
UNIVERSITY OF TRENTO - ITALY

ICT DOCTORAL SCHOOL
DEPARMENT OF INFORMATION ENGINEERING AND

COMPUTER SCIENCE

Security of Publish/Subscribe

Systems

A dissertation submitted by
Mihaela Ion

for the degree of
Doctor of Sciences

accepted on the recommendation of
Dr. Bruno Crispo, co-advisor, University of Trento, Italy

Dr. Giovanni Russello, co-advisor, University of Auckland, New Zealand
Prof. Dr. Ernesto Damiani, examiner, University of Milan, Italy

Dr. Brian LaMacchia, examiner, Microsoft Research, Redmond and
University of Washington, US

Dr. Massimiliano Sala, examiner, University of Trento, Italy
Dr. Eve Schooler, examiner, Intel Labs, Santa Clara, US

c©Security of Publish/Subscribe Systems

This work is licensed under a
Creative Commons Attribution–NonCommercial–ShareAlike 3.0
Italy License. To view a copy of this license, visit the website:
- http://creativecommons.org/licenses/by-nc-sa/2.5/ in English.
- http://creativecommons.org/licenses/by-nc-sa/2.5/it/ in Italian.
- http://creativecommons.org/licenses/by-nc-sa/2.5/es/ in Spanish.

http://creativecommons.org/licenses/by-nc-sa/2.5/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/es/

Security of Publish/Subscribe Systems

iv

MIHAELA ION
University of Trento

Abstract:
The increasing demand for content-centric applications has motivated researchers to

rethink and redesign the way information is stored and delivered on the Internet. In-

creasingly, network traffic consists of content dissemination to multiple recipients.

However, the host-centric architecture of the Internet was designed for point-to-

point communication between two fixed endpoints. As a result, there is a mismatch

between the current Internet architecture and current data or content-centric ap-

plications, where users demand data, regardless of the source of the information,

which in many cases is unknown to them.

Content-based networking has been proposed to address such demands with the

advantage of increased efficiency, network load reduction, low latency, and energy

efficiency. The publish/subscribe (pub/sub) communication paradigm is the most

complex and mature example of such a network. Another example is Information

Centric Networking (ICN), a global-scale version of pub/sub systems that aims at

evolving the Internet from its host-based packet delivery to directly retrieving infor-

mation by name. Both approaches completely decouple senders (or publishers) and

receivers (or subscribers) being very suitable for content-distribution applications or

event-driven applications such as instant news delivery, stock quote dissemination,

and pervasive computing. To enable this capability, at the core of pub/sub systems

are distributed routers or brokers that forward information based on its content.

The basic operation that brokers need to perform is to match incoming messages

or publications against registered interests or subscriptions.

Though a lot of research has focused on increasing the networking efficiency,

security has been only marginally addressed. We believe there are several reasons

for this. First of all, security solutions designed for point-to-point communication

such as symmetric-key encryption do not scale up to pub/sub systems or ICN

applications, mainly because publishers and subscribers are decoupled and it is

infeasible for them to establish or to maintain contact and therefore to exchange

keying material. In this thesis we analyse several such emerging applications like

Smart Energy Systems, Smart Cities and eHealth applications that require greater

decoupling of publishers and subscribers, and possible full decoupling.

Second, in large applications that run over public networks and span several

administrative domains, brokers cannot be trusted with the content of exchanged

messages. Therefore, what pub/sub systems need are solutions that allow bro-

kers to match the content of publications against subscriptions without learning

anything about their content. This task is made even more difficult when subscrip-

tions are complex, representing conjunctions and disjunctions of both numeric and

non-numeric inequalities. The solutions we surveyed were unable to provide publi-

cation and subscription confidentiality, while at the same time supporting complex

subscription filters and keeping key management scalable.

v

Another challenge for publish/subscribe systems is enforcing fine-grained access

control policies on the content of publications. Access control policies are usually

enforced by a trusted third party or by the owner holding the data. However, such

solutions are not possible for pub/sub systems. When brokers are not trusted,

even the policies themselves should remain private as they can reveal sensitive

information about the data.

In this thesis we address these challenges and design a novel security solution

for pub/sub systems when brokers are not trusted such that: (i) it provides confi-

dentiality of publications and subscriptions, (ii) it does not require publishers and

subscribers to share keys, (iii) it allows subscribers to express complex subscription

filters in the form of general Boolean expressions of predicates, and (iv) it allows

enforcing fine-grained access control policies on the data. We provide a security

analysis of the scheme.

Furthermore, to secure data caching and replication in the network, a key re-

quirement for ICN systems and recently also of pub/sub systems that extended

brokers with database functionality, we show how our solution can be transformed

in an encrypted search solution able to index publications at the broker side and

allow subscribers to make encrypted queries. This is the first full-fledged multi-user

encrypted search scheme that allows complex queries. We analyse the inference

exposure of our index using different threat models.

To allow our encrypted routing solution to scale up to large applications or

performance constrained applications that require real-time delivery of messages,

we also discuss subscription indexing and the inference exposure of the index.

Finally, we implement our solution as a set of middleware-agnostic libraries

and deploy them on two popular content-based networking implementations: a

pub/sub system called PADRES, and an ICN called CCNx. Performance analysis

shows that our solution is scalable.

Keywords: Security, Access Control, Publish/Subscribe, Attribute-based

Encryption, Multi-User Encrypted Search

Contents

1 Introduction 1

1.1 Content-based networking . 1

1.1.1 Publish/Subscribe vs. Information Centric Networking 2

1.2 Security challenges . 3

1.3 Thesis contributions . 4

1.4 Thesis outline . 5

2 Publish/Subscribe Systems 7

2.1 The publish/subscribe communication paradigm 7

2.2 Topic vs. content-based publish/subscribe 8

2.3 Application scenarios . 9

2.3.1 Smart Energy Systems . 10

2.3.1.1 The EV Scheduling Use Case 11

2.3.2 Smart Cities . 14

2.3.2.1 Sensing the Smart City 14

2.3.2.2 Mobility in the Smart City 15

2.3.3 Healthcare . 15

2.4 Security requirements . 18

3 A Basic Confidentiality Scheme 21

3.1 Threat model . 21

3.2 Required security properties . 22

3.3 Related work . 22

3.4 Background on security mechanisms 25

3.4.1 Proxy encryption . 25

3.4.2 Multi-user encrypted search 27

3.5 Proposed solution . 31

3.5.1 Assumptions . 31

3.5.2 Solution overview . 31

3.5.3 Initialization . 32

3.5.4 Event encryption . 32

3.5.5 Filter encryption . 34

3.5.6 Encrypted matching . 34

3.5.7 Event decryption . 35

3.6 Security analysis . 36

3.6.1 Preliminaries . 36

3.6.2 Scheme overview . 38

3.6.3 Security of filter encryption 38

3.6.4 Security of event encryption 40

3.7 Implementation and performance analysis 44

viii Contents

4 Enforcing Fine-Grained Access Control Policies 49

4.1 Threat model . 49

4.2 Security properties . 50

4.3 Related work . 50

4.4 Background on security mechanisms 51

4.4.1 Key-Policy Attribute-based Encryption 51

4.4.2 Ciphertext-Policy Attribute-based Encryption 54

4.5 Solution details . 59

4.5.1 Initialization . 60

4.5.2 Event encryption . 61

4.5.3 Filter encryption . 62

4.5.4 Encrypted matching . 63

4.5.5 Event decryption . 63

4.6 User revocation and subscription expiration 63

4.6.1 Initialization . 63

4.6.2 Event encryption . 64

4.6.3 Filter encryption . 64

4.6.4 Encrypted matching . 64

4.6.5 Event decryption . 64

4.7 Enforcing publisher-defined access control policies 65

4.8 The e-health application revisited . 67

4.9 Security analysis . 68

4.10 Implementation and performance analysis 70

5 Querying In-Network Cached Publications 75

5.1 Encrypted search approaches and their shortcomings 76

5.1.1 Single-user schemes . 77

5.1.2 Semi-fledged multi-user schemes 79

5.1.3 Full-fledged multi-user schemes 81

5.2 Solution description . 82

5.2.1 Event encryption and indexing 82

5.2.2 Query encryption . 83

5.2.3 Event matching . 84

5.3 Inference exposure . 85

5.3.1 Background . 86

5.3.2 Threat model 1: Freq + DBK 87

5.3.2.1 Inference of the 2-dimensional index 88

5.3.2.2 Inference of the 1-dimensional index 90

5.3.2.3 Inference comparison on synthetic datasets 90

5.3.3 Threat model 2: DB + DBK 92

Contents ix

6 Efficient Encrypted Routing 95

6.1 Introduction . 95

6.2 Background . 96

6.2.1 Event filtering algorithms . 97

6.2.2 Event routing optimizations 100

6.3 Related work . 101

6.3.1 Confidential event filtering 101

6.3.2 Encrypted routing optimizations 101

6.4 Solution details . 102

6.4.1 A simple solution indexing predicates 103

6.4.2 Indexing Boolean expressions 105

6.5 Performance comparison of the schemes 106

6.6 Inference exposure . 109

6.6.1 Exposure of the non-indexed scheme 109

6.6.2 Exposure of the indexed scheme 114

7 Implementation and Integration with Different Middlewares 117

7.1 Implementation overview . 117

7.2 Libraries . 119

7.2.1 Basic encryption schemes implementation 119

7.2.2 Secure pub/sub implementation 121

7.3 Integration with CCNx . 124

7.4 Integration with PADRES . 127

7.4.1 PADRES . 127

7.4.2 Confidential PADRES . 128

7.4.3 Using advertisements with PADRES 129

8 Conclusions 133

A Appendix 137

A.1 Appendix Publications . 137

Bibliography 139

List of Figures

2.1 The pub/sub infrastructure connects publishers and subscribers via

a network of interconnected brokers. 8

2.2 Topic-based subscriptions. 8

2.3 A Smart Energy System and data flows between main entities. . . . 11

2.4 Subscriptions and message types for the EV charging use case. . . . 13

2.5 Subscription routing tables in a distributed scenario. 14

2.6 Publishing and subscribing to sensor information. 15

2.7 Mobility examples. 16

2.8 An e-health application scenario for monitoring chronic diseases. . . 16

3.1 Proxy encryption, transformation and decryption. 26

3.2 Encrypted keyword match by an untrusted server. 29

3.3 Event encryption with Proxy Encryption. 33

3.4 Filter generation and encryption. 34

3.5 Event decryption. 36

3.6 Event and filter encryption. 37

3.7 Event matching against two filters. TD(a1) matches li1 and lj2. . . . 41

3.8 SDE basic operations performance time. 45

3.9 Event encryption and decryption times. 46

3.10 Filter encryption and re-encryption times. 46

3.11 Encrypted matching times. 47

4.1 A simple access policy tree. 53

4.2 Tree representation for a < 7 on 4 bits. 56

4.3 Event encryption with KP-ABE. 61

4.4 Filter generation and encryption. 62

4.5 Example of a policy for expiration date 15/12/2012. 64

4.6 Decryption key generation and attribute encryption. 65

4.7 Policy encryption. 66

4.8 Access tree implementing heart rate>120 67

4.9 Event and filter encryption with access control. 69

4.10 Event encryption times - comparison of the basic and enhanced

schemes. 71

4.11 Event decryption times - comparison of the basic and enhanced

schemes. 71

4.12 Decryption key generation times. 72

4.13 CP-ABE encryption time. 73

5.1 Query encryption as an access tree using the trapdoor algorithm. . . 83

5.2 Query encrypted using the trapdoor algorithm. 83

xii List of Figures

5.3 Plaintext data and indexed data using direct encryption. 86

5.4 Quotient and IC tables. 88

5.5 Inference exposure of the type 1 event. 91

5.6 Inference exposure of the type 2 event. 92

5.7 Encrypted table (a) and the corresponding RCV graph (b) from

[Ceselli 2005]. 92

6.1 Filter generation and encryption. 103

6.2 Indexing time of 20,000 filters for different depths. 107

6.3 Query execution time on 20,000 filters. 107

6.4 Indexing time for different numbers of filters. 108

6.5 Event matching time for different numbers of filters. 108

6.6 Filter index and corresponding associations graph. 114

6.7 Filter index and corresponding associations graph. 115

6.8 Filter index and corresponding associations graph. 116

7.1 Components stack. 118

7.2 Libraries stack. 119

7.3 Diagram showing the main classes for event and filter encryption. . . 119

7.4 Diagram showing the main broker classes. 123

7.5 Encrypted routing over CCNx. 127

7.6 A simple PADRES network. 128

7.7 PADRES router extended with encryption functionality. 129

7.8 EV Charging Scenario. 130

7.9 Routing tables without advertisements. 130

7.10 Routing tables with advertisements. 131

List of Tables

2.1 Topic-based vs. content-based filters. 9

3.1 Properties achieved by current confidentiality schemes. 25

5.1 Comparison of search on encrypted data schemes. 77

5.2 Events index. 82

5.3 Trapdoor index. 82

5.4 Indexed data using a hash function with collision. 87

5.5 Plaintext database with “bag of bits” representation of numeric values. 89

5.6 Quotient table - 2D index. 89

5.7 IC table - 2D index. 89

5.8 Quotient table - 1D index. 90

5.9 IC table - 1D index. 90

6.1 Event Filtering Algorithms . 97

6.2 Example of a predicate index. 103

6.3 Example of a filter ID map. 104

6.4 Example of a predicate index. 105

6.5 Filter structures 1. 110

6.6 Filter structures 2. 111

6.7 Filters having the same tree structure. 112

6.8 Exposure coefficient for filters representing a single numeric inequal-

ities. 113

7.1 Summary of AesKPClient class. 120

7.2 Summary of AesCPClient class. 121

7.3 Summary of AesKPEvent class. 121

7.4 Summary of KeEncFilter class. 122

7.5 Summary of KeTreePolicy class. 122

7.6 Summary of SecPubSubClient class. 123

7.7 Summary of EncBroker class. 124

7.8 Summary of CCNPublisher class. 125

7.9 Summary of CCNSubscriber class. 125

7.10 Summary of CCNBroker class. 126

List of Algorithms

1 PE-Init . 26

2 PE-KeyGen: Key generation for a new user. 26

3 PE-Enc-U: The user side proxy encryption. 27

4 PE-Enc-S: Server re-encryption. 27

5 PE-Dec-S: Server pre-decryption. 27

6 PE-Dec-U: User decryption. 27

7 SDE-Init . 28

8 SDE-KeyGen: Key generation for each new user. 29

9 KE-Enc-U: The user side keyword encryption 29

10 KE-Enc-S: Server side keyword re-encryption. 30

11 Trap-U: The user side trapdoor encryption. 30

12 Trap-S: The server side trapdoor re-encryption. 30

13 Match: Single keyword match. 30

14 TreeEval: Access Tree Evaluation 35

15 KP-ABE Init . 52

16 KP-ABE-Enc . 53

17 KP-ABE KeyGen . 54

18 KP-ABE DecryptNode . 55

19 CP-ABE Init . 55

20 CP-ABE KeyGen . 56

21 Inequality Policy Generation . 57

22 CP-ABE-Enc . 58

23 CP-ABE: DecryptNode . 59

24 Encrypted Event Filtering . 84

25 iTreeEval: Access Tree Evaluation with Index 85

26 The Label algorithm. 99

27 The Match Algorithm. 100

28 Encrypted Event Filtering . 104

29 Filter matching. 106

Chapter 1

Introduction

Contents

1.1 Content-based networking . 1

1.1.1 Publish/Subscribe vs. Information Centric Networking 2

1.2 Security challenges . 3

1.3 Thesis contributions . 4

1.4 Thesis outline . 5

1.1 Content-based networking

The increasing demand for content-distribution applications is motivating re-

searchers to rethink and redesign the way information is stored and delivered on the

Internet. The IP model no longer matches the way users and applications request

and share information today. Users are more interested in sharing and retrieving

information, and care less about which specific end point is holding the informa-

tion. Furthermore, network traffic increasingly consists of content dissemination to

multiple recipients. Content producers are both large organizations such as news

agencies, movie studios, but also users who share photos or videos with friends

on social networks. Thus, the host-centric architecture of the Internet designed

for point-to-point communication between two fixed endpoints is not scalable or

relevant for the current data-centric applications.

Content-based networking has been proposed to address such demands, mo-

tivated by both application-level and network-level considerations. At the

application-level, consumers are more interested in expressing what content they

are interested in retrieving, and less about where that content can be found. At

the network level, identifying content rather than location allows more efficient net-

working by duplicating and caching content in the network. The shift from host-

centric to content-centric networking has several advantages, such as network load

reduction, low dissemination latency, and energy efficiency. Van Jacobson described

content-based networking as the third revolution in telecommunication networks,

as we move from connecting wires (public switched telephone network [PSTN]) to

connecting nodes (all-IP networks) to connecting information [Pentikousis 2012].

Two kinds of content-based communication models have been proposed indepen-

dently: publish/subscribe [Carzaniga 2001, Eugster 2003] and Information-Centric

2 Chapter 1. Introduction

Networking [Jacobson 2007]. The publish/subscribe (pub/sub) paradigm has been

around for over 25 years and is now used in many applications such as instant news

delivery, stock quotes dissemination, and pervasive computing. Information-Centric

Networking (ICN) is a relatively new research field, described as a global-scale

version of the publish/subscribe paradigm [Ghodsi 2011]. ICN aims at evolving

the Internet from its host-based packet delivery to directly retrieving information

by name [Ahlgren 2012]. Both pub/sub and ICN focus on finding and delivering

information to users instead of connecting end hosts that exchange information.

Implementations of these two paradigms are generally designed to run alongside

or independent of TCP/IP, and do not disrupt existing networks. However, more

ambitious designs aim at replacing TCP/IP [Fotiou 2012].

Apart from current content-dissemination applications, the shift to content-

based networking is also motivated by new emerging applications such as Smart

Grids and Smart Cities, mobile and pervasive applications. Moreover, as the number

of mobile devices and sensors connected to the Internet is increasing, content-centric

networks are becoming even more important. First of all, they allow asynchronous

communication between devices which do not need to be online at the same time to

communicate. This is especially important for mobile devices which are turned off

or in sleep mode to save energy when not used or may not be online all the time due

to mobility. Second, ICNs are build around the idea of in-network content storage,

thus making data available a greater percentage of the time and allowing mobile

devices the freedom to be turned off more often to save power. This feature is also

provided by more recent publish/subscribe systems (e.g., PADRES [Jacobsen 2010])

which cache publications in the network and allow users to query them later.

1.1.1 Publish/Subscribe vs. Information Centric Networking

Though both pub/sub systems and ICN are designed for forwarding data based on

its name or content, there are some important differences between them which come

from the fact that they were designed with different applications in mind. Pub/sub

systems were intended for event-driven applications such as instant news delivery

or workflow management. For that reason, (i) publications are usually valid for a

short period of time and are deleted once they reach the intended subscribers, (ii)

the communication is initiated by the publishers, and (iii) subscriber interests are

valid until unsubscribed. ICN were designed for retrieving data such as documents

or media files and because of that, (i) ICN focus on caching data in the network

to increase availability, (ii) the communication is initiated by the receiver, and (iii)

interests are cancelled once the data is delivered. Because many applications need

both kinds of communication models, unifying both approaches has been proposed

[Carzaniga 2011] and systems that combine both pub/sub and ICN already exist.

For example, the publish-subscribe Internet (PSI) architecture [Xylomenos 2012]

has been proposed as an ICN approach to the future Internet with higher support

for mobility and in-network caching. [Zhang] builds a simple pub/sub system on

top of an ICN for a secure Home Energy Management System (HEMS). Another

1.2. Security challenges 3

example is the PADRES pub/sub system [Jacobsen 2010] which enhanced brokers

with databases in order to enable historic data queries.

Last but not least, another important difference between the two models is the

expressiveness of the subscription or interest. Pub/sub systems use more expres-

sive subscription filters that range from names to general Boolean expressions of

predicates, while ICN use only names to request data.

In this thesis we target a security solution that can work with any content-based

networking solution and implement our libraries to be middleware-agnostic. We

design our solution to meet all the needs of the more complex pub/sub systems and

show that it can also be applied to ICN with a concrete implementation. In fact, we

can even integrate our encrypted filtering algorithm with ICN, thus enabling more

expressive interests on top of the naming provided by ICN.

1.2 Security challenges

Content-based networking requires new security mechanisms to address its specific

communication model. Traditionally, security mechanisms and access control poli-

cies are enforced point-to-point or through the use of trusted third parties. Such

mechanisms were designed for the host-centric point-to-point Internet and are not

suitable in content-based networks where data creators and consumers are decou-

pled and not aware of each other. Moreover, because the network can be public, it

cannot be trusted to enforce access control mechanisms. Once the data is published

on the network, publishers lose all control over who gets access to their data. What

content-based networking needs is to explicitly secure the content itself, as opposed

to securing the end-to-end communication channel or end-points. Because the data

is sometimes cached or stored in the network, we cannot rely on trusted end-points

to control access to the data and enforce access control policies.

Most of the work on pub/sub and ICN is focusing on networking mechanisms

and efficient routing, while leaving security mechanisms to be added in the future.

ICN usually guarantees data integrity, binding names to content through signatures,

but does not provide a specific key exchange and management mechanism or other

security mechanisms such as encryption. However, there are many scenarios that

require control over who can access the information. For example, a stock quote

service could provide to paying customers information on stock prices by using a

pub/sub system. In this case, only paying subscribers should be able to access

messages. At the same time, subscribers may wish to keep the details of their

interests private from anybody spying on the network. Unauthorised parties that

are able to eavesdrop on messages or subscriptions should not be able to access their

content. Another application scenario that can benefit from the use of pub/sub

systems is in the medical sector where physicians are notified when certain events

happen such as changes in the condition of a patient who is monitored by different

medical devices or sensors. Such information should be available to the authorised

personnel only to protect the patient’s privacy.

4 Chapter 1. Introduction

To enable content-based networking, at the core of pub/sub systems are dis-

tributed routers or brokers that forward information based on its content. If the

brokers are trusted, for example if they are under the direct control of the organi-

zation using the pub/sub system, the confidentiality of the events and filters can be

ensured by securing the communication between brokers, between publishers and

brokers, and between brokers and subscribers. However, in many scenarios brokers

cannot be considered trusted, either because a malicious employee could get access

to the data and misuse it, or because the pub/sub system has been outsourced to

another company. Outsourcing the IT infrastructure is a business model adopted

more and more by companies because it reduces costs and improves the quality of

services and operations. In fact, even sectors such as healthcare, initially reluc-

tant to adopt this model, are slowly employing it [Ondo 2006]. Because of that,

there is a need for confidentiality and access control solutions that can be applied

when brokers are untrusted and therefore could compromise the confidentiality of

publications and subscriptions.

Another issue to consider is the privacy of the data transmitted over the pub/sub

network, because it could contain sensitive information about individuals or organi-

zations (e.g., personal and medical data). When such sensitive information is being

sent, it should be possible to control how the data is disclosed and to whom. The

disclosure of sensitive data is usually protected through the enforcement of access

control policies. A policy specifies who can access the data and under which condi-

tions. In pub/sub systems, publications or events contain multiple attributes and

different access control policies could apply to each. For example, in an e-health

application, the names of the patients should be disclosed to their doctors, but

not to researchers that aggregate and analyse data from various patients. Access

control solutions for pub/sub systems [Miklos 2002, Bacon 2008] require brokers

to have access both to the policies and the content of events in order to enforce

fine-grained policies on the attributes of the event (e.g., name, address). However,

these solutions are not suitable for outsourced environments because they reveal

the content of events to the untrusted brokers. On the other hand, encrypting only

the content of events and leaving the access control policies unencrypted so that

they can be enforced by brokers may not be sufficient because the policies could

reveal sensitive information about the data. For example, if an event sent by the

Gateway installed at a patient’s home has attached a policy granting access to the

data to a cardiologist, an attacker could infer that the patient suffers from a heart

condition even if the actual event is encrypted.

1.3 Thesis contributions

This thesis makes the following contributions:

1. We describe several emerging applications requiring security mechanisms such

as Smart Energy Systems, Smart Cities, and eHealth that rely on a pub/sub

1.4. Thesis outline 5

system for communication. In these applications, a point-to-point communi-

cation model would not scale up.

2. We propose a novel solution for confidentiality and access control in pub/sub

systems. Compared to existing solutions, our scheme is able to provide at

the same time confidentiality of publications (or events) and subscriptions (or

filters), fine-grained access control policies, and complex encrypted filtering

of events, while not requiring publishers and subscribers to share keys.

3. We provide a novel solution for indexing and querying in-network cached

encrypted publications. Most encrypted search solutions for databases provide

keyword search or conjunctions of keywords. We provide a survey of existing

schemes and show that none of them is able to support both multi-users that

can read and write to the database with their own unique key, and complex

queries. Our solution is the first one to have such features.

4. We provide a novel solution for efficient encrypted routing. Though effi-

cient filtering algorithms have been researched intensively for non-encrypted

pub/sub systems, confidentiality preserving filtering algorithms do not scale

well when the number of subscriptions increases. Moreover, they have other

limitations such as less expressive filters (e.g., only keyword match) and key

sharing. We propose a solution for an efficient and scalable filtering algo-

rithm, while maintaining the properties of our confidentiality and access con-

trol scheme.

5. We implement our solutions as middleware-agnostic libraries and integrate

and test them with popular versions of both a pub/sub and an ICN system.

1.4 Thesis outline

The organization of the thesis chapter by chapter is as follows:

Chapter 2 describes the properties of publish/subscribe systems and several

research applications such as Smart Energy Systems, Smart Cities, and remote

patient monitoring in healthcare applications where a classic point-to-point model

would not scale up. We then illustrate the need for security requirements in such

systems with a possible attack over an unsecured system.

Chapter 3 proposes a basic confidentiality solution that protects against the

honest-but-curious threat model, the most referenced threat model for pub/sub

systems in literature. We define a set of security properties needed to protect

against it, while at the same time preserving the decoupling and expressive filtering

properties of pub/sub systems. We review existing solutions addressing confiden-

tiality and show that none of them provides the full range of security properties

needed. We describe a novel solution that provides all of these properties and prove

it is secure under the chosen-plaintext attack.

6 Chapter 1. Introduction

Chapter 4 enhances the proposed solution to allow enforcing fine-grained access

control policies on the data without relying on a trusted third party. This solution

addresses a more powerful threat model and extends the previous solution to defend

against it.

Chapter 5 provides a novel solution that allows indexing and querying in-network

cached publications. Current encrypted search solutions cannot support at the same

time multi-users with read and write capabilities and complex encrypted queries.

Our solution allows performing encrypted complex queries on the data, and multi-

users, each user having a unique key that can be revoked without affecting the other

users.

Chapter 6 enhances the scheme with an efficient encrypted matching algorithm

that increases the performance of the scheme while still providing the same security

properties.

Chapter 7 discusses the implementation of our middleware-agnostic libraries

both with a classic pub/sub system enhanced with databases for publication

caching, and with a popular information-centric network. We provide an exten-

sive performance evaluation and comparison of the various schemes.

Finally, in Chapter 8 we provide a summary of our results and contributions,

and discuss future directions.

Chapter 2

Publish/Subscribe Systems

Contents

2.1 The publish/subscribe communication paradigm 7

2.2 Topic vs. content-based publish/subscribe 8

2.3 Application scenarios . 9

2.3.1 Smart Energy Systems . 10

2.3.2 Smart Cities . 14

2.3.3 Healthcare . 15

2.4 Security requirements . 18

2.1 The publish/subscribe communication paradigm

The publish/subscribe model is an asynchronous communication paradigm where

senders, known as publishers, and receivers, known as subscribers, exchange mes-

sages in a loosely coupled manner, i.e., without establishing direct contact. The

messages that publishers generate are called events or publications. Publishers do

not send events directly to subscribers, instead a network of interconnected brokers

is responsible for delivering the events to the interested subscribers. In fact, pub-

lishers do not know who receives their events and subscribers are not aware of the

source of information. In order to receive events, subscribers need to register inter-

est with a broker through a filter or subscription. When a new event is published,

brokers forward it to all subscribers that expressed a filter matched by the event.

Figure 2.1 shows a simple pub/sub network that forwards messages from publishers

to interested subscribers.

The pub/sub communication paradigm has the advantage of allowing the full

decoupling of the communicating entities [Eugster 2003] which enables dynamic and

flexible information exchange between a large number of entities. The communicat-

ing parties do not need to know each other or establish contact in order to exchange

content. Moreover, if durable subscription is enabled, publishers and subscribers do

not need to actively participate in the interaction at the same time. If a subscriber

is offline when a publisher creates an event, the broker will store the event until the

subscriber becomes online and the event can be delivered.

These characteristics make the pub/sub communication model well suited

for a wide range of information-driven and event-driven applications. For ex-

ample, pub/sub has been proposed for information dissemination applications

8 Chapter 2. Publish/Subscribe Systems

Publisher

Subscriber
B

B

B

B
B

Publisher

Publisher

Publisher

Subscriber

Subscriber

Subscriber

Subscriber

Publishing
events

Figure 2.1: The pub/sub infrastructure connects publishers and subscribers via a

network of interconnected brokers.

such as instant news delivery, stock market quotes distribution, auction bids

[Bornhovd 2002], and air traffic control. Other applications of pub/sub are

mobile systems [Cugola 2002b], ubiquitous computing [Langheinrich 2000], dis-

tributed workflow management systems [Cugola 2002a], and peer-to-peer systems

[Heimbigner 2001].

2.2 Topic vs. content-based publish/subscribe

Several pub/sub implementations that differ in the granularity used in the defi-

nition of the filters have been proposed in the literature. The most simple one

is topic-based, in which subscribers subscribe to a topic identified by a keyword

[Zhuang 2001]. A topic-based scheme is similar to the notion of group communica-

tion. When subscribing to a topic T , a subscriber becomes a member of group T .

When an event for topic T is published, the event is broadcasted to all the mem-

bers of that group. Organizing topics in hierarchies allows a better management of

subscriptions [Singhera 2008]. For example, by registering to a topic, a subscriber

is also registered to all its subtopics. Figure 2.2 shows an example of hierarchical

topics for an application that monitors ambient conditions such as temperatures,

humidity and air quality in different towns.

Ambient Data

Temperature Humidity Air Quality

Trento Trento Trento
T4

Verona

T1 T2 T3

T5 T6 T7

Figure 2.2: Topic-based subscriptions.

2.3. Application scenarios 9

Topic-based schemes are easy to implement but they offer limited expressiveness.

Content-based schemes are more flexible and allow specifying subscriptions based

on the actual content of the event. To express a filter on the content of an event,

subscribers need a query language and understanding of the data formats. For

example, in Gryphon [Banavar 1999] and Siena [Carzaniga 2001] events consist of

sets of (attribute name = attribute value) pairs and filters are specified as SQL

WHERE clauses. Java Message Service (JMS) [Hapner 2002] does not allow filtering

on the content of the event, but instead events carry properties in their headers and

subscribers can define filters on them. Filters that apply to the composition of

simple events have also been proposed (such as in [Bacon 2000]). When expressing

such a filter, subscribers are notified upon the occurrence of the composite event.

Content-based schemes are more expressive and fit more naturally the way users

search for information on the Internet. Table 2.1 compares the expressiveness of

topic and content-based subscriptions for the scenario in Figure 2.2. For the first

subscription, a user would need to subscribe to several topics to get all the events

related to Trento. In the other examples, subscribing to a topic returns a super-set

of the data, requiring the user to filter out undesired results. This causes overhead

for the network and the users, and could be a real problem for users with limited

resources using mobile devices.

Table 2.1: Topic-based vs. content-based filters.

Subscription Topic-based Content-based

All Trento data T4, T6, T7 Trento

All Trento temperature
since 2008

T4 (super-set) temperature and Trento
and year>2008

All Trento air quality with
Air Quality Index>50

T7 (super-set) airquality and Trento and
aqi>50

Because of its generality and expressiveness, we will focus on content-based fil-

tering. Topic-based filtering can be considered a sub-case of content-based where

filters contain only one attribute (or keyword). We assume that filters define con-

straints in the form of attr name-op-attr value where op can be one of the compar-

ison operators such as =,≤, <,≥, and >. Constraints can be logically combined

using AND, OR and NOT to form complex subscription patterns.

In the following we describe several applications that use a publish/subscribe

system to enable many-to-many communication between a large number of loosely-

coupled entities. For such applications, the classic point-to-point communication

model, or even group communication would not scale up.

2.3 Application scenarios

The most common application scenario for pub/sub systems is on demand content

delivery. Users subscribe to particular media content or news and usually pay a

10 Chapter 2. Publish/Subscribe Systems

subscription fee. Brokers deliver to them content matching their subscription every

time new content is published. In the following we propose more complex scenarios

inspired from emerging applications such as Smart Energy Systems, Smart Cities

and eHealth. We use these scenarios to illustrate how information is published and

routed in a pub/sub system. The entities, message types and scenarios we describe

emerged from various research projects and represent our vision on how such novel

systems could run using a pub/sub system. We will further use these examples to

explain our different threat models and requirements for a secure pub/sub scheme.

2.3.1 Smart Energy Systems

Smart Energy Systems are large distributed systems that connect energy suppliers,

consumers and their devices, and provide dedicated services that monitor and con-

trol energy consumption with the goal of reducing costs, optimizing energy usage

and increasing the reliability of the Energy Grid. The classic point-to-point com-

munication model does not scale up to a large Smart Energy System because data

generated by one entity, e.g., a Smart Meter, is likely of interest to many entities

such as an Energy Management and Control System (EMCS), a neighbourhood ag-

gregator, a Utility Company, a Real-Time Pricing System, a Load Control System,

many of which are unknown to the data publishing device. The pub/sub commu-

nication model was designed to deliver data asynchronously and reliably between

a large number of loosely coupled entities in a many-to-many manner and fits well

the communication requirements of a Smart Energy System, as shown in Figure

2.3.

A Smart Energy System provides dedicated services such as scheduling, actua-

tors and real-time pricing to reduce energy consumption, lower peak time demand,

reduce costs, and increase the reliability of the Energy Grid through the smoothing

out or reduction of peak loads. A Smart Energy System could have the following

entities:

• Energy Monitor: measures the real-time energy consumption of each device

inside a house.

• Energy Management & Control System (EMCS): installed in each

house, a local EMCS schedules and turns on/off different devices in the house

such as dish washer, Electric Vehicle (EV) charging, and air conditioning.

• Customer Gateway: acts as an interface between the Home Area Network

(HAN) and neighborhood or city area network. All messages between the

HAN and the external network are sent and received through the Gateway.

• Home Area Network (HAN): provides connectivity among all the devices

inside a house such as appliances, medical devices, Smart Meter, EV, solar

panels, wind turbine, battery, the EMCS and Gateway.

2.3. Application scenarios 11

• Real-Time Pricing (RTP): calculates energy prices based on current de-

mand and offer. The pricing is calculated in such a way that it incentivizes

consumers to reduce peek consumption and overall fluctuations in demand.

• EV Scheduler: a service that receives status information and energy needs

of the EVs in a neighborhood, and pricing information, and schedules how

the EVs should be charged such that the network in not overloaded.

• Neighborhood Area Network (NAN) Aggregator: aggregates the in-

formation about the energy consumption in a neighborhood.

• Energy Storage: either inside a house or in a neighborhood, it is used to

store energy in low demand periods and use it during high demand. If medical

devices are in use, such storages become very important.

• Load Control: controls that the network is not overloaded, analyses

peak/low demand periods, predicts future demand, detects problems and risks

of blackouts.

A robust pub/sub system connects all these entities and reliably delivers mes-

sages between them as shown in Figure 2.3.

Energy
consumption
of the house

Aggregated
values for
all areas

Publish/Subscribe System

HAN

Real-Time
Pricing

Gateway HEMS

Load Control

NAN
Aggregator

EV
Scheduler

Energy
consumption

in its area

Aggregated
values for
area

Aggregated
values &
Energy
events

Aggregated
values &

Energy events
for the area

Pricing
info

Pricing
info

EV
charging
data

EV
charging
schedule

EV
charging
data

Consumer

Energy
Monitor

Energy event:
Big concert

HAN

Producer

NAN Energy
storage

Storage
level

Production
infoPricing

info

Figure 2.3: A Smart Energy System and data flows between main entities.

2.3.1.1 The EV Scheduling Use Case

In the following we take a particular use case and look into more detail at the

messages exchanged and how they are routed by the publish/subscribe system. We

developed this application together with the Energy and Sustainability Lab (ESL)

12 Chapter 2. Publish/Subscribe Systems

at Intel Labs, Santa Clara, US. Before charging their cars, users send a scheduling

request to a neighbourhood EV scheduler that sends back the times and power at

which the car should be charged such that it does not overload the network and

lowers the cost for the consumer. In particular, the main goal of the scheduler is not

to overload the local transformer which was not provisioned to support an EV for

every household. In the future, when more people will own EVs, this could become

a real problem. A study [pec a] conducted by the Pecan Street Project [pec b] in

a test bed of 10 households owning EVs in the Mueller neighbourhood in Austin,

Texas, in the US, over a period of two months, showed that people turn everything

on at the same time, even during weekends. When people come home at the end of

a day they turn on television, computer, air conditioning, other appliances, along

with plugging in their EV for recharging. An EV charging at maximum power

can use as much energy as an entire household, thus doubling the overload on the

neighbourhood transformer. In this particular installation, a transformer can serve

up to 12 houses and is very expensive to replace. Using an EV scheduling service

would reduce the risk of overloading and damaging the transformer by coordinating

across homes.

In Figure 2.4, we show potential subscriptions and messages for an EV schedul-

ing use case. There are four publishers and four types of messages or publications.

The message types are advertised by each publisher in the form of an advertisement

which is sent before publishing any messages.

• A pricing message, published by the RTP, contains information about prices

per time period and consumption class. The EVS and the HAN both regis-

tered subscriptions to receive such messages, i.e., S3: class=pricing.

• An ev charging message is a charging request sent by a HAN. The EVS of a

neighborhood subscribes to this type of messages, i.e., S1:class=ev charging

AND ZIP=92000.

• An ev schedule message sent by the EV Scheduler in response to a charging

request. The HAN subscribes to it with S4: class=ev schedule AND ID=xxx.

• A power event message published by a consumer when a special event is hap-

pening that will require a lot of power such as a concert. The EVS subscribes

to this event with S2: class=power event and ZIP=92690.

2.3. Application scenarios 13

Figure 2.4: Subscriptions and message types for the EV charging use case.

Figure 2.4 shows a simple case in which only one broker is used to deliver

messages from publishers to interested subscribers. The broker maintains a message

routing table that has entries of the form: subscription: destinations. A message

that matches the subscription will be forwarded to all the destinations paired with

the subscription. Figure 2.4 shows the routing table for this example.

To increase the scalability and reliability of the system, pub/sub systems are

usually distributed and messages are forwarded through multiple hops. Figure

2.5 shows the same example, but with several distributed brokers. We note that

in this case each broker becomes either a publisher or a subscriber or both to

its neighbouring brokers. Brokers only know their immediate neighbours and are

unaware of the source of publications or subscriptions.

Many pub/sub systems [Fidler 2005] require publishers to send advertisements

that describe the type of message they will publish. Advertisements are used to

create subscription routing tables in the following way: Instead of broadcasting a

subscription to all its neighbours, a broker only sends a subscription to a neighbour

broker that sent an advertisement that matches the subscription. For example,

in Figure 2.5, Broker1 only forwards subscription S3: class=pricing to Broker4

because that is its only neighbour that sent an advertisement matching S3.

14 Chapter 2. Publish/Subscribe Systems

Figure 2.5: Subscription routing tables in a distributed scenario.

2.3.2 Smart Cities

A similar application is a Smart City in which large amounts of data are gener-

ated for example by sensors that monitor the ambient environment (e.g., pollution

level, air quality, noise levels, flooding), the traffic (e.g., traffic congestion, acci-

dents, closed roads, closed subway stations), and by people that report events etc.

A pub/sub system would deliver messages from publishers only to interested sub-

scribers without requiring publishers to know the addresses or identities of the

subscribers. In the following we describe two applications that we developed to-

gether with the Energy and Sustainability Lab (ESL) at Intel Labs, Santa Clara,

US.

2.3.2.1 Sensing the Smart City

Figure 2.6 shows an application for sensing, monitoring and informing users of envi-

ronmental conditions. Several sensors measure the levels of humidity, temperature,

pollution, and chemical substances in the environment and publish them on the

pub/sub network. Neighbourhood aggregators subscribe to readings from their ar-

eas and discard outliers and average the readings, detect misbehaving sensors and

inconsistencies between readings. They publish aggregated values on the network.

Users in the neighbourhood and Air Quality Control centers subscribe and receive

these aggregated values. The Air Quality Control center analyses the values and

issues recommendations and warnings that are published on the network and are

delivered to interested authorities, researchers or citizens in the area.

2.3. Application scenarios 15

Humidity
readings

Publish/Subscribe System

Temperature
Sensor

Humidity
Sensor

Air Quality
Control

Pollution
Sensor

Aggregated
values from all
NANs in a city

Warnings and
recommendations

Temperature
readings

User

Warnings and
Recommendations
for its area

Neighborhood
Area Network
Aggregator

Chemical
Substances

Sensor

Readings for
its area

Aggregated
values

Pollution
level

Levels for
various

substances
Temperature

data for its area

Figure 2.6: Publishing and subscribing to sensor information.

2.3.2.2 Mobility in the Smart City

Figure 2.7 shows a scenario in which subscriptions are location dependent. Let

us consider the case of an electric car driving on a road that needs to charge its

battery. The car may subscribe to messages about EV charging stations near its

location or trajectory that have a specific time, power, availability and price. EV

charging stations publish their location, availability and price on the network. It is

the job of the pub/sub system to match the message published by different charging

stations to the subscription conditions and then to deliver to subscribers only desired

information. If the car driver sees an incident on the road, it may report it to the

police and the message will be delivered to the closest police officer that subscribed

to traffic incidents in the area.

2.3.3 Healthcare

In the following, we present the details of an e-health application that we developed

together with the San Raffaele Hospital in Milan, Italy. The e-health application is

designed for remotely monitoring patients with a chronic disease that do not require

hospitalisation, such as heart disease or diabetes. While the patient is at home, it

is necessary to continuously monitor specific vital sign parameters. Moreover, for

these kinds of patients a continuous and correct lifestyle is fundamental in order to

improve the quality of their lives. In particular, in patients with heart diseases it is

important to monitor both some physiological parameters and the patients’ habits,

including the diet and the physical activities. This information needs to be dis-

tributed to the interested parties such as professional caregivers to provide required

feedback, prescribe medicines, and schedule appointments in case of unexpected

conditions.

16 Chapter 2. Publish/Subscribe Systems

Figure 2.7: Mobility examples.

Message Bus

Body
sensors

Monitoring
sensors

Patient

in-Home Monitoring System

PDA

Medical
Console

Gateway

Medical
Repository

Outsourced IT Domain

Research Center
• epidemiological data

• quantitative clinical indicators
• quantitative expenditure data

Healthcare Authority
Audit appropriateness of
therapies & get data for

reimbursement

Drug Delivery
Service

Deliver drug personalized
kit to patient

Drug Stock
Management

Prepare drug
personalized kit

Figure 2.8: An e-health application scenario for monitoring chronic diseases.

2.3. Application scenarios 17

The e-health application is composed of several distributed components that are

shown in Figure 2.8. Each component is described in details as follows.

The in-Home Monitoring System (iHMS) is a component that performs the

gathering of patient’s data through the use of electronic devices self-managed by the

patient. These devices have wireless means to connect to a central gateway where

the data is gathered. Regarding the physiological parameters it could be useful to

monitor the blood pressure, the heart rate and the ECG at regular time intervals.

Regarding the life style, the relevant data to be monitored is the weight and the

amount of physical exercises (e.g., walking and/or running). In our application, we

employ the following devices:

• a wrist integrated device able to measure the blood pressure and the blood

oxygen levels;

• a portable device for ECG and heart rate monitoring;

• a smart scale that automatically sends periodic weight measures;

• a device to be worn during physical exercises that can monitor some relevant

parameters, such as the number of steps during a walking activity, the total

energy consumption (kcal), the duration of the physical activity, etc.

In the hospital, the Medical Console (MC) retrieves the data collected by

the iHMS. The patient’s doctor can use the MC for accessing the vital signs and

lifestyle data stored in the Medical Repository (MR). The MC can also alert the

doctor if the values exceed some personalised thresholds. The doctor can inform

the patient that a visit is required and some more specific medical tests have to

be performed. The doctor can also decide to prescribe a therapy, composed of a

list of drugs to be regularly assumed by the patient, and to give advice in order to

improve the patient’s lifestyle.

The drug therapy, depending on the specific disease, can include drugs that

can be directly provided by the hospital and/or drugs to be purchased through the

territorial pharmacies. In the former case, the drugs provided by the hospital are

reimbursed by the Healthcare Authority (HA). In order to assure the appropri-

ateness of the therapy and the exact amount of costs to be reimbursed, the hospital

has to provide to the HA data related to the patient’s conditions and drug costs.

The Drug Stock Management (DSM) is in charge of preparing a personalised

drug kit, composed of the drugs prescribed by the doctor for a specific patient.

To prepare the therapy kit, the doctor has to provide to the DSM personnel the

therapeutic data. The drugs can be delivered at home thanks to a Drug Delivery

Service (DDS) that performs the transportation directly to the patient’s home.

Finally, there is a Research Centre that performs data processing on the

received information from various hospitals and healthcare authorities. Examples

of possible data processing are the analysis of epidemiological data (e.g., number

of patients with heart diseases treated with a specific drug) and the calculation

18 Chapter 2. Publish/Subscribe Systems

of quantitative clinical and expenditure indicators (e.g., number of patients with

repeated outpatient visits or total average cost for each patient).

2.4 Security requirements

We motivate the need for security mechanisms with an example of a possible attack

that could be carried out on an unprotected pub/sub system. We use as reference

the last application we introduced.

Let us assume that the San Raffaele hospital has decided to outsource the

pub/sub system to an IT company such as a cloud provider that provides and

maintains the servers where the service is deployed, and that no security mecha-

nisms are in place. The pub/sub system connects all publishers and subscribers

and allows them to send and receive events asynchronously through a shared set

of interfaces. Subscribers can specify their interest in particular messages through

filters. Filters are strings which express constraints on the attributes of the events.

If messages are sent in the clear, a malicious employee of the company managing

the pub/sub system can easily get access to the events that are exchanged through

the brokers. The attacker could also be another user of the same cloud provider

that can mount a collocation attack [Ristenpart 2009] and capture the memory of

the pub/sub broker application. Therefore, in this setting the patients’ privacy is

at risk. We illustrate the risk of violating the patients’ privacy through an example.

Let us suppose that a patient named “John Smith” suffering from a heart condi-

tion is monitored remotely by a doctor. The medical devices carried by the patient

monitor the blood pressure, heart rate and ECG. At regular time intervals, these

values are published by the gateway.

The doctor monitoring the patient registered the following subscription filter

with a broker to be notified immediately of any significant change in the patient’s

condition. The doctor expressed the following filter:

name=“John Smith” AND (heart rate>120 OR systolic pressure>150 OR di-

astolic pressure>100).

The doctor will be notified when values exceed the specified thresholds. When

values are normal, they are logged in the patient’s history and the doctor can

retrieve them when necessary. If an employee is able to capture the filter, he will

be able to infer that John Smith is suffering from a heart condition.

Now let us suppose that the doctor received an event which indicates a change

in the patient’s condition and needs to write the following prescription:

name=“John Smith”, age=70, address=“via Tartini 12, Padova”, symptom

=“high blood pressure”, disease=“primary hypertension”, medication=“Catapres”.

The doctor publishes this message through a broker. An employee of the com-

pany providing the pub/sub system could access the messages that come in and

out of the broker. If the event is sent in cleartext, the employee would learn the

personal data and medical condition of this patient, and even infer that the pre-

scribed drugs will be delivered to the patient the next day at the specified address.

2.4. Security requirements 19

The employee could also access the filter registered by the doctor and infer that

the patient John Smith has a heart problem. That is why, in order to protect

sensitive data contained by events and filters transmitted over an untrusted out-

sourced pub/sub system, cryptographic mechanisms are needed to provide event

and filter confidentiality. Moreover, because different policies apply to different at-

tributes of the event, without a proper access control mechanism that can enforce

fine-grained access control policies, legitimate subscribers would learn information

that they are not supposed to. For example, if no access control mechanisms are

in place, researchers would learn the names and addresses of patients, though only

anonymized data should be available to them.

The next chapters will discuss in detail each of the these requirements. Chapter

3 provides a basic confidentiality solution, and Chapter 4 enhances the scheme to

additionally support fine-grained access control policies.

Chapter 3

A Basic Confidentiality Scheme

Contents

3.1 Threat model . 21

3.2 Required security properties 22

3.3 Related work . 22

3.4 Background on security mechanisms 25

3.4.1 Proxy encryption . 25

3.4.2 Multi-user encrypted search 27

3.5 Proposed solution . 31

3.5.1 Assumptions . 31

3.5.2 Solution overview . 31

3.5.3 Initialization . 32

3.5.4 Event encryption . 32

3.5.5 Filter encryption . 34

3.5.6 Encrypted matching . 34

3.5.7 Event decryption . 35

3.6 Security analysis . 36

3.6.1 Preliminaries . 36

3.6.2 Scheme overview . 38

3.6.3 Security of filter encryption 38

3.6.4 Security of event encryption 40

3.7 Implementation and performance analysis 44

3.1 Threat model

We start by assuming an honest-but-curious model for publishers, brokers and sub-

scribers, as in most papers [Srivatsa 2007, Shikfa 2009]. This model assumes that

although the entities in the system follow the protocol, they may be curious to learn

information by analysing the messages (events or filters) that are exchanged on the

message bus. For example, a broker may try to read the content of an event or try

to learn the filtering constraints of subscribers. Subscribers may want to read the

events delivered to other subscribers.

22 Chapter 3. A Basic Confidentiality Scheme

We assume there is at least one Trusted Authority which generates encryption

and decryption keys used to protect data from unauthorised access. The authority

does not misbehave and is trusted by all the entities of the system.

3.2 Required security properties

In the following we enumerate the properties that a confidentiality scheme for

pub/sub systems should provide, assuming an honest-but-curious threat model.

As previously discussed, because publishers and subscribers are decoupled and can-

not always share secret keys, a crucial property that needs to be ensured by any

encryption scheme for pub/sub systems is scalable key management that does not

require establishing and maintaining shared (group) keys. We define this property

as follows and we require it for our scheme:

Definition 1 (P1: Scalable key management). A simplified and scalable key man-

agement eliminates the need for publishers and subscribers to share keys and sup-

ports the loosely-coupled model of the pub/sub paradigm. Key sharing would require

redistribution of new keys to all participants and re-encryption of all filters when a

filter is unsubscribed, thus affecting the scalability of the system.

Moreover, we require that the content of publications and subscriptions is pro-

tected and that the broker does not learn anything about them during the matching

process. this leads to the following properties.

Definition 2 (P2: Publication confidentiality). The publication confidentiality

property ensures that the content of the event is hidden from the brokers and only

intended subscribers are able to decrypt the event. By intended subscribers we mean

subscribers that registered a filter matched by the event. In some cases, subscribers

might need to obtain an authorization from the Trusted Authority in order to register

a filter.

Definition 3 (P3: Subscription confidentiality). The subscription confidentiality

property ensures that the details of the filters are hidden from the brokers. The

broker should be able only to tell if an event matches a filter but gain no other

information about the event or the filter.

Definition 4 (P4: Complex encrypted matching). Brokers should be able to match

complex encrypted filters against encrypted events without learning anything about

the content of events or filters. By complex encrypted filters, we mean filters that

can express conjunctions and disjunctions of equalities, inequalities and negations

in an encrypted form.

3.3 Related work

In the following we show that current solutions for ensuring confidentiality in

pub/sub systems provide only some of the properties defined above, but not all

3.3. Related work 23

of them at the same time. We review the most significant schemes and show for

each which of the desired properties are satisfied.

Khurana [Khurana 2005] proposes a scheme that targets confidentiality of events

but not of filters. Events are encoded in XML format and only specific fields (e.g.,

price) are encrypted with a symmetric key k. The publisher then encrypts k with

its public key and attaches it to the message. The brokers forward the events based

on the fields left unencrypted and a proxy service changes the encryption of k to an

encryption with the public key of the subscriber. This solution achieves partially P2

encrypting only specific fields but not the entire event. Properties P3 and P4 are

not addressed because events are forwarded based on unencrypted event fields and

filters. Key management is scalable and does not require publishers and subscribers

to share a key, hence achieving P1.

Raiciu et al. [Raiciu 2006] target simultaneous event and filter confidentiality.

The method primarily encrypts only the attribute value. The name of the attribute

can be hidden by concatenating it with the attribute type and size and then hashing

it (P2 and P3 can be achieved). Publishers and subscribers are required to share

a group key (P1 is not achieved) which is used to encrypt events and filters. The

subscriber uses the shared key to “garble” the circuit representation of the sub-

scription function. The publisher encrypts the event in a way compatible with the

subscriber’s circuit. The broker inputs the encrypted event to the subscription cir-

cuit in order to check if there is match. The method can support equality filtering,

range matching and keyword matching (P4 is partially achieved).

Srivatsa et al. [Srivatsa 2007] propose a specific hierarchical key management

scheme that achieves confidentiality of events (P2) and filters (P3). A trusted

centralized authority distributes encryption keys to publishers and authorization

keys to subscribers. To support range matching, keys are organized in a hierarchical

structure, each key corresponding to an interval. An authorization key corresponds

to a filter and is able to derive the encryption key for an event that matches the

filter. Because all publishers and subscribers obtain the same keys, unsubscription

requires rekeying. At specific time intervals, keys are regenerated and subscriptions

need to be reconfirmed, which is the main disadvantage of this method. Property P1

is thus not achieved. Each event has a routable topic attribute which is encrypted

using an encrypted search technique. To prevent dictionary attacks on the events,

the routable attributes are tokenized and transformed in pseudo-random chains.

The approach is vulnerable to inference attacks which use information about the

frequency at which events are published to learn information about an event. To

prevent these attacks, a probabilistic multi-path event routing scheme is proposed

at the cost of extra overhead. This method supports routing based on only one

keyword (the topic), hence not achieving P4. It is possible to express inequality

conditions but they can only be checked at the subscriber side and not by the

brokers. When the subscriber receives an event matching the expressed topic, the

authorization key of the subscriber will allow deriving a correct decryption key only

if the numerical value of the attribute is in the range specified by the subscriber.

Shikfa et al. [Shikfa 2009] propose a solution based on multiple layer commuta-

24 Chapter 3. A Basic Confidentiality Scheme

tive encryption that achieves content and filter confidentiality (P2 and P3). The

method uses a local key management in which each node needs to share a secret

key with the immediate r neighbours. This has the advantage that if a subscriber

leaves the system, only local keys need to be revoked. However, this solution re-

quires managing a large number of keys and does not adapt well to network changes.

For example, in a pub/sub system with a single broker, each publisher would need

to share a key with each subscriber and an event will need to be encrypted for each

possible subscriber. Thus key management is not scalable and P1 is not achieved.

To avoid collusion attacks, r can be set as big as necessary. If r consecutive nodes

collude, they can decrypt their children’s subscriptions, but not the subscriptions

of other nodes. Events and filters contain only one keyword. Encrypted routing

tables are created for a single keyword and the matching operation is basically an

equality test (P4 is not achieved).

Chen et al. [Chen 2010] target information (P2) and subscription (P3) confi-

dentiality and use symmetric encryption to achieve this goal. Their scheme requires

the publisher to distribute a secret key k and a random number r to all subscribers.

The random r is added to numerical values by both publisher and subscribers in

order to hide the real values from the brokers. This method has the drawbacks that

it requires a publisher to establish contact with all subscribers and to redistribute

keys and re-encrypt subscriptions every time a subscriber leaves the system (P1 is

not achieved). The scheme can express equalities of numerical and non-numerical

attributes, and numerical comparisons. The paper targets only filters with single

constraint (P4 is partially achieved).

Nabeel et al. [Nabeel 2009] propose a scheme based on Pedersen commitment

and Pailier homomorphic encryption to achieve blinding of attribute values in noti-

fications and filters. The scheme supports only equality of strings and numerical at-

tributes and inequalities of numerical attributes, hence P4 is only partially achieved.

Because the attribute names are left unencrypted, P2 and P3 are only partially

achieved. In order to register a filter, subscribers need to register themselves first

with the publisher to obtain a private key k for decrypting the message content

(encrypted with symmetric encryption) and secret values used to blind attribute

values. Publishers use the counterparts secrets to encrypt the events. Because the

scheme requires publishers and subscribers to share keys, P1 is not achieved.

Choi et al. [Choi 2010] propose a scheme based on Asymmetric Scalar-product

Preserving Encryption which allows comparing the distance between a data point

and a query point with the distance between the same query point and another

data point. This allows brokers to check equality and inequality conditions without

learning the values of the attributes (P2 and P3 are achieved). The scheme supports

equality, inequality, range and conjunction filtering (P1 is partially achieved). The

scheme requires that publishers and subscribers share a secret which is used for

encrypting numerical values, hence P4 is not achieved.

Maji & Bagchi [Maji 2012] propose v-CAPS, a confidentiality preserving routing

protocol. The main drawback of this solution is that it requires subscribers to

contact publishers and send them their subscription filters. Hence, property P1 is

3.4. Background on security mechanisms 25

not achieved, and P3 is only partially achieved as publishers learn the interests of

subscribers. Furthermore, publishers are required to compute the filters matched by

their events and also compute covering relations between filters, usually the task of

the brokers. For each event, publishers compute a receiver vector (RV) containing

the IDs of the filters that match the event. The RVs are encrypted using the

encrypted search technique from [Song 2000b]. The solution achieves confidentiality

of events (P1) and complex filters (P4) but is not scalable nor generally applicable.

Table 3.1: Properties achieved by current confidentiality schemes.

P1: Scalable
Key Manage-
ment

P2: Publica-
tion Confiden-
tiality

P3: Subscrip-
tion Confiden-
tiality

P4: Complex
Encrypted
Filtering

[Khurana 2005] Yes Partially No No

[Raiciu 2006] No Yes Yes Partially

[Srivatsa 2007] No Yes Yes No

[Shikfa 2009] No Yes Yes No

[Chen 2010] No Yes Yes No

[Nabeel 2009] No Partially Partially Partially

[Choi 2010] No Yes Yes Yes

[Maji 2012] No Yes Partially Yes

Table 3.1 summarizes which of the P1 -P4 properties are satisfied by each of

the surveyed schemes. None of the solutions provides all the properties at the

same time. We observe that in order to provide confidentiality of events and filters,

current solutions limit the expressiveness of the filter. If more complex filters are

allowed, confidentiality is provided only for specific attributes. Moreover, most

solutions require publishers and subscribers to share a group key which hampers

the loose coupling and scalability of the pub/sub model. Our goal is to propose

a solution that can achieve both confidentiality of event and filters and complex

filters while keeping key management and event routing scalable.

3.4 Background on security mechanisms

This section provides background information on the techniques used in our so-

lution. We are particularly interested in encryption schemes that do not require

publishers and subscribers to share keys such as proxy encryption, and in encrypted

search techniques that possess the same property.

3.4.1 Proxy encryption

Proxy encryption techniques [Canetti 2007] rely on a proxy server to transform a

ciphertext encrypted under A’s key into a ciphertext of the same message that can

be decrypted by B’s key. While performing the transformation, the proxy server

does not learn the content of the message. Such schemes do not require A and B

to share keys.

In the following we give the details of a concrete proxy encryption construc-

tion from [Dong 2008a]. The scheme consists of five algorithms: an initialization

26 Chapter 3. A Basic Confidentiality Scheme

algorithm PE–Init, a key generation algorithm PE–KeyGen, a user side encryption

algorithm PE–Enc–U, a proxy side re-encryption algorithm PE–Enc–S, a proxy pre-

decryption algorithm PE–Dec–S, and a user side decryption algorithm PE–Dec–U.

The initialization algorithm PE–Init is run by a trusted Key Authority (KA) and

generates the public and master secret keys as shown in Algorithm 1. The public

parameters pk are distributed to the users and proxy server, while the master secret

key mk is stored securely by the KA.

Algorithm 1 PE-Init

Input: A security parameter 1k.

Output: The public parameters pk and the master secret key mk.

1: Generate two prime numbers p and q such that q = (p− 1)/2 and |q| = k.

2: Generate a cyclic group G with generator g such that G is the unique order q subgroup

of Z∗p.
3: Choose x uniformly at random from Z∗q and compute h = gx.

4: pk ← (G, g, q, h)

5: mk ← x

6: return (pk,mk).

For each new user, the KA runs PE–KeyGen(x, i) as shown in Algorithm 2, where

i is the identity of the user. The KA securely distributes the user side key xi1 to

the user and (i, xi2) to the proxy server.

Algorithm 2 PE-KeyGen: Key generation for a new user.

Input: The public key pk, the master secret key mk = x and the user identity i.

Output: The client side key xi1 and the broker side key set (i, xi2).

1: Choose a random xi1 from Zp.
2: xi2 ← x− xi1
3: return xi1 and (i, xi2).

Figure 3.1 provides an overview of how a message encrypted with the key of

user i is transformed by the proxy server and decrypted with the key of user j.

PE-Enc-Um PE-Enc-S

1ix

PE-Dec-S PE-Dec-U

User i User jProxy Server

2ix 2jx 1jx

m

Figure 3.1: Proxy encryption, transformation and decryption.

In the following we give the details of these algorithms.

3.4. Background on security mechanisms 27

First, the user encrypts a message m using its unique key as shown in Algorithm

3.

Algorithm 3 PE-Enc-U: The user side proxy encryption.

Input: An element m, the public parameters pk = (G, g, q, h), and the user side key xi1.

Output: The ciphertext PEi(k).

1: Choose r randomly from Zq.
2: PEi(m)← (gr, grxi1m)

3: return PEi(m).

The server re-encrypts the ciphertext computed by the user using the other side

of the key.

Algorithm 4 PE-Enc-S: Server re-encryption.

Input: The ciphertext PEi(m), the public parameters PKSE = (G, g, q, h), and the broker

side key (i, xi2) for user i.

Output: The ciphertext PE(m).

1: Compute (gr)xi2 · grxi1m = gr(xi1+xi2)m = grxm.

2: PE(m)← (gr, grxm)

3: return PE(m).

The server can pre-decrypt any message encrypted by any user such that it can

be decrypted only by user i as shown in Algorithm 5.

Algorithm 5 PE-Dec-S: Server pre-decryption.

Input: The encrypted element PE(m) = (gr, grxm) and the server side key set (i, xx2)

corresponding to user i.

Output: The server pre-decrypted element di(m) that only can be decrypted by user i.

1: Compute grxm · (gr)−xi2 = gr(x−xi2)m = grxi1m.

2: di(m)← (gr, grxi1m)

3: return di(m).

User i finalises the decryption using its unique key.

Algorithm 6 PE-Dec-U: User decryption.

Input: The pre-encrypted element di(m) = (gr, grxi1m) and the user key xi1.

Output: The plaintext m.

1: m← grxi1m · (gr)−xi1

2: return m.

3.4.2 Multi-user encrypted search

To preserve the decoupling of publishers and subscribers, we require an encrypted

search technique that allows multiple users to encrypt data and perform queries

28 Chapter 3. A Basic Confidentiality Scheme

on the data without sharing keys. The main idea is that users are able to en-

crypt and decrypt messages, and make encrypted queries, while the server performs

computations on the encrypted data, without learning the content of the messages

or the queries. Many single-user encrypted search techniques have been proposed

[Song 2000b, Golle 2004a, Katz 2008] which can support keyword search or con-

junction of keywords. The disadvantage is that in order to support multiple users,

the users would need to share keys.

More recently, multi-user encrypted search methods were introduced [Bao 2008,

Dong 2008a] that allow single keyword searches. With these schemes, each user has

its own pair of secret keys which can be revoked when the user leaves the system.

The solution of [Dong 2008a] is more efficient and has a practical implementation.

In our scheme, we will extend this solution to support more complex queries such

as conjunctions and disjunctions of equalities and inequalities. The searchable data

encryption (SDE) scheme from [Dong 2008a] allows an untrusted server to perform

keyword searches on data without revealing the data or the keywords to the server.

To allow encrypted searches, users define a set of keywords for each document

and encrypt them using a PE-based keyword encryption scheme. To search for

documents containing a particular keyword, a user computes a trapdoor for the

keyword. The trapdoor is used by the server to test the encrypted keywords of the

stored document. In this way, the server can identify a match without learning the

keyword.

We give in the following the details of the main algorithms of SDE: SDE–Init,

SDE–KeyGen, KE–Enc–U, KE–Enc–S, Trap–U, Trap–S and SDE–Match. Figure 3.2

gives an overview of how these algorithms are used to match a keyword kwi com-

puted by user i against a trapdoor for word kwj computed by user j.

The initialization method SDE–Init is run by the KA once at setup.

Algorithm 7 SDE-Init

Input: A security parameter 1k.

Output: The public parameters PKSE and the master secret key MKSE .

1: Run PE–Init to generate the public parameters (G, g, q, h) and master secret key x.

2: Choose a collision-resistant hash function H.

3: Choose a pseudorandom function f .

4: Choose a random key s for f .

5: PKSE ← (G, g, q, h,H, f)

6: MKSE ← (x, s)

7: return (PKSE ,MKSE).

For each new user i, the KA computes a unique key set Kui and a corresponding

server-side key set Ksi as shown in Algorithm 8.

3.4. Background on security mechanisms 29

Algorithm 8 SDE-KeyGen: Key generation for each new user.

Input: The master secret key MKSE and the user identity i.

Output: The client side key set Kui and the broker side key set Ksi.

1: Choose a random xi1 from Zp.
2: xi2 ← x− xi1
3: Kui ← (s, xi1)

4: Ksi ← (i, xi2)

5: return (Kui,Ksi).

KE-Enc-Uikw KE-Enc-S

1ix

Trap-S Trap-U

User i User jProxy Server

2ix 2jx 1jx

jkw

SDE-Match

Figure 3.2: Encrypted keyword match by an untrusted server.

After encrypting the content of a document using PE–Enc–U, the user encrypts

the keywords of the document using KE–Enc–U.

Algorithm 9 KE-Enc-U: The user side keyword encryption

Input: Keyword w, the user side key set Kui = (s, xi1) of user i, and the public parameters

PKSE = (G, g, q, h,H, f).

Output: The client encrypted element KEi(w).

1: Choose a random rw from Z∗q .
2: σw ← fs(w)

3: ĉ1 ← grw+σw

4: ĉ2 ← ĉxi1
1

5: ĉ3 ← H(hrw)

6: KEi(w)← (ĉ1, ĉ2, ĉ3)

7: return KEi(w).

The server re-encrypts the document using PE–Enc–S and the keywords using

KE–Enc–S as shown in Algorithm 10.

30 Chapter 3. A Basic Confidentiality Scheme

Algorithm 10 KE-Enc-S: Server side keyword re-encryption.

Input: The client encrypted keyword KEi(w) = (ĉ1, ĉ2, ĉ3) and the server side key set

Ksi = (i, xi2) corresponding to user i.

Output: The server re-encrypted keyword KE(w).

1: c1 ← (ĉ1)xi2 · ĉ2 = ĉxi1+xi2
1 = (grw+σw)x = hrw+σw

2: c2 ← ĉ3
3: KE(w)← (c1, c2)

4: return KE(w).

To perform a search on documents encrypted by any user in the system, a user

j encrypts a keyword as a trapdoor using Trap–U.

Algorithm 11 Trap-U: The user side trapdoor encryption.

Input: A keyword w, the public parameters PKSE = (G, g, q, h,H, f), and the user side

key Kuj = (s, xj1).

Output: The trapdoor for the keyword TDj(w).

1: Choose a random rw from Zq.
2: σw ← fs(w)

3: td1 ← g−rwgσw

4: td2 ← hrwg−xj1rwgxj1σw = g(x−xj1)rwgxj1σw = gxi2ragxi1σw

5: return TDj(w) = (td1, td2).

The server re-encrypts the trapdoor of the user using Trap–S.

Algorithm 12 Trap-S: The server side trapdoor re-encryption.

Input: The trapdoor TDj(w) = (td1, td2) and the server side key Ksj = (j, xi2) for user j.

Output: The re-encrypted trapdoor TD(w).

1: Compute td
xjs

2 · td2 = (g−rwgσw)xj2 · gxj2rwgxj1σw = g(xj1+xj2)σw = gxσw = hσw .

2: TD(w)← hσw

3: return TD(w).

The server can now perform the match between a re-encrypted keyword and

trapdoor.

Algorithm 13 Match: Single keyword match.

Input: A server re-encrypted keyword KE(a) = (c1, c2), a server re-encrypted trapdoor

TD(b) and public parameters PKSE .

Output: true or false.

1: if c2
?
= H(c1 · TD(b)−1) then

2: return true

3: else

4: return false

5: end if

3.5. Proposed solution 31

3.5 Proposed solution

In the following, we discuss in details our scheme for providing confidentiality in

pub/sub systems.

3.5.1 Assumptions

We assume that an event E consists of: (i) the message M that represents the

content of the event and (ii) a set of attributes ai that characterise M and are

used for event filtering by the brokers. An attribute can be a string (e.g., “fi-

nancial news”), or have the form attr name=attr value, where attr value can be

either a string or a number. Filters represent conjunctions and disjunctions of

attributes, equalities of the form attr name=attr value and numerical inequalities

such as attr name op attr value, where op can be one of ≤, <,≥, and >. Cur-

rent content-based pub/sub systems use a similar model. For example, in JMS

[Hapner 2002] events consist of a message body, and a header defining properties in

the form prop name=value. Subscribers can define constraints on the values of the

properties. In Siena [Carzaniga 2001], an event consists of (attribute, value) pairs.

To encrypt such an event with our method, we assume the content M consists of

the (attribute, value) pairs, so M simply contains all attributes ai.

To provide confidentiality of the event, both M and the attributes ai need to

encrypted. The content M needs to be encrypted by the publisher and decrypted by

all the authorised subscribers, without requiring publishers and subscribers to share

keys (P1). Brokers forwarding the event from publishers to subscribers should not

be able to access M . The attributes ai describe the event and are used by brokers

to match the event against registered filters. Hence, attributes and filters need to

be encrypted by publishers and subscribers in such a way that brokers are able

to evaluate encrypted filters using the encrypted attributes and without learning

what they are. In the following we give the details and discuss a basic solution for

confidentiality of events and filters.

3.5.2 Solution overview

In the following we propose a solution that addresses threat model 1: honest-

but-curious and provides properties P1 (Scalable key management), P2 (Publica-

tion confidentiality), P3 (Subscription confidentiality), and P4 (Complex encrypted

matching).

Proxy encryption (PE) has the property that it allows full decoupling of the

communicating parties. In PE, each user (publisher or subscriber in our case)

has a private key that allows it to encrypt and decrypt messages. To publish a

message, a publisher needs to encrypt it just once with its private key. Before the

message is delivered to a particular subscriber, the broker performs a re-encryption

of the message so that the message can be decrypted by the subscriber with its

private key. Hence, if an event matches n filters, the publisher needs to encrypt

it just once, and the brokers will need to perform n re-encryptions, one for each

32 Chapter 3. A Basic Confidentiality Scheme

subscriber. The advantage of this method is that the publishers and subscribers

do not need to share keys. To encrypt the message M , we use the El Gamal-based

proxy encryption scheme from [Dong 2008a] and described in algorithms PE–Enc–U

and PE–Enc–S.

Providing encrypted filtering can be seen as a problem of encrypted search. The

broker needs to verify if a list of attributes attached to the event match a complex

encrypted filter. Current solutions for pub/sub systems [Chen 2010, Nabeel 2009,

Choi 2010] which achieve filters more complex than keyword search, require publish-

ers and subscribers to share secret keys. On the other hand, multi-user encrypted

search techniques [Dong 2008a, Bao 2008] which do not require users to share keys,

only provide keyword search.

In order to support complex filters without requiring publishers and subscribers

to share keys, we represent filters as tree access structures [Bethencourt 2007] ca-

pable of expressing conjunctions and disjunctions of equalities and inequalities, and

encrypt the leaf nodes of the tree with SDE. In the following, we show the steps

that are performed in our scheme.

3.5.3 Initialization

The initialization algorithm SDE–Init is run by a trusted Key Authority (KA)

once at setup and defines the public and private security parameters for SDE as

shown in Algorithm 7. The KA publishes the public parameters PKSE , and keeps

securely the master secret key MKSE .

For every new user (publisher or subscriber), the KA runs

SDE–KeyGen(MKSE , i) as shown in Algorithm 8, where i is the identity of

the user. The algorithm generates the user side secret key Kui and the correspond-

ing server side key Ksi. The KA securely distributes Kui to the user and Ksi to

the local broker of the user.

3.5.4 Event encryption

Figure 3.3 shows the event encryption steps, run by a publisher p. The publisher

first defines a set of attributes γ = {a1, ..., an} and the content M of the event to

be encrypted. It then encrypts the event following these steps:

1. The publisher p encrypts the message content M :

• Generate a random AES encryption key k.

• Encrypt M under k using AES as cAES(M)← AES–Enc(M,k).

• Encrypt k using proxy encryption as

PEp(k)← PE–Enc–U(k, PKSE ,Kup)

• cp(M)← (PEp(k), cAES(M)).

3.5. Proposed solution 33

We note that the actual message M is encrypted with AES, and the key is

encrypted using proxy encryption. Encrypting the whole message with PE

would be too inefficient.

2. The publisher encrypts the attributes. For every attribute a ∈ γ, the publisher

computes a trapdoor TDp(a) ← Trap–U(Kup, a). Trapdoors do not allow

recovering the attribute through decryption, but instead they are only used

to check keyword equality without gaining any information about the matched

keywords.

3. The publisher sends the encrypted message together with the attribute trap-

doors to the broker: Ep = (cp(M), {TDp(a)}a∈γ).

4. The broker locates the key Ksp = (p, xp2) corresponding to the publisher and

re-encrypts the message:

• PE(k)← PE–Enc–S(PEp(k),Ksp)

• c(M)← (PE(k), cAES(M))

5. The broker re-encrypts the trapdoors. For each trapdoor TDp(a), the broker

computes TD(a)← Trap–S(TDp(a),Ksp).

The re-encrypted event becomes: E = (c(M), {TD(a)}a∈γ)).

Publisher

Broker

PE-Enc-S

},...,{ 1 naa=γ

Trap-U

))}({),((γ∈= aaTDMcE

)(kPE p

))}({),((γ∈= appp aTDMcE

(1) (2)

(3)

(4)

PE-Enc-U

(5) Trap-S

γ∈ap aTD)}({

)(kPE p)(aTDp

))(),(()(MckPEMc AES=)(aTD

upK upK

k

AES-Enc

Mk

)(McAES

)(Mcp

γ∈a

spK spK

Figure 3.3: Event encryption with Proxy Encryption.

34 Chapter 3. A Basic Confidentiality Scheme

3.5.5 Filter encryption

The filter encryption algorithm makes use of the keyword encryption scheme of SDE.

KE–Enc–U (see Algorithm 9) encrypts the keyword on the user side, and KE–Enc–S

(see Algorithm 10) re-encrypts the keyword on the server side. Later, during event

matching, the broker will check if keywords encrypted with these algorithms match

the attributes previously encrypted as trapdoors.

Figure 3.4 shows the main steps for generating and encrypting the filter.

1. The subscriber defines the filter as an access tree F where numeric inequalities

are expanded using the bit representation.

2. To provide confidentiality of the filter, the subscriber encrypts each leaf node

x as KEs(x)← KE–Enc–U(Kus, PKSE).

3. The subscriber sends the encrypted filter Fs to the broker. The broker locates

the key Kss corresponding to the subscriber and re-encrypts the leaf-node

attributes of Fs. For each leaf node KEs(a), the broker computes KE(a)←
KE–Enc–S(Kss,KEs(a)). We call the re-encrypted filter F ∗.

The above operations provide confidentiality of the filter, thus achieving prop-

erty P2. At the same time, the filter is able to express conjunctions and disjunctions

of equalities and inequalities, thus achieving property P3.

Subscriber

KE-Enc-U

Broker

KE-Enc-S

},...,{: 1 maaF

)(aKEs

sF

(1)

(2)

(3)

usK

ssK

)(Fattrsa ∈

)(aKEs

Figure 3.4: Filter generation and encryption.

3.5.6 Encrypted matching

The encrypted matching algorithm relies on the keyword matching algorithm

SDE–Match of SDE which is only able to match single keywords as shown in Algo-

rithm 13.

3.5. Proposed solution 35

Algorithm 14 TreeEval: Access Tree Evaluation

Input: A node x of the re-encrypted tree F ∗, and the trapdoors {TD(a)}a∈γ of the re-

encrypted event E.

Output: true or false.

1: if x is a leaf node then

2: for all trapdoors TD(a) do

3: if SDE–Match(TD(a), attr(x)) then

4: return true

5: end if

6: end for

7: else

8: l = 0

9: while l < threshold(x) do

10: for all children c of x do

11: if TreeEval(c, {TD(a)}a∈γ) then

12: l++

13: end if

14: end for

15: end while

16: if l = threshold(x) then

17: return true

18: end if

19: end if

20: return false

When a new event E is published, for every filter F ∗ the broker runs a recursive

algorithm TreeEval (see Algorithm 14) on the tree F ∗ starting with the root node to

check if it is satisfied by the attributes of the event. A non-leaf node x is satisfied

if the number or satisfied children is equal or greater than kx, the threshold value

of the node. A leaf node containing an attribute b encrypted as KE(b) = (cb1, cb2)

is satisfied if b is among the attributes of the event, encrypted as {TD(a)}a∈γ . To

check if a leaf node attribute b matches an event attribute a, the broker needs to

verify if SDE–Match(KE(b), TD(a)) returns true.

3.5.7 Event decryption

If the filter F ∗ is satisfied, before forwarding the event E to the subscriber s that

registered the filter, the broker pre-decrypts the event such that only s can decrypt

it using its secret key.

The event decryption makes use of the following algorithms from SDE:

PE–Dec–S (see Algorihtm 5) run on the broker side to pre-decrypt an element

encrypted with PE such that it can be decrypted only by the key of a user i, and

PE–Dec–S (see Algorithm 6) run by user i to retrieve the plaintext. The server on

its own cannot decrypt the message.

The event decryption algorithm proceeds as follows and as shown in Figure 3.5:

1. Before sending the event to the subscriber s, the broker pre-decrypts

36 Chapter 3. A Basic Confidentiality Scheme

PE(k) such that it can only be decrypted by subscriber s: ds(k) ←
PE–Dec–S(PE(k),Kss). It then sets cs(M)← (PEs(k), cAES(M)).

2. The broker forwards the ciphertext cs(M) to subscriber s.

3. After receiving the ciphertext, the subscriber decrypts it:

• Decrypt the key: k ← PE–Dec–U(ds(k),Kus)

• Decrypt the message: M ← AES–Dec(cAES(M), k)

Broker

Subscriber

))(),(()(MckPEMc AES=

)(kPE

PE-Dec-S

)(kds

PE-Dec-U

(1)

(3)

ssK

usK

))(),(()(MckdMc AESss =(2)

k AES-Dec

)(McAES

M

)(kds

Figure 3.5: Event decryption.

3.6 Security analysis

This section evaluates the security of the scheme. We start by introducing some

concepts needed to understand the analysis and then discuss the security of the

filter encryption and event encryption.

3.6.1 Preliminaries

We start by defining some concepts that are useful to understand the proof. In

general a scheme is considered secure if no adversary can break the scheme with

probability significantly greater than random guessing. The adversary’s advantage

in breaking the scheme should be a negligible function of the security parameter.

Definition 5 (Negligible Function). A function f is negligible if for each polynomial

p() there exists N such that for all integers n > N it holds that f(n) < 1
p(n) .

3.6. Security analysis 37

We consider a realistic adversary that is computationally bounded and show

that our scheme is secure against such an adversary. We model the adversary as a

randomized algorithm that runs in polynomial amount of time and show that the

success probability of any such adversary is negligible. An algorithm that is ran-

domized and runs in polynomial amount of time is called a probabilistic polynomial

time (PPT) algorithm.

Our scheme relies on the existence of a pseudorandom function f . Intuitively, the

output a pseudorandom function cannot be distinguished by a realistic adversary

from that of a truly random function. Formally, a pseudorandom function is defined

as:

Definition 6 (Pseudorandom Function). A function f : {0, 1}∗×{0, 1}∗ → {0, 1}∗
is pseudorandom if for all PPT adversaries A, there exists a negligible function negl

such that:

|Pr[Afk(·) = 1]− Pr[AF (·) = 1]| < negl(n)

where k → {0, 1}n is chosen uniformly randomly and F is a function chosen uni-

formly randomly from the set of functions mapping n-bit strings to n-bit strings.

Our proof relies on the assumption that the Decisional Diffie-Hellman (DDH)

is hard in a group G, i.e., it is hard for an adversary to distinguish between group

elements gαβ and gγ given gα and gβ.

Definition 7 (DDH Assumption). The Decisional Diffie-Hellman (DDH) problem

is hard regarding a group G if for all PPT adversaries A, there exists a negligible

function negl such that |Pr[A(G, q, g, gα, gβ, gαβ) = 1]− Pr[A(G, q, g, gα, gβ, gγ) =

1]| < negl(k) where G is a cyclic group of order q (|q| = k) and g is a generator of

G, and α, β, γ ∈ Zq are uniformly randomly chosen.

The schemes we are using in our solution (i.e., PE, KE) have been proven to

be indistinguishable under chosen plaintext attack (IND-CPA) and we will prove

that our scheme is also IND-CPA secure. A cryptosystem is considered IND-CPA

secure if no PPT adversary, given an encryption of a message randomly chosen from

two plaintext messages chosen by the adversary, can identify which message was

encrypted with non-negligible probability.

Event Encryption Filter Encryption

)(),....,(1 naTDaTD
)KE(l),....,KE(l m1

M

PE
+

Figure 3.6: Event and filter encryption.

38 Chapter 3. A Basic Confidentiality Scheme

3.6.2 Scheme overview

Figure 3.6 shows the different encryption schemes that are used to provide confi-

dentiality of events and filters.

To ensure confidentiality of events, our scheme encrypts the message content

M with proxy encryption (PE) and filter attributes using the keyword encryption

algorithm of SDE. [Dong 2011] proves that the concrete PE construction and the

single keyword encryption scheme KE built upon El Gamal are IND-CPA under the

assumption the DDH problem is hard relative to the group on which El Gamal is

defined. In the following we show that the filter encryption and event encryption

schemes are also IND-CPA secure. We show that breaking our scheme reduces

to breaking the above cryptosystems (i.e., PE, KE) that have been proven to be

IND-CPA secure.

3.6.3 Security of filter encryption

Our filter encryption scheme FE uses the single keyword encryption scheme KE of

SDE to encrypt the leaf nodes of the tree. We recap bellow the operations needed

to encrypt a filter:

• SDE–Init(k) The KA generates the public key PKSE = (G, g, q, h,H, f), and

the master secret key MKSE = (x, s).

• SDE–KeyGen(MK, i) The KA gives to user i the key Kui = (xi1, s) and to the

broker Ksi(i, xi2).

• FE–U(F) On every leaf node l of the filter, the user calls KE–Enc–U(l,Kui)

and computes KEi(l).

• FE–B(F) The broker re-encrypts every leaf node by calling

KE–Enc–S(KEi(l),Ksi) to compute KE(l).

In the following we prove that the filter encryption scheme is secure in the sense

that the broker learns nothing about the encrypted leaf nodes in a chosen plaintext

attack.

[Dong 2011] showed that the single keyword encryption scheme KE is IND-CPA

secure against the broker and proved that the following holds:

Theorem 1. If the DDH problem is hard relative to G, then the keyword encryption

KE scheme is IND-CPA secure against the broker. That is, for all PPT adversaries

A there exists a negligible function negl such that:

SuccAKE,B(k) = Pr


b′ = b

∣∣∣∣∣∣∣∣∣∣∣∣∣

(PKSE ,MKSE)← SDE–Init(1k)

(Ku,Ks)← SDE–KeyGen(MKSE , U)

kw0, kw1 ← AKE–Enc–U(Ku,·)(Ks)

b
R←− {0, 1}

KEi(kwb) = KE–Enc–U(Ku, kwb)

b′ ← AKE–Enc–U(Ku,·)(Ks,KEi(kwb))


< 1

2 + negl(k)

(3.1)

3.6. Security analysis 39

where U is a set of user IDs, Ku are the user side key sets, Ks are the broker side

keys.

Using this result, we now show that our filter encryption scheme FE using KE

to encrypt the leaf nodes of the tree is also IND-CPA against the broker.

Theorem 2. If the single keyword encryption KE scheme is IND-CPA secure

against the broker, then the filter encryption scheme FE is also IND-CPA. That

is, for all PPT adversaries A, there exists a negligible function negl such that

SuccAFE,B(k) < 1
2 + negl(k).

Proof. To prove FE is secure, we define the following game in which the adversary

A challenges the game with two filters F0 and F1 having the same structure and

the same number of leaf nodes t. We construct the following vector containing the

encryption of leaf nodes from both filters: ~C(i) = C(l10), ..., C(li0), C(li+1
1), ..., C(lt1).

The success probability of the adversary in distinguishing the encryption of the two

filters is defined as:

SuccA(k) =
1

2
Pr[A(~C0) = 0] +

1

2
Pr[A(~Ct) = 1] (3.2)

In the following we show that breaking the FE scheme reduces to breaking the

KE game. In the KE game from [Dong 2011], the adversary challenges the game

with two keywords kw0 and kw1 and tries to distinguish between their encryptions.

Let us consider a PPT adversary A′ who attempts to challenge the single keyword

encryption scheme KE using the corresponding FE adversary A as a sub-routine

The game is the following:

• A′ is given the parameters (G, q, g, h,H, f) as input and for each user i is

given Ksi = (i, xi2).

• A′ passes these parameters to A.

• A generates two filters F0 and F1 having the same non-leaf nodes and the

same number of leaf-nodes t and gives them to A′.

• A′ chooses i
r←− [1, t]. It then uses li0, l

i
1 to challenge the single keyword en-

cryption KE game. The adversary gets back cib as the result, where cib is the

encryption of either li0 or li1. A′ uses this result to construct a hybrid vector

(c1
0, ..., c

i−1
0 , cib, c

i+1
1 , ..., ct1) and sends it to A.

• A′ outputs b′, the bit output by A.

A is required to distinguish ~C(i) and ~C(i−1) and the probability of A’s success

in distinguishing correctly is:

SucciA(k) =
1

2
Pr[A(~C(i)) = 0] +

1

2
Pr[A(~C(i−1)) = 1] (3.3)

40 Chapter 3. A Basic Confidentiality Scheme

Because i is randomly chosen, it holds that:

SuccA′(k) =
∑t

i=1 Succ
i
A(t) · 1

t

= 1
2tPr[A(~C0) = 0] +

∑t−1
i=1(Pr[A(~Ci) = 0]

+Pr[A(~Ci) = 1]) + 1
2Pr[A(~Ct) = 1]

= 1
t (

1
2Pr[A(~C0) = 0] + 1

2Pr[A(~Ct) = 1]) + t−1
2t

= 1
tSuccA(k) + t−1

2t

(3.4)

Because the success probability of A′ to break the single keyword encryption

scheme is SuccA′(k) < 1
2 + negl(k), it follows that SuccA(k) < 1

2 + negl(k).

3.6.4 Security of event encryption

The main task of a broker in a pub/sub system is to match incoming events against

stored filters. Though both events and filters are encrypted, the protocol leaks to

the broker the outcome of the matching operation, which events match which filters,

and the pattern of the sequence of events and filters arriving at the broker. In the

following we show that our basic scheme does not leak anything beyond this.

We adapt the definition of non-adaptive indistinguishability security introduced

for encrypted databases by [Curtmola 2006a] and adapted by [Dong 2011] in a

multi-user setting. As opposed to encrypted databases where the server stores

the data and executes queries as they come, a broker in a pub/sub system stores

the filters (i.e., the queries) and evaluates all of them on a given event (i.e., a data

item). For our proof we use the same idea as in [Curtmola 2006a, Dong 2011] and

show that given two non-adaptively generated histories with the same length and

outcome, no PPT adversary can distinguish one from another based on what it

can observe from the interaction. Non-adaptive history means that the adversary

cannot choose sequences of events based on previous events and matching outcomes.

In our protocol, a history is represented by the interactions between a broker

B and all publishers and subscribers connected to the broker, i.e., a history is a

sequence of events and filters arriving at the broker. We will refer in the following

to these as requests.

Definition 8 (History). A history Hi is an interaction between a broker and all

publishers and subscribers connected to it, over i requests (event publication or filter

subscription), on a set of filters F stored by the broker. Hi = (F , ru11 , ..., ruii), where

ui are the identifiers of the users (publishers or subscribers) making the requests

(publications or subscriptions).

We formalize the information leaked to a broker as a trace. We define two kinds

of traces: the trace of a single request and the trace of a history. The trace of

an event publication request leaks to the broker (i) the list of filters that match

a given event, and (ii) which event attribute matches which leaf node in the fil-

ters. The outcome of the event matching operation can be represented as a set

of filter IDs that match the event, a list of event attribute trapdoors, and for

3.6. Security analysis 41

)}TD(a,)TD(a{c(M),E 21=

Fi

Fj

li1 li2

lj1 lj2 lj3

∨

∧

Figure 3.7: Event matching against two filters. TD(a1) matches li1 and lj2.

each trapdoor, a list of indexes pointing to filter leaf nodes matching the trap-

door. The encryption of filter attributes is non-deterministic, meaning that equal

attributes encrypt to different ciphertexts due to the fact that a unique random

number is selected every time an attribute is encrypted. Because of this, all leaf

nodes in filters are different and the broker cannot tell if two leaf node cipher-

texts encrypt the same attribute or not. However, when the broker matches an

event against the filters, it can identify which filter attributes match the same trap-

door of an event. Formally, a trace of a publication request can be written as:

pt(E) = {id(F1), ..., id(Fm), |c(M)|, (TD(a1), indexk, ..., indexj), ...,

(TD(an), indexl, ..., indexv)}, where |c(M)| is the size of the ciphertext.

Figure 3.7 shows an event containing two attributes with their trapdoors TD(a1)

and TD(a2) and two filters registered on the broker Fi and Fj . Let us assume that

TD(a1) matches leaf nodes li1 of Fi and lj2 of Fj , and that TD(a2) does not match

any leaf nodes. In this case only filter Fi is satisfied. The trace of the event is

pt(E) = {Fi, |c(M)|, (TD(a1), li1, lj2), TD(a2)}.
A subscription request leaks to the server the tree structure of the filter, i.e.,

the internal nodes of the filter containing threshold gates such as AND and OR

conditions. We refer to the structure of F without any leaf node information as

struct(F).

Definition 9 (Trace of a Request). We define the trace of a request r as:

Tr(r) =

{
u, pt(E) if publication

u, id(F), struct(F) if subscription
(3.5)

where u is the id of the user.

We define the event filtering pattern P over a history Hi to be a binary ma-

trix with columns corresponding to events and rows corresponding to trapdoors.

P[j, k] = 1 if trapdoor j was present in event k and P[j, k] = 0 otherwise.

The trace of a history includes the encrypted filter set F stored by the broker

and which can change as filters are registered and deregistered, the trace of each

request (i.e., filter subscription or event publication), and the event publication

pattern Pi.

42 Chapter 3. A Basic Confidentiality Scheme

Definition 10 (Trace of a History). We define the trace of a history Hi =

(F , ru11 , ..., ruii) as:

Tr(Hi) = (F , T r(ru11), ..., T r(ruii),Pi) (3.6)

During an interaction, the adversary cannot see directly the plaintext of the

event, instead it sees the ciphertext. The view of a request is defined as:

Definition 11 (View of a Request). We define the view of a request tu11 under a

key set Kui as:

VKui(t
ui) =


c(M), pt(tui) if publication

struct(F) and leaf nodes {KEui(a1), ...,KEui(an)}
if subscription

(3.7)

Definition 12 (View of a History). We define the view of a history Hi =

(F , ru11 , ..., ruii) as:

VKu(Hi) = (F , VKu1(ru1), ..., VKui(r
ui)) (3.8)

The security definition is based on the idea that the scheme is secure if nothing

is leaked to the adversary beyond what the adversary can learn from traces.

We define the following game in which an adversary A generates two histories

Hi0 andHi1 with the same trace over i requests. Then the adversary is challenged to

distinguish the views of the two histories. If the adversary succeeds with negligible

probability, the scheme is secure.

Definition 13 (Non-adaptive indistinguishability against a curious broker). The

event encryption scheme is secure in the sense of non-adaptive indistinguishability

against a curious broker if for all i ∈ N and for all PPT adversaries A there exists

a negligible function negl such that:

Pr

b′ = b

∣∣∣∣∣∣∣∣∣∣∣

(PKSE ,MKSE)← Init(1k)

(Ku,Kb)← KeyGen(MKSE , U)

Hio,Hi1 ← A(Kb)

b
R←− {0, 1}

b′ ← A(Kb, VKu(Hib))

 <
1

2
+ negl(k) (3.9)

where U is a set of user IDs, Ku are the user side key sets, Ks are the broker side

keys, Hi1 and Hi0 are two histories over i requests such that Tr(Hi0) = Tr(Hi1).

Theorem 3. If the Decisional Diffie-Hellman (DDH) problem in hard relative to

G, then the basic confidentiality scheme is a non-adaptive indistinguishable secure

scheme. The success probability of a PPT adversary A in breaking the basic scheme

is defined as:

SuccA(k) = 1
2Pr[A((PE(~M0), FE(~F0), TD(~a0))) = 0]+

1
2Pr[A((PE(~M1), FE(~F1), TD(~a1))) = 1]

< 1
2 + negl(k)

(3.10)

3.6. Security analysis 43

Proof. We consider an adversary A′ that challenges the PE IND-CPA game

using A as a sub-routine. A′ does the following:

• A′ receives public parameters G, q, g and the server side (i, xi2) keys. It then

picks a random user ID u and queries the oracle with m = 1 to obtain the ci-

phertext (gr, grxu1). A′ then computes grxu1grxu2 = grx. It can then compute

for every user i, grxi1 = grxg−rxi2 because it knows xi2 = x− xx1.

• A′ computes g = gr and h = grx = gx and chooses H, f, s. A′ sends

(G, q, g, h,H, f) to A together with the server side keys.

• To generate a view of a historyHi = (F , qu11 , ..., quii). A′ performs the following

steps:

– For each filter F ∈ F , do the following: for each attribute b in F , choose

a random number z and compute ĉ1 = gz+σ, ĉ2 = (grxi1)z+σ = (gz+σ)xi1 ,

ĉ3 = H(hz) where σ = fs(b). Then compute (c1, c2) as c1 = ĉxi2 · ĉ2,

c2 = ĉ3. (c1, c2) is the ciphertext for attribute b.

– For each publication request rui = (M, {ai}), compute c(M) =

(gr̃, gr̃xM), where r̃ is random and for each attribute a compute

TD(a) = (td1, td2) such that td1 = g−ragσa and td2 = gxi2ragxi1σa , where

σa = fs(a). Then partially decrypt c′(M) = (gr̃, gr̃xui1M).

– For each subscription request qrui = F , for each attribute in F compute

(ĉ1, ĉ2, ĉ3).

• A outputs Hi0,Hi1. A′ encrypts every keyword and trapdoor in Hi1 by itself

and challenges the PE IND-CPA game with ~M0 and ~M1, the vectors of all event

messages in the two histories. It gets the result PE(~Mb) where b
R←− {0, 1}

and forms a view of a history (PE(~Mb),FE(~F1), TD(~a1)), where FE(~F1) is the

encryption of the leaf nodes of the filter trees and TD(~a1)) are the trapdoors

computed for all attributes of each event in the trace. It sends the view to A.

• A tries to determine which vector was encrypted and outputs b′ ∈ {0, 1}.

• A′ outputs b′.

[Dong 2011] proved that the El Gamal based PE scheme is IND-CPA. We proved

that the filter encryption scheme FE is also IND-CPA secure. From these two results

it follows that:

1
2 + negl(k) > SuccA

′
PE(k)

= 1
2Pr[A((PE(~M0), FE(~F1), TD(~a1))) = 0]+

1
2Pr[A((PE(~M1), FE(~F1), TD(~a1))) = 1]

(3.11)

Now let us consider another adversary A′′ who wants to distinguish the pseu-

dorandom function f using A as a sub-routine. The adversary does the following:

44 Chapter 3. A Basic Confidentiality Scheme

• It generates (G, q, g, h,H) as public parameters, and sends them to A along

with f . For each user i, it chooses randomly xi1, xi2 such that xi1 + xi2 = x.

It sends all (i, xi2) to A and keeps all (i, xi1, xi2).

• A outputs Hi0,Hi1. A′′ encrypts all the event messages in Hi0 as PE(~M0). It

chooses b
R←− {0, 1} and asks the oracle to encrypt all keywords and trapdoors

in Hib. It combines the results to form a view (PE(~M0), FE(~Fb), TD(~ab))

and returns it to A.

• A outputs b′. A′′ outputs 1 if b′ = b and 0 otherwise.

There are two cases to consider: Case 1: the oracle in A′′s game is the pseudo-

random function f , then:

Pr[A′′fs(.)(1k) = 1] =
1
2Pr[A((PE(~M0), FE(~F0), TD(~a0))) = 0]+
1
2Pr[A((PE(~M0), FE(~F1), TD(~a1))) = 1]

(3.12)

Case 2: the oracle in A′′s game is a random function F , then for each distinct

attribute a, σa is completely random to A. Moreover we know the traces are

identical, so KE(~Fb) and TD(~ab) are completely random to A. In this case:

Pr[A′′fs(.)(1k) = 1] =
1

2
(3.13)

Because f is a pseudorandom function, by definition it holds that:

|Pr[A′′fs(.)(1k) = 1]− Pr[A′fs(.)(1k) = 1]| < negl(k)

Pr[A′′fs(.)(1k) = 1] < 1
2 + negl(k)

(3.14)

Sum up SuccA
′

PE(k) and Pr[A′′fs(.)(1k) = 1]:

1 + negl(k) > 1
2Pr[A((PE(~M0), FE(~F0), TD(~a0))) = 0]+

1
2Pr[A((PE(~M0), FE(~F1), TD(~a1))) = 1]+
1
2Pr[A((PE(~M0), FE(~F1), TD(~a1))) = 0]+
1
2Pr[A((PE(~M1), FE(~F1), TD(~a1))) = 1]

= 1
2Pr[A((PE(~M0), FE(~F0), TD(~a0))) = 0]+

1
2+
1
2Pr[A((PE(~M1), FE(~F1), TD(~a1))) = 1]+

= 1
2 + SuccA(k)

(3.15)

Therefore SuccA(k) < 1
2 + negl(k).

3.7 Implementation and performance analysis

We implemented our encryption scheme in Java based on the SDE implementation

from [Dong 2011]. We implemented the functions for event and filter encryption

3.7. Implementation and performance analysis 45

at the client side, re-encryption at the broker side, encrypted filtering and event

decryption described above. In the following, we measure and compare the perfor-

mance of each function. We tested the implementation on an Intel Core2 Duo 2.8

GHz with 3.48 GB of RAM.

Figure 3.8 shows the performance of the basic encryption blocks from SDE. We

used a 1024-bit prime as p and SHA-1 as the hash function. We note that SDE-

Match, the most critical operation that needs to be performed event thousands of

times during the matching process, is the most efficient one.

0 2 4 6 8 10 12 14

PE-Enc-U

KE-Enc-U

PE-Enc-S

KE-Enc-S

PE-Dec-S

PE-Dec-U

Trap-U

Trap-S

SDE-Match

Execution time (ms)

Figure 3.8: SDE basic operations performance time.

Using the basic blocks of SDE, we implemented the main functions of our

scheme. Figure 3.9 compares event encryption and decryption operations both

at publisher and broker side. In the figure, EV-Enc-U, the most costly opera-

tion, represents event encryption at publisher side, EV-Enc-B represesnts event

re-encryption at the broker side, EV-Dec-B represents event pre-decryption at the

broker side, and EV-Dec-U represents event decryption at the user side. We note

that event encryption times grow linearly with the number of attributes, which was

to expect because together with the content, each attribute is encrypted individ-

ually. On the other hand, event decryption times are constant because they only

decrypt the event content, and not the attributes.

46 Chapter 3. A Basic Confidentiality Scheme

 0

 50

 100

 150

 200

 250

 0 5 10 15 20

E
xe

cu
tio

n
tim

e
(m

s)

Number of attributes

EV-Enc-U
EV-Enc-B
EV-Dec-U
EV-Dec-B

Figure 3.9: Event encryption and decryption times.

Figure 3.10 compares the execution times for filter encryption at subscriber

and broker side. FE-U represents the encryption time at subscriber side and FE-

B represents the filter re-encryption time at the broker side. The operations are

performed for filters with different numbers of leaf nodes (i.e., attributes). We

observe that the times grow linearly with the number of attributes and that the re-

encryption time at the broker side is smaller than the encryption at the subscriber

side, which is desirable if the broker needs to handle a large number of subscriptions

and publications.

 0

 50

 100

 150

 200

 250

 0 5 10 15 20

E
xe

cu
tio

n
tim

e
(m

s)

Number of attributes

FE-U
FE-B

Figure 3.10: Filter encryption and re-encryption times.

The matching time of an event against a filter at the broker side also depends on

the number of attributes. Matching a filter containing only one attribute against

3.7. Implementation and performance analysis 47

an event with one attribute takes about 0.42 ms. The matching time increases

linearly with the number of performed equality checks between leaf nodes and event

attributes. Figure 3.11 shows the encrypted matching times for different numbers

of attributes. The figure shows the matching time of one event against one filter.

Because this solution is not indexed, matching one filter against 1000 events, would

multiply the average matching time by 1000, putting the matching time of all 1000

events in the range of a few seconds. In some applications, this overhead may not

be acceptable. In Chapter 6 we will discuss indexing strategies that could speed up

the matching process.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 5 10 15 20

E
xe

cu
tio

n
tim

e
(m

s)

Number of attributes

Enc Match

Figure 3.11: Encrypted matching times.

Chapter 4

Enforcing Fine-Grained Access

Control Policies

Contents

4.1 Threat model . 49

4.2 Security properties . 50

4.3 Related work . 50

4.4 Background on security mechanisms 51

4.4.1 Key-Policy Attribute-based Encryption 51

4.4.2 Ciphertext-Policy Attribute-based Encryption 54

4.5 Solution details . 59

4.5.1 Initialization . 60

4.5.2 Event encryption . 61

4.5.3 Filter encryption . 62

4.5.4 Encrypted matching . 63

4.5.5 Event decryption . 63

4.6 User revocation and subscription expiration 63

4.6.1 Initialization . 63

4.6.2 Event encryption . 64

4.6.3 Filter encryption . 64

4.6.4 Encrypted matching . 64

4.6.5 Event decryption . 64

4.7 Enforcing publisher-defined access control policies 65

4.8 The e-health application revisited 67

4.9 Security analysis . 68

4.10 Implementation and performance analysis 70

4.1 Threat model

We previously assumed an honest-but-curious threat model for brokers, publishers

and subscribers which means that they follow the protocol correctly, but are curious

to learn as much as possible about the exchanged messages. Under this assumption,

50 Chapter 4. Enforcing Fine-Grained Access Control Policies

brokers forward events according to the protocol and do not disclose encrypted event

content or keys to other entities in the system. In the following, we additionally

assume that brokers may try to collude with publishers or subscribers, or that

publishers and subscribers might collude between them in order to get access to the

content of events and filters for which they are not authorised. This means that

brokers could make encrypted events available to publishers or subscribers that did

not express a valid filter for them. Brokers could also try to combine any keys they

might have that are required to run the protocol with the keys of publishers and

subscribers.

For example, let us assume an employee of the IT company providing the

pub/sub system and who has access to the keys stored at the broker and the cipher-

text of publications, colludes with an employee of a pharmaceutical company that

supplies some of the medicines to the hospital. This company subscribed to receiv-

ing new orders for drugs. The company would like to know the names and addresses

of patients suffering from specific conditions in order to target advertisements to

drugs and colludes with the malicious employee in order to learn this information.

4.2 Security properties

In addition to the properties P1-P4 already identified, we require that an access

control scheme also ensures the following properties.

Definition 14 (P5: Fine-grained access control policies). Providing mechanisms

for enforcing fine-grained access control policies ensures that all access to data is

legitimate, as granted by a Trusted Authority or by publishers themselves that can

specify constraints about who can access the content of their events under specific

conditions. The enforcement of access control policies should not reveal any infor-

mation about the events or filters to brokers. Policies could be enforced for the whole

event or for specific attributes of the event.

Definition 15 (P6: Collusion resistance). Providing the collusion resistance prop-

erty ensures that publishers, brokers and subscribers are not able to combine their

keys in order to gain unauthorised access to the content of events or filters.

4.3 Related work

None of the confidentiality solutions surveyed in Section 3.3 can enforce fine-

grained access control policies on events (P5). The solutions from [Miklos 2002,

Bacon 2008] address this problem, but they make the assumption that the brokers

are trusted to read and even write events and enforce the policies. Bacon et al.

[Bacon 2008] proposed a role-based access control mechanism for multiple adminis-

trative domains sharing a pub/sub network. They assume that each publisher and

subscriber is connected to a local broker which is trusted to perform the encryp-

tion and decryption of the events or filters. An event is an instance of an event

4.4. Background on security mechanisms 51

type. Furthermore, an event type has an owner, a type name, and a list of event

attributes. Each event attribute is associated with its own independent secret key

to which trusted brokers have access. In order to perform content-based routing,

brokers need to be authorised to access the decryption keys. Intermediate bro-

kers are assumed to be untrusted, and hence, because complex encrypted filtering

mechanisms are not provided, they can only forward events based on a single topic.

Access control over the event content is enforced by controlling access to the de-

cryption keys. Local brokers check the client’s credentials against access control

policies. To perform fine-grained access control over the content of an event, bro-

kers can transform an event instance either after publication or before notification

to a particular subscriber. Transformations may alter the values of an event or

transform the event into another type. A broker can degrade, enrich or produce re-

lated event instances. This model allows fine-grained enforcement of access control

policies over the attributes of events, but it needs to trust the brokers to enforce

the policies and transform events. In our threat model, brokers are not trusted, so

these solutions cannot be applied.

In order to enforce access control policies, current solutions require brokers to

have access to the content of events, which is contrary to the event confidentiality

requirements. Our goal is to propose a solution that can achieve both confidentiality

of events and filters, support complex filters and enforce access control policies, while

keeping key management scalable.

4.4 Background on security mechanisms

Attribute-based encryption (ABE) has several advantages over symmetric key en-

cryption. First of all, senders and receivers do not need to share secret keys, thus

simplifying key management for large scale dynamic applications. With ABE, a re-

ceiver can decrypt a ciphertext only if a decryption policy is satisfied. Thus, ABE

also has the advantage that access control mechanisms are embedded in the data

and decryption keys, and does not require a third party to enforce policies. Third,

because messages and receivers can be described using any attributes and values

of these attributes, ABE allows defining flexible and fine-grained access control

policies.

In the following we give the details of the main types of ABE: Key-Policy ABE

and Ciphertext-Policy ABE.

4.4.1 Key-Policy Attribute-based Encryption

Goyal et al. [Goyal 2006a] introduced Key-Policy ABE (KP-ABE) in which cipher-

texts are labelled with sets of attributes and private keys are associated with access

structures. A key is able to decrypt a ciphertext if its associated access structure

is satisfied by the attributes of the ciphertext. The access structure, represented as

a tree, allows expressing any monotone access formula consisting of AND, OR, or

threshold gates.

52 Chapter 4. Enforcing Fine-Grained Access Control Policies

KP-ABE consists of the following algorithms: KP–ABE–Init, KP–ABE–Enc,

KP–ABE–KeyGen and KP–ABE–Dec.

The initialization algorithm is run by a Key Authority and computes the public

parameters PKKP that are sent to all encrypters and decrypters, and the master

secret key MKPK that is stored securely by the authority.

Algorithm 15 KP-ABE Init

Input: The security parameter 1k and a number n, the maximum number of attributes

under which a message can be encrypted.

Output: The public parameters PKKP and the master secret key MKPK .

1: Choose G1 a bilinear group of prime order p and size k, and let g be a generator of G1.

2: Choose e : G1 × G1 → G2 a bilinear map. The bilinear map e has the following

properties:

1. Bilinearity: for all u, v ∈ G1 and a, b ∈ Zp, e(ua, vb) = e(u, v)ab.

2. Non-degeneracy: e(g, g) 6= 1.

3: Define the Lagrange coefficient ∆i,S for i ∈ Zp and a set S of elements in Zp:

∆i,S(x) =
∏

j∈S,j 6=i

x− j
i− j

.

4: Choose a collision resistant function H1 : {0, 1}∗ → Z∗p. This function will be used to

map each attribute to a number in Z∗p which allows using arbitrary strings as attributes

and adding them to a user’s private key.

5: Choose a random y from Zp and compute g1 = gy.

6: Choose a random element g2 from G1.

7: Choose t1, ..., tn+1 uniformly at random from G1.

8: Let N be the set {1, 2, ..., n+ 1}. Define a function T as:

T (X) = gX
n

2

n+1∏
i=1

t
∆i,N (X)
i .

8: PKKP ← (g1, g2, t1, ..., tn+1)

8: MKKP ← y

9: return PKKP ,MKKP

Anybody can encrypt an element m of group G2 under a set of attributes using

just the public parameters as shown in Algorithm 16. We note that the set of

attributes γ is obtained by mapping each string attribute to a Z∗p element using the

collision resistant function H1.

In order to decrypt a message, a user needs a secret key generated by the key

authority using the master secret key. Each decryption key is computed for an

access tree structure that represents the access rights of the user. For example,

a key could grant access to a user to messages encrypted under attributes that

satisfy a policy like “SYM=GOOG or SYM=IBM”. The main idea is that any

filter representing conjunctions and disjunctions of attributes can be represented

as a tree in which leaf nodes are attributes and non-leaf nodes are threshold gates.

A threshold gate is described by a threshold value and its children. Let x be a

non-leaf node with threshold value kx and having a number of children equal to

4.4. Background on security mechanisms 53

Algorithm 16 KP-ABE-Enc

Input: An element m, a set of attributes γ, and the public parameters PKKP .

Output: The ciphertext KP (m).

1: Choose a random s from Zp.
2: E

′ ← m · e(g1, g2)s

3: E
′′ ← gs

4: for all a in γ do

5: compute Ea ← T (a)s

6: end for

7: KP (m)← (γ,E
′
, E

′′
, {Ea}a∈γ).

8: return KP (m).

numx. The threshold value kx represents the number of children of the non-leaf

node that need to be satisfied in order for the node to be satisfied. When kx = 1 it

means that only one child needs to be satisfied, making the threshold gate an OR.

When kx = numx, all children need to be satisfied making the threshold gate an

AND. By allowing threshold values between 1 and numx (i.e., 1 ≤ kx ≤ numx),

one can express more general conditions such as 2 out of 3 attributes should be

satisfied. Each leaf node x is described by an attribute and has a threshold value

kx = 1, meaning that the leaf node is satisfied when the attribute is present, and

not satisfied otherwise. Additionally, define the following functions on the tree:

threshold(x) returns the threshold value of the node, attr(x) is defined only for a

leaf node and returns the attribute associated with x, and parent(x) returns the

parent of a node x. Furthermore, define an ordering between the children of every

node x and give each child an index from 1 to numx. The function index(x) returns

the index associated to node x. Figure 4.1 shows the tree generated for the simple

access policy “SYM=GOOG or SYM=IBM”. The threshold value of the root note

is 1.

OR

SYM=GOOG SYM=IBM

Figure 4.1: A simple access policy tree.

The KA generates a decryption key for a specific access policy. The details of

the key generation algorithm are given in Algorithm 17.

A user is able to decrypt a ciphertext, only if the attributes of the ciphertext

satisfy the access structure of its key. The decryption algorithm makes use of a

recursive function DecryptNode shown in Algorithm 18 that is called on the root

node of the access tree embedded in the decryption key. We note that in KP-

ABE, the attributes under which the message is encrypted are attached to the

ciphertext, and also the access policy is attached to the decryption key in the clear,

54 Chapter 4. Enforcing Fine-Grained Access Control Policies

Algorithm 17 KP-ABE KeyGen

Input: An access tree F , public parameters PKKP and master secret key MKPK = y.

Output: A decryption key DF for the access structure.

1: for all nodes x in tree F do

2: create a polynomial qx with degree dx = threshold(x)− 1

3: end for

4: For the root node r, set qr(0) = y and choose dr points at random to completely define

the polynomial qr.

5: for all other nodes x in tree F do

6: set qx(0) = qparent(x)(index(x))

7: choose dx other points randomly to completely define qx.

8: end for

9: for all leaf nodes x in F do

10: Dx ← g
qx(0)·T (b)rx

2 , where b = attr(x)

11: Rx ← grx where rx is chosen uniformly at random from Zp for each node x.

12: end for

13: DF ← {(Dx, {Rx)}x, where x is leaf node in F .

14: return DF .

which could leak sensitive information. Our solution uses ABE, but it encrypts

the attributes in the ciphertext and access policy. If the root node r is satisfied,

DecryptNode(KP (m), DF , r) returns e(g, g2)ys = e(g1, g2)s, because qr(0) was set

to be y in KP–ABE–KeyGen. The user obtains m by dividing E′ = m · e(g1, g2)s

with e(g1, g2)s.

4.4.2 Ciphertext-Policy Attribute-based Encryption

Bethencour et al. [Bethencourt 2007] proposed a concrete construction for cipher-

text policy ABE (CP-ABE) in which policies (access structures) are associated with

data and attributes are associated with keys. This is similar to the capability model

in access control. A key can decrypt some data if its associated attributes satisfy

the policy associated with the data.

The initialization algorithm CP–ABE–Init is run by the Key Authority and gen-

erates the public parameters PKCP which are sent to all users and the master secret

key MKCP which is kept securely by the authority. Algorithm 19 shows the details

of the algorithm.

4.4. Background on security mechanisms 55

Algorithm 18 KP-ABE DecryptNode

Input: A ciphertext KP (m) = (γ,E
′
, E

′′
, {Ea}a∈γ), a decryption key DF , a node x in the

access tree of the key.

Output: A group element of G2 or ⊥ if the node cannot be satisfied by the attributes of

the ciphertext.

1: if x is a leaf node then

2: if attr(x) ∈ γ then

3: return e(Dx,E”)
e(Rx,Eb) =

e(g
qx(0)
2 ·T (b)rx ,gs)
e(grx ,T (b)s) =

e(g
qx(0)
2 ,gs)·e(T (b)rx ,gs)

e(grx ,T (b)s) = e(g, g2)sqx(0)

4: else

5: return ⊥
6: end if

7: else

8: for each child z of x do

9: Fz ← DecryptNode(KP (m), DF , z)

10: end for

11: Let Sx be an arbitrary set of threshold(x) children nodes z such that Fz 6=⊥.

12: if no such Sx set exists then

13: return ⊥.

14: else

15: return

Fx =
∏
z∈Sx

F
∆i,S′

x(0)

z , where i = index(z), S′x = {index(z) : z ∈ Sx}

=
∏
z∈Sx

(e(g, g2)s·qz(0))∆i,S′
x

(0)

=
∏
z∈Sx

(e(g, g2)s·qparent(z)(index(z)))∆i,S′
x

(0) (by construction)

=
∏
z∈Sx

(e(g, g2)s·qx(0))∆i,S′
x

(0)

= e(g, g2)sqx(0) (using polynomial interpolation)

(4.1)

16: end if

17: end if

Algorithm 19 CP-ABE Init

Input: The security parameter 1k.

Output: The public parameters PKCP and the master secret key MKCP .

1: Choose G0 and G1 two bilinear groups of prime order p and size k, and let g be a

generator of G0.

2: Choose e : G0 ×G0 → G1 a bilinear map.

3: Define the Lagrange coefficient ∆i,S for i ∈ Zp and a set S of elements in Zp:

∆i,S(x) =
∏

j∈S,j 6=i

x− j
i− j

.

3: Choose two random exponents α, β ∈ Zp.
3: PKCP ← (G0, g, h = gβ , f = g1/β , e(g, g)α)

3: MKCP ← (β, gα)

4: return PKKP and MKKP .

56 Chapter 4. Enforcing Fine-Grained Access Control Policies

The Key Authority issues to each user a secret decryption key for the attributes

or credentials of the user. This key is generated using the master secret key MKCP

as shown in Algorithm 20.

Algorithm 20 CP-ABE KeyGen

Input: A set of attributes S, the public parameters PKCP , and master secret key MKCK .

Output: A decryption key SK for the attributes.

1: Choose a random r ∈ Zp, and then a random rj ∈ Zp for each attribute j ∈ S.

2: Compute the key as:

SK =
(
D = g(α+r)/β ,∀j ∈ S : Dj = gr ·H(j)rj , D

′

j = grj
)

3: return SK.

To encrypt a message, a user needs to define first an access control policy de-

scribing the attributes of users that can decrypt the message. For example, one

decryption policy might be: “nurse and level>3 and hospital=San Raffaele”. To al-

low expressing conditions such as “level>3”, [Bethencourt 2007] show how to extend

the access tree to represent numeric inequalities by using a “bag of bits” represen-

tation of the numeric value. For example, a < 7 can be represented as shown in

Figure 4.2, assuming that the value of a is represented on 4 bits.

a=*0** a=**0*

AND

ORa=0***

a=***0

Figure 4.2: Tree representation for a < 7 on 4 bits.

The algorithm for representing numeric inequalities as access trees is the follow-

ing.

4.4. Background on security mechanisms 57

Algorithm 21 Inequality Policy Generation

Input: A char gt which is ’0’ for “less than” and ’1’ for “greater than” inequalities, the

attribute name attr, the comparison value v, and the number of bits b on which to

represent v.

Output: The TreePolicy p.

1: Find the position i of the first bit in v that does not equal gt starting from the least

significant bit.

2: Create a TreePolicy p with only a leaf node that has gt at the ith position, e.g., attr :

∗ ∗ gt∗.
3: for i = i+ 1; i < b; i+ + do

4: if gt equals ’1’ then

5: if the bit at position i is ’1’ then

6: update p to a AND policy with one child the old p and the other a leaf node

that has gt at the ith position.

7: else

8: update p to an OR policy with one child the old p and the other a leaf node that

has gt at the ith position.

9: end if

10: end if

11: if gt equals ’0’ then

12: if the bit at position i is ’1’ then

13: update p to an OR policy with one child the old p and the other a leaf node that

has gt at the ith position.

14: else

15: update p to an AND policy with one child the old p and the other a leaf node

that has gt at the ith position.

16: end if

17: end if

18: end for

19: return p

In a second step, the policy is simplified by merging AND subtrees with AND

parents and OR subtrees with OR parents.

To encrypt a message m ∈ G1 under a policy T , a user only needs the public

parameters PKCP from the key authority and then proceeds as shown in Algorithm

22.

58 Chapter 4. Enforcing Fine-Grained Access Control Policies

Algorithm 22 CP-ABE-Enc

Input: An element m, an access tree structure T , and the public parameters PKCP .

Output: The ciphertext CP (m).

1: for all nodes x in tree T do

2: create a polynomial qx with degree dx = threshold(x)− 1

3: end for

4: for the root node R, choose a random s and set qR(0) = s.

5: choose dR points at random to completely define the polynomial qr.

6: for all other nodes x in tree T do

7: set qx(0) = qparent(x)(index(x))

8: choose dx other points randomly to completely define qx.

9: end for

10: Let Y be the set of leaf nodes in T . Compute the ciphertext as:

CP (m) =
(
F, C̃ = me(g, g)αs, C = hs,∀y ∈ Y : Cy = gqy(0), C

′

y = H(attr(y))qy(0)
)

.

11: return CP (m).

To decrypt a ciphertext, the attributes of the user need to satisfy the access

policy under which the ciphertext was encrypted. The decryption algorithm makes

use of a recursive DecryptNode function which fails and returns ⊥ if the policy

cannot be satisfied. The decryption algorithm calls DecryptNode on the root node

of the tree, which proceeds as shown in Algorithm 23. If the tree is satisfied, the

algorithm returns e(g, g)rqr(0) = e(g, g)rs. The message m can be computed as:

C̃/(e(C,D)/A) = C̃/(e(hs, g(α+r)/β)/e(g, g)rs) = m.

4.5. Solution details 59

Algorithm 23 CP-ABE: DecryptNode

Input: A ciphertext CP (m) =
(
F, C̃ = me(g, g)αs, C = hs,∀y ∈ Y : Cy, C

′

y

)
, a decryption

key SK = (D,∀j ∈ S : Dj , D
′

j), and a node of T .

Output: A group element of G1 or ⊥ if the node cannot be satisfied by the attributes of

the key.

1: if x is a leaf node then

2: if attr(x) ∈ S then

3: return e(Di,Cx)

e(D′
x,C

′
x)

= e(gr·H(i)ri ,hqx(0))
e(gri ,H(i)qx(0))

= e(g, g)rqx(0)

4: else

5: return ⊥
6: end if

7: else

8: for each child z of x do

9: Fz ← DecryptNode(CP (m), SK, z)

10: end for

11: Let Sx be an arbitrary set of threshold(x) children nodes z such that Fz 6=⊥.

12: if no such Sx set exists then

13: return ⊥.

14: else

15: return

Fx =
∏
z∈Sx

F
∆i,S′

x(0)

z , where i = index(z), S′x = {index(z) : z ∈ Sx}

=
∏
z∈Sx

(e(g, g)r·qz(0))∆i,S′
x

(0)

=
∏
z∈Sx

(e(g, g)r·qparent(z)(index(z)))∆i,S′
x

(0) (by construction)

=
∏
z∈Sx

(e(g, g)r·qx(0))∆i,S′
x

(0)

= e(g, g)rqx(0) (using polynomial interpolation)

(4.2)

16: end if

17: end if

4.5 Solution details

Our basic confidentiality solution described in Chapter 3 provides confidentiality of

events (P2) and filters (P3), complex filters (P4), while not requiring publishers

and subscribers to share keys (P1). The scheme is also secure against collusion

between publishers and subscribers. If any number of publishers and subscribers

share their keys, they are still not able to determine the master key and decrypt

other messages because the broker holds the other side of all their keys. However, if

a publisher or subscriber collude with the broker, they can compute the master key

for proxy encryption MKPE = x and then are able to decrypt all the events. In

order to circumvent this weakness, we need an encryption scheme that is collusion

resistant and assigns to each subscriber a key that decrypts only events that satisfy

60 Chapter 4. Enforcing Fine-Grained Access Control Policies

the subscriber’s filter. If a subscriber colludes with a broker, other subscribers or

publishers, they should not be able to decrypt events for which they did not register

a valid filter. In the following we introduce a new scheme that can additionally

provide the collusion resistance property.

To achieve this, we use KP-ABE encryption. In KP-ABE, messages are en-

crypted under a set of attributes. In our scenario, publishers already attach a set

of attributes to each event. These attributes describe the events and are used by

brokers to match events against filters. We propose to encrypt the message content

M under the same set of attributes γ used for routing. Decryption keys in KP-ABE

are defined for a tree access policy such as the one we used to express filters, and

can decrypt only ciphertexts that have attached attributes that satisfy the policy.

Hence, if the Trusted Authority gives to each subscriber a KP-ABE decryption key

corresponding to the subscriber’s filter, the subscriber will be able to decrypt only

events that satisfy the filter and not others. In this way, each subscriber has a set

of keys that decrypt only events to which it subscribed. KP-ABE [Goyal 2006a]

is collusion resistant. Brokers do not get any KP-ABE keys while publishers are

only given public keys. Subscribers are given a secret key for each filter policy, but

because the KA uses a unique random number to blind each key policy, subscribers

cannot combine their keys to get access to events for which they did not subscribe.

For example, if subscriber s1 has a key for SYM=GOOG AND PRICE>100 and

subscriber s2 has a key for MSFT AND PRICE>20, they cannot combine their

keys to decrypt an event with attributes SYM=GOOG, PRICE=90. KP-ABE en-

cryption and decryption are more computationally expensive than PE, but do not

require the broker to perform re-encryption or pre-decryption of events. In the

following we give the details of the enhanced scheme supporting fine-grained access

control using KP-ABE.

4.5.1 Initialization

The Trusted Authority runs the initialization algorithm for KP-ABE KP–ABE–Init

(Algorithm 15) to generate the public parameters PKKP and the master secret

key MKKP . The KA also runs the initialization algorithm of SDE SDE–Init to

generate the public parameters PKSE and the master secret key MKSE = (x, s).

Additionally, the KA computes and gives to every user i (publisher or subscriber)

the secret key Kui = (s, xi1) and gives the corresponding key Ksi = (i, xi2) to its

local broker.

4.5. Solution details 61

4.5.2 Event encryption

Publisher

Broker

},...,{ 1 naa=γ

Trap-U

))(,)}(({ McaTDE a γ∈=

))(,)}(({ McaTDE app γ∈=

(2)

(1)

(3)

KP-ABE-Enc

Trap-S

γ∈ap aTD)}({

)(kKP)(aTDp

)(aTD

KPPKupK

k

AES-Enc

Mk

)(McAES

)(Mc

γ∈a

spK(4)

γ

Figure 4.3: Event encryption with KP-ABE.

Figure 4.3 shows the steps needed to encrypt an event. The publisher specifies a

set of attributes γ and a content M and encrypts them as follows:

1. The publisher p encrypts the attributes as trapdoors. For every attribute

a ∈ γ, the publisher computes a trapdoor as TDp(a)← Trap–U((xp1, s), a) as

in Algorithm 11.

2. The publisher p encrypts the message content M :

• Generate a random AES encryption key k.

• Encrypt M under k using AES as cAES(M)← AES–Enc(M,k).

• Encrypt k using KP-ABE as KP (k)← KP–ABE–Enc(k, γ, PKKP).

• Because KP (k) = (γ,E
′
, E

′′
, {Ea}a∈γ) contains the set of attributes γ

unencrypted, we replace them with the trapdoors of the attributes and

create the event:

Ep = ({TDp(a)}a∈γ , E
′
, E

′′
, {Ea}a∈γ , cAES(M)) =

({TDp(a)}a∈γ , c(M)).

3. The publisher sends the encrypted event Ep to the broker.

62 Chapter 4. Enforcing Fine-Grained Access Control Policies

4. The broker locates the key Ksp = (p, xp2) corresponding to the publisher and

re-encrypts each trapdoor {TDp(a)}a∈γ as TD(a) ← Trap–S(TDp(a),Ksp).

The final encrypted event is:

E = ({TD(a)}a∈γ , E
′
, E

′′
, {Ea}a∈γ , cAES(M)) = ({TD(a)}a∈γ , c(M)).

The above operations provide confidentiality of the message and attributes of the

event, thus achieving property P1.

Subscriber

KE-Enc-U

Broker

KE-Enc-S

},...,{: 1 maaF

)(aKEs

sF

(1)

(4)

(5)

usK

ssK

)(Fattrsa ∈

)(aKEs

KA

KP-ABE -KeyGen FD

(2)
KPPK

KPMK

F FD(3)

Figure 4.4: Filter generation and encryption.

4.5.3 Filter encryption

Figure 4.4 shows the main steps for generating and encrypting the filter. Filter con-

struction as an access tree and encryption with SDE is performed as in Section 3.5.5.

Additionally, we require that the KA generates a decryption key corresponding to

the filter policy that decrypts only events that match the filter. Algorithm 17 shows

the decryption key generation algorithm.

The steps that need to be performed to generate and encrypt a filter are the

following.

1. The subscriber defines the filter as an access tree F . The access tree is con-

structed as in Section 3.5.5.

2. The subscriber sends the filter F to the KA and requests a decryption key DF .

The KA runs KP–ABE–KeyGen(F, PKKP ,MKKP) to generate the decryption

key DF .

4.6. User revocation and subscription expiration 63

3. The KA sends the decryption key DF to the subscriber on a secure channel.

The subscriber stores the key securely.

4. To provide confidentiality of the filter, the subscriber encrypts each leaf node

x in F by running KEs(a) = KE–Enc–U(Kus, a), where a = attr(x). The

subscriber sends the filter Fs encrypted in this way to the broker.

5. The broker re-encrypts the filter as in the previous scheme. The broker

locates the key Kss = (s, xs2) corresponding to the subscriber and re-

encrypts the leaf-node attributes of Fs. For each attribute KEs(a) run

KE(a)← KE–Enc–S(Kss,KEs(a)).

4.5.4 Encrypted matching

The encrypted matching operation is the same as in the basic confidentiality scheme

from Chapter 3.

4.5.5 Event decryption

The subscriber performs the KP-ABE decryption of the event using the key DF . If

the key policy of the subscriber is satisfied by the attributes of the event, the KP-

ABE decryption returns the key k used to encrypt the content M . The subscriber

then decrypts the message content as M ← AES–Dec(k, cAES(M)).

4.6 User revocation and subscription expiration

Users can be prevented from publishing new events and registering new filters by

revoking their SDE broker side of the key Ksi = (i, xi2). The Trusted Authority

revoking the user’s rights needs to send a request to the broker to delete the user’s

key from its keystore. In the basic scheme, subscribers have one key for decrypting

all events. So if a subscriber has registered several filters and the authority wants to

revoke a subset of the filters, the only way to prevent the subscriber from receiving

events matching the revoked subscriptions, is for the KA to contact the broker and

request to unsubscribe the expired filters.

In the enhanced scheme, subscribers get a unique decryption key from the KA

for each filter. The KA can make decryption keys valid until a specific date or

time. After that, the subscriber cannot use the key any more to decrypt events and

needs to contact the KA to renew the key. The subscriber does not need to contact

the broker to renew the filter every time the key gets renewed. We present in the

following the modified enhanced scheme with subscription expiration dates.

4.6.1 Initialization

The Initialization algorithm is run by the KA as in the previous scheme.

64 Chapter 4. Enforcing Fine-Grained Access Control Policies

year=2012

OR

ANDyear<2012

OR

month<12 AND

month=12 day≤15

Figure 4.5: Example of a policy for expiration date 15/12/2012.

4.6.2 Event encryption

To prevent subscribers from using expired decryption keys, publishers add to the

list of attributes under which M is encrypted date information. For example, the

publisher adds to the list of attributes {ai} that describe the event the following

attributes: “day=17, month=9, year=2011”. These attributes do not need to be

encrypted, but only used in the KP-ABE encryption of M . So for every date

attribute a, the publisher needs to additionally compute Ea = T (a)s and add it to

the encrypted event Ep (see Section 4.5.2).

4.6.3 Filter encryption

The subscriber generates the filter and sends it to the KA to obtain a decryption

key as before. The KA extends the access tree structure of the filter F with the

condition that date is prior to a specific expiration date and creates a KP-ABE

decryption key for the extended access structure. The extended access structure

becomes F AND date policy. Figure 4.5 shows an example of a date policy. The leaf

nodes representing numeric qualities and inequalities need to further be expanded as

sub-trees using “bag of bits” representations of the attributes as shown in Figure 4.2.

4.6.4 Encrypted matching

This operation is performed by the broker as in the previous scheme. The date

attributes added by the publisher to the event are simply ignored by the broker.

4.6.5 Event decryption

The subscriber uses the KP-ABE decryption key to decrypt the event. The decryp-

tion succeeds only if the key is unexpired.

4.7. Enforcing publisher-defined access control policies 65

4.7 Enforcing publisher-defined access control policies

To allow publishers to express constraints on who can access the message content M

(or parts of the content), we use CP-ABE encryption. CP-ABE allows a publisher to

encrypt a message under an access policy, similar to the policy we used to represent

a filter. Only subscribers possessing attributes that satisfy the policy can decrypt

the message. For example, a publisher might specify that only employees of a

particular organization holding a specific position should have access to the content

of an event. The drawback of CP-ABE is that it sends the encryption policy in the

clear together with the ciphertext. To hide the policy from the broker, we encrypt

the policy using PE which preserves the decoupling of publishers and subscribers.

When the subscriber receives the policy, it can decrypt the event only if it has the

required credentials. However, this approach does not enable the broker to check

the policies, and as a result, subscribers would receive events that they cannot

decrypt, resulting in network overhead. In the following we describe a solution that

enables brokers to check encrypted policies by using the multi-user SDE scheme to

encrypt policies and subscribers’ attributes. In this way, it is possible to verify if a

subscriber satisfies the access policy expressed by the publisher, while not revealing

the policy to the broker, and without requiring publishers and subscribers to share

keys.

KA

Subscriber

CP-ABE-Init CP-ABE-KeyGen

(1)
(2)

Trap-U

Broker

Trap-S

(3)

(4)

CPPK

CPMKk

snss FaTDaTD)},(),...,({ 1

)}(),...,({ 1 nss aTDaTD

)}(),...,({ 1 naTDaTD

)}(),...,({ 1 nss aTDaTD

ssK

usK

},...,{ 1 naa

SK

SK

},...,{ 1 naa

Figure 4.6: Decryption key generation and attribute encryption.

Figure 4.6 shows the steps needed to generate a CP-ABE decryption key for the

subscriber and to encrypt the subscriber’s attributes using SDE.

66 Chapter 4. Enforcing Fine-Grained Access Control Policies

1. The KA runs the CP–ABE–Init(k) algorithm to generate the public key PKCP

and the master secret key MKCP for CP-ABE.

2. The KA receives a request from a user to certify its attributes. The KA

runs CP–ABE–KeyGen to generate a decryption key Ks for the subscriber’s

attributes. To make the decryption key valid until a specific expiration date,

the KA includes in the key attributes for the expiration date such as “day=1”,

“month=12”, “year=2013”.

3. The subscriber encrypts its attributes using multi-user SDE by invoking the

method KE–Enc–U described in Algorithm 9.

4. The broker re-encrypts the subscriber’s attributes by calling the method

KE–Enc–S described in Algorithm 10.

Publisher

CP-ABE-Enc

Broker

KEnc-U

KEnc-S

},...,{: 1 maaPolicy

pPolicy

(1) (2)

(3)

CPPK

*Policy

pPolicy

pPolicyMc),(

)(Mc

M

spK

upK

Figure 4.7: Policy encryption.

Figure 4.7 shows the steps for encrypting an event under a policy and encrypting

the policy.

1. The publisher generates the policy Policy as a tree access structure. The

publisher encrypts the message using CP-ABE under the policy.

2. The publisher encrypts the policy Policy with SDE by calling the function

KE–Enc–U described in Section 6.4 on the leaf nodes of the policy. The sub-

scriber then forwards the ciphertext together with the encrypted policy to

the broker. If needed, the subscriber could re-encrypt the message using the

enhanced method. The CP-ABE encryption ensures that only subscribers

possessing the required attributes are able to decrypt the message, thus en-

forcing the access control policy. The enhanced method ensures that only

subscribers who registered a filter matching the event can decrypt it.

3. The broker re-encrypts the policy Policy∗ by calling KE–Enc–S on the leaf

nodes of the access tree. The broker can now match the policy Policy against

4.8. The e-health application revisited 67

the attributes TD(a1), ..., TD(an) of the publisher and will forward the event

to the subscriber, if (i) the event matches the subscriber’s interest, and (ii)

the subscriber has the required attributes.

4.8 The e-health application revisited

In the following we show how by applying our solution to the example in Section 2.1

we are able to provide confidentiality of the data and enforce that only authorised

parties are able to access it.

First we show how filters are generated and encrypted. Filters are expressed

as access trees following the construction from [Bethencourt 2007], which is able to

express inequalities of numerical attributes. The idea is to create an attribute for

each bit of the number and use AND and OR gates to express the inequality. We

illustrate how to do this for heart rate >120 in Figure 4.8. 120 = 1111000 in binary.

hr=1****** hr=*1***** hr=**1**** hr=***1***

hr=****1** hr=*****1*hr=******1

AND

OR

Figure 4.8: Access tree implementing heart rate>120

The leaf attributes of the tree are encrypted using KE–Enc–U. The filter be-

comes:

KEd(name = John Smith) AND

(KEd(heart rate = 1∗∗∗∗∗∗) AND KEd(heart rate = ∗1∗∗∗∗∗) AND KEd(heart rate =

∗ ∗ 1 ∗ ∗ ∗ ∗) AND KEd(heart rate = ∗ ∗ ∗1 ∗ ∗∗) AND (KEd(heart rate = ∗ ∗ ∗ ∗ 1 ∗ ∗) OR

KEd(heart rate = ∗ ∗ ∗ ∗ ∗1∗) OR KEd(heart rate = ∗ ∗ ∗ ∗ ∗ ∗ 1))

OR KEd(systolic pressure > 150) OR KEd(diastolic pressure > 100)) , where d is

the ID of the doctor. We omit details for KEd(systolic pressure > 150) and

KEd(diastolic pressure > 100)) which are similar to the heart rate representation.

To encrypt a prescription, a doctor proceeds as follows. For every attribute

like patient name, age, address, medication, etc. there is a hospital policy in place

which specifies who can view the attribute and under which conditions. The policy

is expressed using a CP-ABE access tree. Each attribute will be encrypted under

the corresponding CP-ABE access tree. For example, the doctor would need to

encrypt the prescription under the following policies.

Pname: (nurse AND level>3 AND San Raffaele) OR (doctor AND San Raffaele) OR DMS

Page: senior researcher OR (auditor AND HA1) OR (doctor AND San Raffaele) OR DMS

Paddress: DSM OR (nurse AND level>3 AND San Raffaele) OR (doctor AND San Raffaele)

Psymptom: senior researcher OR auditor OR (nurse AND level>3 AND San Raffaele) OR

68 Chapter 4. Enforcing Fine-Grained Access Control Policies

(doctor AND San Raffaele)

Pdisease: DSM OR senior researcher OR (auditor AND HA1) OR (nurse AND level>3

AND San Raffaele) OR (doctor AND San Raffaele)

Pmedication: DSM OR senior researcher OR (auditor AND HA1) OR (nurse AND level>3

AND San Raffaele) OR (doctor AND San Raffaele)

The prescription becomes:

{name = JohnSmith}Pname ,

{age = 70}Page ,

{address = via Tartini 12, Padova}Paddress
,

{symptom = high blood pressure}Psymptom ,

{disease = primary hypertension}Pdisease
,

{medication = Catapres}Pmedication
.

Each attribute of the prescription will be encrypted under the corresponding

policy. Though different parts of the information should be made available to

different consumers such as the patient, Healthcare Authority, Research Center,

DMS, other doctors or nurses working in the hospital, with our solution the message

is encrypted and published only once. Without a proper encryption technique in

place, a different message would need to be created for each different consumer

type, as has been proposed in [Bacon 2008] and [Miklos 2002], where the local

broker takes care of creating the different events.

To additionally enforce policies embedded in decryption keys issued by the

Trusted Authority, the event is encrypted using KP-ABE under the attributes it

contains, i.e. name=John Smith, age=70, etc. This ensures that only subscribers

that registered a filter matched by the attribute of the event will receive the event.

Brokers will be able to perform the check without learning the attributes of the event

or the details of the filter. To hide the attributes from the broker, the publisher

will replace them with trapdoors computed as in SDE.

The published message contains the encrypted prescription (using CP-ABE and

KP-ABE) and the trapdoors of the prescription attributes computed as shown in

step (3) in Figure 2. The trapdoors will be: TD(name=John Smith), TD(age=70),

TD(symptom=primary hypertension) etc. The encrypted prescription will be for-

warded to consumers by checking if these attributes satisfy the filters they regis-

tered. When they receive the message, only those who satisfy the CP-ABE policies

will be able to recover the content of the prescription (or specific parts of it).

4.9 Security analysis

Figure 4.9 shows the different encryption schemes that are used to provide confi-

dentiality of events and filters and fine-grained access control.

The filter and attribute encryptions are the same for both the basic and en-

hanced schemes. The two schemes differ in the way they encrypt the messages con-

tent. To prove the security of the enhanced scheme, we only need to prove that the

4.9. Security analysis 69

enhanced

enhanced
+ AC

Event Encryption Filter Encryption

)(),....,(1 naTDaTD)KEnc(l),....,KEnc(l m1

M

PE

M

KP-ABE

basic

M

KP-ABE
CP-ABE

or

or

+

Figure 4.9: Event and filter encryption with access control.

message content encryption using KP-ABE is IND-CPA secure. About KP-ABE,

[Ostrovsky 2007] proves that the KP-ABE with non-monotonic access structures in

the attribute-based selective-set model reduces to the hardness of the Decisional Bi-

linear Diffie-Hellmann (DBDH) assumption, generally considered a hard problem.

To prove the security of message encryption using KP-ABE, the proof is similar

as for the basic scheme. The difference is that we consider an adversary A′ that

challenges the KP-ABE IND-CPA game using A as a subroutine and show that

breaking the scheme reduces to breaking the KP-ABE IND-CPA game.

Theorem 4. If the Decisional Bilinear Diffie-Hellmann (DBDH) problem is hard

relative to G, then the enhanced scheme is a non-adaptive indistinguishable secure

scheme. The success probability of a PPT adversary A in breaking the enhanced

scheme is defined as:

SuccA(k) = 1
2Pr[A((KP (~M0), FE(~F0), TD(~a0))) = 0]+

1
2Pr[A((KP (~M1), FE(~F1), TD(~a1))) = 1]

< 1
2 + negl(k)

(4.3)

To enforce publisher specific access control policies, we use two layers of encryp-

tion: KP-ABE and CP-ABE. [Cheung 2007] proves CP-ABE to be IND-CPA under

the DBDH assumption. [Bellare 2003] shows that if a cryptosystem is secure in the

sense of indistinguishability, then the cryptosystem in the multi-user setting, where

related messages are encrypted using different keys, is also secure. In our case each

encryption layer uses an independent key so the combination is at least as secure

as any individual encryption. Thus, encryption using KP-ABE and CP-ABE is at

least IND-CPA secure. To prove that message encryption using the access control

scheme is secure, we need to prove the following theorem.

Theorem 5. If the Decisional Bilinear Diffie-Hellmann (DBDH) problem in hard

relative to G0, then the enhanced scheme with access control is a non-adaptive

indistinguishable secure scheme. The success probability of a PPT adversary A in

70 Chapter 4. Enforcing Fine-Grained Access Control Policies

breaking the scheme is defined as:

SuccA(k) = 1
2Pr[A((CP (KP (~M0)), FE(~F0), TD(~a0))) = 0]+

1
2Pr[A((CP (KP (~M1)), FE(~F1), TD(~a1))) = 1]

< 1
2 + negl(k)

(4.4)

4.10 Implementation and performance analysis

For the enhanced scheme supporting access control policies, we used the SDE imple-

mentation described in the last chapter and implemented the KP-ABE and CP-ABE

schemes as described in [Goyal 2006a] and [Bethencourt 2007] respectively, based

on the Java Pairing Based Cryptography Library (jPBC)1.

In our implementation we used for both KP-ABE and CP-ABE the symmetric

“type A” pairings provided by jPBC, which are constructed on the curve y2 = x3+x

over the field Fq, for some prime q = 3 mod 4. G1 is the group of points E(Fq) with

order r, some prime factor of q + 1. As parameters, we used 160 bits for r and 512

bits for q. We tested the implementation on an Intel Core2 Duo 2.8 GHz with 3.48

GB of RAM as previously.

We first compare the times for event encryption and decryption under the

scheme introduced in this chapter, with the execution times of the same func-

tions under the previous scheme. Filter generation and matching is the same in

both schemes. In Figure 4.10 we compare the times needed for event encryption

at the publisher side and re-encryption at the broker side, for the two methods.

The figure shows the event encryption times at the publisher side, EV-Enc-U for

the basic method and EV-Enc-U-2 for the enhanced method. We notice that event

encryption in the enhanced scheme which uses KP-ABE to encrypt the message

content M is only a little more expensive than the encryption in the basic scheme

that uses PE. The opposite is true for event re-encryption at the broker side which

is slightly slower when PE is used. That is because additionally to re-encrypting

the attributes, the basic method also needs to re-encrypt the message content. Such

re-encryption is not necessary when KP-ABE is used. In Figure 4.10, EV-Enc-B

represents the times for event re-encryption using the basic method and EV-Enc-

B-2 represents re-encryption times using the enhanced method. The encryption

times grow linearly with the number of non-numerical attributes. When numerical

attributes are used, a non-numerical attribute is created for each bit on which the

attribute value is represented, and the encryption times grow faster. The encryption

times shown in the figure are expressed in milliseconds and represent an average

over 1000 executions.

1http://gas.dia.unisa.it/projects/jpbc/

4.10. Implementation and performance analysis 71

 0

 50

 100

 150

 200

 250

 0 5 10 15 20

E
xe

cu
tio

n
tim

e
(m

s)

Number of attributes

EV-Enc-U-2
EV-Enc-B-2

EV-Enc-U
EV-Enc-B

Figure 4.10: Event encryption times - comparison of the basic and enhanced

schemes.

Figure 4.11 compares the event decryption times when using the two methods.

Event decryption with PE at broker side (EV-Dec-B) and subscriber side (EV-

Dec-U) are constant, while decryption with KP-ABE (EV-Dec-2) grows linearly

with the number of attributes. In order to reduce the event decryption time at

the subscriber side, we use an optimised method in which the subscriber does not

repeat the encrypted matching operations between the attributes of event and filter,

already performed by the broker. The broker attaches to the filter the information

about which leaf nodes are satisfied by which attributes of the event. This reduces

the KP-ABE decryption time for which we obtain better results than with PE when

the number of attributes is smaller than 11. For values greater then 11, decryption

times are bigger for the enhanced method.

 0

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20

E
xe

cu
tio

n
tim

e
(m

s)

Number of attributes

EV-Dec-2
EV-Dec-B
EV-Dec-U

Figure 4.11: Event decryption times - comparison of the basic and enhanced

schemes.

72 Chapter 4. Enforcing Fine-Grained Access Control Policies

In the enhanced scheme, to enforce access control policies, for each filter regis-

tered by a subscriber, the KA generates a KP-ABE decryption key that enables the

subscriber to decrypt only events matching this filter. The decryption key genera-

tion is more expensive than filter encryption, but this can be acceptable if we assume

that the KA has more computational resources than a subscriber. Figure 4.12 shows

the times for key generation for a filter, computed by the KA, Keygen(KA), for dif-

ferent number of attributes. We observe again that the times grow linearly with

the number of attributes.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20

E
xe

cu
tio

n
tim

e
(s

)

Number of attributes

KeyGen(KA)

Figure 4.12: Decryption key generation times.

If the publisher wants to express additional constraints on who can read the con-

tent of an event, the event needs to be encrypted with CP-ABE. Figure 4.13 shows

the decryption key generation for the attributes of the subscriber performed by the

KA (KeyGen), the encryption policy generation performed by the publisher (Pol-

icyGen), the message encryption (Enc), and the message decryption (Dec) times.

To measure the performance of the CP-ABE encryption, we encrypted a simple

message string under different policies with different numbers of attributes. We

notice that the times increase linearly with the number of attributes in the policy.

The decryption time depends both on the number of attributes in policy and on

the number of attributes in the key. We used the same attributes for both and we

considered the worst case scenario in which all the attributes in the policy need to

be checked.

4.10. Implementation and performance analysis 73

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20

E
xe

cu
tio

n
tim

e
(m

s)

Number of attributes

PolicyGen
Enc

KeyGen
Dec

Figure 4.13: CP-ABE encryption time.

Chapter 5

Querying In-Network Cached

Publications

Contents

5.1 Encrypted search approaches and their shortcomings 76

5.1.1 Single-user schemes . 77

5.1.2 Semi-fledged multi-user schemes 79

5.1.3 Full-fledged multi-user schemes 81

5.2 Solution description . 82

5.2.1 Event encryption and indexing 82

5.2.2 Query encryption . 83

5.2.3 Event matching . 84

5.3 Inference exposure . 85

5.3.1 Background . 86

5.3.2 Threat model 1: Freq + DBK 87

5.3.3 Threat model 2: DB + DBK 92

Caching data in the network enhances support for user and device mobility,

making data available all the time and reducing power consumption for mobile

devices. Moreover, querying historic publications can be useful in many applica-

tions. For example, a researcher from a hospital could need to query data about

patients with a particular disease over a number of years. An Energy Management

& Control System might need past data in order to predict and better schedule

the usage of devices inside a house. A Utility company might also need past data

in order to better predict demand and failures. Though many pub/sub systems

discard publications once they are delivered to interested subscribers, some of them

enhance brokers with databases where they can store historic publications. One

such example is the PADRES middleware that we used to integrate and test our

scheme as it will be explained in Chapter 7. Moreover, most ICN implementations

cache and replicate data in the network.

In this chapter we are concerned with how to index and query cached publica-

tions in a database stored at a broker. The problem with searches over encrypted

databases and building secure indexes has long been studied in the literature. We

start by giving an overview of such techniques and highlight their shortcomings.

76 Chapter 5. Querying In-Network Cached Publications

An encrypted search scheme for cached publications should maintain the same se-

curity properties we identified previously for publications and subscriptions, i.e.,

P1 : Scalable key management, P2 : Publication confidentiality , P3 : Subscription

(or query) confidentiality, and P4 : Complex encrypted matching. Additionally, we

may want to support P5 : Fine-grained access control policies and P6 : Collusion

resistance. In the following we show that none of the solutions we surveyed provides

all these properties. We then describe how we can adapt our event and publication

schemes to provide all of these properties for search on encrypted databases as well.

Indexes allow faster query matching and data retrieval. However, an index also

reveals statistical information about the data such as keyword frequency informa-

tion. This information, correlated with knowledge about the plaintext data, could

enable a curious broker to infer with certain probability the encrypted keywords.

We further discuss the problem of building secure indexes and measures for assess-

ing the inference exposure of an index. We adopt two attack models, one in which

the attacker knows the keyword frequency, and a more powerful one in which the

attacker knows both the encrypted and plaintext databases. Our solution has the

particularity that it represents numeric values using attributes derived from their

binary representation. This representation allows us to solve the complex problem

of supporting numeric inequalities. We use an existing inference exposure metric

to assess whether this kind of representation increases or decreases the inference

exposure of a database as compared to directly indexing the numeric value.

5.1 Encrypted search approaches and their shortcom-

ings

In this section, we present an extensive review of current schemes addressing search

on encrypted data. We categorise the existing approaches using two key aspects.

The first aspect is related to the key and user management supported by each

scheme. We have found the following three categories:

• single-user schemes in which only one key is able to write and read (i.e.,

perform search queries) on the database;

• semi-fledged multi-user schemes in which one user is able to write and several

users are able to read, or several users are able to write and only one to read;

• full-fledged multi-user schemes in which each user has its own key and is able

to read and write.

The second aspect is related to the expressiveness of the queries supported by

a scheme. We identify three categories: simple keyword supporting one equality

match performed over a keyword; conjunction of keywords that is similar to the

previous one but where multiple keywords can be expressed in one single query; and

complex queries where it is possible to express range conditions, subset operations,

conjunctive normal forms (CNF), or disjunctions.

5.1. Encrypted search approaches and their shortcomings 77

Table 5.1 summarises our categorisation. Most solutions provide keyword search

or conjunctions of keywords. None of the surveyed schemes is able to support both

multi-users that can read and write to the database, and perform complex queries.

Our goal is to fill such a gap.

Table 5.1: Comparison of search on encrypted data schemes.

Keyword Conjunction of keywords Complex queries

Single user

[Song 2000a] [Golle 2004b] [Wang 2006]
[Goh 2003] [Bösch 2011] [Hore 2004]
[Chang 2005] [Popa 2011]
[Hacigümüş 2002] [Hore 2011]
[Kamara 2012]

Semi-fledged
multi-user

[Boneh 2004] [Baek 2008] [Boneh 2007]
[Curtmola 2006b] [Rhee 2010] [Katz 2008]
[Zhu 2011] [Cao 2011] [Yang 2011]

[Li 2011]
[Lu 2011]

Full-fledged
multi-user

[Bao 2008] [Hwang 2007]
[Dong 2008b] No solution yet
[Shao 2010]

In the following, we survey the existing approaches based on the key and user

management they support.

5.1.1 Single-user schemes

Song et al. [Song 2000a] are the first to address practical keyword search over

encrypted data using symmetric encryption. The user encrypts a document word

by word and stores the ciphertext in the cloud. To search for a keyword, the user

computes a capability using the secret key and sends it to the server which then

tests each word in every document. This scheme is not secure in practice because

it reveals statistical information such as the frequency of each word.

To overcome this weakness, Goh [Goh 2003] proposes an efficient secure index

construction built using pseudo-random functions and Bloom filters. For each doc-

ument, a Bloom filter is created from the keywords of the document. To prevent

statistical analysis attacks, each Bloom filter is randomised using a unique docu-

ment identifier. Bosch et al. [Bösch 2011] extend [Goh 2003] with wildcard searches

such as *flower, flower*, *lower by inserting wildcardified versions of the words in

the index. Conjunctions can be represented as a union of keywords with the disad-

vantage that the server learns which documents contain the individual words, and

not just the result of the query. Moreover, Bloom filters introduce false positives

which creates computational overhead for the user.

Chang and Mitzenmacher [Chang 2005] propose a similar solution which builds

an index for each document in the form of a vector with an entry for each word

in the dictionary. Their solution has better security than [Goh 2003] because it

does not reveal the number of words in a document. However, it is less efficient

and does not support arbitrary updates with new words, rendering it unsuitable for

databases that need to be updated frequently.

78 Chapter 5. Querying In-Network Cached Publications

Golle et al. [Golle 2004b] propose a scheme allowing multi-keyword search with

one encrypted query. The capability is a vector with an entry for each possible

keyword. As compared to [Goh 2003, Bösch 2011] this scheme has a better security

model because the server learns which documents match the conjunctive query, but

does not learn which documents contain the individual keywords. However, like

[Chang 2005] this scheme is not practical for large databases with many keywords

and arbitrary updates.

Curtmola et al. [Curtmola 2006b] introduce the first symmetric searchable en-

cryption (SSE) scheme that achieves sub-linear search time, which is optimal. The

search time is linear in the number of documents that contain a word. They

achieve this by creating an index which maps each keyword to the list of doc-

uments that contain the word, instead of computing a per document index as

[Goh 2003, Chang 2005, Golle 2004b]. They introduce formal security models for

SSE and prove their scheme to be secure against adaptive chosen-keyword attacks,

a stronger security model. Kamara et al. [Kamara 2012] extend this scheme and

introduce a dynamic symmetric searchable encryption (DSSE) scheme that allows

adding and deleting documents from the index.

The schemes mentioned above are limited to keyword searches. Range queries

such as age>50 are much harder to evaluate in encrypted form than simple keyword

searches. Bucketization [Hore 2004, Wang 2006] has been proposed for reducing

range queries to equality searches. The main idea is that by splitting the domain

of values in several buckets, each range query is transformed in a list of bucket

identifiers. The server sends back to the user all the documents contained in the

buckets and then the user needs to decrypt the data and discard false positives.

Bucketization has several shortcomings. First of all, most of the computations are

performed by the user. The user needs to pre-compute the buckets before encrypting

the data, and filter out false positives after the query is executed. Computing

the optimal bucketization that minimizes the number of false positives is an NP-

hard problem and requires knowledge about both the data and query distribution.

However, the optimal distribution reveals to the server statistical information about

the buckets. To prevent such attacks, buckets should be selected with the same

probability, which leads to high false positives rates. Finally, bucketization does

not work well when new data needs to be inserted or updated.

Hacigumus et al. [Hacigümüş 2002] propose a solution that achieves confiden-

tial SQL queries by using bucketization and a specific protocol for each kind of

query which requires several interactions between user and server. They are able to

support queries such as “select all employees with salary greater than the average”

at the cost of additional computations on the client side and several interactions

between user and server.

Hore et al. [Hore 2011] extend bucketization to multi-dimensional data which

enables conjunctions of range queries over several numeric attributes. The user

builds and stores an index on its side and range queries are transformed in bucket

IDs. The bucketization algorithm is very complex and does not scale well when

the number of dimensions increases, being more suitable for databases with a small

5.1. Encrypted search approaches and their shortcomings 79

number of fields. Moreover, the solution is not suitable for dynamic updates and

the paper does not discuss re-bucketization.

Another popular method for providing range queries is Order Preserving En-

cryption (OPE) [Boldyreva 2009]. The main idea is that if x < y, then E(x) < E(y),

where E() is the encryption function. OPE does not introduce false positives and

is very efficient. However, Boldyreva et al. [Boldyreva 2011] showed that because

OPE reveals the order relation between ciphertext values, it is not secure for small

domains with well-known values and distributions.

Popa et al. [Popa 2011] propose CryptDB, a practical system that provides SQL

database confidentiality. The system relies on a trusted proxy server that intercepts

user queries to the protected database. The proxy holds a secret master key and

encrypts and decrypts data and queries. For matching keywords, CryptDB uses

an efficient implementation of [Song 2000a] and range queries are provided using

OPE [Boldyreva 2009]. Simple computations on numeric data such as computing

the mean are achieved using an implementation of homomorphic encryption based

on the Paillier cryptosystem [Paillier 1999]. However, maintaining and securing the

proxy server may not be feasible for many companies who choose cloud computing

as a way of simplifying operations and reducing costs. Moreover, the methods used

for providing keyword search and range queries have been shown not to provide

sufficient security.

5.1.2 Semi-fledged multi-user schemes

All the above schemes are based on symmetric encryption. The first public-key

encryption scheme with keyword search (PEKS) was proposed by Boneh et al.

[Boneh 2004]. Any user possessing the public key can encrypt a message and only

the owner of the private key can generate keyword search capabilities or trapdoors.

However, the trapdoor encryption scheme is vulnerable to inference attacks. Sub-

sequently, [Baek 2008, Rhee 2010, Zhu 2011] improved the security of the scheme

and [Baek 2008] also introduced conjunctions of keywords. Public key encryption is

very computationally expensive which makes these schemes too inefficient for large

databases. Moreover, because only one user can read, these schemes do not fit the

one-to-many pub/sub model, being more suitable for applications such as selective

email forwarding in which only the receiver of the messages can generate search

trapdoors, as [Boneh 2004] proposed.

Yang et al. [Yang 2011] propose a solution in which the database owner (DO)

encrypts the data and assigns to each user a unique key for searching and reading

the data. The main idea is that the DO splits the master secret uniquely between

each user and the server. So for each user, the server holds a corresponding secret

key which is used to re-encrypt the user’s search queries. To revoke a user, the DO

instructs the sever to delete this key. A major drawback of this method is that the

search operation is inefficient because it requires an expensive pairing computation

on elliptic curves. The authors also propose a rudimentary access control mechanism

which does not allow revocation and requires users to share a secret per authorised

80 Chapter 5. Querying In-Network Cached Publications

keyword, making the scheme single-user. This secret is then used as trapdoor. A

scheme for conjunctions is also proposed but it is highly inefficient because an index

needs to be created for every conjunction of words per document which increases

exponentially with the number of words.

A number of papers use predicate encryption to support encrypted search be-

cause it can achieve more complex queries. In a predicate encryption scheme, the

secret key corresponds to a predicate and the ciphertext is associated with a list

of attributes. A key decrypts a ciphertext if the associated attributes satisfy the

key predicate. Boneh and Waters [Boneh 2007] propose a public key-based predi-

cate encryption scheme that supports conjunctions, range queries (such as less-than

and greater than), and subset queries on encrypted data. Katz et al. [Katz 2008]

extend the scheme from [Boneh 2007] and propose a predicate encryption for in-

ner products scheme which supports conjunctions, disjunctions, conjunctive normal

forms (CNF) and disjunctive normal forms (DNF). The above solutions are based

on public key encryption and do not provide predicate (or query) privacy because

the server can encrypt any plaintext with the public key and test the query. Shen et

al. [Shen 2009] propose a symmetric key based predicated encryption scheme which

achieves predicate privacy. Though predicate encryption schemes can support more

complex queries, they are inefficient because they require expensive evaluations of

pairing operations on elliptic curves. Such schemes are much less inefficient than

searchable symmetric encryption and no concrete implementation exists.

Li et al. [Li 2011] propose a solution for searching on encrypted health care

records which supports a special type of CNF formula, where conjunctions are

across multiple attributes while disjunctions refer to the same attribute. Queries

over predefined numeric attribute ranges can be supported through a hierarchical

bucketization of the domain. The solution is based on hidden vector encryption

(HVE) and uses multiple trusted authorities to distribute search capabilities to

users, thus achieving fine-grained access control over the stored data. User revoca-

tion is handled by adding time information to the index and to the capability of

each user such that a user cannot search after its capability expired. Because HVE

requires a large number of exponentiations and pairings, all the operations are very

slow and the scheme is only suitable for searching on a small personal record, and

not on a large database.

Cao et al. [Cao 2011] propose multi-keyword ranked search over encrypted data.

The user creates a trapdoor for a set of keywords and is given back documents

ranked by the number of keywords they match. The scheme ensures data and

query privacy. The database owner (DO) creates an initial index using a secret key.

The index encrypts an n ×m matrix where n is the number of documents and m

is the number of words in the dictionary. Building the index is very expensive and

the index cannot be changed dynamically.

Lu and Tsudik [Lu 2011] propose a solution similar to ours which relies on

attribute-based encryption (ABE) [Goyal 2006b] and blind Boneh-Boyen weak sig-

nature scheme [Belenkiy 2009]. However, in their solution, only the DO is able to

encrypt the data and it needs to be online to help authorised users extract search

5.1. Encrypted search approaches and their shortcomings 81

tokens and decryption keys. In our solution, each user can encrypt and query the

data with its own key, without the need of maintaining an online DO. Another

disadvantage is that their solution only supports conjunctions and disjunctions of

equalities as in the scheme of [Goyal 2006b]. Though [Bethencourt 2007] showed

how to extend the access structure of [Goyal 2006b] to additionally support in-

equalities, the authors did not implement this feature, while our scheme supports

it.

5.1.3 Full-fledged multi-user schemes

Hwang et al. [Hwang 2007] extend PEKS to multi-user settings and conjunctive

keyword search. To encrypt a message that can be read by n users, the sender

needs the public keys of all the users. The paper introduces a new multi-receiver

encryption scheme based on ElGamal and pairings which allows the user to encrypt

the plaintext only once and include in the ciphertext n trapdoors obtained from

the public keys of each receiver. Each of the n users can generate a trapdoor

for a conjunctive keyword query using its private key. Both the encryption and

the test algorithm performed by the server are inefficient because they use pairing

operations. Moreover, ciphertext size is large and grows linearly with the number

of users. Adding new users to the system requires re-encrypting all the data.

Bao et al. [Bao 2008] propose a multi-user solution for keyword searches on

encrypted databases in which each user has its own key for writing and reading.

The solution is based on proxy encryption and bilinear maps. Index generation is

an interactive algorithm run between user and server. The user of bilinear maps

and the interactive encryption algorithm make this scheme inefficient. Dong et

al. [Dong 2008b] propose searchable data encryption (SDE), a similar multi-user

scheme which supports keyword search. SDE is based on proxy encryption and

does not require interactive protocols or pairing. As a result, SDE encryption and

search operations are much more efficient.

Shao et al. [Shao 2010] introduce Proxy Re-Encryption with keyword Search

(PRES), a combination of proxy re-encryption and PEKS. The multi-user property

is given by the fact that the server is able to repeatedly transform a ciphertext

encrypted by a user’s key into a ciphertext that can be decrypted by another user’s

key. This scheme only supports keyword match and the use of public key encryption

for computing the ciphertext and of pairing computations for testing keywords

makes it inefficient. In fact, from the full-fledged multi-user schemes, the only one

that has been implemented and proven to be efficient in practice is the solution of

Dong et al. [Dong 2008b]. That is why we chose to extend it in our scheme.

To conclude the related work, we notice that there is a gap in literature because

no solution can provide both full-fledged multi-user support and complex queries.

Our solution is the first one to provide such properties. Moreover, by leveraging

ABE our solution can also support fine-grain access control policies, and by com-

bining ABE policies with SDE, it can also provide policy confidentiality.

82 Chapter 5. Querying In-Network Cached Publications

5.2 Solution description

In the following we assume that one or several designated brokers enhanced with

database functionality, store events published over a longer period of time. Such

brokers could store all the events, or just certain event types with particular at-

tributes by becoming a subscriber and registering specific filters. These brokers do

not need to know the details of the filter, instead they could receive an encrypted

filter from a trusted authority and register it. For example, in the e-Health appli-

cation scenario, the hospital or the Healthcare authority, or even the patient, can

decide what kind of information they want to store and send an encrypted filter to

a broker.

5.2.1 Event encryption and indexing

Events encrypted using either the basic confidentiality scheme from Chapter 3 or

the enhanced scheme from Chapter 4 have the form E = ({TD(a)}a∈γ , c(M)),

where TD(a) = (gx)fs(a) with f a pseudorandom function, s a secret number, and

x the master secret key stored by the trusted authority, and c(M) is the ciphertext

encrypted either with PE or ABE. An attribute a has the form attr name = value.

The broker who does not have the keys for decrypting the message content, stores

the events in a database. Table 5.2 shows an example of encrypted events stored

by a broker.

Table 5.2: Events index.

Event ID Trapdoors Encrypted content

E1 TD(a1), TD(a2) c(M1)

E2 TD(a3), TD(a2) c(M2)

E3 TD(a4), TD(a1) c(M3)

...

To retrieve the events, users make queries in the form of an encrypted access

tree policy as explained in the Filter Encryption algorithm in Section 3.5.5. To

speed up how long it takes to identify the events that contain certain attributes,

the broker creates an index that maps each trapdoor to the events that contain it

as shown in Table 5.3.

Table 5.3: Trapdoor index.

Trapdoor Event ID

TD(a1) E1, E3

TD(a2) E1, E2

TD(a3) E2

TD(a4) E3

... ...

5.2. Solution description 83

5.2.2 Query encryption

The query has the structure of a subscription filter with internal nodes representing

AND and OR relations, and leaf nodes representing attributes. Previously, we

encrypted the leaf nodes of the tree with the keyword encryption (KE) algorithm

of SDE, a proxy-based probabilistic algorithm that requires re-encryption by the

local broker. Using a probabilistic algorithm to encrypt the leaf nodes of the tree

ensured that the server could not distinguish between leaves encrypting the same

attribute. This prevented the server from learning statistical information from the

encrypted filters it stored, such as the number of distinct attributes and the number

of occurrences of each. In the following we take a different approach which allows

evaluating faster encrypted queries on the events stored in the database. We encrypt

the leaf nodes of the tree as trapdoors using the Trap–U algorithm (Algorithm 11)

on the user side and Trap–S (Algorithm 12) on the local broker’s side. Figure 5.1

shows the modified query encryption algorithm which in steps (2) and (3) uses

the trapdoor algorithms. Figure 5.2 shows an example of a tree with leaf nodes

encrypted as trapdoors.

Subscriber

Trap-U

Broker

Trap-S

},...,{: 1 maaF

)(aTDs

sF

(1)

(2)

(3)

usK

ssK

)(Fattrsa ∈

)(aTDs

)(aTD

Figure 5.1: Query encryption as an access tree using the trapdoor algorithm.

AND

OR)(1aTD

)(2aTD)(3aTD

Figure 5.2: Query encrypted using the trapdoor algorithm.

84 Chapter 5. Querying In-Network Cached Publications

5.2.3 Event matching

When a new query comes in the form of an access tree, the broker identifies and

retrieves all the events that match the query. The broker uses two main algorithms

for that. First, it identifies the events that could potentially match the query, thus

discarding all the events that cannot be matched, as shown in Algorithm 28. The

broker retrieves all the events that contain in their set of trapdoors {TD(a)}a∈γ
one of the trapdoors in the filter, where γ is the set of attributes under which the

event was encrypted. The broker then tries to match the filter against each of the

events using Algorithm 25.

Algorithm 24 Encrypted Event Filtering

Input: A trapdoor index TrapIdx, an event index EvIdx, a re-encrypted query represented

as an access tree F ∗.

Output: a list E of event IDs that match the query F ∗.

1: initialize a list of event IDs E

2: for all re-encrypted leaf nodes l ∈ F ∗ do

3: if l belongs to TrapIdx then

4: for all event IDs e in TrapIdx(l) do

5: add e to E

6: end for

7: end if

8: end for

9: for all event IDs e ∈ E do

10: retrieve the set A of trapdoors of e

11: if iTreeEval(F ∗.root, A) is false then

12: remove e from E

13: end if

14: end for

15: return E.

5.3. Inference exposure 85

Algorithm 25 iTreeEval: Access Tree Evaluation with Index

Input: A node x of a re-encrypted tree F ∗, and the set of trapdoors A = {TD(a)}a∈γ of

the re-encrypted event E.

Output: true or false.

1: if x is a leaf node then

2: if attr(x) belongs to {TD(a)}a∈γ then

3: return true

4: end if

5: else

6: l = 0

7: while l < threshold(x) do

8: for all children c of x do

9: if iTreeEval(c, {TD(a)}a∈γ) then

10: l++

11: end if

12: end for

13: end while

14: if l = threshold(x) then

15: return true

16: end if

17: end if

18: return false

We note that the iTreeEval algorithm is more efficient than the TreeEval from

Chapter 3, described in Algorithm 14 because it does not make any calls to the

SDE–Match algorithm of SDE shown in Algorithm 13.

5.3 Inference exposure

Building an index over encrypted data allows faster query evaluation, increasing

the efficiency of the system. For example, when a user searches for documents or

records containing a particular keyword and the data is not indexed, the server needs

to test each document one by one. However, if documents are indexed under the

keywords they contain, the server can easily locate and retrieve only the documents

containing the word without processing the other documents or records.

The main concern when building an index is that it can reveal sensitive infor-

mation about the data like the number of documents containing each word. If the

server knows the kind of data that is being indexed and the frequency of plaintext

values, it might be able to infer with a certain non-negligible probability, the corre-

spondence between known plaintext and encrypted values. Several techniques can

be employed to flatten the work frequency like using hash functions with collisions

that map specific words to the same index value. Another solution could be to

insert fake data in the database. Such methods have performance and computation

costs, as they create false positives. In order to decide if such a method is needed,

we must first be able to assess the inference exposure of the encrypted dataset.

86 Chapter 5. Querying In-Network Cached Publications

Figure 5.3: Plaintext data and indexed data using direct encryption.

Account Customer Balance

Acc1 Alice 100

Acc2 Alice 200

Acc3 Bob 300

Acc4 Chris 200

Acc5 Donna 400

Acc6 Elvis 200

Acc7 Fred 300

Enc tuple IA IC IB
ri4uUIeuhje4 π α µ

J3oiu4y3j0h8 $ α κ

45hFjm/woier ξ β η

Y43u89jkre4u % γ κ

KJTi34u928rf ς δ θ

KJFp9ieu34ju Γ ε κ

IK39ru209ukj τ φ η

The exposure is specific to each dataset and depends on the data distribution. The

acceptable inference exposure degree is specific to each application or even to each

attribute. In the following we will model exposure as the probability for the server

to correlate ciphertext values with plaintext values. Our goal is not to propose

another protection method, but instead to evaluate the exposure of data encrypted

with our scheme in order to determine when protection mechanisms are needed. In

particular, we represent numeric values on bits and create a different attribute for

each bit position, thus we want to analyse what is leaked by such a representation,

called a “bag of bits” in [Bethencourt 2007]. For example, the “bag of bits” repre-

sentation of a=7 is “a=0***, a=*1**, a=**1*, a=***1”. To reduce the exposure to

the desired level, we can apply the collision method from [Ceselli 2005] and choose

the pseudorandom function f used in our scheme to be a hashing function with col-

lision. No other modifications are required to our scheme, except for choosing the

right f function depending on the distribution of the data that will be encrypted.

We start by explaining current inference exposure metrics for encrypted

databases, and then assess the inference of our scheme for different threat mod-

els and indexing approaches.

5.3.1 Background

The problem of inference exposure in encrypted indexes was analysed by

[Ceselli 2005]. They assume that the data is organized in a table as shown on

the left side of the table of Figure 5.3. Furthermore, their work assumes that for

each database entry, the whole row is encrypted using some encryption scheme inde-

pendent of the index, and that for each indexable field, the value is encrypted using

some indexing function. We note that our event encryption scheme uses the same

principle. The event content is encrypted using PE or ABE, while the attributes

that are used by the broker to match events against filters are encrypted with the

trapdoor algorithm from SDE. In our case, the trapdoor algorithm is the indexing

function. [Ceselli 2005] consider two cases for the indexing function: direct encryp-

tion as shown on the right side table of Figure 5.3 which preserves word frequency,

and a hashing function with collision which modifies the work frequency, and thus

provides protection from inference attacks as shown in Table 5.4. We note that

this solution does not support complex queries with numeric inequalities as it is not

possible for the server to compare index values.

5.3. Inference exposure 87

Table 5.4: Indexed data using a hash function with collision.

Enc tuple IA IC IB
ri4uUIeuhje4 π α µ

J3oiu4y3j0h8 $ α κ

45hFjm/woier ξ δ θ

Y43u89jkre4u % α κ

KJTi34u928rf ς β κ

KJFp9ieu34ju Γ β κ

IK39ru209ukj τ δ θ

We call this kind of index that organizes data in a table, a two-dimensional

index because values are indexed under the attribute name, and then records are

indexed under the values they contain. Our event encryption scheme, on the other

hand, uses a one-dimensional index, as attr name = value becomes an index value

by itself and is not indexed under the attribute name. The correspondence between

attribute name and attribute values is hidden from the broker in our scheme. We

will analyse and compare the exposure of using both a one and two-dimensional

index. Our scheme can be easily turned into a two-dimensional scheme by attaching

to each attr name = value pair the encrypted name of the attribute.

In the following we analyse and compare the exposure of our encryption scheme

when using a one and two-dimensional index. We are interested in assessing how

representing numeric values as a “bag of bits” affects the exposure of the index. We

will consider the same two threat models introduced in [Ceselli 2005]. In the first

one called Freq + DBK, the server knows the frequency of each word and has access

to the entire encrypted database. In the second one, called DB + DBK, the server

knows both the encrypted and non-encrypted database.

5.3.2 Threat model 1: Freq+ DBK

This threat model assumes the attacker knows the frequency of each attribute value

and has access to the entire encrypted database. The frequency information could

be approximate or exact. It is probably unlikely that the broker can have the exact

distribution, especially because the distribution changes over time. We will assume

the worst-case scenario in which the broker has exact knowledge of the plaintext

data frequency.

The main idea in modelling inference exposure is that values with the same num-

ber of occurrences become indistinguishable to the server. We follow [Ceselli 2005]

and group values with the same number of occurrences in equivalence classes as

shown below. A.1 is the class of values from column A that appear once and so

forth. The probability of guessing a single value is 1 over the number of values in

the class. So the probability of guessing any value from class A.1 is 1/7.

A.1 = {π,$, ξ, %, ς,Γ, τ} = {Acc1, Acc2, Acc3, Acc4, Acc5, Acc6, Acc7}
C.1 = {β, γ, δ, ε, φ} = {Bob, Chris, Donna, Elvis, Fred}
C.2 = {α} = {Alice}
B.1 = {µ, θ} = {100, 400}

88 Chapter 5. Querying In-Network Cached Publications

Figure 5.4: Quotient and IC tables.

QtA QtC QtB
A.1 C.2 B.1

A.1 C.2 B.3

A.1 C.1 B.2

A.1 C.1 B.3

A.1 C.1 B.1

A.1 C.1 B.3

A.1 C.1 B.2

ICA ICC ICB

1/7 1 1/2

1/7 1 1

1/7 1/5 1

1/7 1/5 1

1/7 1/5 1/2

1/7 1/5 1

1/7 1/5 1

B.2 = {η} = {300}
B.3 = {κ} = {200}
From the equivalence classes, we can compute the quotient table which is ob-

tained by replacing each value in the index with the class to which it belongs, as

shown in Figure 5.4. The inverse coefficient (IC) table is obtained by replacing

each value with 1 over the size of the class to which it belongs. The IC is the

probability of guessing the value if the server only knows frequency information.

The probability of guessing an entire row is the product of the IC of each value.

For example, the probability of guessing the first row is 1/14. The exposure coeffi-

cient ε associated with the entire encrypted table can be computed as the average

probability of guessing each row using the formula proposed by [Ceselli 2005]:

ε =
1

n

n∑
i=1

k∏
j=1

ICi,j (5.1)

The exposure coefficient for the table, computed using Equation 5.1 is ε = 1
7 ·

12
35

= 0.049, which means that an attacker can guess the entire table with probability

4.9%.

5.3.2.1 Inference of the 2-dimensional index

We now analyse how representing numeric values as a “bag of bits” impacts the

exposure coefficient when the two-dimensional indexing is maintained. In this case,

the plaintext database is as shown in Table 5.5.

We assume the server knows exactly which values correspond to each bit posi-

tion. For the above example, the IC table will be as shown in Table 5.6, where B1

refers to the first bit of the Balance field starting from the most significant bit, B2

to the second bit and so on.

The IC table is show in Table 5.7 and the exposure coefficient computed using

Equation 5.1 is ε = 1
7 ·

3
7 = 0.061, greater than the exposure for Figure 5.4, while

for the numeric field Balance the exposure coefficient is 1. Because there are only

two possible values for a bit, either 0 or 1, the server can guess the value with

probability 1, unless the number of occurrences for 1 and 0 bit values is exactly the

same. We conclude from this result that a 2-dimensional index as the one above

would not be secure.

5.3. Inference exposure 89

Table 5.5: Plaintext database with “bag of bits” representation of numeric values.

Account Customer Balance

Acc1 Alice B=0******** B=*0******* B=**1****** B=***1***** B=****0****
B=*****0*** B=******1** B=*******0* B=********0

Acc2 Alice B=0******** B=*1******* B=**1****** B=***0***** B=****0****
B=*****1*** B=******0** B=*******0* B=********0

Acc3 Bob B=1******** B=*0******* B=**0****** B=***1***** B=****0****
B=*****1*** B=******1** B=*******0* B=********0

Acc4 Chris B=0******** B=*1******* B=**1****** B=***0***** B=****0****
B=*****1*** B=******0** B=*******0* B=********0

Acc5 Donna B=1******** B=*1******* B=**0****** B=***0***** B=****1****
B=*****0*** B=******0** B=*******0* B=********0

Acc6 Elvis B=0******** B=*1******* B=**1****** B=***0***** B=****0****
B=*****1*** B=******0** B=*******0* B=********0

Acc7 Fred B=1******** B=*0******* B=**0****** B=***1***** B=****0****
B=*****1*** B=******1** B=*******0* B=********0

Table 5.6: Quotient table - 2D index.

QtA QtC QtB1 QtB2 QtB3 QtB4 QtB5 QtB6 QtB7 QtB8 QtB9

A.1 C.2 B1.4 B2.3 B3.4 B4.3 B5.6 B6.2 B7.3 B8.7 B9.7

A.1 C.2 B1.4 B2.4 B3.4 B4.4 B5.6 B6.5 B7.4 B8.7 B9.7

A.1 C.1 B1.3 B2.3 B3.3 B4.3 B5.6 B6.5 B7.3 B8.7 B9.7

A.1 C.1 B1.4 B2.4 B3.4 B4.4 B5.6 B6.5 B7.4 B8.7 B9.7

A.1 C.1 B1.3 B2.4 B3.3 B4.4 B5.1 B6.2 B7.4 B8.7 B9.7

A.1 C.1 B1.4 B2.4 B3.4 B4.4 B5.6 B6.5 B7.4 B8.7 B9.7

A.1 C.1 B1.3 B2.3 B3.3 B4.3 B5.6 B6.5 B7.3 B8.7 B9.7

Table 5.7: IC table - 2D index.

ICA ICC ICB1 ICB2 ICB3 ICB4 ICB5 ICB6 ICB7 ICB8 ICB9

1/7 1 1 1 1 1 1 1 1 1 1

1/7 1 1 1 1 1 1 1 1 1 1

1/7 1/5 1 1 1 1 1 1 1 1 1

1/7 1/5 1 1 1 1 1 1 1 1 1

1/7 1/5 1 1 1 1 1 1 1 1 1

1/7 1/5 1 1 1 1 1 1 1 1 1

1/7 1/5 1 1 1 1 1 1 1 1 1

90 Chapter 5. Querying In-Network Cached Publications

5.3.2.2 Inference of the 1-dimensional index

We now assume that rows are encrypted as in our event encryption scheme. For

the example we considered above, the broker stores 7 events that were encrypted

under the attributes Account=Acc1, Customer=Alice, Balance=100 and so on. The

attributes are encrypted using the trapdoor algorithm, with the attribute name and

value concatenated and in random order such that the broker cannot identify which

values refer to the same attribute. We use the same principle that values with the

same number of occurrences are indistinguishable to the broker and compute the

following equivalence classes for the whole table as shown in Table 5.8.

Table 5.8: Quotient table - 1D index.

T.1 T.2 T.4 T.3 T.4 T.3 T.6 T.2 T.3 T.7 T.7

T.1 T.2 T.4 T.4 T.4 T.4 T.6 T.5 T.4 T.7 T.7

T.1 T.1 T.3 T.3 T.3 T.3 T.6 T.5 T.3 T.7 T.7

T.1 T.1 T.4 T.4 T.4 T.4 T.6 T.5 T.4 T.7 T.7

T.1 T.1 T.3 T.3 T.3 T.4 T.1 T.2 T.4 T.7 T.7

T.1 T.1 T.4 T.4 T.4 T.4 T.6 T.5 T.4 T.7 T.7

T.1 T.1 T.3 T.3 T.3 T.3 T.6 T.5 T.3 T.7 T.7

Table 5.9: IC table - 1D index.

1/13 1/2 1/5 1/5 1/5 1/5 1 1/2 1/5 1/2 1/2

1/13 1/2 1/5 1/5 1/5 1/5 1 1 1/5 1/2 1/2

1/13 1/13 1/5 1/5 1/5 1/5 1 1 1/5 1/2 1/2

1/13 1/13 1/5 1/5 1/5 1/5 1 1 1/5 1/2 1/2

1/13 1/13 1/5 1/5 1/5 1/5 1/13 1/2 1/5 1/2 1/2

1/13 1/13 1/5 1/5 1/5 1/5 1 1 1/5 1/2 1/2

1/13 1/13 1/5 1/5 1/5 1/5 1 1 1/2 1/2 1/2

We note that in the case of a 1-dimensional index, the equivalence classes become

much bigger as they are computed over the entire table instead of just over one row.

The equivalence classes become even bigger when the server stores different event

types. Table 5.9 shows the IC table in this case. The average exposure coefficient of

the table is ε = 9.32440341e− 7 much smaller than in the case of the 2 dimensional

index. A one-dimensional (1D) index would be secure under the Freq + DBK threat

model, more secure than a two-dimensional (2D) index because equivalence classes

are equal or bigger than equivalence classes for the 2D index, but never smaller.

On the other hand, for large datasets, the “bag of bits” representation reduces the

number of distinct values in the database, as each numeric field will be mapped to n

“buckets”, where n is the number of bits on which the number is represented. Even

so, the exposure under this threat model is small as we will show in the following

for different datasets.

5.3.2.3 Inference comparison on synthetic datasets

We generate several datasets with various number of fields, following different dis-

tributions and compute the inference exposure for each. To generate the data we

5.3. Inference exposure 91

used the Commons Math 3.1.1 library1 which implements various distributions.

Event type 1 contains 1 non-numeric attribute (or field) following a Zipf distri-

bution, and a numeric attribute on 10 bits following a uniform distribution. Figure

5.5 shows the exposure of datasets of various sizes. As we expected, the 2D index

with “bag of bits” representation (BR 2D) is not secure because it gives much bigger

exposure values than the 1D index with “bag of bits” representation (BR 1D) and

the direct encryption methods DE 1D and DE 2D. Because of that we will omit it

in the next figures.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

200 500 1000 2000

E
xp

os
ur

e
co

ef
fic

ie
nt

Number of tuples

DE_2D
DE_1D
BR_2D
BR_1D

Figure 5.5: Inference exposure of the type 1 event.

Event type 2 additionally contains a numeric field following a Zipf distribution,

so it has one non-numeric and 2 numeric attributes. The numeric attributes are

represented on 10 bits. The exposure coefficients for different data sizes, for di-

rect encryption using one-dimensional index (DE 1D) and two-dimensional index

(DE 2D) and for “bag of bits” representation one-dimensional index (BR 1D) are

shown in Figure 5.6. The inference exposure for this event is much smaller than for

event type 1, under 0.003 (i.e., 0.3%). Under this threat model, the more attributes

an event has, the smaller the probability that an attacker can infer the table.

1http://commons.apache.org/proper/commons-math/

92 Chapter 5. Querying In-Network Cached Publications

 0

 0.001

 0.002

 0.003

200 500 1000 2000

E
xp

os
ur

e
co

ef
fic

ie
nt

Number of tuples

DE_2D
DE_1D
BR_1D

Figure 5.6: Inference exposure of the type 2 event.

In conclusion, representing numeric values as a “bag of bits” slightly increases

the inference exposure for large datasets, but the exposure still remains very low.

In the following we consider a more powerful threat model.

5.3.3 Threat model 2: DB+ DBK

In the second model, DB + DBK, the attacker additionally knows the frequency of

correlations between values. We assume that the attacker knows the exact unen-

crypted DB and has access to the encrypted DB. Using this knowledge, the attacker

tries to match plaintext with ciphertext values. [Ceselli 2005] proposed assessing

the inference exposure in this case by constructing a row-column-value (RCV) graph

from the encrypted table which has a vertex for each (i) attribute name (of color

column), (ii) distinct value in a row (of color value), and (iii) row or association

(of color row). Figure 5.7 shows the RCV graph for the Accounting example, using

only two indices, IC and IB.

Figure 5.7: Encrypted table (a) and the corresponding RCV graph (b) from

[Ceselli 2005].

5.3. Inference exposure 93

Based on the observation that the plaintext and encrypted RCV graph have the

same structure, Ceselli et al. propose an algorithm for determining the probability of

guessing each vertex by counting the number of ways in which vertices can be asso-

ciated to create isomorphic graphs. This can be achieved by computing the equitable

partition of the graph following the algorithm of McKay [McKay 1981]. This algo-

rithm groups the vertices of a graph in sets where each set Cj contains vertices that

can be substituted one for the other in an automorphism. For the graph given above,

the equitable partition of attribute vertices is {(α)(β, ϕ)(γ, ε)(ξ)(µ)(η)(κ)(θ)}.
The exposure of the whole table can be computed as the probability of guessing

each value divided by the total number of values as shown in Equation 5.2, where

m is the total number of values and n is the total number of partitions.

ε =
m∑
i=1

pi
n

=
n∑
j=1

∑
vi∈Cj

1

|Cj |m
=

n∑
j=1

1

m
=

n

m
. (5.2)

We will use this method to analyse the exposure of our indexing algorithm

which represents numeric values as “bag of bits”. We use the C implementation

of the algorithm of McKay from [McKay] to generate the equitable partition. For

the example with columns Customer and Balance, the exposure of the 2D direct

encryption is 8/10, as there are 8 partitions and 10 distinct values. For 1D direct

encryption the graph does not contain the column vertices, having only two kind

of colors. The exposure in this case is smaller and is equal to 7/10. For the 1D

“bag of bits” representation we use, the exposure is smaller and is equal to 11/22.

In this case, representing the values as “bag of bits” reduces the exposure because

the dataset is small and the “bag of bits” representation increases the number of

vertices.

However, in general, the more fields or attributes the database has, the more

constrained the RCV graph becomes, leading to big inference coefficients. Ceselli

et al. showed that if for a database with 2 fields and 2,000 tuples, the inference

exposure is 18/2006, for 4 tuples the inference becomes 1467/2262. Because we rep-

resent numeric values as “bag of bits”, we create more fields, and so the exposure

increases. Our experiments confirmed this observation. For large datasets contain-

ing only numeric attributes we obtained exposure coefficients of 1, consistent with

the values reported by Ceselli et al.

For databases with 4 attributes that give exposure coefficients of 1, a hash

function with collision factor of 3, meaning that in average three different plaintext

values are hashed to the same value, decreased the exposure coefficient from 1 to

0.3-0.4.

Chapter 6

Efficient Encrypted Routing

Contents

6.1 Introduction . 95

6.2 Background . 96

6.2.1 Event filtering algorithms . 97

6.2.2 Event routing optimizations 100

6.3 Related work . 101

6.3.1 Confidential event filtering 101

6.3.2 Encrypted routing optimizations 101

6.4 Solution details . 102

6.4.1 A simple solution indexing predicates 103

6.4.2 Indexing Boolean expressions 105

6.5 Performance comparison of the schemes 106

6.6 Inference exposure . 109

6.6.1 Exposure of the non-indexed scheme 109

6.6.2 Exposure of the indexed scheme 114

6.1 Introduction

Pub/sub systems are suitable for large-scale or time-constrained applications such

as stock quote dissemination, security alerts, and location-based services. In such

applications, in order to deliver messages in a timely manner, brokers need to

efficiently filter events against a large number of registered subscriptions (or fil-

ters). Matching an event against each subscription does not scale up when the

number of subscriptions increases. Building more efficient filtering solutions is a

problem well researched in literature [Carzaniga 2003, Whang 2009, Bittner 2005].

However, in order to support the desired efficiency, most systems [Carzaniga 2003,

Mühl 2001, Li 2005] restrict the subscription language to conjunctions of predi-

cates which are faster to evaluate than general Boolean expressions. Other sys-

tems transform filters expressed as general Boolean expressions in several filters

that represent conjunctive-normal forms (CNF) or disjunctive-normal forms (DNF)

[Whang 2009]. This approach, however, has been shown not to be efficient because

it significantly increases the number of filters [Bittner 2005]. Only recently, more

96 Chapter 6. Efficient Encrypted Routing

efficient algorithms have been proposed for matching filters expressed as general

Boolean expressions [Bittner 2005, Fontoura 2010].

Many applications such as stock quote dissemination, online auctions, or eHealth

applications require solutions for preserving the confidentiality of both events and

subscriptions, but at the same time, they also require an efficient encrypted filtering

algorithm that does not significantly impact the scalability of the system. Exist-

ing solutions for preserving confidentiality focus mainly on the security aspects and

neglect scalability. They usually require matching an incoming event against all sub-

scriptions one by one, because subscriptions are not indexed [Choi 2010, Chen 2010].

If indexes are supported, the expressiveness of the filter is reduced to single key-

word matches [Srivatsa 2005, Shikfa 2009]. None of the solutions we surveyed ad-

dressing confidentiality is able to efficiently filter encrypted events against complex

encrypted filters such as general Boolean expressions. In this chapter we propose

a novel solution for an efficient and scalable filtering algorithm, while maintaining

the properties of our confidentiality scheme, i.e., confidentiality of events and filters,

complex encrypted filters able to express general Boolean expressions, and scalable

key management that does not require publishers and subscribers to share keys.

6.2 Background

A pub/sub network consists of a number of brokers (or routers) connected

in a specific topology. Most research pub/sub prototypes targeting efficiency,

such as SIENA [Carzaniga 2001], PADRES [Li 2005], REBECA [Mühl 2001],

XRoute [Chand 2003], and GRYPHON [Banavar 1999] assume that brokers form

a fixed acyclic graph. The pub/sub network allows publishers to send messages to

interested subscribers without having to discover each other or even establish direct

contact.

Messages sent by publishers consist of several attribute-value pairs. For ex-

ample, in a stock quote dissemination application, an event could have the form:

“SYMBOL=MSF, PRICE=30, QUANTITY=100”.

In order to receive events, subscribers need to register a subscription or filter

with a local broker. The most expressive filters are defined as general Boolean

expressions containing conjunctions and disjunctions of predicates. A predicate

defines a constraint on an event attribute. Constraints are defined using operators

such as =, <, >, ≤, and ≥. For example, a subscriber who registered the filter

“SYMBOL=MSFT and PRICE>25” would receive the above mentioned event.

For each incoming event, a broker needs to determine all subscriptions whose

Boolean expression is matched by the event. This process is called event filtering

and can be defined as follows.

Definition 16 (Event filtering). A broker of the pub/sub system with a registered

set of subscriptions S, given an incoming event message E, needs to find every

subscription s ∈ S that is matched by the attributes of E.

6.2. Background 97

Brokers perform event filtering in order to deliver events from a publisher to

all subscribers who registered a filter matched by the event. This process is called

event routing and can be defined as follows.

Definition 17 (Event routing). The pub/sub system consisting of a set of dis-

tributed brokers connected in a specific topology, is given an incoming event E

and needs to determine all brokers connected to subscribers that registered a filter

matched by the event.

In the following we briefly survey how current pub/sub systems address the

problems of efficient event filtering and routing defined above.

6.2.1 Event filtering algorithms

In this section we analyse current event filtering algorithms in pub/sub systems.

We are interested in two aspects: (i) the complexity of the subscription language,

and (ii) the indexing strategy employed to support fast filtering.

Subscription languages in current solutions can either support: general filters,

be limited to some Boolean expressions such as disjunctive normal forms (DNF)

and conjunctive normal forms (CNF), or just conjunctions of predicates.

Current solutions use the following indexing approaches: no indexing at all, in

which case subscriptions are tested one by one, predicate indexes on a per-attribute

basis (all predicates on the same attribute are indexed under the attribute name),

subscription indexes which compact subscriptions together, or both predicate and

subscription indexes. Table 6.1 classifies the surveyed solutions based on these

criteria.

XXXXXXXXIndex
Sub

General DNF & CNF DNF Conjunctions

No indexing [Segall 2000] - - -

Predicate [Bittner 2005] [Whang 2009]
[Fontoura 2010]

[Carzaniga 2003] [Ashayer 2002]

Subscription [Campailla 2001] - - -

Sub & Pred - - - [Li 2005]

Table 6.1: Event Filtering Algorithms

Among current pub/sub systems, Elvin [Segall 2000] supports a general Boolean

subscription language and sophisticated predicates including regular expression

matching for strings. However, Elvin does not index predicates or subscriptions,

instead each event is evaluated against each subscription, making Elvin unsuitable

for large applications.

The approach from [Campailla 2001] also supports general Boolean expressions.

It represents subscriptions using Ordered Binary Decision Diagrams (OBDDs), a

compact way of representing Boolean functions as a rooted, directed acyclic graph,

which exploits similarities between functions. Though faster than Elvin, this ap-

proach does not scale well either, being suitable only for applications in which sub-

98 Chapter 6. Efficient Encrypted Routing

scriptions are highly similar with respect to both predicates and the combination

of predicates.

[Li 2005] uses Modified Binary Decision diagrams (MBDs) to index subscriptions

and in addition uses a one-dimensional predicate index. However, this approach

can only support conjunction subscriptions and requires high predicate redundancy

between subscriptions.

The counting algorithm [Ashayer 2002] supports conjunctive subscriptions only

and uses a one-dimensional predicate index. The algorithm counts the number

of fulfilled predicates per subscription and then checks if it equals the number

of overall predicates. This approach is scalable and does not require redundancy

among predicates. Moreover, it is easy to register and unregister subscriptions.

[Carzaniga 2003] indexes predicates and uses an extended counting algorithm

to evaluate DNF expressions. General Boolean expressions need to be transformed

in DNF form leading to an increase of the number of filters.

[Whang 2009] uses inverted list data structures to index Disjunctive or Con-

junctive Normal Forms (DNF or CNF). This approach requires transforming gen-

eral Boolean expressions in DNF or CNF, leading to an increase in the index size.

The idea is to index all predicates using a hash table which allows to search for

subscriptions containing the predicate. Subscriptions are further ordered by the

number of conjunctions/disjunctions they contain.

[Bittner 2005] extends the counting algorithm to support general Boolean ex-

pressions represented as trees with inner nodes containing Boolean operators AND,

OR, and NOT and leaf nodes containing predicates. Predicates are indexed in or-

der to allow fast identification of all satisfied predicates by an incoming event. In

a second step, subscriptions containing satisfied predicates are identified and the

Boolean expression of each subscription is evaluated.

[Fontoura 2010] describes and compares the performance of two algorithms able

to match general Boolean expressions. The first algorithm, Dewey ID, represents

Boolean expressions as trees with alternating AND-OR nodes in every path from

the root to the leaves. Leaf nodes are conjunctions of the form State ∈ {CA,NY }
or State /∈ {CA,NY }. Conjunctions (which also include simple predicates) are

then annotated with a compact description of where the conjunction appears in the

tree using Dewey IDs. A Dewey IDs encodes the path from the root node of the

tree to the conjunction stored in the leaf node. The Boolean expression tree is not

stored, instead relevant parts of it can be reconstructed from the matched Dewey

IDs and can be evaluated to true or false. The second algorithm is called Interval

IDs and experiments show it generally outperforms the Dewey ID. We give in the

following the details of this algorithm.

The Interval ID algorithm maps each leaf node of a Boolean Expression (BE)

tree to a sub-interval of the [1,M] interval, where M is the maximum number of leaf

nodes any tree might have. A tree is satisfied if there exists a set of satisfied leaves

that cover without overlap the whole interval [1,M]. We give simple examples to

explain the main idea of the algorithm. If the Boolean expression is A OR B, both

A and B will be labelled with 〈1,M〉 because the presence of any of these attributes

6.2. Background 99

satisfies the tree. If the Boolean expression is A AND B, the intervals could be

〈1,M/2〉 for A, and 〈M/2,M〉 for B. In order to cover the whole interval, both A

and B are required.

Algorithm 26 shows the details of the Label algorithm that is called to label each

leaf node in a tree with the begin and end values of its interval. In the algorithm,

n.leftLeaves denotes the total number of leaves appearing in the tree before node n

in a pre-order traversal of the tree.

Algorithm 26 The Label algorithm.

Input: Node n.

1: if n is a leaf then

2: return

3: else if n is an OR node then

4: for all children c of n do

5: c.begin ← n.begin

6: c.end ← n.end

7: Label(c)
8: end for

9: else if n is an AND node then

10: for first child c do

11: c.begin ← n.begin

12: c.end ← n.leftLeaves + c.size

13: Label(c)
14: curr← c.end+1

15: end for

16: for all intermediate children c of n do

17: c.begin ← curr
18: c.end ← curr + c.size-1

19: Label(c)
20: curr← c.end+1

21: end for

22: for last child c do

23: c.begin ← curr
24: c.end ← n.end

25: Label(c)
26: end for

27: end if

After the tree has been labelled, it can be matched against a set of satisfied

leaves, where each leaf is represented by an interval 〈begin; end〉. The details of the

match algorithm are given in Algorithm 27.

100 Chapter 6. Efficient Encrypted Routing

Algorithm 27 The Match Algorithm.

Input: I: set of intervals 〈begin; end〉 sorted by begin.

1: return true or false.

2: matched← Boolean Array of length M + 1

3: Initialize matched[i] to false for all i

4: matched[0] = true
5: for all intervals 〈begin; end〉 in I do

6: if matched [begin− 1] then

7: matched [end]← true

8: end if

9: end for

10: if matched[M] then

11: return true

12: else

13: return false

14: end if

6.2.2 Event routing optimizations

Routing optimizations can be classified as subscription-based optimizations and

advertisement-based optimizations.

Subscription information is used by brokers to create event routing tables instead

of simply broadcasting all events to all brokers. An event is forwarded to a neighbour

broker only if the broker sent a subscription matching the event. Three subscription

routing optimizations are used by current pub/sub systems: (i) covering-based, in

which coverage relations are defined between subscriptions, (ii) merging-based, in

which several subscriptions are merged into a more general subscription, and (iii)

summarization-based [Triantafillou 2004] in which brokers forward to each other

summaries of the subscriptions they have and then merge received summaries.

Covering is the most popular optimization used for example by SIENA, RE-

BECA, and PADRES. Formally subscription covering can be defined as:

Definition 18 (Subscription covering). A subscription s1 covers another subscrip-

tion s2 if s1 matches all the events that are matched by s2.

Merging [Mühl 2001, Li 2005] is also widely used, sometimes together with cov-

ering. Formally, we can define subscription merging as:

Definition 19 (Subscription merging). A subscription s is called a merger of a

subscription set Si iff s matches all the events that are matched by the subscription

in Si. Subscription s is called a perfect merger if it matches exactly all the events

matched by Si and imperfect merger if it matches more events.

In order to increase the efficiency of event routing, most systems require pub-

lishers to specify the schema of their future events through advertisements. An

advertisement defines a Boolean expression of predicates and has the same struc-

ture as a subscription. An event message E conforms to an advertisement A if the

6.3. Related work 101

Boolean expression of A evaluates to true on E. All events sent by a publisher need

to conform to one of its registered advertisements. Advertisement information is

used by brokers to propagate subscriptions among each other and avoid broadcast-

ing subscriptions in the network. Advertisements are used to create subscription

routing tables. A subscription will be forwarded only to brokers that sent an ad-

vertisement for events that could match the subscription. Covering and merging

optimizations can be applied to advertisement forwarding in the same way they are

applied to subscriptions.

In the next section we survey how confidentiality preserving routing solutions

handle event filtering and routing optimizations.

6.3 Related work

Efficient event filtering and routing are only marginally addressed by confidentiality-

preserving schemes.

6.3.1 Confidential event filtering

From the solutions we reviewed in Chapter 3, only a few allow subscription indexing,

but they can build routing tables with only one keyword, the topic [Srivatsa 2005,

Shikfa 2009]. In [Srivatsa 2005], all subscribers subscribing to a topic w are given

the same decryption key and token by the trusted key authority (KA). The token

is sent to the broker and represents the subscription. The broker can then build

a routing table using these tokens. Because the solution is vulnerable to inference

attacks, it provides a probabilistic multi-path event routing scheme that flattens

the occurrences of each topic at each router. In [Shikfa 2009], the encryption of

the topic name is done using local keys established between neighbouring brokers,

instead of being provided by a central authority, and as a result, the same topic

encrypts to a different ciphertext at each broker.

Barazzutti et al. [Barazzutti 2012] propose a pre-filtering mechanism that al-

lows faster encrypted filtering by reducing the number of calls to the encrypted

matching function. This solution is intended to work with any privacy-preserving

encrypting matching scheme. The solution works by extending both events and

filters with a Bloom filter that encodes equalities such as “SYM=IBM”. A simple

bit-wise operation on the Bloom filters allows discarding a subset of non-matching

subscriptions. The hash functions used to construct the Bloom filter are not known

to the broker and are parametrized by an encryption key, shared by publishers

and subscribers. Supporting disjunctions requires creating several Bloom filters per

subscription, as a Bloom filter can only encode conjunctions.

6.3.2 Encrypted routing optimizations

Routing optimizations in confidentiality-preserving schemes are achieved using

encrypted subscription covering. For example, the solutions from [Raiciu 2006,

102 Chapter 6. Efficient Encrypted Routing

Choi 2010, Nabeel 2009] allow the brokers to compute covering relations between

encrypted subscriptions, but they require publishers and subscribers to share a se-

cret key. This approach does not scale up because it requires re-keying whenever a

participant leaves the system.

6.4 Solution details

We target a scalable solution for large pub/sub systems that allows brokers to

efficiently match events against a large number of filters while preserving confi-

dentiality. In order to provide a scalable solution, we create an index that allows

identifying matching filters faster and does not require testing filters one by one.

We assume incoming events are encrypted as in the previous chapters. An event

consists of: (i) the message M that represents the content of the event and (ii) a set

of attribute assignments ai = vi that characterise M and are used for event filtering

by the brokers. An attribute assignment has the form attr name=attr value, where

attr value can be either a string or a number. The message content M is encrypted

with PE or ABE and the attributes are encrypted with the trapdoor algorithm Trap

of SDE, a proxy based algorithm that requires the local broker to re-encrypt the

attributes.

Filters represent conjunctions and disjunctions of predicates. A predicate has

the form attr name op attr value where op can be one of =,≤, <,≥, and >. We rep-

resent filters as access tree structures as previously, with internal nodes representing

AND or OR relation and leaf nodes representing predicates. To allow building an

index, we encrypt leaf nodes using Trap–U on the user side and re-encrypt them

using Trap–S on the broker side. The solution used in Chapters 3 and 4 used the KE

algorithm which is probabilistic and does not allow creating an index. Figure 6.1

shows the main steps of filter encryption when fine-grained access control policies

are supported using KP-ABE. As compared to Figure 4.3, we changed the leaf node

encryption in steps (4) and (5).

6.4. Solution details 103

Subscriber

Trap-U

Broker

Trap-S

},...,{: 1 maaF

)(aTDs

sF

(1)

(4)

(5)

usK

ssK

)(Fattrsa ∈

)(aTDs

TA

KP-ABE -KeyGen FD

(2)
KPPK

KPMK

F FD(3)

)(aTD

Figure 6.1: Filter generation and encryption.

6.4.1 A simple solution indexing predicates

We first describe a simple solution that indexes the leaf nodes of the trees, thus

allowing for faster identification of matching filters. With this solution, filters do

not need to be checked one by one as in the non-indexed scheme.

The broker indexes filters and the predicates contained in their leaf nodes using

two data structures. First, a hash table called the predicate index maps predicates

to the IDs of the filters containing them as shown in Table 6.2.

Table 6.2: Example of a predicate index.

Predicate Filter IDs

TD(a1) F1, F2, ...

TD(a1) F3, F4, ...

TD(a3) F5, F6, ...

TD(a4) F2, F3, ...

TD(a5) F1, F5, ...

TD(a6) F4, F6, ...

... ...

Another table called the filter index maps filter IDs to the actual filters as shown

in the example from Table 6.3.

104 Chapter 6. Efficient Encrypted Routing

Table 6.3: Example of a filter ID map.

Filter ID Encrypted Filter

F1 AND

OR)(1aTD

)(2aTD)(3aTD

F2 ...

... ...

The encrypted event filtering algorithm is given in Algorithm 28. When a new

event E arrives, the broker queries the predicate index using the re-encrypted at-

tributes {TD(a)}a∈γ of the event to retrieve the IDs of all filters containing one of

the attributes. The broker then matches these filters one by one using the simplified

filter matching function iTreeEval we introduced in the previous chapter and shown

in Algorithm 25. This is a recursive function that verifies if the Boolean expression

of the tree evaluates to true, given a set of satisfied predicates. This function is

more efficient than the non-indexed matching function described in Algorithm 14

because it does not make calls to the SDE–Match function of SDE. To verify if a

filter is satisfied, the broker calls the iTreeEval function on the root node of F ∗.

Algorithm 28 Encrypted Event Filtering

Input: A predicate index PIdx, a filter index FIdx, a re-encrypted set of attributes A of an

event E.

Output: a list L of filter IDs that are matched by the event E.

1: initialize a list of filter IDs L

2: for all re-encrypted attributes a ∈ A do

3: if a belongs to PIdx then

4: for all filter IDs f in PIdx(a) do

5: add f to L

6: end for

7: end if

8: end for

9: for all filter IDs f in L do

10: retrieve the filter F at FIdx(f)
11: if iTreeEval(F .root, A) is false then

12: remove f from L

13: end if

14: end for

15: return L.

6.4. Solution details 105

6.4.2 Indexing Boolean expressions

The previous solution from Section 6.4.1 indexes the predicates, but the index does

not reflect the filter structure. In the following we describe a solution using the

Interval ID algorithm of [Fontoura 2010] that includes the filter structure into the

index.

When a new filter arrives, the broker runs the Label algorithm showed in Al-

gorithm 26 to label each leaf node of the tree with an interval on the line [1,M],

where M is the maximum number of leaf nodes a filter might have and is fixed for

the system at set up. Each leaf node contains a trapdoor encryption of a predicate

of the form attr name = value. The broker then indexes under the predicate of the

leaf node encrypted as TD(a), the filter ID together with the label of the predicate

in the filter. Table 6.4 shows an example of such an index. We note that the server

does not need to store the actual filter as in the previous scheme, because the filter

structure is already reflected in the predicate index.

Table 6.4: Example of a predicate index.

Trapdoor Label

TD(a1) F1 : 〈1; 7〉
F2 : 〈3; 5〉
F5 : 〈4; 7〉

TD(a2) F2 : 〈1; 2〉
F4 : 〈5; 7〉

TD(a3) F1 : 〈7; 9〉
F3 : 〈3; 5〉
F4 : 〈2; 7〉

... ...

When the broker receives a new event, for each attribute trapdoor TD(a) in the

event, the broker identifies the entry in the predicate index corresponding to TD(a)

and retrieves the filter IDs and corresponding labels. The broker then sorts all such

entries by filter ID and begin value in the label interval. For each filter ID, it runs

the SDE–Match algorithm using the intervals sorted by begin value. The details of

the event matching algorithm are given in Algorithm 29.

106 Chapter 6. Efficient Encrypted Routing

Algorithm 29 Filter matching.

Input: A predicate index PIdx and a set of trapdoors A.

Output: A L list of matched filters.

1: initialize a list L of filter IDs

2: initialize a list FI for storing pairs of filter IDs and intervals of the form 〈begin; end〉
3: for all attribute trapdoors TD(a) in A do

4: if TD(a) belongs to PIdx then

5: add to FI the content of PIdx(TD(a))

6: end if

7: end for

8: for all distinct filter IDs f in FI do

9: create a set I that contains all intervals 〈begin; end〉 pairs with f

10: sort I by the begin value

11: if match(I) returns true then

12: add f to L

13: end if

14: end for

15: return L.

This algorithm has larger pre-processing times as compared to the first algo-

rithm, but event matching is faster.

6.5 Performance comparison of the schemes

We implement the two indexing schemes in Java and compare their performance.

We tested the implementation on an Intel Core2 Duo 2.8 GHz with 3.48 GB of

RAM. There are two main operations that a broker needs to perform: (i) add a

new subscription to the index, and (ii) evaluate an incoming event on the indexed

subscriptions. We compare the cost of these two operations for different datasets of

filters. To analyse how the depth of the tree affects the performance of the schemes,

we use different tree depths for each dataset.

We generate 5 datasets of 20,000 filters each for different tree depths. Figure

6.2 compares the indexing time of the two schemes for each of the datasets. As

expected, the simple solution (SS) is faster than the Interval IDs (II) solution.

That is because SS only indexes the leaf nodes of the tree, while II also indexes the

structure of the tree.

6.5. Performance comparison of the schemes 107

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 1 2 3 4 5

In
de

xi
ng

 ti
m

e
(m

s)

Tree depth

SS_Index
II_Index

Figure 6.2: Indexing time of 20,000 filters for different depths.

We now evaluate query execution time on each of the 5 indexes. We choose the

query (in the form of event attributes) that matches most filters and run it under

both schemes. Figure 6.3 compares the performance as an average of running this

query 1000 times. For small trees, the simple solution performs better, but when

the depth of the tree grows, the Interval IDs solution is more efficient.

 0

 2

 4

 6

 8

 10

 1 2 3 4 5

Q
ue

ry
 e

xe
cu

tio
n

tim
e

(m
s)

Tree depth

SS_Query
II_Query

Figure 6.3: Query execution time on 20,000 filters.

We further compare the performance of the schemes for different index sizes

using filters with depth 5. Figure 6.4 shows the times it takes to index sets of filters

of different sizes using both of the methods. Once again, the SS scheme is more

efficient from this point of view.

108 Chapter 6. Efficient Encrypted Routing

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5000 10000 15000 20000 25000 30000 35000 40000

In
de

xi
ng

 ti
m

e
(m

s)

Number of filters

SS_Indexing
II_Indexing

Figure 6.4: Indexing time for different numbers of filters.

Figure 6.5 compares the event matching times of the two schemes for different

numbers of filters. The simple solution indexing only predicates is less efficient for

very large filter sets, but it still manages to match 40,000 filters in about 22 ms

on an average laptop, as compared to 14.5 ms for the method indexing Boolean

expressions. For 10,000 filters it takes an around 5 ms for both methods. Servers

usually have much better resources and the event matching time on such powerful

machines could be significantly reduced. Moreover, because both methods are ef-

ficient even for large filter sets, they could prove practical for low capacity devices

with limited resources at the edge of the pub/sub network that do not need to filter

large amounts of publications or store that many filters.

 0

 5

 10

 15

 20

 25

 0 5000 10000 15000 20000 25000 30000 35000 40000

E
ve

nt
 m

at
ch

in
g

tim
e

(m
s)

Number of filters

SS_Match
II_Match

Figure 6.5: Event matching time for different numbers of filters.

We now compare these solutions with the non-indexed scheme. For filter

depth=5, it takes 25 seconds to match 10,000, 50 seconds to match 20,000 filters,

6.6. Inference exposure 109

75 to match 30,000 filters and 100 seconds to match 40,000 filters. This is much less

efficient then the indexed methods, but on a powerful server for applications that

do not have strict performance requirements, even this solution could be suitable.

6.6 Inference exposure

In the following we analyse the inference exposure of the two filtering approaches we

introduced, the non-indexed solution from Chapters 3 and 4, and the indexed solu-

tions from this chapter. In the non-indexed solution from Chapters 3 and 4, filter

leaf nodes are encrypted with a probabilistic algorithm, and do not leak attribute

frequency information. In this chapter we introduced another approach that indexes

filters by the attributes stored in their leaf nodes. This solution significantly speeds

up the event matching times, but allows the server to additionally learn statistical

information about the attributes.

We only consider the stronger DB + DBK threat model because the equivalent of

the Freq + DBK threat model translates into an adversary that knows the frequency

of predicates in filters, but not the frequency of predicate associations in filters.

This model can be easily solved for the indexed solution as in the previous chapter

by constructing equivalence classes for leaf node attributes and computing their

probabilities from the cardinalities of the classes. We already showed that under this

threat model the exposure coefficient is small and may not even require protection

mechanisms. In the case of the non-indexed scheme, the Freq + DBK attack is not

possible because the broker cannot compute the frequency of attributes from the

static index.

6.6.1 Exposure of the non-indexed scheme

The non-indexed scheme only leaks the structure of the tree that encodes the filter.

We assume that the server knows the plaintext filters and has access to the encrypted

filters. For each un-encrypted filter, the server can compute its tree structure.

The server then tries to match the computed structures with the structures of the

encrypted filters it stores.

We first assume all filters refer to the same numeric attribute. From the struc-

ture of these filters, the broker is trying to infer the inequality. Analysing the

Inequality Policy Generation Algorithm from Chapter 4 described in Algorithm 21,

we observe that the structure of a filter a < v1 is the same as the structure of the fil-

ter a > v2, if v2 is the complement of v1, i.e., v2 = 2n−1−v1, where n is the number

of bits on which the values are represented. Tables 6.5 and 6.6 show the structures

of the trees for n = 4. This means, that if the server knows a filter contains only a

numeric inequality, the server has a 1/2 probability of guessing the inequality from

the structure of the filter. For the filters a < 2n− 1 and a > 1, the server can guess

the inequality with probability 1. If the two complement inequalities have different

frequencies, the server can identify them.

110 Chapter 6. Efficient Encrypted Routing

Table 6.5: Filter structures 1.

a > 1 = 0001b a < 14 = 1110b

a > 2 = 0010b a < 13 = 1101b

a > 3 = 0011b a < 12 = 1100b

a > 4 = 0100b a < 11 = 1011b

a > 5 = 0101b a < 10 = 1010b

a > 6 = 0110b a < 9 = 1001b

a > 7 = 0111b a < 8 = 1000b

6.6. Inference exposure 111

Table 6.6: Filter structures 2.

a > 8 = 1000b a < 7 = 0111b

a > 9 = 1001b a < 6 = 0110b

a > 10 = 1010b a < 5 = 0101b

a > 11 = 1011b a < 4 = 0100b

a > 12 = 1100b a < 3 = 0011b

a > 13 = 1101b a < 2 = 0010b

112 Chapter 6. Efficient Encrypted Routing

Table 6.7: Filters having the same tree structure.

a<3 d<8 and a>9

b and a>9 d>7 and a<6

b and a<6 b<8 and a<6

a>12 b and c and (d or e)

b and c and a<3 b and c and a>12

a<4 and d>3 a<4 and (d or e)

a>11 and d<12 a>11 and (d or e)

a<4 and d<12 a>11 and d<3

b and c and (a>7 or d<8) a>7 and c and (d or e<8)

a>7 and d<8 and (e or f) b<8 and a>9

However, when filters have more than one attribute, which is the case in large

scale pub/sub systems, the probability of the server inferring the filter from its

structure significantly decreases because many filters collide on the same structure.

For example, the 20 filters in Table 6.7 have the same structure. The list is not

exhaustive as many other filters would have the same structure.

We group all filters with the same tree structure t in a class Ct. We define the

probability for the broker to guess a filter as:

εi = fi
1

|Ct|
(6.1)

where fi is the number of occurrences of the filter, and |Ct| is the cardinality of the

class.

Let us take the following examples. First we assume we have 7 unique filters

that collide on 3 unique tree structures as follows:

Ct1 = {F1, F2}
Ct2 = {F3, F4, F5}
Ct3 = {F6, F7}
The probabilities of guessing each filter can be computed as follows: ε1 = ε2 =

1
|Ct1| = 1

2 , ε3 = ε4 = ε5 = 1
|Ct2| = 1

3 , ε6 = ε7 = 1
|Ct3| = 1

2 .

We take another example in which filters are not unique. For example, a par-

ticular filter such as a specific stock might be very popular with many subscribers

registering the same filter. We now assume that filters F1 and F4 occur more times

and we have the following classes:

Ct1 = {F1, F1, F2}
Ct2 = {F3, F4, F4, F4, F5}
Ct3 = {F6, F7}
The probabilities of each filter become: ε1 = f1

1
|Ct1| = 2

3 , ε2 = f2
1
|Ct1| = 1

3 , ε3 =

f3
1
|Ct2| = 1

5 , ε4 = f4
1
|Ct2| = 3

5 , ε5 = f5
1
|Ct2| = 1

5 , ε5 = f6
1
|Ct3| = 1

2 , ε7 = f7
1
|Ct3| = 1

2 .

We compute the inference exposure of a set of filters as the average probability

of guessing each filter.

6.6. Inference exposure 113

ε =
1

n

n∑
i=1

εi =
1

n

n∑
i=1

fi
|Ct|

=
1

n

m∑
j=1

∑
Fi∈Ctj

fi
|Ctj |

=
m

n
(6.2)

where n is the number of unique filters and m is the number of classes. The last

equality holds because the sum of the probabilities of all filters in one class is 1,

i.e.,
∑

Fi∈Ct
εi = 1.

To compute the exposure of a set of filters, we need to count the number of

unique filter structures and divide it by the total number of unique filters. Using

this formula, we compute the exposure of the two filter sets we considered above to

be 3/7 in both cases.

Using Equation 6.2 we first analyse how numeric inequalities expressed on dif-

ferent numbers of bits collide. This is due to the fact that the same inequality has a

different tree structure when represented on different numbers of bits. We fist gen-

erate all inequities on 4 bits and obtain an exposure coefficient of 0.5357. We then

generate all inequalities on 4 and 5 bits and notice that the coefficient decreases to

0.3523. Table 6.8 shows the coefficients for different filters sets obtained like that

until 10 bits for which the coefficient decreases to 0.2535.

Table 6.8: Exposure coefficient for filters representing a single numeric inequalities.

Number of bits Exposure coefficient

4 15/28=0.5357

4 and 5 31/88=0.3523

4, 5 and 6 63/212=0.2972

4, 5, 6 and 7 127/464=0.2737

4, 5, 6, 7 and 8 255/972=0.2623

4, 5, 6, 7, 8 and 9 511/1992=0.2565

4, 5, 6, 7, 8, 9 and 10 1023/4036=0.2535

To assess the inference exposure of the tree structure in large filter sets, we

generate filter sets with different numeric and non-numeric attributes. We aim to

create balanced sets of combinations of the possible attributes.

For a set of 262 unique filters with combinations of two non-numeric at-

tributes and one numeric attribute on 4 bits we obtained the inference exposure

ε = 65/262 = 0.2481.

For 892 unique filters with combinations of 3 non-numeric attributes and 2

numeric attributes on 4 and 5 bits respectively, we obtained ε = 143/892 = 0.1603.

For 1516 unique filters with combinations of 4 non-numeric and 3 numeric at-

tributes one on 4 and two on 5 bits, we computed ε = 161/1516 = 0.1061.

The exposure of the non-indexed scheme is quite low because the same filter

structure can correspond to a large number of subscriptions, consisting of both

numeric and non-numeric attributes. The inference decreases with the number of

filters and the number of attributes over which the filters are expressed.

114 Chapter 6. Efficient Encrypted Routing

6.6.2 Exposure of the indexed scheme

Following the DB + DBK threat model, we assume the server knows the entire plain-

text filters and their encryption. We use a similar approach as in the case of indexing

events and create a graph from all the filters. There are several types of vertices in

the graph: (i) one vertex for each leaf node attribute, (ii) one vertex per filter ID,

and (iii) one vertex per each unique AND and OR relation in the filters. This differs

from the graph we constructed in the previous section which only had two kind of

vertices: one for attributes and one for each event. This graph is more complex

because it also reflects the tree structure of each filter.

The AND and OR internal nodes connected to leaf nodes are added to the graph

in the following way. Each unique internal node is added just once with a unique

color. For example, if there are 3 filters of the form attribute AND attribute, we add

only once the AND node to the graph. We illustrate this with a simple example

shown in Figure 6.6.

AND

a b

AND

c d

AND

a f

a b c d f

AND

f1 f3f2

Figure 6.6: Filter index and corresponding associations graph.

Let us take a more complex example as in Figure 6.7. There are two kind of

AND nodes and one type of OR node.

6.6. Inference exposure 115

AND

a OR

b c

AND

d OR

e f

AND

b c d

b cd e fa

ANDAND OR

f1 f3 f2

Figure 6.7: Filter index and corresponding associations graph.

To assess the inference exposure from the graph, in the previous section we

computed the equitable partition of attribute vertices, which gives the probability

of guessing each attribute. This method can also be applied here. In the first

example from Figure 6.6, the equitable partition of attribute vertices is {a, (b f),

(c d)}. Vertices in the same class can be substituted for each other in isomorphic

graphs and the probability of inferring them is 1 over the cardinality of the class.

We computed the average probability of guessing the attributes as the number of

classes over the number of distinct attributes and in this case that is 3/5. For the

example from Figure 6.7, the equitable partition of attribute vertices is {a, (b c),

d, (e f)}, and the exposure coefficient is 4/6.

However, the probability of guessing each attribute may not always be a good

measure when the server is trying to match plaintext filters with encrypted filters.

For example, if the server can determine that a particular filter is either c AND d

or d AND c, the attribute exposure is 1/2 as c and d will form one class. However,

in this case, we can consider that even if the server cannot tell which attribute

is c and which one is d, the server can still identify the relation. This is another

way of assessing the inference exposure of an index of filters and could be used

in conjunction with the first one. To compute the filter exposure, instead of com-

puting the equitable partition of attribute vertices, we will compute the equitable

partition of filter ID vertices. Filters belonging to the same partition or class can

be substituted for each other, so the broker cannot distinguish between them. To

compute the classes of filters or equitable partitions, we use the Nauty algorithm

[McKay] as before. The equitable partition of filter IDs for Figure 6.6 is {(1 3),

(2)}. This means that filters 1 and 3 are inferred with probability 1/2 and filter 3

is inferred with probability 1. The average probability is the number of partitions

over the number of filters. In this case, that is 2/3=0.67 which is slightly greater

than 3/5=0.6 obtained as attributes exposure. The equitable partition of filter IDs

for Figure 6.7 is {1,2,3} and the exposure coefficient is 1, which means that the

116 Chapter 6. Efficient Encrypted Routing

broker can identify each filter with probability 1, but not completely identify the

correspondence between ciphertext attributes and plaintext attributes, because the

attribute inference is 4/6.

Let us take a more complex example as in Figure 6.8.

AND

a OR

c d

b

AND

e OR

g h

f

AND

i OR

k l

j

da b g hce f k l

f1 f3f2

ORAND

i j

Figure 6.8: Filter index and corresponding associations graph.

The equitable partition of attributes is {(a b e f i j), (c d g h k l)} which

gives an exposure coefficient of 2/12=0.17. The equitable partition of filter IDs is

{(1,2,3)}, so the exposure coefficient is 1/3=0.33, significantly greater. However,

we note that in this example, though the exposure coefficient appears to be quite

large, in fact the index does not leak anything to the server, because the exposure

coefficient equals the probability of a random guess. Perhaps a better inference

exposure metric should cater for the probability of random guess. The attribute

exposure coefficient is a better measure of inference exposure if we assume that the

attacker had access to both plaintext and ciphertext values at one point, and then

with this knowledge is trying to infer future encrypted filters about which it has no

knowledge.

Chapter 7

Implementation and Integration

with Different Middlewares

Contents

7.1 Implementation overview . 117

7.2 Libraries . 119

7.2.1 Basic encryption schemes implementation 119

7.2.2 Secure pub/sub implementation 121

7.3 Integration with CCNx . 124

7.4 Integration with PADRES . 127

7.4.1 PADRES . 127

7.4.2 Confidential PADRES . 128

7.4.3 Using advertisements with PADRES 129

In this chapter we describe the main components of our implementation, how

they interact and how they can be integrated with different middleware and applica-

tions. The goal was to create middleware-agnostic libraries that could be integrated

with multiple systems.

7.1 Implementation overview

We start by giving an example of an architecture that shows how networking, se-

curity solutions and applications fit together and support each other. Figure 7.1

shows the main components organized as a logical stack. At the bottom, we have

devices that generate data such as sensors, smart meters, electric vehicles, and mo-

bile devices handled by users. An ICN or pub/sub system connects these devices

and delivers data between them in an asynchronous manner that enables efficient

multiparty communication and decoupling of publishers and subscribers. Data is

identified by its name when using ICN or by content through attributes when using

a pub/sub system. ICN only provides basic data identification and retrieval by

name, and does not provide rich content-based networking as pub/sub systems do.

To provide such functionality, a pub/sub systems needs to be built on top of the

ICN. We note that the ICN layer of our architecture is optional, as the pub/sub sys-

tem could be build either on an ICN or on any communication protocol. The middle

layers in the figure represent the security solutions we described in this thesis, which

118
Chapter 7. Implementation and Integration with Different

Middlewares

secure the communication over the pub/sub system. On top of our Scalable Key

Management, we built solutions for Confidentiality & Access Control for securing

events and subscriptions, and Secure Routing and Data Caching components. On

top of our security components run different applications that make use of one or

more of the security functionalities, and/or visualization and analysis components

that display the data to users, or aggregate the data and transform it.

Figure 7.1: Components stack.

Information Centric Networking (ICN)
Publish/Subscribe

Confidentiality
Access Control Secure Routing

Secure Data Caching
Scalable Key Management

Application

Smart Devices Platform

Visualization

We further describe the implementation of the security components and show

how they can be integrated with different middlewares. Our implementation con-

sists of three layers shown in Figure 7.2:

• Basic encryption libraries: Our scheme is based on three main encryption

schemes: SDE, KP-ABE and CP-ABE. We used the SDE implementation of

[Dong 2011], and implemented in Java KP-ABE and CP-ABE as described

in [Goyal 2006a] and [Bethencourt 2007] respectively, using the Java Pairing

Based Cryptography Library (jPBC)1.

• Libraries implementing our schemes: We implemented the schemes as

described in Chapters 3, 4, 5 and 6. These libraries allow encrypting an event

and filter, and performing encrypted filtering.

• Integration with PADRES and CCNx: We demonstrate the usage of our

schemes with two popular middlewares: a distributed pub/sub system called

PADRES [Jacobsen 2010] and an ICN implementation of PARC called CCNx

[Jacobson 2007]. We took different approaches to integrating the libraries

with these middlewares. Because PADRES is a full-fledged pub/sub system,

we created classes that extend the main message types in PADRES and the

router and broker and integrated those with PADRES. Because CCNx does

not provide a pub/sub system, we built simple Publisher, Subscriber and

Broker applications that run on top of CCNx.

1http://gas.dia.unisa.it/projects/jpbc/

7.2. Libraries 119

Figure 7.2: Libraries stack.

Filter Encryption

Event Encryption

Encrypted Matching

SDE KP-ABE CP-ABE

Secure pub/sub functionality

Basic encryption schemes

Indexed Enc Match

Secure pub/sub extending
PADRES Broker, Router and
Message types.

Secure pub/sub with Publisher,
Subscriber and Broker applications
using CCNx for exchanging encrypted
message types.

7.2 Libraries

In this section we describe the implementation of the basic encryption schemes (i.e.,

ABE implementation) and the secure pub/sub implementation. The following two

sections will describe the integration with CCNx and PADRES respectively.

Figure 7.3 shows the most important classes needed for event and filter encryp-

tion. The bottom classes implement the basic encryption algorithms while the top

ones implement our secure pub/sub schemes.

Figure 7.3: Diagram showing the main classes for event and filter encryption.

TreePolicy
0..*

KPCiphertext

KPMasterSecretKey KPPublicKey KPPrivateKey

KPClientKPKeyAuthority

AesKPCiphertextAesKPClient
KPKeyAuthorityService

0..*

TrapTreePolicy KeTreePolicy

AesKPEvent
TrapEncFilter

SecPubSubClient
KeEncFilter

SDEClient

UserPrivateKey

7.2.1 Basic encryption schemes implementation

We implemented KP-ABE as in [Goyal 2006a]. The main KP-ABE classes are

shown at the bottom of Figure 7.3. KP-ABE requires a trusted Key Authority

(KA), implemented by the class KPKeyAuthority, that generates the public (i.e.,

120
Chapter 7. Implementation and Integration with Different

Middlewares

KPPublicKey) and the master secret (i.e., KPMasterSecretKey) keys. The KA dis-

tributes the public key to all senders and receivers, and stores securely the master

secret key. We create a class AesKPClient that has the functionality for requesting

the necessary keys and encrypting and decrypting messages using KP-ABE and

AES as described in Chapter 4. KP-ABE is used to encrypt a random AES en-

cryption key, while the actual content is encrypted using AES. Table 7.1 summaries

the functionality of this class. In order to instantiate a client, we need a unique

client name, and the hostname of the trusted KA for requesting the keys. Publish-

ers encrypt messages under numeric or non-numeric attributes using the method

encrypt. For example, a publisher can encrypt a message under the attributes “am-

bientdata”, “airquality”, and “trento”. A subscriber that is allowed to receive such

messages, will be issued by the KA a key (i.e, an instance of KPPrivateKey) for a

specific access policy over attribute values. Such a policy could be “ambientdata

and airquality and (trento or verona)”. The subscriber requests the key using the

method getDecKey and decrypts the ciphertext by calling decrypt.

Table 7.1: Summary of AesKPClient class.

Constructor

AesKPClient(String clientName, String kaHostname)

Key request methods

KPPublicKey getPublicKey()

KPPrivateKey getDecKey(String policy)

Encryption and decryption methods

AesKPCiphertext encrypt(String message, String[] attributes)

String decrypt(AesKPCiphertext cph, KPPrivateKey decKey)

The implementation for CP-ABE is similar and for lack of space we do not

show the classes in the diagram. CP-ABE also requires a trusted Key Authority

that generates public and master secret keys. The class AesCPClient shown in Table

7.2 provides the functionality for requesting the necessary keys and encrypting and

decrypting messages. Messages in CP-ABE are encrypted under an access policy,

while in KP-ABE messages are encrypted under attributes describing the message

content. The decryption key generated by the Key Authority for each CP-ABE

user is computed from the attributes of the user.

7.2. Libraries 121

Table 7.2: Summary of AesCPClient class.

Constructor

AesCPClient(String clientName, String kaHostname)

Key request methods

CPPublicKey getPublicKey()

CPPrivateKey getDecKey(String[] attributes)

Encryption and decryption methods

AesCPCiphertext encrypt(String message, String policy)

String decrypt(AesCPCiphertext cph, CPPrivateKey decKey)

7.2.2 Secure pub/sub implementation

There are two main message types in our scheme: encrypted events and encrypted

filters. Table 7.3 shows the components of an encrypted event using KP-ABE and

AES to encrypt the message content, and the trapdoor algorithm Trap to encrypt

attributes, as explained in Chapter 4. The publisherID is needed for the local broker

to locate the server side of the key for re-encrypting the trapdoors.

Table 7.3: Summary of AesKPEvent class.

Attributes

String publisherID

AesKPCiphertext ciphertext

// Client computed trapdoors

BigInteger[][] trapdoors u

// Broker re-encrypted trapdoors

Set<String> trapdoors

boolean reencrypted

Constructor

AesKPEvent(AesKPCiphertext cph, String publisherID)

Table 7.4 shows the components of an encrypted filter using the KE algorithm

to encrypt leaf node attributes as described in Chapters 3 and 4. A subscription

filter expressed as conjunctions and disjunctions of equalities and inequalities, is

parsed as a TreePolicy object. The KPPrivateKey issued by the Trusted Authority

is computed from this policy. To encrypt the filter, the subscriber encrypts the

leaf nodes of a TreePolicy either with the keyword encryption algorithm KE or the

trapdoor encryption algorithm Trap. The details of the KeTreePolicy class are given

in Table 7.5.

122
Chapter 7. Implementation and Integration with Different

Middlewares

Table 7.4: Summary of KeEncFilter class.

Attributes

String subscriberID

KeTreePolicy policy

boolean reencrypted

Constructor

EncFilter(String subscriberID, KeTreePolicy policy)

Table 7.5: Summary of KeTreePolicy class.

Attributes

// The threshold value of the node.

int threshold

// The client computed trapdoor if leaf node.

BigInteger[] trap u

// The broker re-encrypted trapdoor if leaf node.

String trapdoor

// Children policies, null for leaf nodes.

ArrayList<EncTreePolicy> children

Constructor

KeTreePolicy(TreePolicy filter, SDEClient sdeClient)

The client which can be either a publisher or subscriber or both, has the following

functionality:

7.2. Libraries 123

Table 7.6: Summary of SecPubSubClient class.

Attributes

String clientID

AesKPClient kpClient

SDEClient sdClient

Constructor

SecPubSubClient(String clientID, String kpAuthorityHost-

name, SDEClient sdClient)

Methods

AesKPEvent encryptEvent(String message, String[] attributes)

KeTreePolicy generateFilter(String subscrFilter)

KPPrivateKey requestDecryptionKey(String accessPolicy)

String decrypt(AesKPCiphertext cph)

Figure 7.4 shows the three kinds of encrypted brokers we described: the non-

indexed broker from Chapters 3 and 4 (i.e., EncBroker), the indexed broker im-

plementing the simple indexed solution from Chapter 6 (i.e., IndexBroker) and the

broker implementing the interval ID algorithm from Chapter 6 (i.e., IntervIdBro-

ker). All the brokers have an SDEServer instance that stores the server side keys

of the clients connected to the broker and re-encrypts events and filters created by

those clients.

Figure 7.4: Diagram showing the main broker classes.

TrapEncFilter

EncBroker

KeEncFilter

SDEServer

ServerSideKey

0..n

IndexBroker IntervIdBroker

0..n0..n

Interval

0..n

124
Chapter 7. Implementation and Integration with Different

Middlewares

Table 7.7: Summary of EncBroker class.

Attributes

SDEServer sdeserver

Set<KeEncFilter> filterStore

Constructor

EncBroker(SDEServer sdeserver)

Methods

handleFilter(KeEncFilter filter)

handleEvent(AesKPEvent event)

eventRenc(AesKPEvent event)

filterRenc(KeEncFilter filter)

boolean match(KeTreePolicy policy, Set<String> trapdoors)

In the following we describe in more detail the integration with each middleware.

7.3 Integration with CCNx

There are two main message types in CCNx: Interest which is used to request data

by name and ContentObject used to supply data in response to a matching Inter-

est. An Interest contains a ContentName which is created from a CCNx URI like

ccnx:/ccnx.org/ambientdata/temperature/trento. A ContentObject also contains a

ContentName and the data payload as a byte array. This allows sending any kind

of data object that can be serialized. A ContentObject matches an Interest, if the

ccnx URI of the Interest is a prefix of the URI of the Content. CCNx does not pro-

vide any mechanisms for key management or complex routing, but only symmetric

encryption algorithms. Moreover, in CCNx, interests are cancelled once they are

answered, and subscriptions valid for a longer period of time are not supported. To

provide a secure pub/sub system on top of CCNx, we create Publisher, Subscriber

and Broker applications that exchange messages encrypted with our scheme over

CCNx.

We use the Java interface of CCNx to write and read our serializable

AesKPEvent messages. We create a publisher class (see Table 7.8) that encrypts

and publishes events on CCNx under a specific naming expressed as a ccnxUri,

and a subscriber class (see Table 7.9) that expresses interest in a ccnxUri, receives

events published in response to the interest, and decrypts them. The encryption

and decryption operations are done using the functionality of AesKPClient. Because

CCNx cancels Interest objects once they are answered, the subscriber implements

a listen method that keeps subscribing to the ccnxUri in order to receive updates,

simulating the communication model of a pub/sub system. When a new message

is received, decryptMessage is called to decrypt and display the message.

7.3. Integration with CCNx 125

Table 7.8: Summary of CCNPublisher class.

Attributes

SecPubSubClient encryptor

String ccnxUri

CCNSerializableObject<AesKPEvent> writeEvent

Method

publish(String message, String[] attributes)

Table 7.9: Summary of CCNSubscriber class.

Attributes

SecPubSubClient decryptor

String ccnxUri

CCNSerializableObject<AesKPEvent> readEvent

Methods

getDecKey(String accessPolicy)

subscribe(String ccnxUri)

listen()

decryptMessage(AesKPEvent message)

126
Chapter 7. Implementation and Integration with Different

Middlewares

In CCNx, messages are requested and forwarded by name. Because name-based

routing can be too simplistic in many scenarios, we add a CCNBroker that enables

attribute-based routing. This feature allows users to express additional constraints

on the attributes of the data such as year=2012 or temperature<16. Routers or

brokers use these constraints to filter-out undesired messages. To enable encrypted

filtering, we create a CCNEncFilter class that contains a ccnxUri and extends

KeEncFilter.

Table 7.10 shows the functionality of the CCNBroker class.

Table 7.10: Summary of CCNBroker class.

Attributes

Hashtable<ContentName, List<CCNEncFilter>> subscriptionStore

Methods

listenSubscriptions()

listenEvents(ContentName name)

getMatches(ContentName name, AesKPEvent event)

publishEvent(String ccnxUri, AesKPEvent event)

Figure 7.7 shows the flow of messages between subscriber, broker and publisher.

The Broker first opens a readSubscription interface to listen for CCNEncFilter ob-

jects published on a dedicated subscriptionUri. Subscribers respond to the broker’s

Interest with their encrypted filters. A CCNEncFilter contains a ccnxUri and the

encrypted conditions (Step 1). When receiving such a message, the CCNBroker

re-encrypts the filter, stores it in the Subscription Store (Step 2), and subscribes to

the ccnxUri of the filter.

Publishers that have content matching the ccnxUri of interest, respond with

an AesKPEvent message (Step 3). The CCNBroker receives this messages on a

readEvent interface. When a new message arrives, the broker retrieves from the

Subscription Store all filters indexed under a ccnxUri that is a prefix of the ccnxUri

of the event. The broker identifies the filters with encrypted conditions that are

matched by the attributes of the event (Step 4). For each filter that matches, the

broker re-publishes the message on an ccnxUri specific to the subscriber that issued

the encrypted filter. The subscriber then decrypts the message using KP-ABE (Step

5).

7.4. Integration with PADRES 127

>< erCCNEncFilttzableObjecCCNSeriali

AesKPEvent

CCNSubscriber

SecPubSubClient.
decrypt

message

writeSubscription readEvent

erCCNEncFilt

Encrypt Filter

conditionsfilter

CCNPublisher

SecPubSubClient.
encrypt

attributesmessage

AesKpEvent

writeEvent

AesKPEvent

Matching Engine
getMatches()

readSubscription

readEvent

Subscription
Store

erCCNEncFilt

writeEvent

AesKPEvent

CCNBroker

>< AesKPEventtzableObjecCCNSeriali

(1)

(2)

(3)

(4)

(5)

Figure 7.5: Encrypted routing over CCNx.

The application can be distributed to form a graph topology in which internal

CCNx nodes run a CCNBroker application. A broker behaves as a publisher or

subscriber, or both, to its neighboring brokers.

7.4 Integration with PADRES

In the following we show how our libraries can work with PADRES [Jacobsen 2010],

a popular pub/sub system, more sophisticated and mature than CCNx.

7.4.1 PADRES

We integrated our scheme with the Publish/Subscribe Applied to Distributed Re-

source Scheduling (PADRES) middleware. PADRES is a very scalable pub/sub

system designed for large-scale event management applications. PADRES is de-

signed for event-driven enterprise applications such as supply chain and logistics,

workflows, business processes and job scheduling, RFID and sensor networks, and

128
Chapter 7. Implementation and Integration with Different

Middlewares

Port A

Broker A

Port B

Broker B

Client
X

Port C

Broker C

Client
Y

Figure 7.6: A simple PADRES network.

service oriented architectures. In these applications, an event triggers the execution

of other events and jobs, which makes a scalable and reliable content-based routing

middleware such as PADRES very suitable for event delivery.

PADRES consists of a set of clients connected by brokers organized in a peer-

to-peer overlay network. Clients can connect to brokers through different binding

interfaces such as Java Remote Method Invocation (RMI) and JMS. Figure 7.6

shows a simple PADRES network in which two clients are connected by a network

of 3 brokers. Both clients can subscribe to events and publish events. A PADRES

subscription is a conjunction of predicates, where a predicate has the form [at-

tribute,operator,value]. Messages have a mandatory tuple describing the class of

the message. Message routing is based on the publish-subscribe-advertise model

from SIENA [Carzaniga 2001]. In order to publish an event, a publisher needs to

advertise first the class and attributes of the event. Advertisements are used to

create the Subscription Routing Table (SRT), based on which subscriptions are

forwarded. The SRT is a list of [advertisment, last hop] tuples. A subscription

is forwarded to a next hop if it overlaps an advertisement in the SRT. Hence, a

subscription is routed hop by hop to the last hop broker that sent an advertise-

ment that matches the subscription. Subscriptions are used to create Publication

Routing Tables (PRT), used to route publications. The PRT consists of tuples of

the form [subscription, last hop]. If a publication matches a subscription, it will be

forwarded hop by hop until it reaches the subscriber. Brokers route publications

to subscribers by matching them against the registered subscriptions. To efficiently

match subscriptions, PADRES implements Rete [Forgy 1982], an efficient pattern

matching algorithm.

7.4.2 Confidential PADRES

PADRES does not provide any confidentiality mechanisms, instead all messages are

sent unencrypted between clients and brokers, and brokers have full access to the

content of events and filters.

We extended PADRES to provide confidentiality of events and filters. We added

a third entity to the PADRES network, the Key Management Authority (KMA),

and extended the functionality of the PADRES broker and client. We also ex-

tended the Publication and Subscription data types to support sending encrypted

publications (or events) and subscriptions (or filters).

7.4. Integration with PADRES 129

The KMA is responsible for generating the public parameters and the secret

keys for encryption and decryption. When started, the KMA runs the Init(1k)

algorithm described in Section 6.4. The KMA which needs to be started before

starting the brokers and clients exposes API for getting the public parameters and

keys, generating the SDE key pairs when a new user joins the system, requesting

a decryption key corresponding to a filter, and requesting a decryption key for the

client’s attributes.

We extended the functionality of the PADRES broker and client as follows.

We enriched the broker with functionality for adding a new client and revoking

a client. When a client is added, the broker stores the corresponding server-side

key of the client, and when a client is revoked, the broker simply removes the

client’s key pair from the key store. Figure 7.7 shows a simplified architecture of

the extended PADRES broker. Messages received are passed to the Input queue.

The input queue processes messages sequentially, sending them one by one to the

Router. The router consists of a Preprocessor, a Matching engine, a Forwarder and

a Post-processor. We modify the functionality of the Router and create a new class

EncRouter with the following modifications. First, we modify the PreProcessor to

re-encrypt the publication and subscription. This operation is performed only by

the broker directly connected with the client. Second, we add another matcher to

the matching engine, EncMatcher which matches encrypted publications against

encrypted subscriptions.

Finally, we extend the client with encryption and decryption functionality.

Our extended implementation can work both with encrypted and non-encrypted

messages. In fact, control messages that allow brokers and clients to discover each

other and build the network topology are sent unencrypted. We only encrypt

application-specific events and filters.

Figure 7.7: PADRES router extended with encryption functionality.

7.4.3 Using advertisements with PADRES

Events in PADRES have a compulsory attribute called class, which is the first at-

tribute of an event. The class defines the message type. We create an application

130
Chapter 7. Implementation and Integration with Different

Middlewares

in which events have a class attribute and publishers first send Advertisements of

the class. This allows brokers to create more efficient routing tables. Instead of

forwarding all subscriptions to all neighbouring brokers, a broker only forwards

subscriptions to a neighbour that send an advertisement for the class of the sub-

scription.

We simulate the EV charging scenario with and without advertisements. We

use 4 clients and 3 brokers, organized in the topology shown in Figure 7.8.

Figure 7.8: EV Charging Scenario.

HAN2

Broker3Broker2

Consumer

Broker1

HAN1

Real-Time
Pricing (RTP)

EV Scheduler
(EVS)

Figure 7.9 shows the routing tables when no advertisements are used. The

brokers simply broadcast all subscriptions to each other.

Figure 7.9: Routing tables without advertisements.

HAN2

Broker3
S1: Broker2
S2: Broker2
S3: Broker2

S4: HAN2, Broker2

Broker2
S1:EVS

S2: EVS, Consumer
S3: EVS

S4: Broker1, Broker3

Consumer

S4:class=ev_schedule

Broker1
S1: Broker2
S2:Broker2
S3:Broker2

S4: HAN1, Broker2

S2: class=pricing

HAN1

S4: class=ev_schedule

S1: class=ev_charging
S2: class=pricing
S3: class=power_event

Real-Time
Pricing (RTP)

EV Scheduler
(EVS)

Figure 7.10 shows the routing tables when advertisements are used. In this

case, a broker only forwards a subscription to a neighbour broker if it received an

advertisement from that broker matching the subscription. The size of the routing

tables at Brokers 1 and 3 decreases by 50% for Broker 3 and 25% for Broker 1, thus

reducing the event matching time and network load. Thus, when Advertisements

are used, the size of the routing tables decreases and as a result, event matching

7.4. Integration with PADRES 131

and routing are more efficient.

Figure 7.10: Routing tables with advertisements.

HAN2

Broker3
S1: Broker2
S4: HAN2

Broker2
S1:EVS

S2: EVS, Consumer
S3: EVS

S4: Broker1, Broker3

Consumer

S4:class=ev_schedule

Broker1
S1: Broker2
S2:Broker2
S4: HAN1

S2: class=pricing

HAN1

S4: class=ev_schedule

S1: class=ev_charging
S2: class=pricing
S3: class=power_event

Real-Time
Pricing (RTP)

EV Scheduler
(EVS)

Adv: class=pricing

Adv: class=ev_schedule

Adv: class=power_event Adv: class=ev_charging

Adv: class=ev_charging

Chapter 8

Conclusions

As content distribution is becoming the predominant usage of the Internet, content-

based networking solutions such as publish/subscribe and Information Centric Net-

working (ICN) are gaining more and more importance and attention from the re-

search community as a promising solution to the future Internet architecture. The

switch from a host-centric to a data-centric Internet, enables consumers to express

what content they are looking for instead of where the content can be found. At

the network layer, identifying content rather than location allows more efficient net-

working and energy efficiency by duplicating and caching content in the network.

At the same time, this communication model enables efficient multi-party communi-

cation and supports applications where senders and receivers are decoupled. In this

thesis we described several such emerging applications like Smart Energy Systems,

Smart Cities and remote monitoring of patients in eHealth. An efficient, decoupled

communication model is critical for these applications as they evolve from a house,

to a neighbourhood and ultimately to a city, country, or global scale.

Though a lot of effort has gone into designing efficient routing and caching so-

lutions, security challenges have only been marginally addressed and the proposed

solutions have many limitations, the most important one being the lack of scala-

bility, as most solutions require establishing and exchanging secret keys between

publishers and subscribers. This approach does not scale because in many cases

subscribers are not aware of the sources of information, and hence, establishing

shared keys is infeasible. Additionally, mobile and energy saving devices may be-

come unavailalbe making synchronous communication between servers and receivers

impossible. Moreover, as users join and leave the system, re-keying would add too

much overhead and be too costly, thus reducing the efficiency of the system.

As the usage of mobile devices, body sensors, smart meters, ambient sensors, and

security cameras increases, so does the amount of sensitive data generated by them

that needs greater protection. The future Internet requires both better networking

solutions able to deliver data between decoupled entities and make data available in

the network, but also requires better security and privacy solutions targeted for this

new communication model. Securing the future Internet requires content-centric

security and privacy solutions, thus moving the protection mechanisms closer to

the data and making them data specific.

In this thesis we find that our attribute-based approach plays a major role at

many levels. Attributes are essential to naming and data routing as they describe

the content of the data. They are also essential to describing the access rights of each

134 Chapter 8. Conclusions

user, thus they support fine-grained access control policies. Moreover, attributes

describe users through credentials or roles. Our attribute-based approach supports

data confidentiality and enables fine-grained access control policies, while at the

same time meeting scalability requirements by not requiring shared keys between

publishers and subscribers.

One of the major contributions of this thesis is a novel solution for providing

confidentiality and fine-grained access control policies in pub/sub systems. Our so-

lution embeds security mechanisms in the data itself and the keys instead of relying

on secure communication channels or trusted third party for enforcing data access

policies. We achieve this by designing an encryption scheme based on KP-ABE,

CP-ABE and multi-user SDE. Our scheme supports both publication and subscrip-

tion confidentiality while at the same time eliminating the need for publishers and

subscribers to share secret keys. Moreover, our scheme allows publishers to define

additional constraints in the form of CP-ABE policies about who can access the

content of events. Another novel contribution of our scheme is support for com-

plex encrypted filters able to express conjunctions and disjunctions of equalities and

inequalities. Although events and filters are encrypted, brokers can still perform

event filtering without learning any information about events or filters. We demon-

strated how to apply our scheme to a real-world e-health application that provides

confidentiality of the data exchanged over a pub/sub system.

Furthermore we showed how our scheme can be used to provide confidentiality

of in-network cached data, an important requirement for ICN, and how to support

complex queries on encrypted databases in a multi-user setting. An extensive state-

of-the art review revealed that our scheme is the first one to support both complex

queries and multi-users who are able to read and write to the databases without

sharing keys. An inference exposure analysis of our index showed that our scheme

slightly increases the exposure as compared with direct encryption, but with the

advantage of supporting exact range queries. The exposure of the scheme is very low

and is acceptable when the attacker only knows frequency information of plaintext

values and has access to the whole encrypted database. A stronger threat model

in which the attacker knows both the encrypted and unencrypted database would

require inference protection mechanisms.

Finally, we implemented our schemes as a set of middleware-agnostic libraries

and integrated them not only with a distributed pub/sub system called PADRES,

but also with a popular Information Centric Networking implementation called

CCNx. By using an indexing solution with our encrypted matching scheme, and

encrypted Advertisments to reduce the size of the routing tables, our scheme ex-

hibits orders of magnitude greater scalability and can work with large-scale pub/sub

systems that need to match thousands of filters in a range of milliseconds.

As future work, more security properties could be added to address other kind

of attacks. For example, to protect against active attackers that corrupt messages,

an integrity solution can be added. An integrity solution could provide mechanisms

for each user to sign publications and subscriptions using the unique key from our

scheme that is assigned to each user when the user joins the system. To protect

135

against dishonest publishers, an Accountability mechanism that enables subscribers

to rate content could be designed. Another important open problem is analysing

the attributes and access policies that specific applications require. Such analysis

could reveal the number of attributes that are used in the system and per event,

the complexity of the policies, and how to automate part of the system setup to

increase usability by relieving the user of the burden of setting up policies and

configuring devices. Furthermore, the performance of our scheme and the added

overhead in terms of processing time and bandwidth can only be assessed properly

when clear application specific requirements are available. Several on-going projects

such as Pecan Street could provide insights into user behaviour and application

requirements.

Appendix A

Appendix

A.1 Appendix Publications

Journals

• M. Ion, G. Russello, and B. Crispo, “Design and Implementation of a Con-

fidentiality and Access Control Solution for Publish/Subscribe Systems”, El-

sevier Computer Networks (COMNET), February, 2012.

• M. R. Asghar, M. Ion, G. Russello, and B. Crispo, “ESPOON ERBAC:

Enforcing Security Policies in Outsourced Environments”, Elsevier Computers

& Security (COSE), December, 2012.

Conferences

• M. R. Asghar, M. Ion, G. Russello, and B. Crispo, “ESPOON: Enforcing

Encrypted Security Policies in Outsourced Environments”. In Proceedings of

the Sixth International Conference on Availability, Reliability and Security

(ARES), 22-26 August 2011, p. 99-108. IEEE, 2011.

• M. R. Asghar, M. Ion, G. Russello, and B. Crispo, “Securing Data Prove-

nance in the Cloud”, In Proceedings of IFIP iNetSec, 2011.

• M. Ion, G. Russello, and B. Crispo (2010). “Supporting publication and

subscription confidentiality in pub/sub networks”. Security and Privacy in

Communication Networks, 272-289.

• M. Ion, G. Russello, and B. Crispo, “Providing Confidentiality in Content-

based Publish/Subscribe Systems”. In Proceedings of the International Con-

ference on Security and Cryptography (Secrypt), Athens, Greece, July 2010.

Poster/Demo

• M. Ion, J. Zhang, and E.M. Schooler, “Toward Content-Centric Privacy

in ICN: Attributed-based Encryption and Routing”. In Proceedings of ACM

SIGCOMM workshop on Information-Centric Networking (ICN SIGCOMM),

Hong Kong, August 2013.

• M. Ion, G. Russello, and B. Crispo, “Enforcing Multi-user Access Policies

to Encrypted Cloud Databases”. In Proceedings of IEEE International Sym-

posium on Policies for Distributed Systems and Networks (POLICY), Pisa,

Italy, June 2011.

138 Appendix A. Appendix

• M. Ion, G. Russello, and B. Crispo, “An Implementation of Event and Filter

Confidentiality in Pub/Sub Systems and its Application to e-Health”. In

Proceedings of the 17th ACM Conference on Computer and Communications

Security (CCS), Chicago, IL, October 2010.

Bibliography

[Ahlgren 2012] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher and

B. Ohlman. A survey of information-centric networking. Communications

Magazine, IEEE, vol. 50, no. 7, pages 26–36, 2012. (Cited on page 2.)

[Ashayer 2002] G. Ashayer, H.K.Y. Leung and H.A. Jacobsen. Predicate match-

ing and subscription matching in publish/subscribe systems. In Distributed

Computing Systems Workshops, 2002. Proceedings. 22nd International Con-

ference on, pages 539–546. IEEE, 2002. (Cited on pages 97 and 98.)

[Bacon 2000] J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil, O. Seidel

and M. Spiteri. Generic support for distributed applications. IEEE Com-

puter, vol. 33, no. 3, pages 68–76, 2000. (Cited on page 9.)

[Bacon 2008] J. Bacon, D.M. Eyers, J. Singh and P.R. Pietzuch. Access control

in publish/subscribe systems. In Proceedings of the second international

conference on Distributed event-based systems, pages 23–34. ACM, 2008.

(Cited on pages 4, 50 and 68.)

[Baek 2008] Joonsang Baek, Reihaneh Safavi-Naini and Willy Susilo. Public Key

Encryption with Keyword Search Revisited. In ICCSA (1), pages 1249–1259,

2008. (Cited on pages 77 and 79.)

[Banavar 1999] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. Strom

and D. Sturman. An efficient multicast protocol for content-based publish-

subscribe systems. In International Conference on Distributed Computing

Systems, volume 19, pages 262–272. IEEE COMPUTER SOCIETY PRESS,

1999. (Cited on pages 9 and 96.)

[Bao 2008] Feng Bao, Robert H. Deng, Xuhua Ding and Yanjiang Yang. Private

query on encrypted data in multi-user settings. In ISPEC’08: Proceedings

of the 4th international conference on Information security practice and

experience, pages 71–85, Berlin, Heidelberg, 2008. Springer-Verlag. (Cited

on pages 28, 32, 77 and 81.)

[Barazzutti 2012] R. Barazzutti, P. Felber, H. Mercier, E. Onica and E. Rivière.

Thrifty privacy: efficient support for privacy-preserving publish/subscribe.

In Proceedings of the 6th ACM International Conference on Distributed

Event-Based Systems, pages 225–236. ACM, 2012. (Cited on page 101.)

[Belenkiy 2009] M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyan-

skaya and H. Shacham. Randomizable proofs and delegatable anonymous

credentials. Advances in Cryptology-CRYPTO 2009, pages 108–125, 2009.

(Cited on page 80.)

140 Bibliography

[Bellare 2003] M. Bellare, A. Boldyreva and J. Staddon. Multi-Recipient Encryption

Schemes: Security Notions and Randomness Re-Use. In PKC 2003: Public

Key Cryptography, volume 2567. Springer-Verlag, 2003. (Cited on page 69.)

[Bethencourt 2007] John Bethencourt, Amit Sahai and Brent Waters. Ciphertext-

Policy Attribute-Based Encryption. In Proceedings of the 2007 IEEE Sym-

posium on Security and Privacy, pages 321–334, Washington, DC, USA,

2007. IEEE Computer Society. (Cited on pages 32, 54, 56, 67, 70, 81, 86

and 118.)

[Bittner 2005] S. Bittner and A. Hinze. On the benefits of non-canonical filtering in

publish/subscribe systems. In Distributed Computing Systems Workshops,

2005. 25th IEEE International Conference on, pages 451–457. IEEE, 2005.

(Cited on pages 95, 96, 97 and 98.)

[Boldyreva 2009] A. Boldyreva, N. Chenette, Y. Lee and A. Oâneill. Order-

preserving symmetric encryption. Advances in Cryptology-EUROCRYPT

2009, pages 224–241, 2009. (Cited on page 79.)

[Boldyreva 2011] A. Boldyreva, N. Chenette and A. OâNeill. Order-preserving

encryption revisited: improved security analysis and alternative solutions.

Advances in Cryptology–CRYPTO 2011, pages 578–595, 2011. (Cited on

page 79.)

[Boneh 2004] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky and Giuseppe

Persiano. Public Key Encryption with Keyword Search. In Christian Cachin

and Jan Camenisch, editeurs, Advances in Cryptology - EUROCRYPT 2004,

volume 3027 of Lecture Notes in Computer Science, pages 506–522. Springer

Berlin / Heidelberg, 2004. (Cited on pages 77 and 79.)

[Boneh 2007] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries

on encrypted data. In TCC’07: Proceedings of the 4th conference on Theory

of cryptography, pages 535–554, Berlin, Heidelberg, 2007. Springer-Verlag.

(Cited on pages 77 and 80.)

[Bornhovd 2002] C. Bornhovd, M. Cilia, C. Liebig and A. Buchmann. An infras-

tructure for meta-auctions. In Advanced Issues of E-Commerce and Web-

Based Information Systems, 2000. WECWIS 2000. Second International

Workshop on, pages 21–30. IEEE, 2002. (Cited on page 8.)

[Bösch 2011] C. Bösch, R. Brinkman, P. Hartel and W. Jonker. Conjunctive wild-

card search over encrypted data. In 8th VLDB Workshop on Secure Data

Management, SDM 2011, Seattle, WA, USA, 2011. (Cited on pages 77

and 78.)

[Campailla 2001] A. Campailla, S. Chaki, E. Clarke, S. Jha and H. Veith. Effi-

cient filtering in publish-subscribe systems using binary decision diagrams.

Bibliography 141

In Proceedings of the 23rd International Conference on Software Engineer-

ing, pages 443–452. IEEE Computer Society, 2001. (Cited on page 97.)

[Canetti 2007] R. Canetti and S. Hohenberger. Chosen-ciphertext secure proxy re-

encryption. In Proceedings of the 14th ACM conference on Computer and

communications security, page 194. ACM, 2007. (Cited on page 25.)

[Cao 2011] N. Cao, C. Wang, M. Li, K. Ren and W. Lou. Privacy-preserving

multi-keyword ranked search over encrypted cloud data. In INFOCOM, 2011

Proceedings IEEE, pages 829–837. IEEE, 2011. (Cited on pages 77 and 80.)

[Carzaniga 2001] A. Carzaniga, D.S. Rosenblum and A.L. Wolf. Design and evalu-

ation of a wide-area event notification service. ACM Transactions on Com-

puter Systems (TOCS), vol. 19, no. 3, pages 332–383, 2001. (Cited on

pages 1, 9, 31, 96 and 128.)

[Carzaniga 2003] A. Carzaniga and A.L. Wolf. Forwarding in a content-based net-

work. In Proceedings of the 2003 conference on Applications, technologies,

architectures, and protocols for computer communications, pages 163–174.

ACM, 2003. (Cited on pages 95, 97 and 98.)

[Carzaniga 2011] A. Carzaniga, M. Papalini and A.L. Wolf. Content-based pub-

lish/subscribe networking and information-centric networking. In Proceed-

ings of the ACM SIGCOMM workshop on Information-centric networking,

pages 56–61. ACM, 2011. (Cited on page 2.)

[Ceselli 2005] A. Ceselli, E. Damiani, S.D.C.D. Vimercati, S. Jajodia, S. Paraboschi

and P. Samarati. Modeling and assessing inference exposure in encrypted

databases. ACM Transactions on Information and System Security (TIS-

SEC), vol. 8, no. 1, pages 119–152, 2005. (Cited on pages xii, 86, 87, 88

and 92.)

[Chand 2003] R. Chand and PA Felber. A scalable protocol for content-based rout-

ing in overlay networks. In Network Computing and Applications, 2003.

NCA 2003. Second IEEE International Symposium on, pages 123–130. IEEE,

2003. (Cited on page 96.)

[Chang 2005] Y.C. Chang and M. Mitzenmacher. Privacy preserving keyword

searches on remote encrypted data. In Applied Cryptography and Network

Security, pages 391–421. Springer, 2005. (Cited on pages 77 and 78.)

[Chen 2010] W. Chen, J. Jiang and N. Skocik. On the privacy protection in pub-

lish/subscribe systems. In Wireless Communications, Networking and Infor-

mation Security (WCNIS), 2010 IEEE International Conference on, pages

597–601. IEEE, 2010. (Cited on pages 24, 25, 32 and 96.)

[Cheung 2007] Ling Cheung and Calvin Newport. Provably secure ciphertext policy

ABE. In CCS ’07: Proceedings of the 14th ACM conference on Computer

142 Bibliography

and communications security, pages 456–465, New York, NY, USA, 2007.

ACM. (Cited on page 69.)

[Choi 2010] S. Choi, G. Ghinita and E. Bertino. A Privacy-Enhancing Content-

Based Publish/Subscribe System Using Scalar Product Preserving Transfor-

mations. In Database and Expert Systems Applications, pages 368–384.

Springer, 2010. (Cited on pages 24, 25, 32, 96 and 102.)

[Cugola 2002a] G. Cugola, E. Di Nitto and A. Fuggetta. The JEDI event-based

infrastructure and its application to the development of the OPSS WFMS.

Software Engineering, IEEE Transactions on, vol. 27, no. 9, pages 827–850,

2002. (Cited on page 8.)

[Cugola 2002b] G. Cugola and H.A. Jacobsen. Using publish/subscribe middleware

for mobile systems. ACM SIGMOBILE Mobile Computing and Communi-

cations Review, vol. 6, no. 4, pages 25–33, 2002. (Cited on page 8.)

[Curtmola 2006a] R. Curtmola, J. Garay, S. Kamara and R. Ostrovsky. Searchable

symmetric encryption: improved definitions and efficient constructions. In

Proceedings of the 13th ACM conference on Computer and communications

security, pages 79–88. ACM, 2006. (Cited on page 40.)

[Curtmola 2006b] Reza Curtmola, Juan Garay, Seny Kamara and Rafail Ostro-

vsky. Searchable symmetric encryption: improved definitions and efficient

constructions. In CCS ’06: Proceedings of the 13th ACM conference on

Computer and communications security, pages 79–88, New York, NY, USA,

2006. ACM. (Cited on pages 77 and 78.)

[Dong 2008a] C. Dong, G. Russello and N. Dulay. Shared and Searchable Encrypted

Data for Untrusted Servers. Lecture Notes in Computer Science, vol. 5094,

pages 127–143, 2008. (Cited on pages 25, 28 and 32.)

[Dong 2008b] Changyu Dong, Giovanni Russello and Naranker Dulay. Shared and

Searchable Encrypted Data for Untrusted Servers. In Proceeedings of the

22nd annual IFIP WG 11.3 working conference on Data and Applications

Security, pages 127–143, Berlin, Heidelberg, 2008. Springer-Verlag. (Cited

on pages 77 and 81.)

[Dong 2011] C. Dong, G. Russello and N. Dulay. Shared and searchable encrypted

data for untrusted servers. Journal of Computer Security, vol. 19, no. 3,

pages 367–397, 2011. (Cited on pages 38, 39, 40, 43, 44 and 118.)

[Eugster 2003] P.T. Eugster, P.A. Felber, R. Guerraoui and A.M. Kermarrec. The

many faces of publish/subscribe. ACM Computing Surveys (CSUR), vol. 35,

no. 2, page 131, 2003. (Cited on pages 1 and 7.)

Bibliography 143

[Fidler 2005] E. Fidler, HA Jacobsen, G. Li and S. Mankovski. The PADRES

distributed publish/subscribe system. Feature Interactions in Telecommuni-

cations and Software Systems, VIII, 2005. (Cited on page 13.)

[Fontoura 2010] Marcus Fontoura, Suhas Sadanandan, Jayavel Shanmugasun-

daram, Sergei Vassilvitski, Erik Vee, Srihari Venkatesan and Jason Zien.

Efficiently evaluating complex boolean expressions. In Proceedings of the

2010 international conference on Management of data, SIGMOD ’10, pages

3–14, New York, NY, USA, 2010. ACM. (Cited on pages 96, 97, 98 and 105.)

[Forgy 1982] C.L. Forgy. Rete: A fast algorithm for the many pattern/many object

pattern match problem. Artificial intelligence, vol. 19, no. 1, pages 17–37,

1982. (Cited on page 128.)

[Fotiou 2012] Nikos Fotiou, Dirk Trossen and George C Polyzos. Illustrating a

publish-subscribe internet architecture. Telecommunication Systems, vol. 51,

no. 4, pages 233–245, 2012. (Cited on page 2.)

[Ghodsi 2011] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan and

J. Wilcox. Information-centric networking: seeing the forest for the trees.

In Proceedings of the 10th ACM Workshop on Hot Topics in Networks,

page 1. ACM, 2011. (Cited on page 2.)

[Goh 2003] E.J. Goh. Secure indexes. Cryptography ePrint Archive, Report,

vol. 216, page 2003, 2003. (Cited on pages 77 and 78.)

[Golle 2004a] P. Golle, J. Staddon and B. Waters. Secure conjunctive keyword

search over encrypted data. Lecture notes in computer science, vol. 3089,

pages 31–45, 2004. (Cited on page 28.)

[Golle 2004b] Philippe Golle, Jessica Staddon and Brent Waters. Secure Conjunc-

tive Keyword Search over Encrypted Data. In ACNS 04: 2nd International

Conference on Applied Cryptography and Network Security, pages 31–45.

Springer-Verlag, 2004. (Cited on pages 77 and 78.)

[Goyal 2006a] V. Goyal, O. Pandey, A. Sahai and B. Waters. Attribute-based en-

cryption for fine-grained access control of encrypted data. In Proceedings

of the 13th ACM conference on Computer and communications security,

page 98. ACM, 2006. (Cited on pages 51, 60, 70, 118 and 119.)

[Goyal 2006b] Vipul Goyal, Omkant Pandey, Amit Sahai and Brent Waters.

Attribute-based encryption for fine-grained access control of encrypted data.

In CCS ’06: Proceedings of the 13th ACM conference on Computer and

communications security, pages 89–98, New York, NY, USA, 2006. ACM.

(Cited on pages 80 and 81.)

[Hacigümüş 2002] H. Hacigümüş, B. Iyer, C. Li and S. Mehrotra. Executing SQL

over encrypted data in the database-service-provider model. In Proceedings

144 Bibliography

of the 2002 ACM SIGMOD international conference on Management of data,

pages 216–227. ACM, 2002. (Cited on pages 77 and 78.)

[Hapner 2002] M. Hapner, R. Burridge, R. Sharma, J. Fialli and K. Stout. Java

Message Service. Sun Microsystems Inc., Santa Clara, CA, 2002. (Cited on

pages 9 and 31.)

[Heimbigner 2001] D. Heimbigner. Adapting publish/subscribe middleware to

achieve Gnutella-like functionality. In Proceedings of the 2001 ACM sympo-

sium on Applied computing, pages 176–181. ACM, 2001. (Cited on page 8.)

[Hore 2004] B. Hore, S. Mehrotra and G. Tsudik. A privacy-preserving index for

range queries. In Proceedings of the Thirtieth international conference on

Very large data bases-Volume 30, pages 720–731. VLDB Endowment, 2004.

(Cited on pages 77 and 78.)

[Hore 2011] B. Hore, S. Mehrotra, M. Canim and M. Kantarcioglu. Secure multi-

dimensional range queries over outsourced data. The VLDB Journal, pages

1–26, 2011. (Cited on pages 77 and 78.)

[Hwang 2007] Yong Ho Hwang and Pil Joong Lee. Public Key Encryption with

Conjunctive Keyword Search and Its Extension to a Multi-user System. In

Pairing, pages 2–22, 2007. (Cited on pages 77 and 81.)

[Jacobsen 2010] H.A. Jacobsen, A. Cheung, G. Li, B. Maniymaran, V. Muthusamy

and R.S. Kazemzadeh. The PADRES Publish/Subscribe System. Principle

and Applications of Distributed Event-based Systems. IGI Global, 2010.

(Cited on pages 2, 3, 118 and 127.)

[Jacobson 2007] V. Jacobson, M. Mosko, D. Smetters and JJ Garcia-Luna-Aceves.

Content-centric networking. Whitepaper, Palo Alto Research Center, pages

2–4, 2007. (Cited on pages 2 and 118.)

[Kamara 2012] Seny Kamara, Charalampos Papamanthou and Tom Roeder. Dy-

namic searchable symmetric encryption. In Proceedings of the 2012 ACM

conference on Computer and communications security, pages 965–976. ACM,

2012. (Cited on pages 77 and 78.)

[Katz 2008] Jonathan Katz, Amit Sahai and Brent Waters. Predicate Encryption

Supporting Disjunctions, Polynomial Equations, and Inner Products. In

Nigel Smart, editeur, Advances in Cryptology EUROCRYPT 2008, volume

4965 of Lecture Notes in Computer Science, pages 146–162. Springer Berlin

/ Heidelberg, 2008. (Cited on pages 28, 77 and 80.)

[Khurana 2005] H. Khurana. Scalable security and accounting services for content-

based publish/subscribe systems. In Proceedings of the 2005 ACM symposium

on Applied computing, page 807. ACM, 2005. (Cited on pages 23 and 25.)

Bibliography 145

[Langheinrich 2000] M. Langheinrich, F. Mattern, K. Romer and H. Vogt. First

steps towards an event-based infrastructure for smart things. In Ubiquitous

Computing Workshop, PACT 2000. Citeseer, 2000. (Cited on page 8.)

[Li 2005] G. Li, S. Hou and H.A. Jacobsen. A unified approach to routing, covering

and merging in publish/subscribe systems based on modified binary decision

diagrams. 2005. (Cited on pages 95, 96, 97, 98 and 100.)

[Li 2011] M. Li, S. Yu, N. Cao and W. Lou. Authorized private keyword search

over encrypted data in cloud computing. In Distributed Computing Sys-

tems (ICDCS), 2011 31st International Conference on, pages 383–392. IEEE,

2011. (Cited on pages 77 and 80.)

[Lu 2011] Y. Lu and G. Tsudik. Enhancing data privacy in the cloud. Trust Man-

agement V, IFIPTM 2011, pages 117–132, 2011. (Cited on pages 77 and 80.)

[Maji 2012] A.K. Maji and S. Bagchi. v-CAPS: A Confidentiality and Anonymity

Preserving Routing Protocol for Content-Based Publish-Subscribe Networks.

Security and Privacy in Communication Networks, pages 281–302, 2012.

(Cited on pages 24 and 25.)

[McKay] Brendan McKay and Adolfo Piperno. Nauty and Traces: GRAPH

CANONICAL LABELING AND AUTOMORPHISM GROUP COMPUTA-

TION. http://pallini.di.uniroma1.it/. (Cited on pages 93 and 115.)

[McKay 1981] Brendan D McKay. Practical graph isomorphism. 1981. (Cited on

page 93.)

[Miklos 2002] Zoltan Miklos. Towards an Access Control Mechanism for Wide-area

Publish/Subscribe Systems. In In International Workshop on Distributed

Event-based Systems. IEEE Press, 2002. (Cited on pages 4, 50 and 68.)

[Mühl 2001] G. Mühl. Generic constraints for content-based publish/subscribe. In

Cooperative Information Systems, pages 211–225. Springer, 2001. (Cited on

pages 95, 96 and 100.)

[Nabeel 2009] M. Nabeel, N. Shang and E. Bertino. Privacy-Preserving Filtering

and Covering in Content-Based Publish Subscribe Systems. Rapport tech-

nique, Purdue University, 6 2009. (Cited on pages 24, 25, 32 and 102.)

[Ondo 2006] K. Ondo and M. Smith. Outside IT: the case for full IT outsourc-

ing. Healthcare financial management: journal of the Healthcare Financial

Management Association, vol. 60, no. 2, page 92, 2006. (Cited on page 4.)

[Ostrovsky 2007] R. Ostrovsky, A. Sahai and B. Waters. Attribute-based encryption

with non-monotonic access structures. In Proceedings of the 14th ACM con-

ference on Computer and communications security, page 203. ACM, 2007.

(Cited on page 69.)

146 Bibliography

[Paillier 1999] P. Paillier. Public-key cryptosystems based on composite degree resid-

uosity classes. In Advances in CryptologyâEUROCRYPTâ99, pages 223–

238. Springer, 1999. (Cited on page 79.)

[pec a] Electric Car Owners All Plug In at Once.

http://www.pecanstreet.org/2012/08/electric-car-owners-all-plug-in-at-

once/. (Cited on page 12.)

[pec b] Pecan Street Project. http://www.pecanstreet.org/. (Cited on page 12.)

[Pentikousis 2012] Kostas Pentikousis, Prosper Chemouil, Kathleen Nichols,

George Pavlou and Dan Massey. Information-centric networking [Guest edi-

torial]. Communications Magazine, IEEE, vol. 50, no. 7, pages 22–25, 2012.

(Cited on page 1.)

[Popa 2011] R.A. Popa, C. Redfield, N. Zeldovich and H. Balakrishnan. CryptDB:

protecting confidentiality with encrypted query processing. In Proceedings of

the Twenty-Third ACM Symposium on Operating Systems Principles, pages

85–100. ACM, 2011. (Cited on pages 77 and 79.)

[Raiciu 2006] C. Raiciu and D.S. Rosenblum. Enabling confidentiality in content-

based publish/subscribe infrastructures. Securecomm and Workshops, vol. 28,

pages 1–11, 2006. (Cited on pages 23, 25 and 102.)

[Rhee 2010] Hyun Sook Rhee, Jong Hwan Park, Willy Susilo and Dong Hoon Lee.

Trapdoor security in a searchable public-key encryption scheme with a des-

ignated tester. J. Syst. Softw., vol. 83, no. 5, pages 763–771, 2010. (Cited

on pages 77 and 79.)

[Ristenpart 2009] Thomas Ristenpart, Eran Tromer, Hovav Shacham and Stefan

Savage. Hey, you, get off of my cloud: exploring information leakage in

third-party compute clouds. In Proceedings of the 16th ACM conference on

Computer and communications security, pages 199–212. ACM, 2009. (Cited

on page 18.)

[Segall 2000] B. Segall, D. Arnold, J. Boot, M. Henderson and T. Phelps. Content

based routing with elvin4. In Proceedings of AUUG2K, 2000. (Cited on

page 97.)

[Shao 2010] Jun Shao, Zhenfu Cao, Xiaohui Liang and Huang Lin. Proxy re-

encryption with keyword search. Inf. Sci., vol. 180, no. 13, pages 2576–2587,

2010. (Cited on pages 77 and 81.)

[Shen 2009] E. Shen, E. Shi and B. Waters. Predicate privacy in encryption systems.

Theory of Cryptography, pages 457–473, 2009. (Cited on page 80.)

[Shikfa 2009] A. Shikfa, M. Onen and R. Molva. Privacy-Preserving Content-Based

Publish/Subscribe Networks. In Emerging Challenges for Security, Privacy

Bibliography 147

and Trust: 24th Ifip Tc 11 International Information Security Conference,

SEC 2009, Pafos, Cyprus, May 18-20, 2009, Proceedings, page 270. Springer,

2009. (Cited on pages 21, 23, 25, 96 and 101.)

[Singhera 2008] Z.U. Singhera. A workload model for topic-based publish/subscribe

systems. 2008. (Cited on page 8.)

[Song 2000a] Dawn Xiaoding Song, D. Wagner and A. Perrig. Practical techniques

for searches on encrypted data. pages 44 –55, 2000. (Cited on pages 77

and 79.)

[Song 2000b] D.X. Song, D. Wagner and A. Perrig. Practical techniques for searches

on encrypted data. In 2000 IEEE Symposium on Security and Privacy, 2000.

S&P 2000. Proceedings, pages 44–55, 2000. (Cited on pages 25 and 28.)

[Srivatsa 2005] M. Srivatsa and L. Liu. Securing publish-subscribe overlay services

with EventGuard. In Proceedings of the 12th ACM conference on Computer

and communications security, pages 289–298. ACM, 2005. (Cited on pages 96

and 101.)

[Srivatsa 2007] M. Srivatsa and L. Liu. Secure event dissemination in publish-

subscribe networks. In Proceedings of the 27th International Conference

on Distributed Computing Systems, page 22. Citeseer, 2007. (Cited on

pages 21, 23 and 25.)

[Triantafillou 2004] P. Triantafillou and A. Economides. Subscription summariza-

tion: A new paradigm for efficient publish/subscribe systems. In Distributed

Computing Systems, 2004. Proceedings. 24th International Conference on,

pages 562–571. IEEE, 2004. (Cited on page 100.)

[Wang 2006] H. Wang and L.V.S. Lakshmanan. Efficient secure query evaluation

over encrypted XML databases. In Proceedings of the 32nd international

conference on Very large data bases, pages 127–138. VLDB Endowment,

2006. (Cited on pages 77 and 78.)

[Whang 2009] S.E. Whang, H. Garcia-Molina, C. Brower, J. Shanmugasundaram,

S. Vassilvitskii, E. Vee and R. Yerneni. Indexing boolean expressions. Pro-

ceedings of the VLDB Endowment, vol. 2, no. 1, pages 37–48, 2009. (Cited

on pages 95, 97 and 98.)

[Xylomenos 2012] G. Xylomenos, X. Vasilakos, C. Tsilopoulos, V.A. Siris and G.C.

Polyzos. Caching and mobility support in a publish-subscribe internet archi-

tecture. Communications Magazine, IEEE, vol. 50, no. 7, pages 52–58, 2012.

(Cited on page 2.)

[Yang 2011] Y. Yang, H. Lu and J. Weng. Multi-User Private Keyword Search for

Cloud Computing. In 2011 Third IEEE International Conference on Cloud

148 Bibliography

Computing Technology and Science, pages 264–271. IEEE, 2011. (Cited on

pages 77 and 79.)

[Zhang] J. Zhang, Q. Li and E.M. Schooler. iHEMS: An Information-Centric

Approach to Secure Home Energy Management. (Cited on page 2.)

[Zhu 2011] B. Zhu, B. Zhu and K. Ren. Peksrand: Providing predicate privacy

in public-key encryption with keyword search. In Communications (ICC),

2011 IEEE International Conference on, pages 1–6. IEEE, 2011. (Cited on

pages 77 and 79.)

[Zhuang 2001] S.Q. Zhuang, B.Y. Zhao, A.D. Joseph, R.H. Katz and J.D. Kubi-

atowicz. Bayeux: An architecture for scalable and fault-tolerant wide-area

data dissemination. In Proceedings of the 11th international workshop on

Network and operating systems support for digital audio and video, page 20.

ACM, 2001. (Cited on page 8.)

1

	Introduction
	Content-based networking
	Publish/Subscribe vs. Information Centric Networking

	Security challenges
	Thesis contributions
	Thesis outline

	Publish/Subscribe Systems
	The publish/subscribe communication paradigm
	Topic vs. content-based publish/subscribe
	Application scenarios
	Smart Energy Systems
	The EV Scheduling Use Case

	Smart Cities
	Sensing the Smart City
	Mobility in the Smart City

	Healthcare

	Security requirements

	A Basic Confidentiality Scheme
	Threat model
	Required security properties
	Related work
	Background on security mechanisms
	Proxy encryption
	Multi-user encrypted search

	Proposed solution
	Assumptions
	Solution overview
	Initialization
	Event encryption
	Filter encryption
	Encrypted matching
	Event decryption

	Security analysis
	Preliminaries
	Scheme overview
	Security of filter encryption
	Security of event encryption

	Implementation and performance analysis

	Enforcing Fine-Grained Access Control Policies
	Threat model
	Security properties
	Related work
	Background on security mechanisms
	Key-Policy Attribute-based Encryption
	Ciphertext-Policy Attribute-based Encryption

	Solution details
	Initialization
	Event encryption
	Filter encryption
	Encrypted matching
	Event decryption

	User revocation and subscription expiration
	Initialization
	Event encryption
	Filter encryption
	Encrypted matching
	Event decryption

	Enforcing publisher-defined access control policies
	The e-health application revisited
	Security analysis
	Implementation and performance analysis

	Querying In-Network Cached Publications
	Encrypted search approaches and their shortcomings
	Single-user schemes
	Semi-fledged multi-user schemes
	Full-fledged multi-user schemes

	Solution description
	Event encryption and indexing
	Query encryption
	Event matching

	Inference exposure
	Background
	Threat model 1: Freq+DBK
	Inference of the 2-dimensional index
	Inference of the 1-dimensional index
	Inference comparison on synthetic datasets

	Threat model 2: DB+DBK

	Efficient Encrypted Routing
	Introduction
	Background
	Event filtering algorithms
	Event routing optimizations

	Related work
	Confidential event filtering
	Encrypted routing optimizations

	Solution details
	A simple solution indexing predicates
	Indexing Boolean expressions

	Performance comparison of the schemes
	Inference exposure
	Exposure of the non-indexed scheme
	Exposure of the indexed scheme

	Implementation and Integration with Different Middlewares
	Implementation overview
	Libraries
	Basic encryption schemes implementation
	Secure pub/sub implementation

	Integration with CCNx
	Integration with PADRES
	PADRES
	Confidential PADRES
	Using advertisements with PADRES

	Conclusions
	Appendix
	Appendix Publications

	Bibliography

