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Abstract

Research towards a complete autonomous car has been pushed through by industries as it offers

numerous advantages such as the improvement to traffic flow, vehicle and pedestrian safety,

and car efficiency. One of the main challenges faced in this area is how to deal with different

uncertainties perceived by the sensors on the current state of the car and the environment.

An autonomous car needs to employ efficient planning algorithm that generates the vehicle

trajectory based on the environmental sensing implemented in real-time. An complete motion

planning algorithm is an algorithm that returns a valid solution if one exist in finite time and

returns no path exist when none exist. The algorithm is optimal when it returns an optimal path

based on some criteria. In this thesis we work on a special case of motion planning problem: to

find an optimal trajectory for a robotic car in order to win a car race. We propose an efficient

realtime vision based technique for localization and path reconstruction. For our purpose of

winning a car race we identify a characterization of the alphabet of optimal maneuvers for the

car, an optimal local planning strategy and an optimal graph-based global planning strategy

with obstacle avoidance. We have also implemented the hardware and software of this approach

on as a testbed of the planning strategy.
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Chapter 1

Introduction

Autonomous car is one of the main research topics for both academia and industries. Au-

tonomous car offers numerous improvement to traffic flow, vehicle and pedestrian safety, and

car efficiency due to a well planned driving techniques. This research topic spans across several

different fields such as robotics, control design, artificial intelligence, etc.

Competition such as DARPA (Defense Advanced Research Projects Agency) Grand Chal-

lenge and DARPA urban challenge has sparked a great research interest in autonomous car.

This competition served as a prominent showcase of state of the art self driving cars both in off-

road and urban environment. In the competition, highly advanced cars are built by universities

with great support from their industrial partners. However, these autonomous cars are not yet

available for consumer purchase.

Nevertheless, some aspects of the achievements in autonomous car research have been im-

plemented in most modern car in the form of driver assistance and crash avoidance systems.

Automatic braking system helps drivers avoid or reduce the impact from accidents. Parking

assistance system alerts the driver to obstacle or provides automatic parking. Adaptive cruise

control system provides a safe distance by detecting the vehicles and pedestrian in front of

the car. Lane departure warning and lane keeping system assist the driver to perform heading

control. Many major automotive vendors such as Mercedes-Benz, Volkswagen, Toyota, Audi,

BMW have implemented some of these systems into their consumer products and have started

the push for a complete autonomous car, i.e., self driving car.

1



2 CHAPTER 1. INTRODUCTION

One of the main problems in building an autonomous car is dealing with different level of

uncertainties [36]. Sensors used to perceive the current car state and the environment is one of

the main source of the uncertainties. In order to reach a specified goal, an autonomous car relies

on a planning algorithm, which uses the output of the environmental sensing system to generate

vehicle trajectory. A successful autonomous driving strategy should deal with the uncertainties

and is efficient enough to have a real-time implementation.

Autonomous cars obtain information for the environment with multitude of different sen-

sors. Some of the common sensors are: radar, sonar, LIDAR (Light Detection and Ranging),

GPS and camera. GPSs are widely available in consumer vehicles. However, previous re-

searches have shown that it cannot be relied upon for high-accuracy localization [36]. LIDARs

and cameras are mounted on most of the cars competing in DARPA challenges [36, 57, 58]. LI-

DARs not yet widely deployed in consumer cars due to cost, safety or legal issues. In contrast,

cameras are widely available of most high end cars. This fact motivates for research in vision

based techniques to deal with the sensing problem.

Car motion planning is a special case of the general motion planning problem, which in

general is very difficult to solve due to its multidimensional nature. State-of-the-art algorithms

operating on a three-dimensional subspace of this problem space are difficult to compute in

real time. Moreover, Several simplifications of the general problem have been proven to be

unsolvable in polynomial time [12]. A motion planning algorithm is complete if it returns a

valid solution if one exist in finite time and returns no path exist when non exist. The algorithm

is optimal when it returns an optimal path based on some criteria. Note that an optimal motion

planning algorithm is also complete.

In this thesis we present a solution for trajectory planning i.e., how to decide which tra-

jectory should an autonomous car follows in order to reach its desired goal. The problem is

particularly challenging when the car moves along a crowded and partially known urban or

extra-urban roads [32, 33], a situation frequently considered in different research activities. In

this situation, motion planning has to be carried out frequently in order to make the car respon-

sive to environmental changes and to secure high safety standards. The presence of other cars

and of pedestrians in urban environments requires a huge intake of sensor data and a heavy
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processing power. We address similar problem in a different scenario: a robotic racing car that

runs on a track. The main distinction between this problem and the urban problem is that the

environment is well–structured and the only external presence allowed are other racing cars.

This introduce a significant simplification of the motion planning problem.

The goal of the robotic car in a competition scenario is easy to state: winning the competi-

tion. In order to do so, we need algorithmic solutions that allow the robotic pilot to effectively

manage several situation that potentially occur in the competition. Significant examples are:

1. when other cars are far away and do not affect the pilot maneuvers, it should complete

the lap in the minimum time,

2. when a slower car is in front of the robot, it should engage an overtake maneuver,

3. when a car closes in from behind, the robot should defend its current position, “covering”

the best trajectories to the incoming car.

We emphasize that the overtake maneuvers have to be chosen in a game competition with the

opponent car, which in its turn tries to “cover” the best trajectories.

1.1 Problem Description

The goal of this thesis is to provide a solution for a special case of motion planning problem

that is to find an optimal trajectory for a robotic car in order to win a car race. This problem

encompass four sub problems:

1. vision based localization and path reconstruction : This subproblem deals with the

environment sensing problem i.e., localizing the robot over the path and reconstructing

the sector using only information obtained from the two cameras mounted on the car

2. planning : This subproblem deals with finding the optimal trajectory to win the race

while avoiding obstacle along the track

3. control : This subproblem deals with designing controllers that is able to execute the

synthesized trajectory.
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4. architecture design : This subproblem deals with the hardware and software architecture

for the implementation of the sensing and planning algorithm in order to have an efficient

real-time execution on a the robotic car.

In this thesis we provides a solution for problem 1, 2, and 4. Control design is well re-

searched topic and is out of the scope of the thesis. Thus, we decided to use currently available

controllers.

1.2 Relation to Previous Work

In this section, a non-exhaustive survey of motion planning techniques and a comparison with

the technique detailed in this thesis is presented.

1.2.0.1 Potential Fields

In the potential field approach [6, 19, 31], a potential function is assigned to the configuration

space. The robot is modeled as a particle which reacts to the function due to the potential fields.

These potential functions have two parts: attraction and repulsion. The attractive potential

function assigns the minima i.e., the lowest potential at the goal. Therefore, this function draws

the particle towards the goal. Conversely, the repulsive potential repels the particle away from

the obstacle.

The advantage of this approach is its low computational complexity and it enables the robot

to compute the potential function using local information. Thus, this techniques is suitable for

real-time implementation. However the main disadvantage of potential fields that it is incom-

plete. The robot can be trapped in a local minima which is not the minima associated with the

goal.

1.2.0.2 Roadmap

Roadmap methods reduce the motion planning problem to that of a graph search problem by

fitting a roadmap to the space. Using a roadmap the planner can construct a path from the start
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to the goal configuration by finding a collision free path (accessibility), traversing the roadmap

towards the goal (connectivity) and constructing the path from a point in the graph to the goal

(departability).

Visibility graph [38] construct a graph using the start state, goal state and and all vertices of

the obstacles. The edges are built by connecting each vertex with all vertices visible from its

position. Since the approach leads to a path which arbitrarily close to obstacles, Obstacles are

usually approximated by enlarged spaces around them to avoid collision.

In Voronoi roadmap [17] approach configuration space is mapped onto a one-dimensional

subset of the space. It build a boundary that is maximally distant from the obstacle. A minimum

distance path is between two configurations follows the path in these boundaries. It is designed

for a two-dimensional motion planning. Voronoi roadmap are complete but not optimal.

1.2.0.3 Sampling Based Approach

Unlike roadmap and potential field approach, sampling-based approach [29] does not rely on

explicit representation of obstacles in the configuration space. Sampling-based algorithm relies

on collision-detection modules to verify the feasibility of a candidate trajectories. A sampled

based roadmap is built using a set of points sampled from the obstacle-free space. Sampling-

based approach is not complete. However this approach provides probabilistic completeness

guarantees i.e., the probability of returning no path exist approaches zero as the number of

samples approaches infinity [5].

Some of the most well-known sampling-based motion planning algorithm are Probabilistic

RoadMaps (PRMs) [30] and Rapidly-exploring Random Trees [35]. The PRM algorithm starts

by constructing a graph of the configuration space that represents the set of collision-free trajec-

tories and then answer queries by computing a shortest path that connects the initial state with a

final state in the generated graph. There are some applications where building the graph a priori

is not desirable. This motivates an incremental sampling-based planning algorithms. The RRT

algorithm is an example of such algorithm. The incremental nature of RRT algorithms enables

on-line implementations.
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1.2.0.4 Optimal Control Based Approach

This approach comes from controls community where the focus is on the system’s dynamics

where the physical properties play a major role. Planning problem for a dynamic system is cast

as an Optimal Control Problem (OCP).

Model Predictive Control (MPC)/Receeding Horizon Control (RHC) [49] is one of the most

well known OCP based approach. MPC/RHS is a feedback control system where the OCP is

solved at each time t for a finite horizon t + T . At each time t, MPC algorithm computes

prediction for future steps until time t+ T based on the current measurement and computes an

optimal control strategy. The control strategy is only applied until the next sampling time where

the process prediction is repeated. This approach requires an accurate a priori internal model of

the system to make the prediction.

1.2.1 Comparison with Proposed Approach

Compared to classical approach such as potential fields and roadmap, our approach accounts for

the car dynamics such as tire slip, steering servo and aerodynamic force. MPC/RHC techniques

required a highly accurate internal model to compute the optimal control at each step for a finite

horizon. Our local planning approach used a similar optimal control technique. However, it

is performed once for a given sector of a track. Therefore, all maneuvers can be computed

offline for a given track and the online global planning can be reduced to graph search problem.

Similar to sampling based technique such as RRT/RRT*, our approach builds a graph for a

given configuration space. However due to the well–structured nature of the environment in a

competition scenario, our approach exploits the geometric description of the track in order to

construct the graph.

1.3 Contribution and Thesis Organization

The main contribution of the thesis are:

1. An efficient real–time vision based technique for localization and path reconstruction
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2. A characterization of the alphabet of optimal maneuvers

3. An optimal local planning strategy

4. An optimal graph-based global planning strategy with obstacle avoidance

5. A hardware + software implementation as a testbed of the localization and path recon-

struction algorithm.

This thesis is organized into seven chapters. The first chapter introduces the reader to motion

planning in general and the motivation of this work. Chapter 2 describes the formalization of

the robotic car and track model.

Chapter 3 details our solution to the sensing problem in an autonomous car. In Section 3.1,

we introduce the vision system configuration and the concept of virtual camera and virtual

image. The localization techniques is presented in Section 3.3 while the path reconstruction is

presented in Section 3.4.

Chapter 4 describes our local planning strategy. Formalization of the local planning prob-

lem is given in Section 4.1. Section 4.2 describes the optimal alphabet for the local planning

problem. The optimal maneuver is presented in Section 4.3.

Chapter 5 describes our global planning strategy. Formalization of the global planning

problem is given in Section 5.1 . Section 5.3 describes the graph–based planning strategy.

Simulations results are presented in Section 5.5.

Finally, Chapter 6 describes the architecture design of our testbed platform and Chapter 7 is

the conclusion and future works.



8 CHAPTER 1. INTRODUCTION



Chapter 2

Car and Track Model

In this section, we first introduce a race car model and a geometric characterization of the track.

The car model consist of the car kinematic model and the car dynamic model that considers

several car dynamic effect such the tire slip, the steering servo motor and the aerodynamic

effect. The track model reduces the track into a collection of sectors that can be of type straight

sector or bend sector.

2.1 Car Model

The robotic car platform considered in this thesis is a four wheel drive (4WD) robotic cars with

two cameras mounted on the front and on the side of the car. A model for both the kinematic

and the dynamic of the car is detailed in the following sections.

Let 〈W 〉 = {Ow, Xw, Yw, Zw} be a right–handed fixed reference frame (see Figure 2.1).

The configuration of the vehicle is described by q(t) = (x(t), y(t), θ(t), v(t)), where p(t) =

(x(t), y(t)) is the position in 〈W 〉 of the rear–wheel axis midpoint, θ(t) is the orientation of the

vehicle with respect to the Xw axis, ϕ(t) is the steering angle of the front wheel with respect to

the vehicle and v(t) be the velocity of rear–wheel axis midpoint (Fig. 2.1).

9
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Figure 2.1: Mobile robot and system coordinates

2.1.1 Kinematic Model.

The kinematic model described in [26] uses a forward driving model (front traction). The main

difference of our kinematic model is that we opted for a rear traction model for the vehicle. ,

i.e.

ẋ = vx cos(θ)

ẏ = vx sin(θ)

θ̇ =
vx tan(ϕ)

l

(2.1)

where l is the distance between the wheel axes. The steering angle ϕ and the traction accelera-

tion a is chosen as control inputs.

The control inputs are constrained in the sets ϕ ∈ [−ϕ, ϕ] and a ∈ [a, a] (with a < 0 < a,

i.e. maximum braking and acceleration applicable actions), respectively. Since in this thesis

we are not interested in parking or docking maneuvers we assume the velocity v ∈ [v, v] with

v > 0.
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Figure 2.2: Vehicle dynamic model

2.1.2 Dynamic Model

The dynamic model is the bicycle model of an automobile [56], shown in figure 2.2. The model

considers the effects of tires slip and steering servo motor, i.e.,

v̇x =
Fxr + Fxf cos(ϕ)− Fyf sin(ϕ)

m
+ θ̇ vy −

Faero

m
,

v̇y =
Fyr + Fxf sin(ϕ) + Fyf cos(ϕ)

m
− θ̇ vx,

θ̈ =
lf (Fxf sin(ϕ) + Fyf cos(ϕ))− lr Fyr

Iz
,

|ϕ| ≤ ϕ,

where vx and vy are the longitudinal and lateral velocity at the Center of Mass (CoM) of the

vehicle, ϕ is the steering angle, ϕ is the maximum steering angle and θ is the vehicle heading

w.r.t. Xw axis. l = lf + lr is the total wheel base, where lf , lr are the longitudinal distance

from the CoM to the front and rear tires respectively (see Fig. 2.2). Each front and rear tire

provides a lateral force Fyf , Fyr which is perpendicular to the rolling direction of the wheel
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and a longitudinal force Fxf , Fxr which is parallel to the rolling direction (the single track

model [46] is adopted here). The lateral forces are approximated as

Fyf ≈ −cy αf ,

Fyr ≈ −cy αr,

where cy is the tire cornering stiffness, αf and αr are the tire slip angles on the front and the

rear wheels, respectively, and are given by

αf = arctan

(

vy + θ̇ lf
vx

)

+ ϕ,

αr = arctan

(

vy − θ̇ lr
vx

)

.

Similarly, the longitudinal forces are approximated as

Fxf ≈ cx σf ,

Fxr ≈ cx σr,
(2.2)

where cx is the tires longitudinal stiffness. σf and σr are the tire slip ratios on the front and the

rear wheels, respectively, and are given by

σi =















reff ωw,i − vx
vx

when breaking,

reff ωw,i − vx
reffωw,i

when accelerating,

where i ∈ {r, f}, reff is the effective radius of the wheel and ωw,i is the wheel i angular velocity.

Notice that cy and cx can have different values if each wheel is driven independently. More-

over, for a 4WD vehicle (as the car considered in this thesis), the same ωwi
is applied to each

tire, hence we will use ωw henceforth. Additionally, σf = σr = σ for a 4WD.

Based on the dynamic model found in [46], we further modified the dynamic model by

adding an aerodynamic force effect to the vehicle (Faero) given by

Faero = c′a v
i
x

where c′a is the aerodynamic drag coefficient and i = 1 for air laminar motion, while i = 2

for turbulent motion. For the sake of simplicity, this thesis considers the laminar motion. The
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laminar regime is accurate enough for scale car models used in robotics laboratories. However,

since the computation of the extremals is not affected by the regime of the fluid motion (see

section 4.2), we believe that the adaptation of the approach to turbulent regime can be made

with little effort. Thus, defining the state variable

z =





























x

y

θ

vx

vy

θ̇





























the complete model is given by:

ż =





























z4 cos(z3)− z5 sin(z3)

z4 sin(z3) + z5 cos(z3)

z6
Fxr+Fxf cos(ϕ)−Fyf sin(ϕ)

m
+ ż3 z5 −

Faero

m

Fyr+Fxf sin(ϕ)+Fyf cos(ϕ)

m
− ż3 z4

lf (Fxf sin(ϕ)+Fyf cos(ϕ))−lr Fyr

Iz





























where the inputs are the steering angle ϕ and the wheel angular velocity ωw resulting from the

application of the forces Fxf and Fxr, see (2.2). Notice that x, y and θ are expressed in the

global reference frame, while vx and vy are expressed in the car moving frame attached to the

CoM (see Figure 2.1). In particular, x and y are the coordinates of the midpoint of the rear

axle (see Figure 2.3), m is the mass of the vehicle and Iz is the moment of inertia about the

vertical axis. The dynamic model thus presented can be further broadened adding, for example,

the wind effect or the rolling resistance of the tires. However, such extensions are postponed to

future works.
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Figure 2.3: Mobile robot and system coordinates, with an example of a track.

2.2 Track Description

The track is defined as a sequence of straight sectors or of sectors comprising a bend on the

right (or, equivalently, on the left), as shown in Figure 2.3. The track is characterized by two

boundaries, left Bl and right Br, which are also formed by a sequence of a straight line, arc of

circle and another straight line. We make the simplifying assumption that the distance between

Bl and Br is constant along the track with width W ≥ 0.

For the sectors containing a bend the two boundaries are parametrized as show in Figure 2.3.

The angle γ is the characteristic curve angle, i.e. the angle between the two straight line sectors

of each boundary. The bend boundaries are characterized by the centers Cb and the radii Rb. In

particular, Ri
b refers to the inner boundary, while Ro

b to the outer. Trivially, Ri
b < Ro

b for widths

W > 0.



2.2. TRACK DESCRIPTION 15

Without loss of generality we can assume the bend to be oriented such that the axis Yw is

parallel to the the bisector of γ. The angles α and π − β are the orientations of the line sectors

w.r.t. Xw.

2.2.1 Reference frames

Let 〈T 〉 = {OT , XT , YT , ZT} be the track reference frame with OT a point on Br, XT tangent

to Br and YT pointing towards the left boundary Bl (see Fig. 2.3). This frame is a Frenet frame

attached on the the right boundary of the track. Consider the track initial reference frame 〈I〉 as

〈T 〉 with OT placed on Br at the beginning of the track and the track final reference frame 〈E〉

as 〈T 〉 with OT placed on Br at the end of the track.

A point Tpr on XT has a corresponding point on Bl given by Tpl = Tpr + [0, W ]T . In

particular, any point inside the track at the same distance of Tpr from the curve can be expressed

as Tp = Tpr + k[0, W ]T , where 0 ≤ k ≤ 1. We will denote by P the set of all points lying

inside the track, for which there exist a Frenet frame in which their X coordinate is 0 and their

Y coordinate is smaller than W : P =
{

p|∃〈T 〉 s.t. Tp = k[0, W ]T , 0 ≤ k ≤ 1
}

.
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Chapter 3

Vision Based Localization and Path

Reconstruction

Many autonomous robot application require the ability to navigate across an a environment

which might be unknown or known, for example to follow a road (e.g., for automatic driv-

ing) [10] or to move across a factory or house floor [34]. The presence of markers in the

environment that suggest a possible path or delimit the borders of the lane greatly simplify this

navigation task. There are a selection of sensors which enables autonomous robots to detect

these markers such as LIDARs (Light Detection and Ranging), sonar sensors or cameras.

Camera, mounted on an autonomous robot, is a versatile sensor which provides a rich in-

formation about the environment. This information can be use for robotic vehicle control, lane-

departure warning, parking assistance, etc. Cameras have been widely deployed by manufactur-

ers in their car with different technologies. Hence, computer vision becomes one of the critical

technology for autonomous cars.

Moving the robot with a specified distance from road markers is known in the literature

as path following [1, 54] and it requires the relative localization of the robot [60]: i.e., the

reconstruction of its distance and its bearing with respect to the marker. An autonomous robot

requires an ability to move (change its configurations) to reach some goals while bounded by

some constraints. There can be one or more possible paths from one configuration to another.

17
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The problem of choosing the path that optimizes some metric of interest is known as path

planning. The computation of an adequate plan requires the knowledge of the shape of the road

for some distance ahead. We refer to this problem by the term path reconstruction. In this thesis

we advocate the use of camera system both for localization and path reconstruction.

From a computational perspective, the most efficient way to visually detect and track a path

on a surface is to place the image plane parallel to the surface. This way, image distortions are

completely removed by design and the image processing algorithms can be simplified. How-

ever, such solution might not be feasible due to the robot construction or could limit the image

measurements to a small portion of the scene: the range of situations in which the position of

the robot can be estimated is very small.

In Section 2.1 we have described the system overview of the robot, especially the position

of the two cameras on the robot. There are two cameras mounted on our robot which serve

different purposes. The lateral camera, mounted on the right side of the robot, is used for the

localization of the robot. Conversely, the front camera which is mounted in front of the robot

is used for the path reconstruction. Both cameras are mounted so that they are at an angle

to the surface plane. To carry out the computation of the position and of the path as in the

previous situation where the cameras are parallel to the ground, we use the notion of virtual

cameras. The virtual cameras are placed such that their image planes are always parallel to

the surface. In order to reconstruct the scene seen by the virtual camera, we use the Inverse

Perspective Mapping (IPM) technique, which allows us to remove the distortions introduced by

the perspective projection [39].

3.1 System configuration

Let 〈R〉 = {Or, Xr, Yr, Zr}
1 be the right-handed reference frame attached to the vehicle,

whose plane Π = Xr × Yr is the plane of motion and axis Zr pointing upwards and the origin

Or is attached in the mid–point of the rear wheel axle. (Fig. 3.1). Let 〈C〉 = {Oc, Xc, Yc, Zc}

be the actual camera reference frame, i.e., the frame attached to the vision system, which is

1Or stands for “the origin of the reference frame”.
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Figure 3.1: Geometric description of the problem and reference frames: robot frame 〈R〉, actual

camera frame 〈C〉, virtual camera reference frame 〈V 〉 and path reference frame 〈P 〉.

mounted on the vehicle chassis. Notice that Zc is chosen orthogonal to the image plane, and it

intersects it in the principal point, i.e., the origin of the current bi-dimensional image reference

frame 〈Ic〉 = {Oic , Xic , Yic}. The path to follow is defined by a stripe placed on the plane of

motion, which is represented in the image by two line edges.

The relation between the reference 〈R〉 and camera 〈C〉 frame is given by a generic rigid

motion transformation cgr ∈ se(3), where se(3) is the Special Euclidean Group. The cgr is

expressed by means of a rotation matrix cRr ∈ SO(3), where SO(3) is the Special Orthogonal

Group, and of a translation vector ctc,r ∈ R
3, where ctc,r stands for “The vector starting from

Oc and pointing to Or expressed in 〈C〉”. More precisely, the rotation matrix cRr is given by

the composition of three basic rotation matrices, each one expressing a rotation w.r.t. the fixed

axis of 〈R〉. In particular,

Rx(ψ) =











1 0 0

0 cos(ψ) sin(ψ)

0 − sin(ψ) cos(ψ)











,
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Ry(γ) =











cos(γ) 0 − sin(γ)

0 1 0

sin(γ) 0 cos(γ)











,

Rz(φ) =











cos(φ) sin(φ) 0

− sin(φ) cos(φ) 0

0 0 1











,

where ψ is the roll angle, γ is the pitch angle and φ is the yaw angle, i.e., Roll–Pitch–Yaw (RPY)

notation. With this choice, we can write

cRr = Rx(ψr)Ry(γr)Rz(φr). (3.1)

In particular, the configuration reported in Fig. 3.1, in which the camera points towards the

plane of motion in front of the vehicle, is obtained by imposing ψr ∈ [−π, −π/2], γr = 0 and

φr generic.

For a generic point rpj = [rxj,
ryj,

rzj]
T expressed in 〈R〉, we have

cpj =
cRr

rpj −
cRr

rtr,c =
cgr(

rpj),

where rtr,c is the translation vector from Or to Oc expressed in 〈R〉. The relation between rpj

and its image icpj in the image plane is given by

λicpj =
cpj =

cgr(
rpj), (3.2)

where λ ∈ R expresses the line of sight ambiguity, according to the pinhole camera model [25]

(see Fig. 3.2). Notice that icpj = [icxj,
icyj, f ], where (icxj,

icyj) is the pixel position in the

image plane (hence expressed in 〈Ic〉), while f is the focal length of the camera (see Fig. 3.2).

The position in the image plane is given by the perspective projection















icxj = f
cxj
czj

icyj = f
cyj
czj

, (3.3)

where λ = czj/f .
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Figure 3.2: Pictorial description of the image formation using the standard pinhole camera

model.

Since the motion of the vehicle is (approximately) planar, only three quantities are needed

to fully describe its pose: its position in the plane (two coordinates) and its orientation with

respect to a reference axis (one angle). The localization and path reconstruction can be exactly

solved when the pose of the camera reference frame 〈C〉 is known w.r.t. the path frame (in

Section 3.2 we will see how to release this assumption and deal with a partial knowledge of

the camera pose). More precisely, let us define 〈P 〉 = {Op, Xp, Yp, Zp} as the path reference

frame, i.e., the reference frame whose axis Xp is orthogonal to the path edge, axis Yp is parallel

to the line edges, while axis Zp points towards the plane of motion (see Fig. 3.1). Notice that

the plane the Xp × Yp is parallel to Π and that frame 〈P 〉. We restrict, for the moment, to a

path consisting of a straight line. This assumption will be released in Section 3.4.1. A camera
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placed in Op would have a path image reference frame 〈Ip〉 = {Oip , Xip , Yip} that would grab

an image in which the path edges are parallel and symmetric to Yip axis. With this choice of

〈P 〉 and defining

cRp = Rx(ψp)Ry(γp)Rz(φp),

ptp,c = [pxp,c,
pyp,c,

pzp,c]
T ,

cpi =
cRp

ppi −
cRp

ptp,c =
cgp(

ppi),

the position of Oc in the plane of motion is given by the first two entries of ptp,c (the third entry

pzp,c playing no role for localization in the Π plane), and the orientation of 〈C〉 w.r.t. 〈P 〉,

expressed by the yaw angle φp along the Zp axis. The position of the camera along the path,

i.e., along the Yp axis, is unobservable from the camera measurements. This is because the only

measurable image features are the edges, which are determined using the image gradient. Such

a gradient is orthogonal to Yp; therefore only the distance along Xp is can be evaluated.

3.1.1 Virtual Camera and Virtual Image

The rigid transformation cgp has to be estimated from the knowledge of the path pose in the

image Ic. In what follows we assume that the path edges, even though affected by outliers

and noises, are gathered in the grabbed image using standard image processing tools [11] and,

hence, are assumed known. One way to estimate cgp is to exploit the prior knowledge that the

line edges are equidistant. However, since the rotation matrix cRp is generic even with perfectly

planar motion, parallel lines in the 3D space are not mapped into parallel lines in the image

space for the presence of the perspective projection (3.3) (see [25] for reference). On the other

hand, the image processing algorithm would be greatly simplified if parallelism were preserved

in the images, paving the way for the application of computationally light and robust algorithms

(e.g., [22]). The idea is then to synthesize an image from actual measures that retains all the

quantities needed for cgp estimation and, at the same time, preserves line parallelism.

To this end, we make use of a virtual reference frame 〈V 〉 = {Ov, Xv, Yv, Zv}, with plane

Xv × Yv parallel to the plane Π and with Zv pointing towards the plane of motion (see Fig. 3.1

for reference). From a geometric viewpoint and assuming a prefect knowledge of cgr, i.e., no
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Figure 3.3: Images grabbed from each position: actual grabbed image Ic, virtual image Iv, both

in the ideal case or in the presence of uncertainties, and path reference image Ip.

unknown roll and pitch angles, the rigid transformation cgv ∈ se(3) that maps 〈V 〉 to 〈C〉 is

defined by means of the rotation matrix cRv = Rx(ψv)Ry(γv)Rz(φv) and the translation vector

vtv,c = [vxv,c,
vyv,c,

vzv,c]
T . For example, we have ψv = π + ψr, γv = 0 and φv generic if the

configuration of Fig. 3.1 with a front camera is considered. The virtual image grabbed from the

virtual reference frame 〈V 〉 generate the bird’s–eye view, in which the path edges in the virtual

image reference frame 〈Iv〉 = {Oiv , Xiv , Yiv} are parallel, as depicted in Fig. 3.3. Notice that

vzv,c is the height of the virtual camera w.r.t. Π, hence it will have a zooming effect for the

virtual image.
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3.2 Problem Formulation

In the geometric framework introduced in Section 3.1, vehicle–to–path localization amounts

to the reconstruction of rgp ∈ se(3), which is the rigid transformation between 〈R〉 and 〈P 〉.

Since the quantities defining cgr ∈ se(3) are assumed known while cgv ∈ se(3) is controllable,

i.e., the virtual camera can be placed freely in the Π plan, vehicle–to–path localization is solved

whenever 〈V 〉 ≡ 〈P 〉. Indeed, in such a situation, we have

rgp =
rgc ·

cgp =
rgc ·

cgv =
cg−1

r ·
cgv.

In other words, cgv can be considered as an estimate of cgp, which is unknown. Recalling the

discussion about the frame 〈P 〉, the problem we want to address can be precisely defined as:

Problem 1 (Localization with known camera pose). Assuming full knowledge of cgr and given

the path edge measures in the image 〈Ic〉 taken from the actual camera position 〈C〉, determine

the distance from the path pxp,c and rotation matrix cRp.

One easy way to find the transformation relating 〈Iv〉 and 〈Ip〉 could be found in the image

space by applying, for example, image convolutions. Unfortunately, this is not applicable if one

is interested in 3D localization, which calls for a different solution, as detailed in Section 3.3.

While the problems that we have introduced in Section 3.3 are on the reconstruction of the

position of the robot with respect to a known path, another problem is on the reconstruction of

the path in front of the robot (which is of the greatest importance for planning).

Problem 2 (Path reconstruction). Assuming full knowledge of cgr and given the path edge mea-

sures in the image 〈Ic〉 taken from the actual camera position 〈C〉, reconstruct the path in front

of the car (captured from the front camera).

The solution to this problem will be offered in Section 3.4.

3.3 Localization

In this section, we show how to solve Problem 1 when the rigid transformation cgr is known

without uncertainties. As a consequence, ψp and γp are perfectly known, and the only unknowns
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Algorithm 1 Algorithm for vision based localization

1: while true do

2: Ic ← Capture()

3: Ib ← Preprocess(Ic)

4: Ir ← Rectify(Ib)

5: if first image then

6: K ← KalmanInitialize()

7: first image← false

8: else

9: K ← KalmanPredict(K);

10: pxp,c, φp ← RANSACwithPrediction(Ir, K)

11: K ← KalmanUpdate(K, pxp,c, φp)

12: end if

13: end while

are pxp,c and the yaw angle φp. The solution to Problem 1 is based on the application of the

IPM, which allows us to synthesize the virtual image Iv, and on the subsequent application of

an estimation algorithm to derive the quantities of interest.

An overview of the algorithm is shown in Algorithm 1. The preprocess step performs the

required cropping, and edge detection [11] to convert the captured image into a binary image.

The localization algorithm required three main components which are IPM/rectification (see

Section 3.3.1), RANSAC (see Section 3.3.2) and Kalman filter (see Section 3.3.3).

3.3.1 Recover the Virtual Image from Measurements

In this section we describe how to “rectify” the image grabbed from position 〈C〉 through an

IPM and then we set the theoretical basis for the estimation algorithm. The rectification algo-

rithm is shown in the 4-th line of Algorithm 1.

Consider the distance vector from the path frame 〈P 〉 to the motion plane defined by Hp =

hpNp, where Np = [0, 0, 1]T is the unit vector normal to Π expressed in 〈P 〉 (see Fig. 3.1) and,
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hence, hp is the distance of Op from the ground. The following holds true,

Nc =
cRpNp, (3.4)

where Nc is the unit vector normal to Π expressed in 〈C〉. The distance hp is the distance of Oc

from the ground is given by: hp =
pzp,c + hc.

Proposition 1. The distance hc between 〈C〉 and the plane Π is not affected by a translation on

the plane Π nor by cRp.

Even though Proposition 1 is straightforward from a geometric view–point, it will prove

fundamental in the presence of uncertainties, since it reveals, for instance, that a reduction in

the distance of the parallel lines is devoted only to translation along the Zp axis, i.e., when the

vehicle carrying the camera bounces on the road plane.

Consider the line of sight ambiguity defined by λ in (3.2). By construction, its value is

constant for 〈P 〉, while it is not constant in general for each point cpj ∈ π in the frame 〈C〉.

Proposition 2. The value of λcj is not affected by pxp,c nor by the yaw angle φp, i.e.,

λcj =
hc

NT
p Ry(γp)TRx(ψp)T icpj

.

The previous results apply in the same way to the frame 〈V 〉. We are now in condition to

show that the unknown parameters pxp,c and φp are preserved in the rectified image and, hence,

that Problem 1 can be solved in the rectified image space.

First, from (3.3) it is straightforward that if the image plane of a camera is parallel to the

ground, parallelism between line on the ground and their image is preserved. Indeed, the dis-

tance from the camera pin–hole and the ground does not change. Therefore, this holds true for

the image Ip. Let us consider the transformation defined from the virtual camera frame 〈V 〉

to the actual camera frame 〈C〉. In the ideal case, the rotation matrix cRv is partially known,

since only the quantities ψv = ψp and γv = γp are known, while φv is the estimate of the yaw

angle φp. Similarly, ptp,c = [pxp,c −
vxv,c, 0, 0]

T + vtv,c, where vtv,c = [vxv,c,
vyv,c,

vzv,c]
T

is the current estimate of ptv,c, with vyv,c is unobservable and useless for the problem at hand.

Moreover, vzv,c =
pzp,c by construction.
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Proposition 3. The points ivpj of the virtual image Iv, obtained from the image points icpj of

the current grabbed image Ic by means of the IPM

ivpj =
f

hv

(

λcjRy(γv)
TRx(ψv)

T icpj +
vtv,c

)

, (3.5)

preserve the 3D parallelism between the lines and restrain the unknown quantities pxp,c and φp.

A byproduct result of Proposition 3 is the connection between points in Iv and the points of

the reference image Ip, that is:

ivpj = Rz(φp)

(

ippj −
ptp,c
λv

)

+
vtv,c
λv

, (3.6)

It has to be noted that ippj are the reference points of the parallel lines in Ip. Notice that, by

definition, line edge points in the image Ip are parallel and symmetric to the Yp axis of 〈Ip〉 (see

Fig. 3.3). Moreover, they represent an invariant, i.e., from every possible configuration rgp, the

measured image points icpj map into the same image points ippj . Therefore, the reference image

Ip can be determined once and for all during an initial calibration phase or easily estimated as

reported in Section 3.4.2, since only the image distance among the lines is of interest. Therefore,

it will be assumed known thereafter.

Example 3.1. Consider an image of a checkerboard captured with the side camera of the car

as shown in Figure 3.4 a. The image is preprocessed by converting it to a binary image. The

rectified image (shown in Figure 3.4 b) is computed by placing a virtual camera such that the

image plane of the virtual camera is parallel to the plane of motion Π.

3.3.2 Estimating cgp

Using Proposition 3 and Equation (3.6) it is now possible to derive an estimation algorithm for

the unknown rigid transformation cgp. A description of the estimation algorithm is offered next.

1. Using an image processing algorithm (e.g., the RANSAC based algorithm defined in [22]),

detect the position and orientation of the parallel lines in the virtual image using the points

ivpj obtained using (3.5);
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a)

b)

Figure 3.4: Example of rectification: a) original image, b) image after preprocess and rectifica-

tion
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2. Compute the angle φv between the parallel lines defined by ivpj and the Yv axis of 〈Iv〉. In

fact, this angle corresponds to the angle between line edge points ivpj and ippj . Since (3.6)

holds, φv = φp;

3. Using φp, the value of pxp,c in ptp,c is readily available by inverting (3.6), i.e.,

ptp,c = −λvRz(φp)
T

(

ivpj −
v t̂v,c
λv

)

+ λv
ippj. (3.7)

Equation (3.7) in Step 3 of the procedure above can be used only if the point correspondence

between ivpj and ippj is available. The correspondence can be enforced using intersections with

Xv axis in 〈Iv〉. In what follows, all the quantities refer to the left line, since the analysis for the

right line can be derived similarly. Consider a point intersecting the Xip axis in 〈Ip〉, i.e.,

ippj −
ptp,c
λv

=











x̄l

0

0











, (3.8)

where x̄l is the intersection point. It has to be noted that this choice corresponds in selecting a

point in the left line that has a coordinate along the Yip axis ipyj =
pyj
λv

, which has no effect on

the estimation algorithm since all the points of the left line has the same value of ipxj . From

Equation (3.6), the intersection of the left line of the path with Xiv can be expressed with

Rz(φp)
T

(

ivpj −
vtv,c
λv

)

=











x̄l

0

0











.

Assuming that a description of the left line is given, for example, in terms of its slope a and the

offset b, i.e., ivyj = aivxj + b, one gets










ivxj

aivxj + b

f











= ivpj = Rz(φp)











x̄l

0

0











+
vtv,c
λv

=











cos(φp)x̄l

− sin(φp)x̄l

0











+
1

λv











vxv,c

vyv,c

vzv,c











,
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in the unknown x̄l. This condition leads to

x̄l =
vyv,c − a

vxv,c − λvb

λv(a cos(φp) + sin(φp))
.

It has to be noted that the rectified images may have vertical lines. If this is the case, the angle

φp ≈ 0, which finally yields to

x̄l =
ivxj −

vxv,c
λv

.

In any case, we can make use of Equation (3.8) for the first component

pxp,c = λv(
ipxl − x̄l),

where ipxl is the intersection of the left line with the Xip axis for the reference path image Ip,

which is known. Repeating the same computations for the right line

pxp,c = λv(
ipxr − x̄r),

that, to increase the accuracy, finally yields to

pxp,c = λv
ipxl +

ipxr
2

− λvx̄,

where x̄ = x̄l+x̄r

2
. Since the path is symmetric with respect to the Yip axis in Ip, we finally get

to

pxp,c = λvx̄.

Example 3.2. Figure 3.5 shows two different set of images with different noise level. The first

set (Figure 3.5 a,c,e) represents the case where no noise appear after the preprocesing phase

while in the second set, structural and random noise still appears. In both cases, the RANSAC

algorithm is able to correctly identify the two parallel lines (Figure 3.5 e & f)

3.3.3 Prediction with Kalman

Extended kalman filter is used in order to improve the performance of the localization algorithm.

The values of pxp,c and φp associated with the current image is used as prior knowledge for the
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a) b)

c) d)

e) f)

Figure 3.5: Example of rectification: a & b) original image, c & d) image after preprocess and

rectification, e & f) parallel lines found by ransac
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road localization in the following image. This way, the computation times will be reduced by

constraining the line search in a subset of the image. The dynamics of these three parameters

is a function of both the line to be tracked and the motion of the camera. By denoting with

(hp, αp, dp) the path quantities in the 3D coordinates and recalling that hp =
pxp,c and αp = φp

by construction, one gets

q̇ =











ḣp

α̇p

ḋp











=











v sinαp

v
l
tanφr +

v
r
cosαp

0











= f(q, v, r), (3.9)

where r is the curve radius, which is +∞ for straight paths. The meaning of ḋp = 0 is that the

path width is constant. It is now evident that by means of (3.9) and (3.3), the time evolution of

the quantities (h, α, d) in the image plane can be derived.

For robust estimation of path lines in the images, an extended Kalman filter (EKF) is applied

to (3.9), in order to return refined values of h, α and d to be used as prior to the RANSAC–based

algorithm presented above. With this choice, computational burden is dramatically reduced. In-

deed, the unknown probability density functions related to the estimation processes of h and

α can be considered multimodal for the presence of both outliers and noise in every grabbed

image, which drains a relatively high computing power to get a correct estimate from an embed-

ded system. However, the camera can not move instantaneously in multiple different directions,

hence the uncertainty distribution associated with the motion of the camera is definitely uni-

modal and model–based.

At the beginning, the EKF is initialized as soon as a road line is clearly detected in the image

plane. In this preliminary phase, a longer execution time is tolerated in order to have an accurate

first guess. Then, the estimation algorithm performs iteratively the following three steps: a) the

Kalman filter predicts the future position of the parallel lines using (3.9); b) the position and

orientation of the parallel lines (i.e., the values of h, α and d) are computed by RANSAC using

the position prediction given by the Kalman filter; c) the estimation of the state q updated using

the measures coming from the RANSAC–based algorithm.

The duration of each iteration must be shorter than the frame period of the camera. If an

image is not sufficiently informative due to structured or unstructured outliers (e.g., illumina-
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a) b)

c) d)

e) f)

Figure 3.6: Example of kalman filter: a & b) original image, c & d) image after preprocess and

rectification, e & f) parallel lines found by RANSAC and Kalman filter

tion problems, shadows, small potholes or faded paint), RANSAC does not return a valid line

measurement. However, this kind of situations can be tolerated to a certain extent using the

information retained by the Kalman filter. In such a case, the filter works in open loop, which

leads to an increasing uncertainty of the estimates. If, after the EKF update, the covariance

exceeds a certain threshold (whose maximum value is bounded by the image size), the EKF is

reinitialized and the procedure starts over.

Example 3.3. Figure 3.6 shows an example of the improvement provided by kalman filter. In the

case where one or more of the line goes out of the image frame. the internal model is still able

to track the lines. The red lines show the detected left line, the blue lines show the detected left

line. Figure 3.6 f shows an example where the algorithm can still correctly tracked the center

line even when the right line goes out of the frame.
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Figure 3.7: Time histogram of the localization algorithm

Example 3.4. Figure 3.7 shows a histogram of the time to perform the localization algorithm

for 5000 images. In this experiment more that 95% of the image is processed below 10 ms.

Note that the RANSAC is an anytime algorithm. Thus, the algorithm can be stop at anytime

to produce a guess of the two parallel lines. In this experiment there is no timeout set for the

RANSAC algorithm. However, in the real-time implementation the localization process is forced

to produce a result every 10 ms.

3.4 Path Reconstruction

This section presents a solution to Problem 2: estimating the path in robot frame 〈R〉. The

intuition underlying our approach is very simple: we let the virtual camera fly over the path

and recover its position. In each position we estimate the rigid transformations cgv and cgr

by means of the robust algorithm presented in the previous section. This way, we come up
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Algorithm 2 Algorithm for vision based path reconstruction

1: Ic ← Capture()

2: Ib ← Preprocess(Ic)

3: Ir ← Rectify(Ib)

4: V ← ComputeCoveredRegion(Ir, nHeight)

5: for i = 0..nHeight do

6: while valid do

7: valid,model← FindPath(V(hiv));

8: if valid then

9: pxp,c, φp ← EstimatePositionOrientation(model)

10: save current pxp,c, φp in hypothesis[i]

11: move virtual camera

12: else

13: break

14: end if

15: end while

16: end for

path← FindBestHypothesis(hypotesis)

with the reconstructed path. A crucial enabler for this technique is the ability to localize the

virtual camera with respect to generic paths, compounded by straight lines and curves (in the

previous sections we have restricted to straight lines). The unavoidable problem of parallax is

also discussed in this section.

3.4.1 Paths with Curves

So far we have treated the problem of robust estimation for the rigid transformation cgp in the

presence of straight paths. However, a generic path for wheeled vehicles is in general make up

of a set of straight lines and curves. In such a situation, it is necessary to estimate the bend-

ing path in the image space Iv and, then, estimating its curvature. Although solutions have



36 CHAPTER 3. VISION BASED LOCALIZATION AND PATH RECONSTRUCTION

been presented in literature to solve this problem, the processing time may be prohibitive for

an embedded implementation. Indeed, it is now becoming a commonplace to utilize proba-

bilistic or statistical tools in the edge map of the image, for example in combination with the

Hough transform [15, 37]. More efficient in this respect is the application of RANSAC for

curves, as presented among the others in [7, 14]. However, all the proposed methods asks for

a parametrization of the curve in the image space, with well defined maximum curvature. Our

solution instead does not rely on a particular curve model but only assumes the knowledge of

the maximum path curvature. It is worthwhile to point out that such an assumption is obvi-

ously common for vehicle moving on road, due to the limited curvature radius of cars, as well

as by path in factory floors, for which too sharp bends may require moving platform velocity

adjustments with unavoidable loss of mechanical energy.

Therefore, by using the inlier threshold of built in the RANSAC algorithm, i.e., the threshold

that discriminates between outliers, noise and inliers, we simply choose to approximate the

curve with a straight line. In fact, by acting on the vzv,c coordinates of the virtual camera, a

digital zoom is obtained: the more the image is zoomed, the better is the approximation.

3.4.2 Reconstruction

We are now in a position to present the generic path reconstruction algorithm, which can be

used for a variety of purposes, e.g., mapping, efficient vehicle path planning, predictive control,

etc., which builds upon the robust solution presented in Section 3.3. The path is reconstructed

in the robot reference frame 〈R〉 and it is parametrized by a set of points in R
2 × S, i.e., by

triplets pj = [xpj , ypj , θpj ]
T where (xpj , ypj) are the Cartesian coordinates in the Π plane,

while θpj is the orientation of the path w.r.t. Yr axis in position (xpj , ypj). Strictly speaking, the

path is a sequence of straight line segments with different orientation describing the path. The

reconstruction algorithm (shown in Algorithm 2) comprises of 4 main steps: computing covered

region(Section 3.4.2.1), finding the path in current virtual camera (Section 3.4.2.2), moving the

virtual camera position along the path (Section 3.4.2.3) and finally reconstructing the path from

the best hypothesis(Section 3.4.2.4)
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Figure 3.8: Field-of-view of the real camera reprojected onto the Π plane and set of virtual

images taken from various positions, but fixed height, to cover the entire scene in view.

3.4.2.1 Virtual camera covered region

The first issue to address is related to the feasible transformation rgv between 〈R〉 and 〈V 〉 in

order to let the virtual image cover the image Ic (see Fig. 3.8). To this end, we first compute

the projection of the field–of–view (FOV) of the actual camera onto the plane of motion Π by

computing the intersection between the line starting from the pin–hole and passing through each

of the image corners with the plane Π. Hence, by defining the maximum vzmax
v,c and minimum

vzmin
v,c virtual camera heights, it is possible to define all the virtual camera position sets V(hjv)

as a function of the current j–th virtual camera height hjv, in order to cover the entire reprojected

FOV of the actual camera for all the different heights. Although this operation it is not strictly

needed, it speed up the path starting point detection.

3.4.2.2 Path starting point

Path reconstruction algorithm starts with the detection of the line edges in the virtual image edge

map. To this end, the grabbed image Ic is scanned, starting from the lowest camera height h0v,

and letting the virtual camera move along the position set V(h0v). The search for straight path

edges is based on the Algorithm 1 presented previously. Once a valid solution has been found,

i.e., an estimate of cg0p is derived, we get rg0p = rgc ·
cg0p and, finally, the first path parameter



38 CHAPTER 3. VISION BASED LOCALIZATION AND PATH RECONSTRUCTION

p0 = [xp0 , yp0 , θp0 ]
T is extracted from the translation vector and the yaw angle collected in rg0p .

It has to be noted that the position of the reference path frame 〈P 〉 is referred to the current

virtual camera pose.

If two virtual images shares the same path edges, i.e., they produce the same virtual cam-

era position after correction, the two hypotheses are fused together and then passed to the

next step. If n distinct line edge pairs are found, i.e., if more than one starting path point

p0,1, p0,2, . . . , p0,n, all the solutions are considered as valid hypotheses and propagated to the

next step. If no path edges are found, the grabbed image scan is performed with an increased

value of the height. If at the maximum feasible height no valid path data can be retrieved, the

process stops and goes to Section 3.4.2.4 of this procedure.

3.4.2.3 Moving the bird’s–eye view

As far as the path position pj is available, the virtual camera moves along the path consider-

ing fixed orientation and fixed forward velocity, generating a predicted virtual camera position

hypothesis, i.e.,

p̂j+1 =











xpj + cos(θpj)∆s

ypj + sin(θpj)∆s

θpj











,

where ∆s is the elementary translation vector, a design parameter dependent from the actual

camera configuration and resolution. From p̂j+1, the estimate of cgj+1
p is then derived if line

edges can be found in the image, otherwise the process terminates and goes to Section 3.4.2.4

of this procedure. Therefore the pose of p̂j+1 is updated by

p̂j+1 =











x̂pj+1
− pxj+1

p,c

ŷpj+1

θ̂pj+1
− φj+1

p











.

As previously recalled, the estimates of pxj+1
p,c can be very noisy due to the presence of vibrations

or plane of motion imperfections. In this case, the process is iterated by computing a new

estimate of cgj+1
p in the new corrected estimated position p̂j+1. The iteration stops whenever the
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values of cgj+1
p are below a predefined target uncertainty. Hence this step is started over from

position pj+1x.

This step is iterated for each hypothesis found in Section 3.4.2.2.

3.4.2.4 Reconstruction and the parallax problem

If n distinct path hypotheses have been found, the outputs of Step 3 are n sequences of triplets.

We assume that only the valid path hypothesis is presented in all the virtual image, that is the

valid path is the one with the longest set of triplets. Therefore, the longest sequence of triplets

represent the best estimate of the path.

Unfortunately, even though the algorithm shows good performance using the idea of the

bird’s–eye view and it offers also a set of design parameters, e.g., the height of the virtual

camera hjv or the translation step ∆s, that can be adaptively tuned to trade–off between accuracy

and processing time, the algorithm suffers of the problem of parallax. Indeed, the more the

virtual camera is further away from the actual camera position, the less is its path reconstruction

accuracy. The problem thus described comes directly from the perspective projection (3.3) and

the limited resolution of the imager, which is quantized by the pixel. More precisely, let δxδy

be the surface of the pixel: the 3D portion of the scene that maps on the same pixel surface is

given by

∆cx =
δx

cz

f
and ∆cy =

δy
cz

f
,

i.e., the further is the portion of the scene in view (that is with increasing value of cz, see also

Fig. 3.2), the larger is the portion of the scene that maps onto the same pixel. Since for the

virtual camera image Iv the distance from Π is constant by definition, the pixel coming from Ic

becomes more and more scattered as the virtual camera moves away from the current camera

position.

Although this problem is unavoidable and mainly limits the horizon of the vehicle maneuver

prediction that can be drawn, it does not impair the effectiveness of the localization algorithm

in the presence of generic paths.
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a) b)

c) d)

Figure 3.9: Example of reconstruction: a) & b) original image, c) & d) reconstructed points

Example 3.5. Consider two example of images captured by the front camera (shown in Fig-

ure 3.9 a)& b). The result of the path reconstruction is show in Figure 3.9 c) & d).



Chapter 4

Local Planning

In this chapter we focus on the local planning problem [51]. The problem addressed can be

summarized in the following terms: find the set of maneuvers that steer the car in minimum

time between two configurations, each one identified by position on the track and velocity,

respecting the dynamic constraints of the car and the geometric constraint of the track.

The local planning problem is a sub problem of trajectory tracking problem. A local plan-

ning algorithm synthesizes a plan that is the optimal trajectory for a given car and track to reach

the desired goal. Control algorithms enable the car to execute the synthesized plan. There are a

lot of techniques and algorithms to design such controllers however it is out of the scope of this

thesis.

The car model adopted in this thesis is inspired to the one proposed for Stanford’s Stanley

autonomous car [26] which offers a sufficient coverage of the most important physical phenom-

ena that are usually considered. It comprises two different components: kinematic and dynamic

model as detailed in Section 2.1. The authors approach the trajectory tracking problem by de-

composing it into two sub-problems: a steering controller, acting on the steering wheels angle,

for path following; a cruise controller, acting on the engine power, to track desired velocity

profiles. While the cruise controller has been synthesized in a standard way adopting PID con-

trol, the steering angle is determined on the kinematic model, afterwards it is modified to take

into account dynamic effects described by the dynamic model. We follow the same rationale,

although the steering controller is slightly modified to derive a kinematic model that can be

41
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effectively used to synthesize the optimal trajectories. Hence, the motion planning problem

can be approached restricting to the kinematics of the vehicle as far as a controller is applied

to the dynamics. Under the constraint that the car does not slip away (i.e. the lateral accelera-

tion remains bounded below a given bound), we show that the optimal plan is composed of a

concatenation of elementary maneuvers.

We offer a precise characterization of the alphabet of elementary maneuvers and we provide

a preliminary characterization of the optimal sequences of maneuvers on the track sectors. Due

to the complexity of the problem, we consider a simplified sequence of maneuvers that is easier

to implement on a low cost vehicle and that remains reasonably close to the optimal solution.

The simplified maneuvers allow us to use geometrical considerations to characterized the sub–

optimal sequences of maneuvers on both straight and bend sectors.

In the next section the formalization of the local planning problem is described in Sec-

tion 4.1. Section 4.2 details the optimal alphabet that will be used to construct the set of optimal

maneuvers that is explained in Section 4.3.

The literature of optimal (shortest) paths stems mainly from the seminal works on unicycle

vehicles with a bounded turning radius by Dubins [21] and on the car moving both forward

and backward by Reeds and Shepp [47]. Other optimization cost functions has been considered

such as the minimum wheel rotation paths for differential-drive robots ([16]), minimum time

trajectory ([59] for differential drive robots, [4] for omnidirectional vehicles, [18] for a mobile

robot with a trailer subject to limited control inputs, and [48] for robots with two independently

driven wheels ), minimum path length ([52] and [53] for differential drive robot with limited

Field-of-View and [2] for a car–like robot).

4.1 Problem Formulation

The kinematic and dynamic model of the car have been presented in Section 2.1. Assuming

that the steering and thrust controller proposed by Hoffman et al. [26] are used, the extended
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kinematic model adopted for optimal path synthesis is given by

q̇ =

















ẋ

ẏ

θ̇

v̇x

















=

















vx cos(θ)

vx sin(θ)

vx
tan(ϕ)

l

a− cavx

















(4.1)

where ϕ is the steering angle, one input of the model, constrained by |ϕ| ≤ ϕ, ca =
c′a
m

and a is

the acceleration input, given by

a =
Fxr + Fxf cos(ϕ)− Fyf sin(ϕ)

m
,

that, due to the limited steering angle, simplifies to

a ≈
Fxr + Fxf

m
,

while the term θ̇vy is neglected since it is supposed to be compensated by the traction controller.

Definition 4.1. A possible maneuver is a maneuver that moves the vehicle from configuration

qI to qE where qI , qE ∈ Q. A feasible maneuver is a possible maneuver where all intermediate

configuration q ∈ Q. An optimal maneuver is a member of the feasible maneuver set.

The problem addressed in this section is to find an optimal path that steers the car from a

configuration qI (associated with a configuration at the beginning of a sector) to a configuration

qE (associated with a configuration at the end of the sector) in minimum time. Let tI represent

the instant when the planned motion starts and tE the instant when the motion ends. A configu-

ration q is associated to the state variables q = [x, y, θ, v]. The solution of the motion planning

problem aims to identify the acceleration function a(t), the steering angle function ϕ(t) and the

final instant tE . In mathematical terms the problem can be formulated as the following optimal

control problem:
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Problem 3. Optimal Control Problem for Local Planning

min
a(t),ϕ(t)

∫ tE

tI

L(q, a, ϕ)dt, subject to

(1) q(t) solution of (4.1),

(2) q(tI) = qI , q(tE) = qE , ∀t ∈ [tI , tE]

(3) q(t) ∈ Q

(4) v2x(t)| tanϕ| ≤ all

(5) a(t) ∈ [a, a], ϕ(t) ∈ [−ϕ, ϕ].

The two constraint in (2) are defined to set exactly the desired initial and final configurations.

The constraint (3) requires that all configurations throughout the interval [ti, tE] remain feasible.

To elaborate this notion, for a given configuration q define by pr(q) the subvector pr = [x, y]

associated with the mid point of the rear axle. The position of the midpoint of the front axle is

given by pf (q) = [x + l cos θ, y + l sin θ]. The set of feasible configurations Q is made of all

configurations such that both pr and pf are inside the track: Q = {q|pf (q), pr(q) ∈ P}. Clearly

both the initial and the final configuration qI and qE are required to be inside Q and so have to

be the intermediate configurations. The constraint (4) requires that the car never exceeds the

maximum allowed lateral acceleration al. This gives rise to the following constraints for the

intermediate configurations of the system:

vx ≤
√

alR (4.2)

where R = l
| tanϕ|

. Notice that al is a function of the tires grip, which depends on the ground

characteristics, e.g., dry or wet asphalt, off road, etc., and generates constraint depending on the

state variable vx and the control input ϕ. The constraint (5) is on the physical limitation of the

vehicle (maximum and minimum acceleration and steering angle). The cost function is in this

case the time to complete the motion:

∫ tE

tI

L(q, a, ϕ)dt, (4.3)

where L(q, a, ϕ) = a1, with a1 > 0.
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4.2 Maneuver Extremals

In order to find a solution to the problem 3, we first need to identify the set of extremals that

verify the necessary condition for optimality based on the Pontryagin Minimum Principle (see

e.g. [43] and [9] for the constraints on the state and control variables). For this purpose we study

the problem disregarding the constraints on the configurations q that impose that the vehicle is

on the track (constraint (3)). We will recover such geometric constraints later on.

Proposition 4. Optimal paths consists of concatenation of

1. Straight line S , traveled with any velocity profile, compatible with the maximum and

minimum accelerations, i.e. a and a, respectively;

2. Circular curve Cr traveled with constant maximum velocity vx = a
ca

; the radius is fixed to

the maximum value r that is compatible with the constraint on the lateral acceleration:

r = vx
2/al, where al is the maximum lateral acceleration;

3. Circular curve Cr traveled at (possibly time–varying) velocity 0 ≤ vx ≤
√

all
| tan(ϕ)|

= vxϕ;

the radius is fixed to the minimum possible value allowed by the vehicle : r = l
| tan(ϕ)|

;

4. Variable radius curves Va and Va executed with maximum or with minimum acceleration

respectively, which always verify the relation v2x| tan(ϕ)| = al l.

Proof. The state-control constraint v2x| tanϕ| ≤ aℓl generates two constraints

C1(q, a, ϕ) = v2x tanϕ− aℓl ≤ 0, ϕ > 0

C2(q, a, ϕ) = −v
2
x tanϕ− aℓl ≤ 0, ϕ < 0 .

Hence, the Hamiltonian function associated to the optimal control problem 3 is

H = a1 + λ1vx cos θ + λ2vx sin θ + λ3 tanϕ
vx
l
+ λ4(a− cavx)

+ µ1(v
2
x tanϕ− all)− µ2(v

2
x tanϕ+ all)

(4.4)

where (λ1, λ2, λ3, λ4)
T are the co-state variables µ1 = 0 (µ2 = 0) when v2x tanϕ < all

(−v2x tanϕ < all).
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From the dynamic of the co-state (λ1, λ2, λ3, λ4)
T we have λ̇1 = −∂H

∂x
= 0 and λ̇2 =

−∂H
∂y

= 0 hence we can define λ1 = d cos γ and λ2 = d sin γ obtaining

H = a1 + d vx cos(θ − γ) + λ3 tanϕ
vx
l
+

+ µ1(v
2
x tanϕ− all)− µ2(v

2
x tanϕ+ all)

(4.5)

the dynamics of the rest of the co-state are

λ̇3 = −
∂H

∂θ
= d vx sin(θ − γ)

λ̇4 = −
∂H

∂vx
= −d cos(θ − γ)− λ3

tanϕ

l
+

− caλ4 − 2(µ1 − µ2)vx tanϕ

(4.6)

We first analyze the extremal arcs when the state-control constraint is active, i.e. we assume

v2x| tanϕ| = all. Without loss of generality, we consider only the case in which C1 = 0 and

hence C2 < 0. The opposite case gives a similar result. Notice that constraints C1 and C2 are

mutually exclusive. With this choice, µ1 ≥ 0 and µ2 = 0. Moreover, if C1 = 0 the control

variable ϕ can be obtained from the state variable v. However, ϕ could be less than ϕ̄. The

remaining control variable is a ∈ [a, a].

If −ϕ̄ < ϕ < ϕ̄ and a < a < a than, for optimality, we have ∂H
∂ϕ

= 0, i.e. v(λ3/l +

µ1 vx)(1 + tanϕ2) = 0, and hence, as vx > 0, µ1 = −λ3/(lvx) which implies λ3 ≤ 0.

Moreover, we have ∂H
∂a

= 0, i.e. λ4 = 0, and hence λ̇4 = 0. From the second equation in

(4.6), λ3 = −dv2x
al

cos(θ − γ). Deriving λ3 and considering the first equation in (4.6) we obtain

that a = cavx + al tan(θ − γ). However, for minimum time problem, a necessary condition

for optimality implies that Ḣ = 0 along the optimal trajectories. By substituting all the above

results, the Hamiltonian becomesH = 2dvx cos(θ−γ) and its derivative is Ḣ = dal sin(θ−γ) =

0 which implies θ = γ = const.. This conclusion violates the assumption, i.e. C1 = 0. As a

consequence, at least one of controls a and ϕ must to be on the boundary.

If 0 < vx < vx and a = a (a = a) vx increases up to vx (decreases down to 0) and ϕ changes

with vx according to C1 = 0, i.e. v2x tanϕ = all. Notice that the constraint on the maximum

lateral acceleration can be written in terms of the curvature radius R as v2x = Ral, hence the

extremal is a curve with a radius that increases proportionally to v2x, i.e. an arc of type Va (or

Va).
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If vx = vx we have v̇x = 0 and hence a = cavx = a. In this case the extremal arc is an

arc of circle with radius l
tanϕ

followed at constant velocity vx with an angle ϕ that is solution

of v2x tanϕ = all, i.e. an arc of type Cr̄. This extremal exists only if ϕ ≥ arctan all

vx
2 . In other

words if the curves of the track are not too sharp this extremal may be an arc of the optimal

path. In case of sharp turns it implies that the velocity must be decreased before the turn to

avoid a lateral acceleration larger than al.

If −ϕ ≤ ϕ ≤ ϕ we have ∂H
∂ϕ

= λ3(1 + tan2 ϕ)vx
l
= 0. This implies λ3 = λ̇3 = 0 and,

from the first equation in (4.6) we have θ = γ, θ̇ = 0 and hence ϕ = 0. The obtained extremal

is hence a straight line that is part of an optimal path only if is followed at the maximum speed

based on the initial and final values of the velocity, i.e. an arc of type S.

If ϕ = ±ϕ the vehicle proceeds along a arc of circle of constant radius r = l
| tanϕ|

. The arc

is part of an optimal path only if is followed at the velocity 0 ≤ vx ≤
√

all
| tanϕ|

, i.e. an arc of

type Cr.

4.2.1 Maneuver Analysis

For all maneuvers as described above, given the model (4.1), the velocity at the end of sector

with constant acceleration a for the duration δt = tb − ta, is given as follows:

vx(tb) =

(

vx(ta)−
a

ca

)

e−caδt +
a

ca
. (4.7)

Straight Line Maneuver S In the straight line maneuver we can have any velocity profile.

The velocity at the end of the maneuver is given by:

vx(t
′
a) = min

(

vx,

(

vx(ta)−
a

ca

)

e−caδt1 +
a

ca

)

,

vx(tb) = max

(

vx,

(

vx(t
′
a)−

a

ca

)

e−caδt2 +
a

ca

)

,

(4.8)

where δt1 = t′a − ta and δt2 = tb − t
′
a. Moreover, for a given v(ta), vx(tb) is in the set

Γvx =

{

max

(

vx,
a

ca
+

(

vx(ta)−
a

ca

)

e−caδt

)

, min

(

vx,
a

ca
+

(

vx(ta)−
a

ca

)

e−caδt

)}

.

(4.9)
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In particular, for each velocity in Γvx there is exactly one solution for the switching point t′a

in order to have the optimal maneuver. Defining with t0a and t0b the times in which the vehicle

reaches the maximum vx and minimum vx velocities respectively, and the time intervals δt1 =

t0a − ta, δt2 = t′a − t
0
a, δt3 = t0b − t

′
a and δt4 = tb − t

0
b , the distance traveled along the straight

path is then given by

ds =
1

ca

(

aδt1 + aδt3 −

(

v(ta)−
a

ca

)

e−caδt1 −

(

v(t′a)−
a

ca

)

e−caδt2

)

+ vxδt2 + vxδt4.

(4.10)

Circular curve Cr In the curve with minimum radius, the velocity at the end of the maneuver

can take any value vx ≤ vx ≤ vxφ. Since we are interested in minimum time trajectories, we

can assume that:

vx(ta) = vx(tb) = vxφ, (4.11)

i.e, this maneuver does not modify the velocity profile, nor it can be taken if the velocity is less

than vxφ. Thus for a case where vx < vxφ, the vehicle has to take S maneuver. The overall angle

∆θCr covered during this maneuver, i.e., the overall change in the vehicle heading, corresponds

to the total arc travelled on the maneuver, hence

∆θCr ∈ [0, 2π). (4.12)

The time to execute the maneuver is then given by

δt = tb − ta =
r∆θCr
vxφ

. (4.13)

Variable radius curves Va For this type of curve, the velocity at the end of the maneuver is

given by:

vx(t
′
a) = vx(ta)







= vx, hence t′a ≥ ta

< vx, hence t′a = ta

vx(tb) =

(

vx(t
′
a)−

a

ca

)

e−caδt2 +
a

ca
≥ vxφ,

(4.14)
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where δt1 = t′a − ta and δt2 = tb − t
′
a. Notice that as soon as vx(tb) = vxφ, the maneuver ends

and switch to Cr maneuver due to the previous assumption. Moreover,

δt2 = −
1

ca
log

(

vx(tb)−
a

ca

v(t′a)−
a

ca

)

. (4.15)

The overall angle covered by the maneuver is given by

∆θTa =
vx
r
δt1 +

al
a
(log(vx(tb)) + caδt2 − log(vx(t

′
a))) , (4.16)

for T −
a (counter-clockwise maneuvers), while it is

∆θTa =
vx
r
δt1 −

al
a
(log(vx(tb)) + caδt2 − log(vx(t

′
a))) ,

for T +
a (clockwise maneuvers).

Variable radius curves Maneuver Va Similar to the previous case, the velocity at the end of

the maneuver is given by:

vx(t
′
a) =

(

vx(ta)−
a

ca

)

e−caδt1 +
a

ca
≤ vx,

vx(tb) = vx(t
′
a)







= vx, hence tb ≥ t′a

< vx, hence tb = t′a

(4.17)

where δt1 = t′a − ta and δt2 = tb − t
′
a. Notice that vx(ta) ≥ vxφ. Moreover,

δt1 = −
1

ca
log

(

vx(t
′
a)−

a
ca

vx(ta)−
a
ca

)

. (4.18)

The overall angle covered by the maneuver is given by

∆θTa =
vx
r
δt2 +

al
a
(log(vx(t

′
a)) + caδt1 − log(vx(ta))) , (4.19)

for T −
a (counter-clockwise maneuvers), while it is

∆θTa =
vx
r
δt2 −

al
a
(log(vx(t

′
a)) + caδt1 − log(vx(ta))) ,

for T +
a (clockwise maneuvers).
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4.2.2 Extremals with Geometric Constraints

For the principle of optimality any subpath of an optimal path is optimal itself. When taking

into account the physical borders of the track the optimal solution will consist of subpaths along

such borders (named as constrained subpaths) and subpaths strictly verify the physical border

constraints (named as unconstrained subpaths).

In a straight sector, the track border constraints generates straight constrained subpaths that

are equivalent to the unconstrained ones. On the other hand, along a curve the only two con-

strained paths are the arcs of circle with radius Ro and Ri. Along the optimal path those con-

strained paths are concatenated with the extremal unconstrained paths. To be optimal the con-

strained subpath must be followed at the maximum allowed acceleration without violating the

lateral acceleration constraint.

4.3 Optimal Maneuvers

After introducing the alphabet of optimal maneuvers (extremals) that compose the motion plan,

we will now discuss the optimal sequence of maneuvers to be used for the solution of Problem 3.

We will discuss two different cases. In the first case, the sector of the track between the two

end-points of the path is a straight line (straight sector), while in the second case it contains a

curve (turn sector).

Generally speaking, the solution to this problem is given by a concatenation (a word) of

extremals. Each extremal is associated with some free parameters. For instance parameters of

the straight line are initial and final velocity and length. When two extremals are interconnected

some of the free parameters are constrained (for instance the initial velocity of the second ex-

tremal has to be equal to the final velocity of the first one). Other constraints are obviously

given by the two end-points that have to be interconnected by the sequence. Nevertheless, some

of the parameters in the word remain free choice. So, in general, to find the optimal sequence

of maneuvers that steers the vehicle between two configurations, one has to identify the opti-

mal sequence of extremals and the correct choice of parameters that produce a minimum time
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transition between the two configurations.

The solution of this problem is very challenging. However, by approximating the extremals

with circular arcs, geometrical properties can be used to reduce the number of parameters to be

identified. We will analyze in the depth this simplified case and show how it can be a useful

source of inspiration for a solution heuristic that applies to the general case.

4.3.1 Sub–optimal sequences in a simplified case

In this section, we consider a simplified scenario in which the circular arcs, followed at constant

speed with v2x| tan(ϕ)| = all, instead of variable radius maneuver Va and Va arcs. This leads

to a sub–optimal path whose cost remains reasonably close to the optimal solution. We will

analyze in depth this simplified case and show how it can be a useful source of inspiration for a

heuristic solution that applies to the general case.

Each sector is delimited by two lines sl and al which are perpendicular to the lane. So

the initial configuration q(tI) is such that the sub-vector pf (q(tI)) ∈ sl (i.e., the front axle is

on the start line) and the final configuration q(tE) is such that pf (q(tE)) ∈ al (i.e. the front

axle is on the finish line of the sector). For the sake of simplicity, we further assume that

ϕ(tI) = ϕ(tE) = 0, i.e. the car is parallel to the lane at the beginning and the end of the

sequence.

4.3.1.1 Trajectories for straight sectors

Consider a straight sector as represented in Figure 4.1. We are interested in analyzing all posi-

tion pairs p(tI) = [x(tI), y(tI)] and p(tE) = [x(tE), y(tE)] where x(tI) = 0 and x(tE) = LS

(LS is the length of the sector) and 0 ≤ y(tI), y(tE) ≤ W . Given the optimal path from p(tI) to

p(tE) with velocities v(tI) = vI and v(tE) = vE , for translation invariance, it is also the optimal

path from (0, y(tI)+h) to (LSi
, y(tE)+h) with 0 ≤ h ≤ W−max{y(tI), y(tE)} and with the

same velocities. Furthermore, the symmetry with respect to lines parallel to the sector borders

provide the optimal path from [0, y(tI)] to [LS, 2y(tI)− y(tE)] with 0 ≤ y(tI) ≤
W+y(tE)

2
and

with v(tI) and v(tE). Hence, without loss of generality, it is sufficient to consider y(tI) = W
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Figure 4.1: Optimal solutions on a straight sector.

and 0 ≤ y(tE) ≤ W .

The analysis can be carried out using the classical arguments of Dubins [21]. In particular,

excluding the case of LS much smaller than the minimum radius of curvature R = L
tan ϕ̄

(which

gives rise to more complex sequence), the optimal word is given by SCSCS , where the turns

C can be a circle with generic radius traveled at maximum allowed velocity and some of the

extremals of the sequence can be missing (or equivalently have zero duration).

In the sequence SCSCS the free parameters are the length s1 and s3 of the first and of the

third straight sectors and the velocities v1 and v2 of the two curves. By varying all the four

parameters a path from p(tI) to p(tE) is found. Additional constraints come from geometric

considerations: for example, it can be shown that the quantity s1 + s3 can never exceed LS .

The parameters are strongly affected by the initial and the final velocities. For example, if

v(tI) = v(tE) = v̄ (and if LS is sufficiently large with respect to the radius of the admissible

curve at maximum speed R = v̄2x
al

) the solution is a Dubins path CSC with s1 = s3 = 0 and

v1 = v2 = v̄x. It can be shown that, for small values of ca and for sufficiently large LS , the

behavior along the solution is to use maximum acceleration along the first two straight lines

while braking (with minimum negative acceleration), if needed, along the third straight line to

reach the desired final speed.
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Figure 4.2: Sub–optimal path on a turn sector.

4.3.1.2 Trajectories for turn sectors

Consider a turn sector Si as represented in Figure 4.2. We are interested in analyzing all position

pairs p(tI) = [x(tI), y(tI)] and p(tE) = [x(tE), y(tE)] where x(tI) = 0 ∈ sli and x(tE) ∈ ali

and 0 ≤ y(tI), y(tE) ≤ W . Contrary to the straight sectors, in this case invariance properties

of the optimal solution do not help restrict the initial of final points to be considered.

Based on the geometric characteristics of a turn sector and using arguments à la Dubins,

the considered word is in this case given by SCS . By using this word to move the car from

one configuration to another, the only free parameter is s1, which is the length of the first

(short) straight line. The radius and hence the velocity v1 associated to the curve is determined

univocally by s1. Indeed, there exists only a circle tangent to both the straight lines of SCS at

distance s1 from the initial point. Obviously, for the existence of an admissible velocity v1 and

for the sector borders constraints, the values of s1 are limited. Finally, the length of the second
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(short) straight line follows from the position of the arrival line al,form s1 and v1. By varying

the parameter l1 the path from p(tI) to p(tE) can be found.

As for the case of the straight line, the solution is strongly affected by the initial and final

velocities, as well as by the values of Ri
b and Ro

b . It can be shown that, for sufficiently large

values of Ri
b, the behavior along the solution is to touch the inner border of the turn.

4.3.2 Optimal sequences in the general case

In the general case, the family of the extremals is much richer and any two extremals can poten-

tially be interleaved by a straight line. Therefore, we propose here a heuristic solution (rather

than the exact one) that is mathematically tractable and is closely inspired to the simplified case

discussed above.

First of all, we can regroup the maneuvers that move along the constraint imposed by the

lateral acceleration, and the other that will not. Hence, we will define the maneuvers

Ta = Cr ◦ Va

Ta = Va ◦ Cr

Let us first focus on the straight sector and assume that the velocity at the beginning and at

the end is higher than the one that can be held in the curve. In the simplified case, the maneuver

(which is essentially a change of lane) clearly requires two circular curve in the opposite sense

interleaved by a straight line. Besides, we have an initial straight and a final straight. The initial

straight can be used to reduce the speed before starting to turn (so as to reduce the radius of the

curve that can be taken). Likewise, the final straight can be used to accelerate the car until the

target velocity is reached. With addition of the extremal T , we have an important advantage:

the car can start turning while changing the speed. Likewise, when the curve finishes the car

uses the T to anticipate the opening of the throttle and by gradually opening the curve until it

turns into a straight. The resulting sequence is the following

STaCrSCrTaS.

Similar arguments apply to a turn sector. In this case, a potentially good sequence that
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generalizes the SCS sequence can be:

STaCrS[CBr
|CBl

]SCrTaS.

In this case we make the same use of the T maneuvers as in the straight line. In addition, we can

have either a curve with maximum or with minimum radius [CBr
|CBl

] of the sector to account

for the geometry of the track (see section 4.2.2).

Additionally, each curved maneuver has a superscript equal to − or + depending on the

fact that the curve turns in the clockwise or counterclockwise direction (thus decreasing or

increasing the value of the angle θ according to the right–hand rule).

4.3.3 Optimizing Parameters

The parameters used in the optimization for the simplified scenario are the length and the ve-

locity at the end of the first straight line. An example of the result of the optimization for

a turn sector can be observed in figure 4.3. The car starts and ends with equal velocities

vi = ve = 58.31 m/s. It reaches 62.23 m/s at the end of the first line. Afterwards the car

decelerates (shown as the blue curve) until it can accelerate to reach the correct orientation and

a final velocity feasible to reach ve with a straight line (shown as the red curve).



56 CHAPTER 4. LOCAL PLANNING

40 60 80 100 120 140 160
30

40

50

60

70

80

90

100

Figure 4.3: An example of an optimal maneuver for a given initial and final configuration.



Chapter 5

Global Planning

acThe global planning roblem addressed in this thesis can be summarized in the following

terms: given an autonomous car–like vehicle that runs on a known track along with other

vehicles, plan a trajectory that allows the vehicle to complete a given number of laps on the

track, in minimum time while avoiding collisions with other vehicles [50].

Path planning in a competition track is significantly different from path planning in a urban

or extra urban road [32]. First, in competition scenario the environment is strongly structured

and well known upfront; thus, reducing the effect of uncertainty from the environment. Second,

the track is accessible only to a small and predetermined number of cars. Third, all the cars

in the track have very similar spatial footprint and dynamic characteristics. This reduces the

amount of real–time data that the planner requires. Hence, the amount of data that the robot has

to collect and process in real–time is relatively small compared to cases of the absence (or lack)

of a-priori information. On the other hand, the high speed of the car requires the information

acquisition, the optimal planning with collision avoidance and the control phases to be executed

within tight real–time constraints.

Autonomous driving for cars is a very popular theme amongst a multidisciplinary research

community [27, 28]. In particular, trajectory optimization for race car simulators has received

a constant attention. The idea of decomposing the track into segments has been explored in [8],

the authors apply genetic algorithm to find the best trade–off between length and curvature of

the racing line. The authors in [13] solve numerical optimization problems taking into account

57
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the inertia of the vehicle. role of yaw inertia or the mass of the vehicles.

The approach we advocate in this chapter builds on the extremal maneuvers, i.e. that verify

the Pontryagin Minimum Principle necessary conditions for optimality [43], to steer the car

from one configuration to another in minimum time as described in Chapter 4.

Finally, a very important inspiration for this work is the technique usually referred to as

“discrete abstraction” [3, 24, 40, 41, 42, 44]. whereby a system with dense state is translated

into a discrete system (essentially a state machine) to simplify planning and verification of

properties.

This chapter is organized as follows: In Section 4.1 we introduce the most important con-

cepts this chapter revolves around and propose a formal statement for the global planning prob-

lem. In Section 5.3 we discuss our graph based discrete abstraction of the problem. In Sec-

tion 5.5, we support our technique by a large set of simulation results.

5.1 Problem Definition

The goal of this chapter is to find the sequence of maneuvers that allow the car to complete a

generic number of laps in minimum time. Hence, the cost function to be minimized over the

track is
∫ T

0

L(q, a, ϕ)dt, (5.1)

where L(q, a, ϕ) = 1. , with a1 > 0 is a weight for the maneuver total time.

Given a configuration q = [x, y, θ, v], pr = [x, y] denotes the position of the midpoint of

the rear axle, while the midpoint of the front axle is pf = (x + L cos θ, y + L sin θ). Let Σ be

the sequence of sectors to be traversed. In other words, Σ is the region of configurations such

that the vehicle is inside the track; such configuration requires that both pf and pr are inside

the track: Σ = {q|p, pf ∈ P}. Moreover, at time ti the configuration is supposed to lie on

sli = {q|
Tpf = k[0, W ]T , 0 ≤ k ≤ 1, p ∈ P}, i.e. the starting region of sector Si. If the

circuit has ns sectors and the number of laps is nl, Σ comprises nl ordered sequences of ns

sectors. We can now state the Track Optimal Problem:
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Problem 4. Track Optimal Problem

min
a(t),ϕ(t)

nlns−1
∑

i=0

∫ ti+1

ti

dt, subject to

q(t) solution of (4.1),

q(t) ∈ Σ, q(ti) ∈ sli, ∀i = 1, . . . , nlns

v(t) ∈ [v, v]

v2(t) tanϕ ≤ alL

a(t) ∈ [a, a]

ϕ(t) ∈ [−ϕ, ϕ].

At time t1 = 0 the initial configuration is supposed to lie on sl1 = {q|
Ipf = k[0, W ]T , 0 ≤

k ≤ 1, p ∈ P}, with sl1 = slns
while slnlns

= {q|Epf = k[0, W ]T , 0 ≤ k ≤ 1, p ∈ P}. Such

problem refers to a single car requiring that the kinematic model, and the different geometric

and dynamic constraints are respected. An additional requirement (addressed in the final part

of the chapter) is that no collision happen with the other vehicles, assuming that they also adopt

a time optimal strategy.

5.2 Overview of The Approach

The approach for the global planning problem is represented in Figure 5.1, where squares denote

information, ovals denote steps and squares with rounded corners denote results of the steps.

Part of the steps are carried out offline and part are carried out online. The backbone of our

approach is an abstraction that allows us to reformulate the path planning problem in a discrete

graph–based setting. The approach comprises of the following steps:

1. Graph Construction: in this step, a graph for each car is constructed. It can be divided

into sub steps as follows: 1) partitioning the track into sectors, 2) building the vertices

by quantizing the position and velocities of the car into finite cell in each partition, 3)

connecting a pair of vertices using the cost of the optimal maneuver between the vertices

as weight.
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Figure 5.1: Overview of the approach

2. Graph Annotation: in this step two or more graphs are analyzed to detect collisions.

3. Graph Selection: to execute an avoidance or overtake maneuver graphs of leading cars

are selected while graphs of following cars is omitted from the selection

4. Path Planning: a shortest path algorithm is perform to find the optimal path to be fol-

lowed

5.3 Graph–based Planning

A solution to Problem 4 can be found using nonlinear optimal control theory or MPC–like tools.

However, a complete characterization of the solution as well as the high computational cost
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required for such solutions (in particular, if the algorithm has to be executed on an autonomous

robotic vehicle endowed with limited computing resources) leads to the necessity of a more

manageable solution. In this thesis, we decide to represent the track using a discrete abstractions

of its possible configurations. More precisely, a possible representation of the track can be given

in terms of a graph.

5.3.1 Track Partitioning

The first step in the graph construction is track partitioning. The complete track is partitioned

into sectors where each sectors can be characterized a straight sector or a turn sector (see Sec-

tion 4.3). Way lines (sli, sli+1) are the start and end line of sector i which are orthogonal to

the track boundaries. Two subsequent sectors shared a way line, i.e., the way line at the end of

sector i is the start way line for sector i+ 1.

Example 5.1. Figure 5.2 shows an example of the track partitioning algorithm. The track is

partitioned into 18 partition that consists of 1 straight sector and 17 bend sectors.

5.3.2 Graph Construction

Consider a discretization of dimension dw of the width W of the track. The dw points laying

on the orthogonal lines sli are the starting points of Si and final points of Si−1, while the points

laying on the orthogonal lines ali = sli+1 are considered as starting points of Si+1 and ending

points of Si. Considering a circuit that is partitioned into ns sectors. The total number of nodes

in the graph is (ns + 1)dw where we assume Sns+1 = S1. In other words, to close the circuit,

nodes of S1 are considered twice: one as initial nodes of S1 and one as final nodes of Sns
.

The edges of the graph represent a maneuver inside the sectors. Two nodes are connected

with an edge iff: 1) they are located in the same sector 2) they belong to different way lines 3)

there exist a maneuver that moves the car from the initial node (associated with a car configu-

ration) to the finale node. Hence, every node on sli can be connected through an edge to every

node on sli+1 = ali. Therefore, each sector consist of d2w arcs and the graph consists of nsd
2
w
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Figure 5.2: Example of track partition. The red lines are the separator between each partition

arcs. A cost ci,j equal to the minimum time required to go from a node i to j is associated to arc

(i, j). However, combination of minimum time sectors does not results in a minimum time lap.

Nevertheless, it is sufficient to reach ali from sli along Si in the minimum time and with the

maximum velocity in ali. In other terms, it is sufficient for sector Si to minimize the following

cost index

∫ ti+1

ti

L(q, a, ϕ)dt, (5.2)

where L(q, a, ϕ) = 1 in each track sector.

Therefore, for a sector Si, the initial and final configurations assumed by the vehicle are

constrained on two lines, defined by sli = {q|Impf = k[0, W ]T , 0 ≤ k ≤ 1, p ∈ P} and

ali = {q|
Empf = k[0, W ]T , 0 ≤ k ≤ 1, p ∈ P}, respectively. Hence, in place of Problem 4

the following set of optimal control problems can be defined
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Problem 5. Optimal Control Problem

min
a(t),ϕ(t)

ti+1 − ti, subject to

q(t) solution of (4.1),

q(t) ∈ Σ, q(ti) ∈ sli, q(ti+1) ∈ ali

v(ti) = vii, v(ti+1) = vfi

v(t) ∈ [v, v]

v2(t) tanϕ ≤ alL

a(t) ∈ [a, a]

ϕ(t) ∈ [−ϕ, ϕ].

It is worth noting that, with respect to Problem 4, the optimal solution in each sector must

be determined given the speeds vii and vfi at the beginning and at the end of the sector Si. Based

on the principle of optimality, those constraints are introduced to obtain the concatenation of

optimal solutions of Problem 5 for each sector that is the optimal solution of Problem 4.

To solve this problem, a discretization of dimension dv of the speed space v is also provided,

so that each point on sli can be crossed at dv different speed values. Hence, dwdv nodes are

associated to any initial segment sli, ∀i. With ns sectors, the total number of nodes in the graph

is now (ns + 1)dwdv, while the number of arcs turns to nsd
2
wd

2
v. More formally, a node k is

represented by a triplet k = (Sk, pk, vk) where Sk is the sector, pk is one of the dw position

of the point represented by k on slk, and vk is one of the dv speeds pertaining to a point pk.

Given nodes i and j the arc (i, j) belongs to the graph if and only if Sj = Si+1. The cost ci,j

associated to arc (i, j) is equal to the minimum time required to go from a node i to j (with the

corresponding speeds). Hence, the cost ci,j equal to the solution of the minimum time Problem 5

with v(0) = vi, v(T ) = vj from pi to pj .

Example 5.2. Figure 5.2 shows an example of the discretization of a sector where each line is

discretized into three positions (dw = 3) and the velocity space is also discretized into 3 values

(dv = 3). The different colored circles represent different velocity values.
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Figure 5.3: Example of a discretization of a bend sector.
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Figure 5.4: Example of all feasible maneuver for a given sector.

Example 5.3. Figure 5.4 shows an example all possible maneuver constructed for a given bend

sector. The waylines in this sector is discretized into 3 positions and 6 velocity values. The

green lines in the figure show that the car is traveling in a straight line with a given velocity

profile, the blue lines represent the car decelerating while turning while the red lines represent

the car is accelerating while turning. If there exist a maneuver from an initial configuration to

a final configuration, an edge is added to the graph between the nodes associated with with the

configuration and the weight of the edge is the time to complete the maneuver.

5.3.3 The Optimal Path

In order to apply standard shortest paths algorithms such as Dijkstra [20] it is necessary to

introduce two nodes. An initial node I and a final node F and all arcs (I, i) and (j, F ) where

Si = S1 and Sj = Sns+1. The associated costs are null, i.e. cIi = cjF = 0. With the introduction

of such nodes algorithm such as Dijkstra provide shortest path from any node of the graph to
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F . In particular, from any point on S1 to Sns+1.

Determining the minimum path from the nodes associated to the circuit starting line to the

same set of nodes considered on the arrival line the minimum time lap can be determined with

the associated sequence of maneuvers described in previous section. It is worth noting that with

this approach the best trajectory for the qualifying lap is determined, where there is only one car

on the circuit. If we are interesting in 2 or more minimum time laps the graph must be extended

duplicating the nodes and the arcs. Indeed, a graph associated to two laps on the circuit must

be taken into account considering Si of the first lap different from Sns+i of the second lap. A

graph with 2nsdwdv nodes and 2(ns + 1)d2wd
2
v arcs is hence considered. The same construction

of nodes I and F with associated arcs and cost can be followed and the optimal trajectory for a

generic lap of the race can be found.

The discretization of the width W and of the speed v will obviously provide a suboptimal

solution. However, a finer quantization provides a better solution but with the drawback of

having a huge graph and hence a higher computational costs.

Example 5.4. Figure 5.5 shows an example a graph constructed for a track with 4 sectors

where each sector is discretized into 3 positions and 3 velocity values and the optimal path as

a result of the Dijkstra’s algorithm

5.3.4 Avoiding Obstacles

The graph abstraction can easily be applied to account for the presence of other (slower) cars

in front of the vehicle that are not cooperative (i.e., do not facilitate the overtake). This is done

working with two graphs (one for each vehicle). The first step is to create a relations between

the arcs of the two graphs. A pair of arcs belongs to the relation if it is possible to have a colli-

sion when the arcs are taken with a wrong timing. Suppose that vehicle A follows and vehicle

B leads, and assume that a couple of arcs (aA, bA) (belonging to the graph of A), (aB, bB)

(belonging to the graph of B) potentially lead to a collision. Using simple kinematic consid-

erations (which we do not detail for the sake of brevity) it is possible to find a minimum inter
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a)

b)

Figure 5.5: a) Example of a graph constructed for a track with 4 sectors b) the optimal maneu-

ver found with Dijkstra’s algorithm
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arrival time τ(aA, bA)→(aB , bB) such that if A enters the arc (aA, bA) after a time τ(aA, bA)→(aB , bB)

elapsed since B entered (aB, bB), then the collision is avoided.

The algorithm for path planning can be modified as follows. At the beginning A detects the

position of B and assumes that it will use its graph for a minimum time path planning. As a

consequence it knows the position of B in its graph for any time in the future. As a first step

A finds the shortest path using its graph and annotates it with the time each node is reached. If

the path thus found contains an arc (aA, bA) that is in relation with another arc (aB, bB) that B

used, the algorithm checks if the minimum inter arrival time is respected. If not the arc (aA, bA)

is removed from the graph and the Dijkstra algorithm is repeated on the updated graph. These

steps are repeated until a “clear” path is found. The algorithm also checks when A becomes the

leader. From that point on the arcs that are possibly removed during the algorithm execution are

reinserted and A can use all of its graph.

5.4 Towards an optimal solution

Instrumental to the construction of the graph is the solution of the local planning problem: how

to steer the car from a configuration q(tI) where each configuration is define by position and

velocity. This problem has been addressed in Chapter 4.

Each extremal is characterized by a set of parameters. For instance a straight line S is

associate with its length, initial velocity, final velocity. When the extremals are concatenated

together some of the choices become bound by the previous extremal in the sequence. For

instance, if a straight line is followed by a bend, the initial velocity of the bend will have to be

equal to the final velocity of the straight line. Similar constraints holds for the trajectory tangents

in the concatenation point. Additional constraint are obviously imposed by the initial and the

final configuration. Nevertheless some of the parameters remain open and can be considered as

decision variables in an optimization procedure aiming for the minimum time solution. Efficient

solution strategies for this challenging problem are still under investigation. In the simulation

section below we report solutions obtained with a combination of simulated annealing and

gradient descent.



5.5. SIMULATIONS 69

The optimal solution of this problem is the weight of the arc connecting the two nodes of

the graph.

5.5 Simulations

The simulations are performed with two cars running on a track for 5 laps. Both cars have

equal size (3.5m in length and 1.8m wide) and same maximum and minimum accelerations

a = 34.5m/s2 and a = −20m/s2 respectively. A minimum curvature radius of 15m is imposed

on both cars to account for their minimum turning radius.

The cars have different viscous friction parameter (b) which in turn affects their maximum

speed (v) and different maximum lateral acceleration (al). For the first car: b = 0.45, v =

0.95a
b
= 72.89m/s, and al = 67.5m/s2, while for the second car: b = 0.4, v = 82m/s, and

al = 60m/s2,

5.5.1 Static Graph

The optimal trajectory of a vehicle is affected by the choice of parameter values e.g. max-

imum velocity, maximum acceleration, length of the track, maximum track curvature radius,

etc. Therefore, the produced graph differs for different set of parameter values. Figure 5.6.a

shows the result of two independent simulations where the viscous friction of the car differs.

Car 1 (blue) is able to reach its maximum velocity and hold this velocity along the blue line, thus

trajectories with longer path are suboptimal. Conversely, car 2 (red) is able to reach its max-

imum velocity and hold this velocity when traveling along the outer boundary of the straight

line, hence it will take more time than the Car 1.

Figure 5.6.b shows the result of a similar simulation with a reduced (half) value of al. Due

to the reduced maximum lateral acceleration, both cars cannot find a trajectory where they can

reach the maximum velocity along the curve.

Table 5.1 and Table 5.2 show the results of simulations of different choices of quantization

and different road conditions. The wet road condition is simulated by reducing the values of
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a b

Figure 5.6: a) Trajectories from two independent simulations of a car with different viscous

frictions (b) b) trajectories for reduced lateral acceleration abl = aal /2

a, a parameters with respect to the dry road condition. Table 5.1 is related to the track shown

in Figure 5.6 where the length of rectilinear paths are 160m and 80m while the curvature radii

are 80m. Table 5.2 shows results for a similar track with a smaller dimension (rectilinear paths

length are 100m and 50m, curvature radii are 50m).

As shown in Table 5.1, the time to complete a lap of Car 1 does not change by increasing

the dimension dv of the velocity space. This is due to the fact that both cars can reach their

maximum velocity and hold the velocity until the end of the lap. However, increasing the

dimension dw enables Car 1 to reduce the lap time by having a trajectory with shorter length.

Conversely, the time to complete a lap of Car 2 on a dry road condition is unaffected by changing

dw or dv. This is due to the fact that there is only one trajectory that enables Car 1 to reach

highest feasible velocity. On a wet road condition, where the maximum acceleration is lower,

Car 2 reduces its lap time by increasing dv because the finer discretization increases the number

of feasible maneuvers.
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car id road dw dv lap time (s)

1 2 - 4 5

1 dry 3 6 14.20 13.14 13.14

12 14.20 13.14 13.14

6 6 14.12 13.04 13.04

12 14.12 13.04 13.04

wet 3 6 15.05 13.32 13.32

12 15.05 13.32 13.32

6 6 15.03 13.28 13.28

12 15.03 13.28 13.28

2 dry 3 6 13.27 11.84 11.84

12 13.27 11.84 11.84

6 6 13.27 11.84 11.84

12 13.27 11.84 11.84

wet 3 6 15.65 13.90 13.90

12 15.49 13.72 13.72

6 6 15.65 13.90 13.90

12 15.49 13.72 13.72

Table 5.1: Time to complete each one of the 5 laps with different choices of quantization and

road conditions for track in Figure 5.6.

Table 5.2 shows the effect of different track parameters on the time to complete the lap.

On a track with smaller dimension, increasing dw or dv reduces the time to complete the lap.

However, increasing the dimension of the quantization increases the computation time of the

simulation. There are a few simulations shown in Table 5.2 where the time to complete the last

lap is the smallest among all laps. This is due to the fact that in the last lap the car is able to

reach a higher final velocity. This velocity is not available in the previous laps because it will

result in a configuration with no possible next maneuvers.

Finally, from both tables we can observe that there are at most three different times to

complete a lap. Thus, we can distinguish the laps into three types: the initial lap, the steady
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car id road dw dv lap time (s)

1 2 - 4 5

1 dry 3 6 9.68 8.40 8.40

12 9.63 8.40 8.40

6 6 9.57 8.23 8.23

12 9.52 8.23 8.23

wet 3 6 11.57 9.97 9.97

12 11.43 9.93 9.86

6 6 11.45 9.76 9.76

12 11.24 9.66 9.63

2 dry 3 6 10.11 8.88 8.88

12 10.02 8.83 8.83

6 6 10.07 8.74 8.74

12 9.88 8.56 8.56

wet 3 6 12.26 10.87 10.77

12 11.95 10.58 10.58

6 6 12.08 10.65 10.55

12 11.78 10.28 10.26

Table 5.2: Time to complete each one of the 5 laps with different choices of quantization and

road conditions for track in Figure 5.6 with smaller dimension.

state lap and the final lap. The path planning algorithm produces a solution for the optimal path

that reaches a steady state. Due to the space limitation, the analytic proof that the algorithm

always produces a steady state solution is postponed to future work.

5.5.2 Obstacle Avoidance

For this simulation, we constructed a track that is similar to Autódromo José Carlos Pace (aka

Interlagos). The track is 4305.3 m in length and 12 m wide. It consist of 14 curves (circle arcs)

and 14 straight lines. The track is partitioned into 14 segments by dividing each straight lines
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into two parts of equal length. Therefore each partition contains a sequence of a straight line,

a curve, and another straight line. A more interesting examples is the one where we have more

than one car on the track. Similarly to the previous example a graph of feasible trajectories

is built for each car with the parameters given in the beginning of this section. Two optimal

trajectories are produced for each graph.

Figure 5.7 shows the two sets of optimal trajectories. The blue line represents the trajectory

of car 1 and the red line represents the trajectory of car 2 before applying the collision avoidance

algorithm described in Section 5.3.4, while the green line represents the new optimal trajectory

of car 2 with collision avoidance. The inset shows the configurations of the two cars at time ti

before and after the path planning. A more detailed view is depicted in Figure 5.8 where we

took a snapshot of the cars configurations at three different times.

We applied the path planning algorithm on the two graphs and removed edges from the

graph of the car at the rear if the two cars collide along the trajectories represented by the edges.

The algorithm produces two new optimal paths where the two cars do not collide as shown in

Figure 5.8.
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Figure 5.7: Trajectories of two cars, on the Interlagos circuit, with different viscous friction b

parameters before graph pruning (red) and after pruning (green)
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Figure 5.8: Particular of the trajectories of two cars, on the Interlagos circuit, with different

viscous friction b parameters before graph pruning (red) and after pruning (green)
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Chapter 6

Architecture Design and Implementation

An autonomous car benefits from an efficient real-time implementation of the sensing and plan-

ning algorithms. As an example, the vision based localization use the side camera in order to

produce the output that will be used in the lateral control. Consequently, the camera is required

to capture new frame within the sampling period of of the control task. Moreover, the pro-

cessing units need to able to guarantee that all of the tasks required for the control tasks meet

their respective deadlines. This motivate a hardware and software architectures that are able to

satisfy these real-time requirements.

As a proof of concept we build a high performance robotic system using low cost hardware

as a testbed of our algorithm (shown in Figure 6.1) [23].

The starting point was a 1/8 scale radio controlled competition car model. The model is a

4WD buggy car and is powered by an electric DC motor that thrusts it up to a maximum speed

of about 25 km/h, which makes driving demanding for an unexperienced user on a scaled down

track. Indeed, if the vehicle runs on a 1/8 scale track and sensors are placed very close to the

ground (as per obvious physical constraints), the time constants required for kinematic control

are comparable to those in a vehicle of natural size running at 200Km/h on a real track (clearly,

the same does not apply to control of the system dynamics, which is outside of the scope of this

thesis).

As a first step, we have removed the original electronic components used for remote driving,

using the bare mechanical components of the vehicle and the driver for the motor, which is

77
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a) b)

Figure 6.1: The robotic car platform: a) side view, b) front view

controlled by a PWM signal digital signal. We have also modified the chassis to accommodate

the controller, which consists of a set of computing boards and of sensors.

In our second step, we have selected an appropriate set of sensors to be used for the control

tasks. Our sensing scheme is organized in two layers. The lower layer contains such sensors

as encoders, gyros and accelerometers which are used to estimate speed and accelerations. The

application of these is to control the vehicle in the execution of specific set of maneuvers (ac-

celerate up to a desired position, turn of a specified angle). The higher layer is used to perform

high level tasks such as to localize the vehicle in the environment, to reconstruct the path from

the image and to perform the global planning algorithm. For vision-based localization and path

reconstruction we have selected two visual sensors, the first one facing headway and the second

one sideways. This sensing scheme naturally induces an architecture design organized in two

layers: the lower one is operated by a simple computing elements, which is easy to interface

with the power electronic components and executes simple operations reliably and with a high

rate. The higher layer requires more computation power and a sophisticated software infras-

tructure (to integrate legacy software components used for the vision algorithms), but operates

on longer time scales.
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Figure 6.2: Architectural scheme of the robotic vehicle

6.1 Hardware Architecture

The scheme of the hardware architecture is shown in Figure 6.2. It consist of a collection

of sensors, actuators, communication channels and 4 computation units. The low level task

are managed by the Flex board and the PIC18 microcontroller. While the high level task are

executed on the Pandaboard and the Beagleboard.

The Flex board Board1 is a development board which is based on a microchip dsPIC33 con-

troller. It is a 16-bit architecture with 40 MIPS cpu speed. The board can be power supplied

with a variety of possible voltages (in the range 9 − 36V) and it exposes a set of connectors

that can be used to piggyback expansion boards. For this project, we have developed an ex-

1The Flex board is produced and sold by Evidence S.R.L.: http://www.evidence.eu.com/node/55.

http://www.evidence.eu.com/node/55
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Figure 6.3: Pandaboard dual-core development board. Courtesy of http://pandaboard.org

pansion board that integrates several peripherals: accelerometers, gyros, encoders (controlled

by a dedicated PIC18 micro-controller) and a Digi xBee Pro Zigbee module2 for wireless com-

munication, which is used for remote emergency control and telemetry. These components are

connected to the Flex Board using different serial channels (UART and SPI). The Flex Board is

also connected to the motor driver and to the steering motor by means of its PWM channels.

The high level sensing, planning and control functionalities are implemented a Pandaboard3

and a BeagleBoards XM4. The Pandaboard (Figure 6.3) is a low cost development platform

based on the Texas Instruments OMAP4460 system on a chip (SoC). It features a dual-core

1.2 Ghz Cortex-A9 CPU, a 384 MHz PowerVR SGX540 GPU, 1 GiB of DDR2 SDRAM, a

collection of peripherals and network ports. It supports linux operating system installed on an

2http://www.digi.com/
3http://pandaboard.org/
4 http://www.beagleboard.org

http://www.digi.com/
http://pandaboard.org/
http://www.beagleboard.org
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Figure 6.4: Beagleboard XM single board computer. Courtesy of http://beagleboard.org

SD card as the primary persistant storage. Its size and computing power makes it a suitable

processing unit for the localization algorithm.

The Pandaboard is connected to a PlayStation Eye, which is a commercial camera from

Sony. The camera is connected via a USB connection. It is able to capture an image with a

resolution of 640x480 pixels at 60 frames per second. However, it can be configure to capture

at a lower resolution 320x240 pixels at a higher frame rate of 120 frames per second. It is

easily available and affordable makes the camera interesting for high speed vision algorithm.

The PlayStation Eye camera is mounted on the side of the robotic car and is mainly used for

the localization algorithm. The high frame rate of the camera (120 fps) enables a lateral control

task to be executed at most every 8.33 second.

The Beagleboard XM is the second generation of Beagleboard. It is a single board computer

from Texas Instrument with a single DM3730 system on a chip (SOC). It features a single-core

1 Ghz Cortex-A8 CPU, TMS320C64x+ core and is equipped with 512MB of low power DDR

RAM. The Beagleboard is connected to Logitech Pro 9000 camera, which is a high resolution
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camera which supports 720p resolution. This camera is also connected via a USB connection

to the Beagleboard. It provides a high resolution image for the path reconstruction algorithm.

6.2 Software Architecture

The different software functionalities were distributed as follows between the different boards.

Overall, the solution proposed optimizes the efficiency in utilizing the available resources, in

the face of other solutions such as the ROS execution environment [45]. The price to pay is

the development software development effort requested by the direct manipulation of low level

mechanisms.

An overview of the software architecture is shown in Figure 6.5.

6.2.1 Flex board

The Flex board is running OSEK compliant Erika kernel 5. The Erika kernel is suitable for

real–time programming, for it features: 1) a clear tasking scheme, 2) fixed and dynamic priority

scheduling, 3) real–time resource sharing using the Priority Inheritance Protocol [55], 4) support

for the most common serial buses, which makes for an easy integration of new peripherals.

There are 6 real time tasks running on the Flex board as shown in Figure 6.5. The tasks are :

1. Sensor Update: this task integrates all the information coming from the sensors con-

nected via the two SPI buses. The sensors are: accelerometers, gyros and encoders. This

task is synchronous and executed every 150 ms.

2. Zigbee Send: this task collects all sensors data and other information required for debug-

ging purposes. The information is encoded and packed as a communication package to be

transmitted to a PC via Zigbee protocol (IEEE 802.15.4). The Zigbee uses a serial com-

munication channel that is configured to 9600 bps. The Zigbee Send task is synchronous

and executed every 1000 ms.

5http://erika.tuxfamily.org/

http://erika.tuxfamily.org/
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Figure 6.5: Overview of software architecture

3. Zigbee Receive: this task handle the communication from the PC. This task receives

command packets from the PC via Zigbee, interprets and execute the command. This task

is mainly used to start / stop the controllers. This task is asynchronous and is activated

when a packet arrives from the PC.

4. Emergency Brake: It is a simple safety feature that stops the robotic car in the case of

communication error between the boards. Emergency Brake task is asynchronous and

is activated when within 100 ms no packets is received from the PC via Zigbee of the

Pandaboard via I2C.
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5. Steering Control: This task reads values from the potentiometer connected to the wheels,

which measures the steering angle. This task also performs a PI control to control the

steering angle. This task is executed every 1 ms.

6. Motor PID Control: This task implements a PID controller to control the speed of the

DC motor and is executed every 2 ms.

7. I2C Comm: This is an asynchronous task that activates when a packet arrives in the I2C

bus from the Pandaboard. The packet contains the set point for the velocity and steering

and an output for the lateral control running on the Pandaboard.

6.2.2 Pandaboard

The Pandaboard is running Linux operating system with kernel 2.6.32. The main functions

running on the Pandaboard are:

1. Image Capture: This function captures an image from the PlayStation Eye camera at 100

frames per second and performs the preprocessing algorithm (crop and edge detection)

2. Localization: This function receives the image and performs the localization algorithm

as described in Section 3.3.

3. Lateral Control: This function receives the output of the localization function and com-

putes the velocity and steering set point.

4. PC Comm: This function is a publisher of a pub-sub communication channel between

the Pandaboard and the PC. It sends debugging data to the PC and receives commands to

start or stop the localization algorithm.

5. I2C Comm: This function handles the communication between the Pandaboard and the

Flex board.
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6.2.3 PC

The PC software is built to do basic control of the robotic car and to show the telemetry data

from the robotic car. The PC software is able to directly communicates to the Flex board via

Zigbee and to the Pandaboard via WLAN (IEEE 802.11).
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Chapter 7

Conclusion

In this thesis we have described problems encountered in designing an autonomous car in the

context of a car race. We also provide solutions for the uncertainty in sensing by presenting a

vision based localization and and path reconstruction techniques. These techniques are based

on RANSAC and Kalman filter which enables an efficient real-time implementation. We also

presented our solution for local planning problem for a robotic car racing on a track. The

problem of local planning has been considered first identifying the optimality of the maneuver

and then giving a complete geometric analysis of the simplified scenario. In this case, sub-

optimal maneuvers show to be largely dependent on the problem parameters: the weights of the

time to complete the maneuver and the velocity at the end of the track as well as the dynamic

properties of the vehicle completely change the maneuvers. Hence, the sub-optimal solution

is given in terms of a set of functions to be minimized once the parameters of the problem are

known. In this thesis, we also have proposed a graph-based global planning technique. By using

a discrete abstraction, we are able to generate a motion plan that optimizes the completion time

of the race in a short time, both when the car runs in isolation and when it has to overtake a

slower car. A robotic platform has been developed as a testbed for the localization and the path

reconstruction algorithm. The robotic car is able to perform a simple path following algorithm

using the localization algorithm.

Future development will explicitly consider generic initial orientation and approaching ma-

neuvers to the curve. On of the future direction is to implement advanced game theoretic strate-
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gies that allows the car to overtake other opposing cars. Another important area for future work

will be on the implementation of the global planning on the presented robotic vehicle.
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[5] Jérôme Barraquand, Lydia Kavraki, Rajeev Motwani, Jean-Claude Latombe, Tsai-Yen Li,

and Prabhakar Raghavan. A random sampling scheme for path planning. In Robotics

Research, pages 249–264. Springer, 2000.

[6] Johann Borenstein and Yoram Koren. The vector field histogram-fast obstacle avoidance

for mobile robots. Robotics and Automation, IEEE Transactions on, 7(3):278–288, 1991.

[7] Amol Borkar, Monson Hayes, and Mark Smith. A Template Matching and Ellipse Mod-

eling Approach to Detecting Lane Markers. In Jacques Blanc-Talon, Don Bone, Wil-

fried Philips, Dan Popescu, and Paul Scheunders, editors, Advanced Concepts for Intelli-

89



90 BIBLIOGRAPHY

gent Vision Systems, volume 6475 of Lecture Notes in Computer Science, pages 179–190.

Springer Berlin / Heidelberg, 2010. ISBN 978-3-642-17690-6.

[8] M. Botta, V. Gautieri, D. Loiacono, and P.L. Lanzi. Evolving the optimal racing line in

a high–end racing game. In Computational Intelligence and Games (CIG), 2012 IEEE

Symposium on, pages 108–115, 2012.

[9] A.E. Bryson and Y.C. Ho. Applied optimal control. Wiley New York, 1975.

[10] Martin Buehler, Karl Iagnemma, and Sanjiv Singh, editors. The 2005 DARPA Grand

Challenge - The Great Robot Race, volume 36 of Springer Tracts in Advanced Robotics.

Springer Berlin / Heidelberg, 2007.

[11] John Canny. A computational approach to edge detection. IEEE Trans. on Pattern Analysis

and Machine Intelligence, PAMI-8(6):679 –698, Nov. 1986. ISSN 0162-8828. doi: 10.

1109/TPAMI.1986.4767851.

[12] John Canny. The complexity of robot motion planning. The MIT press, 1988.

[13] D. Casanova, R.S. Sharp, and P. Symonds. Minimum time manoeuvring: The signif-

icance of yaw inertia. Vehicle System Dynamics, 34(2):77–115, 2000. doi: 10.1076/

0042-3114(200008)34:2;1-G;FT077.

[14] Y.C. Cheng and Y.-S. Liu. Polling an image for circles by random lines. IEEE Trans. on

Pattern Analysis and Machine Intelligence, 25(1):126 –131, Jan. 2003.

[15] Yu Chin Cheng. The distinctiveness of a curve in a parameterized neighborhood: extrac-

tion and applications. IEEE Trans. on Pattern Analysis and Machine Intelligence, 28(8):

1215–1222, Aug. 2006.

[16] H. Chitsaz, S. M. LaValle, D. J. Balkcom, and M.T. Mason. Minimum wheel-rotation for

differential-drive mobile robots. The International Journal of Robotics Research, pages

66–80, 2009.



BIBLIOGRAPHY 91

[17] Howie Choset, Sean Walker, Kunnayut Eiamsa-Ard, and Joel Burdick. Sensor-based ex-

ploration: incremental construction of the hierarchical generalized voronoi graph. The

International Journal of Robotics Research, 19(2):126–148, 2000.

[18] M. Chyba and S. Sekhavat. Time optimal paths for a mobile robot with one trailer. In

Intelligent Robots and Systems, 1999. IROS ’99. Proceedings. 1999 IEEE/RSJ Interna-

tional Conference on, volume 3, pages 1669 –1674 vol.3, 1999. doi: 10.1109/IROS.1999.

811718.

[19] Christopher I Connolly, JB Burns, and R Weiss. Path planning using laplace’s equation. In

Robotics and Automation, 1990. Proceedings., 1990 IEEE International Conference on,

pages 2102–2106. IEEE, 1990.

[20] E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik,

1(1):269–271, 1959.

[21] L. E. Dubins. On curves of minimal length with a constraint on average curvature, and with

prescribed initial and terminal positions and tangents. American Journal of Mathematics,

pages 457–516, 1957.

[22] D. Fontanelli, M. Cappelletti, and D. Macii. A RANSAC-based fast road line detection

system for high-speed wheeled vehicles. In IEEE Int. Instrumentation and Measurement

Technology Conference (I2MTC), pages 186–191, Hang Zhou, China, May 2011.

[23] Daniele Fontanelli, Luigi Palopoli, and Tizar Rizano. High speed robotics with low cost

hardware. In Emerging Technologies & Factory Automation (ETFA), 2012 IEEE 17th

Conference on, pages 1–8. IEEE, 2012.

[24] A. Girard and G.J. Pappas. Approximate bisimulation relations for constrained linear

systems. Automatica, 43(8):1307–1317, 2007.

[25] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge

University Press, 2003.



92 BIBLIOGRAPHY

[26] Gabriel M Hoffmann, Claire J Tomlin, Michael Montemerlo, and Sebastian Thrun. Au-

tonomous automobile trajectory tracking for off-road driving: Controller design, exper-

imental validation and racing. In American Control Conference, 2007. ACC’07, pages

2296–2301. IEEE, 2007.

[27] Martin Buehler Issue edited by: Karl Iagnemma. Special issue: Special issue on the darpa

grand challenge, part 1. Journal of Field Robotic, 23(8):461652, 2006.

[28] Sanjiv Singh Issue edited by: Martin Buehler, Karl Lagnemma. Special issue: Special

issue on the 2007 darpa urban challenge, part i. Journal of Field Robotic, 25(8):423566,

2008.

[29] Lydia Kavraki and J-C Latombe. Randomized preprocessing of configuration for fast

path planning. In Robotics and Automation, 1994. Proceedings., 1994 IEEE International

Conference on, pages 2138–2145. IEEE, 1994.

[30] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. Probabilistic

roadmaps for path planning in high-dimensional configuration spaces. Robotics and Au-

tomation, IEEE Transactions on, 12(4):566–580, 1996.

[31] Oussama Khatib. Real-time obstacle avoidance for manipulators and mobile robots. In

Robotics and Automation. Proceedings. 1985 IEEE International Conference on, vol-

ume 2, pages 500–505. IEEE, 1985.

[32] D. Kogan and R.M. Murray. Optimization-based navigation for the darpa grand challenge.

In Conference on Decision and Control (CDC), 2006.

[33] Y. Kuwata, S. Karaman, J. Teo, E. Frazzoli, JP How, and G. Fiore. Real-time motion

planning with applications to autonomous urban driving. Control Systems Technology,

IEEE Transactions on, 17(5):1105–1118, 2009.

[34] J.P. Laumond. Robot motion planning and control. Springer, 1998.

[35] Steven M LaValle. Rapidly-exploring random trees a ew tool for path planning. 1998.



BIBLIOGRAPHY 93

[36] John Leonard, Jonathan How, Seth Teller, Mitch Berger, Stefan Campbell, Gaston Fiore,

Luke Fletcher, Emilio Frazzoli, Albert Huang, Sertac Karaman, et al. A perception-driven

autonomous urban vehicle. Journal of Field Robotics, 25(10):727–774, 2008.

[37] Zhi-Yong Liu and Hong Qiao. Multiple ellipses detection in noisy environments: A hier-

archical approach. Pattern Recognition, 42(11):2421–2433, 2009.
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