliable and repeatable option for the 

measurement of kinetic and stoichiometric parameters. The validity of such parameters 

might be assessed by using them as an input of mathematical models for the design of CWs 

(e.g. Hydrus – CWM1). However, the calibration of the biological component of these 

models remains a complicated task due to model complexity and the high number of 

parameters to fit (Morvannou et al., 2011). Langergraber (2007) suggested the use of 

indirect parameter determination methods through inverse modelling of the inflow/ outflow 

pollutants fluxes of a VSSF CW to support the calibration of this model. The parameters 

determined by respirometric experiments can be used to generate reliable preliminary 

estimates of biological parameters, which are subsequently further refined during model 

inversion, eventually allowing the overall parameter uncertainty to be reduced (Morvannou 

et al., 2011). 
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Further research could be carried out in order to compare the efficiency of saturated (as the 

one used in this research) and unsaturated approaches for respirometric analyses. An 

unsaturated approach that has been already testedon CWs is that applied to household waste 

characterization (Dynamic Respiration Index measurement). Morvannou et al. (2010), who 

used this method to measure oxygen demand over time in the gas passing through a reactor, 

containing a mixture of an organic matrix and a bulking agent (wood), obtained different 

results from those obtained in this research. Comparative studies between these two 

approaches could be performed in order to verify in which conditions one test would be 

preferable to the other. 

 

Among methods available to estimate kinetic and stoichiometric parameters as well as 

oxygen demand, the off-gas technique was applied here as a proposal for the measurement 

of oxygen consumption on aerated VSSF. However, the same technique would be a viable 

solution for the evaluation of oxygen consumption in the aerated HSSF too. In this case, 

compressed air is diffused in the HSSF CW by means of pipes installed at the bottom of the 

whole bed (inter alia Nivala et al., 2007; Ouellet-Plamondon et al., 2006; Zhang et al., 

2010) and off-gas measurements could be done at the surface of the CW in order to 

estimate the oxygen transfer efficiency, and eventually assess the need to improve the 

aeration system. 

12.2 VSSF CWs performance under conditions commonly found in mountain 

communities 

12.2.1 Main findings 

The performance of the hybrid CW system was assessed in the presence of anoscillating 

population and low temperatures, these being common conditions of many mountain 

communities that are tourist destinations. To this purpose, a CW system designed for 

treatingthe wastewater of the resident population was tested over a two month high-load 

period in summer, in order to simulate the increase in population due to the tourist 

presence, and it was also tested during the winter under low temperatures and load 

variation. 

 

During the two-months summer period, the removal efficiency in the hybrid CW system 

decreased slightly from 94 to 88% for COD removal and from 78 to 75% for total N 

removal, even after doubling the applied hydraulic (from 60 to 123 L m
-2 

d
-1

) and organic 

load (from 37 to 87 gCOD m
-2 

d
-1

). The nitrogen load was also increased from 4.4 to 10.3 

gN m
-2 

d
-1

. During the high-load period, the nitrification in the VSSF system was stable and 

the specific nitrification rate was 4.7 gNH4-N m
-2

 d
-1

 compared to 2.2 gNH4-Nm
-2

 d
-1

 in the 
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Low Load period. However, a higher NH4-N concentration in the VSSF effluent was 

observed (26 mgNH4-N/L compared to 17 mgNH4-N/L on average in the Low Load 

period). In the case of higher hydraulic and organic loads in the VSSF, the HSSF increased 

the removal of COD, nitrogen and phosphorus. In the high-load period the denitrification 

rate increased in the HSSF system due to the higher availability of biodegradable COD in 

the effluent from the VSSF unit. Clogging and problems on plant growth were not observed 

during the high-load period.  

 

During operation at low temperatures, under both continuous and discontinuous feeding, 

COD and nitrogen removal in the two VSSF CWs were monitored. Continuous feeding 

period is the normal operation that was run in the winter months of 2011/12 and 

discontinuous feeding period was managed with feeding and sampling campaigns at 

intervals of 13 to 30 days, to simulate the tourist presence during the winter holidays.AUR 

tests were used to evaluate the temperature influence on the nitrification capacity of CW 

cores and granular material.  

 

The results showed that VSSF CWs can maintain their COD removal performances: during 

the continuous feeding period the COD removal efficiency remained around 70% even at 2-

4°C; under discontinuous feeding conditions the efficiency was around 60% in both VSSF. 

TKN removal is affected by temperature and the organic load applied. During the 

continuous feeding period, TKN removal efficiency was 54% on average in the High-Load 

VSSF, in comparison to an average of 71% in the Low-Load VSSF. Long periods with 

discontinuous feeding make the nitrification rate decline significantly mainly in the High-

Load VSSF, where the TKN removal decreased from 55% in December to 0-18% in 

January-February. On the contrary, in the Low-Load VSSF under discontinuous feeding, 

the TKN removal remained always over 42% even after 3 months of discontinuous loads at 

low temperatures. 

 

The AUR method was used to detect the maximum removal capacity of a VSSF at various 

temperatures. The AUR tests on the CW lab cores showed a strong temperature 

dependency, with the maximum specific nitrification rate (vN) ranging from 14.5-16.2 

gNH4-N m
-2

 d
-1

 at 18°C to 2.8-2.9 gNH4-N m
-2

 d
-1

 at 2°C. The value range obtained for the 

temperature coefficient in this research (θ =1.12-1.13), which is narrower than that found in 

literature (1.06-1.37), allows CWs to be designed with greater precision, thus limiting land 

consumption. The filter material of the pilot plant that was exposed to low temperatures and 

discontinuous feeding showed, during the AUR test carried out at 15°C, a vN,15 of 7.2 

gNH4-N m
-2

 d
-1

. The observed nitrification rate is slightly lower than that expected using 

the Arrhenius-type law, confirming a quick recover in the nitrifying biomass after the 
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winter period. This recovery makes VSSF CW plants suitable for those mountain 

communities, whose population varies significantly throughout the year.  

 

12.2.2 Strengths and Weaknesses 

 

Strengths 

The results showed that in the summer period (when temperatures are favourable, removal 

kinetics and solids mineralization is higher) the application of high loads does not 

significantly affect the efficiency of the hybrid CW plant. This suggests that a CW designed 

on the basis of the resident population can only handle the additional load due to the 

presence of tourists in the summer season. Such a design would allow significant land 

savings and subsequently a reduction of total investment. CWs proved to be a reliable 

system for small mountain communities also during the winter. When properly designed 

and constructed, these system do not have freezing problems and maintain quite a good 

removal of organic compounds even at low temperatures. 

 

The AUR method that was developed for its application to VSSF, material is useful to 

quantify the nitrification rate of real systems at different temperatures and therefore to 

predict the removal efficiency throughout the year. The value range obtained in this 

research for the temperature coefficient is narrower than that found in literature and allows 

CWs to be designed with greater precision, thus limiting land consumption. The reduction 

of land consumption is an asset in mountain areas, where flat and moderately steep land has 

often a limited extension and can be allocated to other uses as well (e.g. agriculture, 

infrastructures, etc.) 

 

CWs have a good performance and deal properly with the load variation observed in the 

wastewater produced by a community with fluctuating population throughout the year, with 

peaks during winter and summer. During winter CWs maintain their efficiency under 

normal operating conditions (continuous operation) as well as after idle periods 

(discontinuous operation). The ability to recover after idle periods is a major asset of CWs, 

that was demonstrated by the quick recover of biomass activity in the filter material after 

the winter months (such observed in the AUR tests).  

 

Weaknesses 

Even though neither clogging problems nor a decline in the performance were observed 

during the summer, and the use of CWs is a good compromise for small mountain 

communities due to its easy operation and maintenance, these systems are not 

recommended for winter tourism destinations (e.g. ski areas). In such contexts the 
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maximum load comes in a time when biological activity is at its minimum level as a 

consequence of low temperatures. Under these conditions, in order to guarantee high 

treatment standards, the CW surface should be so large that it would be mostly 

underutilized during the rest of the year, when biological activity is higher. 

 

This research analyzed above ground pilot-scale beds, CWs should be built underground to 

keep the temperature above the freezing point. It is important to consider that the 

application of CWs under winter conditions requires a particular care in equipment 

maintenance. In particular, pipes should be buried and kept empty to avoid freezing, pumps 

should be kept free of water after operation, while a insulating mulch layer should be used 

to cover the bed for preventing freezing. 

 

12.2.3 Recommendations for future research 

The use of CWs in mountain areas has several advantages that are related to CWs’ intrinsic 

characteristics of easy operation and maintenance as well as adaptability to natural 

environment and landscapes. However, providing every mountain community with a proper 

wastewater treatment is still a challenge, mainly for economic reasons.  

 

Further investigation is needed for the design of wastewater treatment strategies in 

territories characterized by complex morphology (e.g. steep terrain, slopes) and the 

presence of several scattered small communities. This situation is commonly found in 

mountain areas that have been inhabited for long time, as is the case study of this research. 

This kind of situation calls for a network of wastewater treatment systems that 

comprehensively provide adequate sanitation for the entire region. Designing CWs based 

on just the need of the single communities may result in an enormous waste of resources 

(e.g. an excessive number of plants to treat an amount of wastewater that could be perfectly 

handled by fewer plants located in the right positions). This would only be assured if the 

environmental and socio-economic characteristics (i.e. the distance from the nearest 

wastewater treatment plant and the costs for piping, the land area availability and the social, 

environmental and agricultural issues, etc.) of the territory are taken into account and the 

technology is selected taking into accountin the planning phase the already existing 

network in that territory and the need of the surrounding population. 
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12.3 Alternative configurations that can reduce the area of a CW without reducing its 

efficiency 

12.3.1 Main findings 

The pilot plant used in this research consisted of two parallel lines composed by a Hybrid 

CW: a VSSF followed by a HSSF. The Hybrid CW included two lines: C-line (control line) 

and E-line (experimental line). The main difference between these two lines is the 

composition of the filter material of the VSSF: the C-line was designed following the 

indications provided by the Province Law n. 992/2002 (0.5m) and the E-line used a thicker 

layer of filter material (0.3m). 

 

The change in the sand size of the filter material in the VSSF CW (1/3 mm and 1/6 mm) 

with the same hydraulic conductibility, and the reduction of the main filter thickness with 

respect to the values recommended by guidelines (from 0.5 m to 0.3 m) had only slight 

effects on the performance. The two VSSF systems showed the same removed total COD 

loads and a stable nitrification occurred in both VSSF CWs; the average removed TKN 

loads and total N concentration in the effluents were similar in both VSSF CWs. A higher 

efficiency in TSS entrapment and in the total P removal was observed in the 0.5m-VSSF. 

 

In general, the reduction of filter material thickness and the slight change in the sand size 

influenced effluent quality in a negligible way for total COD concentration and nitrification 

and, considering the equivalent performance of the VSSF CWs, the use of the 0.3m-VSSF 

seems preferable for its lower expected costs. However, this economic difference is not 

enough to justify by itself the choice of one of the two configurations.  

 

E-line VSSF CWs were tested in four different configurations and compared with the C-

line. The C-line was run under typical down flow conditions all the time, while the E-line 

was run under varying conditions. The first configuration was the simple comparison 

between E-line and C-line under the same load conditions, which was called Low Load 

VSSF. The second configuration tested in the E-line (High Load VSSF) was the simulation 

of tourism influence that increases organic and hydraulic loads in the summer period 

(Chapter 8). The third and fourth configurations tested on the E-line were the Recirculated 

VSSF and Aerated VSSF (Chapter 10 and 11, respectively). 

 

Mean removal efficiency of total COD in the E-line VSSF was always high, equal to 82%, 

74%, 86% and 89%, in the case of Low Load VSSF, High Load VSSF, Recirculated VSSF 

and Aerated VSSF configurations, respectively. The higher efficiency presented by the 

Recirculated and Aerated configurations, even though the organic and hydraulic loads 
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applied were higher, can be due to the longer HRT of wastewater inside the recirculated 

and aerated VSSF and the enhanced oxygen availability, favoured by recirculation to the 

top layers or the artificial aeration. 

 

The organic load applied in the VSSF E-line was 37, 87, 82, 58 gCOD m
2
 d

-1
 for Low 

Load, High Load, Recirculated E-line and Aerated E-line configurations, respectively. The 

organic load removed increased from 29 gCOD m
2
 d

-1
 in the Low Load VSSF up to 64 

gCOD m
2
 d

-1
 in the High Load VSSF. Almost 51 and 70 gCOD m

2
 d

-1
were removed in the 

VSSF of the Recirculated E-line and Aerated E-line configurations. Considering the entire 

E-line VSSF+HSSF system, the COD removal efficiency was very similar among the four 

configurations: values of 96%, 94%, 95% and 96% were found for Low Load, High Load, 

Recirculated and Aerated configurations, respectively. The subsequent HSSF stage offered 

a finishing/polishing function, allowing a reduction in the organic peak loads discharged 

from the VSSF system. The area of the HSSF could be further reduced taking in account 

the results observed in the 4 different sections of this systems and the whole system of a 

hybrid Recirculated VSSF+HSSF would have an specific surface area of 2.9 m
2
/PE (1.5 

m
2
/PE in the VSSF and 1.4 m

2
/PE in the HSSF), while a hybrid Aerated VSSF+HSSF 

would have an specific surface area of 4.0 m
2
/PE (1.9 m

2
/PE in the VSSF and 2.1 m

2
/PE in 

the HSSF). 

 

TKN removal efficiency was around 66-74%, except in the High Load VSSF (58% on 

average), where the higher hydraulic load applied caused a shorter HRT in the system. In 

the Recirculated and Aerated configurations the retention time was longer due to the 

accumulation of the wastewater in the lower part of the system. The Total Nitrogen (TN) 

removal was also benefited from the existence of a saturated lower part of the VSSF CW, 

which allowed the occurrence of nitrification and denitrification inside of the same system: 

the availability of organic matter, the longer residence time and the creation of aerobic and 

anoxic zones in the bed. 

 

Regarding the COD removal efficiency, the innovative configurations tested in the E-line 

(Aerated and Recirculated VSSF) seems to give results similar to those observed in the 

High Load VSSF. However, when analyzing the nitrogen removal, such innovative 

configurations proved to give better results, by removing higher nitrogen loads than the 

typical down flow configuration and without showing any clogging formation. The effluent 

of the innovative configurations was more nitrified than that of the High Load VSSF, even 

if nitrification occurred in all four configurations. 
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Nitrification and denitritication occurred differently in Recirculated and Aerated 

configurations. In the Recirculated configuration, the recirculation of wastewater from the 

bottom to the top of the VSSF bed contributed to enhance nitrification efficiency in any 

passage through the bed, due to the continuous contact with oxygen and the biofilm 

attached in the sand layer. Denitrification occurred in anoxic microsites in saturated layers.  

 

In the Aerated configuration, the wastewater drains to the saturated bottom layers where 

oxygen is supplied by a compressor. However, the effect of aeration in the VSSF bed is 

different from that observed in activated sludge tanks because in CW systems the air supply 

cannot reach all the porosity of the bed and thus the liquid volume results not entirely 

aerated. This fact contributes to the formation of heterogeneity and anoxic sites in the 

granular medium which allows the formation of a possible simultaneous nitrification and 

denitrification in the saturated layers at the bottom of the bed. 

 

Even if both innovative configurations performed nitrification, the Recirculated VSSF 

presented better performance, because during the recirculation, the wastewater returns on 

top of the bed and flows through the entire depth of the bed, entering in contact with 

oxygen and the nitrifying biofilm attached to the sand in the unsaturated layers; it does not 

happen in the case of the Aerated VSSF. 

 

These conditions resulted in a higher TN removal in these innovative configurations (44% 

and 53% in the case of Recirculated and Aerated configurations, respectively) when 

compared to the typical down flow configurations (24% and 40% for Low Load and High 

Load, respectively). Denitrification occurred also in the Aerated configuration due to 

discontinuous aeration (i.e. few minutes per hour), and during the cycle DO concentration 

dropped to levels suitable for denitrification. In all the configurations, the subsequent HSSF 

system had a role of finishing in the TN removal, contributing significantly to the 

denitrification: 85%, 86%, 80%, 72% TN removal efficiency were observed in the 

VSSF+HSSF systems Low Load, High Load, Recirculated E-line and Aerated E-line, 

respectively. The lower TN removal in the High Load Aerated configuration could be due 

to the passage of the DO present in the VSSF effluent into the subsequent HSSF system, 

limiting the denitrification activity. 

 

12.3.2 Strengths and Weaknesses 

Strengths 

The use of innovative configurations in CWs provided good results, in terms of treatment 

performance and the reduction of land area requirements. The occurrence of nitrification 
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and denitrification inside the same bed was also observed in the Recirculated and Aerated 

VSSF. 

 

The use of innovative configurations (Recirculated and Aerated VSSF) givens to an 

increase in the complexity of these systems, both during the construction and operation 

phases. However, this complexity is a consequence of smaller and more efficient systems 

that require less space than a traditional CW. A potential reduction of land requirement was 

observed in all the configurations tested in the VSSF E-line: in it resulted in 1.3, 1.5 and 1.9 

m
2
/PE for High Load, Recirculated and Aerated configurations, respectively. The reduction 

from the standard value (4m
2
/PE) proposed by the Province of Trento for VSSF design can 

have a significant impact and make VSSF a suitable option when not enough land is 

available for a conventional CW.  

 

Innovative configurations, such as the Aeration and Recirculation of VSSF proposed in this 

research, have also the possibility to be used as a temporary solution for increasing the 

treatment capacity during tourist peak seasons, while a traditional configuration is kept over 

the rest of the year. In the specific case of Aerated CW, aeration pipes could also be applied 

on the bottom of HSSF during winter to increase temperature and mixing, as demonstrated 

by Muñoz et al. (2006). The use of aeration pipes on the bottom of the first meters of a 

HSSF or also along the whole bed of a VSSF, would allow the use of artificial aeration to 

prevent clogging formation in the filter, thus avoiding the need to replace the filter material.  

 

Weaknesses 

Even if clogging effects were not observed during the use of aeration in VSSF, these may 

be observed when operating Recirculated VSSF with organic loads higher than 100 g COD 

m
-2

 d
-1

, mainly when the high organic load is coupled with a decrease in the temperature. In 

our study when the system reaches these values, ponding formations are observed in the 

VSSF surface, discouragingthe use of this system under the above mentioned conditions. 

 

While the configurations tested allow a considerable improvement in removal efficiency 

and land area reduction, their actual application calls for extra investments with respect to 

more traditional configurations. Such investments are needed for pipe networks (for 

recirculation or aeration), pumps, and extra efforts during the construction and maintenance 

of these systems. This would not be a problem in regions like Western Europe where good 

sanitation infrastructures are generally found and the extra investment needed to equip 

VSSF CWs with aeration/recirculation systems could be compensated by the lower area 

requirement.  

 



CHAPTER 12 

________________________________________________________________________________________ 

180 

 

According to Paing and Voisin (2005), when sufficiently sloping sites are available, no 

power is needed for the operation of a traditional CW. However, the configurations 

presented in this research require energy for their operation. This, along with the intrinsic 

complexity of these configurations, is a considerable limitation if these systems are to be 

applied in remote communities. In such contexts, the need for energy and complex 

maintenance would probably prevent the use of these systems, or at least limit their 

adequate operation and the provision of satisfactory results in terms of effluent quality. 

Such limitations suggest that in many cases traditional CWs with no power requirement are 

preferable to ensure that all communities have their wastewater adequately treated. 

 

12.3.3 Recommendations for future research 

While this research has focused on the adaptation of CWs to mountain communities, the 

innovative configurations tested provide benefits for a wide variety of contexts. In 

particular, they can be applied everywhere the availability of land is limited and high 

standards of effluent quality are required. Even though problems in the recirculation and 

aeration systems were not observed in the pilot plant, further research is needed to test these 

configurations at the field scale, in order to identify whether their maintenance and the long 

term operation could pose particular challenges. 

 

Further research could also be carried out on the Aerated VSSF in order to understand how 

the aeration can be used to prevent clogging problems in CWs. The use of aeration could 

help in the degradation of the organic solids accumulated inside the filter material that 

worsen the hydraulic conductivity and subsequently the efficiency of the biological 

treatment. This would be an alternative to the replacement of the filter material, 

increasingthe operation life of these systems.  

 

Research is needed to understand how and where photovoltaic panels should be installed to 

provide the greatest benefits to the application of CWs. The energy consumption in the 

simplest configuration is around 0.17 KWh m
-2

 d
-1

, while the high load configuration had a 

consumption of 0.22 KWh m
-2

 d
-1

, which is not much different from the Recirculated VSSF 

one (0.28 KWh m
-2

 d
-1

). The energy consumption of the aerated VSSF was around 0.57 

KWh m
-2

 d
-1

. The use of pumps is already necessary in some CW systems and in those 

cases the application of innovative configurations would not cause an evident increase in 

energy consumption (excluding the case of aeration where the energy consumption was 

twice the amount used, even in the recirculated configuration). While the need for energy 

might limit the applicability of these systems in remote areas. The use of renewable energy 

could help to partly tackle this problem. Considering that a photovoltaic panel installed in 

the region where this study was conducted can generate in December an average of 1.18 
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KWhm
-2

d
-1

(data from the simulation presented on http://www.solaritaly.enea.it/ 

CalcRggmmOrizz/Calcola.php). This means that the energy produced in the coldest month 

would be sufficient for the operation of a CW plant. 

 

An attractive option, for example, is represented by the possibility to install panels above 

CWs. While this could be criticized for its potential negative effects on plants, it is already 

known that plants in VSSF play a minor role in the removal of pollutants (inter alia Sklarz 

et al., 2009). This option presents at least a couple of key advantages. First, the use of solar 

energy allows the CW to become self-sufficient and possibly to produce extra energy that 

can be used for additional purposes (e.g. public lights). Secondly, the integration in the 

same area of a CW and photovoltaic panels guarantees that the land requirement for the 

whole system is minimized. 
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Appendix 

1. In the appendix, the experimental activity developed UNESCO-IHE in 

Delft (The Netherlands) under the supervision of Prof. Diederik 

Rousseau, Jan Willen Foppen and Piet Lens will be described. 
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Appendix 1 

Bacterial and Ammonia oxydizing quantification in HSSF 

CW by qPCR. 

INTRODUCTION 

The use of constructed wetlands for decentralized wastewater treatment plants, single home 

projects and rural communities has increased because of low maintenance requirements and 

operational costs, and efficiency in terms of BOD, nitrogen and suspended solids removal. 

The large area requirement is probably the most important drawback of this technique. VSSF 

CWs are considered aerobic systems that favor microbial processes as BOD removal and 

nitrification. In HFSS CWs, wastewater flows horizontally through the substrate. This system, 

which is generally considered an anoxic one, performs BOD removal by anaerobic process, 

denitrification and suspended solids removal. Clogging and oxygen limitation are the 

problems that affect the organic matter removal in particular in the case of HSSF. In order to 

overlap this problem,some authors (inter alia Nivala et al., 2007) have used different rates of 

aeration in the HSSF and they have achieved better results in BOD removal and total nitrogen 

(TN) when compared with systems without aeration. Another advantage of the use of aeration 

is that it allows a reduction of the land area requirement for building the HSSF. As far as we 

know the microbial biomass quantification and composition in the aerated HSSF has not been 

explored in much detail.  

 

The quantification of its microbial biomass could provide information to estimate certain 

kinetic parameters. The amount of microbial biomass can be expressed through the 

concentration of volatile suspended solids (VSS), but the presence of biodegradable and inert 

particulate substrate in the VSS makes their use not adequate. For the quantification of active 

cellular biomass other, more innovative, methods may be proposed. qPCR is widely used to 

quantify microbial cells in various environmental fields. Ammonia oxidizing bacteria (AOB) 

play an important role in the TN removal in CW, mainly in VSSF, due to its aerobic 

conditions, and the same role is expected in the aerated HSSF. The aim of this study is to 

evaluate the biomass, especially AOB, in two HSSF, one of them receiving artificial aeration. 

The quantification of the total bacteria wasdonevia qPCR to estimate the amount of total 

bacteria and AOB present in the aerated HSSF. 
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EXPERIMENTAL SET-UP 

The outdoor experiment has been conducted in the laboratory of the UNESCO-IHE Institute 

forWater Education in Delft, the Netherlands. Two microcosms of HF CWs were made using 

plastic containers packed with gravels with 40% porosity (8-16 mm diameter) and planted 

with common reed (Phragmites australis). The first system (S1_cont) is a normal HSSF, the 

second wetland (S2_aer) includes bottom aeration. The dimensions LxWxd of the set up for 

S1_cont and S2_aer are60x40x38 cm with a pore water volume of 33 L for each system.The 

aeration was provided during the night hours through two porous PVC tubes.  

 

Bacterial Detachment Protocol 

 

Biomass detachment is an important step towards analyzing bacterial community in a 

constructed wetland, particularly when the technique to be used is qPCR. PCR is a technique 

developed for application on matrices of water, sludge and soil. SSF CW are systems in 

which the bacteria grow attached to the filter material creating a biofilm. The biofilm consists 

of extracellular polymeric substances (EPS) composed by polyssacaraides, lipids, protein and 

nucleic acids (Böckelmann et al., 2003). In order to detach the bacteria from the biofilm, 

before the microbiological analysis, some methods have been developed including scraping, 

swabbing, shaking, sonication, blending, and digestion approaches (Weber and Legge, 2010). 

 

Foladori et al. (2010) developed a methodology for bacterial detachment from gravel using 

pyrophosphate and mechanical shaking that aimed at quantifying the bacterial community by 

flow cytometry. In order to detach bacteria from sediments (coarse sand, 2–0.5mm; medium 

sand, 0.5–0.2mm; fine sand, 0.2mm), Amalfitano and Fazi (2008), combine chemical and 

physical treatments (buffer solution of  sodium pyrophosphate and polysorbate, shaking and 

sonication, followed by Nycodenz density gradient centrifugation). In this case a higher 

recovery from the finer grain-size class (90%) as compared to the coarse fraction (69%) was 

detected, and it could be related to the higher formation and quantity of EPS in coarser 

materials. Also, the production of bacterial biomasscompletely ceases after detachment and 

purification procedures.  

 

Weber and Legge (2010) proposed a methodology for the detachment of culturable bacteria 

from pea gravel (2– 4mm). The final proposed method is based on 25 g of pea gravel media to 

be washed out on 100 m of phosphate buffer + enzymes mixture and 3 hour mechanical 

shaking (100 rpm). According to their results, the use of enzymes increase the number of 

culturable bacteria (CFUs) detached, resulting in a higher community diversity when 

compared to using the buffer solution alone. 
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Weber and Legge (2010) tested two kinds of mechanical detachment: a 5 seconds of a manual 

shake and a 3 hour mechanical shaking (100 rpm 30°C). During a simple manual-shaking 

they assessed that a large amount of solid material was detached from the pea gravel media. 

However, during the 3 h mechanical shaking period the amount of solids detached seemed to 

be smaller than during a hand shaking. They concluded that the bacterial population may have 

utilized some of the detached organic material in its growth, increasing the number of 

culturable bacteria in the sample. 

 

In order to quantify the bacterial population in the initial CW sample, a 3-hour shaking is not 

interesting, because it could overestimate the real number of bacteria. On the other hand, the 5 

seconds hand shaking could generate an underestimated number and also compromise the 

enzyme mixture reaction with the EPS destabilization. The protocol used consists in testing 

over different times with the addition of enzymes to destabilize the EPS: 

- For each 25 g sample of gravel 50mL of shaking solution (buffer solution + enzyme 

mixture)  were added to a 250mL Erlenmeyer flask and shaken at 100 rpm for 5 min– 

15 min – 30 min – 1h at 30°C; 

Gravel was separated from the water (that should be kept in an Erlenmeyer) and the procedure 

repeated with the gravel. Final suspension was made up of two 50 mL volumes used as 

shaking solution (100mL);2mL of the liquid were centrifuged for 3 min at 14000 x g. 

Supernatant was discarded and the sediment used for DNA extraction. 

 

The phosphate buffer solution was made with a pH of 7,2 in autoclaved deionised water and 

the enzyme mixture used was: lipase (50U/g pea gravel), β-galactosidase (10U/g pea gravel), 

and α-glucosidase (1U/g pea gravel) [Sigma-Aldrich®], as proposed by Weber and Legge 

(2010). A buffer solution with a pH of 6 was also tested to evaluate how the enzymes action 

changed when the pH decreases. The differences between different times and pH used were 

assessed by qPCR analysis (with SYBR Green assay for total bacteria and amoA as described 

in this report).The material used in this test was gravel (1-3mm) from a VSSF CW. The qPCR 

test was done for total bacteria and AOB (amoA gene) were done in duplicate. The results 

showed in Table A1 and Figure A1, represent the average values obtained in qPCR for total 

bacteria. 

 

 
Table A1 Average Ct values obtained in qPCR quantication for Total Bacteria. 

Time of shaking / Ct values( amoA) pH 6 pH 7,2 

5+5 21.65 21.55 

15+15 20.16 20.79 

30+30 20.70 21.29 

60+60 19.71 19.26 
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Figure A1 Average Ct values for Total bacteria quantification in the detachment protocol test over different time 

of shaking and different pH. 

 

During the last hour of test an increase of the copy number was observed for both pHs (the 

lower the Ct the higher the amount of DNA in the samples). This could be related with 

bacterial growth in the sample, mainly with pH 7.2 which offers optimal conditions for 

bacterial growth.The results showed in Table A2 and Figure A2 represent the average values 

obtained in qPCR for the quantification of amoA gene. 

 
Table A2 Average Ct values obtained in qPCR quantication of amoA gene. 

Time of shaking / Ct values( amoA) pH 6 pH 7,2 

5+5 26.12 22.87 

15+15 26.81 24.85 

30+30 26.315 24.875 

60+60 27.13 24.81 

 

 
Figure A2 Average Ct values for amoA gene of the detachment protocol test over different time of shaking and 

different pH. 

 

It is possible to see that on average the mixing with pH 7 gives better results than with pH 6 

(the higher the Ct the lower the amount of DNA in the samples). The shaking procedure could 

be stopped at 30 min (15+15 minutes), because after this time the amount of AOB bacteria 

detached does not change significantly. Figure A3 shows the gel eletrophoresys of the 

products generated by the qPCR by the amplification of amoA gene (590 base pairs). 
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Figure A3 Gel eletrophoresys of product generated after the qPCR by the amplification of amoA gene (590bp). 

 

Bacterial Growth during the detachment protocol 

The bacterial growth in the sample over different times was assessed by plate counting 

(Böckelmann et al., 2003). Three tests were done in triplicate, with three different treatments: 

a)buffer solution without enzymes at 5°C, b) buffer solution with enzymes at 30°C, c) buffer 

solution without enzymes at 30°C.  

 

The tests were performed with 2 flasks with 25g of gravel each one. The detachment protocol 

was applied for 60 min and the first sample will be collected. In one of the flasks the gravel 

was separated from the water while gravel was left in the other flask. The shakinglasted 3 

hours and at the end the second sample wascollected. The difference between the counting 

performed in the two flasks represents the bacterial growth in the sample. Serial dilutions of 

the supernatants (10
-2

, 10
-3

, 10
-4

, 10
-5

, 10
-6

) were plated on 10% TSA agar. Plates were 

incubated at 30°C in the dark and colony forming units (CFU) were counted after 1 day. 

 

Volatilesuspended solids (VSS) were measured to evaluate the amount of organic matter 

detached from the gravel. A known amount of liquid was filtered in a glass fiber filter 

(0.45mm). TSS is the dry weight of the filter after drying in ceramic crucibles at 105°C for 24 

h. After the drying, the same sample was analyzed for organic. Organic content is determined 

by the amount of sample weight lost after the muffle furnace treatment at 550°C for 15 min. 

 

Figure A4 and A5 show the results obtained from the VSS and plate counting, respectively.  
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Figure A4VSS Average result from tests in triplicate 

 

 
Figure A5 Average result of CFU/g of gravel from tests in triplicate 

 

Figure A4 shows that the amount of suspended solids detached from the gravel is higher in 

the treatment at 30°C and with enzymes, when compared with other treatments without 

enzymes (at 5 and 30°C). In Figure A5, the results from plate counting show that the amount 

of culturable bacteria was also higher in the second treatment. However, these results do not 

allow us to evaluate whether there is growth in the solution with a 3 hour shaking. The use of 

PCR could be interesting for the quantification of total bacteria in these three treatments, and 

maybe it could allow the evaluation of the growth in the solution or the degree of detachment 

from the gravel. 

qPCR APPLICATION 

DNA Extraction 

Molecular analyses of microbial communities in complex environmental samples such as 

compost require efficient unbiased DNA extraction procedures (LaMontagne et al.,2002). 

According to Zhou et al. (1996), every type of environmental sample, because of its own 

nature, requires extraction methods to be optimized. In addition, the efficiency of a soil 
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microbial DNA extraction depends on soil quality, particularly on its clay and organic matter 

contents, because micro-organisms can interact with soil colloids (Lakai et al., 2007).  

 

One sample of activated sludge was treated with different procedures in order to evaluate five 

different methods for DNA extraction. Three extraction procedures were based on Boom et al. 

(1999):  

- regular procedure using 100ul of solid suspension (correspondent in the Figure 6 to samples 

9a and 9b); 

- regular procedure with pellet formed after centrifugation of 2 mL of solid suspension 

(correspondent in the Figure 6 to samples 7 and 8); 

- extended procedure where 2mL of the suspension were filtred (0.2um) and the filter was 

used as in the normal procedure (correspondent in the Figure 6 to samples 10 and 11). 

 

Two commercial kits were also tested using the pellet formed by centrifugation of 2 mL of 

suspension:  

 - FastDNA SPIN kit for soil (MP Biomedicals, Santa Ana, CA) (corresponding to samples 4, 

5 and 6in Figure 6);  

- MoBio kit (Ultraclean microbial DNA Kit extraction - provided by TU Delft)(corresponding 

to samples 1,2 and 3in Figure 6).  

 

The DNA extracted from the samples was evaluated through gel eletrophoresys and also 

through qPCR (using the SYBR green primers). Based on the results provided by the qPCR 

evaluation for total bacteria, the DNA extraction method called Boom procedureusing the 

pellet generated by centrifugation, give a higher amount of copy number (Ct= 14), when 

compared to other methods, such as: FastDNA SPIN kit (Ct= 15.2), Boom extended (Ct= 

16.1) and regular (Ct= 18.5), and MoBio (Ct= 17). Being the Boom Procedure a homemade 

procedure, it is less expensive and also allows RNA to be extracted when using the pellet in 

the extraction (see Figure A6 – samples 7 and 8).  

 

However the preparation of the consumables may be a source of contamination. Anyway for 

the purpose of this research, Boom regular procedure with centrifuged sample was used in the 

DNA extraction of the samples. 
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Figure A6 Gel electrophoresis from DNA extract from the same sample with different methods. 

 

Total Bacteria Quantification by qPCR 

After the detachment protocol, part of the sample (sample suspension) was separated and 

preserved in order to avoid bacterial growth. These samples have the DNA extracted using 

Boom protocol (using the pellet of 2 mL centrifuged). The quantification of total bacteria was 

performed by qPCR. During my period at Unesco-IHE, we have tested TaqMan Probe using 

Harms et al (2003) and SYBR Green primers. In the report I will describe briefly our attempts 

with TaqMan probe (all the experimental set up and results were sent in weekly based 

reports), but for the final results SYBR Green primers were used. 

 

TaqMan Primers and Probe 

The total bacteria quantification was based on 16S rDNA using a TaqMan Probe and 

following the methodology proposed by Harms et al. (2003). This assay was designed to be a 

broad-based assay for the estimation of total bacteria. The primers used were 1055f and 1392r 

(15 pmol) and the probe: 16STaq1115 (6.25 pmol). Instead of using a Master mix 

(commercial mix with all the components needed to perform a PCR reaction) a homemade 

mix was testedthat is made up of PCR buffer (commercial mix or homemade Dynazyme 

buffer), dNTPs (adenosine, guanadine, cytosine, timine) and the enzyme (Taq polymerase) 

and water DNA free. 

 

Negative templates controls (NTCs) are the test performed with water instead of using DNA 

samples. In this case you would expect negative results in the PCR reaction. However, the 

authors (Harms et aL., 2003) describe a Ct value of 29,7, while in our test the Ct value of the 

NTC was higher, around 22 and 27. A difference between the real sample and the NTC 

prevented a differentiation of a real sample with low DNA contents from a sub product of the 

PCR reaction (it could be the primer dimer formation or contamination in one of the 

reagents). In order to overcome the NTC problem and in order to have reliable and repeatable 

results of DNA samples, a 2 month period of optimization of Harms Protocol was started. 
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Since all reagents were replaced by “DNA free” reagents, it is suspected that the source of 

contamination was the Taq polymerase; which can be contaminated by bacterial DNA 

(Spangler et al., 2009). Based on Spangler et al. (2009), who describes Taq polymerase 

contamination, a series of Taq polymerase dilutions were tested (10X, 100X, 1000X). The 

dilutions were used to prepare PCR mixes following Harms assay. Also a control mix was 

included, in which the Taq polymerase concentration remained unchanged (0.5 units/ul). This 

experiment yielded no amplification, and therefore it was repeated two more times to reduce 

the probability of human errors. 

 

A review of lab experiments during July and August revealed that,due to the use of PCR 

buffer instead of Dynazyme buffer, the Harm´s assay startedfailing also in the positive control 

amplification. A comparison between the two buffers showed a difference in MgCl2 

concentration, which is lower in the PCR buffer (1.5mM) than in the Dynazyme buffer (2.5 

mM).MgCl2 is one important component in the PCR reaction: an incorrect magnesium 

concentration will reduce or prevent amplification of your PCR product. In this way, the 

MgCl2 concentration was increased until the concentration we already have in the Dynazime 

buffer (2.5 mM) and also higher concentrations (3.75mM, 5mM as used by Harms et al., 

2003, 6nM and 6,25mm of MgCl2). The experiment yielded amplification in the positive 

control, but the NTC values were around Ct 22, 23. After having observed the effect of 

magnesium concentration in the reaction, the Taq polymerase dilution was tested again to 

reduce the Ct value of the NTC. Unfortunately this test did not show any improvement in the 

Ct values. 

 

The effect of temperature on the annealing process was also assessed when PCR buffer was 

used. The temperatures proposed by Harms were 3 min at 50°C, 10 min at 95°C, 45 cycles at 

95°C for 30 s (denaturation), 50 °C for 60 s (primer annealing), and 72 °C for 20 s (primer 

extension). The annealing temperature was varied on a range between 55°C and 65°C using 

the FAM general protocol. In the first test the temperature of 65°C showed good Ct values for 

NTC, but the results were not repeatable. Other tests were also done with different Taq 

Polymerase (AmpliTaq Gold) with no encouraging results. 

 

Finally we decided to use the PCR buffer increasing the MgCl2 concentration instead of 

Dynasyme buffer, which could be a source of contamination. The temperature of annealing 

was fixed at 60°C with FAM protocol. Despite our efforts and even after several attempts, the 

assay did not provide reliable results in terms of positive and negative controls. 
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SYBR Green 

After collaboration with TU Delft, SYBR Green primers were tested and adopted in our 

laboratory. The primer set for total bacteria quantification was based on 16S rDNA:forward 

primer BAC341F (5'CCTACGGGAGGCAGCAG3') and a combination of two reverse 

primers Bac 907rC (5' CCGTCAATTCCTTTGAGTTT3') and Bac 907rA 

(5'CCGTCAATTCATTTGAGTTT3') were used for quantification of total bacteria. The PCR 

protocol for total bacteria quantification wasas follow: 5min at 95˚C, and then 40 times 30sat 

95˚C, 40sat 55˚C, 40sat 72˚C, 25sat 80˚C.  

 

PCR Efficiency 

PCR efficiency is 100% if the product doubles at every cycle 2-4-8-16-32 etc. In normal 

amplification this can vary due to high contaminants, primer-template mismatching and the 

lack of pipeting skills. The PCR efficiency can be determined by dilutions of the positive 

control. This is so because, in case of dilutions, the DNA needs more cycles to amplify to the 

same amount of product as an undiluted sample would. The following equation was applied to 

determine the PCR efficiency (%): 

 

1001

1





























 delaycyclesefficiency factordilutionPCR

      A1 

 

Preliminary qPCR efficiency was determined using different dilutions (1x, 5x and 25x) of the 

same positive control. Figure A7 shows the results of such application.  

 

 
Figure A7 Preliminary results obtained in the efficiency test. Triangles represent 1fold dilution (Ct 10.57 and 

10.74). Crosses represent 5fold dilution (Ct 13.55 and 13.53). Squares represent 25 fold dilution (Ct 15.96 and 

15.74). Red circles represent NTC (Ct 30.55 and 31.05). 

 

According to the information given by TU Delft, for the standard total bacterial qPCR using 

the primer set BAC341-907 we would expect 65-80% PCR
efficiency

. Based on the preliminary 

results showed in Figure 5 and applying equation A1, an efficiency of about 85% was 

achieved.  
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Ammonia oxidizing bacteria by qPCR 

Chemolithoautotrophic ammonia-oxidizing bacteria obtain energy from the oxidation of 

ammonia to nitrite. The oxidation proceeds in two steps. First, ammonia is oxidized to 

hydroxylamine. This step is catalyzed by the enzyme ammoniamonooxygenase (AMO) 

Afterwards, hydroxylamine is oxidized to nitrite by hydroxylamine oxidoreductase (Bjerrum 

et al., 2002). AMO is a membrane-bound enzyme containing multiple subunits: amoA, amoB 

and amoC. The genes are present in multiple copies in most ammonia-oxidizing bacteria. 

Nitrosomonas strains usually carry two gene copies whereas most Nitrosospira strains carry 

three (Klotz and Norton, 1998 apud Bjerrum et al., 2002).  

 

PCR primers have been developed to target amoA, a functional gene coding for the active 

subunit of ammonia monooxygenase, a key enzyme in ammonia oxidation by AOB (Okano et 

al., 2004). At the beginning TaqMan was used with the primers: A189F(300 nM) and amoA-

2R´(900 nM) and the probe A337 (100 nM) (Okano et al., 2004). However, after some 

attempts with no amplification observed (due to the higher specificity of the probe, which 

matches only with Nitrossomonas europaea), a different set of primers (SYBR green primers 

instead of TaqMan), as proposed by experts at TU Delft. The forward primer AMOa-1F deg6 

(5' GGGGHTTYTACTGGTGGT3') andthe reverse primeramoA-2R deg36 (5' 

CCCCTCBGSRAAVCCTTCTTC3') developed by Hornek et al (2006) were used in the 

experiments. According to the authors, these primers recover full length amoA sequences 

from cultured AOB and could be used to screen AOB in the environment. The PCR protocol 

for AOB quantification was as follows: 5 min at 95˚C, and then 40 times 30s at 95˚C, 40s at 

57˚C, 40s at 72˚C, 25s at 80˚C.  

 

Preliminary qPCR efficiency was determined using different dilutions (1x, 5x, 25x and 125x) 

of the same positive control. Figure A8 shows the results of such application.  
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Figure A8 Preliminary results obtained in the efficiency test. Triangles represent 1fold dilution (Ct 14.63). 

Crosses represent 5fold dilution (Ct 16.83). Squares represent 25 fold dilution (Ct 19.51 and 19.59). Diamonds 

represent 125 fold dilution (Ct 22.98 and 23.03). Red circles represent NTC (Ct N/A and 39.38). 

 

Based on the preliminary results showed in Figure A6 and applying equation A1, an 

efficiency of about 78% was achieved. This analysis also allows the detection of some 

inhibition in the undiluted sample (triangles in the Figure A6). The inhibition can be caused 

by products, for example humic acids, that were not completely extracted during the DNA 

extraction. To avoid inhibition, when using CW samples, I recommend the use of 5 fold 

dilution before analyzing the samples. 

 

Relative quantification of Total Bacteria and AOB in aerated and no aerated wetland 

Samples were collected from the two horizontal wetlands (aerated and no aerated). Two 

different methods of detachment were used: Trento (30 min shaking with pyrophosphate) and 

Delft (2 hours shaking with enzymes at 30°C). Table A3 show the results obtained from the 

qPCR analysis of Total bacteria and amoA for both detachment methods. 

 
Table A3 Ct values obtained from the qPCR analysis of Total bacteria and amoA. 

 
Total Bacteria amoA 

 

Pirophosphate 

(30min) 
Enzymes (120min) 

Pirophosphate 

(30min) 
Enzymes (120min) 

Aerated 23.39 23.49 30.38 29.88 

Non aerated 22.16 21.72 30.50 30.15 

 

As we do not have a standard curve, it is not possible to determine exactly the number of 

bacteria. However, based on the results showed in Table A3, the amount of total bacteria is 

higher in the non aerated wetland than in the aerated one (relative quantification).  

 

The amount of AOB bacteria identified in both wetlands was similar. Considering the amount 

of AOB found and the ammonia removal efficiency in the aerated wetland when compared to 

non-aerated wetland, the AOB community seems to be present in both wetlands, with similar 

quantity, but in the aerated wetland they are more active. 


