Study of the properties of cemented carbides from industrial production

Emanuelli, Lorena (2018) Study of the properties of cemented carbides from industrial production. PhD thesis, University of Trento.

[img]
Preview
PDF (study of the properties of cemented carbides from industrial production) - Doctoral Thesis
171Mb
[img]PDF - Disclaimer
Restricted to Repository staff only until 9999.

2171Kb

Abstract

Cemented carbides are composite materials formed by high amount of WC bonded by a soft phase, usually Co. They are used in many applications, such as drawing dies, cutting tools and hot rolls due to theirs remarkable properties of high hardness and wear resistance. Mechanical properties are strongly related to microstructure, namely the binder amount and the carbide grain size. Increasing the binder content and the carbide grain size, the hardness decreases ad the fracture toughness increases. In this PhD, the correlations between the mechanical properties of WC-Co and the microstructural characteristics, in parts taken from industrial production, were defined. After that, the influence of the residual microporosity on the mechanical properties was evaluated. Considering the production process, another important modification of the final microstructure of WC-Co occurs due to the liquid cobalt migration phenomenon. Based on this, also the liquid cobalt migration that occurs during sintering was investigated. At the end of the thesis, since a few data are available in literature, Thermal Fatigue and oxidation damage in WC-Co were studied. The main results of this PhD thesis show that the hardness and fracture toughness of WC-Co are defined by the mean binder free path and not by the contiguity since the high standard deviations, the microstructural fineness and also the high carbide grain size scatter. Differently, in case of mechanical strength, also the residual microporosity that depends on the dewaxing stage must be defined. Furthermore, the dewaxing stage acts on the liquid cobalt migration that affects the surface properties and also the final microstructure of the WC-Co part in industrial production. At the end, considering the damages that occur during high temperature applications, the TF and oxidation resistance of WC-Co results affected by the Co content: high cobalt content leads to a better condition of TF damage and s higher oxidation resistance.

Item Type:Doctoral Thesis (PhD)
Doctoral School:Materials, Mechatronics and Systems Engineering
PhD Cycle:30
Subjects:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/21 METALLURGIA
Repository Staff approval on:29 Oct 2018 10:02

Repository Staff Only: item control page